

This is provisional English translation of an excerpt from the original full report.

Risk Assessment Report

Cyflufenamid (3rd Edition)

(Pesticides)

Food Safety Commission of Japan (FSCJ) January 2020

ABSTRACT

FSCJ conducted the risk assessment of an insecticide having Amidoxime skeleton, cyflufenamid (CAS No. 18409-60-3), based on various documents. Documents submitted newly in this 3rd version of assessment include data of residue in crops (hop) and of acute neurotoxicity study in rats. The current assessment was conducted focusing on newly submitted data and specifying acute reference dose (ARfD).

The data used in the assessment include fate in animals (rats and dogs), fate in plants (cucumber, apple and wheat), residues in crops, acute toxicity (rats), acute neurotoxicity (rats), subacute toxicity (rats, mice and dogs), chronic toxicity (dogs), combined chronic toxicity/carcinogenicity (rats), carcinogenicity (mice), two-generation reproductive activity (rats), developmental toxicity (rats and rabbits), genotoxicity, and mechanisms of various toxicities observed in rats, mice or dogs.

Major adverse effects of cyflufenamid observed are centrilobular hypertrophy of hepatocytes in the liver, vacuolation of renal tubular in the kidney, myocarditis, follicular cell hypertrophy of the thyroid (rats), testicular interstitial cell hyperplasia, and cerebral vacuolation. Cyflufenamid showed no neurotoxicity, effects on reproductive activity and genotoxicity.

In carcinogenicity studies, incidence of follicular adenomas in the thyroid and incidence of hepatocellular adenomas increased in male rats and in male mice, respectively. However, a genotoxic mechanism was unlikely to be involved in tumor induction, and FSCJ considered it possible to establish a threshold dose in the assessment.

In developmental toxicity studies in rabbits, incidence of external-, internal- and skeletal anomaly increased in the fetuses. In developmental toxicity studies in rats, no teratogenicity was observed. From the above results, cyflufenamid (parent compound only) was identified as the relevant substance for the residue definition for dietary risk assessment in agricultural products.

The lowest value of the no-observed-adverse-effect level (NOAEL) in all tests was 4.14 mg/kg bw/day in a one-year chronic toxicity study in dogs, and 4.4 mg/kg bw/day in a combined two-year chronic toxicity/carcinogenicity study in rats. FSCJ specified an acceptable daily intake (ADI) of 0.041 mg/kg bw/day by applying a safety factor of 100 to the NOAEL of 4.14 mg/kg bw/day. This ADI was the same as the previous ADI.

Since the absence of any toxicological effects that would be likely to be elicited by a single dose of cyflufenamid was observed, FSCJ considered it was unnecessary to specify the ARfD.

 Table 1. Levels relevant to toxicological evaluation of cyflufenamide

	Study	Dose	NOAEL (mg/kg bw/day) and critical endpoints ¹		
Species		(mg/kg bw/day)	FSCJ	Reference (Summary reports)	
Rat		0, 50, 300, 1 800, 10 800 ppm	M: 20.1 F: 24.7	M: 20.1 F: 24.7	
	90-day subacute toxicity study	M: 0, 3.3, 20.1, 117, 673 F: 0, 4.1, 24.7, 144, 783	M/F: Increase in absolute and relative weight of the thymus, centrilobular hypertrophy of hepatocytes in the liver	M/F: Increase in absolute and relative weight of the thymus, centrilobular hypertrophy of hepatocytes in the liver	
		0, 200, 1 000, 5 000 ppm M: 0, 18, 88, 453	M: 88 F: 98	M: 88 F: 98	
	90-day subacute neurotoxicity study	F: 0, 21, 98, 572	M: Suppressed body weight F: Suppressed body weight, decrease in dietary efficiency (No subacute neurotoxicity)	M: Suppressed body weight F: Suppressed body weight, decrease in dietary efficiency (No neurotoxicity)	
	Combined two-year chronic toxicity/carcinogenicity study	0, 100, 500, 2 000 (F), 5 000 (M) ppm M: 0, 4.4, 22, 229 F: 0, 5.5, 28, 115	M: 4.4 F: 5.5 M: Pigmentation and hyaline droplet in renal tubular cells of the kidney cortex F: Increased relative weight of thyroid/parathyroid, centrilobular hypertrophy of hepatocytes in the liver (Increased incidence of thyroid follicular cell adenomas in male)	M: 4.4 F: 5.5 M: Pigmentation and hyaline droplet in renal tubular cells of the kidney cortex F: Increased relative weight of thyroid/parathyroid, centrilobular hypertrophy of hepatocytes in the liver (Increased incidence of thyroid follicular cell adenomas in male)	
	Two-generation reproductive activity study	0, 80, 250, 800 ppm	Parent and offspring PM: 18.0 PF: 19.9	Parent and offspring PM: 18.0 PF: 19.9	

¹ Major adverse effect observed at LOAEL

	Study	Dose	NOAEL (mg/kg bw/day) and critical endpoints ¹		
Species		Dose (mg/kg bw/day)	FSCJ	Reference	
		(mg/kg bw/day)	FaCi	(Summary reports)	
		PM: 0, 5.8, 18.0,	F ₁ M: 23.0	F ₁ M: 23.0	
		57.4	F ₁ F: 24.1	F ₁ F: 24.1	
		PF: 0, 6.5, 19.9, 66.2	Parent: Increased	Parent: Increased relative	
		F ₁ M: 0, 7.4, 23.0,	relative weight of the	weight of the thyroid.	
		75.2	thyroid.	Offspring: Suppressed body	
		F ₁ F: 0, 7.8, 24.1,	Offspring: Suppressed	weight	
		78.2	body weight		
				(No effect on reproductive	
			(No effect on	activity)	
			reproductive activity)		
		0, 100, 300, 1 000	Dams: 100	Dams: 100	
			Fetuses: 1 000	Fetuses: 1 000	
			Dams: Salivation,	Dams: Salivation, increased	
	Developmental toxicity		increased absolute- and	absolute- and relative-weight	
	study		relative-weight of the	of the liver	
			liver	Fetuses: No toxicity	
			Fetuses: No toxicity		
				(No teratogenicity)	
		0 100 100 1 500	(No teratogenicity)	7. 20 2	
	90-day subacute toxicity study	0, 100, 400, 1 600,	M: 50.7	M: 50.7	
		7 000 ppm M: 0, 14.0, 50.7,	F: 70.8	F: 70.8	
		218, 808	M/F: Increased	M/F: Increased absolute- and	
		F: 0, 17.6, 70.8,	absolute- and relative-	relative-weight of the liver,	
		295, 940	weight of the liver,	centrilobular hypertrophy of	
			centrilobular	hepatocytes in the liver	
			hypertrophy of		
			hepatocytes in the liver		
		0, 60, 50, 4 000/2	M: 62.8	M: 62.8	
Mouse	19 month	000 ppm	F: 9.0	F: 9.0	
		M: 0, 7.1, 62.8,			
		325	M: Diffuse fat	M: Diffuse fat deposition in	
		F: 0, 9.0, 75.5, 404	deposition in the liver	the liver	
	18-month		F: Increase in absolute- and relative- weight of	F: Increase in absolute- and	
	carcinogenicity study		the liver.	relative- weight of the liver.	
			the fiver.	(Increased incidence of	
			(Increased incidence of	hepatocellular adenomas in	
			hepatocellular adenomas	male)	
			in male)	, , , , , , , , , , , , , , , , , , ,	

		Dasa	NOAEL (mg/kg bw/day) and critical endpoints ¹				
Species	Study	Dose (mg/kg bw/day)	FSCJ	Reference			
		(mg/kg ow/day)	raci	(Summary reports)			
		0, 10, 60, 300	Dams: -	Dams: -			
			Fetuses: 10	Fetuses: 10			
			Dams: Suppressed body	Dams: Suppressed body			
	Developmental toxicity study (the 1 st study)		weight, decreased feed	weight, decreased feed intake			
			intake	Fetuses: Incomplete callus of			
			Fetuses: Incomplete	epiphysis, metacarpal bone			
Rabbit			callus of epiphysis,	and phalangeal			
Kabbit			metacarpal bone and phalangeal				
		0, 5, 10	Dams: 10	Dams: 10			
		0, 3, 10	Fetuses: 10	Fetuses: 10			
			1 ctuses. 10	Tetases. 10			
	Developmental toxicity study (the 2 nd study)		Dams and fetuses: No	No toxicity			
			toxicity				
				(No teratogenicity)			
			(No teratogenicity)				
	90-day subacute toxicity study	0, 150, 500, 1 500	M: 6.5	M: 6.5			
		ppm	F: 7.5	F: 7.5			
		M: 0, 6.5, 23.2,					
		76.2	M/F: Hepatocellular	M/F: Hepatocellular			
		F: 0, 7.5, 24.4,	vacuolation and	vacuolation and hypertrophy			
Dog		70.5	hypertrophy				
Dog		0, 30, 120, 480	M: 4.14	M: 4.14			
		ppm	F: 4.41	F: 4.41			
	One-year chronic toxicity study	M: 0, 1.04, 4.14,	M/C I 1 AID	MELLIAID			
		17.3	M/F: Increased ALP	M/F: Increased ALP			
		F: 0, 1.08, 4.41,					
		17.3	NO AFY 414	NOAFY 414			
			NOAEL: 4.14	NOAEL: 4.14			
ADI			SF: 100	SF: 100			
			ADI: 0.041	ADI: 0.041			
			One-year chronic toxicity study in dogs	One-year chronic toxicity			
			Combined two-year	study in dogs			
	The critical study for sett	ting ADI	chronic	Combined two-year chronic			
			toxicity/carcinogenicity	toxicity/carcinogenicity study			
			study in rats	in rats			
L	ADI Accordin Della Legla NOAFI, Nachara da de escribitation de la Confession de la Confessi						

ADI, Acceptable Daily Intake; NOAEL, No-observed-adverse-effect level; SF, Safety factor;

^{1),} The adverse effect observed at LOAEL

^{-,} NOAEL could not be specified.