
鳥インフルエンザ

HA: Hemagulutinin: 赤血球凝集素

H1~H16 細胞への侵入に関与

NA: Neuraminidase: ノイラミニダーゼ

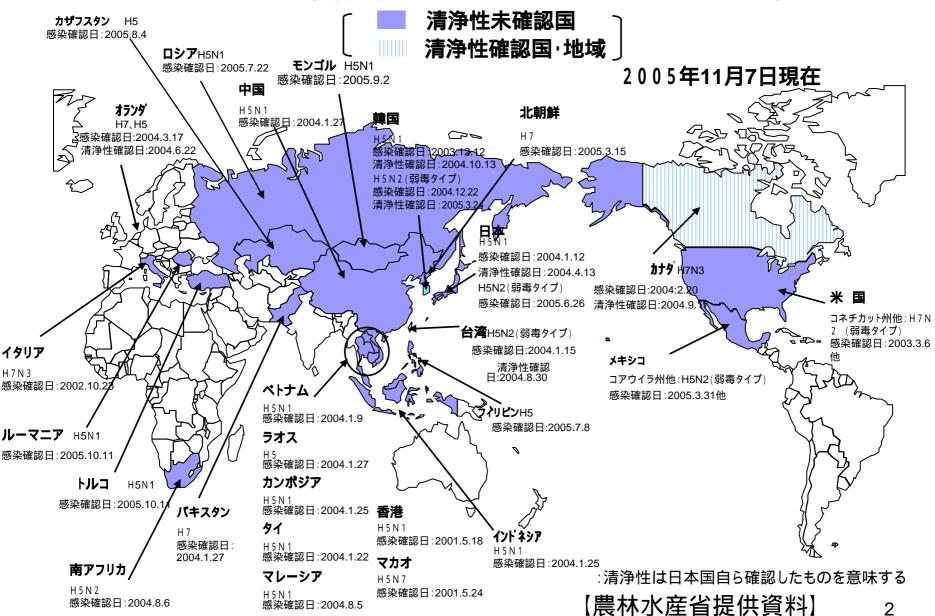
N1~N9 細胞からの出芽に関与

食品安全委員会 見上彪

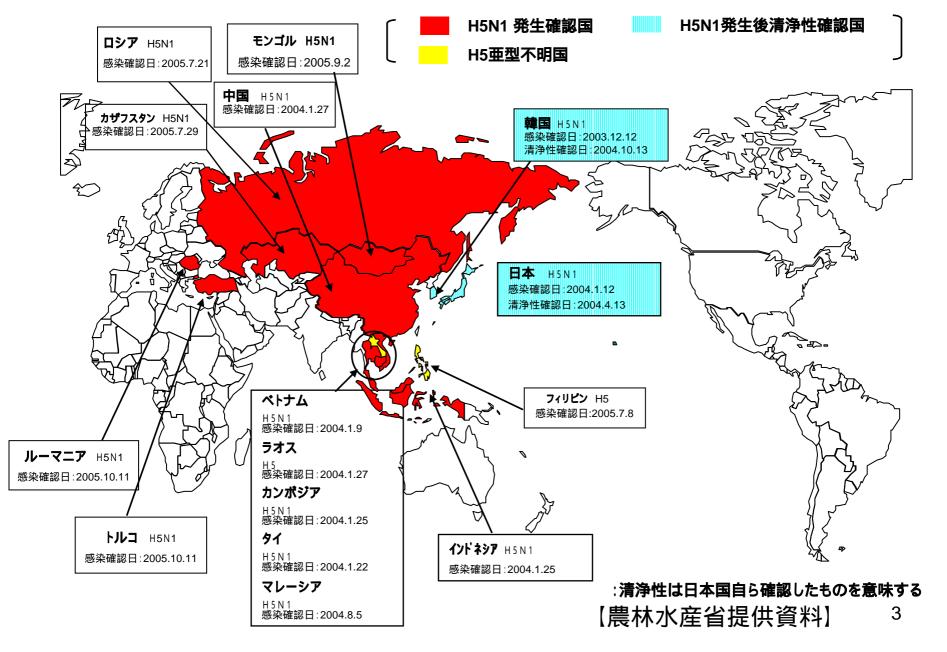
インフルエンザウィルス (オルトミクソウイルス科)

マイナス 1本鎖RNA

A,B型 8本の分節、C型 7本の分節

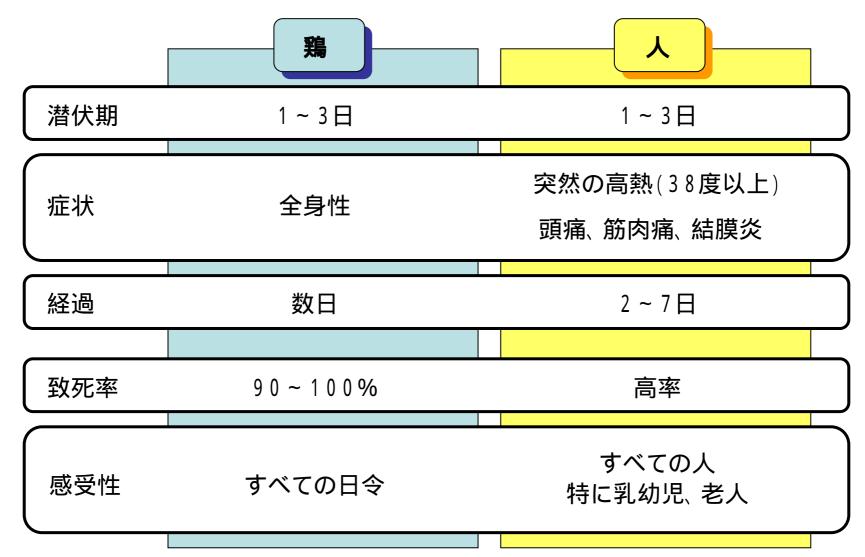

熱、酸、エーテル感受性

80~120nm 球状粒子


赤血球凝集素(H) 16種 16×9=144種(亜型) 1イラミダーゼ(N) 9種

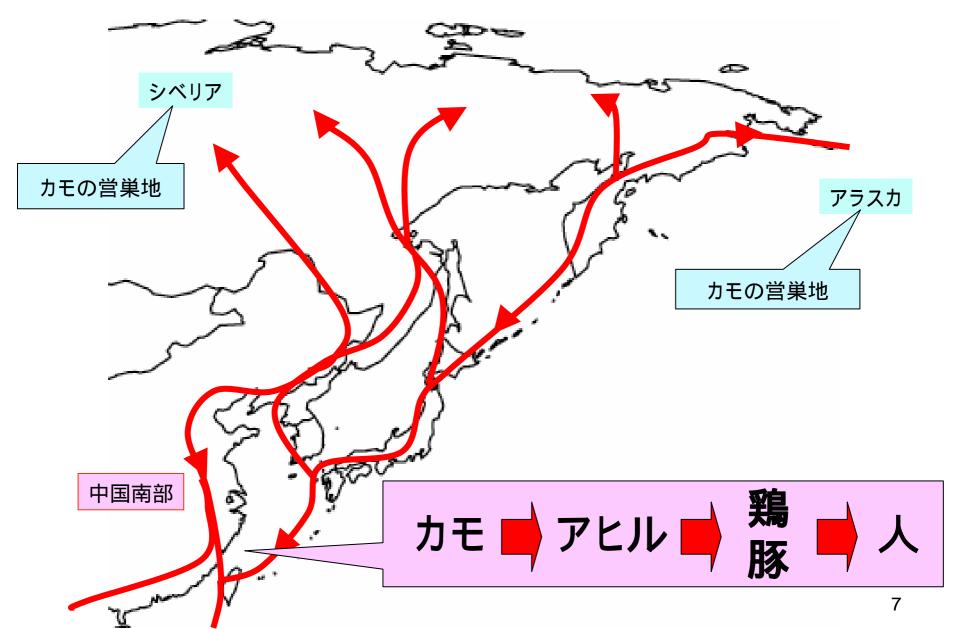
感染動物: A型(鳥、馬、豚、人)、B型(アザラシ、人)、 C型(豚、人)

海外における高病原性鳥インフルエンザの発生状況


海外における高病原性鳥インフルエンザ(H5N1)の発生状況(2003~)

アメリカ、カナダでの鳥インフルエンザ(2004年)

	地域	亜型			_ 코 ⊌ ᠘L
			人	鶏	· 発生 ————
アメリカ	デラウェア州 ニュージャージー州	H 7 N 2	ナシ	弱	
	ペンシルバニア州	H 2 N 2	ナシ	弱	
	テキサス州	H 5 N 2	ナシ	強	20年ぶり
カナダ	ブリティッシュ コロンビア州	H 7 N 3	ナシ	弱と	強


インフルエンザの症状

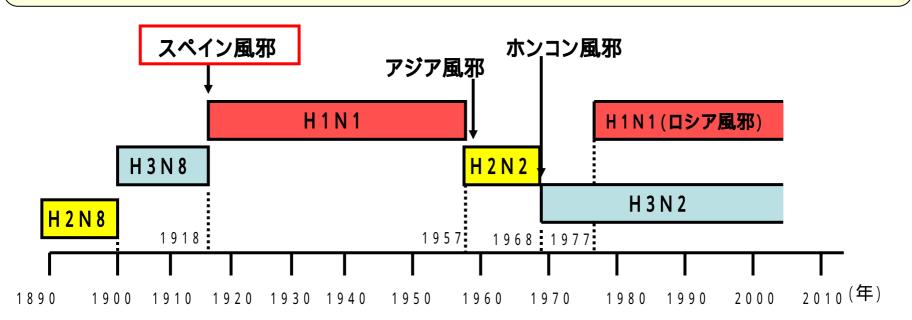
鳥インフルエンザの人の感染例

年	タイプ	地域	人への被害
1 9 9 7 2 0 0 3 2 0 0 3 2 0 0 3	H 5 N 1 H 5 N 1 H 7 N 7 H 9 N 2	香港 香港 オランダ 香港	6 / 1 8 1 / 2 1 / 8 9 0 / 1
2003~2005	H 5 N 1	ベトナム タイ カンボジア インドネシア 中国	42/93 13/21 4/4 7/12 2/3

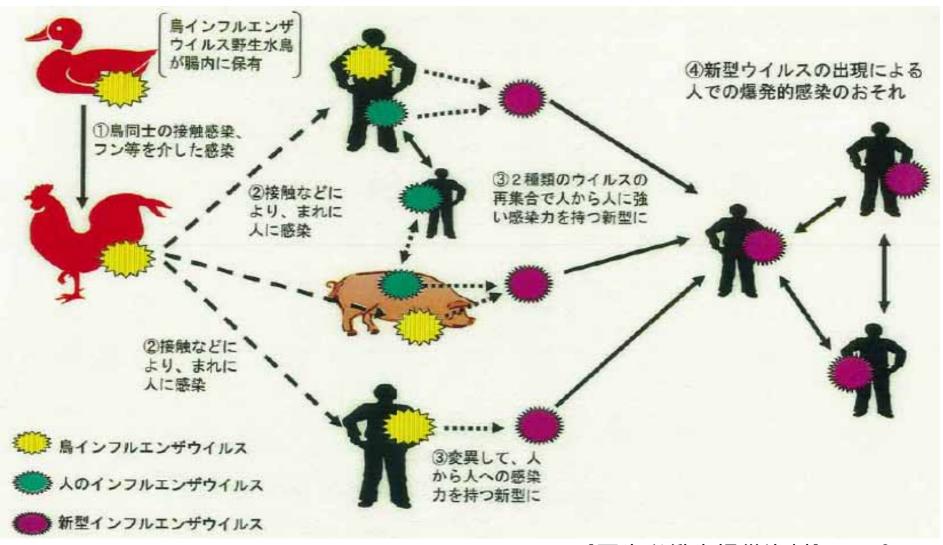
渡り鳥が鳥インフルエンザウィルスを運ぶのか

新型インフルエンザの出現するメカニズム

1. 分節遺伝子構造



遺伝子再集合


2. RNA

突然变異

鳥インフルエンザと新型インフルエンザの関係

鳥インフルエンザウィルスの人への感染 ー新型ウィルスの出現の仕組ー

 生きた感染鶏と密接な接触 新型ウィルスが作られる確率:極めて低い 人型ウィルスには変異していない

B トリと人 → 豚 (受容体+) 新型ウィルスが作られる確率:低い 新型ウィルスが人に感染する確率:低い 豚からは分離されたが、人型変異はなし

新型インフルエンザ発生時の段階的行動計画の概要とその対策 (2005年11月厚生労働省)

 段階	概要			
(伝播様式)	1M 32	外国での発生(A)	国内での発生(B)	
1 (トリ - トリ)	動物から人へ感染する可能性を持つウイ ルスが検出。	情報収集	同左	
2 A,B (トリ-トリ)	動物から人へ感染する危険性が高いウイ ルスが動物に検出。	渡航に注意喚起、家 畜類の感染防止(殺 処分など)	同左	
3 A,B (トリ - 人)	人への感染が確認されているが、人から 人への感染は基本的にない。	治療薬の備蓄、ワク チンの開発、指定医 療機関の整備	患者の出国自粛、 防疫の徹底	
4 A , B (人 - 人)	人から人への感染が小集団にとどまる。	流行地からの検疫強化、 ワクチンの生産開始、指 定医療機関での診断	患者への入院勧告 集会の自粛勧告	
5 A , B (人 - 人)	人から人への感染が広がる。パンデミック 発生の危険性が高まる(大きな集団発生)。	検疫のさらなる強化、 ワクチンの確保	ワクチン接種開始、 医者等治療薬(タミ フル)の投与	
6 A , B (パンデミック)	世界的大流行(世界の一般社会で感染が 急速に拡大)。	国際線の運航自 粛(海、空)	非常事態宣言、発症48 時間以内にタミフル投 与、重症者のみ入院	

注:WHO世界インフルエンザ事前対策計画(2005年5月)で定められた6段階を、我が国でさらに外国での発生(A)、国内での発生(B)に細分化して行動計画を定めた。

予防対策

疫学調査 発生日、感染状況、伝搬速度、月令、鶏種、死亡率、 鶏肉・鶏卵・加工品・飼料肥料原料等の流通先、 飼育人、関係者、訪問者他

病原体の分離・同定

抗体検出

摘発・淘汰

消毒

関係者への人用ワクチン投与や投薬 行政対応

最近の鳥インフルエンザの 世界的発生と人への感染

危ない症候群(鶏卵、鶏肉、ペット): 風評被害

原因: 感染源が特定されていない

かもかも要因: 1.卵や肉、あるいはペットから感染

2.食べたり、飼育・世話をして感染

3.野鳥に接触したら感染

結果: 1. 買わない、食べない、近寄らない

2. 国家、国民(生産者 消費者)に大損害

3.鳥の悲鳴 捨てないで!殺さないで!かわいがって!

防止策: 1.食媒介性感染の事例なし

2.人の細胞には受容体なし

3.持続性の濃厚接触が感染に不可欠(呼吸器系細胞の誤飲)

4.人型への遺伝子異変はしていない

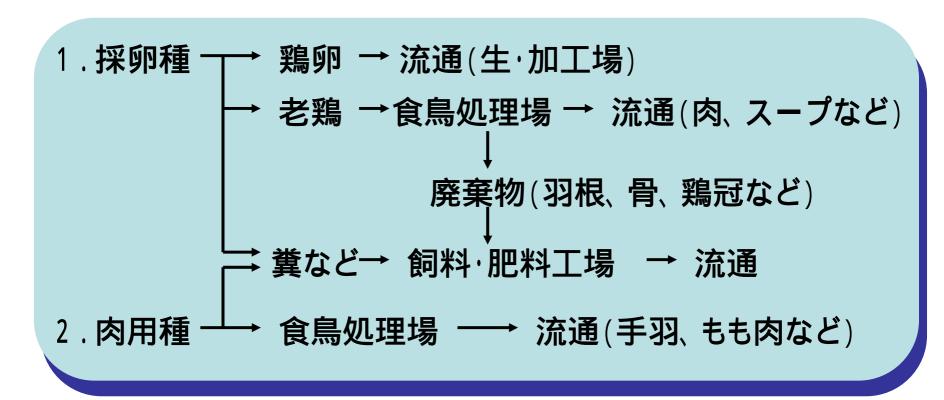
5. 摘発淘汰、鶏卵廃棄、輸入停止等は人のためではなく、鶏のため

6.過大な推察は風評被害のもと

鳥インフルエンザのワクチン(不活性化)

ワクチン接種鶏由来の肉・卵は安全

感染予防ではなく、発症予防のワクチン 故に、野外流行時にキャリアーを作る(病気の常在化)


ワクチンによる抗体と自然感染による抗体の 区別困難ー将来の防疫対策に支障をきたす

全国的に流行(急拡大)の兆しがある時のみに使用

養鶏先進国は使用せず、発生時に摘発・淘汰・ 消毒・立ち入り禁止等により対応

養鶏産業

種鶏場 → 孵卵場 →育雛場 →養鶏場(採卵種、肉用種)

鳥インフルエンザウィルスが人に感染しにくい大きな壁 ー食べ物(鶏肉、鶏卵)を介してー

- 1.人の細胞には受容体がない(細胞に入りにくい)
- 2. 胃には胃酸がある(酸に弱い)
- 3. 通常の料理温度で容易に不活化される(熱に弱い)
- 4.鶏肉や鶏卵は水道水の消毒剤と同じ塩素系消毒剤で、 また鶏舎は逆性石鹸で消毒されている

(一般消毒剤に弱い)

鳥インフルエンザ感染拡大の原因 ~ 茨城県でのトリ - トリ感染 ~

食肉処理業者の巡回 (生鳥の集荷コンテナと鶏の移動)

報道関係者の養鶏場間の移動

鶏糞集荷車の移動

鶏卵直売所や商店への養鶏場関係者の出入り による接触

違法ワクチン使用の可能性

虚偽報告の疑い(感染検査)

感染カラスが人に対して危険なの?

ーほとんど危険でないと考えられるー

- 1. 感染カラスから人が感染した事例はない
- 2.カラスは、人が触れられる程には近寄らない
- 3.カラスは餌を求めて、いろいろな場所に群がるが、そのような場所で病気で大量死した例がない (蚊によって媒介される西ナイル熱は例外)
- 4. 仮に感染カラスの糞からウイルスが分離されても、手洗いや 靴底消毒などで安全性は確保される

カラスから鳥インフルエンザウイルスが検出された意義

1. どこから分離されたの?

糞から(腸管で増殖、腸管感染) → 感染源:中 肝臓などから(全身感染) → 感染源:大 気管から〔気管や肺で増殖(気道感染)又は → 感染源:大 → 小 ただ付着していた〕

- 2. 初報告(疫学的には重要だが、鶏卵・鶏肉の安全とは直接関係ない)
- 3. 感染源 (カラスは船井農場の感染鶏から感染したと考えられるが、カラスが 今回の流行の感染源とは考えに〈い)
- 4.カラスのウイルスの運び屋としての役割(学問的証拠はまだ出ていない) 船井農場 → 高田養鶏場
 鶏 → カラス(小鳥) → カラス(小鳥) → 鶏
- 5.カラス、野鳥のウイルス保有状況の意義(今後の調査結果待ち)