府 食 第 564 号 令和4年10月12日

厚生労働大臣 加藤 勝信 殿

食品安全委員会 委員長 山本 茂貴

食品健康影響評価の結果の通知について

令和4年5月25日付け厚生労働省発生食0525第3号をもって厚生労働大臣から食品安全委員会に意見を求められたフルミオキサジンに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添1のとおりです。

また、本件に関して行った国民からの意見・情報の募集において、貴省に関連する意見・情報が別添2のとおり寄せられましたので、お伝えします。

記

フルミオキサジンの許容一日摂取量を 0.018 mg/kg 体重/日、妊婦又は妊娠している可能性のある女性に対する急性参照用量を 0.03 mg/kg 体重と設定し、一般の集団に対する急性参照用量は設定する必要がないと判断した。

農薬評価書

フルミオキサジン (第2版)

令和4年(2022年)10月 食品安全委員会

目 次

		貝
0	審議の経緯	
0	食品安全委員会委員名簿	. 5
0	食品安全委員会農薬専門調査会専門委員名簿	. 6
0	食品安全委員会農薬第四専門調査会専門委員名簿	. 9
0	要 約	11
	評価対象農薬の概要	
	1. 用途	
	2. 有効成分の一般名	
	3. 化学名	
	4. 分子式	
	5. 分子量	
	6.構造式	
	7. 物理的化学的性状	
8	8. 開発の経緯	13
	安全性に係る試験の概要	
	1. 土壌中動態試験	
	(1) 好気的土壌中動態試験	
	(2) 湛水土壌中動態試験	
	(3) 土壌吸着試験	
	(4) 土壌溶脱性試験	
2	2. 水中動態試験	
	(1)加水分解試験	
	(2)水中光分解試験	
	3. 土壌残留試験	
4	4. 植物、家畜等における代謝及び残留試験	
	(1)植物代謝試験	
	(2)作物残留試験	
	(3)家畜代謝試験	
	(4)推定摂取量	20
į	5. 動物体内動態試験	20
	(1)ラット	
	(2)妊娠ラット及び妊娠ウサギにおける薬物動態試験	23
(6. 急性毒性試験等	28
	(1) 急性毒性試験(経口投与)	28

(2)一般薬理試験	28
7. 亜急性毒性試験	30
(1)90 日間亜急性毒性試験(ラット)①	30
(2)90 日間亜急性毒性試験(ラット)②	32
(3)90 日間亜急性毒性試験(イヌ)	33
(4) 28 日間亜急性毒性試験(マウス)	34
8. 慢性毒性試験及び発がん性試験	34
(1)1年間慢性毒性試験(イヌ)	34
(2)2年間慢性毒性/発がん性併合試験(ラット)	35
(3)18 か月間発がん性試験(マウス)	35
9. 神経毒性試験	36
(1)急性神経毒性試験(ラット)	36
(2)90 日間亜急性神経毒性試験(ラット)	36
10. 生殖発生毒性試験	37
(1)2世代繁殖試験(ラット)	37
(2)発生毒性試験(ラット)	38
(3)発生毒性試験(ウサギ)	39
1 1. 遺伝毒性試験	39
12. 経皮投与、吸入ばく露等試験	40
(1)急性毒性試験(経皮投与及び吸入ばく露)	40
(2)眼・皮膚に対する刺激性及び皮膚感作性試験	41
(3)21 日間亜急性経皮毒性試験(ラット)	41
(4)発生毒性試験(ラット)(経皮投与)	41
(5)発生毒性試験(ラット)(吸入ばく露)	42
13. その他の試験	43
(1)貧血発現検討試験(ラット)	43
(2)貧血発現種間比較試験(ラット及びマウス)	44
(3)貧血発現種間比較試験(イヌ)	44
(4)28 日間亜急性毒性試験(サル)	44
(5) Proto-区の蓄積性の種間比較試験(ラット及びウサギ)①	45
(6) Proto-区の蓄積性の種間比較試験(ラット及びウサギ)②	45
(7)Protox 阻害種間比較試験(ラット、マウス及びイヌ)	45
(8)肝及び胚組織中 Protox 阻害種間比較試験(ラット及びウサギ)	46
(9)肝組織 Protox 阻害種間比較試験(ヒト、ラット及びウサギ)	46
(10)フルミオキサジン及び代謝物の Protox 阻害試験 (<i>in vitro</i>) ①	47
(11)フルミオキサジン及び代謝物の Protox 阻害試験 (<i>in vitro</i>) ②	47
(12)発生毒性臨界期検索試験(ラット)	47
(13)発生事性病理組織検討試験(ラット及びウサギ)	10

(14)発生毒性発現メカニズム試験(ラット)	48
(1 5)胎児貧血誘発性検討試験	49
(16)へム合成経路及び細胞増殖への影響試験(K562 細胞)	49
(17) ヘム合成経路及び細胞増殖への影響試験 (CD36+細胞)	50
(18)へム合成経路及び細胞増殖への影響試験(REL 細胞)	50
(19) ヘム合成経路及び細胞増殖への影響比較試験(K562 細胞)	50
(20) ヘム合成経路及び細胞増殖への影響比較試験 (CD36+細胞)	50
(21)へム合成経路及び細胞増殖への影響比較試験(REL 細胞)	51
(22)代謝物のへム合成及び細胞増殖への影響試験(K562 細胞)	51
(23)循環赤芽球の形態及びその構成の検討試験(ラット)	51
(24)経皮投与時と経口投与時の血中濃度比較及び経皮吸収率検討試験(ラット)	52
(25)経皮吸収試験(妊娠ラット)	52
(26)胎盤移行率検討試験(ラット及びウサギ)	52
(27)胎盤移行率検討試験(ラット及びマウス)	54
(28)フルミオキサジンの生理学的薬物動態モデルの開発①	54
(29)フルミオキサジンの生理学的薬物動態モデルの開発②	55
(30)28 日間免疫毒性試験(ラット)	56
Ⅲ. 食品健康影響評価	58
- 別紙1:代謝物/分解物略称	71
- 別紙2:検査値等略称	72
別紙3:作物残留試験成績(国内)	74
別紙4:作物残留試験成績(海外)	76
- 参昭	77

<審議の経緯>

- 一第1版関係一
- 2000 年 4月 28日 初回農薬登録
- 2003年 7月 1日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第0701012号)
- 2003年 7月 3日 関係書類の接受(参照1)
- 2003年 7月 18日 第3回食品安全委員会(要請事項説明)
- 2003 年 9月 18日 第11回食品安全委員会

(同日付け厚生労働大臣へ通知) (経過措置) (参照2)

- 2005年 11月 29日 残留農薬基準告示 (参照3)
- 2008年 6月 17日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 0617002 号)、関係書類の接受(参照 4~10)
- 2008年 6月 19日 第243回食品安全委員会(要請事項説明)
- 2008年 12月 22日 第26回農薬専門調査会総合評価第二部会
- 2011年 10月 19日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準値設定依頼(適用拡大:えだまめ)
- 2011年 11月 15日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安1115第6号)
- 2011 年 11 月 18 日 関係書類接受(参照 11~13)
- 2011 年 11 月 24 日 第 408 回食品安全委員会 (要請事項説明)
- 2012 年 1 月 5 日 追加資料受理(参照 14)
- 2012年 6月 1日第83回農薬専門調査会幹事会
- 2013年 9月 18日 インポートトレランス設定の要請 (ホップ)
- 2013 年 10 月 2 日 追加資料受理(参照 15~29)
- 2013年 12月 9日 追加資料受理(参照 32)
- 2014年 2月 7日 第33回農薬専門調査会評価第三部会
- 2014年 3月 12日 第103回農薬専門調査会幹事会
- 2014年 3月 24日 第508回食品安全委員会(報告)
- 2014年 3月 25日 から4月23日まで 国民からの意見・情報の募集
- 2014年 5月 7日 農薬専門調査会座長から食品安全委員会委員長へ報告
- 2014年 5月 20日 第 514 回食品安全委員会 (報告)

(同日付け厚生労働大臣へ通知) (参照33)

2015年 12月 22日 残留農薬基準告示 (参照 34)

一第2版関係一

2018年 11月 1日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び

基準値設定依頼(適用拡大: 実えんどう)

2022 年 2月 15日 インポートトレランス設定の要請 (コーヒー豆)

2022年 5月 25日 厚生労働大臣から残留基準設定に係る食品健康影響評価に

ついて要請(厚生労働省発生食0525 第3号)、関係書類の

接受 (参照 35~49)

2022年 5月 31日 第860回食品安全委員会(要請事項説明)

2022年 6月 23日 第17回農薬第四専門調査会

2022 年 8 月 9 日 第 870 回食品安全委員会(報告)

2022 年 8月 10日 から 9月 8日まで 国民からの意見・情報の募集

2022年 10月 3日農薬第四専門調査会座長から食品安全委員会委員長へ報告

2022 年 10 月 11 日 第 875 回食品安全委員会(報告)

(10月12日付け厚生労働大臣へ通知)

<食品安全委員会委員名簿>

(2006年6月30日まで) (2006年12月20日まで) (2009年6月30日まで) 寺田雅昭(委員長) 寺田雅昭(委員長) 見上 彪(委員長) 見上 彪(委員長代理) 寺尾允男 (委員長代理) 小泉直子(委員長代理*) 小泉直子 小泉直子 長尾 拓 坂本元子 長尾 拓 野村一正 中村靖彦 野村一正 畑江敬子 本間清一 畑江敬子 廣瀬雅雄** 見上 彪 本間清一 本間清一

> *:2007年2月1日から **: 2007年4月1日から

(2011年1月6日まで) (2012年6月30日まで) (2015年6月30日まで) 小泉直子(委員長) 小泉直子(委員長)

見上 彪(委員長代理*) 熊谷 進(委員長代理*) 長尾 拓 長尾 拓 野村一正 野村一正

畑江敬子 畑江敬子 廣瀬雅雄 廣瀬雅雄 村田容常 村田容常

*:2009年7月9日から *:2011年1月13日から

熊谷 進(委員長) 佐藤 洋(委員長代理)

山添 康(委員長代理)

三森国敏 (委員長代理)

石井克枝 上安平冽子 村田容常

(2021年7月1日から) 山本茂貴(委員長)

浅野 哲(委員長代理 第一順位) 川西 徹(委員長代理 第二順位) 脇 昌子(委員長代理 第三順位) 香西みどり 松永和紀 吉田 充

<食品安全委員会農薬専門調査会専門委員名簿>

(2006年3月31日まで)

鈴木勝士 (座長)小澤正吾出川雅邦廣瀬雅雄 (座長代理)高木篤也長尾哲二石井康雄武田明治林 真江馬 眞津田修治*平塚 明太田敏博津田洋幸吉田 緑

*: 2005年10月1日から

(2007年3月31日まで)

鈴木勝士 (座長) 三枝順三 根岸友惠 廣瀬雅雄 (座長代理) 林 佐々木有 真 赤池昭紀 高木篤也 平塚 明 石井康雄 玉井郁巳 藤本成明 泉 啓介 田村廣人 細川正清 上路雅子 津田修治 松本清司 津田洋幸 柳井徳磨 臼井健二 江馬 眞 出川雅邦 山崎浩史 長尾哲二 大澤貫寿 山手丈至 太田敏博 中澤憲一 與語靖洋 大谷 浩 納屋聖人 吉田 緑 小澤正吾 成瀬一郎 若栗 忍

布柴達男

(2008年3月31日まで)

小林裕子

鈴木勝士 (座長)三枝順三西川秋佳**林 真 (座長代理*)佐々木有布柴達男赤池昭紀代田眞理子****根岸友惠石井康雄高木篤也平塚 明泉 啓介玉井郁巳藤本成明

上路雅子 田村廣人 細川正清 津田修治 臼井健二 松本清司 江馬 眞 津田洋幸 柳井徳磨 大澤貫寿 出川雅邦 山崎浩史 長尾哲二 太田敏博 山手丈至 大谷 浩 中澤憲一 與語靖洋 小澤正吾 納屋聖人 吉田 緑 成瀬一郎*** 小林裕子 若栗 忍

*: 2007年4月11日から

**: 2007年4月25日から

***: 2007年6月30日まで

****: 2007年7月1日から

(2010年3月31日まで)

鈴木勝士 (座長) 平塚 明 佐々木有 林 真(座長代理) 代田眞理子 藤本成明 相磯成敏 高木篤也 細川正清 赤池昭紀 玉井郁巳 堀本政夫 石井康雄 田村廣人 本間正充 泉 啓介 津田修治 松本清司 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 臼井健二 中澤憲一* 山手丈至 太田敏博 永田 清 與語靖洋 大谷 浩 納屋聖人 義澤克彦** 小澤正吾 西川秋佳 吉田 緑 川合是彰 布柴達男 若栗 忍 小林裕子 根岸友惠

> *: 2009年1月19日まで **: 2009年4月10日から ***: 2009年4月28日から

(2012年3月31日まで)

三枝順三***

納屋聖人(座長)佐々木有平塚 明林 真(座長代理)代田眞理子福井義浩相磯成敏高木篤也藤本成明赤池昭紀玉井郁巳細川正清

根本信雄

浅野 哲** 石井康雄 泉 啓介 上路雅子 臼 井 健 博 本	田村廣人 津田修治 津田洋幸 長尾田 清 長野 清 長野 八 大 西 井 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	堀本政夫 本間正充 増村健一** 松本清司 柳本清郎 山手語 東 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三
小林裕子三枝順三	八田稔久	若栗 忍 *: 2011年3月1日まで **: 2011年3月1日から ***: 2011年6月23日から
(2014年3月31日まで)		
• 幹事会		
納屋聖人(座長)	上路雅子	松本清司
西川秋佳*(座長代理)	永田 清	山手丈至**
三枝順三(座長代理**)	長野嘉介	吉田 緑
赤池昭紀	本間正充	
・評価第一部会		
上路雅子 (座長)	津田修治	山崎浩史
赤池昭紀(座長代理)	福井義浩	義澤克彦
相磯成敏	堀本政夫	若栗 忍
・評価第二部会		
吉田 緑 (座長)	桒形麻樹子	藤本成明
松本清司 (座長代理)	腰岡政二	細川正清
泉 啓介	根岸友惠	本間正充
・評価第三部会		
三枝順三 (座長)	小野 敦	永田 清
納屋聖人(座長代理)	佐々木有	八田稔久
浅野 哲	田村廣人	増村健一
・評価第四部会		
西川秋佳*(座長)	川口博明	根本信雄
長野嘉介(座長代理*; 座長**)	代田眞理子	森田 健
山手丈至(座長代理**)	玉井郁巳	與語靖洋

井上 薫**

*: 2013年9月30日まで **: 2013年10月1日から

(2016年3月31日まで)

•	幹	事	会
---	---	---	---

西川秋佳	(座長)	小澤正吾	林	真
納屋聖人	(座長代理)	三枝順三	本間正	三充
赤池昭紀		代田眞理子	松本清	青司
浅野 哲		永田 清	與語彙	
上路雅子		長野嘉介	吉田	緑*

• 評価第一部会

上路雅子	(座長)	清家师	申康	藤本成明
赤池昭紀	(座長代理)	林	真	堀本政夫
相磯成敏		平塚	明	山崎浩史
浅野 哲		福井郭		若栗 忍

篠原厚子

• 評価第二部会

吉田 緑 (座長) *	腰岡政二	細川正清
松本清司(座長代理)	佐藤 洋	本間正充
小澤正吾	杉原数美	山本雅子
川口博明	根岸友惠	吉田 充

桒形麻樹子

• 評価第三部会

三枝順三 (座長)	高木篤也	中山真義
納屋聖人(座長代理)	田村廣人	八田稔久
太田敏博	中島美紀	増村健一
小野 敦	永田 清	義澤克彦

• 評価第四部会

西川秋佳(座長)	佐々木有	本多一郎
長野嘉介 (座長代理)	代田眞理子	森田 健
井上 薫**	玉井郁巳	山手丈至
加藤美紀	中塚敏夫	與語靖洋

*: 2015年6月30日まで
**: 2015年9月30日まで

<食品安全委員会農薬第四専門調査会専門委員名簿>

(2022年4月1日から)

小野 敦 (座長) 楠原洋之 中山真義

 佐藤 洋 (座長代理)
 小林健一
 納屋聖人

 石井雄二
 杉原数美
 藤井咲子

 太田敏博
 永田 清
 安井 学

<第83回農薬専門調査会幹事会専門参考人名簿>

小澤正吾 林 真

<第 33 回農薬専門調査会評価第三部会専門参考人名簿>

小澤正吾 高木篤也 中塚敏夫

<第 103 回農薬専門調査会幹事会専門参考人名簿>

小澤正吾 西川秋佳 林 真

<第 17 回農薬第四専門調査会専門参考人名簿>

高木篤也(国立医薬品食品衛生研究所安全性生物試験研究センター毒性部 主任研 究官)

本多一郎(前橋工科大学工学部情報・生命工学群教授)

N-フェニルフタルイミド系除草剤である「フルミオキサジン」(CAS No.103361-09-7)について、各種資料を用いて食品健康影響評価を実施した。第 2版の改訂に当たっては、厚生労働省から、作物残留試験(国内:実えんどう、海外:コーヒー豆)、発生毒性試験(ラット、吸入ばく露)、胎児貧血誘発性検討の成績等が新たに提出された。

評価に用いた試験成績は、植物代謝(みかん、だいず等)、作物残留、家畜代謝(ヤギ及びニワトリ)、動物体内動態(ラット及びウサギ)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、急性神経毒性(ラット)、亜急性神経毒性(ラット)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性、免疫毒性等である。

各種毒性試験結果から、フルミオキサジン投与による影響は主に血液(貧血等)及び肝臓(肝細胞肥大、重量増加等)に認められた。神経毒性、免疫毒性、発がん性及び生体にとって問題となる遺伝毒性は認められなかった。

2世代繁殖試験において、交尾率及び出産率の低下並びに児動物の生後 4 日生存率 減少が認められた。

発生毒性試験において、ラット胎児に心室中隔欠損を含む心血管系の奇形及び肩甲骨弯曲等の骨格奇形が認められた。

各種試験結果から、農産物及び畜産物中のばく露評価対象物質をフルミオキサジン (親化合物のみ)と設定した。

各試験で得られた無毒性量のうち最小値は、ラットを用いた 2 年間慢性毒性/発がん性併合試験の 1.8 mg/kg 体重/日であったことから、これを根拠として安全係数 100 で除した 0.018 mg/kg 体重/日を許容一日摂取量(ADI)とした。

また、フルミオキサジンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量又は最小毒性量のうち最小値は、ラットを用いた発生毒性試験(経口投与)の無毒性量の3 mg/kg 体重/日であり、認められた所見は母動物に毒性影響が認められない用量における胎児の心室中隔欠損等であったことから、妊婦又は妊娠している可能性のある女性に対する急性参照用量(ARfD)は、これを根拠として、安全係数 100 で除した 0.03 mg/kg 体重と設定した。

一般の集団に対しては、フルミオキサジンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ウサギを用いた発生毒性試験の無毒性量1,000 mg/kg 体重/日であり、カットオフ値(500 mg/kg 体重)以上であったことから、ARfD は設定する必要がないと判断した。

I. 評価対象農薬の概要

1. 用途

除草剤

2. 有効成分の一般名

和名:フルミオキサジン

英名: flumioxazin (ISO 名)

3. 化学名

IUPAC

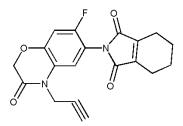
和名:N-(7-フルオロ-3,4-ジヒドロ-3-オキソ-4-プロパ-2-イニル-2H-1,4-ベンゾキサジン-6-イル)シクロヘキサ-1-エン-1.2-ジカルボキシミド

英名:N-(7-fluoro-3,4-dihydro-3-oxo-4-prop-2-ynyl-2H-1,4-benzoxazin-6-yl)cyclohex-1-ene-1,2-dicarboximide

CAS (No. 103361-09-7)

和名:2-(7-フルオロ-3,4-ジヒドロ-3-オキソ-4-(2-プロピニル)-2H1,4-ベンゾキサジン-6-イル)-4.5,6,7-テトラヒドロ-1H-イソインドール 1,3(2H)-ジオン

英名:2-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propynyl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione


4. 分子式

C₁₉H₁₅FN₂O₄

5. 分子量

354.33

6. 構造式

7. 物理的化学的性状

融点 : 202~204℃

沸点 : 一

密度 : $1.51 \text{ g/cm}^3 (20^{\circ}\text{C})$ 蒸気圧 : $3.21 \times 10^{-4} \text{ Pa} (22^{\circ}\text{C})$

解離定数:解離せず

8. 開発の経緯

フルミオキサジンは、住友化学株式会社により開発された N-フェニルフタルイミド系除草剤であり、プロトポルフィリノーゲンオキシダーゼ(Protox)を阻害する。その結果、細胞内に蓄積したプロトポルフィリンIX(Proto-IX)が植物内で一重項酸素(活性酸素)を生成させ、植物を枯死させることが確認されている。

我が国では、2000 年に初めて農薬登録された。海外ではアルゼンチン、米国等で登録されている。

第2版では、農薬取締法に基づく農薬登録申請(適用拡大:実えんどう)及びインポートトレランス設定(コーヒー豆)の要請がなされている。

Ⅱ. 安全性に係る試験の概要

各種動態及び代謝試験 [Ⅱ. 1、2、4及び5] は、テトラヒドロフタロイル基の1及び2位の炭素を 14 C で標識したもの(以下「 $[\text{tet-}^{14}\text{C}]$ フルミオキサジン」という。)及びフルミオキサジンのフェニル基の炭素を均一に 14 C で標識したもの(以下「 $[\text{phe-}^{14}\text{C}]$ フルミオキサジン」という。)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)からフルミオキサジンの濃度(mg/kg 又は $\mu g/g$)に換算した値として示した。

代謝物/分解物略称及び検査値等略称は別紙1及び2に示されている。

1. 土壤中動態試験

(1) 好気的土壌中動態試験

[phe- 14 C]フルミオキサジン又は[tet- 14 C]フルミオキサジンを用いて好気的土壌中動態試験が実施された。

試験の概要及び結果については表1に示されている。

フルミオキサジンの好気的土壌中における主要分解経路は、環状イミドの開裂による中間体 M1 の生成、M1 の加水分解による M19 又は M16 の生成後、 CO_2 及び結合残留物になると考えられた。(参照 7、11、15)

喬	式験条件	土壌	認められた分解物	推定半減期
[phe-14C]フルミ オキサジン	0.26 mg/kg 乾土、 最長 181 日間インキュ ベート		M1、M11、M12、 M16、 ¹⁴ CO ₂	11.9 日
[tet- ¹⁴ C]フルミ オキサジン	0.25 mg/kg 乾土、最長 91 日間インキュベー ト	砂壤土(米国)	M11, M12, M18, M19, 14CO ₂	17.5 日

表 1 好気的土壌中動態試験の概要及び結果

(2) 湛水土壤中動態試験

[phe-¹⁴C]フルミオキサジン又は[tet-¹⁴C]フルミオキサジンを用いて湛水土壌中動態試験が実施された。

試験の概要及び結果については表2に示されている。(参照7)

公二 在外上被下场心的两头人的相关							
試	験条件	土壌	認められた分解物	推定半	兰減期		
[phe-14C] フルミオキ				水層	3.1 時間		
サジン	最長 182 日間 インキュベート	砂壌土(米国)	アミド化合物	土壌層	117 日		
[tet-14C]		砂壌工(木国)	/ ミト化合物 	水層	4.1 時間		
フルミオキ サジン				土壌層	73 日		

表2 湛水土壌中動態試験の概要及び結果

(3)土壤吸着試験

[phe-14C]フルミオキサジンを用いた4種類の土壌[埴壌土(北海道)、軽埴土(和歌山)、砂質埴壌土(岡山)及びシルト質埴壌土(熊本)]における、土壌吸着試験が実施された。

試験の概要及び結果については表3に示されている。(参照11、15)

表3 土壌吸着試験の概要及び結果

供試土壌	Freundlich の 吸着係数 K ^{ads}	有機炭素含有率により 補正した吸着係数 K _∞
埴壌土(北海道)、軽埴土(和歌山)、砂質 埴壌土(岡山)、シルト質埴壌土(熊本)	$5.35 \sim 60.9$	239~775

(4)土壤溶脱性試験

[phe-14C]フルミオキサジン又は[tet-14C]フルミオキサジンを用いた4種類の土壌[砂土、砂壌土、シルト質壌土及び埴壌土(採取地不明)]における、土壌溶脱性試験が実施された。

試験の概要及び結果については表4に示されている。(参照7)

供試土壌(採取地不明)溶出量(%TAR)砂土64~67砂壌土51~54シルト質壌土7~15埴壌土3~4.9好気的条件下に30日間
エージングした土壌3.6(埴壌土)~28(砂壌土)

表 4 土壌溶脱性試験の概要及び結果

2. 水中動態試験

(1)加水分解試験

[phe- 14 C]フルミオキサジン又は[tet- 14 C]フルミオキサジンを用いて、加水分解試験が実施された。

試験の概要及び結果については表5に示されている。

フルミオキサジンの緩衝液における加水分解経路は、環状イミドの開裂及びそれに続くアミド結合の開裂を経て、それぞれ M1 及び M16 又は M19 に分解されると考えられた。(参照 7、11、15)

表 5 加水分解試験の概要及び結果

試験条件		緩衝液	認められた 分解物	推定半減期
[phe-14C]		pH 5(酢酸緩衝液)	M1、M16	5.1 日
フルミオキ		pH 7(ホウ酸緩衝液)	M1、M16	24.6 時間
サジン	0.1 mg/L、25±1℃、 30 日間インキュベ	pH 9(ホウ酸緩衝液)	M1	22.0 分
[tet-14C]	一ト	pH 5(酢酸緩衝液)	M1, M18, M19	3.4 日
フルミオキ		pH 7(ホウ酸緩衝液)	M1, M18, M19	21.4 時間
サジン		pH 9(ホウ酸緩衝液)	M1	14.6 分

(2) 水中光分解試験

[phe- 14 C]フルミオキサジン又は[tet- 14 C]フルミオキサジンを用いて、水中光分解試験が実施された。

試験の概要及び結果は表6に示されている。

フルミオキサジンの水中における光分解経路は、環状イミドの開裂による M1 又はフェニル環の開裂による M13 を生成した。更にこれらがイミド及びアミド 結合の開裂並びにシクロヘキセン環の開裂により、M14、M19 及び M21 を経て 極性分解物へと分解されると考えられた。(参照 11、15)

表 6 水中光分解試験の概要及び結果

記	試験条件		認められた分解物	推定半減期 a
[phe-14C]フル		蒸留水	M1、M13、M14、 M16、 ¹⁴ CO ₂	8.8(10.0)時間
ミオキサジン	1 mg/L、25±1℃、 キセノンランプ(光	自然水[河川水(兵 庫)、pH 7.9]	M1、M13、M14、 14CO ₂	3.0(3.5)時間
[tet-14C]フル	強度:8.8 W/m²)、 7日間連続照射	蒸留水	M1、M13、M14、 M18、M19、M21	7.2(8.2)時間
ミオキサジン		自然水[河川水(兵 庫)、pH 7.9]	M1、M13、M14、 M18、M19	12.0(13.6)時間

[・]暗所対照区では、主要分解物として $[phe^{-14}C]$ フルミオキサジン添加の蒸留水中に分解物 M16、自然水中に分解物 M1 が、 $[tet^{-14}C]$ フルミオキサジン添加の蒸留水中に M19、自然水中に M1 が認められた。

3. 土壤残留試験

フルミオキサジンを分析対象化合物とした土壌残留試験が実施された。

a:括弧内は東京(北緯35度)の春季自然太陽光換算

	濃度 a	土壌	推定半減期
容器内試験	火山灰土・シルト質壌土(茨城)		40 日
(畑地状態)	0.3 mg/kg	堆積土・シルト質壌土(岡山)	10 日
ほ場試験	0.40	火山灰土・シルト質壌土(茨城)	9 日
(畑地状態)	240 g ai/ha	堆積土・シルト質壌土(岡山)	4 日

表7 土壌残留試験の概要及び結果

4. 植物、家畜等における代謝及び残留試験

(1) 植物代謝試験

①みかん

温室栽培の果実がついた温州みかんの苗木を移植したポットの土壌表層に、 [phe-14C]フルミオキサジン又は[tet-14C]フルミオキサジンを混和した土壌をのせ(処理量:360 g ai/ha)、処理 21、45 及び 60 日(収穫期)後に採取した果実(果肉及び果皮)を試料として、みかんにおける植物代謝試験が実施された。いずれの時期にも、果肉及び果皮から放射能は検出されず(0.001 mg/kg 未満)、土壌中のフルミオキサジン及びその代謝物は果実には移行しないと考えられた。処理 60 日後の土壌中には、85.0%TAR~89.8%TAR が存在した。未変化のフルミオキサジンが 74.4%TAR~75.6%TAR 存在したほか、[phe-14C]フルミオキサジン処理区では M16(2.1%TAR)、[tet-14C]フルミオキサジン処理区では M18、 M19 及び M20 (0.2%TAR~2.8%TAR) が存在した。 (参照 11、15)

②ぶどう

温室栽培のぶどう(品種: Seyval Blanc)果樹周囲の土壌(直径 $25~\mathrm{cm}$)に、 [phe-14C]フルミオキサジン又は[tet-14C]フルミオキサジンを $600~\mathrm{g}$ ai/ha の用量で散布し、処理直後及び収穫期(処理 $94~\mathrm{H}$ 後)の土壌、収穫期の果実及び若枝を試料として、ぶどうにおける植物代謝試験が実施された。

放射能濃度は、果実で $0.002\sim0.005$ mg/kg、若枝中で $0.014\sim0.040$ mg/kg であり、果実への放射能の移行はごく少量であると考えられた。 (参照 11、15)

③だいず

だいず(品種: Williams 82) 播種 3 日後の土壌表面に、 $[phe^{-14}C]$ フルミオキサジン又は $[tet^{-14}C]$ フルミオキサジンを 98.8 g ai/ha 又は 198 g ai/ha(3 倍処理区)で処理し、処理 53 日後(半成熟期)に採取した植物体及び 138 日後(成熟期)に採取した子実、さや及び茎葉を試料として、だいずにおける植物代謝試験

a: 容器内試験では標準品、ほ場試験では顆粒水和剤を使用

が実施された。

だいず試料中放射能分布は、表8に示されている。植物体及び可食部(子実) への移行はごく少量であると考えられた。

未変化のフルミオキサジンは、半成熟期の植物体で最大 0.008 mg/kg、成熟期の子実中には、 $[\text{tet}^{-14}\text{C}]$ フルミオキサジン処理区で 0.004 mg/kg 未満であり、 $[\text{phe}^{-14}\text{C}]$ フルミオキサジン処理区では検出されなかった。

主要代謝物は、 $[tet^{-14}C]$ フルミオキサジン処理区の半成熟期の植物体、成熟期の子実のいずれにおいても M20 であり、半成熟期で 15.3%TRR~25.2%TRR、成熟期子実で 37.9%TRR~42.2%TRR 存在した。そのほか $[tet^{-14}C]$ フルミオキサジン処理区では半成熟期植物体及び成熟期子実で M19、 $[phe^{-14}C]$ フルミオキサジン処理区では半成熟期植物体で M1 及び M16(いずれも 0.7%TRR 未満)が検出された。(参照 11、14、15)

標識	体	[phe-14C]フルミオキサジン				[tet-14C]フルミオキサジン			
処理:	量	98.8 g	g ai/ha	198 g	98.8 g		g ai/ha	198 g ai/ha	
		mg/kg	%TAR	mg/kg	%TAR	mg/kg	%TAR	mg/kg	%TAR
半成熟期	植物体	0.055	0.6	0.108	0.7	0.069	0.7	0.196	0.5
	子実	0.033	0.1	0.055	0.1	0.245	0.7	0.177	0.3
成熟期	さや	0.060	0.1	0.118	0.1	0.326	0.9	0.551	0.8
	茎葉	0.152	0.6	0.176	0.3	0.207	1.7	0.254	0.6

表8 だいず試料中放射能分布

4らっかせい

温室内で、らっかせい(品種: Florunnner 又は Florunnner2)を[phe-14C]フルミオキサジン又は[tet-14C]フルミオキサジンを $110 \, g$ ai/ha(通常処理区)又は $330 \, g$ ai/ha(3 倍処理区)で処理した土壌に移植し、移植 3 か月後に採取した落花生の果肉、さや、茎葉及び果皮を試料として、らっかせいにおける植物代謝試験が実施された。

らっかせい試料中放射能分布は、表9に示されている。

植物体への放射能の移行はごく少量であると考えられた。

各試料中に未変化のフルミオキサジンは検出されなかった。各試料中の51%TRR \sim 83%TRR が未抽出残渣に存在した。さや及び茎葉抽出物からは、代謝物 M1、M16、M18、M19 及び M20 が同定され、それぞれの残留量は 0.004 mg/kg 以下であった。その他多くの極性化合物が存在し、フルミオキサジンはらっかせいにおいて、広範に代謝されると考えられた。(参照 7、9)

[phe-14C]フルミオキサジン 標識体 [tet-14C]フルミオキサジン 処理量 110 g ai/ha 330 g ai/ha 110 g ai/ha 330 g ai/ha 果肉 0.0120.0440.031 0.093 さや 0.166 0.020 0.0970.019茎葉 0.009 0.0270.021 0.023 果皮 0.013 0.0450.036 0.085

表9 らっかせい試料中放射能分布 (mg/kg)

フルミオキサジンの植物体における主要代謝経路は、環状イミドの開裂による中間体 M1 の生成、M1 の加水分解による M19 又は M16 の生成及び M19 の水酸化による M20 の生成であると考えられた。

(2)作物残留試験

国内において、野菜、果実及び豆類を用いて、フルミオキサジン及び代謝物 M20+M20 抱合体を分析対象化合物とした作物残留試験が実施された。

結果は別紙3に示されている。

フルミオキサジン及び代謝物 M20+M20 抱合体はいずれも定量限界未満であった。

また、海外において、ホップ及びコーヒー豆を用いて、フルミオキサジンを分析対象化合物とした作物残留試験が実施された。

結果は別紙4に示されている。

フルミオキサジンの最大残留値は、散布 30 日後のホップの 0.04 mg/kg であった。(参照 11、12、32、36~41)

(3) 家畜代謝試験

① ヤギ

泌乳ヤギ (品種不明、投与群 2 匹、対照 1 匹) に $[phe^{-14}C]$ フルミオキサジン又は $[tet^{-14}C]$ フルミオキサジンを $0.3\sim0.5$ mg/kg 体重/日($7\sim12$ ppm 混餌投与相当)で 5 日間カプセル経口投与し、ヤギにおける家畜代謝試験が実施された。血液及び各臓器は最終投与 6 時間後までに採取された。

尿及び糞中に 65.0%TAR~78.8%TAR の放射能が排泄され、消化管内容物に 14.6%TAR~18.8%TAR の放射能が存在した。乳汁中放射能は 0.05%TAR~ 0.22%TAR、組織中放射能濃度は 0.8%TAR 以下であった。乳汁中又は組織中で 10%TRR を超えて検出された代謝物は M1(乳汁:14.4%TRR、0.004 $\mu g/g$)及 び M8(腎臓:13.7%TRR、0.025 $\mu g/g$)であった。(参照 7、9)

② ニワトリ

産卵鶏(品種不明、投与群 10 羽、対照群 4 羽)に[phe-14C]フルミオキサジン

又は $[\text{tet}^{-14}C]$ フルミオキサジンを 0.68 mg/kg 体重/日(10 ppm 混餌投与相当)で 14 日間経口投与し、ニワトリにおける家畜代謝試験が実施された。血液及び各 臓器は最終投与 4 時間後までに採取された。

78.3%TAR \sim 92.6%TAR の放射能が、排泄物中に存在した。卵黄中の放射能濃度は $0.6~\mu$ g/g 以下、卵白中の放射能濃度は $0.04~\mu$ g/g 以下、組織中の放射能濃度は $0.04\sim1.3~\mu$ g/g であった。(参照 7、9)

畜産動物における主要代謝経路は、シクロヘキサン環の水酸化、イミド結合の開裂並びにテトラヒドロフタロイル基への亜硫酸の付加による代謝物 M7 及び M10 の生成であると考えられた。

(4)推定摂取量

別紙3の作物残留試験の分析値において、いずれの試料においてもフルミオキサジンは定量限界未満であったことから、推定摂取量は算出しなかった。

5. 動物体内動態試験

(1) ラット

① 吸収

a. 血中濃度推移

SD ラット (一群雌雄各 5 匹) に $[tet^{-14}C]$ フルミオキサジンを 1 mg/kg 体重 (以下[5.]において「低用量」という。) 又は 100 mg/kg 体重 (以下[5.]において「高用量」という。) で単回経口投与して、血中濃度推移について検討された。血中薬物動態学的パラメータは表 10 に示されている。 (参照 11、15)

投与量	1 mg/k	g 体重	100 mg/kg 体重		
性別	雄	雌	雄	雌	
$T_{max}(hr)$	4	4	16	8	
$C_{max}(\mu g/g)$	0.255	0.213	5.53	4.71	
T _{1/2} (hr)	12	12	28	46	
AUC(hr • μg/g)	6.7	6.0	319	344	

表 10 血中薬物動態学的パラメータ

b. 吸収率

胆汁中排泄試験①[5.(1)**4**b.]で得られた尿及び胆汁中排泄率から、低用量経口投与における吸収率は、少なくとも雄で85.1%、雌で80.4%であると算出された。 (参照11、15)

② 体内分布

SD ラット(一群雌雄各 3 匹)に[tet-14C]フルミオキサジンを低用量又は高用量で単回経口投与して、体内分布試験が実施された。

低用量群の雌雄とも、 T_{max} 時(投与 4 時間後)では、組織中放射能濃度は、胃(5.98~7.85 μ g/g)、消化管(3.40~3.70 μ g/g)、肝臓(0.61~0.76 μ g/g)及び腎臓(0.34~0.48 μ g/g)において血漿(0.20~0.25 μ g/g)に比べ高い値であった。投与 168 時間後には、全組織で放射能濃度は 0.03 μ g/g 以下に減少した。

高用量群の雌雄とも、 T_{max} 時(雄: 投与 16 時間後、雌: 投与 8 時間後)では、組織中放射能濃度は、胃($25.8\sim1,200~\mu g/g$)、消化管($227\sim607~\mu g/g$)、肝臓($7.3\sim11.0~\mu g/g$)及び腎臓($4.6\sim5.9~\mu g/g$)において血漿($3.4\sim4.0~\mu g/g$)より高い値であった。その後各組織中放射能濃度は減衰したが、投与 168 時間後でも、胃及び消化管で $1.04\sim15.0~\mu g/g$ 、全血で $0.75\sim1.67~\mu g/g$ 、肝臓及び腎臓で $0.49\sim0.88~\mu g/g$ となり、血漿($0.30\sim0.43~\mu g/g$)に比べ高い放射能濃度が認められた。

また、排泄試験[5.(1)④]の各投与群における試験終了時(投与7日後)の組織中放射能を測定したところ、放射能濃度は全ての組織において、低用量群(単回経口投与及び反復経口投与)では $0.05~\mu g/g$ 以下、高用量群では $3.1~\mu g/g$ 以下であった。いずれの投与群も、最も放射能濃度が高かったのは血球(低用量群: $0.04\sim0.05~\mu g/g$ 、高用量群: $2.18\sim3.04~\mu g/g$)であり、そのほか心臓、腎臓及び肝臓で比較的放射能濃度が高かった。(参照11、15)

③ 代謝物同定・定量

尿及び糞中排泄試験[5.(1)@a.]、胆汁中排泄試験①[5.(1)@b.]及び体内分布試験[5.(1)@]で得られた尿、糞、胆汁、肝臓、腎臓及び血液を試料として、代謝物同定・定量試験が実施された。

尿中では、未変化のフルミオキサジンは 0.7%TAR 未満であった。代謝物は少なくとも $13\sim29$ 種類存在すると考えられ、そのうちの多くは未同定であった。主要代謝物として代謝物 M7(1.2%TAR $\sim8.2\%$ TAR)及び M8(0.9%TAR $\sim5.4\%$ TAR)、そのほか M1、M5、M9、M10、M15、M16、M17、M18、M19及び M20 が認められた。

糞中では、高用量群で未変化のフルミオキサジンが 46.2%TAR \sim 65.9%TAR 存在したが、低用量群では 0.2%TAR \sim 2.2%TAR であった。代謝物は少なくとも $12\sim29$ 種類存在し、主要代謝物として代謝物 M7 (1.1%TAR \sim 12.9%TAR) 及び M10 (0.2%TAR \sim 6.1%TAR) 、そのほか M1、M2、M5、M8、M9、M15、M16、M17、M18、M19 及び M20 が認められた。

胆汁中では、未変化のフルミオキサジンは 0.1%TAR 未満であり、代謝物は 12 種類存在した。主要代謝物は M9 (2.7%TAR~5.4%TAR)、M7 (3.3%TAR~4.8%TAR)、M10 (3.3%TAR~3.9%TAR) 及び M18 (2.2%TAR~2.9%TAR)

であり、そのほか M1 及び M19 が認められた。

組織中では、肝臓及び腎臓中には未変化のフルミオキサジンが存在したが、血液中には少量(高用量群で $0.021~\mu g/g$ 以下)検出されるか又は検出されなかった。 肝臓、腎臓及び血液中では M7 及び M10(合計量で分析)が比較的多く存在した。 肝臓及び腎臓中に M2 が存在したが、血液中には僅かに存在するか又は存在しなかった。

フルミオキサジンのラットにおける主要代謝経路は、①環状イミドの開裂、②ベンゾキサジノン環のアミド結合の開裂、③シクロヘキセン環又はシクロヘキサン環の水酸化、④テトラヒドロフタルイミドの二重結合の還元、⑤アニリン誘導体のアミノ基部分のアセチル化、⑥テトラヒドロフタルイミドの二重結合への亜硫酸の付加であると考えられた。(参照 7~9、11、15)

4 排泄

a. 尿及び糞中排泄

SD ラット(一群雌雄各 4 匹)に[phe-14C]フルミオキサジン若しくは[tet-14C]フルミオキサジンを低用量若しくは高用量で単回経口投与又は低用量で反復経口投与(非標識体を 14 日間経口投与後、15 日目に標識体を単回経口投与)して、排泄試験が実施された。

投与後(反復経口投与群では最終投与後)7日間の尿及び糞中排泄率は、表11 に示されている。

標識体によって排泄に差は認められず、いずれの投与群も、投与後 2 日間に 93.2% TAR \sim 101% TAR が尿及び糞中に排泄された。主に糞中に排泄された。(参照 $6\sim$ 9、11、15)

表 11 投与後 7 日間の尿及び糞中排泄率 (%TAR)

標識体		[phe-14C]フルミオキサジン										
投与方法				単回経	口投与					反復経	口投与	,
投与量		1 mg/k	g 体重		1	00 mg	/kg 体重	£	1	mg/kg	(体重/	\exists
性別	放	隹	Щ	推	左	隹	此	推	左	隹	此	隹
試料	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞
投与後1日	29.4	56.9	41.1	45.1	11.7	70.6	20.0	52.8	27.3	59.8	37.2	46.6
投与後2日	30.3	70.4	42.3	55.2	12.8	84.7	22.9	76.8	28.1	68.4	38.8	58.4
投与後7日	30.8	71.5	42.8	56.4	13.0	85.2	23.4	78.1	28.6	69.3	39.3	59.6
+亜⇒歩/+-	[tet-14C]フルミオキサジン											
標識体					[tet-140	C]フル	ミオキ	サジン				
標識体 投与方法				単回経			ミオキ	サジン	1		口投与	
		1 mg/k	g 体重	単回経	口投与	<u>-</u>	ミオキ /kg 体重				口投与;体重/	
投与方法		1 mg/k	g 体重	単回経	_ 口投与 1	<u>-</u>	/kg 体重		1			Ε
投与方法 投与量			g 体重	単回経	_ 口投与 1	00 mg	/kg 体重	Ĺ	1	mg/kg	(体重/	Ε
投与方法 投与量 性別	放	隹	g 体重	単回経	口投与 1	00 mg	/kg 体重	重	1	mg/kg 惟	; 体重/	日 隹
投与方法 投与量 性別 試料	尿	推 糞	g 体重 此 尿	単回経生生産	口投与 1 k	00 mg. 惟 糞	/kg 体重 此 尿	重	1 友	mg/kg 隹 糞	; 体重/ 此 尿	推

b. 胆汁中排泄①

胆管カニューレを挿入した SD ラット(一群雌雄各 3 匹)に[tet-14C]フルミオ キサジンを低用量で単回経口投与して、胆汁中排泄試験が実施された。

投与後72時間の胆汁中には、雄で42.6%TAR、雌で39.2%TARが排泄された。 尿中には、雄で 42.5%TAR、雌で 41.2%TAR が排泄され、糞中の排泄は雄で 6.1%TAR、雌で 8.7%TAR であった。 (参照 11、15)

c. 胆汁中排泄②

胆管カニューレを挿入した SD ラット (一群雌 3 匹) に $[phe^{-14}C]$ フルミオキサ ジンを 1,000 mg/kg 体重で単回経口投与して、胆汁中排泄試験が実施された。

投与後 72 時間の胆汁中に 5.2%TAR、尿中に 6.8%TAR 及び糞中に 84.7%TAR 排泄され、カーカス 1中に 0.3%TAR 認められた。

胆汁中排泄試験①[5.(1) 4b.]と比較して糞中排泄率が高かったのは、高用 量だったことから、吸収されずに糞中に排泄されたフルミオキサジンの割合が高 かったためと考えられた。(参照15、25)

(2) 妊娠ラット及び妊娠ウサギにおける薬物動態試験

Wistar ラット(一群雌 $3\sim12$ 匹、妊娠 6 日)及び NZW ウサギ(一群雌 $2\sim6$ 匹、 妊娠 6 日) に[phe-14C]フルミオキサジンを 30 mg/kg 体重/日の用量で 1 日 1 回 7

¹ 組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

日間強制経口投与し、薬物動態試験が実施された。 妊娠ラット及び妊娠ウサギの薬物動態試験概要は表 12 に示されている。

表 12 妊娠ラット及び妊娠ウサギの薬物動態試験概要

投与群	動物数(匹)	検討項目
I	ラット:3 ウサギ:3	血液及び血漿中放射能濃度推移 試料採取時点: 各回:2、24時間後 最終投与:2、4、6、8、24時間後
П	ラット:3 ウサギ:3	尿及び糞中排泄 試料採取時点:各回投与後 24 時間
Ш	ラット:3 ウサギ:3	組織中放射能濃度 試料採取時点: ラット:最終投与7時間後 ウサギ:最終投与3時間後
IV	ラット:3 ウサギ:2	組織中放射能濃度 試料採取時点:最終投与 24 時間後
V	ラット: 12 ウサギ: 6	尿、糞及び組織中の代謝物分析 試料採取時点: ラット:最終投与7時間後 ウサギ:最終投与3時間後
VI	ラット : 12 ウサギ : 6	尿、糞及び組織中の代謝物分析 試料採取時点:最終投与 24 時間後

① 血液及び血漿中放射能濃度

投与群 I において、妊娠ラットの血液中の放射能濃度は、4 回投与 24 時間後に $5.00~\mu g/mL$ となった後ほぼ一定の濃度となり、最終投与 6 時間後に最大 $8.27~\mu g/mL$ であった。血漿中の放射能濃度は、2 回投与 24 時間後に $1.15~\mu g/mL$ となった後ほぼ一定となり、最終投与 8 時間後に最大 $4.49~\mu g/mL$ であった。

妊娠ウサギの血液中放射能濃度は、2回投与以後、投与回数に伴い上昇し、最終投与2時間後に3.12 $\mu g/mL$ となった。血漿中の放射能濃度は、2 回投与以後投与回数に伴い上昇し、最終投与4 時間後に最大4.14 $\mu g/mL$ であった。

血液及び血漿中放射能濃度は、妊娠ラットでは投与4及び2日後に概ね定常状態となり、ウサギでも投与7日後には定常状態に近いと考えられた。(参照15、27)

② 分布

投与群Ⅲ及びⅣにおける最終投与 7 時間及び 24 時間後の各臓器及び組織中の 放射能濃度及び生殖組織の血漿濃度比率は表 13 に示されている。

妊娠ラットにおいて、最終投与7時間後では、残留放射能の最高値は血球(22.2 µg/mL)で認められ、ほかに肝臓、腎臓、血液、内臓脂肪、胎盤、脾臓及び卵巣

で血漿より高値であった。雌性生殖組織の血漿濃度比率の最高値は、胎盤で 169% であり、卵巣、子宮、羊水及び胎児の順であった。最終投与 24 時間後では、残留放射能は全ての組織において 7 時間後より低下し、最高値は血球で 13.6 µg/mL であり、雌性生殖器の血漿濃度比率の最高値は胎盤で 219%であった。

妊娠ウサギにおいては、最終投与3時間では、最高値は腎臓で24.4 µg/gであり、ほかに肝臓が血漿より高値であった。雌性生殖器の血漿濃度比率の最高値は子宮で44.3%であった。最終投与24時間後では、内臓脂肪、卵巣、子宮及び羊水を除けば3時間後に比べ低下し、最高値は腎臓の14.6 µg/gであり、雌性生殖器への血漿濃度比率の最高値は卵巣の95.2%であった。(参照15、27)

表 13 各臓器及び組織中の放射能濃度及び生殖組織への血漿濃度比率 (μg/g 又はμg/mL)

		•	- 16 μg/ IIIL/		
			間後(ラット)	最終投与	24 時間後
動物	組織	最終投与 3 時	間後(ウサギ)		
		濃度 a	血漿濃度比率b	濃度 a	血漿濃度比率b
	血液	11.2	_	6.41	<u> </u>
	血漿	3.34	_	1.07	<u> </u>
	血球	22.2	_	13.6	-
	腎臓	12.0	_	4.81	_
	肝臓	21.7	_	6.68	_
ラット	脾臓	4.21	_	2.01	_
791	内臓脂肪	6.90	_	1.60	_
	卵巣	3.57	107	1.13	106
	子宮	2.96	88.6	1.03	96.3
	胎盤	5.66	169	2.34	219
	胎児	1.14	34.1	0.73	68.2
	羊水	0.98	29.3	0.36	33.6
	血液	3.02	_	2.22	
	血漿	3.91	_	2.69	
	血球	1.88	_	1.63	_
	腎臓	24.4	_	14.6	_
	肝臓	15.8	_	13.9	_
ウサギ	脾臓	2.28	_	1.30	_
774	内臓脂肪	0.44	_	1.14	_
	卵巣	1.38	35.3	2.56	95.2
	子宮	1.73	44.3	2.51	93.3
	胎盤	1.26	32.2	1.02	37.9
	胎児	0.32	8.18	0.20	7.43
	羊水	0.69	17.7	1.04	38.7

- : 算出せず

③ 代謝

投与群V及びVIにおける最終投与後の尿及び糞中代謝物は表 14 に、各臓器及び組織中の代謝物は表 15 に示されている。

妊娠ラット及び妊娠ウサギにおける尿及び糞中に未変化のフルミオキサジン並びに代謝物 M5、M7、M8、M10、M16 及び M17 が認められたが、いずれも 2.2%TAR 以下であった。

血漿、血球、肝臓、胎児及び羊水においても未変化のフルミオキサジン並びに 尿及び糞中の代謝物と同様の代謝物が認められ、いずれも 2.97 μg/g 以下であっ

 $a: \mu g/g$ 又は $\mu g/mL$

b: 放射能の雌性生殖組織への血漿濃度比率(%)=組織中放射能濃度/血漿中放射能濃度×100

最終投与 フルミ 動物 試料 後採取時 オキサ M16 M_5 M8M7M10 M17間 ジン 尿 240.11.2 0.50.40.3 0.10.3ラット 糞 2.2 0.1 0.1 0.4 240.50.6 0.4尿 240.20.50.00.6 0.10.0 0.3 ウサギ 糞 242.0 0.3 0.0 0.0 0.1 0.1 0.1

表 14 尿、糞中の代謝物 (%TAR)

表 15 各臓器及び組織中の代謝物 (μg/g 又はμg/mL)

動物 試料 接終投与 フルミ 後採取時 オキサ M16 M5 M8 M7 M10 M17 M10 M10								0 · p · O · m = /		
カナギ 1 0.02 0.94 0.08 0.02 0.03 0.02 0.13 カナギ 24 0.00 0.17 0.03 0.00 0.01 0.01 0.02 血球 7 0.01 0.43 0.02 0.02 0.01 0.00 0.01 日藤 7 1.74 2.97 0.54 1.11 0.37 0.08 0.18 日藤児 7 0.02 0.48 0.01 0.01 0.01 0.02 自身 7 0.02 0.48 0.01 0.01 0.01 0.02 自身 7 0.02 0.48 0.01 0.01 0.01 0.02 自身 7 0.02 0.41 0.07 0.08 0.01 0.01 0.02 自身 3 0.00 0.18 0.03 0.02 0.00 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02	動物	試料			M16	M5	M8	M7	M10	M17
声がき 24 0.00 0.17 0.03 0.00 0.01 0.02 血球 7 0.01 0.43 0.02 0.02 0.01 0.01 0.09 24 0.00 0.08 0.01 0.00 0.01 0.00 0.01 H臓 7 1.74 2.97 0.54 1.11 0.37 0.08 0.18 B児 7 0.02 0.45 0.13 0.14 0.05 0.02 0.02 自規 7 0.02 0.48 0.01 0.01 0.01 0.01 0.02 全水 7 0.02 0.41 0.07 0.08 0.01 0.01 0.02 全水 7 0.02 0.41 0.03 0.02 0.00 0.03 0.02 0.01 0.02 血漿 3 0.00 0.18 0.03 0.01 0.03 0.02 0.01 0.03 0.02 0.07 血漿 24 0.			間	ジン						
ラット 24 0.00 0.17 0.03 0.00 0.01 0.01 0.02 ウサギ 血球 7 0.01 0.43 0.02 0.02 0.01 0.01 0.09 1 24 0.00 0.08 0.01 0.00 0.01 0.00 0.01 1 7 1.74 2.97 0.54 1.11 0.37 0.08 0.18 1 7 0.02 0.48 0.01 0.01 0.01 0.02 0.02 1 7 0.02 0.48 0.01 0.01 0.01 0.02 0.02 24 0.01 0.29 0.01 0.00 0.01 0.01 0.02 24 0.01 0.14 0.03 0.02 0.00 0.00 0.03 0.03 24 0.01 0.10 0.02 0.01 0.03 0.02 0.07 0.04 0.04 0.03 0.01 0.01 0.01<		血 將	7	0.02	0.94	0.08	0.02	0.03	0.02	0.13
カット 直球 24 0.00 0.08 0.01 0.00 0.01 0.00 0.01 肝臓 7 1.74 2.97 0.54 1.11 0.37 0.08 0.18 Bh児 7 0.02 0.45 0.13 0.14 0.05 0.02 0.02 排水 7 0.02 0.48 0.01 0.01 0.01 0.01 0.02 *** 7 0.02 0.41 0.07 0.08 0.01 0.01 0.02 *** 7 0.02 0.41 0.07 0.08 0.01 0.01 0.07 *** 3 0.00 0.14 0.03 0.02 0.00 0.00 0.03 *** 3 0.00 0.18 0.03 0.01 0.03 0.02 0.01 *** 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.05 *** <t< td=""><td></td><td>皿浆</td><td>24</td><td>0.00</td><td>0.17</td><td>0.03</td><td>0.00</td><td>0.01</td><td>0.01</td><td>0.02</td></t<>		皿浆	24	0.00	0.17	0.03	0.00	0.01	0.01	0.02
ウサギ 24 0.00 0.08 0.01 0.00 0.01 0.00 0.01 肝臓 7 1.74 2.97 0.54 1.11 0.37 0.08 0.18 胎児 7 0.02 0.45 0.13 0.14 0.05 0.02 0.02 操水 7 0.02 0.48 0.01 0.01 0.01 0.01 0.02 業水 7 0.02 0.41 0.07 0.08 0.01 0.01 0.02 重水 7 0.02 0.41 0.07 0.08 0.01 0.01 0.07 直線 3 0.00 0.14 0.03 0.02 0.00 0.00 0.03 血漿 3 0.00 0.18 0.03 0.01 0.03 0.02 0.01 血漿 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.01 カナギ 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 上井 3 0.		血球	7	0.01	0.43	0.02	0.02	0.01	0.01	0.09
ウサギ 肝臓 24 0.21 0.45 0.13 0.14 0.05 0.02 0.02 胎児 7 0.02 0.48 0.01 0.01 0.01 0.01 0.02 業水 7 0.02 0.41 0.07 0.08 0.01 0.01 0.07 24 0.01 0.14 0.03 0.02 0.00 0.00 0.03 血漿 3 0.00 0.18 0.03 0.01 0.03 0.02 0.07 血球 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.07 血球 3 0.02 0.06 0.01 0.02 0.01 0.01 0.05 上市議 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 上市議 3 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 上市議 3 0.01		皿塚	24	0.00	0.08	0.01	0.00	0.01	0.00	0.01
BHR	ラット	田職	7	1.74	2.97	0.54	1.11	0.37	0.08	0.18
胎児 24 0.01 0.29 0.01 0.00 0.01 0.01 0.02 ** ** 7 0.02 0.41 0.07 0.08 0.01 0.01 0.07 ** ** 24 0.01 0.14 0.03 0.02 0.00 0.00 0.03 ** 3 0.00 0.18 0.03 0.01 0.03 0.02 0.03 ** 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.07 ** 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.07 ** 3 0.03 0.16 0.01 0.02 0.01 0.01 0.01 0.05 ** 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 ** 24 0.13 0.17 0.03 0.04 0.03 0.02 0.06 ** ** 3 0.01 0.02 0.00 0.00 - - 0.03 ** ** ** ** ** ** ** ** ** ** ** ** ** ** **	791	刀丨加戟	24	0.21	0.45	0.13	0.14	0.05	0.02	0.02
ウサギ 24 0.01 0.29 0.01 0.00 0.01 0.01 0.02 東水 7 0.02 0.41 0.07 0.08 0.01 0.01 0.07 24 0.01 0.14 0.03 0.02 0.00 0.00 0.03 血漿 3 0.00 0.18 0.03 0.01 0.03 0.02 0.07 血球 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.07 上版 3 0.02 0.06 0.01 0.02 0.01 0.01 0.01 0.05 上版 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 上版 3 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 上版 3 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 10 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td> <td>旧川</td> <td>7</td> <td>0.02</td> <td>0.48</td> <td>0.01</td> <td>0.01</td> <td>0.01</td> <td>0.01</td> <td>0.02</td>		旧川	7	0.02	0.48	0.01	0.01	0.01	0.01	0.02
学水 24 0.01 0.14 0.03 0.02 0.00 0.00 0.03 血漿 3 0.00 0.18 0.03 0.01 0.03 0.02 0.13 血球 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.07 血球 3 0.02 0.06 0.01 0.02 0.01 0.01 0.05 24 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.02 肝臓 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 胎児 3 0.01 0.02 0.00 0.00 - - 0.03 3 0.00 0.03 0.01 0.00 0.00 - - 0.00 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		カログロ	24	0.01	0.29	0.01	0.00	0.01	0.01	0.02
ウサギ 24 0.01 0.14 0.03 0.02 0.00 0.00 0.03 血漿 3 0.00 0.18 0.03 0.01 0.03 0.02 0.13 血球 3 0.02 0.06 0.01 0.02 0.01 0.03 0.02 0.07 上版 3 0.02 0.06 0.01 0.02 0.01 0.01 0.01 0.05 上版 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 上股 3 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 1 3 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00		光 水	7	0.02	0.41	0.07	0.08	0.01	0.01	0.07
血漿 24 0.01 0.10 0.02 0.01 0.03 0.02 0.07 血球 3 0.02 0.06 0.01 0.02 0.01 0.01 0.05 24 0.01 0.03 0.01 0.01 0.01 0.01 0.02 肝臓 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 24 0.13 0.17 0.03 0.04 0.03 0.02 0.06 胎児 3 0.01 0.02 0.00 0.00 - - 0.03 24 0.00 0.01 0.00 0.00 - - 0.00 3 0.00 0.03 0.00 0.00 0.00 0.00 0.06		十八	24	0.01	0.14	0.03	0.02	0.00	0.00	0.03
ウサギ 24 0.01 0.10 0.02 0.01 0.03 0.02 0.07 血球 3 0.02 0.06 0.01 0.02 0.01 0.01 0.01 0.05 ウサギ 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 上版 3 0.01 0.02 0.00 0.04 0.03 0.02 0.06 胎児 3 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00		血將	3	0.00	0.18	0.03	0.01	0.03	0.02	0.13
中サギ 24 0.01 0.03 0.01 0.01 0.01 0.01 0.02 ウサギ 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 24 0.13 0.17 0.03 0.04 0.03 0.02 0.06 胎児 3 0.01 0.02 0.00 0.00 - - 0.03 3 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00		皿浆	24	0.01	0.10	0.02	0.01	0.03	0.02	0.07
ウサギ 24 0.01 0.03 0.01 0.01 0.01 0.01 0.02 肝臓 3 0.03 0.16 0.01 0.18 0.06 0.03 0.17 24 0.13 0.17 0.03 0.04 0.03 0.02 0.06 胎児 3 0.01 0.02 0.00 0.00 - - 0.03 3 0.00 0.01 0.00 0.00 - - 0.00 3 0.00 0.03 0.00 0.00 0.00 0.00 0.00		血球	3	0.02	0.06	0.01	0.02	0.01	0.01	0.05

-:算出せず。

④ 尿及び糞中排泄

投与群Ⅱにおいて、妊娠ラットでは、各回投与 24 時間後の尿及び糞中への放射能の排泄率は投与回数に伴い上昇した。最終投与後 24 時間の累積排泄量は尿中に 31.9%TAR、糞中に 65.6%TAR であり、主に糞中に排泄された。

妊娠ウサギでは、最終投与後 24 時間の累積排泄量は尿中に 47.3%TAR、糞中に 47.8%TAR であり、尿及び糞中に同程度に排泄された。ラット及びウサギとも速やかに排泄された。(参照 15、27)

6. 急性毒性試験等

(1) 急性毒性試験(経口投与)

フルミオキサジン (原体) の急性毒性試験 (経口投与) が実施された。 結果は表 16 に示されている。 (参照 $5\sim8$ 、11、15)

表 16 急性毒性試験結果概要(経口投与、原体)

動物種	$\mathrm{LD}_{50}(\mathrm{mg}$	/kg 体重)	知察された応出
性別·匹数	雄	雌	観察された症状
SD ラット a	> 5 000	> 5 000	症状及び死亡例なし
雌雄各5匹	>5,000	>5,000	症状及び死亡例なし
ICR マウス a	> 7 000	> 5 000	症状及び死亡例なし
雌雄各5匹	>5,000	>5,000	近仏及いが上がれ

a: 1%MC 水溶液に懸濁

(2)一般薬理試験

フルミオキサジンのマウス、ウサギ、モルモット、ラット及びイヌを用いた一般薬理試験が実施された。

結果は表 17 に示されている。 (参照 11、15)

表 17 一般薬理試験概要

	試験の種類	動物種	動物数 /群	投与量 (mg/kg 体重) (投与経路)	最大 無作用量 (mg/kg 体 重)	最小 作用量 (mg/kg 体 重)	結果の概要
	一般状態 (Irwin 法)	ICR マウス	雄3 雌3	0、1,500、5,000 (経口) ¹⁾	1,500	5,000	5,000 mg/kg 体重 で 30 分後に軽度の 自発運動減少を認 めたが 60 分後に回 復した。
	自発運動量	ICR マウス	雄 3	0、1,500、5,000 (経口) ¹⁾	1,500	5,000	5,000 mg/kg 体重 で投与10~20分後 に有意な減少
中枢	ペントバルビ タール睡眠	ICR マウス	雄 10	0、1,500、5,000 (経口) ¹⁾	1,500	5,000	5,000 mg/kg 体重 で有意に延長
神経系	抗痙攣 (ペンチレンテ トラゾール誘 発)	ICR マウス	雄 10	0、1,500、5,000 (経口) ¹⁾	5,000	-	影響なし
	鎮痛作用 (酢酸 writhing 法)	ICR マウス	雄 9~10	0、1,500、5,000 (経口) ¹⁾	1,500	5,000	5,000 mg/kg 体重 で有意な苦悶反応 抑制
	体温	NZW ウサギ	雄 3	0、1,500、5,000 (経口) ¹⁾	5,000	-	影響なし
	脳波	NZW ウサギ	雄3	0、1,500、5,000 (経口) ¹⁾	5,000	1	影響なし
自律		NZW ウサギ	雄3	0、10 ⁻⁸ ~10 ⁻⁵ g/mL (<i>in vitro</i>) ²⁾	$10^{-6}\mathrm{g/mL}$	$10^{-5}\mathrm{g/mL}$	10 ⁻⁵ g/mL で筋の緊 張度低下
神経系	摘出回腸	摘出回腸 Hartley # 10 ⁻⁸ ~10 ⁻⁵ # 3 g/mL (in vitro) ²⁾		g/mL	10 ⁻⁶ g/mL	10 ⁻⁵ g/mL	10 ⁻⁵ g/mL で直接作 用抑制、また ACh、 His、5-HT、塩化 バリウムの収縮作 用抑制
体性神	摘出横隔膜 神経筋	SD ラット	雄3	10 ⁻⁸ ~10 ⁻⁵ g/mL (in vitro) ²⁾	10 ⁻⁵ g/mL	_	影響なし
経系	局所麻酔作用	NZW ウサギ	雄3	0、0.6、6% (点眼) ³⁾	6	_	影響なし

	試験の種類	動物種	動物数 /群	投与量 (mg/kg 体重) (投与経路)	最大 無作用量 (mg/kg 体 重)	最小 作用量 (mg/kg 体 重)	結果の概要
循環器系	呼吸、血圧、心 拍数、心電図及 び血流量	ビーグル 犬	雄 3	0、0.3、1、3、 10、30 (静脈内) ³⁾	1	3	3 mg/kg 体重以上 で一過性の呼吸促 進、10 mg/kg 体重 以上投与群で血 圧、心拍数の一過 性低下に引き続く 上昇及び血流量の 減少、30 mg/kg 体 重投与群で全例死 亡
	摘出心房	Hartley モルモッ ト	雄 3	0、10 ⁻⁸ ~10 ⁻⁵ g/mL (in vitro) ²⁾	10 ⁻⁵ g/mL	_	影響なし
消化器系	腸管輸送能	ICR マウス	雄 10	0、1,500、5,000 (経口) ¹⁾	5,000	I	影響なし
水·電解質代謝	尿量、 尿中電解質	SD ラット	雄 10	0、100、500、 1,500、5,000 (経口) ¹⁾	1,500	5,000	5,000 mg/kg 体重 投与群で尿量の減 少、尿中ナトリウ ム、カリウムの有 意な増加
血	血液凝固	SD ラット	雄 5	0、1,500、5,000 (経口) ¹⁾	5,000	_	影響なし
液	溶血	SD ラット	雄 5	0、1,500、5,000 (経口) ¹⁾	5,000	_	影響なし

- 注)・溶媒は ¹⁾1%MC、²⁾DMSO、³⁾グリセロールフォルマールを用いた。
 - ・水・電解質代謝への影響試験で認められた結果については、毒性学的意義が不明と考えられたことから、急性参照用量(ARfD)のエンドポイントとしなかった。
 - -:最小作用量を設定できなかった。

7. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)①

SD ラット [主群:一群雌雄各 10 匹、中間と殺群(投与 5 週):一群雌雄各 6 匹] を用いた混餌投与(原体:0、30、300、1,000 及び 3,000 ppm:平均検体摂取量は表 18 参照)による 90 日間亜急性毒性試験が実施された。

表 18 90 日間亜急性毒性試験 (ラット) ①の平均検体摂取量

投与群(ppm)	30	300	1,000	3,000	
平均検体摂取量	雄	1.9	19.3	65.0	196
(mg/kg 体重/日)	雌	2.2	22.4	72.9	218

各投与群に認められた毒性所見は表 19 に示されている。

死亡動物 1 例を含む 3,000 ppm 投与群の雌 3 例において、投与の影響による溶血性黄疸が認められ、耳介、眼球及び四肢の蒼白、眼底血管の不明瞭化等、BUN、ALP、AST、ALT、LDH、GGT、TG、T.Bil 及び D.Bil の増加傾向並びに ChE減少傾向が認められた。

本試験において、1,000 ppm 以上投与群の雄で Hb、MCV、MCH、MCHC 減少等が、300 ppm 以上投与群の雌で MCV 及び MCH 減少が認められたことから、無毒性量は雄で 300 ppm(19.3 mg/kg 体重/日)、雌で 30 ppm(2.2 mg/kg 体重/日)であると考えられた。(参照 11、15)

(貧血発現に関しては [13.(1)] を参照)

表 19 90 日間亜急性毒性試験 (ラット) ①で認められた毒性所見

投与群	雄	雌
3,000 ppm	・RBC、網状赤血球比及び赤芽球	・死亡(1 例、投与 12 週)
	比増加	・耳介(投与8週以降)、眼球(投与8
	・Ht 減少	週以降)、四肢(投与 11 週以降)の
	•骨髄顆粒球系細胞/赤芽球系細胞	蒼白
	比(M/E 比)減少	・RBC 減少
	・肝類洞内褐色色素沈着	・WBC、Neu 及び赤芽球比増加
		・TP、ChE、α1-Glob 及びβ-Glob 減
		少
		・T.Bil、GGT 及び A/G 比増加
		・肝絶対重量、腎比重量 ² 、脾及び
		心絶対及び比重量増加
		小葉中心性肝細胞風船様変性及び
		壊死
		肝細胞褐色色素沈着
		大腿骨骨髄線維症及び骨形成
		 腎尿細管上皮細胞内褐色色素沈着
		及び空胞化
		· 副腎皮質細胞質空胞化
		・胸腺泡沫細胞浸潤を伴う萎縮
		・リンパ節組織球症
1,000 ppm	・Hb、MCV、MCH 及び MCHC	・Hb、Ht 及び MCHC 減少
以上	減少	•網状赤血球比増加
	・肝、腎、心及び甲状腺絶対及び	・骨髄 M/E 比減少
	比重量増加	・カリウム及び無機リン減少
	• 脾髓外造血亢進	肝比重量増加
		• 肝類洞内褐色色素沈着
		肝髓外造血亢進
		• 大腿骨骨髄過形成
		• 脾髄外造血亢進
300 ppm 以上	300 ppm 以下	・MCV 及び MCH 減少
30 ppm	毒性所見なし	毒性所見なし

(2)90日間亜急性毒性試験(ラット)②

SD ラット (一群雌雄各 12 匹) を用いた混餌投与 (原体: 0、30、300、1,000 及び 3,000 ppm: 平均検体摂取量は表 20 参照) による 90 日間亜急性毒性試験が実施された。

表 20 90 日間亜急性毒性試験 (ラット) ②の平均検体摂取量

投与群(ppm)	30	300	1,000	3,000	
平均検体摂取量	雄	2.3	21	70	244
(mg/kg 体重/日)	雌	2.2	22	72	230

² 体重比重量を比重量という(以下同じ。)。

死亡例はなかった。各投与群に認められた毒性所見は表 21 に示されている。本試験において、1,000 ppm 以上投与群の雌雄で MCV 減少等が認められたことから、無毒性量は雌雄とも 300 ppm(雄:21 mg/kg 体重/日、雌:22 mg/kg 体重/日)であると考えられた。(参照 6、8)

(貧血発現に関しては [13.(1)] 参照)

表 21 90 日間亜急性毒性試験 (ラット) ②で認められた毒性所見

投与群	雄	雌
3,000 ppm	· 体重增加抑制(投与1週以降)	· 体重增加抑制(投与 1 週以降)
	・Hb、Ht、MCH 及び骨髄 M/E	・RBC、Hb、Ht 及び骨髄 M/E
	比減少	比減少
	・PLT、網状赤血球比及び赤芽	・WBC、網状赤血球比及び赤芽
	球比増加	球比増加
	・脾絶対及び比重量増加、肝比	・Alb 及び A/G 比増加
	重量増加	・脾絶対及び比重量増加、肝比
	・脾髄外造血亢進	重量増加
		・脾髄外造血亢進
		・骨髄及び肝造血亢進(1例)
		・肝リンパ球浸潤
1,000 ppm 以上	・MCV 減少	・MCV 及び MCH 減少
	・T.Bil 増加	・PLT 増加
300 ppm 以下	毒性所見なし	毒性所見なし

(3)90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いたカプセル経口投与(原体:0、10、100 及び 1,000 mg/kg 体重/日)による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表 22 に示されている。

本試験において、1,000 mg/kg 体重/日投与群の雌雄で ALP、T.Chol、PL 増加等が認められたことから、無毒性量は雌雄とも 100 mg/kg 体重/日であると考えられた。(参照 $6\sim9$ 、11、15)

表 22 90 日間亜急性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
1,000 mg/kg 体重/日	・軟便(投与8日以降)・ALP、T.Chol 及びPL 増加・肝絶対及び比重量増加(1例)	・軟便(投与8日以降) ・ALP、T.Chol 及びPL 増加 ・APTT 延長
	・肝胆管増生(1 例)・肝中心静脈周囲線維組織増生・肝細胞滑面小胞体増生及び 拡張	・肝絶対及び比重量増加(1 例)・肝胆管増生・肝細胞滑面小胞体増生及び 拡張
100 mg/kg 体重/日以下	毒性所見なし	毒性所見なし

(4) 28 日間亜急性毒性試験(マウス)

ICR マウス (一群雌雄各 9 匹) を用いた混餌投与 (原体:0、1,000、3,000 及び 10,000 ppm: 平均検体摂取量は表 23 参照) による 28 日間亜急性毒性試験が実施された。

表 23 28 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群(ppm)	1,000	3,000	10,000	
平均検体摂取量雄		152	420	1,370
(mg/kg 体重/日) 雌		165	482	1,700

10,000 ppm 投与群の雄及び 3,000 ppm 以上投与群の雌で肝絶対及び比重量増加が認められたことから、無毒性量は雄で 3,000 ppm(420 mg/kg 体重/日)、雌で 1,000 ppm(165 mg/kg 体重/日)であると考えられた。(参照 6、8)

8. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いたカプセル経口投与(原体:0、10、100 及び1,000 mg/kg 体重/日)による 1 年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表 24 に示されている。

死亡例は認められなかった。

本試験において、100 mg/kg 体重/日以上投与群の雌雄で ALP 増加等が認められたことから、無毒性量は雌雄とも 10 mg/kg 体重/日であると考えられた。(参照 7、8、11、15)

表 24 1年間慢性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
1,000 mg/kg 体重/	•軟便(投与1週以降)、粘液便(投	•軟便(投与1週以降)、粘液便(投
日	与 4 週以降)、下痢(投与 11 及	与 28 週以降)、下痢(投与 3 週)
	び 50 週以降)	・T.Chol、PL 及びα2-Glob 増加
	・T.Chol、PL 及びα2-Glob 増加	・肝絶対及び比重量増加
	・肝絶対及び比重量増加	・胆嚢及び胆汁黒色沈渣
	・グリソン鞘結合組織増加(褐色	・グリソン鞘結合組織増加(褐色
	色素沈着、胆管増生を伴う)	色素沈着、胆管増生を伴う)
	・肝細胞滑面小胞体増生及び拡	・肝細胞滑面小胞体増生及び拡
	張	張
100 mg/kg 体重/日	・ALP 増加	・ALP 増加
以上	・脾髄外造血亢進	
10 mg/kg 体重/日	毒性所見なし	毒性所見なし

(2) 2年間慢性毒性/発がん性併合試験(ラット)

SD ラット(主群:一群雌雄各 50 匹、中間と殺群:一群雌雄各 24 匹)を用いた混餌投与(原体:0、50、500 及び 1,000 ppm:平均検体摂取量は表 25 参照)による 2 年間慢性毒性/発がん性併合試験が実施された。

表 25 2年間慢性毒性/発がん性併合試験(ラット)の平均検体摂取量

投与群(ppm)	50	500	1,000	
平均検体摂取量	雄	1.8	18.0	36.5
(mg/kg 体重/日)	雌	2.2	21.8	43.6

各投与群で認められた毒性所見は表 26 に示されている。

対照群と投与群で死亡率に差は認められなかった。貧血は、雄より雌で顕著であった。

検体投与に関連して発生頻度が増加した腫瘍性病変はなかった。

本試験において、500 ppm 以上投与群の雌雄で脾髄外造血亢進等が認められたことから、無毒性量は雌雄とも 50 ppm(雄: 1.8 mg/kg 体重/日、雌: 2.2 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 $5\sim8$ 、11、15)

表 26 2年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見

投与群	雄	雌
1,000 ppm	・MCV、MCH 及び MCHC 減少	・RBC 及び赤芽球数増加
	• 赤芽球数増加	・骨髄 M/E 比減少
500 ppm 以上	・Hb 減少	・Hb、Ht、MCV、MCH 及び MCHC
	• 慢性腎症	減少
	・脾髄外造血亢進	・Ret 増加
		・脾髄外造血亢進
50 ppm	毒性所見なし	毒性所見なし

(3) 18 か月間発がん性試験(マウス)

ICR マウス (主群:一群雌雄各 51 匹、中間と殺群:一群雌雄各 15 匹)を用いた混餌投与 (0、300、3,000 及び 7,000 ppm:平均検体摂取量は表 27 参照)による 18 か月間発がん性試験が実施された。

表 27 18 か月間発がん性試験(マウス)の平均検体摂取量

投与群(ppm)		300	3,000	7,000
平均検体摂取量	雄	31.1	315	754
(mg/kg 体重/日)	雌	36.6	346	859

対照群と投与群で死亡率に差は認められなかった。

7,000 ppm 投与群の雄で RBC 減少が認められ、3,000 ppm 以上投与群では、 用量相関性はないものの雄で小葉中心性肝細胞肥大が、同群の雌でび漫性肝細胞 肥大が認められ、これらの肝細胞肥大は肝細胞の核肥大及び細胞質肥大を伴って いた。また、雌で肝単細胞壊死が認められた。

検体投与に関連して発生頻度が増加した腫瘍性病変はなかった。

本試験において、3,000 ppm 以上投与群の雌雄で核肥大を伴った肝細胞肥大等が認められたことから、無毒性量は雌雄とも 300 ppm (雄:31.1 mg/kg 体重/日、雌:36.6 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 7、8、11、15)

9. 神経毒性試験

(1) 急性神経毒性試験 (ラット)

SD ラット(一群雌雄各 12 匹)を用いた単回強制経口投与(原体:0、200、700及び 2,000 mg/kg 体重)による急性神経毒性試験が実施された。

いずれの投与群においても検体投与による影響は認められなかった。

本試験における無毒性量は雌雄とも本試験の最高用量である 2,000 mg/kg 体重であると考えられた。急性神経毒性は認められなかった。(参照 15、16)

(2) 90 日間亜急性神経毒性試験 (ラット)

(mg/kg 体重/日)

SD ラット (一群雌雄各 12 匹) を用いた混餌投与 (0、500、1,500 及び 4,500 ppm: 平均検体摂取量は表 28 参照) による 90 日間亜急性神経毒性試験が実施された。

 投与群(ppm)
 500
 1,500
 4,500

 平均検体摂取量
 雄
 37
 110
 323

41

124

358

表 28 90 日間亜急性神経毒性試験 (ラット) の平均検体摂取量

各投与群で認められた毒性所見は表 29 に示されている。

雌

本試験において、500 ppm 以上投与群の雄で MCV 及び MCH 減少が、1,500 ppm 以上投与群の雌で、Hb、Ht、MCV、MCH 等の減少が認められたことから、無毒性量は雄で 500 ppm 未満 (37 mg/kg 体重/日未満)、雌で 500 ppm (41 mg/kg 体重/日) であると考えられた。亜急性神経毒性は認められなかった。 (参照 15、17)

表 29 90 日間亜急性神経毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
4,500 ppm	・MCHC 減少 ・Ret 及び網赤血球比率増加	・PLT 増加 ・Ret 及び網赤血球比率増加 ・大型非染色球比率及び絶対数
		減少
1,500 ppm 以上	・Hb 及び Ht 減少	・Hb、Ht、MCV、MCH 及び
		MCHC 減少
500 ppm 以上	・MCV 及び MCH 減少	毒性所見なし

10. 生殖発生毒性試験

(1) 2世代繁殖試験(ラット)

SD ラット(一群雌雄各 30 匹)を用いた混餌投与(原体:0、50、100、200 及び 300 ppm: 平均検体摂取量は表 30 参照)による 2 世代繁殖試験が実施された。

投与群(ppm) 50 100 200 300 雄 3.2 6.3 12.7 18.9 P世代 平均検体摂取量 雌 3.8 7.615.122.7(mg/kg 体重/日) 雄 3.77.515.0 22.4F₁世代 雌 17.2 4.3 8.5 25.6

表 30 2世代繁殖試験 (ラット) の平均検体摂取量

各投与群で認められた毒性所見は表 31 に示されている。

児動物では、 F_1 世代では 300 ppm 投与群において、 F_2 世代では 200 ppm 以上投与群で生存児動物数が減少し、両世代ともに 300 ppm 投与群において出産生児数が減少し、生後 4 日までの生存率が低下した。

本試験において、親動物では 200 ppm 以上投与群の F_1 雄において精巣上体絶対及び比重量が減少し、300 ppm 投与群の雌雄で体重増加抑制等が、児動物では200 ppm 以上投与群で低体重等が認められたことから、無毒性量は親動物では、雄は 100 ppm (P 雄: 6.3 mg/kg 体重/H、 F_1 雄: 7.5 mg/kg 体重/H)、雌は 200 ppm (P 雄: 15.1 mg/kg 体重/H、17.2 mg/kg 体重/H0 、児動物では雌雄とも 100 ppm (P 雄: 15.3 mg/kg 体重/H0、H1、H2 、H3 、H3 、H4 にH5 、H5 mg/kg 体重/H6 、H5 、H5 mg/kg 体重/H6 、H6 、H7 、H8 にH9 、H9 であると考えられた。

また、300 ppm 投与群の雄で交尾率の減少が、雌で出産率減少が認められたことから、繁殖能に対する無毒性量は雌雄とも 200 ppm(P 雄: 12.7 mg/kg 体重/日、P 雌: 15.1 mg/kg 体重/日、 F_1 雄: 15.0 mg/kg 体重/日、 F_1 雄: 17.2 mg/kg 体重/日)であると考えられた。(参照 11、15)

表 31 2世代繁殖試験(ラット)で認められた毒性所見

	北上来	親 : P、児 : F ₁		親 : F ₁ 、	児:F ₂	
	投与群	雄	雌	雄	雌	
親動物	300 ppm	300 ppm 以下毒性 所見なし	・膣周囲赤色物質 ・摂餌量減少(哺育期) ・出産率減少 ・全胚・胎児吸収 (5例)	 ・死亡(1 例) ・蒼白、体重増加抑制、摂餌量減少 ・精巣絶対及び比重量減少 ・前立腺絶対重量減少 ・交尾率減少 	・死亡(4 例) ・蒼白、体重増加 抑制、摂餌量減 少 ・小葉中心性肝細 胞壊死 ・胆汁うっ滞 ・出産率減少傾向 ・全胚・胎児吸収 (2 例)	
	200 ppm 以上 100 ppm 以下		200 ppm 以下 毒性所見なし	・精巣上体絶対及 び比重量減少 毒性所見なし	200 ppm 以下 毒性所見なし	
児動物	300 ppm 200 ppm 以上	・腹当たり出産児動物数及び出産生児数 減少 ・生後4日生存率減少 ・腹当たり生存児動物数減少 ・衰弱 ・低体重		・腹当たり出産児動物数及び出産生児数減少 ・生後4日生存率減少 ・低体重 ・低体温、尾の紋輪 ・死産数増加(200 ppm 投与群のみ) ・腹当たり生存児動物数減少		
	100 ppm 以下	毒性所見なし		・胃内に乳汁なし 毒性所見なし		

(2)発生毒性試験(ラット)

SD ラット (一群雌 22 匹) の妊娠 $6\sim15$ 日に強制経口投与 (原体:0、1、3、10 及び 30 mg/kg 体重/日、溶媒:0.5%MC 水溶液) して、発生毒性試験が実施された。

母動物では、30 mg/kg 体重/日投与群で体重増加抑制が認められたが、これは生存胎児数減少及び胎児低体重による子宮内受胎産物の重量の減少によるもので、母動物に検体投与の影響は認められなかった。

胎児では、30 mg/kg 体重/日投与群で胚・胎児死亡率が増加して、腹当たり平均生存胎児数が減少し、体重は低値を示した。胎児内臓観察において、心奇形の心室中隔欠損が増加し、これを含めて心血管系の異常が増加した。心室中隔欠損を主とする心血管系の異常は、10 mg/kg 体重/日投与群でも背景値を上回る頻度で認められ、用量相関性が認められたことから、検体投与の影響と判断された。骨格検査では、30 mg/kg 体重/日投与群で、奇形として肩甲骨弯曲が、骨格変異として波状肋骨がそれぞれ増加し、骨化仙尾椎数の減少が認められた。

本試験の無毒性量は、母動物で30 mg/kg 体重/日、胎児で3 mg/kg 体重/日で

あると考えられた。(参照 $6\sim8$ 、11、15) (発生毒性メカニズム関連試験に関しては $[13.(12)\sim(27)]$ を参照)

(3)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 20 匹) の妊娠 $7\sim19$ 日に強制経口投与 (原体:0、300、1,000 及び 3,000 mg/kg 体重/日、溶媒:0.5%MC 水溶液)して、発生毒性試験が実施された。

母動物では、3,000 mg/kg 体重/日投与群で体重減少(妊娠 $7\sim8$ 日以降)/体重増加抑制及び摂餌量減少(妊娠 $7\sim8$ 日以降)が認められた。

胎児では、検体投与の影響は認められなかった。

本試験の無毒性量は母動物で 1,000 mg/kg 体重/日、胎児で 3,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 $6\sim8$ 、11、15)

11. 遺伝毒性試験

フルミオキサジン(原体)の細菌を用いた DNA 修復試験及び復帰突然変異試験、チャイニーズハムスター卵巣由来培養細胞 (CHO-K1) を用いた *in vitro* 染色体異常試験、チャイニーズハムスター肺由来細胞 (V79) を用いた遺伝子突然変異試験、ラット肝細胞を用いた *in vivo/in vitro* UDS 試験、マウスを用いた小核試験並びにラットを用いた *in vivo* 染色体異常試験が実施された。

結果は表 32 に示されており、チャイニーズハムスター卵巣由来培養細胞 (CHO-K1) を用いた in vitro 染色体異常試験で、代謝活性化系存在下で陽性であったが、in vivo の小核試験及び染色体異常試験を含むほかの試験の結果が全て陰性であったことから、フルミオキサジンに生体にとって問題となる遺伝毒性はないものと考えられた。(参照 $6\sim8$ 、11、15、23)

表 32 遺伝毒性試験概要 (原体)

	試験	対象	処理濃度・投与量	結果
	DNA 修復試験	Bacillus subtilis (H17、M45 株)	113~7,200 μg/ディスク(-S9) 113~3,600 μg/ディスク(+S9)	陰性
in vitro	復帰突然変異 試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株) Escherichia coli (WP2 uvrA 株)	50~2,000 μg/プレート(+/-S9)	陰性
	遺伝子突然変異 試験	チャイニーズハムスター 肺由来細胞(V79)	$14.1\sim225$ μg/mL	陰性
	染色体異常試験	チャイニーズハムスター 卵巣由来細胞(CHO-K1)	10.6~177 μg/mL (+/-S9)	陽性 1)
in vivo /in vitro	UDS 試験	SD ラット(肝細胞) (一群雄 3 匹)	①5,000 mg/kg 体重 (投与 3、12 及び 24 時間後 と殺) ②1,250、2,500、5,000 mg/kg 体重(投与 12 時間後と殺)	陰性
	小核試験	ICR マウス(骨髄細胞) (一群各 4 匹、性別不明)	300、1,000、5,000 mg/kg 体重 (単回腹腔内投与)	陰性
in vivo	染色体異常試験	SD ラット(骨髄細胞) (一群雌雄各 5 匹)	①雄: 5,000 mg/kg 体重 雌: 4,400 mg/kg 体重 (単回経口投与) (投与 6、12、24 及び 48 時間 後と殺) ② 1,250、 2,500 及 び 5,000 mg/kg 体重(投与 24 時間後と 殺)	陰性

注)+/-S9:代謝活性化系存在下及び非存在下 ¹⁾代謝活性化系存在下で陽性

12. 経皮投与、吸入ばく露等試験

(1) 急性毒性試験(経皮投与及び吸入ばく露)

フルミオキサジン(原体)の急性毒性試験(経皮投与及び吸入ばく露)が実施された。

結果は表 33 に示されている。 (参照 5~8、11、15)

投与 動物種 LD₅₀(mg/kg 体重) 観察された症状 性別·匹数 経路 雄 SD ラット 症状及び死亡例なし 経皮 a >2,000 >2,000 雌雄各5匹 不規則呼吸、呼吸緩徐、自発運動 $LC_{50}(mg/L)$ SD ラット 吸入b 量低下 雌雄各5匹 >3.93 >3.93 死亡例なし

表 33 急性毒性試験結果概要(経皮投与及び吸入ばく露、原体)

(2)眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。その結果、フルミオキサジンは眼に対し軽微な刺激性を示したが、皮膚に対しては刺激性を示さなかった。

Hartley モルモットを用いた皮膚感作性試験 (Maximization 法) が実施され、皮膚感作性は陰性であった。 (参照 $5\sim8$ 、11、15)

(3) 21 日間亜急性経皮毒性試験 (ラット)

SD ラット (一群雌雄各 5 匹) を用いた経皮投与 (原体: 0、100、300 及び 1,000 mg/kg 体重/日、6 時間/日、7 日/週)による 21 日間亜急性経皮毒性試験が実施された。

雄では、検体投与の影響は認められなかった。1,000 mg/kg 体重/日投与群の雌で、Hb 及び Ht 減少並びに脾髄外造血亢進が認められた。

本試験における無毒性量は、雄で 1,000 mg/kg 体重/日、雌で 300 mg/kg 体重/日であると考えられた。(参照 7、8、11、15)

(4) 発生毒性試験(ラット)(経皮投与)

SD ラット (一群雌 $24\sim25$ 匹) の妊娠 $6\sim15$ 日に経皮投与 (原体:0、30、100 及び 300 mg/kg 体重/日、溶媒: コーン油、6 時間/日)し、発生毒性試験が実施された。

母動物では300 mg/kg 体重/日投与群で体重増加抑制が認められたが、これは生存胎児数減少及び胎児低体重による子宮内受胎産物の重量減少によるもので、母動物に検体投与の影響は認められなかった。

胎児では300 mg/kg 体重/日投与群で胚・胎児死亡率が増加、腹当たり平均生存胎児数が減少し、体重が低値を示した。また、内臓観察では、内臓奇形として心室中隔欠損が、内臓変異として右奇静脈遺残及び過剰冠状動脈口等が増加し、これらを含む心血管系の異常が増加した。心血管系の異常は、100 mg/kg 体重/日投与群でも背景値の上限付近の頻度で認められ、用量相関性が認められること

a:1%MC溶液に懸濁。24時間閉塞貼付

b:4時間ばく露(ダスト)

から、検体投与の影響と判断された。骨格観察では、300 mg/kg 体重/日投与群で波状肋骨が増加し、骨化仙尾椎体数の減少が認められた。

本試験の無毒性量は、母動物で 300 mg/kg 体重/日、胎児で 30 mg/kg 体重/日 であると考えられた。(参照 $6\sim8$ 、11、15)

(5)発生毒性試験(ラット)(吸入ばく露)

SD ラット (一群雌 24 匹) の妊娠 $6\sim19$ 日に吸入ばく露(原体:0、1、3、10 及び 20 mg/m³、1 日 6 時間鼻部ばく露)して、発生毒性試験が実施された。また、トキシコキネティクスの比較のため、強制経口投与群(原体:30 mg/kg 体重/日、溶媒:0.5%MC 水溶液)が設けられた。血中薬物動態学的パラメータは表 34 に示されている。

表 34 フルミオキサジンの血中薬物動態学的パラメータ

					吸入ばく露		経口投与
	投与方法・投与量			3 mg/m³	10 mg/m ³	20 mg/m ³	30 mg/kg 体重 /日
			妊娠 6 日	3	3	6	1
	Г	_{max} (hr)	妊娠12日	6	6	3	3
			妊娠19日	6	6	6	1
母			妊娠 6 日	51.6	69.1	155	164
動	動 C _{max} (ng/mL) 物	$_{\rm x}({\rm ng/mL})$	妊娠12日	18.3	51.4	123	132
物			妊娠19日	46.4	61.6	144	144
	ATIO		妊娠 6 日	215	695	1,490	1,300
		AUC _{last} • ng /mL)	妊娠12日	95.8	445	1,110	1,060
	(III	· IIg /IIIL)	妊娠19日	199	537	1,270	1,360
	01.0		6 hra	5.66	15.2	44.9	16.8
胎児	且血中	妊娠	6 III ^a	(15%)b	(25%)	(30%)	(20%)
濃	農度	19 日	8 hr	<loq< td=""><td>6.84</td><td>28.2</td><td>16.1</td></loq<>	6.84	28.2	16.1
(ng	/mL)	1∂ ⊢	o III	\LOQ	(33%)	(43%)	(28%)
			24 hr	<loq< td=""><td><loq< td=""><td>2.45(32%)</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.45(32%)</td><td><loq< td=""></loq<></td></loq<>	2.45(32%)	<loq< td=""></loq<>
胚中	濃度	妊娠	6 hr	3.32	6.22	9.02	7.62
(ng	/mL)	12 目	0 111	(18%) ^c	(12%)	(9.3%)	(11%)

<LOQ: 定量限界(2.00 ng/mL)未満

a: ばく露開始又は経口投与から採血までの時間

b: 母動物血中濃度に対する胎児血中濃度%

c: 母動物血中濃度に対する胚組織中濃度%

各投与群で認められた毒性所見は表35に示されている。

本試験において、母動物では 20 mg/m³ ばく露群で Ret の増加等が認められ、 胎児では 20 mg/m³ ばく露群で着床後胚損失率の増加、生存胎児数減少、心室中 隔欠損等が認められたことから、無毒性量は母動物及び胎児とも 10 mg/ m³ であ ると考えられた。 (参照 36、42)

双 50 元工母口的		こののプライいこ母エガル
投与群	母動物	胎児
20 mg/m ³	 ・体重増加抑制(妊娠 15~20 日)^a ・妊娠子宮重量減少 ・RBC 及び Ret 増加 ・MCV 及び MCH 減少 	・生存胎児数減少 ・着床後胚損失率増加 ・早期胚吸収率増加 ・低体重 ・心室中隔欠損 ・右鎖骨下動脈起始異常 ・四肢骨弯曲 ・肋骨弯曲 ・肩甲骨弯曲 ・椎弓骨化減少 ・頭蓋骨骨化減少
10 mg/m³以下	毒性所見なし	毒性所見なし

表 35 発生毒性試験(ラット)(吸入ばく露)で認められた毒性所見

13. その他の試験

(1)貧血発現検討試験(ラット)

フルミオキサジンによる貧血誘発メカニズムを明らかにするために、SD ラット (一群雌 6 匹) に、フルミオキサジンを最長 37 日間 3 混餌投与 (原体: 0、3,000及び 10,000 ppm、平均検体摂取量: 0、179 及び 852 mg/kg 体重/日)する試験が実施された。

いずれの投与群でも、投与開始 5 日後以降、RBC、Hb、Ht、MCV、MCH、MCHC 及び骨髄 M/E 比減少並びに赤芽球数増加が認められた。Ret は、いずれの投与群も投与開始 5 日後までは減少したが、8 日後には対照群と同等となり、15 日後以降は増加した。これらの変化に、3,000 及び 10,000 ppm 投与群で明らかな差は認められなかった。また、担鉄赤血球出現率がいずれの投与群においても経時的に増加したが、この変化は 3,000 ppm 投与群より 10,000 ppm 投与群で明瞭であった。10,000 ppm 投与群では投与 5 日後以降(投与 5 日後のみ有意差あり)に血中の鉄増加が認められた。

両投与群で投与開始 8 日以降、脾絶対及び比重量増加が認められ、15 日後には肝比重量増加が認められ、投与開始 37 日後の 3,000 ppm 投与群では、肝及び 脾絶対及び比重量増加が認められた。3,000 ppm 投与群では尿中コプロポルフィ

a:妊娠子宮重量減少に伴う変化と考えられた。

^{3 10,000} ppm 投与群は 15 日間投与、3,000 ppm 投与群は 37 日間投与

リン及び FEP 増加が認められた。(10,000 ppm 投与群では測定しなかった。) 以上より、フルミオキサジン投与によりラットで誘発された貧血は、鉄欠乏に よるものではなく、ポルフィリン合成阻害によることが示唆された。尿中及び赤 血球中ポルフィリン濃度の増加から、ポルフィリンがヘモグロビンに変換されな いことが示され、その結果、通常はヘモグロビン合成に用いられる鉄が、赤血球 に過剰に蓄積したと考えられた。(参照 7、8、11、15)

(2) 貧血発現種間比較試験 (ラット及びマウス)

フルミオキサジンによる貧血発現及び Protox 阻害に関する種差を検討するために、SD ラット(一群雌 6 匹)又は ICR マウス(一群雌 6 匹)に、フルミオキサジンを 15 日間混餌投与(原体: ラット: 0 及び 3,000 ppm、マウス: 0 及び 7,000 ppm)する試験が実施された。平均検体摂取量は、ラットで 336 mg/kg 体重/日、マウスで 1,200 mg/kg 体重/日であった。

ラットでは、検体投与群で投与開始後1週からRBC、Hb、Ht、MCV、MCH 及びMCHC減少並びにRet、赤芽球数、担鉄赤血球数及びFEP増加が認められ たが、マウスの検体投与群では投与開始後2週でFEPの軽微な増加が認められ たほかに、検体投与の影響は認められなかった。

フルミオキサジン投与による貧血発現及び Protox 阻害の指標である担鉄赤血球数及び FEP 増加の程度については、ラットとマウスで明らかな種差があると考えられた。 (参照 11、15)

(3) 貧血発現種間比較試験 (イヌ)

フルミオキサジンによる貧血発現及び Protox 阻害に関する種差を検討するために、ビーグル犬(一群雌 2 匹)に、フルミオキサジンを 14 日間カプセル経口投与(原体: 0 及び 1,000 mg/kg 体重/日)する試験が実施されたが、検体投与の影響は認められなかった。

ラット及びマウスを用いた試験の結果[13.(2)]と比較して、フルミオキサジン投与による貧血発現並びにProtox阻害の指標である担鉄赤血球数及びFEP増加の程度については、ラットとイヌで明らかな種差があると考えられた。(参照11、15)

(4) 28 日間亜急性毒性試験(サル)

貧血作用に対する毒性変化を検討するため、カニクイザル(一群雌 3 匹)を用いた強制経口投与(原体:0、100、300 及び1,000 mg/kg 体重/日)による 28 日間亜急性毒性試験が実施された。

本試験において、いずれの投与群においても検体投与による影響は認められなかった。 (参照 15、18)

(5) Proto-IXの蓄積性の種間比較試験(ラット及びウサギ)①

フルミオキサジンによる Protox 阻害の結果生じる Proto-IXの蓄積性の種差を検討するために、SD ラット(一群雌 $2\sim4$ 匹)又は日本白色種ウサギ(一群雌 $2\sim3$ 匹)の妊娠 12 日に、フルミオキサジンを単回経口投与(原体: 1,000 mg/kg体重、溶媒: 0.5%MC)する試験が実施された。

ラットでは、投与群の胚で、投与 2 時間後以降 Proto-IXの濃度が経時的に増加し、投与 12 時間後に最高値(投与前値の約 130 倍)に達した。その後濃度は速やかに減少し、投与 24 時間後には投与 2 時間後と同等となった。投与群母動物の肝臓でも、投与 2 時間後以降 Proto-IXの濃度増加が認められたが、投与 12 時間後までほぼ同等の値であり、投与 18 時間後以降減少した。母動物の肝臓 Proto-IX濃度は、最大値で投与前値の約 11 倍であった。

ウサギの胚及び母動物の肝臓では、Proto-IXの濃度は試験期間中、非常に低いか定量限界未満であった。(参照7、8、11、15)

(6) Proto-IXの蓄積性の種間比較試験(ラット及びウサギ)②

フルミオキサジンによる Protox 阻害の結果生じる Proto-IXの蓄積性の種差を検討するために、SD ラット(一群雌 $3\sim5$ 匹)又は日本白色種ウサギ(一群雌 $3\sim5$ 匹)の妊娠 $10\sim15$ 日のいずれか 1 日に、フルミオキサジンを単回経口投与(原体: ラット: 0 及び 400 mg/kg 体重、ウサギ: 1,000 mg/kg 体重、溶媒: 0.5%MC)する試験が実施された。

ラットでは、投与群の胚における検体投与 14 時間後の Proto-IX濃度は、いずれの投与日でも対照群より増加しており、特に、妊娠 11 及び 12 日投与群で最大値(対照群に比べ 69~84 倍)を示した。母動物肝臓における検体投与 14 時間後の Proto-IX濃度は、試験期間中対照群と同等であった。

ウサギの胚及び母動物では、 $\operatorname{Proto-IX}$ の濃度は試験期間中、非常に低い又は定量限界未満であった。(参照 7、8、11、15)

(7) Protox 阻害種間比較試験(ラット、マウス及びイヌ)

フルミオキサジンによる Protox 阻害作用の動物種による差を検討するために、SD ラット、ICR マウス又はビーグル犬(いずれも雌)の肝臓から調製したミトコンドリアを、フルミオキサジン存在下で 20 分間インキュベートする試験が実施された。フルミオキサジン添加濃度は、ラット及びマウスミトコンドリアで $10^{-10}\sim10^{-5}$ mol/L、イヌミトコンドリアで $10^{-9}\sim10^{-4}$ mol/L とした。

ラット、マウス及びイヌにおける Protox の IC_{50} 値は、それぞれ 5.63、10.6 及び 384 nmol/L であった。(参照 11、15)

(8) 肝及び胚組織中 Protox 阻害種間比較試験(ラット及びウサギ)

フルミオキサジンとその構造類似化合物(S-23121 及び S-23031⁴)による組織中 Protox 阻害作用の種差及び化合物による差を検討するために、非妊娠 SD ラット(雌)及び NZW ウサギ(雌)の肝臓並びに SD ラット(雌)及び NZW ウサギの妊娠 12 及び 15 日胚から調製したミトコンドリアを、フルミオキサジン及び構造類似化合物存在下でインキュベートする試験が実施された。フルミオキサジン及び S-23121 の添加濃度は $10^{-10} \sim 10^{-5}$ mol/L、S-23031 の添加濃度は $10^{-9} \sim 10^{-4}$ mol/L とし、インキュベート時間は肝ミトコンドリアで 20 分、胚ミトコンドリアで 30 分とした。

いずれの組織のミトコンドリアにおいても、Protox の最高反応速度はウサギよりラットで高値であった。

ラット及びウサギの各組織での Protox 活性に対する IC_{50} 値は表 36 に示されている。

いずれの化合物も、ウサギよりラットで Protox 活性を強く阻害した。いずれの化合物でも胚及び成体の肝臓における Protox 活性阻害作用に対する感受性は同等であったことから、成体の肝臓を用いて、胎児の Protox 活性に対する作用を検討することが可能であることが示唆された。(参照 7、8、11、15)

	ラット			ウサギ		
	肝臓	妊娠 12 日	妊娠 15 日	肝臓	妊娠 12 日	妊娠 15 日
	刀 加戟	胚	胚	刀 加戟	胚	胚
フルミオキサジン	0.008	0.012	0.006	0.052	0.095	0.308
S-23121	0.011	0.047	0.020	1.56	6.49	1.27
S-23031	0.793	0.344	0.204	4.75	5.92	5.09

表 36 ラット及びウサギの各組織における Protox 活性の IC₅₀値 (μmol/L)

(9) 肝組織 Protox 阻害種間比較試験(ヒト、ラット及びウサギ)

フルミオキサジンによる肝組織 Protox 阻害作用の種差を検討するために、ヒト(成人女性、脳死患者 6 名)、SD ラット(雌)及び NZW ウサギ(雌)の肝臓から調製したミトコンドリアを、フルミオキサジン存在下で 20 分間インキュベートする試験が実施された。フルミオキサジンの添加濃度は、ヒトで $10^{-9}\sim10^{-4}$ mol/L、ラット及びウサギで $10^{-10}\sim10^{-5}$ mol/L とした。

ヒト、ラット及びウサギにおける Protox 活性に対する IC₅₀ 値は、それぞれ 17.3、 7.15 及び 138 nmol/L であった。(参照 7、8、11、15)

_

⁴ S-23121:一般名フルミプロピン、S-23031:一般名フルミクロラックペンチル

<種差についてのまとめ>

ウサギでは、胎児に検体投与の影響は認められなかった。フルミオキサジンの Protox 活性阻害作用は、ウサギと比較して、ラットにおいて強く発現した。また、 Protox 活性阻害の結果生じると考えられる Proto-IXが、ラット胚・胎児では顕著に蓄積が認められたが、ウサギでは蓄積は認められなかった。 (参照 10、15)

(10) フルミオキサジン及び代謝物の Protox 阻害試験 (in vitro) ①

フルミオキサジン並びに代謝物 M5、M8 及び M16 の Protox 阻害作用を検討するために、SD ラット(雌)の肝臓から調製したミトコンドリアを、フルミオキサジン、代謝物 M5、M8 及び M16 存在下で 60 分間インキュベートする試験が実施された。フルミオキサジン、代謝物 M5、M8 及び M16 の添加濃度は、 10^{-11} $\sim 10^{-6}$ 、 $10^{-10} \sim 10^{-5}$ 、 $10^{-9} \sim 10^{-4}$ 及び $10^{-9} \sim 10^{-4}$ mol/L とした。

フルミオキサジン、代謝物 M5 及び M8 の IC_{50} 値は、それぞれ 4.55、62.5 及び 667 nmol/L であり、代謝物 M16 については、100 μ mol/L でも阻害作用は認められなかった。

代謝物 M5 及び M8 の Protox 阻害作用はフルミオキサジンより弱いと考えられた。 (参照 15、19)

(11) フルミオキサジン及び代謝物の Protox 阻害試験 (in vitro) ②

フルミオキサジン並びに代謝物 M5、M8 及び M16 の Protox 阻害作用を検討するために、ヒト肝臓ミトコンドリアを、フルミオキサジン、代謝物 M5、M8 及び M16 存在下で 60 分間インキュベートする試験が実施された。フルミオキサジン、代謝物 M5、M8 及び M16 の添加濃度は、それぞれ $10^{-10}\sim10^{-6}$ 、 $10^{-10}\sim10^{-5}$ 、 $10^{-9}\sim10^{-4}$ 、 $10^{-8}\sim10^{-4}$ mol/L とした。

フルミオキサジン、代謝物 M5 及び M8 の IC_{50} 値は、それぞれ 21、104、893 nmol/L であり、代謝物 M16 については、100 $\mu mol/L$ でも阻害作用は認められなかった。

代謝物 M5 及び M8 の Protox 阻害作用はフルミオキサジンより弱いと考えられた。 (参照 36、43)

(12)発生毒性臨界期検索試験(ラット)

ラットを用いた発生毒性試験(経口投与)及び発生毒性試験(経皮投与) [10.(2)及び12.(4)] において、フルミオキサジン投与により、胚・胎児死亡率増加、心室中隔欠損等の心血管系異常の増加が認められた。これらの毒性が、妊娠期間中のどの時期に投与した場合に最も強く発現するのか(臨界期)を検討するため、SD ラット(一群雌 4~5 匹)の妊娠 11~15 日のいずれか 1 日に、フルミオキサジンを単回経口投与(原体:0及び 400 mg/kg 体重、溶媒:0.5%MC)し、妊娠 20 日に母動物をと殺・帝王切開した。

母動物に死亡は認められなかった。いずれの投与群でも、胚・胎児死亡、胎児低体重及び心室中隔欠損が誘発されたが、胚・胎児死亡率及び心室中隔欠損発現率が最も高かったのは、妊娠 12 日投与群であり、胎児体重は同群で最も低かった。(参照 6~8、11、15)

(13)発生毒性病理組織検討試験 (ラット及びウサギ)

フルミオキサジン投与により誘発される心室中隔欠損が、胚への直接的作用によるものか、間接的作用によるものか検討するために、SD ラット(一群雌 $1\sim4$ 匹)又は日本白色種ウサギ(一群雌 2 匹)に、両動物種において発生段階がほぼ一致し、ラット胎児に影響を及ぼした妊娠 12 日に、フルミオキサジンを単回経口投与(原体:0 及び 1,000 mg/kg 体重、溶媒:0.5%MC)する試験が実施された。

ラットの投与群では、投与 36 時間後より胚死亡が認められ、投与 48 時間後には胚死亡率が 93%に達した。ラット胚では、投与 12 時間後以降ミトコンドリア損傷 (ミトコンドリア拡張及び鉄沈着)を伴う赤芽球への鉄沈着の増加が認められた。また、投与 12 時間後以降に赤芽球変性が、24 時間後以降に肝臓類洞内マクロファージによる赤芽球貪食及び肝類洞血管拡張等が、36 時間後以降に心室壁菲薄化等の心臓の変化がそれぞれ認められた。

ウサギでは、検体投与の影響は認められなかった。 (参照7、8、11、15)

(14)発生毒性発現メカニズム試験(ラット)

フルミオキサジン投与により胎児死亡、奇形(心室中隔欠損等)及び発育遅延が誘発されるメカニズムを検討するため、SD ラット(対照群:一群雌 7~8 匹、投与群:8~18 匹)の妊娠 12 日に、フルミオキサジンを単回経口投与(原体:0及び 400~mg/kg 体重、溶媒:0.5%MC)し、経日的に胚・胎児を観察する試験が実施された。

妊娠 14 日までは、胚・胎児死亡率に検体投与の影響は認められなかったが、 妊娠 15 日に死亡率が増加し、妊娠 20 日まで同等の値で推移した。したがって、 胚・胎児死亡は妊娠 15 日(投与 72 時間後)までに発現し、その時点で死亡しな かった胚・胎児は妊娠末期まで生存すると考えられた。

胚・胎児血液中の RBC 及び Hb は、妊娠 $13\sim16$ 日に顕著に減少(対照群の $38\%\sim53\%$)し、血清中 TP は妊娠 $15\sim16$ 日に顕著に減少(対照群の $46\%\sim53\%$)した。

妊娠 17 日以降に骨化遅延が認められ、妊娠 20 日には波状肋骨及び肩甲骨弯曲等の異常が発現した。

以上より、フルミオキサジン投与により最初に現れる影響は、RBC 及び Hbの減少であった。(参照 11、15)

(15) 胎児貧血誘発性検討試験

フルミオキサジン投与により胎児貧血が生じる濃度を探索し、胚・胎児死亡及び催奇形性が誘導されるメカニズムを検討するため、SD ラット(一群雌 20 匹)の妊娠 $6\sim15$ 日にフルミオキサジンを強制経口投与(原体:0、15、30 及び 60 mg/kg 体重/日、溶媒:0.5%MC 水溶液)し、胎児貧血誘発性検討試験が実施された。

各投与群で認められた毒性所見は表37に示されている。

フルミオキサジン投与により、15 mg/kg 体重/日以上投与群で胚に鉄沈着赤芽球率増加及び胎児に心室中隔欠損が、60 mg/kg 体重/日投与群で全胚吸収、着床後胚損失率増加等が認められたことから、フルミオキサジン投与によって引き起こされる胚・胎児の貧血が、胚・胎児死亡及び心室中隔欠損に関与していると考えられた。(参照 36、44)

文 01 /m 7.0 5										
投与群	母動物	胚(妊娠 14 日)	胎児(妊娠 20 日)							
60 mg/kg 体重/日	・体重増加抑制 ・生殖器周囲の赤色 被毛汚染 ・全胚吸収(4/20 例)§	・着床後胚損失率増加(後期) ・心房拡張 ・赤芽球量枯渇 ・肝類洞血管拡張 ・肝細胞壊死	・着床後胚損失率増加(早期) ・生存胎児数減少・低体重							
30 mg/kg 体重/日以上	・卵黄嚢蒼白(妊娠 14 日) ・胚蒼白(妊娠 14 日)	・赤芽球変性 ・心室壁菲薄化								
15 mg/kg 体重/日以上	15 mg/kg 体重/日 毒性所見なし	・鉄沈着赤芽球率増 加	·心室中隔欠損§§							

表 37 胎児貧血誘発性検討試験 (ラット) で認められた毒性所見

(16) ヘム合成経路及び細胞増殖への影響試験(K562細胞)

フルミオキサジンのヒト赤血球系細胞におけるへム合成及び細胞増殖に対する影響を検討するために、慢性骨髄性白血病患者由来細胞(K562 細胞)を赤血球系細胞に分化させ、フルミオキサジンの存在下で最長 8 日間インキュベートする試験が実施された。フルミオキサジンの添加濃度は 0.01、0.1、1.0 及び 5.0 $\mu mol/L$ とした。

 $1.0 \ \mu mol/L$ 以上の処理により用量依存性のProto-IXの蓄積が分化K562細胞に認められたが、 $5.0 \ \mu mol/L$ の用量においても、細胞増殖及びへム合成に対する影響は認められず、フルミオキサジンは $5.0 \ \mu mol/L$ 以下では、へム合成及び細胞増殖には影響しないと考えられた。(参照15、20)

^{§:}統計学的有意差はないが、検体投与の影響と考えられた。

^{§§: 15} mg/kg 体重/日投与群では統計学的有意差はないが、検体投与の影響と考えられた。

(17) ヘム合成経路及び細胞増殖への影響試験 (CD36+細胞)

フルミオキサジンのヒト赤血球細胞におけるへム合成及び細胞増殖に対する 影響を検討するために、臍帯血由来ヒト CD36+細胞を赤血球に分化させ、フル ミオキサジンの存在下で最長8日間インキュベートする試験が実施された。フル ミオキサジンの添加濃度は0.01、0.1、1.0及び5.0 μmol/L とした。

 $1.0~\mu mol/L$ 以上の処理により用量依存性の Proto-IXの蓄積が CD36+細胞に認められたが、 $5.0~\mu mol/L$ の用量においても、細胞増殖及びへム合成に対する影響は認められず、フルミオキサジンは $5.0~\mu mol/L$ 以下では、へム合成及び細胞増殖には影響しないと考えられた。(参照 36、45)

(18) ヘム合成経路及び細胞増殖への影響試験 (REL 細胞)

フルミオキサジンのラット赤血球系細胞におけるへム合成及び細胞増殖に対する影響を検討するために、ラット赤白血病(REL)細胞を赤血球に分化させ、フルミオキサジンの存在下で最長 8 日間インキュベートする試験が実施された。フルミオキサジンの添加濃度は 0.01、0.1、0.3、1.0 及び 5.0 μ mol/L とした。

処理 2 日より、 $0.1 \, \mu mol/L$ 以上の処理により用量依存性の Proto-IXの蓄積が認められ、処理 4 日に最大となった。へム合成は処理 4 日から $0.1 \, \mu mol/L$ 以上の処理により用量依存的に阻害され、処理 6 日に阻害は最大となった。細胞増殖については、 $5.0 \, \mu mol/L$ の用量においても影響は認められなかった。(参照 36、46)

(19) ヘム合成経路及び細胞増殖への影響比較試験(K562細胞)

フルミオキサジン及び胎児貧血を誘発する DHA の K562 細胞におけるへム合成及び細胞増殖に対する影響を比較するために、K562 細胞を赤血球細胞に分化させ、フルミオキサジン及び DHA の存在下で最長 8 日間インキュベートする試験が実施された。フルミオキサジンの添加濃度は $5.0~\mu$ mol/L、DHA の添加濃度は 0.125、 $0.5~\mu$ Cび $2.0~\mu$ mol/L とした。

 $5.0~\mu mol/L$ のフルミオキサジンの添加で分化 $K562~\mu m$ 胞に Proto-IX の蓄積が認められたが、細胞増殖及びへム合成に対する影響は認められなかった。 DHA はいずれの用量においても分化 $K562~\mu m$ における Proto-IX の蓄積を誘発しなかったが、 $2.0~\mu mol/L$ の用量で、細胞当たりのへム含量及び細胞増殖の低下が認められた。(参照 36、47)

(20) へム合成経路及び細胞増殖への影響比較試験 (CD36+細胞)

フルミオキサジン及び胎児貧血を誘発する DHA の臍帯血由来ヒト CD36+細胞におけるへム合成及び細胞増殖に対する影響を比較検討するために、臍帯血由来ヒト CD36+細胞を赤血球に分化させ、フルミオキサジン又は DHA の存在下で最長8日間インキュベートする試験が実施された。フルミオキサジンの添加濃

度は 5.0 μmol/L、DHA の添加濃度は 0.125、0.5 及び 2.0 μmol/L とした。

分化誘導後のヒトに対する $5.0~\mu mol/L$ のフルミオキサジン添加で分化 CD36+ 細胞に Proto-IXの蓄積が認められたが、細胞増殖及びへム合成に対する影響は認められなかった。 DHA はいずれの用量においても分化 CD36+細胞における Proto-IXの蓄積を誘発しなかったが、 $0.125~\mu mol/L$ 以上の用量で用量相関的にへム合成の低下が認められ、また、 $0.5~\mu mol/L$ 以上の用量で用量相関的に細胞増殖阻害が認められた。(参照 36、48)

(21) ヘム合成経路及び細胞増殖への影響比較試験(REL 細胞)

フルミオキサジン及び胎児貧血を誘発する DHA のラット赤白血系細胞におけるへム合成及び細胞増殖に対する影響を比較検討するために、REL 細胞を赤血球に分化させ、フルミオキサジン又は DHA の存在下で最長 8 日間インキュベートする試験が実施された。フルミオキサジンの添加濃度は $5.0~\mu$ mol/L、DHA の添加濃度は 0.125、 $0.5~\mu$ C 0.1250、 $0.5~\mu$ C 0.1250.0 0.125

 $5.0 \, \mu mol/L \,$ フルミオキサジン添加で REL 細胞に Proto-IXの蓄積及びへム合成 阻害が認められたが、細胞増殖に対する影響は認められなかった。 DHA は $0.5 \, \mu mol/L \,$ 以上の添加によりへム合成阻害及び細胞増殖阻害が認められたが、Proto-IXの蓄積は認められなかった。(参照 36、49)

(22)代謝物のヘム合成及び細胞増殖への影響試験(K562細胞)

代謝物 M5、M8 及び M16 のヒト赤血球系細胞におけるへム合成及び細胞増殖に対する影響を検討するために、K562 細胞を赤血球系細胞に分化させ、フルミオキサジン並びに代謝物 M5、M8 及び M16 の存在下で最長 8 日間インキュベートする試験が実施された。フルミオキサジン及びいずれの代謝物も添加濃度を $5.0~\mu mol/L$ とした。

フルミオキサジン処理により Proto-IXの蓄積が分化 K562 細胞に認められたが、細胞増殖及びへム合成に対する影響は認められなかった。

代謝物 M5、M8 及び M16 においては、Proto-IX蓄積、 \sim ム合成及び細胞増殖に影響は認められなかった。(参照 15、21)

(23)循環赤芽球の形態及びその構成の検討試験(ラット)

妊娠 SD ラット (12 匹) の胎齢 11~14 日の各同腹胎児血液細胞を臍帯から採取して、胎児赤芽球の形態学的分類が行われた。

胎齢 11 日では、循環赤芽球の 95%以上が好塩基球性赤芽球であり、胎齢 12 ~13 日では、主に多染性赤芽球となり、胎齢 14 日では多染性赤芽球は減少し、主な循環赤芽球は正染性赤芽球及び少数の Ret となった。

胎齢 11~14 日のラット胎児では循環赤芽球は同期して分化すると考えられ、 胎齢 12 日の循環赤芽球のほとんどが Hb 合成が活発とされる多染性赤芽球で

(24)経皮投与時と経口投与時の血中濃度比較及び経皮吸収率検討試験(ラット)

経皮投与時と経口投与時の血中濃度を比較し、また経皮吸収率を検討するため、SD ラット (一群雌 3 匹) に $[phe^{-14}C]$ フルミオキサジンを単回経口投与(原体:0、1 及び 30 mg/kg 体重、溶媒:2 つ、200 及び 200 及び 200 Mg/kg 体重、200 時間、溶媒:200 の する試験が実施された。

経口投与群及び経皮投与群の血中薬物動態学的パラメータは表 38 に示されている。経皮投与群では、投与2時間後まで血中に放射能は検出されず、また T_{max} 後も放射能濃度は緩慢に減少したため、 $T_{1/2}$ は計算されなかった。

経皮投与群では、投与開始後 48 時間で、尿、糞及びカーカス中の放射能濃度は、200 mg/kg 体重投与群でそれぞれ 0.7%TAR、3.1%TAR 及び 0.1%TAR、800 mg/kg 体重投与群でそれぞれ 1.2%TAR、6.5%TAR 及び 0.3%TAR であった。これらの値と血液中放射能濃度から、投与後 48 時間の経皮吸収率は、200 mg/kg 体重投与群で 4.0%、800 mg/kg 体重投与群で 8.3%と算出された。(参照 6~8、11、15)

投与方法	経口投与		経皮投与		
投与量(mg/kg 体重)	1	30	200	800	
T _{max} (hr)	2	2	6	24	
$C_{max}(\mu g/g)$	0.24	1.87	0.48	1.96	
T _{1/2} (hr)	17.3	23.1	_	_	

表 38 血中薬物動態学的パラメータ

(25)経皮吸収試験(妊娠ラット)

SD ラット(一群雌 3 匹)の妊娠 13 日に、 $[phe^{-14}C]$ フルミオキサジンを経皮投与(原体:100 mg/kg 体重、2 又は 6 時間、溶媒:コーン油)して経皮吸収試験が実施された。

投与開始 2、6、24 及び 48 時間後の、皮膚内(皮膚投与部位)における放射 能濃度は、それぞれ 3.4%TAR、4.1%TAR、2.0%TAR 及び 1.1%TAR であった。 尿、糞及び組織(血液、腎臓、肝臓、胎児及びカーカス)における放射能濃度は、 投与開始 2 及び 6 時間後には合計で 1%TAR 以下であったが、投与開始 48 時間 後にはそれぞれ 0.8%TAR、4.4%TAR 及び 0.6%TAR であった。これらの合計か ら、投与後 48 時間の経皮吸収率は 6.9%と算出された。(参照 7、8、11、15)

(26) 胎盤移行率検討試験 (ラット及びウサギ)

SD ラット(一群雌 4 匹)及び日本白色種ウサギ(一群雌 2 匹)の妊娠 12 日

注) -: 計算されず

に、 $[phe^{-14}C]$ フルミオキサジンを単回経口投与(原体:0及び30 mg/kg 体重、溶媒:コーン油)して胎盤移行率検討試験が実施された。また、代謝物同定・定量のために、SD ラット(一群雌 15 匹)及び日本白色種ウサギ(一群雌 7 匹)の妊娠 12 日に、 $[phe^{-14}C]$ フルミオキサジンを単回経口投与(原体:0及び 30 mg/kg 体重、溶媒:コーン油)する試験も実施された。

投与後 24 時間で、尿及び糞中にラットで 76.6% TAR(尿及び糞中にそれぞれ 21.7% TAR 及び 54.9% TAR)、ウサギで 30.2% TAR(尿及び糞中にそれぞれ 12.0% TAR 及び 18.3% TAR)排泄された。

投与 24 時間後までの母動物血漿、羊水及び胎児組織中放射能濃度は表 39 に示されている。

血漿濃度比率(胎児組織中放射能濃度/母動物血漿中放射能濃度)は、ラットでは 21%~26%、ウサギでは 9%~14%であった。

ラットにおいては、糞中ではフルミオキサジンが最も多い成分(38.4%TAR)であり、主要代謝物は M7(3.1%TAR)であった。尿中ではフルミオキサジンは 0.2%TAR であり、主要代謝物は M16(3.4%TAR)であった。そのほか尿及び糞中には、M5、M8、M10、M15 及び M17 が存在した(0.3%TAR~2.4%TAR)。

ウサギにおいては、糞中ではフルミオキサジンが最も多い成分(12.3%TAR)であり、そのほかの代謝物はいずれも 0.5%TAR 以下であった。尿中にはフルミオキサジンは検出されず、主要代謝物は M17 (2.3%TAR) であった。M17 以外、1%TAR を超える代謝物は存在しなかった。

ラットにおける臓器及び組織中の放射能濃度は、投与 2 時間後の肝臓で未変化のフルミオキサジンが $2.80~\mu g/g$ 、代謝物として M8 が投与 4 時間後に最大 $1.39~\mu g/g$ 認められた。そのほかに M5、M7、M10、M15、M16 及び M17 が認められたが、いずれも $1~\mu g/g$ 未満であった。血球、血漿及び胎児において $1~\mu g/g$ を超える代謝物は認められなかった。

ウサギにおける臓器及び組織中の放射能濃度は、未変化のフルミオキサジンが 血球及び肝臓において最大 $0.15~\mu g/g$ であり、代謝物として M5、M7、M8、M16及び M17 が認められたが、いずれも $1~\mu g/g$ 未満であった。(参照 7、8、11、15)

表 39 投与 24 時間後までの母動物血漿、羊水及び胎児組織中放射能濃度(µg/g)

動物種	ラット			ウサギ		
投与後の時間 (時間)	2	4	24	2	4	24
血漿	3.14	2.96	0.50	1.5	1.7	0.8
羊水	1.14	1.46	0.33	0.2	0.2	0.3
胎児	0.672	0.782	0.12	0.1	0.2#	0.1

#:1匹が検出限界以下のため、1匹の数値を示す。

(27) 胎盤移行率検討試験(ラット及びマウス)

SD ラット (一群雌 4 匹) の妊娠 12 日及び ICR マウス (一群雌 4 及び 15 匹) の妊娠 10 日に、 $[phe^{-14}C]$ フルミオキサジンを単回経口投与 (原体: 30 mg/kg 体重、溶媒: コーン油) して胎盤移行率検討試験が実施された。

投与後 24 時間に、尿及び糞中にラットで 79.7%TAR(尿及び糞中にそれぞれ 18.8%TAR 及び 60.9%TAR)、マウスで 95.8%TAR(尿及び糞中にそれぞれ 22.9%TAR 及び 72.9%TAR)排泄された。

母動物血漿、羊水及び胎児組織中放射能濃度の最大値は表 40 に示されている。 ラットでは投与 1~4 時間後に、マウスでは投与 1 時間後に最大値に達した。胎 児における血漿濃度比率(胎児組織中最大放射能濃度/母動物最大血漿中放射能濃 度) は、ラットでは 38%、マウスでは 19%であった。

ラット及びマウスの糞中では、未変化のフルミオキサジンが最も多い成分(ラット及びマウスでそれぞれ 40.3%TAR 及び 36.9%TAR)であったが、尿中には、ラットで 0.1%TAR 検出され、マウスでは未変化のフルミオキサジンは検出されなかった。マウス及びラットで、排泄物中の代謝物の種類に差は認められず、主要代謝物は M5 及び M8 であった。(参照 8、15、26)

動物種	ラット	マウス
血漿	2.80	9.07
羊水	1.19	4.80
胎児	1.05	1.72

表 40 母動物血漿、羊水及び胎児組織中放射能濃度の最大値 (µg/g)

<胎児奇形の発生機序のまとめ>

発生毒性発現のメカニズム検討試験として貧血との関連等が検討 [13. (12) ~ (27)] されたが、検証が不十分な点もありメカニズムの解明には至らなかった。

(28) フルミオキサジンの生理学的薬物動態モデルの開発①

妊娠ヒトの血液及び胎児におけるフルミオキサジンの濃度を予測するために、妊娠ラットに 30 mg/kg 体重の用量で経口投与後のフルミオキサジン濃度のデータ、文献から得られた生理学的パラメータ並びに SD ラット及びヒト由来ミクロゾームに[phe-14C]フルミオキサジンを 5.6、20、50 及び 100 μ mol/L の濃度となるように添加し、37°Cで 20 分間インキュベートして、フルミオキサジンの代謝試験が実施され、フルミオキサジンの代謝速度パラメータを用いた生理学的薬物動態モデルが開発された。

肝ミクロゾームを用いた代謝試験において、ラット及びヒトで同様の生成物が

認められ、 14 C-フルミオキサジンの *in vitro* での代謝に種差は認められなかった。 ラット及びヒト肝ミクロゾームによる 14 C-フルミオキサジンの代謝速度パラメータは表 41 に示されている。

 K_m 値及び V_{max} 値はラットよりヒトの方が大きかった。

表 41 ラット及びヒト肝ミクロゾームによる ¹⁴C-フルミオキサジンの代謝速度 パラメータ

代謝速度パラメータ	ラット	ヒト
K _m (mg/L)	34.8	202
V _{max} (mg/hr/kg 体重)	84.8	208

生理学的薬物動態モデルは血液、肝臓、胎盤、胎児及び体の他の部分の 5 個の コンパートメントで構成された。

妊娠ラットに 30 mg/kg 体重の用量で投与した結果、最高血中濃度は 0.09 μg/g であり、比較的低かったが、吸収率は比較的高かった (Fraction absorbed: 50%)。フルミオキサジンの分布容積は比較的低く、フルミオキサジンの低い血中濃度は肝臓の高いクリアランスによると考えられ、フルミオキサジンが体のほかの部分よりも肝臓により容易に分布すると考えられた。胎児中フルミオキサジン濃度は血中濃度とほぼ同様であると考えられた。

妊娠又は非妊娠ラットを用いた代謝試験の結果より、1、30 及び 100 mg/kg 体重で経口投与した場合の吸収率は、それぞれ 89%、50%及び 35%となり、対数近似により 1,000 mg/kg 体重の用量における吸収率を算出すると 9%であった。

1,000 mg/kg 体重における吸収率(9%)、 $in \ vitro$ 代謝試験における K_m (202 mg/L)、 V_{max} (208 mg/hr/kg 体重)及び文献で得られた生理学的パラメータを用いて妊娠ヒトの生理学的薬物動態モデルが開発された。

フルミオキサジンを 1,000 mg/kg 体重の用量で経口投与後の血中及び胎児中フルミオキサジン濃度の予測値の最高濃度は、それぞれ $0.61~\mu g/mL$ ($1.72~\mu mol/L$) 及び $0.49~\mu g/mL$ ($1.38~\mu mol/L$) と算出された結果から、妊娠ヒトの血中及び胎児中フルミオキサジンは比較的低濃度であると予測され、肝臓のクリアランスも高かった。これは、1,000~m g/kg 体重の用量において吸収率が低いことと関連すると考えられた。 (参照 15、28)

(29) フルミオキサジンの生理学的薬物動態モデルの開発②

妊娠ヒトの血液及び胎児におけるフルミオキサジンの濃度を予測するために、妊娠ラットに 30 mg/kg 体重の用量で経口投与後のフルミオキサジン濃度のデータ、文献から得られた生理学的パラメータ並びに SD ラット及びヒト由来ミクロゾームに[phe- 14 C]フルミオキサジンを 5.6、20、50 及び 100 μ mol/L の濃度となるように添加し、37°Cで 20 分間インキュベートしたフルミオキサジンの代謝試

験から、フルミオキサジンの代謝速度パラメータを用いた生理学的薬物動態モデルが開発された。

肝ミクロゾームを用いた代謝試験において、ラット及びヒトで同様の生成物が認められ、 14 C-フルミオキサジンの *in vitro* での代謝に種差は認められなかった。 ラット及びヒト肝ミクロゾームによる 14 C-フルミオキサジンの代謝速度パラメータは表 42 に示されている。

 K_m 値及び V_{max} 値はラットよりヒトの方が大きかった。

表 42 ラット及びヒト肝ミクロゾームによる ¹⁴C-フルミオキサジンの代謝速度 パラメータ

代謝速度パラメータ	ラット	ヒト
K _m (mg/L)	34.8	202
V _{max} (mg/hr/kg 体重)	84.7	208

生理学的薬物動態モデルは血液、肝臓、胎盤、胎児及び体の他の部分の 5 個の コンパートメントで構成された。

妊娠ラットに 30 mg/kg 体重の用量で投与した結果、最高血中濃度は 0.09 μg/g であり、比較的低く、吸収率は比較的高かった(Fraction absorbed: 50%)。フルミオキサジンの分布容積は比較的低く、フルミオキサジンの低い血中濃度は肝臓の高いクリアランスによると考えられ、フルミオキサジンが体の他の部分よりも肝臓により容易に分布すると考えられた。胎児中フルミオキサジン濃度は血中濃度とほぼ同様であると考えられた。

1,000 mg/kg 体重における吸収率 (12%)、 $in \ vitro$ 代謝試験における K_m (202 mg/L)、 V_{max} (208 mg/hr/kg 体重)及び文献で得られた生理学的パラメータを用いて妊娠ヒトの生理学的薬物動態モデルが開発された。

フルミオキサジンを 1,000 mg/kg 体重の用量で経口投与後の血中及び胎児中フルミオキサジン濃度の予測値の最高濃度は、それぞれ $0.86~\mu g/mL$ ($2.43~\mu mol/L$) 及び $0.68~\mu g/mL$ ($1.92~\mu mol/L$) と算出された結果から、妊娠ヒトの血中及び胎児中フルミオキサジンは比較的低濃度であると予測され、肝臓のクリアランスも高かった。これは、1,000~m g/k g 体重の用量において吸収率が低いことと関連すると考えられた。 (参照 15、29)

(30)28 日間免疫毒性試験(ラット)

SD ラット (T 細胞依存性抗体産生検査群:一群群 10 匹、血液学的検査群:一群 5 匹)を用いて混餌投与(原体:0、500、1,500 及び 4,500 ppm、平均検体摂取量は表 43 参照)による 28 日間免疫毒性試験が実施された。陽性対照(動物数不明)として、シクロフォスファミドを試験 $24\sim27$ 日に腹腔内投与(50 mg/kg体重/日)する群が設定された。

表 43 28 日間免疫毒性試験 (ラット) の平均検体摂取量

投与积	詳(ppm)	500	1,500	4,500
平均検体摂取量	T 細胞依存性抗体 産生検査群	44	127	375
(mg/kg 体重/日)	血液学的検査群	42	126	371

血液検査群の 1,500 ppm 以上で MCV 及び MCH の統計学的に有意な減少、 4,500 ppm 投与群において、Hb、Ht 及び MCHC の統計学的に有意な減少並び に Ret、網赤血球比率、WBC、Neu 及び Lym の統計学的に有意な増加が認められた。

T 細胞依存性抗体産生検査群の 4,500 ppm 投与群で脾臓の絶対及び比重量の 増加が認められた。

陽性対照群では、脾臓及び胸腺の絶対及び比重量の減少が認められ、総脾臓細胞数及びヒツジ赤血球に対する脾臓における IgM 抗体産生細胞数の減少が認められた。

本試験条件下において、免疫毒性は認められなかった。 (参照 15、24)

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて、農薬「フルミオキサジン」の食品健康影響評価を実施した。第2版の改訂に当たっては、厚生労働省から、作物残留試験(国内:実えんどう、海外:コーヒー豆)、発生毒性試験(ラット、吸入ばく露)、胎児貧血誘発性検討の成績等が新たに提出された。

14C で標識したフルミオキサジンを用いた植物体内動態試験の結果、土壌処理したフルミオキサジンの植物体への移行はごく僅かであると考えられた。植物体内でフルミオキサジンは広範に代謝され、10%TRR を超える代謝物としてだいずでM20 が認められた。

国内における作物残留試験の結果、フルミオキサジン及び代謝物 M20+M20 抱合体は、いずれも定量限界未満であった。海外における作物残留試験の結果、フルミオキサジンの最大残留値はホップの 0.04 mg/kg であった。

14C で標識したフルミオキサジンの畜産動物を用いた家畜代謝試験の結果、10%TRR を超えて検出された代謝物は M1 及び M8 であった。

 14 C で標識したフルミオキサジンを用いたラットにおける動物体内動態試験の結果、フルミオキサジンは、低用量では投与 4 時間後、高用量では投与 8 16 時間後に 16 に 16 に

各種毒性試験結果から、フルミオキサジン投与による影響は主に血液(貧血等) 及び肝臓(肝細胞肥大、重量増加等)に認められた。神経毒性、免疫毒性、発がん 性及び生体にとって問題となる遺伝毒性は認められなかった。

2世代繁殖試験において、交尾率及び出産率の低下並びに児動物の生後 4 日生存 率減少が認められた。

発生毒性試験において、ラット胎児に心室中隔欠損を含む心血管系の奇形及び肩甲骨弯曲等の骨格奇形が認められた。

これらの奇形の発生について、貧血との関連等種々のメカニズム試験が実施されたが、検証が不十分な点もあり、メカニズムの解明には至らなかった。

家畜代謝試験において代謝物 M1 及び M8 が、植物代謝試験において代謝物 M20 が 10%TRR を超えて認められたが、これらはラットにおいても検出される代謝物 であることから、農産物及び畜産物中のばく露評価対象物質をフルミオキサジン (親化合物のみ) と設定した。

各試験における無毒性量等は表 44 に、単回経口投与等により生ずる可能性のある毒性影響等は表 45 にそれぞれ示されている。

ラットを用いた 90 日間亜急性神経毒性試験の雄で無毒性量が設定できなかった

が、より低い用量でより長期に実施された 2 年間慢性毒性/発がん性併合試験において無毒性量が得られている。

食品安全委員会は、各試験で得られた無毒性量のうち最小値は、ラットを用いた 2 年間慢性毒性/発がん性併合試験の 1.8 mg/kg 体重/日であったことから、これを 根拠として安全係数 100 で除した 0.018 mg/kg 体重/日を許容一日摂取量 (ADI) と設定した。

また、フルミオキサジンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量又は最小毒性量のうち最小値は、ラットを用いた発生毒性試験(経口投与)の無毒性量の3 mg/kg 体重/目であり、認められた所見は母動物に毒性影響が認められない用量における胎児の心室中隔欠損等であったことから、妊婦又は妊娠している可能性のある女性に対する急性参照用量(ARfD)は、これを根拠として、安全係数 100 で除した 0.03 mg/kg 体重と設定した。

一般の集団に対しては、フルミオキサジンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ウサギを用いた発生毒性試験の無毒性量1,000 mg/kg 体重/日であり、カットオフ値(500 mg/kg 体重)以上であったことから、ARfD は設定する必要がないと判断した。

ADI 0.018 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 1.8 mg/kg 体重/日

(安全係数) 100

ARfD 設定の必要なし

※一般の集団

ARfD 0.03 mg/kg 体重

※妊婦又は妊娠している可能性のある女性

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間) 妊娠 $6\sim15$ 日

(投与方法) 強制経口

(無毒性量) 3 mg/kg 体重/日

(安全係数) 100

<参考>

<JMPR (2015年) >

ADI 0.02 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 1.8 mg/kg 体重/日

(安全係数) 100

ARfD 設定の必要なし

※一般の集団

ARfD 0.03 mg/kg 体重

※妊婦又は妊娠している可能性のある女性

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間)妊娠 6~15 日(投与方法)強制経口

(無毒性量) 3 mg/kg 体重/日

(安全係数) 100

<EFSA (2020年) >

ADI 0.018 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 1.8 mg/kg 体重/日

(安全係数) 100

ARfD 0.1 mg/kg 体重

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間)妊娠 6~15 日(投与方法)強制経口

(無毒性量) 10 mg/kg 体重/日

(安全係数) 100

<US EPA (2012 年) >

cRfD 0.02 mg/kg 体重/日

(cRfD 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 2 mg/kg 体重/日

(不確実係数) 100

aRfD 設定の必要なし

※一般の集団

aRfD 0.03 mg/kg 体重

※13~49歳の女性

(aRfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間)妊娠 6~15 日(投与方法)強制経口

(無毒性量) 3 mg/kg 体重/日

(不確実係数) 100

<APVMA (2002年) >

ADI 0.003 mg/kg 体重/日

(ADI 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間)妊娠 6~15 日(投与方法)強制経口

(無毒性量) 3 mg/kg 体重/日

(安全係数) 1,000

(反復投与により、より低用量で胎児 毒性が発現する可能性があることか ら、安全係数は1,000とされた)

ARfD 設定の必要なし

※一般の集団

ARfD 0.03 mg/kg 体重

※妊婦又は妊娠している可能性のある女性

(ARfD 設定根拠資料) 発生毒性試験

ラット (動物種)

(期間) 妊娠 6~15 日 (投与方法) 強制経口

(無毒性量) 3 mg/kg 体重/日

(安全係数) 100

<HC (2010年) >

ADI 0.02 mg/kg 体重/日

※一般の集団

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種) ラット (期間) 2年間 (投与方法) 混餌

(無毒性量) 1.8 mg/kg 体重/日

(不確実係数) 100

ADI 0.003 mg/kg 体重/日

※13~49歳の女性

(ADI 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間) 妊娠 6~15 日

(投与方法) 強制経口

(無毒性量) 3 mg/kg 体重/日

(不確実係数) 1,000

(種差:10、個体差:10、PCPA

係数 5:10)

※胎児への影響が認められたことに基づき、PCPA係数として10が設定された。

ARfD 設定の必要なし

※一般の集団

ARfD 0.003 mg/kg 体重

※13~49歳の女性

(ADI 設定根拠資料) 発生毒性試験

(動物種) ラット

妊娠 6~15 日

62

(期間)

⁵ Pest Control Products Act(病害虫管理製品法)による係数

(投与方法) 強制経口

(無毒性量) 3 mg/kg 体重/日

(不確実係数) 1,000

(種差:10、個体差:10、PCPA

係数 ⁵:10)

※胎児への影響が認められたことに基づき、PCPA 係数として 10 が設定された。

(参照 5~9、30、50~55)

表 44 各試験における無毒性量等

		In 1. I			毒性量(mg/kg 体重/日)1)	
動物種	試験	投与量 (mg/kg 体重/日)	EFSA	米国	豪州	食品安全委員会	参考 (農薬抄録)
ラット	90 日間 亜急性 毒性試験	0, 30, 300, 1,000, 3,000 ppm	2.2	雄:65.0 雌:72.9	雄:19 雌:22	雄:19.3 雌:2.2	雄:19.3 雌:2.2
	①	雄: 0、1.9、19.3、 65.0、196 雌: 0、2.2、22.4、 72.9、218	可逆的血液毒性(へ ム合成)、肝毒性		雌雄:貧血症状	MCHC 減少等	雄: Hb、MCV、MCH、 MCHC 減少等 雌: MCV 及び MCH 減少等
	90 日間 亜急性 毒性試験	0、30、300、1,000、 3,000 ppm		雄:69.7 雌:71.5	雄:21 雌:22	雄:21 雌:22	
	2	雄:0、2.3、21、70、 244 雌:0、2.2、22、72、 230		雌雄:MCV 減少等	雌雄:MCV 減少等	雌雄:MCV 減少等	
	2年間 慢性毒性/ 発がん性	0, 50, 500, 1,000 ppm	1.8	雄:1.8 雌:2.2	雄:1.8 雌:2.2	雄:1.8 雌:2.2	雄:1.8 雌:2.2
	併合試験	雄:0、1.8、18.0、 36.5 雌:0、2.2、21.8、	可逆的血液毒性(へ ム合成)、肝毒性	雌雄:脾髄外造血亢 進	雌雄:脾髄外造血亢 進	雌雄:脾髄外造血亢 進等	雌雄:脾髄外造血亢 進
		43.6	(発がん性は認められない)	(発がん性は認めら れない)	(発がん性は認めら れない)	(発がん性は認められない)	(発がん性は認められない)

		北上見		無	舞性量(mg/kg 体重/日)1)	
動物種	試験	投与量 (mg/kg 体重/日)	EFSA	米国	豪州	食品安全委員会	参考 (農薬抄録)
	90 日間亜	0、500、1,500、				雄:-	雄:37
	急性神経 毒性試験	4,500 ppm				雌:41	雌:41
		雄:0、37、110、				雄: MCV 及び MCH	雌雄: Hb 減少等
		323				減少	
		雌:0、41、124、 358				雌:Hb、Ht 減少等	
						(亜急性神経毒性は	(亜急性神経毒性は
						認められない)	認められない)
	2世代	雄:0、37、110、	7.5	親動物	親動物及び繁殖能	親動物	親動物及び繁殖能
	繁殖試験	323		雄:12.7	P雄:5.2~10.7	P雄:6.3	P雄:12.7
		雌:0、41、124、	(毒性域での繁殖能	雌:15.1	· ·	· · · · · · · · · · · · · · · · · · ·	P雌:15.1
		358	の障害)	児動物	F_1 雄:5.4~16.0	F1雄:7.5	F ₁ 雄:15.0
		P雄:0、3.2、6.3、		雄:6.3	F_1 雌: 6.5 ~ 16.2	F_1 雌:17.2	F_1 雌:17.2
		12.7, 18.9		雌:7.6			
		P 雌:0、3.8、7.6、					児動物
		$15.1,\ 22.7$			'	· ·	P雄:6.
		F_1 雄: $0,3.7,7.5,$			1		P雌: 7.6
		15.0, 22.4			•	•	F ₁ 雄:7.5
		F_1 雌: $0,4.3,8.5,$			F_1 雌:12.7~32.3	F1雌:8.5	F ₁ 雌:8.5
		17.2, 25.6				tota mada fila	
						繁殖能	
						P雄: 12.7	
						P雌:15.1	
						F ₁ 雄:15.0	
						F_1 雌:17.2	

			無毒性量(mg/kg 体重/日) ¹⁾				
動物種	試験	投与量 (mg/kg 体重/日)	EFSA	米国	豪州	食品安全委員会	参考 (農薬抄録)
				加抑制等	雌雄:体重増加抑制 等	雄:精巣上体絶対及 び比重量減少 雌:体重増加抑制等	び比重量減少
	発生毒性 試験	0、1、3、10、30	10	(繁殖能に対する影響は認められない) 母動物:30 胎児:3	少 母動物:30	雄:交尾率減少 雌:出産率減少 母動物:30	繁殖能 雄:交尾率減少傾向 雌:出産率減少 母動物:30 胎児:10
			況での催奇形及び胎		L	母動物:毒性所見な し 胎児:心室中隔欠損 等	L
マウス	28 日間 亜急性 毒性試験	0、1,000、3,000、 10,000 ppm 雄: 0、152、420、 1,370		雄:152 雌:165 雌雄:肝絶対及び比 重量増加	'	雄: 420 雌: 165 雌雄: 肝絶対及び比 重量増加	
		雌: 0、165、482、 1,700					

		投与量		#	毒性量(mg/kg 体重/日)1)	
動物種	試験	(mg/kg 体重/日)	EFSA	米国	豪州	食品安全委員会	参考 (農薬抄録)
	18 か月間	0、300、3,000、		雄:754	雄:31.1	雄:31.1	雄:31.1
	発がん性 試験	7,000 ppm		雌:859	雌:36.6	雌:36.6	雌:36.6
		雄:0、31.1、315、 754		雌雄:毒性所見なし	雌雄:肝細胞肥大等	雌雄:肝細胞肥大等	雌雄:肝細胞肥大等
		雌:0、36.6、346、		(発がん性は認めら	(発がん性は認めら	(発がん性は認めら	(発がん性は認めら
		859		れない)	れない)	れない)	れない)
ウサギ	発生毒性	0、300、1,000、	/	母動物:1,000	母動物:1,000	母動物:1,000	母動物:1,000
	試験	3,000		胎児:3,000	胎児:3,000	胎児:3,000	胎児:3,000
				 親動物:体重増加抑	親動物:体重増加抑	親動物:体重減少/体	親動物:体重増加抑
				制及び摂餌			
				量減少	量減少	及び摂餌量	量減少
				胎児:毒性所見なし	胎児:毒性所見なし	減少	胎児:毒性所見なし
						胎児:毒性所見なし	
				(催奇形性は認めら	(催奇形性は認めら		(催奇形性は認めら
				れない)	れない)	(催奇形性は認めら	れない)
						れない)	
イヌ	90 日間亜 急性毒性	0,10,100,1,000		雌雄: 10	雌雄: 10	雌雄: 100	雌雄: 10
	試験			 雌雄:ALP、T.Chol	雌雄:ALP、T.Chol	雌雄: ALP、T.Chol、	雌雄:ALP、T.Chol
				及び PL 増加			及び PL 増加

		投与量		無	毒性量(mg/kg 体重/日)1)	
動物種	試験	次子里 (mg/kg 体重/日)	EFSA	米国	豪州	食品安全委員会	参考 (農薬抄録)
	1年間 慢性毒性	0,10,100,1,000		雌雄:100	雌雄:10	雌雄:10	雌雄:10
	試験			雌雄:肝絶対及び比	雌雄:ALP 増加等	雌雄:ALP 増加等	雌雄:ALP 増加等
				重量増加、			
				ALP 増加			
			NOAEL: 1.8	NOAEL: 1.8	NOAEL: 3	NOAEL: 1.8	NOAEL: 1.8
	ADI(cI	RfD)	SF: 100	UF: 100	SF: 1,000	SF: 100	SF: 100
			ADI: 0.018	cRfD:0.02	ADI: 0.003	ADI: 0.018	ADI: 0.018
ラット2年間慢性毒			ラット 2 年間慢性毒		ラット 2 年間慢性毒	ラット 2 年間慢性毒	
Al	ADI(cRfD)設定根拠資料		性/発がん性併合試	性/発がん性併合試	ラット発生毒性試験	性/発がん性併合試	性/発がん性併合試
			験	験		験	験

NOAEL:無毒性量 SF:安全係数 ADI:許容一日摂取量 UF:不確実係数 cRfD:慢性参照用量

^{1):}最小毒性量で認められた毒性所見を記した。 -:無毒性量は設定できなかった。

表 45-1 単回経口投与等により生ずる可能性のある毒性影響等 (一般の集団)

		投与量	無毒性量及び急性参照用量設定に
動物種	試験	(mg/kg 体重又は	関連するエンドポイント 1)
		mg/kg 体重/日)	(mg/kg 体重又は mg/kg 体重/日)
マウス	一般薬理試験	0、1,500、5,000	雌雄:1,500
	(一般状態)		
			雌雄:自発運動減少
	一般薬理試験	雄:0、1,500、5,000	雄:1,500
	(自発運動量)		
	(日光)里)		雄:自発運動量減少
ウサギ		0、300、1,000、3,000	母動物:1,000
	発生毒性試験		
			母動物:体重減少及び摂餌量減少
			設定の必要なし
	A	RfD	(カットオフ値(500 mg/kg 体重)
			以上)

ARfD:急性参照用量

1):最小毒性量で認められた主な毒性所見を記した。

表 45-2 単回経口投与等により生ずる可能性のある毒性影響等 (妊婦又は妊娠している可能性のある女性)

		投与量	無毒性量及び急性参照用量設定に
動物種	試験	(mg/kg 体重又は	関連するエンドポイント 1)
		mg/kg 体重/日)	(mg/kg 体重又は mg/kg 体重/日)
ラット	 発生毒性試験	0、1、3、10、30	胎児:3
	(経口投与)		
	(性口汉子)		胎児:心室中隔欠損等
		0, 400	胎児:一
	発生毒性臨界		
	期検索試験		胎児:胚・胎児死亡、低体重及び心
			室中隔欠損
	 発生毒性病理	0、1,000	胎児:一
	組織検討試験		
	<u>小旦小联个央百寸 6~00次</u>		胎児:胚死亡
	発生毒性発現 発生毒性発現	0, 400	胎児:一
	メカニズム試験		
	7 7 — 7 CA (FVI)		胎児:胚・胎児死亡
	上 胎児貧血誘発	0、15、30、60	胎児:一
	性検討試験		
	1五4公月11日49人		胎児:心室中隔欠損
			NOAEL: 3
	A	RfD	SF: 100
			ARfD: 0.03
A D (D)	ARfD 設	定根拠資料	ラット発生毒性試験

ARfD:急性参照用量、NOAEL:無毒性量、SF:安全係数

1):最小毒性量で認められた主な毒性所見を記した。

-:無毒性量は設定できなかった。

<別紙1:代謝物/分解物略称>

記号	略称	化学名
Ъ/[1	400 II 4	N-[7-fluoro-3-oxo-4-(2-propynyl)-2 H -1,4-benzoxiazin-6-yl]
M1	482-HA	-3,4,5,6-tetrahydrophthalamic acid
M2	CAT 400	6-(cis-1,2-cyclohexanedicarboximido)-7-fluoro-4-(2-propynyl)
	SAT-482	-2 <i>H</i> -1,4-benzoxazin-3(4 <i>H</i>)-one
N. F. =	3-OH-S-53482	7-fluoro-6-(3-hydroxy-3,4,5,6-tetrahydrophthalimido)-4-
M5		(2-propynyl $)$ - $2H$ - 1 , 4 -benzoxazin- $3(4H)$ -one
M	9 OH C #9409 CA	7-fluoro-6-(1-sulfo-3-hydroxy-1,2-cyclohexanedicarboximido)
M7	3-OH-S-53482-SA	-4-(2-propynyl)-2 H -1,4-benzoxazin-3(4 H)-one
Mo	4 OH C #9400	7-fluoro-6-(4-hydroxy-3,4,5,6-tetrahydrophthalimido)-4-
M8	4-OH-S-53482	(2-propynyl $)$ - $2H$ - 1 , 4 -benzoxazin- $3(4H)$ -one
M9	4-OII- CAT-400	7-fluoro-6-(4-hydroxy-1,2-cyclohexanedicarboximido)
M9	4-OH- SAT-482	-4-(2-propynyl)-2 H -1,4-benzoxazin-3(4 H)-one
M10	4-OH-S-53482-SA	7-fluoro-6-(1-sulfo-4-hydroxy-1,2-cyclohexanedicarboximido)
M10		-4-(2-propynyl)-2 H -1,4-benzoxazin-3(4 H)-one
M11	482-CA	2-[7-fluoro-3-oxo-6-(3,4,5,6-tetrahydrophthalimido)
M11		-2 <i>H</i> -1,4-benzoxazin-4-yl]propionic acid
M12	IMOXA	7-fluoro-6- $(3,4,5,6$ -tetrahydrophthalimido)- $2H$ - $1,4$ -
		benzoxiazin-3(4 <i>H</i>)-one
M13	482-PHO	N-(2-propynyl)-4-[4-carboxy-3-fluoro-2-(3,4,5,6-
MIIO	402 1110	tetrahydrophthalimido)-2-butenylidene]-azetidine-2-one
M14	РНО-НА	N-(2-propynyl)-4-[4-carboxy-3-fluoro-2-(2-carboxy-1-
W114		cyclohexenecarbonylamino)-2-butenylidene]-azetidine-2-one
M15	3-OH-S-53482A-SA	5-fluoro-2-(2-propynylamino)-4-(1-sulfo-3-hydroxy-1,2-
MII	ə-Un-5-9348ZA-SA	cyclohexanedicarboximido)phenoxyacetic acid
M16	APF	6-amino-7-fluoro-4-(2-propynyl)-2 <i>H</i> -1,4-benzoxazin-
WITO		3(4 <i>H</i>)-one
M17	Ac-APFA	4-acetylamino-5-fluoro-2-(2-propynylamino)
	At Al FA	phenoxyacetic acid
M18	Δ^1 -TPA	3,4,5,6-tetrahydrophathalic anhydride
M19	THPA	3,4,5,6-tetrahydrophthalic acid
M20	1-ОН-НРА	1-hydroxy-1,2-cyclohexanedicarboxylic acid
M21	アジピン酸	adipic acid

<別紙2:検査値等略称>

略称	名称					
ACh	アセチルコリン					
A/G 比	アルブミン/グロブリン比					
ai	有効成分量					
Alb	アルブミン					
ALP	アルカリホスファターゼ					
A T 7D	アラニンアミノトランスフェラーゼ					
ALT	(=グルタミン酸ピルビン酸トランスアミナーゼ (GPT))					
APTT	活性化部分トロンボプラスチン時間					
AST	アスパラギン酸アミノトランスフェラーゼ					
ASI	(=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT))					
APVMA	オーストラリア農薬・動物用医薬品局					
AUC	薬物濃度曲線下面積					
Bil	ビリルビン					
BUN	血液尿素窒素					
ChE	コリンエステラーゼ					
C_{max}	最高濃度					
D.Bil	直接ビリルビン					
DHA	ジヒドロアルテミシニン					
DMSO	ジメチルスルホキシド					
EFSA	欧州食品安全機関					
FEP	赤血球中遊離プロトポルフィリン					
EPA	米国環境保護庁					
EPO	エリスロポエチン					
GGT	γ-グルタミルトランスフェラーゼ					
	(=γ-グルタミルトランスペプチダーゼ(γ-GTP))					
Glob	グロブリン					
Hb	ヘモグロビン量(血色素量)					
HC	カナダ保健省					
His	ヒスタミン					
Ht	ヘマトクリット値					
5-HT	セロトニン					
JMPR	FAO/WHO 合同残留農薬専門家会議					
IC50	50%活性阻害濃度					
LC_{50}	半数致死濃度					

略称	名称
LD_{50}	半数致死量
LDH	乳酸脱水素酵素
Lym	リンパ球数
MC	メチルセルロース
MCH	平均赤血球血色素量
MCHC	平均赤血球血色素濃度
MCV	平均赤血球容積
M/E 比	顆粒系細胞/赤芽球系細胞比
Neu	好中球数
PHI	最終使用から収穫までの日数
PL	リン脂質
PLT	血小板数
Proto-IX	プロトポルフィリンIX
Protox	プロトポルフィリノーゲンIXオキシダーゼ
RBC	赤血球数
Ret	網状赤血球数
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
TG	トリグリセリド
T _{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
WBC	白血球数

<別紙3:作物残留試験成績(国内)>

	試	使用量 (g ai/ha)	回 数 (回)		残留值(mg/kg)								
作物名	験			PH I (目)	フルミオキサジン			M20+M20 抱合体					
(分析部位)	ほ				公的分析機関		社内分析機関		公的分析機関		社内分析機関		
実施年度	場数				最高値	平均値	最高値	平均値	最高値	平均值	最高値	平均値	
だいず	1	50 ^{WDG}	1	130	< 0.005	< 0.005	<0.005	< 0.005			<0.005	<0.005	
(乾燥子実) 2007 年度	1		1	119	<0.005	< 0.005	<0.005	<0.005			<0.005	<0.005	
いんげん まめ	1	50WDG	1	90			<0.01	<0.01					
(乾燥子実) 2009 年度	1	90 _{MDQ}	1	99			<0.01	<0.01					
べにばな いんげん	1	50WDG	1	109	<0.01	<0.01							
(乾燥子実) 2012 年度	1	50wbG	1	113	<0.01	<0.01							
ばれいしょ	1	100 ^{WDG}	1	109	<0.01	< 0.01			<0.01	<0.01			
(塊茎) 2014 年度	1		1	88	<0.01	< 0.01			<0.01	<0.01			
実えんどう	1	50 ^{WDG}	1	174			<0.01	<0.01					
(未成熟種実) 2016 年度	1		1	179			<0.01	<0.01					
えだまめ (莢)	1	50 ^{WDG}	1	69	<0.01	<0.01	<0.01	<0.01					
2010 年度	1		1	82	<0.01	< 0.01	<0.01	<0.01					
		- 120 ^{WDG}			1*	<0.01	<0.01	<0.01	<0.01				
みかん	1		3	7* 14*	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01					
(果肉)				1*	<0.01	<0.01	<0.01	<0.01					
1997 年度	1			8*	< 0.01	< 0.01	< 0.01	< 0.01					
				14*	< 0.01	<0.01	<0.01	<0.01					
	1			1*	< 0.02	< 0.02	<0.01	< 0.01					
みかん				7*	<0.02	<0.02	<0.01	<0.01					
(果皮)		$120^{ m WDG}$		14*	<0.02	<0.02	<0.01	<0.01	/	/	/		
1997 年度	1			1* 8*	<0.02 <0.02	<0.02 <0.02	<0.01 <0.01	<0.01 <0.01					
	1			14*	<0.02	<0.02	<0.01	<0.01					

	試				残留值(mg/kg)							
作物名	験ほ	使用量	回 数 (回)	PH I (日)	フルミオキサジン				M20+M20 抱合体			
(分析部位)		(g ai/ha)			公的分析機関		社内分析機関		公的分析機関		社内分析機関	
実施年度	場数	(в ална)			最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値
	1		3	1*	< 0.01	< 0.01	< 0.01	< 0.01				
.h				7*	< 0.01	< 0.01	< 0.01	< 0.01				
なつみかん				15*	< 0.01	< 0.01	< 0.01	< 0.01				
(果実)		120^{WDG}		1*	< 0.01	< 0.01	< 0.01	< 0.01				
1997 年度	1			8*	< 0.01	< 0.01	< 0.01	< 0.01				
				15*	< 0.01	< 0.01	< 0.01	< 0.01				
			3	1*			< 0.01	< 0.01				
4-4-	1			7*			< 0.01	< 0.01				
ゆず		100WDC		15*			< 0.01	< 0.01				
(果実)		120 ^{WDG}		1*			< 0.01	< 0.01] /
1997 年度	1			7*			< 0.01	< 0.01				
				14*			< 0.01	< 0.01				
				1*	< 0.01	< 0.01	< 0.01	< 0.01				
h 1 =	1	120 ^{WDG}	3	7*	< 0.01	< 0.01	< 0.01	< 0.01				
りんご (甲字)				14*	< 0.01	< 0.01	< 0.01	< 0.01				
(果実) 1007 年度				1*	< 0.01	< 0.01	< 0.01	< 0.01				
1997 年度	1			8*	<0.01	< 0.01	< 0.01	< 0.01				
				15*	< 0.01	< 0.01	< 0.01	< 0.01				
				1*	< 0.01	< 0.01	< 0.01	< 0.01				
なし	1	120 ^{WDG}	3	7* 14*	< 0.01	< 0.01	< 0.01	< 0.01				
					< 0.01	< 0.01	< 0.01	<0.01				
(果実) 2000 年度				1*	< 0.01	< 0.01	< 0.01	< 0.01				
2000 平度				7*	< 0.01	< 0.01	< 0.01	< 0.01				
				13*	< 0.01	< 0.01	< 0.01	< 0.01				
				1*	< 0.01	< 0.01	< 0.01	< 0.01				
ぶどう	1			7*	< 0.01	< 0.01	< 0.01	< 0.01				
(果実)		$120^{ m WDG}$	3	14*	< 0.01	< 0.01	< 0.01	< 0.01		/		<u>/</u>
2000 年度			3	1*	< 0.01	< 0.01	< 0.01	< 0.01				
2000 十次	1			7*	< 0.01	< 0.01	< 0.01	< 0.01				
WDC . F				14*	< 0.01	< 0.01	< 0.01	< 0.01				

WDG: 顆粒水和剤

- ・全てのデータが定量限界未満の場合は定量限界値に<を付して記載した。 ・農薬の使用時期 (PHI) が、申請又は登録された使用方法から逸脱している場合は、PHI に*を付 した。

<別紙4:作物残留試験成績(海外)>

作物名					残留値(mg/kg)		
(分析部位)	************************************	使用量	回数	PHI			
実施年	試験ほ場数	(g ai/ha)	(回)	(日)	最高値	平均值	
実施国名							
ホップ	1	827^{WDG}	1	30	0.04	0.032	
(乾花) 2005 年	1	$817^{ m WDG}$	1	30	< 0.02	< 0.02	
米国	1	$906^{ m WDG}$	1	30	< 0.02	< 0.02	
	1	$25^{ m WP}$	1	7	< 0.05	< 0.05	
コーヒー豆	1	$50^{ m WP}$	1	7	< 0.05	< 0.05	
(豆) 2002年、2009年	1	$25^{ m WP}$	1	7	< 0.05	< 0.05	
2002年、2009年 ブラジル	1	$50^{ m WP}$	1	7	< 0.05	< 0.05	
	1	$120^{ m SC}$	1	7	ND	ND	

WDG: 顆粒水和剤、WP:水和剤、SC: フロアブル

ND:検出されず

[・]全てのデータが定量限界未満の場合は定量限界値に<を付して記載した。

<参照>

- 1 食品健康影響評価について(平成 15 年 7 月 1 日付け厚生労働省発第 0701012 号)
- 2 委員会の意見の聴取要請に関する案件(農薬の食品中の残留基準を設定又は改 正することに関する案件)
- 3 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 17 年 11 月 29 日付け平成 17 年厚生労働省告示第 499 号)
- 4 農薬抄録 フルミオキサジン(除草剤)(平成 19 年 4 月 23 日改訂): 住友化 学株式会社、未公表
- 5 US EPA①: Flumioxazin.Human Health Risk Assessment for the Proposed Food Use of the Herbicide Flumioxazin on Pome Fuit, Stone Fruit, and Strawberries (and for a Proposed Section 18 Exemption for Use on Alfalfa in Arizona). (2006)
- 6 US EPA②: Federal Register/Vol. 69, No. 62,16823~16832 (2004)
- 7 APVMA①: Evaluation of the new active FLUMIOXAZIN in the product Pledge 500 WG Herbicide (2003)
- 8 APVMA②: FLUMIOXAZIN (2002)
- 9 APVMA③: RESIDUES EVALUATION REPORT 'Flumioxazin' (2007)
- 10 食品健康影響評価について (平成 20 年 6 月 17 日付け厚生労働省食安第 0617002 号)
- 11 農薬抄録 フルミオキサジン(除草剤)(平成 23 年 7 月 8 日改訂): 住友化 学株式会社、未公表
- 12 フルミオキサジンの作物残留試験成績(えだまめ): 住友化学株式会社、2010 年、未公表
- 13 食品健康影響評価について (平成 23 年 11 月 15 日付け厚生労働省発食安 1115 第 6 号)
- 14 フルミオキサジン植物代謝試験(だいず): 住友化学株式会社、1993 年、未公 表
- 15 農薬抄録 フルミオキサジン(除草剤)(平成 25 年 6 月 25 日改訂): 住友化 学株式会社、一部公表
- 16 フルミオキサジン原体のラットを用いた急性神経毒性試験(GLP対応): Will Research Laboratories, Ltd、2011 年、未公表
- 17 フルミオキサジン原体を用いた 90 日間反復経口投与神経毒性試験 (GLP 対応): Will Research Laboratories, Ltd.、2011 年、未公表
- 18 フルミオキサジンのカニクイザルにおける 4 週間反復経口投与毒性試験: (株) 新日本科学、2010 年、未公表
- 19 フルミオキサジン原体及びその主要代謝物(3-OH-S-53482、4-OH-S-53482、APF)のラット肝臓ミトコンドリアにおけるプロトポルフィリノーゲンオキシダーゼ活性阻害:住友化学株式会社、2011年、未公表
- 20 フルミオキサジン原体の K562 細胞におけるへム合成経路および細胞増殖に及ぼす影響:住友化学株式会社、2012 年、未公表
- 21 フルミオキサジン代謝物 (3-OH-S-53482、4-OH-S-53482、APF) の K-562

- 細胞におけるへム合成経路および細胞増殖に及ぼす影響:住友化学株式会社、 2012年、未公表
- 22 卵黄嚢造血ラット胎児における循環赤芽球の形態およびその構成の経時変化: 住友化学株式会社、2011 年、未公表
- 23 フルミオキサジンンのチャイニーズハムスター細胞(V79)を用いた遺伝子突然変異試験(GLP 対応): Harlan Cytotest Cell Research GmbH、2011 年、未公表
- 24 フルミオキサジン原体のラットを用いた 28 日間反復経口投与免疫毒性試験(GLP 対応): Will Research Laboratories, Ltd、2011 年、未公表
- 25 フルミオキサジンの雌ラットにおける胆汁排泄試験:住友化学株式会社、2012 年、未公表
- 26 フルミオキサジンのラット及びマウスにおける胎盤移行性(GLP 対応): 住友 化学株式会社、1992 年、未公表
- 27 妊娠ラット及び妊娠ウサギに 14 C-フルミオキサジンを反復経口投与した際の薬物動態試験: (株) ネモト・サイエンス、2009 年、未公表
- 28 フルミオキサジンのラット及びヒトにおける生理学的薬物動態 (PBPK) モデルの開発:住友化学株式会社、2012年、未公表
- 29 フルミオキサジンのラット及びヒトにおける生理学的薬物動態 (PBPK) モデルの開発:住友化学株式会社、2012年、未公表
- 30 US EPA③: Flumioxazin. Human Health Risk Assessment for The Proposed Uses on Wheat, Safflower, Flax, Lentils, and Field Peas.(2012)
- 31 EFSA ①: Flumioxazine: Commision Working Document-Does Not Necessarily Represent The Views of The CommissionServices.(2002)
- 32 フルミオキサジンの作物残留試験成績(ホップ): 住友化学株式会社、2005 年、未公表
- 33 食品健康影響評価の結果の通知について (平成 26 年 5 月 20 日付け府食第 391 号)
- 34 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 27 年 12 月 22 日付け厚生労働省告示第 477 号)
- 35 食品健康影響評価について (令和 4 年 5 月 25 日付け厚生労働省発生食 0525 第 3 号)
- 36 農薬抄録 フルミオキサジン(除草剤)(平成30年9月13日改訂): 住友化 学株式会社、一部公表
- 37 インポートトレランス申請資料 フルミオキサジン (令和 4 年 2 月 15 日) : 住友化学株式会社、未公表
- 38 フルミオキサジンの作物残留試験成績(実えんどう): (株) 化学分析コンサルタント、2017年、未公表
- 39 Determination of Sumisoya Residues in Coffee、Trial 1: Pesticides Residues Laboratory(ブラジル)、2002 年、未公表
- 40 Determination of Sumisoya Residues in Coffee、Trial 2: Pesticides Residues Laboratory(ブラジル)、2002 年、未公表

- 41 Study Report on Field and Laboratory Residue of Herbicide Flumyzin 500 SC (Flumioxazin) with Addition of the Iharol Adjuvant in Coffee Crop (*Coffea Arabica* L.): JM BioAnalises S/S Ltda (ブラジル) 、2009 年、未公表
- 42 A 6-Hour Nose-Only Inhalation Prenatal Developmental Toxicity Study of Flumioxazin in Rats (GLP 対応): Charles River Laboratories、Ashland, LLC (米国)、2017年、未公表
- 43 Inhibition of Protoporphyrinogen Oxidase Activity by Flumioxazin and Its Major Metabolites, 3-OH Flumioxazin, 4-OH Flumioxazin and APF in Human Liver Mitochondria: Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.、2014年、未公表
- 44 Additional study to evaluate the potential of flumioxazin to cause foetal anaemia at developmentally toxic dose in rats: Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.、2015年、未公表
- 45 Effects of flumioxazin on heme synthetic pathway and cell proliferation in human CD36+ cells: Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.、2013 年、未公表
- 46 Effects of flumioxazin on heme synthetic pathway and cell proliferation in rat erythroleukemia cells: Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.、2013年、未公表
- 47 Comparative effects of flumioxazin and dihydroartemisinin on the heme synthetic pathway and cell proliferation in K562 cells: Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.、2015年、未公表
- 48 Comparative effects of flumioxazin and dihydroartemisinin on the heme synthetic pathway and cell proliferation in human CD36+ cells: Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.、2015年、未公表
- 49 Comparative effects of flumioxazin and dihydroartemisinin on the heme synthetic pathway and cell proliferation in rat erythroleukemia cells: Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd.、2015年、未公表
- 50 JMPR①: "Flumioxazin", Pesticide residues in food 2015 report.p.183-208 (2015)
- 51 JMPR② : "Flumioxazin" , Pesticide residues in food 2015 Evaluation Part II -Toxicological. p.321-388 (2015)
- 52 EFSA②: Updated peer review of the pesticide risk assessment of the active substance flumioxazin, EFSA Journal, 18(9)6246 (2020)
- 53 APVMA(4): Acceptable Daily Intakes (ADI) for agricultural and veterinary

- chemicals used in food producing crops or animals: Flumioxazin, p.47(2022)
- 54 APVMA⑤: Acute Reference Doses (ARfD) for agricultural and veterinary chemicals used in food producing crops or animals: Flumioxazin, p.22(2022)
- 55 HC: Evaluation Report ERC2010-05 "Flumioxazin" (2010)

フルミオキサジンに係る食品健康影響評価に関する審議結果(案)についての 意見・情報の募集結果について

- 1. 実施期間 令和4年8月10日~令和4年9月8日
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 3 通
- 4. 頂いた意見・情報及びそれに対する食品安全委員会の回答

頂いた意見・情報※

【意見1】

承認農薬成分数約600種、添加物約830種、 遺伝子組換食品系 400 種、遺伝子組換飼料 100 種、抗生物質、ホルモン剤、ゲノム編 集成分など、全部合わせれば驚くべき数字。 にも関わらず、審査の段階では単品の成分 で影響を確認するにとどまっている。複合 効果を検証しろと意見を出しても「複数の 化合物への暴露については、現段階では国 際的にも、評価手法として確立したものは なく、検討段階にある・・・。FAO/WHO では、・・・複数の化合物への暴露に対す るリスク評価手法について検討することと されていることから、引き続き、最新の情 報収集に努めてまいります。」という「先 送り」状態。「確立されていないからこそ、 確立されるまで一律禁止」にすべきではな いか?

一律禁止ができないなら、既存の基準値も すべて安全係数を 1,000 に設定して基準を 厳しくすべき。

また、審議の際に使った資料は55あるが、 その多く(31)が関係者の提出したもの でしかも非公表。これで公正な審議ができ るわけがない。申請者は何度でも自分の好 都合の結果が出るように試験等を繰り返す んでしょうね。第三者が実施したもののみ、 審議に使うように願います。

食品安全委員会の回答

【回答1】

①について

・食品安全委員会では、国民の健康の保護 が最も重要であるという基本的認識の 下、科学的知見に基づき客観的かつ中立 公正に、食品を介した農薬の摂取による 人の健康への影響について評価を行って

複数の化合物へのばく露については、現 段階では、JMPR (FAO/WHO 合同残留 農薬専門家会議)や JECFA (FAO/WHO 合同食品添加物専門家会議)において、 複数の化合物へのばく露に対するリスク 評価手法について検討することとされて いることから、引き続き、最新の情報収 集に努めてまいります。

②について

・参照資料は、「食品安全委員会の公開に ついて」(平成15年7月1日食品安全委 員会決定) に基づき、原則として公開す ることとしていますが、公開することに より、個人の秘密、企業の知的財産等が 開示され特定のものに不当な利益若しく は不利益をもたらすおそれがある資料に ついては、非公開としております。資料 のうち、試験の概要を記載した農薬抄録

等については、「農薬の食品健康影響評価に関する事項の調査審議における留意点について」(令和2年5月20日農薬第一専門調査会決定)に基づき、専門調査会での審議終了後に、申請者の知的財産に係る内容がマスキングされた閲覧用資料を事務局において公開しています。

・評価に用いる資料に関しては、「残留農薬に関する食品健康影響評価指針」(令和元年10月1日食品安全委員会決定)に基づき、評価に必要な資料を要請者がその責任において提出すること、資料の内容の信頼性を要請者が確保することを求めています。更に、信頼性確保に関しては、ガイドライン等で規定された試験方法によって実施された試験成績、適正に運営管理されていると認められる GLP

(Good Laboratory Practice) に対応した 試験施設等において実施された試験成績 及び国際機関における評価書等の科学的 に信頼できる資料を提出するよう求めて います。

また、食品安全委員会においては、個別の試験結果について、上記のほか、試験 条件、試験結果等データの科学的な信頼 性を確認しながら評価を行っています。

・農薬の登録及び残留基準に関するご意見 は、リスク管理に関するものと考えられ ることから、農林水産省及び厚生労働省 に情報提供いたします。

同趣旨他1件

【意見2】

フルミオキサジンの安全性が不確定、第三者の検査結果も必要です。また農薬の基準を緩めることに反対です。

【回答 2 】

- ・食品安全委員会では、国民の健康の保護 が最も重要であるという基本的認識の 下、科学的知見に基づき客観的かつ中立 公正に、食品を介した農薬の摂取による 人の健康への影響について評価を行って います。
- ・評価に用いる資料に関しては、「残留農薬に関する食品健康影響評価指針」(令和元年10月1日食品安全委員会決定)に基づき、評価に必要な資料を要請者がその責任において提出すること、資料の内容の信頼性を要請者が確保することを求めています。更に、信頼性確保に関しては、ガイドライン等で規定された試験方法によって実施された試験成績、適正に運営管理されていると認められるGLP (Good

Laboratory Practice)に対応した試験施
設等において実施された試験成績及び国
際機関における評価書等の科学的に信頼
できる資料を提出するよう求めていま
す。
・農薬の残留基準に関するご意見は、リス
ク管理に関するよのと考えられることか

ら、厚生労働省に情報提供いたします。

[※]頂いたものをそのまま掲載しています。