Food **S**afety **C**ommission of Japan

This is provisional English translation of an excerpt from the original full report.

Risk Assessment Report

Azoxystrobin (6th edition)

(Pesticides and additives)

Food Safety Commission of Japan (FSCJ) March 2020

ABSTRACT

FSCJ conducted the risk assessment of a strobilurin fungicide, azoxystrobin (CAS No. 131860-33-8), using results from various studies. A current application is a new use as post-harvest to potato. In the current assessment, the results of fate in animals (chicken), residue in livestock products (chicken) and 21-day subacute percutaneous toxicity (rats) were newly available.

The data used in the assessment include fate in animals (rats and goats), fate in plants (paddy rice and grapes), residues in plants, subacute toxicity (rats and dogs), chronic toxicity (dogs), combined chronic toxicity/carcinogenicity (rats), carcinogenicity (mice), two-generation reproduction toxicity (rats), developmental toxicity (rats and rabbits), and genotoxicity.

Major adverse effects of azoxystrobin observed are suppressed body weight, anemia, common bile-duct dilatation and hyperplasia of bile duct epithelial cells. Azoxystrobin showed no neurotoxicity, carcinogenicity, effects on reproduction activity, teratogenicity and genotoxicity relevant to human health.

From the above results, FSCJ identified that the relevant substance for the residue definition for dietary risk assessment in agricultural products, livestock products and fishery products to be azoxystrobin (parent compound only).

The lowest value of the no-observed-adverse-effect level (NOAEL) in all tests was 18.2 mg/kg bw/day in combined two-year chronic toxicity/carcinogenicity study in rats. FSCJ specified an acceptable daily intake (ADI) of 0.18 mg/kg bw/day by applying a safety factor of 100 to the NOAEL.¹ The lowest NOAEL for potential adverse effects of a single oral administration of azoxystrobin was 150 mg/kg bw/day obtained in developmental toxicity studies in rabbits. FSCJ specified an acute reference dose (ARfD) to be 1.5 mg/kg bw by applying a safety factor of 100 to the NOAEL.

¹ This ADI was the same as the ADI reported in the 5th edition (2013).

Species	Study	Dose (mg/kg bw/day)	NOAEL (mg/kg bw/day)	LOAEL (mg/kg bw/day)	Critical endpoints ¹⁾
	90-day subacute toxicity study	0, 200, 2 000, 4 000 ²⁾ ppm M: 0, 20.4, 211, 444 F: 0, 22.4, 223, 449	M: 20.4 F: 22.4	M: 211 F: 223	M/F: Suppressed body weight
	90-day subacute neurotoxicity study	0, 100, 500, 2 000 ppm M: 0, 8.0, 38.5, 161 F: 0, 9.1, 47.9, 202	M: 38.5 F: 47.9	M: 161 F: 202	M/F: Suppressed body weight (No neurotoxicity)
Rat	Combined two-year chronic toxicity/carcinogenicity	0, 60, 300, 750/1 500 ³⁾ ppm M: 0, 3.6, 18.2, 82.4	M: 18.2 F: 22.3	M: 82.4 F: 117	M/F: Suppressed body weight (No carcinogenicity)
	study	F: 0, 4.5, 22.3, 117 0, 60, 300, 1 500 ppm	Parent:	Parent:	Parent: Suppressed body
	Two-generation reproductive activity study	PM: 0, 6.5, 33.0, 162 PF: 0, 6.9, 34.4, 171 F ₁ M: 0, 6.3, 31.7, 168 F ₁ F: 0, 6.7, 33.2, 179	PM: 33.0 PF: 34.4 F ₁ M: 31.7 F ₁ F: 33.2 Offspring: PM: 33.0 PF: 34.4 F ₁ M: 31.7 F ₁ F: 33.2	PM: 162 PF: 171 F_1M : 168 F_1F : 179 Offspring: PM: 162 PF: 171 F_1M : 168 F_1F : 179	weight Offspring: Low body weight (No effect on reproductive activity)
	Developmental toxicity study	0, 25, 100, 300	Dams: 25 Fetuses: 25	Dams: 100 Fetuses: 100	Dams: Diarrhea Fetuses: Incontinence of urine, increase in delayed ossification (No teratogenicity)
Mouse	Two-year carcinogenicity study	0, 50, 300, 2 000 ppm M: 0, 6.2, 37.5, 272 F: 0, 8.5, 51.3, 363	M: 37.5 F: 51.3	M: 272 F: 363	M/F: Suppressed body weight (No carcinogenicity)

Table 1. Levels relevant to toxicological evaluation of azoxystrobin

Species	Study	Dose (mg/kg bw/day)	NOAEL (mg/kg bw/day)	LOAEL (mg/kg bw/day)	Critical endpoints ¹⁾	
Rabbit	Developmental toxicity study (the 1 st study)	0, 50, 150, 500	Dams: - Fetuses:500	Dams: 50 Fetuses: -	Dams: Decrease in body weight Fetuses: No toxicity (No teratogenicity)	
	Developmental toxicity study (the 2 nd study) (Maternal toxicity)	0, 25, 40, 150	Dams: 25	Dams: 40	Dams: Low body weight, decreased feed consumption	
	90-day subacute toxicity study	0, 10, 50, 250	M: 10 F: 10	M: 50 F: 50	M: Hygrostomia, spitting and vomiting F: Suppressed body weight	
Dog		M: 0, 28.2, 144, 288 F: 0, 30.0, 147, 326				
	One-year chronic toxicity study	0, 3, 25, 200	M: 25 F: 25	M: 200 F: 200	M/F: Increased T. Chol. and TG	
	ADI			NOAEL: 18.2 mg/kg bw/day SF: 100 ADI: 0.18 mg/kg bw/day		
	The critical study for setting ADI			Combined two-year chronic toxicity/carcinogenicity study in rats		

ADI: Acceptable daily Intake, NOAEL: No-observed-adverse-effect level, SF: Safety factor

-: NOAEL or LOAEL could not be specified

¹ The adverse effect observed at LOAEL

² Although the maximum dose at the beginning was 6 000 ppm, the dose was changed to 4 000 ppm from the third week since the animal growth was disrupted after two weeks.

³ Although the maximum dose at the beginning was 1 5000 ppm, it was changed to 750 ppm from the 53rd week since incident of death increased and started spitting at 39th week after the beginning of treatment.

		Dose	Endpoints relevant to setting NOAEL and
Species	Study	(mg/kg bw/day)	ARfD
			(mg/kg bw or mg/kg bw/day) 1
_		M/F: 0, 200, 600,	M: 600
		2 000	
Rat	Acute neurotoxicity study		M: Suppressed body weight
Rabbit	Developmental toxicity study (the 1 st study)	Dams: 0, 50, 150,	Dams: 150
		500	Dams: Decreased body weight, decreased feed consumption
			NOAEL: 150
	ARfD		SF: 100
			ARfD: 1.5
			Developmental toxicity study in rabbits (the 1 st
	The critical study for sett	ing ADI	study)

 Table 2. Potential adverse effects of a single oral administration of Azoxystrobin

ARfD, Acute reference dose; NOAEL, No-observed-adverse-effect level; SF: Safety factor ¹The adverse effect observed at LOAEL