

府 食 第 6 2 7 号 平成 2 7 年 7 月 2 8 日

厚生労働大臣 塩崎 恭久 殿

> 食品安全委員会 委員長 佐藤

食品健康影響評価の結果の通知について

平成23年10月13日付け厚生労働省発食安1013第1号をもって貴省から当委員会に意見を求められたポリエチレンナフタレートを主成分とする合成樹脂製の器具又は容器包装につき新たに規格を設定することに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

ポリエチレンナフタレートを主成分とする合成樹脂製の器具又は容器包装については、食品衛生法に基づく個別規格は設定されていない現状を踏まえると、従来からの使用方法の変更や使用量の増加等がない限りにおいて、規格を新たに設定しても健康影響が生じるリスクが高まるとは考えられない。

器具•容器包装評価書

ポリエチレンナフタレート(PEN)を主成分と する合成樹脂製の器具又は容器包装

> 2015年 7月 食品安全委員会

目次

<	審	議の	経絡	偉>	4
				委員会委員名簿>	
<	食	品安	全才	委員会器具・容器包装専門調査会専門委員名簿>	4
要	約				6
Ι		評価	要請	請の経緯及び評価の考え方	8
	1	. 評·	価勇	要請の経緯	8
	2	. 評·	価の	の考え方	8
П		ポリ	エヲ	チレンナフタレートの概要	8
	1	. 名	称 •	・分子式・構造式等	8
	2	. 物:	理化	化学的特性	9
	3	製	造原	亰料 1	0
		(1)) 単	単量体(モノマー)1	0
		(2)) 角	触媒及び添加剤1	1
	4	. 製:	造力	方法 1	1
	5	. 用:	途 .		2
		(1))食	食品用途の使用実績:国内1	.3
		(2))食	食品用途の使用実績:海外1	4
	6	. 各	国の	の規制と溶出試験結果1	.4
		(1)) 囯	国内1	.4
		(2)) E	EU	.7
		(3))	米国2	20
	7	. そ	の他	也の溶出物2	23
		(1)	,	モノマー及びオリゴマー成分2	23
		(2)) 1	ホルムアルデヒド及びアセトアルデヒド2	25
Ш		ハザ	— ŀ	ドとなりうる物質の検討2	26
	1	. t	ノマ	マー 2	26
	2	重	合角	触媒2	26
	3	. 添.	加剤	乳	27
	4	. ポ	リマ	マー	27
				也	
	6	. /\	ザー	ードとなりうる物質2	27
IV		毒性	に関	関する情報2	28
	1	. 2,	6-ナ	ナフタレンジカルボン酸ジメチル(DMNDC)2	28
		(1)) 亿	本内動態2	28
		(2))	実験動物における影響2	28
		(3)) 道	貴伝毒性試験 2	29
				ヒトにおける影響2	
		(5)	=	国内外の機関による評価等	80
	2	. I	チし	レングリコール(EG)3	0
		(1)) 亿	本内動態	80
		(2)) ⊒	主騒動物における影響 ついっと りゅうしゅう コープログラン コープログラン コープログラン ローター マイス アイ・マング マイン アイス	lΩ

		(3)遺伝毒性試験	33
		(4) ヒトにおける影響	34
		(5)国内外の機関による評価等	34
	3.	. テレフタル酸ジメチル (DMT)	35
		(1)体内動態	35
		(2) 実験動物における影響	35
		(3)遺伝毒性試験	36
		(4) ヒトにおける影響	38
		(5)国内外の機関による評価等	38
	4.	. ジエチレングリコール(DEG)	38
		(1)体内動態	38
		(2) 実験動物における影響	38
		(3)遺伝毒性試験	40
		(4) ヒトにおける影響	40
		(5)国内外の機関による評価等	41
	5.	. シクロヘキサンジメタノール(CHDM)	41
		(1)体内動態	41
		(2) 実験動物における影響	41
		(3)遺伝毒性試験	42
		(4) ヒトにおける影響	43
		(5)国内外の機関による評価等	43
	6.	アンチモン (Sb)	43
		(1) 食品安全委員会の評価	43
		(2)国内外の機関による評価等	44
	7.	ゲルマニウム (Ge)	44
		(1)体内動態	44
		(2) 実験動物における影響	44
		(3)遺伝毒性試験	46
		(4) ヒトにおける影響	46
		(5)国内外の機関による評価等	47
	8.	. 二酸化チタン	47
		(1)体内動態	47
		(2)実験動物における影響	47
		(3)遺伝毒性試験	49
		(4) ヒトにおける影響	50
		(5) 国内外の機関による評価等	50
		PEN 抽出物	
V	. /	ハザードとなりうる物質の推定一日摂取量と毒性指標との比較	51
	1.	モノマー	51
	2.	触媒	52
		(1) アンチモン系無機化合物	52
		(2) ゲルマニウム系無機化合物	53

3.	添加剤 (二酸化チタン)	54
	PEN の製造過程において生成すると考えられる物質 (オリゴマーを含む)	
VI. 食	t品健康影響評価	55
<別紙	t:略称等>	57
く参照	3>	59

<審議の経緯>

2011年 10月 14日 厚生労働大臣より食品健康影響評価について要請(厚生

労働省発食安 1013 第1号)、関係書類の接受

2011年 10月 20日 第 404 回食品安全委員会(要請事項説明)

2011年12月8日 第15回器具・容器包装専門調査会

2012 年 7月 13日 第19回器具・容器包装専門調査会

2013 年 1月 24 日 第 21 回器具・容器包装専門調査会

2013年 2月 28日 厚生労働省へ補足資料の提出依頼

2015年 3月 16日 厚生労働省より補足資料の提出、接受

2015 年 3 月 19 日 第 35 回器具・容器包装専門調査会

2015 年 5月 19日 第 561 回食品安全委員会 (報告)

2015年 5月 20日 から2015年6月18日まで 国民からの意見・情報の

募集

2015年 7月 17日 器具・容器包装専門調査会座長から食品安全委員会委員

長へ報告

2015 年 7月 28 日 第 571 回食品安全委員会 (報告)

(同日付け厚生労働大臣に通知)

<食品安全委員会委員名簿>

(2012年6月30日まで) (2012年7月1日から) (2015年7月1日から)

小泉直子(委員長) 熊谷 進(委員長) 佐藤 洋(委員長)

熊谷 進(委員長代理*) 佐藤 洋(委員長代理) 山添 康(委員長代理)

長尾 拓 山添 康(委員長代理) 熊谷 進

野村一正 三森国敏(委員長代理) 吉田 緑

 畑江敬子
 石井克枝
 石井克枝

 廣瀬雅雄
 上安平洌子
 堀口逸子

村田容常村田容常村田容常

*: 2011年1月13日から

<食品安全委員会器具・容器包装専門調査会専門委員名簿>

(2011年10月1日から)

井口 泰泉 中江 大 山添 康◆

川本 伸一 那須 民江 横井 毅

小林 カオル◆◆◆ 能美 健彦 (座長) 吉田 武美

田中 亮太 広瀬 明彦 (座長代理◆◆) 吉永 淳

◆: 2012年6月30日まで ◆◆: 2012年7月13日から ◆◆◆: 2012年10月1日から

(2013年10月1日から)

石原 陽子 田中 亮太 松永 民秀

小林 カオル 那須 民江 横井 毅(座長代理)

曽根 秀子 能美 健彦 (座長) 吉永 淳

<第 21 回器具·容器包装専門調査会 専門参考人>

国岡 正雄 六鹿 元雄

<第 35 回器具·容器包装専門調査会 専門参考人>

井口 泰泉 国岡 正雄

食品安全委員会器具・容器包装専門調査会は、厚生労働省から評価要請されたポリエチレンナフタレート (PEN) を主成分とする合成樹脂製の器具・容器包装につき新たに規格を設定することについて、食品健康影響評価を実施した。

PEN を主成分とする合成樹脂製の器具又は容器包装の使用により、食品を介して健康影響が生じる可能性としては、当該器具又は容器包装からの溶出物質が食品に移行し、それを食品とともに摂食した場合が考えられる。本専門調査会は、当該器具又は容器包装から溶出する可能性のある物質を特定するため、厚生労働省から提供のあった PEN の製造原料や製造方法(使用する触媒や添加剤を含む。)に関する情報、溶出試験結果のデータ及び国内外の規制等に係る情報を整理し、これらの資料を用いて、ハザードとなりうる物質を検討した。

さらに、毒性に関する情報については、厚生労働省から提供のあった情報に加え、本専門調査会において国内外の機関による評価書等を収集し、これらの資料も用いて、ハザードとなりうる物質ごとに、それらに関する毒性情報及び推定一日摂取量の試算値を基に、我が国におけるヒトへの健康影響を検討した。推定一日摂取量については、溶出試験結果が不検出の場合、ヒトが食事の際に使用する食器を全てPEN製食器と仮定し、かつ、ヒトが摂取する全ての食品がPEN製食器に接触し、そのPEN製食器から検出下限値相当の当該物質が溶出すると仮定して保守的な試算を行った。また、毒性に関する情報については、国内外の機関による信頼できる評価書を主に参照し、同一の毒性試験等の結果から異なる機関によって異なる無毒性量(NOAEL)が判断されている場合は最も低い値を用いた。

なお、現在流通している PEN 製品は、PEN のみの合成樹脂からなる製品である。また、現在の PEN の製造には、モノマーとしては 2,6-ナフタレンジカルボン酸ジメチル (DMNDC) 及びエチレングリコール (EG) のみが用いられている。したがって、入手できた器具・容器包装の溶出試験データは、主として現在我が国で流通している PEN 製の飲食器を試験試料としたデータであった。結果は以下のとおりである。

- ①現在、食品用途のPENの製造に使用されている物質であり、ヒトがPEN製の飲食器から食品を介して摂取する可能性のある物質のうち、モノマーであるDMNDC、EG及びPENの製造過程で生じるビスヒドロキシエチレン-2,6-ナフタレート(BHEN)、重合触媒であるアンチモン系無機化合物並びに添加剤である二酸化チタンについて物質ごとに健康影響を検討した結果、食品中への溶出によりヒトの健康に影響を与える可能性は無視できる。
- ②PEN 製の器具又は容器包装は、既に国内外において使用されており、食品を介した摂取による健康影響は報告されていない。
- ③重合触媒であるゲルマニウム系無機化合物については、溶出試験結果は不検 出であったが、検出下限値を下げた溶出試験データ、ばく露や安全性に関す る情報などが不足している。

④PEN の製造過程において生成する物質や分子量 1,000 以下の構造が同定されていない物質の溶出が僅かに認められているが、溶出物質の構造、安全性に関する情報、ばく露実態の評価に必要な溶出試験データなど、評価に必要なデータが不足している。

以上のように、PENを主成分とする合成樹脂製の器具又は容器包装の使用に際しハザードとなりうる物質全てについて十分な科学的データを得ることはできなかったが、PENを主成分とする合成樹脂製の器具又は容器包装については、食品衛生法に基づく個別規格は設定されていない現状を踏まえると、従来からの使用方法の変更や使用量の増加等がない限りにおいて、規格を新たに設定しても健康影響が生じるリスクが高まるとは考えられないと判断した。リスク管理機関は、規格を設定することにより健康影響が生じるリスクの低減を図るとともに、規格を設定した際には速やかに食品安全委員会に報告されたい。また、新たな知見が蓄積された際には速やかに評価を求めることを検討すべきである。

I. 評価要請の経緯及び評価の考え方

1. 評価要請の経緯

ポリエチレンナフタレート (PEN) は、2,6-ナフタレンジカルボン酸ジメチル (DMNDC) とエチレングリコール (EG) を製造原料として得られる熱可塑性のポリエステル樹脂である。

PEN については国内において汎用される見込みがあるため、食品衛生法(昭和 22 年法律第 233 号)に基づき、PEN を主成分とする合成樹脂製の器具又は容器包装につき新たに規格を設定することについて、厚生労働省から食品健康影響評価が要請された。

2. 評価の考え方

PEN を主成分とする合成樹脂製の器具又は容器包装の使用により、食品を介して健康影響が生じる可能性としては、当該器具又は容器包装からの溶出物質が食品に移行し、それを食品とともに摂食した場合が考えられる。食品安全委員会器具・容器包装専門調査会は、当該器具又は容器包装から溶出する可能性のある物質を特定するため、厚生労働省から提供のあった PEN の製造原料や製造方法(使用する触媒や添加剤を含む。)に関する情報、溶出試験結果のデータ及び国内外の規制等に係る情報を整理し、これらの資料を用いて、ハザードとなりうる物質を検討することとした。

さらに、毒性に関する情報については、厚生労働省から提供のあった情報に加え、本専門調査会において国内外の機関による評価書等を収集し、これらの資料も用いて、ハザードとなりうる物質ごとに、それらに関する毒性情報及び推定一日摂取量の試算値を基に、我が国におけるヒトへの健康影響を検討することとした。

Ⅱ. ポリエチレンナフタレートの概要

1. 名称・分子式・構造式等

名称: ポリエチレンナフタレート、ポリエチレン-2,6-ナフタレンジカ

ルボキシレート、Poly(ethylene-2,6-naphthalenedicarboxylate)、

PEN

分子式: $(C_{14}H_{10}O_4)n$

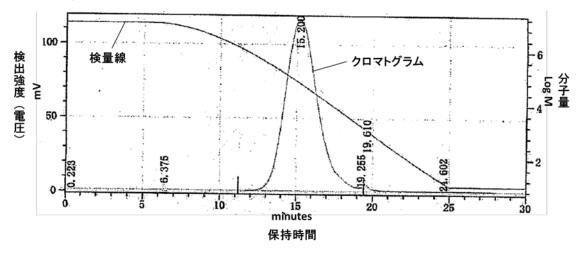
構造式: C-O-CH₂-CH₂ (参照 1)

CAS No.: 24968-11-4, 25853-85-4

2. 物理化学的特性

文献等で報告されている PEN の物性値等を表Ⅱ-1 に示す。

表 II-1 PEN の物性値:中央値(範囲)


	PEN
融点 [℃]	268(225~337) (参照 2)
ガラス転移温度 [℃]	120(95~156) (参照 2)
密度 [g/cm ³]	1.35(1.32~1.41) (参照 2)
重量平均分子量	約 70,000 (参照 1)
分子量 1,000 以下のオリゴマー比率	1%未満 (参照 1)

PEN はポリエチレンテレフタレート (PET) の製造原料のうち、テレフタル酸を 2,6-ナフタレンジカルボン酸に置き換えた樹脂である。PET と比べて耐熱性、耐薬品性及び耐加水分解性に優れる。また、PET と同様にガス透過性及び水分透過性が低く、食品成分や香気成分の吸着も少ない。さらに、383nm 以下の紫外線 遮断性能を有するため、内容物を紫外線から保護することができる。 (参照 1)

PEN の分子量及び分子量分布について、現在国内外に流通しており、食品用途に使用されている PEN を試料としたゲル浸透クロマトグラフィー (GPC) のクロマトグラムを図Ⅱ・1 に示す。

この試料では保持時間約 12 分から 19 分にかけて、保持時間 15.2 分(分子量約 $6\sim7$ 万)をピークトップとした分子量約 100 万から 5,000 の PEN ポリマーが検出された。このポリマーの重量平均分子量 (Mw) は 78,103、数平均分子量 (Mn) は 31,300 であった。

保持時間 19.6 分(分子量約 1,000) に微小ピークが検出され、このピーク面積 は全体のピーク面積に対して 0.076%であった。なお、このピークの同定はなされていない。(参照 48)

<分析条件>

機器:Shodex 測定温度:40℃

カラム: ShodexLF-804 標準試料:ポリスチレン

移動相:クロロホルム 溶解溶媒:クロロホルム/ヘキサフル

流速:1 mL/min

図II-1 GPC クロマトグラム

3. 製造原料

(1) 単量体(モノマー)

PEN は主に①DMNDC、②EG 及びこれらの反応体である③ビスヒドロキシエチレン-2,6-ナフタレート (BHEN) を原料モノマーとする。そのほかに、①DMNDC の 50 mol%未満を④テレフタル酸ジメチル (DMT)、②EG の 50 mol%未満を⑤ジエチレングリコール (DEG) 及び/又は⑥1,4-シクロヘキサンジメタノール (CHDM) に置き換えて製造したものも PEN とされている (参照 1)。また、EU 委員会規則 (EU) No 10/2011 においても、①及び②のほか④~⑥についても食品用途の合成樹脂製品の製造に使用できるモノマーとして使用が認められている (参照 44)。

ただし、現在のところ国内で食品用途製品の製造に使用されるモノマーは、 ①DMNDC 及び②EG のみである (参照 48)。

主要な酸成分

2,6-ナフタレンジカルボン酸ジメチル(DMNDC)

CAS No.: 840-65-3 水への溶解性: 0.15 mg/L (25℃) 分子式: C₁₄H₁₂O₄ 分子量: 244.25 オクタノール/水分配係数 log Pow: 3.5

融点:192.2℃ 沸点:>300℃ (参照 3)

主要なジオール成分

② エチレングリコール (EG)

 CAS No.: 107-21-1
 水への溶解性:混和する

 分子式: C₂H₆O₂
 分子量: 62.1
 オクタノール/水分配係数 log Pow: −1.93

 融点: −13℃
 沸点: 198℃
 (参照 5)

酸成分とジオール成分の縮合物

③ ビスヒドロキシエチレン-2,6-ナフタレート (BHEN)

DMNDC と EG が 1:2 モルで結合した BHEN は、PEN 製造におけるエステル交換反応工程において生成する(参照 1、48)。

CAS No.: 22374-96-5 分子式: C₁₆H₁₆O₆ 分子量: 304.3 (参照 6)

その他の単量体

④ テレフタル酸ジメチル (DMT)

CAS No.: 120-61-6
 水への溶解性: 非常に溶けにくい(13℃)
 分子式: C₁₀H₁₀O₄
 分子量: 194.2
 オクタノール/水分配係数 log Pow: 2.35

融点:140℃ 沸点:288℃ (参照 8)

⑤ ジエチレングリコール (DEG)

CAS No.: 111-46-6 水への溶解性: 混和する

分子式: $C_4H_{10}O_3$ 分子量: 106.1 オクタノール/水分配係数 $\log Pow: -1.47$

融点:-6.5 $^{\circ}$ $^{\circ}$ 沸点:245 $^{\circ}$ $^{\circ}$ (参照 10)

⑥ 1,4-シクロヘキサンジメタノール (CHDM) cis 体と trans 体の混合物である (参照 11)。

CAS No.: 105-08-8 水への溶解性: 920,000 mg/L(20℃)

分子式: C₈H₁₆O₂ 分子量: 144.2 オクタノール/水分配係数 log Pow: 1.49

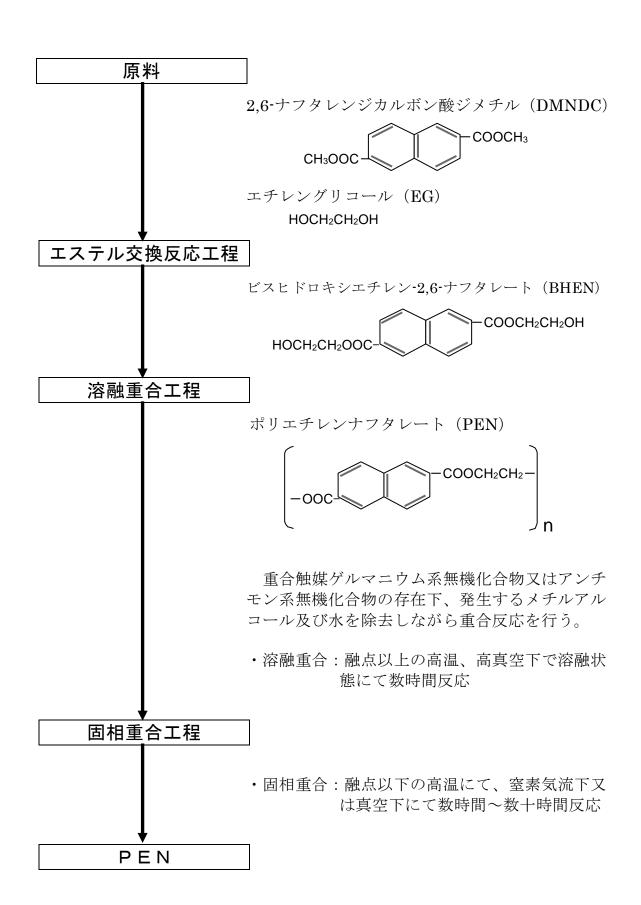
融点: 43° C(cis 体)、 67° C(trans 体)

沸点: 286° C(cis体)、 283° C(trans体) (参照 11)

(2) 触媒及び添加剤

① 触媒

現在のところ国内の食品用途製品の製造に使用される重合触媒は、アンチモン系無機化合物又はゲルマニウム系無機化合物であり、それらの使用量は PEN 樹脂 1 kg 当たり数+ mg である(参照 1、48)。


② 添加剤

現在のところ国内の食品用途製品の製造に使用される添加剤は二酸化チタン (IV) (ナノ物質は使用されていない。)のみである(参照 48)。この二酸化チタン (IV) は主に白色に着色する場合に使用され、その添加量は PEN 樹脂 100 g 当たり数 g である。しかし、透明性を生かした用途が多く、これらの製品には添加剤が使用されていない(参照 1、12、48)。

4. 製造方法

PEN は、DMNDC と EG をエステル交換反応させて BHEN を得た後、重縮 合反応させることによって生産する。重合は溶融重合反応法で実施され、その 後必要に応じて固相重合が実施される。(参照 1)

未反応のモノマー (DMNDC及びEG) は、高温・真空下の固相重合工程において除去されると報告されている (参照48)。

5. 用途

PENは1945年にイギリスICI社によって発明された古くから知られている樹脂である。二軸延伸フィルムが高密度磁気記録テープベースフィルム、液晶ディ

スプレイ輝度向上フィルム及び耐熱コンデンサーなどに用いられているほか、繊維としてタイヤコードなどに採用されている(参照 1)。

包装材料としては、飲料用のリターナブルボトル(海外)、麻酔薬用ボトル(国内、海外)、化粧品容器(国内、海外)などに使用されている(参照 1)。

日本国内において食品用途の使用実態があるのは、学校給食における給食用食器、病院食における業務用食器、外食産業における給水器用のコップ及び自動販売機用の水タンクである。食器としての使用において接触する食品は多岐にわたり、使用される温度及び時間は、食事が提供される状況から、給食用食器については 60 $^{\circ}$ $^$

なお、現時点では、食品用途以外(化粧品ボトル、医薬品ボトル、家電製品の部品、磁気テープ、補強繊維等)に使用されている PEN が、食品用途に用いられる予定はない(参照 48)。

(1) 食品用途の使用実績:国内

我が国では、2001 年頃から主に学校給食や病院給食の食器として使用されており、現在では1,000 以上の学校給食センターで採用されている。病院などでは保温食器として40 万セット以上が採用されている。なお、文部科学省による公立の小・中学校での材質別食器の使用状況に関する報告 1によれば、2006 年においてPEN を使用している学校の割合は16.8%であった(参照1)。ボトル及び容器用(食品用途以外も含む。)のPEN の国内販売量(2005 年)は335 tであり、我が国の食品用包装材料の全体使用量(5,902,000 t、参照42)に対する割合は重量ベースで0.0057%である(参照1)。

く参考>

我が国の食品用包装の材料別使用量を表Ⅱ-2に示す。

	包装材料													
	ガラス	金属	セロハン	紙	PE (ポリ エチレ ン)	PP (ポ リ プロピ レン)	PS (ポリ スチレ ン)	PET (ポリエチレ ンテレフタレ ート)	PA (ナイロ ン)	PVC (ポリ 塩 化 ビニル)	EVOH (エチレンヒ゛ ニルアルコー ル)	PVDC (ポリ塩 化ビニリ デン)	PVA (ホ ゜リ ヒ ゛ニルア ルコール)	合計
使用量	3,874	741	2	287	187	203	110	457	15	13	8	3	2	5,902

表 II-2 我が国の食品用包装の材料別使用量(単位:1,000 t)

(参照 42)

13

¹「学校給食における食堂・食器具使用状況調査(平成 18 年 5 月 1 日現在)」 http://www.mext.go.jp/b_menu/toukei/001/kyusyoku/08011517/001.htm

(2) 食品用途の使用実績:海外

米国や欧州連合(EU)では食品接触材料として使用が認められている。 海外では主として繰り返し使用される(リターナブル)飲料用ボトルとして使用されている。1996年から7社の飲料メーカー等により、ミネラルウォーター、ジュース又はビールボトル(容量0.38~1.5 L)として、ウルグアイ、ドイツ、デンマーク、ノルウェー、ブラジル及びフェロー諸島において導入されてきた。 延べボトル本数は約8億本と推定される(参照1)。

6. 各国の規制と溶出試験結果

(1) 国内

①規制

PEN を主成分とする合成樹脂製の器具又は容器包装には、食品衛生法第 18 条に基づく「食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)」に規定される「第 3 器具及び容器包装、D 器具若しくは容器包装又はこれらの原材料の材質別規格」中の「2 合成樹脂製の器具又は容器包装」に規定される「(1) 一般規格」が適用される。当該規格を次に示す(参照 43、51)。

<材質試験>

項目	試験法	規格値
カドミウム	原子吸光光度法又は誘導結合プラズマ発光強度測定法	100 μg/g 以下
鉛	原子吸光光度法又は誘導結合プラズマ発光強度測定法	100 μg/g 以下

<溶出試験>

項目	浸出用液	溶出試験摸	操作	規格値
	(2 mL/cm ²)	温度	時間	
重金属	4%酢酸	60℃	30 分	1 μg/mL以下
		(95℃)*		(鉛として)
過マンカ、ン酸カリウム消費量	水	60°C	30 分	10 μg/mL 以下
		(95℃)*		

^{* ()}内は使用温度が 100℃を超える器具・容器包装の場合

<参考>2

PEN と製造方法や性質が類似する「ポリエチレンテレフタレートを主成分とする合成樹脂製の器具又は容器包装」では、個別規格として、上記の「(1) 一般規格」に加えて、溶出試験としてアンチモン(Sb、規格値: $0.05~\mu g/m L$)、ゲルマニウム(Ge、規格値: $0.1~\mu g/m L$)及び蒸発残留物(規格値: $30~\mu g/m L$)の規格基準が設定されている(参照 51)。

² 食品衛生法上の PET の規格であるため参考とした。

②溶出試験結果

食品衛生法の食品、添加物等の規格基準における合成樹脂製の器具・容器包装の一般規格で規定される重金属及び過マンガン酸カリウム消費量試験、並びにポリエチレンテレフタレートを主成分とする合成樹脂製の器具・容器包装の個別規格で規定される蒸発残留物、Sb及び Ge 試験の結果を表 Π -3 に示す (参照 18、48)。これらの試験では、試料として現在国内で流通している代表的なPEN 製食器及びその原料樹脂(ペレット)、並びに 5 年間使用した食器及び110℃で 2,500 時間加熱した後の食器を用いている(試験試料は全て、PEN のみの合成樹脂からなり、モノマーとしては DMNDC 及び EG のみが用いられている。)。

5年間使用した製品及び110℃で2,500時間加熱後の製品も食品衛生法上の一般規格(重金属及び過マンガン酸カリウム消費量)を満たしていた。

表 II-3 金属、蒸発残留物及び過マンガン酸カリウム消費量の溶出試験結果(参照 18、48)

			Nata . I .			
試験試料、 溶出方法	溶出条件	擬似溶媒	溶出 物質	結果[分析法]	検出下限	規格値
			Sb	適合(0.05 μg/mL 以 下)[告示法 ⁶⁾]	記載なし	0.05 $\mu \mathrm{g/mL^{4)}}$
樹脂(ペレット ①)	95℃×30 分	4% 酢酸	Ge	適合(0.1 μg/mL 以 下)[告示法]	記載なし	$0.1~\mu \mathrm{g/mL^{4)}}$
2 mL/cm ² 、浸漬			重金属	適合 (1 μg/mL 以下) [告示法]	記載なし	1 μg/mL以 下 (Pb とし て) ⁵⁾
	95℃×30 分	水				
	95℃×30 分	4% 酢酸	蒸発残	適合 (5 μg/mL 未満)	記載なし	$30~\mu \mathrm{g/mL^{4)}}$
	60℃×30分	20% エタノール	留物	[告示法]		
	25℃×60 分	ヘプタン				
	95℃×30 分	水	過マンカ [*] ン酸カリウ ム消費 量	適合(0.3 μg/mL) [告示法]	記載なし	10 μg/mL ⁵⁾
			Sb	不検出(0.05 µg/mL 以下)[ヨウ化物吸光 光度法]	0.05 μg/mL	0.05 μg/mL ⁴⁾
樹脂 (ペレット ②)	95℃×30 分	4% 酢酸	Ge	不検出 (0.05 μg/mL 以下) [フェニルフル オロン吸光光度法]	0.05 μg/mL	0.1 μg/mL ⁴⁾
2 mL/cm ² 、浸漬			重金属	適合 (1 μg/mL 以下) [告示法]	記載なし	1 μg/mL以 下 (Pbとし て) ⁵⁾
	95℃×30分	水				
	95℃×30 分	4% 酢酸	蒸発残	5 μg/mL以下	記載なし	$30~\mu \mathrm{g/mL^{4)}}$
	60℃×30分	20% エタノール	留物	[重量法]		
	25℃×60 分	ヘプタン	NH			
	95℃×30 分	水	過マンカ [*] ン酸カリウ ム消費 量	適合(0.5 μg/mL 以 下) [告示法]	記載なし	10 μg/mL ⁵⁾
			Sb	0.05 μg/mL以下([告	$0.05~\mu \mathrm{g/mL}$	0.05

				示法])		$\mu g/mL^{4)}$
食器 (新品)	60℃×30分	4% 酢酸	Ge	0.1 μg/mL 以下[告示 法]	0.1 μg/mL	0.1 μg/mL ⁴⁾
2 mL/cm ² 、浸漬			重金属	適合 (1 μg/mL以下) [告示法]	Pb として 1 μg/mL	1 μg/mL以 下 (Pb とし て) ⁵⁾
	60℃×30分 60℃×30分 60℃×30分 25℃×60分	水 4% 酢酸 20% エタノール ヘプタン	蒸発残留物	2.5 μg/mL 以下[告示法]	2.5 μg/mL	30 μg/mL ⁴⁾
	60℃×30分	水	過マンカ [*] ン酸カリウ ム消費 量	0.2 μg/mL 以下[告示法]	0.2 μg/mL	10 μg/mL ⁵⁾
			Sb	0.05 μg/mL以下[告 示法]	記載なし	0.05 μg/mL ⁴⁾
食器(5年使用)	60℃×30分	4% 酢酸	Ge	0.1 μg/mL 以下[告示 法]	記載なし	0.1 μg/mL ⁴⁾
2 mL/cm ² 、浸漬			重金属	適合 (1 μg/mL以下) [告示法]	記載なし	1 μg/mL以 下 (Pb とし て) ⁵⁾
	60℃×30分 60℃×30分 60℃×30分 25℃×60分	水 4% 酢酸 20% エタノール ヘプタン	蒸発残留物	2.5 μg/mL 以下[告示法]	記載なし	30 μg/mL ⁴⁾
	60℃×30分	水	過マンカ [*] ン酸カリウ ム消費 量	適合(10 μg/mL 以下)[告示法]	記載なし	10 μg/mL ⁵⁾
加熱食器			Sb	0.05 μg/mL以下[告 示法]	記載なし	0.05 $\mu \mathrm{g/mL^{4)}}$
(110℃¹)、 2,500 時間 ²))	60℃×30 分	4% 酢酸	Ge	0.1 μg/mL 以下[告示 法]	記載なし	0.1 μg/mL ⁴⁾
2 mL/cm ² 、浸漬			重金属	適合 (1 μg/mL以下) [告示法]	記載なし	1 μg/mL以 下 (Pb とし て) ⁵⁾
	60℃×30分 60℃×30分 60℃×30分 25℃×60分	水 4% 酢酸 20% エタノール ヘプタン	蒸発残留物	2.5 μg/mL 以下[告示法]	記載なし	30 μg/mL ⁴⁾
	60℃×30分	水	過マンカ [*] ン酸カリウ ム消費 量	適合(10 μg/mL 以下)[告示法]	記載なし	10 μg/mL ⁵⁾
			Sb	0.05 μg/mL以下[告 示法]	0.05 μg/mL	0.05 μg/mL ⁴⁾
白色食器 3)	60℃×30 分	4% 酢酸	Ge	0.1 μg/mL 以下[告示 法]	0.1 μg/mL	0.1 μg/mL ⁴⁾
2 mL/cm ² 、浸漬			重金属	適合 (1 μg/mL以下) [告示法]	Pb として 1 μg/mL	1 μg/mL以 下 (Pbとし て) ⁵⁾
	60℃×30分 60℃×30分 60℃×30分	水 4% 酢酸 20% エタノール	· 蒸発残 · 留物	2.5 μg/mL 以下[告示法]	2.5 μg/mL	30 μg/mL ⁴⁾

25℃×60 分	ヘプタン				
60℃×30分	水	過マンカ [*] ン酸カリウ ム消費 量	適合(0.2 μg/mL 以下)[告示法]	0.2 μg/mL	10 μg/mL ⁵⁾

- 1) 乾熱温度は、PEN のガラス転移温度が 120° であるため、できる限り過酷な条件として設定された温度。
- 2) 給食食器として 1 日あたり 1 時間、週 5 日使用するとした場合、1 年間で 200 時間となる。 2,500 時間は 10 年以上の使用時間に相当(おそらく食器乾燥機の使用を想定したものと考えられる。)。
- 3) 二酸化チタンを使用して着色したもの。着色を除き透明な製品と同等の製品。
- 4) 食品衛生法の食品、添加物等の規格基準における PET を主成分とする合成樹脂製の器具・容器包装の個別規格。
- 5) 食品衛生法の食品、添加物等の規格基準における合成樹脂製の器具・容器包装の一般規格
- 6) 食品衛生法の食品、添加物等の規格基準に基づく試験法を[告示法]と記載した。

また、食品衛生法の規定とは溶出条件が異なるが、PEN (PEN のみの合成樹脂からなり、モノマーとしては DMNDC 及び EG のみが用いられている。)及び PET-N50 (PET の酸成分 (DMT) の 50 mol% を PEN の酸成分 (DMNDC) で置換)のシートを試料とした蒸発残留物試験が実施された。この結果を表II-4に示す (参照 II-4)。

試料はいずれも添加剤を使用していないものであることから、蒸発残留物の大部分はオリゴマーと考えられる。シート間で蒸発残留物量に差はなかったことから、現在食品用途として使用されている製品は存在しないが、モノマーのDMNDCの一部をDMTに置換して製造されたPENについても、オリゴマー等の溶出量は大きく変化しないと考えられる。

表 II-4 PEN 及び PET-N50 のシートの総溶出量の試験結果 (参照 16)

				7.1 A 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
試験試料	添田夕	#8 (D) %2 (H	試料及び総溶出量(μg/mL)*			
溶出方法	溶出条件	擬似溶媒	PEN	PET-N 50		
0.6 ㎜厚シート		蒸留水	1.3	1.6		
0.6 mm/享 ジート 2 mL/cm ²	沸点×	4% 酢酸	2.9	2.3		
2 mL/cm ² 浸漬	90 分	20%エタノール	2.4	4.1		
(文俱		ヘプタン	0.7	1.0		
0.6 mm厚シート		蒸留水	1.9	2.0		
0.6 mm/s	40 °C×	4% 酢酸	2.1	2.2		
2 mL/cm- 浸漬	10 目	20%エタノール	1.0	0.6		
1又1只		ヘプタン	0.4	0.6		

^{*} 溶出液を濃縮・乾固し、秤量して蒸発残留物を求める。

(2) EU

①規制

EUでは委員会規則(EU)No 10/2011 により、食品用途の合成樹脂製品の製造に使用できるモノマー、添加剤等を制限している。それぞれの物質には食品中への specific migration limit(特定移行限度値:SML、特定の物質の食品又は食品擬似溶媒への移行量の最大許容量)が規定されているほか、最終製品から食品中への総移行量は overall migration limit(総移行限度値:OML 注1)、不揮発性物質

の食品擬似溶媒への移行量の最大許容量)に従うことが求められる(参照 44)。 PEN のモノマーである DMNDC、EG、DMT、DEG 及び CHDM については、いずれも使用が認められている。また、添加剤については合成樹脂の種類に関係なく、認められている物質であれば、それぞれの制限内において使用が可能である。その他、合成樹脂製品全般に対して、バリウム、コバルト(Co)、銅、鉄、リチウム、マンガン(Mn)、亜鉛及び芳香族第一級アミンについても移行限度値が設定されている(参照 44)。 II. 3. 製造原料に示したモノマー、触媒(アンチモン系無機化合物又はゲルマニウム系無機化合物^{注2)})及び添加剤(二酸化チタン)に関する規定について、表 II-5 にまとめた。

表 II-5 委員会規則(EU) No 10/2011 ANNEX I (合成樹脂材料及び製造に意図的に使用することが認められている物質の Union list) より抜粋

物質	SML (mg/kg)	物質	SML (mg/kg)
DMNDC	0.05	三酸化アンチモン	0.04(Sb として)
DMT	60(generic SML ^{注 3)})		
EG 及び DEG	30(EG として)*	二酸化チタン	60(generic SML ^{注 3)})
CHDM	60(generic SML ^{注 3)})		

- * グループ制限:ステアリン酸エチレングリコールエステル及び EG、DEG (参照 44)
- 注 1) OML: 10 mg/dm^2 (プラスチック材料及び製品の食品接触面の表面積 1 dm^2 あたり) 以下、60 mg/kg (食品擬似溶媒 1 kg あたり) 以下
- 注 2) ゲルマニウム系無機化合物は Union list に記載されていない
- 注 3) generic SML: SML 設定なし、OML と同様に 60 mg/kg 以下

②溶出試験結果

EU 指令 90/128/EEC³(96/11/EC 改正)に準じた溶出試験の結果を表 Π -6に示す(参照 15、64)。これらの試験は、試料として PEN 製のボトル(PEN のみの合成樹脂からなり、モノマーとしては DMNDC 及び EG のみが用いられている。)を用い、一般食品、酸性食品及び酒類の食品擬似溶媒である蒸留水、3%酢酸及び 15%エタノールを溶媒とし、溶出条件は繰り返し使用される(リターナブル)飲料用ボトルとしての使用を想定した 40° C10 日間で実施され、モノマーである DMNDC、EG 及び DEG の溶出量、金属である Sb、Ge、Co 及び Mn の溶出量、並びに総移行量を測定している。試験結果はいずれも不検出であった。

表Ⅱ-6 モノマー、金属及び総移行量の溶出試験結果(参照 15、64)

試験試料、 溶出方法	溶出条件	擬似溶媒	溶出物質	結果	分析法	限度値
		蒸留水	DMNDC	不検出(0.001 mg/6dm ² 以 下)	HPLC	0.05 mg/kg
		3% 酢酸	DMNDC	不検出(0.001	HPLC	

³ 現在の委員会規則 (EU) No 10/2011 では、蒸留水が 10%エタノール、15%エタノールが 20% エタノールにそれぞれ改正されている。

				mg/6dm ² 以下)		0.05 mg/kg
1,500 mL ボトル	40 ℃×10 目	15%エタノール	DMNDC	不検出(0.001 mg/6dm ² 以 下)	HPLC	0.05 mg/kg
接触面積 6.7 dm²		蒸留水	EG	不検出(2.5 mg/6dm ² 以 下)	GC	30 mg/kg
充填		3% 酢酸	EG	不検出(2.5 mg/6dm ² 以 下)	GC	30 mg/kg
		15%エタノール	EG	不検出(2.5 mg/6dm ² 以 下)	GC	30 mg/kg
		蒸留水	公分 石耳.	不検出(1 mg/dm ² 以下) 不検出(1		10 mg/dm ²
		3% 酢酸 15%エタノール	総移行量	mg/dm ² 以下) 不検出(1 mg/dm ² 以下)		
1,500 mL ボトルー1		3% 酢酸	DMNDC	不検出(0.01 mg/kg 以下)	HPLC	0.05 mg/kg
接触面積 6.7 dm ² 、	40 °C×10 ∃	15%エタノール	EG	不検出 (3.1 mg/kg 以下)	GC	30 mg/kg
充填		15%エタノール	DEG	不検出 (3.1 mg/kg 以下)	GC	30 mg/kg
			Sb	不検出 (0.001 mg/kg 以下)	ICP-M S	0.04 mg/kg
		3% 酢酸	Ge	不検出(0.001 mg/kg 以下)	ICP-M S	なし
			Со	不検出(0.001 mg/kg 以下)	ICP-M S	0.05 mg/kg
			Mn	不検出(0.001 mg/kg 以下)	ICP-M S	0.6 mg/kg
		3% 酢酸	総移行量	不検出(1 mg/dm ² 以下)		10 mg/dm ²
		15%エタノール		不検出(1 mg/dm ² 以下)		
1,500 mL ボトルー2		3% 酢酸	DMNDC	不検出(0.01 mg/kg 以下)	HPLC	0.05 mg/kg
接触面積 6.7 dm ² 、	40 ℃×10 目	15%エタノール	EG	不検出 (3.1 mg/kg 以下)	GC	30 mg/kg
充填		15%エタノール	DEG	不検出(3.1 mg/kg 以下)	GC	30 mg/kg

		Sb	不検出(0.001 mg/kg 以下)	ICP-M S	0.04 mg/kg
	3% 酢酸	Ge	不検出(0.001 mg/kg 以下)	ICP-M S	なし
		Со	不検出(0.001 mg/kg 以下)	ICP-M S	0.05 mg/kg
		Mn	不検出(0.001 mg/kg 以下)	ICP-M S	0.6 mg/kg
	3% 酢酸	総移行量	不検出(1 mg/dm ² 以下)		10 mg/dm ²
	15%エタノール		不検出(1 mg/dm ² 以下)		

試料に 1,300mL の擬似溶媒を充填し、40 $\mathbb{C} \times 10$ 日の溶出操作を擬似溶媒を入れ替えて 3 回繰り返した。その 3 回目の溶出量。

 $6~\rm{dm^2}$ は $1~\rm{i}$ \rm{U} $10\rm{cm}$ の立方体の内面積。その容積は $1~\rm{L}$ ≒ $1~\rm{kg}$ であるため、 $\rm{mg/6dm^2}$ ≒ $\rm{mg/kg}$

(3) 米国

①規制

PEN は連邦規則集第 21 巻 (21 CFR) §177.1637 において、

poly(oxy-1,2-ethandiyloxycarbonyl-2,6-naphthalenedicarbonyl)resins: ポリ (オキシ-1,2-エタンジイルオキシカルボニル-2,6-ナフタレンジイルカルボニル) 樹脂として間接食品添加物 4に位置づけられている。当該セクションの記載に従 うものは、食品と接触して使用する製品又は製品の成分として安全に使用することができるとされている。以下にその概要を示す (参照 45)。

- (a) 同定(Identity): PEN(CAS No.24968-11-4)は、DMNDC と EG との触媒エステル交換後、触媒重縮合したポリマーである。
- (b) 規格 (Specifications)
 - (1) 比重: 1.33~1.40 g/cm³
 - (2) 固有粘度 ⁵: 0.55 dl/g 以上(溶媒 p-クロロフェノール/テトラクロロエタン/フェノール: 重量比 25/40/35)
- (c) 抽出量制限(Extraction limitations)⁶: 不揮発性物質 2.0 μg/in²以下
- (d) 使用条件 (Conditions of use)
 - (1) 食品と接触する最終製品は、食品分類ごとに表Ⅱ-7 に示す使用条件内で使用されなければならない(参照 46)。

4 一般に、食品の保持、包装または処理の一部として、食品に接触する食品添加物であるが、食品へ直接添加すること、その部分となること、または技術的効果を意図していない。

(http://www.fda.gov/food/ingredientspackaginglabeling/definitions/default.htm より抜粋)

⁵ 試験は「ポリエステルの希釈溶液粘度の測定法(Eastman Chemical Co.、ECD-A-AC-G-V-1-5、1988年5月31日)」に従う。

⁶ 0.5 mm (0.02 inch) 厚の樹脂シートを水で 121℃ (250°F)×2 時間抽出した時の不揮発性物質の量。

(2) 食品と接触する最終製品は、分別収集を容易にするため、他のポリマーから製造された製品と区別するよう識別されなければならない。

表 II-7 21CFR § 177. 1637 に定められた PEN の最終製品の使用条件(参照 46)

食品分類		使用组	 条件	使用条件分類
(§176.170(c) table1)			С-Н	(§176.170(c) table2)
I. 非酸性、水性	製品;塩又は砂糖含有品を含む(pH			A. 高温加熱滅菌(例:
5.0 を超える)		U		100℃ (212°F) 以上)
II. 酸性、水性製	品;塩又は砂糖含有品及び水中油滴			B. 沸騰水中滅菌
型エマルショ	ンの低~高脂肪含有製品を含む	O		C. 66℃ (150°F) を超える
III. 水性、酸性	又は非酸性製品で遊離油分又は脂肪			熱間充填又は低温殺菌
を含む;塩で	含有品及び油中水滴型エマルション		\circ	D. 66℃(150°F)未満の熱
の低~高脂原	坊含有製品を含む			間充填又は低温殺菌
IV. 酪農製品	A. 油中水滴型エマルション、高及び			E. 室温充填、保管(容器内
及び加工品	低脂肪性		O	で熱処理せず)
	B. 水中油滴型エマルション、高及び	\bigcirc		F. 冷蔵 (容器内で熱処理せ
	低脂肪性	O		ず)
V. 低水分性脂肪	及び油		0	G. 冷凍(容器内で熱処理せ
VI. 飲料	A. 8%までアルコールを含む飲料	0		ず)
	B. 非アルコール性飲料	0		H. 冷凍又は冷蔵:使用時に
	C. 8%をこえるアルコールを含む飲			容器中での再加熱を意
	料		O	図した調理済食品
VII. ベーカリ	A. 表面に遊離脂肪又は油を含むし			1. 水性又は水中油滴型エ
一製品	っとりしたベーカリー製品		O	マルション、低又は高
(VIII、IX 除	B. 表面に遊離脂肪又は油を含まな	\circ		脂肪性
<)	いしっとりしたベーカリー製品	O		2. 水性、高又は低遊離脂
VIII. 表面に遊離脂肪または油を含まない固形乾燥				肪又は脂肪性
食品		0		
IX. 表面に遊離用	旨肪または油を含む固形乾燥食品		0	

また、添加剤については、21CFR §178、§181、§182、§184 及び§186 において、物質ごとに使用制限等が規定されており、この範囲内であれば使用することができる。

その他、食品接触物質届出制度(Food Contact Notification: FCN)により、米国食品医薬品庁(FDA)に FCN の届出を提出した物質については、届出の中で特定された製造者が届出内容の製造プロセスで製造された物質のみ製造販売できる。ただし、製造者が異なる場合や製造プロセスに変更が生じた場合は改めてFCN の届出が必要である。

②溶出試験結果

PENのFDAへの食品添加物申請のために、配向又は無配向7のPENから食品擬似溶媒に移行する不揮発性物質についての溶出試験が1988年に実施された

⁷ 配向とは延伸により分子鎖が整列し結晶化(配向結晶)した状態を表し、ボトルや延伸フィルムではこの状態になり機械的特性が向上する。一方、無配向では分子鎖は整列していない。無

(参照 1、13)。この試験では溶出条件として、21CFR §176.170(c)に規定される使用条件 "A:高温加熱滅菌(例;212°F(100°C)を超える条件)"に対する条件及び 120°F(49°C)/30 日貯蔵を想定した条件が用いられた。試験結果を表II-8に示す。

流通品と同じ方法で製造されたシートについて 21CFR §177.1637 に従って実施された不揮発性物質の試験結果を表II-9 に示す (参照 17)。

水及び50%エタノールでは不揮発性物質の溶出量がやや多かったが、水の試験では溶出温度がガラス転移温度(120°C)とほぼ同じであり製品の使用上限温度よりも高いためと考えられ、また、50%エタノールの試験ではポリマーの一部がエタノールとのエステル交換反応により分解するためと考えられる。試料は添加剤未使用のものであり、モノマーは試験の過程で大部分が揮散すると考えられることから、得られた不揮発性物質は製造時の副生成物であるオリゴマー類と推察される。

表Ⅱ-8 不揮発性物質の溶出試験結果(参照 1、13)

1/h/4/5/2014/5		初期条件	期条件 食品科		多行量(ppb) ¹⁾		
試験試料 溶出方法	擬似溶媒	下記温度°F	知 # 2 / 4 / 2	120°F	'(49℃) 保持	分析 方法	
俗山万伝		×120 分	初期条件後	15 日後	30 日後	万伝	
押出しシート	水	250 (121℃)	73(110 ng/cm²)*	-	-	$\mathrm{IR}^{2)}$	
(無配向)	3%酢酸	212 (100°C)	7(10 ng/cm ²)*	=	=	及び	
10 mL/in ²	50%エタノール	170 (77°C)	34(50 ng/cm ²)*	=	=	SEC ³⁾	
浸漬	ヘプタン	150 (66℃)	2(3 ng/cm ²)*	=	=		
ボトル側壁	水	250(121°C)	11	12	12(19 ng/cm ²)*		
(配向)、	3%酢酸	212(100℃)	2	2	3(5 ng/cm ²)*	紫外	
2 mL/in²	50 %エタノール	170(77°C)	6	7	6(9 ng/cm ²)*	吸光法	
浸漬	ヘプタン	150(66°C)	1	0	1(2 ng/cm ²)*		

1) 包装面積 1 in^2 当たり 10 g (10 mL) の食品に接触すると仮定されている。

()内は 1 in = 2.54 cm として計算。

2) IR: 赤外分光法

3) SEC: サイズ排除クロマトグラフィー

表 II-9 不揮発性物質の溶出試験結果(参照 17)

試験試料、 溶出方法	溶出条件	擬似溶媒	結果	検出下限
0.5 mm 厚シート、 抽出	121℃× 2 時間	水	1.4 μg/in² (約 0.22 μg/cm²)未満	0.5 μg/in ²

7. その他の溶出物

(1) モノマー及びオリゴマー成分

射出成形された食器を試料として用いたモノマー及びオリゴマーの溶出試験が実施されている。各溶出量を表 Π -10-1(参照 1、14)、検出化合物の略号一覧を表 Π -10-2に示す。この試験では、ポリエステルに対して比較的強い溶出力を有するエタノール/水=50/50を擬似溶媒として用い、溶出条件は食品衛生法において食器の溶出条件として規定されている条件 a(60°C30分間)、及び実際の使用状況を考慮した条件 b(還流温度まで加熱した溶媒に浸漬した後、室温で30分間放置。)、すなわち、食器に加熱した食品を入れ食事をする場合を想定したと考えられる条件の2条件で溶出量が測定されている。条件c(還流120分)についても実施されているが、これは条件a及びbで検出された成分が試料由来であることを確認するためのものと考えられ、実際の製品の使用条件とは大きく異なる。また、高温下ではポリマーの一部がエタノールとエステル交換反応を起こし、分解物が生成する。そのため、条件cの検出量には溶出時の分解により生じた分解物の量も含まれる。

検出されたピークのうち、いくつかは同定が困難であり、その構造は不明であったが、試料は添加剤を使用していないものであることから、これらはモノマー中の不純物、ポリマー重合時の副生成物、又は溶出時にモノマーやオリゴマーが水若しくはエタノールと反応して生成した物質と考えられる。検出量については、2,6-ナフタレンジカルボン酸 (NDCA) 又は 2,6-ナフタレンジカルボン酸モノ (2-ヒドロキシエチル) (MHEN) の検量線による定量値であるため概算値ではあるが、条件 b において、モノマーである b BHEN の溶出量は b 1 ppb 以下、その他のモノマーと推定される物質の溶出量は最大で b 2 ppb、オリゴマーと推定される物質の溶出量は b 1 ppb 以下であり、検出成分の合計量は条件 b 2 ppb 未満と推定される。

表Ⅱ-10-1 モノマー及びオリゴマー成分の溶出試験結果(参照1、14)

			70 00 0000		•
試験試料、	八七久世		溶出	条件と検出量 ¹⁾ (ppb)
溶出方法、	分析条件 (分析法)	検出成分	a. 60℃	b. 還流→	c. 還流
擬似溶媒	(万勿云)		×30 分	常温×30 分 2)	×120 分 ³)
		NDCA	<1	<1	8
		モノマー類(m/z 228) ⁵⁾	<1	2	17
射出成形、		BHEN ⁵⁾	<1	<1	8
食器(ボウル)、	. .	unknown ⁵⁾		<1	<1
	モノマー	MMNDC ⁵⁾	<1	<1	3
2 mL/cm ²	成分分析 条件	unknown ⁵⁾		<1	2
浸漬、	采件 (HPLC-	unknown ⁵⁾			3
	UV)	unknown ⁵⁾	<1	<1	2
エタノールノフト	0 1	unknown ⁵⁾	<1	<1	1
=50/50		unknown ⁵⁾		<1	1
		DMNDC ⁵⁾			
		MHEN			
試験試料、	分析条件		溶出	条件と検出量 1)(ppb)
溶出方法、	(分析法)	検出成分	a. 60℃	b. 還流→	c. 還流
擬似溶媒			×30 分	常温×30 分 2)	×120 分 ³)
射出成形、	オリゴマ	unknown ⁶⁾			<1
食器(ボウル)、	一成分分	unknown ⁶⁾			1
	析条件	unknown ⁶⁾	<1	<1	10

2 mL/cm ²	(HPLC-	MHEN エチルエステル(m/z 288) ⁴⁾	<1	1	15
浸漬、	UV)	6)			
		EG/NDCA=3/2(m/z 546) ⁶⁾	<1	<1	4
エタノールノナ		DEG/NDCA=1/1(m/z 304)			<1
=50/50		6)			
		MHEN			
		unknown ⁶⁾			<1
		unknown ⁶⁾			<1
		モノマー類(m/z 288) ⁶⁾		<1	1
		EG/DEG/NDCA=1/1/2ェチル			2
		エステル(m/z 574) ^{4) 6)}			
		オリゴマー類(m/z 468) ⁶⁾		<1	1
		環状 2 量体(m/z 484) 6)	<1	<1	4
		オリゴマー類(m/z 424) ⁶⁾	<1	<1	3
		オリゴマー類(m/z 572) ⁶⁾			5
		EG/NDCA=2/2 エチルエステル	<1	1	11
		(m/z 530) ^{4) 6)}			
		環状 EG/NDCA=3/2(m/z		<1	<1
		528) 6)			
		unknown ⁶⁾			<1
		unknown ⁶⁾			<1
		オリゴマー類 ⁶⁾			<1
		オリゴマー類 ⁶⁾			3
		環状 EG/NDCA=4/3(m/z			<1
		771) 6)			
		EG/NDCA=4/4(m/z 987) ⁶⁾	<1	<1	13
		環状 3 量体 ⁶⁾			<1
		環状 4 量体 6)			<1
		unknown ⁶⁾			<1

- 1) 検出下限値は1 ppb とした。空欄は検出されなかったことを示す。
- 2) 使用実態に基づく溶出条件。
- 3) 強抽出条件。検出成分の一部はエタノールとのエステル交換反応による分解物。検出成分が PEN 試料由来であることを確認するための条件と考えられる。
- 4) 擬似溶媒中のエタノールと反応し、エチルエステル化合物が生成したものと推定。
- 5) 検出量は NDCA の吸光度から作成した検量線により定量した概算値。
- 6) 検出量は MHEN の吸光度から作成した検量線により定量した概算値。
- 注)検出成分の記載は原著の記載に従った。

m/z:質量分析計 (MS) により観測された検出成分の分子量。

unknown:同定が困難であった成分、又は、MS測定では検出されなかった成分。

表Ⅱ-10-2 検出化合物の略号一覧

略語	化合物	分子式	分子量
NDCA	2,6-ナフタレンジカルボン酸	$C_{12}H_8O_4$	216
DMNDC	2,6-ナフタレンジカルボン酸ジメチル	C ₁₄ H ₁₂ O ₄	244
MMNDC	2,6-ナフタレンジカルボン酸モノメチル	$C_{13}H_{10}O_4$	230
BHEN	ビスヒドロキシエチレン-2,6-ナフタレート	$C_{16}H_{16}O_{6}$	304
MHEN	2,6-ナフタレンジカルボン酸モノ(2-ヒドロキシエチル)	$C_{14}H_{12}O_5$	260
	繰り返し単位2量体(環状)	$C_{28}H_{20}O_{8}$	484
	繰り返し単位3量体(環状)	$C_{42}H_{30}O_{12}$	726
	繰り返し単位4量体(環状)	$C_{56}H_{40}O_{16}$	968

DEG/NDCA=1:1

EG/NDCA=2:2 IFNIXTN

EG/DEG/NDCA=1:1:2 エチルエステル

く参考>8

(2) ホルムアルデヒド及びアセトアルデヒド

PET においては、製造過程における反応副生成物としてホルムアルデヒド及びアセトアルデヒドが生成され、PET ボトル入りミネラルウォーター中への移行が知られているが、健康に懸念があるレベルではないと報告されている(参照 48、49、52)。EU 委員会規則(EU)No 10/2011 では、ホルムアルデヒド及びアセトアルデヒドについて移行限度値を定めており、ホルムアルデヒドは 15 mg/kg 以下、アセトアルデヒドは 6 mg/kg 以下としている。PEN は原料の一部、触媒及び重合方法が PET の製造と類似するためこれらの物質が生成する可能性が考えられたことから、国内で流通している代表的な PEN 製食器を試料として、ホルムアルデヒド及びアセトアルデヒドの溶出試験が実施された。試験結果を表 Π -11に示す(参照 48)。60 \mathbb{C} 30 分間の溶出条件ではホルムアルデヒド及びアセトアルデヒドともに検出されなかった(0.01 ug/mL 以下)。

⁸ PEN の製造原料として使用されている物質ではないため参考とした。

表Ⅱ-11 ホルムアルデヒド及びアセトアルデヒドの溶出試験結果(参照48)

試験試料	溶出条件	擬似溶媒	溶出物質	溶出量	分析法
食器	60℃×30 分	水	ホルムアルデ	不検出	GC/MS
			ヒド	(0.01	
				μg/mL以	
				下)	
(新品)	60℃×30 分	水	アセトアルデ	不検出	GC/MS
			ヒド	(0.01	
				μg/mL以	
				下)	

Ⅲ. ハザード⁹となりうる物質の検討

1. モノマー

現在、国内で食品用途の PEN 製品の製造に使用されるモノマーは、DMNDC 及び EG のみである。また、EU では、PEN のモノマーとして DMNDC 及び EG のほか、DMT、DEG 及び CHDM の使用も認められており、これらについて、食品への移行限度値を設定している。以上から、我が国においては、モノマーについて、DMNDC、EG 及び BHEN が主なハザードとなりうる物質と考えられた。一方、DMT、DEG 及び CHDM については、現時点では使用実態がないが、今後使用される可能性が否定できないことから参考物質として扱うこととした。

PEN 製食器又はボトルから DMNDC、EG 及び DEG は検出されなかった(擬似溶媒及び溶出条件: DMNDC 及び EG の場合、水、3%酢酸又は 15%エタノールで 40°C×10 日間、DEG の場合、15%エタノールで 40°C×10 日間。検出下限値はそれぞれ 0.01、3.1 及び 3.1mg/kg)。また、PEN 製食器から BHEN 類縁物質と推定される物質の溶出が認められ、BHEN の溶出量は最大で 1 ppb 程度であり、その他モノマーと推定される物質の溶出量の最大値は 2 ppb であった(擬似溶媒及び溶出条件: エタノール/水=50/50、還流後常温×30分)。

DMT 及び CHDM の溶出データは存在しなかった。

2. 重合触媒

現在、国内で食品用途の PEN 製品の製造には重合触媒として Sb 系無機化合物 又は Ge 系無機化合物が使用される。また、EU では添加剤としての三酸化アン チモンの使用に対して食品への移行限度値を設定している。以上から、重合触媒 については、Sb 系無機化合物及び Ge 系無機化合物がハザードとなりうる物質と 考えられた。

国内で使用されている代表的な PEN 製食器を試料として実施した溶出試験において、Sb の溶出量は $0.05~\mu g/mL$ 以下、Ge の溶出量は $0.1~\mu g/mL$ 以下、重金属の溶出量は $1~\mu g/mL$ 以下であった(擬似溶媒及び溶出条件:4%酢酸、60 $\mathbb{C} \times 30$ 分)。

9 ハザード(危害要因)とは、人の健康に悪影響を及ぼす原因となる可能性のある食品中の物質または食品の状態をいう。

3. 添加剤

現在、国内で食品用途の PEN 製品の製造に使用される添加剤は二酸化チタンのみである。また、欧米の規制では、二酸化チタン以外の添加剤の使用が認められている。以上から、添加剤については、今後、二酸化チタン以外の添加剤が使用される可能性は否定できないが、現在の使用実態を考慮し、二酸化チタンのみをハザードとなりうる物質とした。

二酸化チタンの溶出データは存在しなかった。

4. ポリマー

PEN ポリマーの分子量は約5,000~100万、その重量平均分子量は約70,000である。米国の規制では固有粘度による規格が存在するが、分子量やその分布に関する制限はない。PEN ポリマーは耐薬品性、耐加水分解性に優れるため、食品との接触によりポリマーの移行や分解が起こる可能性は極めて低い。また、分子量が1,000を超えるポリマーは通常生体内に吸収されないため、ポリマー自体の健康リスクは最小限であるとされている(参照44)。

以上から、PEN のポリマーについてはヒトの健康に影響を与える可能性は低いと考えられる。

5. その他

食品衛生法では個別規格が設定された合成樹脂に対して、溶出物等の総量規制として蒸発残留物試験が規定されており、欧米においても類似の規制が存在する。現在国内で流通している食品用途の PEN 製品又はこれらと同様の製造方法で作成したシートを試料として実施された蒸発残留物試験等の溶出量は数 $\mu g/mL$ 以下であった。蒸発残留物試験等においては、その対象となる物質は不特定であるが、実施された試験に用いた試料は二酸化チタンを除き添加剤が使用されていないものであることから、これらの試験における溶出物の大部分は製造時の副生成物であるオリゴマー類と推察される。

PEN の分子量分布においては、僅かではあるが、分子量 1,000 程度の物質が製品中に存在していることが確認されている。また、表 II -10-1 に示した溶出試験結果は、微量ではあるが、モノマーの反応物やオリゴマー等の製造時の副生成物と考えられる分子量 1,000 以下の物質の溶出が確認されている。しかし、これら全ての物質の同定はされていない。

6. ハザードとなりうる物質

評価要請は、PENを主成分とする合成樹脂製の器具又は容器包装につき新たに 規格を設定することである。現在流通している PEN 製品は、PEN のみの合成樹脂からなる製品であり、使用されるモノマーは DMNDC と EG のみ、使用される添加剤は二酸化チタンのみである。入手できた器具又は容器包装の溶出試験結果は同様の流通品を試料としたもののみであった。このため本専門調査会としては、現在流通している PEN 製品についてハザードとなりうる物質の検討を行った。

PEN の製造方法、各国の規制及び試験結果に基づき、PEN 製品の使用に際し、 食品を介してヒトに対して健康上の危害を与える可能性のある物質を検討した結 果、ハザードとなりうる物質は、モノマーである DMNDC、EG 及び BHEN、触媒に由来する Sb 系無機化合物及び Ge 系無機化合物、現在添加剤として使用されている二酸化チタン並びにオリゴマー等の製造時の副生成物と考えた。現在流通している PEN 製品からのハザードとなりうる物質として特定した物質を表Ⅲ-1に示す。

表Ⅲ-1 ハザードとなりうる物質

分類	ハザード
モノマー	DMNDC, EG, BHEN
触媒	アンチモン系無機化合物、ゲルマニウム系無機化合物
添加剤	二酸化チタン
製造時の副生成物	PEN の製造過程において生成すると考えられる物質(オリゴ
	マーを含む。)

また、表Ⅱ-10-1 に示した溶出試験結果において、微量ではあるが、分子量 1,000 以下の構造が同定されていない物質が確認されており、ハザードとなりうる物質 を全て特定することはできなかった。

Ⅳ. 毒性に関する情報

製造原料等について、厚生労働省からの提出資料及び国内外の機関による評価書等の記載に基づき、主として経口摂取における毒性情報の概要をまとめた。

1. 2.6-ナフタレンジカルボン酸ジメチル (DMNDC)

厚生労働省からの提出資料(参照 19~28)及び経済協力開発機構(OECD) 高生産量物質(HPV)点検プログラムにおいて、1999 年の第 9 回 SIDS 初期評価会合(SIAM)で評価された一連の初期評価文書類(スクリーニング用データセット: SIDS、SIDS 初期評価報告: SIAR、SIDS 初期評価プロファイル: SIAP及び SIDS Dossie)(参照 3)を参照した。

(1) 体内動態

今般の評価において、関連する知見は入手できなかった。

(2) 実験動物における影響

実験動物を用いた経口投与による毒性試験について、表 \mathbb{N} -1 に試験結果の概要を示す。

表IV-1 DMNDCの NOAEL 等

試験	方法	結果	NOAEL 等	出典
			(mg/kg 体重/日)	
急性毒性	経口 LD ₅₀ : ラット 2,000 m	参照 19		
	経口 LD ₅₀ : ラット 5,000 m	g/kg 体重超		参照 20

反復投	SD ラット(雌雄各 12 匹/	一般状態、体重推移、摂餌量、血	反復投与毒性	参照 21
与毒	群)、強制経口投与(0、30、	液学的検査、血液生化学検査、	NOEL: 1,000 [参	
性・生	100、300、1,000 mg/kg 体	器官重量 [、] 剖検所見、病理組織	照 21]	
殖発生	重/日)	学的検査について投与に起因す		
毒性併	雌雄とも交配前 14 日から	る変化なし		
合	雄:49 日間、雌(哺育4日の	生殖指標及び発生指標に変化、	生殖·発生毒性	
	前日まで):41~53 日間	異常なし	NOEL: 1,000 [参	
			照 21]	
反復投	SD ラット(雌雄各 20 匹/	全身毒性、体重増加、摂餌量、	NOEL: 3,032.3	参照 22
与毒性	群)、混餌投与 0, 0.2, 1.0,	臨床状態、血液学的検査、血液	(雄)、3,599.6(雌)	
	5.0%(雄: 0、113.4、580.9、	生化学的検査、尿検査、眼検査、	[参照 22]	
	3,032.3 mg/kg 体重/日、雌:	剖検所見、臓器重量、病理組織		
	0,138.6,711.8,3,599.6	学的検査について投与に関連す		
	mg/kg 体重/日)	る影響なし		
	13 週間			

NOAEL等は、[]内に示した参照文献に従った。

(3)遺伝毒性試験

遺伝毒性試験の結果の概要を表IV-2に示す。

表IV-2 DMNDCの遺伝毒性試験結果

試験系	対象	試験条件	結果	出典	
in vitro					
復帰突然	Salmonella typhimurium	0、667、1,000、3,333、6,667、10,000 μg	陰性	参照 23	
変異	TA98、TA100、TA1535、	/ プレート、(+/-S9)			
	TA1537、TA1538				
	S.typhimurium	0、313、625、1,250、2,500、5,000 μg/	陰性[参	参照 24	
	TA98、TA100、TA1535、	プレート (+/-S9)	照 3、24]		
	TA1537, Escherichia coli				
	WP2 uvrA				
遺伝子突	チャイニーズハムスター	0、62.5、125、250、500、1,000 μg/mL、	陰性	参照 25	
然変異	卵巣細胞(CHO-K1-BH4)	5 時間処理(+/-S9)			
染色体異	チャイニーズハムスター	0、600、1,200、2,400 μg/mL、6 時間処	陰性	参照 26	
常	肺細胞(CHL/IU)	理(+/-S9) 、又は 0、300、600、1,200、	[参照 3、		
		2,400 μg/mL、24 及び 48 時間処理 (-S9)	26]		
	チャイニーズハムスター	0、313、625、1,250、2,500 μg/mL、2 時	陰性	参照 27	
	卵巣細胞(CHO-K1)	間処理(+S9)又は 10 時間処理(-S9)			
in vivo			·	·	
小核試験	ICR マウス骨髄細胞	0、1,250、2,500、5,000 mg /kg 体重、単	陰性	参照 28	
		回腹腔内投与後 24、48 及び 72 時間に骨			
		髓採取			
L	1				

遺伝毒性試験の結果は、出典の参照文献の記載に従った。また、結果の後に[]を付したものは、[]内に示した参照文献に従った。

(4) ヒトにおける影響

今般の評価において、関連する知見は入手できなかった。

(5) 国内外の機関による評価等

DMNDC について、OECD SIDS では、ラットにおける経口 LD₅₀ は 2,000 mg/kg 体重を超えるとしている。OECD テストガイドラインに従う反復投与毒性/生殖発生毒性併合試験では毒性影響はみられず、反復投与毒性及び生殖発生毒性の NOAEL を 1,000 mg/kg 体重/日としている。また、 $in\ vitro\ o$ 復帰突然変異試験及び染色体異常試験の結果が陰性であったことから、DMNDC に遺伝毒性はないとしている。(参照 3)

2. エチレングリコール (EG)

財団法人 化学物質評価研究機構・独立行政法人 製品評価技術基盤機構 (CERI・NITE)(2005)の有害性評価書(参照 4)、OECD の第 18 回 SIAM(2004)で評価された初期評価文書類(参照 29)、米国毒性物質疾病登録機関(ATSDR)(2010)の毒性学的プロファイル(参照 30)、米国国家毒性計画・ヒト生殖リスク評価センター(NTP-CERHR 2004)のモノグラフ(参照 31)等を参照した。

(1) 体内動態

雄のラットに EG を単回経口投与(10 mg/kg 体重)すると、血中濃度は投与後 0.8 時間で最高濃度に達し、12 時間後にはほとんど消失する(Frantz et al. 1996c)。

EG はアルコール脱水素酵素によりグリコールアルデヒドに変換される。グリコールアルデヒドの半減期は短く、アルデヒド脱水素酵素及びアルデヒド酸化酵素により、速やかにグリコール酸及びより少量のグリオキサールにそれぞれ変換される。グリコール酸はグリコール酸酸化酵素又は乳酸脱水素酵素でグリオキシル酸へ酸化される。グリオキシル酸はギ酸、グリシン又はマレイン酸類を経て呼気中の二酸化炭素まで分解、又はシュウ酸に分解され尿中排泄されると考えられる(Slikker et al. 2004;参照 30 より引用)。

雌雄の SD ラットに 14 C 標識した EG を単回経口投与(10 mg/kg 体重)すると、96 時間以内に呼気中に二酸化炭素として投与量の $42\sim48\%$ が排泄され、尿中には $25\sim26\%$ 、糞中には $2\sim4\%$ が排泄される(Frantz et al. 1989、1996b、c;参照 30 より引用)。また、尿中排泄については、雌の SD ラットに 13 C 標識した EG を単回強制経口投与すると、10 mg/kg 体重投与のときでは 12 時間以内に投与量の 16%が主に EG として、2,500 mg/kg 体重投与のときでは 24 時間以内に投与量の 70%がほぼ等量の EG とグリコール酸として尿中排泄された (Potteger et al 2001;参照 29 より引用)。

(2) 実験動物における影響

実験動物を用いた経口投与による毒性試験のうち、比較的低い NOAEL の値等が得られている試験について、表IV-3 に試験結果の概要を示す。

表IV-3 EGのNOAEL等

12.14	C LU O NONEL 47		I	1
試験	方法	結果	NOAEL 等	出典
			(mg/kg 体重/日)	
急性毒	_	/kg、ラット:4,000~10,020 mg/kg、	モルモット:6,610	参照 4
性	mg/kg、イヌ:7,350 mg/kg、ネコ:1,650 mg/kg			
反復投	B6C3F1 マウス (雌雄各 10	2.5%以上:腎臓のネフローゼ、	NOEL: 1.25%[参	参照 65
与毒性	匹/群)、混餌投与(0、0.32、	肝臓の小葉中心性の変性(雄)	照 65 (mg/kg 体	
	0.63、1.25、2.5、5.0%)		重/日単位への換	
	13 週間		算値の記載な	
			し)]、NOAEL:	
			1.25% (1,900	
			mg/kg 体重/日相	
			当)[参照 4]、	
			3,230 (1.25%を換	
			算)[参照 30]	
	B6C3F1マウス(雌雄各 60	12,500 ppm 以上:肝細胞硝子	NOAEL: 1,500	US NTP
	匹/群)、混餌投与(雄:0、	様変性(雄)、肺動脈中膜細胞の	(雄)[参照 4]、	1993(参照
	6,250、12,500、25,000	過形成(雌)	LOAEL: 3,000	4 より引用)
	ppm: 0, 1,500, 3,000,	25,000 ppm: 尿細管、尿道、膀胱	(雌)[参照 4]	
	6,000 mg/kg 体重/目相当、	にシュウ酸と思われる結晶、結石		
	雌:0、12,500、25,500、	(雄)		
	50,000 ppm : 0、3,000、	50,000 ppm: 肝細胞硝子様変性		
	6,000、12,000 mg/kg 体重	(雌)		
	/日相当)			
	103 週間			
	SD ラット(雌雄各 10 匹/	(雄)	NOAEL: 554	参照 66
	群)、飲水投与(雄:0、0.25、	1.0%以上:腎臟重量の増加、腎	(雄)、1,108(雌)	
	0.5, 1.0, 2.0%: 0, 227,	臓尿細管の拡張、尿細管の変性、	[参照 4]	
	554、1,108、2,216 mg/kg	尿細管及び腎盂へのシュウ酸カルシウム		
	体重/日、雌:0、0.5、1.0、	の沈着、炎症		
	2.0, 4.0%: 0,554,1,108,	2.0%:死亡、最終体重低値		
	2,216、4,432 mg/kg 体重/	(雌)		
	日;飲水量を 100 mL/kg 体	2.0%以上:腎臓尿細管の拡張、		
	重/日として換算)	尿細管の変性、尿細管及び腎盂		
	90 日間	へのシュウ酸カルシウムの沈着、炎症		
		4.0%:死亡		
	F344 及び Wistar ラット	150 mg/kg 体重/日以上 : 結晶尿	NOAEL: 150(両	Cruzan et
	(雄、各系統 10 匹/群)、混	500 mg/kg 体重/日以上(Wistar)	系統)[参照 30] 1)	al. 2004(参
	餌投与(0、50、150、500、	及び 1,000 mg/kg 体重/日		照 30 より
	1,000 mg/kg 体重/日)	(F344): 腎臟重量増加、飲水量		引用)
	16 週間	増加、尿量増加、尿比重低下		
		500 mg/kg 体重/日以上(Wistar)		
		: 腎症を伴う尿細管のシュウ酸カルシ		
		ウムの結晶沈着		
		500 mg/kg 体重/日(F344): 尿細		
		管の結晶析出		
		500 mg/kg 体重/日以上		
		(F344): 硝子様腎症		
	<u> </u>	·/ - 114 4 14+14/444	1	

	Wistar Han ラット(雄 10 ~15匹/群)、混餌投与(0、 50、150、300、400 mg/kg 体重/日) 1年間	300 mg/kg 体重/日以上:死亡/ 瀕死、無排便、ケージ内の血液、 赤色尿、口周囲及び下腹部の汚れ、体重減少、体重増加抑制、腎 臓の相対及び絶対重量の増加、 肺の二次所見を伴う腎臓、膀胱 の肉眼的病理所見、腎症	NOAEL: 150 [参 照 29]	Dow Chemical Co. 2005(参 照 29より 引用)
	F344 ラット(雌雄各 130 匹)、混餌投与(0、40、200、 1000 mg/kg 体重/日) 2 年間	200mg/kg 体重/日以上:結晶尿 (雌雄)、肝の脂肪変性(雌) 1,000mg/kg 体重/日:腎障害(シュウ酸塩沈着)による全数死亡 (雄)、腎臓重量増加(雌雄)、腎臓の糸球体萎縮、尿細管の拡張、 尿細管上皮の過形成、慢性腎症 (雄)、腎臓のシュウ酸塩沈着(雌)	NOAEL: 40 [参 照 4(雌雄)、参 照 30(雌)] NOAEL: 200[参 照 32]	De Pass et al. 1986a (参照 4、30、 32 より引 用)
発がん 性	B6C3F1マウス(雌雄各 60 匹/群)、混餌投与(雄:0、 6,250、12,500、25,000 ppm:0、1,500、3,000、 6,000 mg/kg 体重/日相当、 雌:0、12,500、25,500、 50,000 ppm:0、3,000、 6,000、12,000 mg/kg 体重/日相当) 103 週間	投与に関連した腫瘍の発生はみられず。	記載なし	US NTP 1993 (参 照 4 より引 用)
	ICR マウス(雌雄各 80 匹/ 群)、混餌投与 (0、40、200、 1000 mg/kg 体重/日) 2 年間	投与に関連した腫瘍の発生はみ られず。	記載なし	De Pass et al. 1986a (参照 4より 引用)
	F344 ラット(雌雄各 130 匹/群)、混餌投与(0、40、 200、1000 mg/kg 体重/日) 2 年間	投与に関連した腫瘍の発生はみられず。 1,000 mg/kg 体重/日:腎障害により全数死亡(雄)	記載なし	De Pass et al. 1986a (参照 4より 引用)
生殖· 発生毒 性	CD-1 マウス(雌雄各20匹/群)、飲水投与(0、0.25、0.5、1.0 w/v%) 14 週間	1.0%: 交配ペア当たりの F1 胎 児数減少、同腹生存胎児数減少、 顔面異常・頭蓋サイズの縮小 (F1 児動物)	NOAEL: 840 [参 照 4 (0.5 w/v% を換算)]	Lamb et al. 1985 (参 照 4より引 用)
	CD-1マウス(雌 20 匹/群)、 強制経口投与(0、750、 1,500、3,000 mg/kg 体重/ 日) 妊娠 6~15 日、妊娠 17 日に 剖検	750 mg/kg 体重/日以上:体重減少、骨格奇形増加(胎児) 1,500 mg/kg 体重/日以上:体重増加抑制、妊娠子宮及び肝臓重量低値(母動物) 3,000 mg/kg 体重/日:腹当たりの生存胎児数減少	NOAEL: 750(母動物)[参照 30] LOAEL: 750(発生毒性)[参照 30]	参照 67
	CD-1 マウス(雌 22~27 匹/群)、強制経口投与(0、 50、150、500、1,500 mg/kg 体重/日) 妊娠 6~15 日、妊娠 18 日 に剖検	500mg/kg 体重/日:過剰肋骨(胎児) 1,500 mg/kg体重/日:体重低値、 椎弓癒合、肋骨癒合、過剰肋骨 (胎児)、体重低値(母動物)*	NOAEL: 150(発生毒性)[参照 4、参照 30 ²⁾] NOEL: 150(発生毒性)[参照 68]、1,500(母動物)[参照 68]	参照 68

	F344 ラット(雌 20~21 匹/	母動物毒性はみられず	NOAEL: 200 (発	参照 69	ì
	群)、混餌投与(0、40、200、	1,000 mg/kg体重/日:胎児の骨	生毒性)[参照 4]、		ı
	1,000 mg/kg 体重/日)	化遅延 3)	1,000(母動物及		ı
	妊娠6~15日、妊娠21日に		び発生毒性) [参照		ı
	剖検		31]		ı
					ì

NOAEL等は、[]内に示した参照文献に従った。

- * 有意差なし
- 1) 参照 30 では NOAEL を 150 mg/kg 体重/日としているが、本専門調査会としては、150 mg/kg 体重/日以上の投与群でみられた結晶尿について、腎組織に病理学的変化はみられなかったが、 毒性所見と判断し、この所見に基づき、NOAEL を 50 mg/kg 体重/日と判断した。
- 2) BMDL₁₀=76 mg/kg/日、短期経口 MRL (minimal risk level) =0.8 mg/kg/日 (参照 30)。
- 3) 著者は成熟遅延や胚毒性を示していると記載している (参照 69)。

(3) 遺伝毒性試験

遺伝毒性試験の結果の概要を表IV-4に示す。

表IV-4 EGの遺伝毒性試験

試験系	対象	試験条件	結果	出典		
in vitro						
復帰突然 変異	Salmonella typhi- murium TA97、 TA98、TA100、 TA1535、TA1537、 TA1538	(+/-S9)	陰性	McCann et al.1975、 Clark et al. 1979、 Pfeiffer and Dunkelberg 1980、 Zeiger et al. 1987、、 Kubo et al. 2002 (参 照 30より引用)		
前進突然 変異	S.typhimurium TA100(5·FU抵抗株)	(+/-S9)	陰性	Miller et al. 2005(参 照 30 より引用)		
DNA 損傷	E.Coli	(+/-S9)	陰性	McCarroll et al. 1981 (参照 30 より 引用)		
SOS 試験	E.Coli PQ37	10 μL(+S9)	陰性	von der Hude et al. 1988(参照 29より引 用)		
異数性誘導	Neurospora crassa	(-S9)	陰性	Griffiths 1979、 1981(参照 30 より引 用)		
遺伝子突然変異	Schizosaccharomyce s pombe	(+/-S9)	陰性	Abbondandolo et al.1980(参照 30より 引用)		
前進突然 変異	マウスリンパ腫細胞 L5178Y	~5,000 µg/mL(+/-S9)	陰性	McGregor et al. 1991(参照 29より引 用)		
		(記載なし)	陽性1)	Brown et al. 1980(参 照 4より引用)		
DNA 切断	ラット肝細胞	(-S9)	陰性	Storer et al. 1996(参		

				W 00 % 11/11
DNA 損傷	ヒト TK6 細胞	(-S9)	陰性	Hastwell et al.
				2006(参照 30 より引
				用)
染色体異	CHO 細胞	(+/-S9)	陰性	US NTP 1993(参照
常				4 より引用)
姉妹染色	CHO 細胞	(+/-S9)	陰性	US NTP 1993(参照
分体交換				4より引用)
in vivo				
優性致死	雄 F344 ラット	混餌投与(~1,000 mg/kg 体重/日)、	陰性	De Pass et al.
		155 日間		1986b(参照 29 より
				引用)
	雄ラット	後期精子細胞形成期に経口投与	陽性 2)	Barilyak and
		(120、1,200 mg/kg 体重)		Kozachuk 1985(参照
				4より引用)
染色体異	ショウジョウバエ	(記載なし)	陰性	Bhattacharya
常				1949(参照 4より引
				用)
	雄 Swiss マウス骨髄	腹腔内投与(638 mg/kg 体重/日、2 日	陰性	Conan et al. 1979(参
	細胞	間)		照 4より引用)
	雄ラット、骨髄細胞	単回強制経口投与(1,200 mg/kg 体	陽性 2)	Barilyak and
		重)		Kozachuk 1985(参照
				4より引用)
小核	雄 Swiss C.F.L.P.マ	経口投与(2,772、3,465、6,930、	陽性 3)	Conan et al. 1979(参
	ウス末梢血赤血球、骨	13,860 mg/kg 体重) 又は腹腔内投与		照 29 より引用)
	髄細胞	(1,386、2,772、6,930 mg/kg 体重)、		
		24 時間おきに 2 回投与		

照 30 より引用)

遺伝毒性試験の結果は、出典の参照文献の記載に従った。

- 1) 細胞毒性に関連したものとされている (参照 4)。
- 2) CERI・NITE は、この試験について US NTP (1993) に「EG の純度についての記載がないこと、対照の値が通常より低いこと、また、一次データの記載がない等の理由で信頼性が乏しい」と記載されていることを引用している (参照 4)。
- 3) 用量依存性は認められなかった (参照 29)。

(4) ヒトにおける影響

経口摂取において、EG が含まれている自動車の不凍液の誤飲や飲料水への 混入による死亡例が報告されている。ヒトでの急性毒性は実験動物より低濃度 で発症し、致死量は1,560 mg/kg 体重(大人で111 g/人)と推定され、死因は 中枢神経系の機能不全及び腎臓障害とされている(Amdur et al. 1991、

Cavender and Sowinski 1994、Gosselin et al. 1984;参照 4より引用)。

(5) 国内外の機関による評価等

EG について、CERI・NITE は、反復投与試験(経口投与)の最小の NOAEL をラットにおける 2 年間混餌投与による雌雄の腎臓障害に基づく尿中シュウ酸塩の結晶の排出を指標とした 40 mg/kg 体重/日としている。発がん性に関する試験では、投与に関連した腫瘍の発生はなかったとしている。生殖毒性のNOAEL は、マウスを用いた飲水投与試験における F1 胎児数、生存胎児数の

減少及び頭蓋異常を指標とした 840 mg/kg 体重/日、発生毒性の最小の NOAEL は、マウスにおいて妊娠 $6\sim15$ 日目に強制経口投与した試験における椎弓及び肋骨の異常を指標とした 150 mg/kg 体重/日としている。遺伝毒性について、 EG は遺伝毒性を有さないと判断した。 (参照 4)

米国環境保護庁 (EPA) / Integrated Risk Information System (IRIS) では、ラットを用いた 2 年間混餌投与試験に基づき、腎臓毒性を指標とした NOAEL 200 mg/kg 体重/日に不確実係数 100 を適用し、EG の経口 RfD を 2 mg/kg 体 重/日としている。なお、発がん性については評価していない(参照 32)。

ATSDR は Neeper-Bradley ら(1995)の試験でみられた胎児の総奇形及び骨格変異の発生率(腹単位)の増加を基に、EPA のベンチマークドースソフトウェア($Version\ 2.1.1$)を用いて、 BMD_{10} としてそれぞれ 113.84 及び 99.35 mg/kg 体重/日、 $BMDL_{10}$ としてはいずれも 76 mg/kg 体重/日を導いた。これに不確実係数 100(種差 10、個人差 10)を適用し、EG の経口の短期経口ばく露の毒性最小リスクレベル(MRL)を 0.8 mg/kg 体重/日と設定している(参照 30)。

<参考>10

3. テレフタル酸ジメチル (DMT)

CERI・NITE の有害性評価書 (参照 7) 及び OECD の第 11 回 SIAM (2001) で評価された初期評価文書類 (参照 33) を参照した。

(1) 体内動態

ラットに 14 C 標識した DMT を単回経口投与(20 又は 40 mg/匹)すると 48 時間以内に投与量の 75 ~ 81 %が尿中に、 $^{3.8}$ ~ $^{8.4}$ %が糞中に排泄された。また、 1 日おきに 5 回経口投与すると、投与期間中 10 日間以内に投与量の 77 ~ 79 %が尿中に、 14 ~ 16 %が糞中に排泄され、主な器官への残留は $^{0.1}$ %未満であった(Moffitt et al. 1975 ;参照 7 から引用)。また、各雄の 5344 ラット及び 14 C 標識した DMT を単回経口投与(投与量不明)した結果、ラットでは尿中の検出物はテレフタル酸であり、マウスでは尿中代謝物はテレフタル酸モノメチル 70 %、テレフタル酸 30 %及び痕跡量の DTM であった(Heck 1980 ;参照 33 より引用)。

(2) 実験動物における影響

実験動物を用いた経口投与による毒性試験のうち、比較的低い NOAEL の値等が得られている試験について、表 \mathbb{N} -5 に試験結果の概要を示す。

表IV-5 DMTの NOAEL 等

 試験
 方法
 結果
 NOAEL等 (mg/kg 体重/日)
 出典 (mg/kg 体重/日)

 急性毒 性
 経口 LD50: マウス及びラットで 3,200 mg/kg 超 性
 参照 7

¹⁰ 現在、DMT は食品用途の PEN の製造には使用されていないため参考とした。

反復投 与毒性	F344 ラット(離乳直後、 雌雄各13~18匹/群)、混餌 投与(0、5,000、10,000、 15,000、20,000、30,000 ppm:雄:0、660、1,320、 1,890、2,260、2,590 mg/kg 体重/日、雌:0、638、1,277、 1,790、2,290、3,020 mg/kg 体重/日) 2 週間	10,000 ppm 以上:体重低値(雌雄[参照 7]、雄[参照 33]) 15,000 ppm 以上:体重低値(雌[参照 33])、膀胱結石(雄) 20,000 ppm 以上:膀胱結石(雌)	NOEL: 660(雄)、 1,277(雌)[参照 33]	Chin et al. 1981 (参照 7、33より引 用)
	Long-Evans ラット(離乳 直後、雄 30 匹/群)、混餌投 与(0、2,500、5,000、10,000 ppm:0、152、313、636 mg/kg 体重/日) 96 日間	10,000 ppm:体重増加抑制	NOAEL: 263~ 368 [参照 7 (5,000 ppm を換 算)] NOEL: 313[参照 33]	Krasavage et al. 1973 (参照 7、33 より引用)
	F344 ラット(雌雄各 50 匹/ 群)、混餌投与(0、2,500、 5,000 ppm) 103 週間 (mg/kg 体重/日単位への 換算値の記載なし)	2,500 ppm 以上:慢性腎炎(雌雄、統計的有意差なし[参照 7]) 5,000 ppm:膀胱結石(雌、1 例)	記載なし	US NCI 1979(参照 7より引用)
発がん性	F344 ラット又は B6C3F1 マウス(雌雄 50 匹/群)、混 餌投与(0、2,500、5,000 ppm) 103 週間 (mg/kg 体重/日単位への 換算値の記載なし)	投与に関連した腫瘍の発生はみ られず	記載なし	US NCI 1979(参照 7より引用)
生殖· 発生毒 性	Long-Evans ラット (雌雄 20 匹/群)、混餌投与(0、 2,500、5,000、10,000 ppm) 雄:交配前 115 日間、雌: 交配前 6 日間〜授乳期間 (mg/kg 体重/日単位への 換算値の記載なし)	5,000 ppm 以上:離乳時体重の 低値(児動物)、生殖影響みられ ず(親動物)	NOEL: 636(親動物)、152(児動物) [参照 33 (10,000、2,500 ppm を換算)]	参照 75

(3)遺伝毒性試験

遺伝毒性試験の結果の概要を表IV-6に示す。

表IV-6 DMT の遺伝毒性試験

試験系	対象	試験条件	結果	出典			
in vitro	in vitro						
復帰突然 変異	Salmonella.typhi- murium TA98, TA100, TA1537, TA1538	3.3~333 μg/plate、(+/-S9)	陰性	Zeiger et al., 1982(参照 7より引 用)			
	S.typhimurium	$5\sim5,000$ µg/plate, (+/-S9)	陰性	Lerda, 1996;			

	TA98、TA100、 TA1537、TA1538			Monarca et al., 1991(参照 7より引 用)
	S.typhimurium TA98、TA100、 TA1535、TA1537、 TA1538	プレインキュベーション法、20~ 5,000 µg/plate、(+/-S9)	陰性	労働省 1996(参照 7 より引用)
前進突然 変異	マウスリンパ腫細胞 L5178Y	100 μg/mL、(+/-S9)	陰性	Myhr and Caspary 1991(参照 7より引 用)
染色体異常	CHO 細胞	0、1、3、10 mg/mL、(+/-S9)	陰性	Loveday et al. 1990(参照 7より引 用)
	CHL 細胞	2,000 mg/mL、(-S9)	陰性	Ishidate et al. 1988; 労働省 1996(参照 7 より引用)
小核	ヒト末梢血リンパ球	72 時間、50、100、250、500 μg/mL、 (-S9)	陰性	Monarca et al. 1991(参照 7より引 用)
		0.5, 5, 50, 500 μg/mL, (+/-S9)	陰性	Lerda 1996(参照 7 より引用)
姉妹染色 分体交換	CHO 細胞	0,1,3,10 mg/mL, (+/-S9)	陰性	Loveday et al. 1990(参照 7より引 用)
不定期 DNA 合 成	ヒト HeLa 細胞	1 時間、0.5、5、50、500、5,000 μg/mL、 (+/-S9)	陰性	Lerda, 1996、 Monarca et al. 1991(参照 7より引 用)
形質転換	ハムスター細胞 SA7/SHE	62~1,000 μg/mL、(-S9)	陰性	Heidelberger et al. 1983(参照 7より引 用)
in vivo				
伴性劣性 致死突然 変異	ショウジョウバエ	経口投与	陽性	Goncharova et al. 1984(参照 7より引 用)
		経口投与(3 日間)、1,000 ppm 腹腔内投与 400 ppm	陰性 陰性	Foureman et al. 1994(参照 7より引 用)
小核	B6C3F ₁ 雄マウス骨 髄細胞	腹腔内投与(単回)、39~194 mg/kg 体重(溶媒: DMSO、5 用量)、24、48、 72 時間処理	陽性 1)	Goncharova et al. 1988(参照 7より引 用)
		腹腔内投与(単回)、0、438、875、 1,750 mg/kg 体重(溶媒:コーン油)、 24 時間処理	陰性	Shelby et al. 1993(参照 7より引 用)

遺伝毒性試験の結果は、出典の参照文献の記載に従った。

¹⁾ CERI・NITE (参照 7) には、24 時間処理群に用量に依存した陽性結果が得られたが、陽性 結果は溶媒の影響による可能性があるとの Shelby ら (1993) の考察を引用している。

(4) ヒトにおける影響

今般の評価において、関連する知見は入手できなかった。

(5) 国内外の機関による評価等

DMT について、CERI・NITE は反復投与試験の NOAEL を雄ラットにおける 96 日間混餌投与試験から 5,000 ppm (263 mg/kg 体重/日) としている。発がん性については、B6C3F1 マウス及び F344 ラットの 103 週間混餌投与試験で投与に関連した腫瘍発生率の増加は認められていないとしている。生殖・発生毒性については、ラットを用いた混餌投与による 1 世代生殖・発生毒性試験で、5,000 ppm (被験物質の摂取量不明)以上投与群の児動物に離乳時の体重低値が認められたとしている。遺伝毒性については、得られているデータから、DMT は遺伝毒性を示さないと判断している。(参照 7)

DMT について、OECD SIDS では、ラットにおける経口 LD50 は 4,390 mg/kg 体重から 6,590 mg/kg 体重超としている。ラットにおける 96 日間混餌投与試験における体重増加量減少に基づき、NOEL を 313 mg/kg 体重/日 としている。発がん性については、げっ歯類に発がん性はないとし、遺伝毒性については、DMT は遺伝毒性を有さないとしている。生殖毒性については、ラットを用いた生殖毒性試験における親動物の NOEL を 636 mg/kg 体重/日及び児動物のNOEL を 152 mg/kg 体重/日としている。発生毒性についての証拠はないとしている。(参照 33)

<参考>11

4. ジエチレングリコール (DEG)

CERI の既存化学物質安全性評価シート(参照 9)、OECD の第 18 回 SIAM (2004) で評価された初期評価文書類(参照 29)及び EU の International Uniform Chemical Information Database (IUCLID) のデータセット (参照 34)を参照した。

(1) 体内動態

雄の F344 ラットに 14 C 標識した DEG を単回経口投与(50 mg/kg 体重)すると、投与後 3 日までに尿中から投与量の 85%、糞中から 0.7%、呼気中の二酸化炭素として 6%、組織(脂肪、腎臓、肝臓、筋肉、皮膚、精巣)及び血液中から 3%が回収された。DEG (50 mg/kg 体重)を経口又は静脈内投与後 6 時間までに尿中に DEG が投与量の $61\sim65\%$ 及び代謝物である 2-(ヒドロキシエトキシ)酢酸が $33\sim37\%$ 排泄された ($Mathews\ et\ al.\ 1991;$ 参照 29 より引用)。

(2) 実験動物における影響

実験動物を用いた経口投与による毒性試験のうち、比較的低い NOAEL の値等が得られている試験について、表IV-7 に試験結果を示す。

¹¹ 現在、DEG は食品用途の PEN の製造には使用されていないため参考とした。

表IV-7 DEGのNOAEL等

17.14	/ DEG 07 NOALE #			
試験	方法	結果	NOAEL 等 (mg/kg 体重/日)	出典
与	ダロID ・マウフ:19 900	- 99 700		参照 9
急性毒性		〜23,700 mg/kg、ラット: 12,565〜 ;、モルモット: 7,800〜14,000mg/k		参照 9
7111	, , ,	, , ,	rg、↑ × • 9,000	
	mg/kg、ネコ:3,300 mg/kg Sherman ラット(雌雄各 5	 1.0%:腎臓重量の増加	NOAEL:150[参照	Weil 1949
及復投 与毒性	匹/群)、混餌投与(0、	1.0%:有順里里の境別	NOAEL-150[参照 29]	wen 1949 (参照 29 よ
子母压	0.015, 0.062, 0.25, 1.0%:		29]	り引用)
	0.015, 0.002, 0.25, 1.0%. 0, 11, 46, 150, 850 mg/kg			9 51/11)
	(大工)、46、150、650 mg/kg (本重/日)			
	32 日間			
	Wistar ラット (雌雄各 10	0.17%以上:(雄) シュウ酸塩の結	NOAEL:105[参	Gaunt et al.
	匹/群) 混餌投与(混餌中 0、	1 1 1 1 1 1 1 1 1 1	照 29]	1976(参照
	0.085、0.17、0.4、2.0%:	0.4%以上:(雄) 腎機能変化(尿		29 より引用)
	雄:0、51、105、234、1,194	量增加)		29 & 9 JIM)
	mg/kg 体重/日、雌:0、64、	里相/川/		
	126、292、1,462 mg/kg 体			
	重/日)			
	225 日間			
	雄ラット、混餌投与(混餌	2%以上:膀胱腫瘍増加(膀胱腫	記載なし	Fitzhugh and
	中 1、2、4%)	瘍増加は膀胱結石の形成と関連	NO 174 01 0	Nelson 1946;
	2 年間	している可能性があると記載さ		(参照 34より
	(mg/kg 体重/日単位への	れている)		引用)
	換算値の記載なし)	全投与群:発育遅延、膀胱結石		
		の増加、肝臓及び腎臓の病変(詳		
		細不明)		
	Carworth Farms Nelson	4%:膀胱結石(雄、少数)、乳	NOEL:約1,200	Union
	ラット(離乳期、2か月齢、	頭腫(雄、1例)	[参照 29(2%を換	Carbide Co.
	1 歳齢、雌雄各 15~20 匹		算)]	1965 (参照
	/群)、混餌投与(0、2、4%)			29 より引用)
	90 日~2 年間			
発がん	F344ラット(雌雄各 50 匹	全臓器の腫瘍発生頻度に有意差	記載なし	Hiasa et al.
性	/群) 飲水投与(飲水中0、	みられず。		1990 (参照
	1.25、2.5%)			29 より引
	2 年間			用)
	(mg/kg 体重/日単位へ換			
	算するにはデータが不十			
	分と記載されている)			
生殖・	Swiss CD-1 マウス (雌雄	3.5%:母動物の体重、肝臓重量及	生殖毒性	Williams
発生毒	各40 匹/対照群、雌雄各20	び下垂体重量の減少、交配ペア	NOAEL: 3,060	et al 1990
性	匹/投与群)、飲水投与(0、	当たりの胎児数減少、同腹生存	[参照 29]	(参照 29 よ
	0.35, 1.75, 3.5%: 0, 610,	児数の減少、出生時の体重低値、		り引用)
	3,060、6,130 mg/kg 体重/	神経管閉鎖不全、口蓋裂		
	雄:交配前7日、雌:交配			
	前7日~同居期間98日~			
	雌雄分離後 3 週間		NO API	A III
	CD ラット(雌、25 匹/群)、	4.0 mL/kg 体重/目以上:飲水量	NOAEL: 1,118	参照 72、
	強制経口投与(0、1.0、	増加(母動物)、第10胸部脊椎	(母動物、発生毒	Union

4.0、8.0 mL/kg/∃ : 0、	分離(胎児)	性) [参照 29]	Carbide Co.
1,118、4,472、8,944 mg/kg	8.0 mL/kg 体重/日:死亡、肝重	NOEL: 1,118 (母	1992 (参照
体重/日)	量、病理所見を伴う腎重量増加、	動物、発生毒性)	29 より引用)
妊娠 6~15 日、妊娠 21 日	体重增加抑制 (母動物)	[参照 72]	
に剖検	体重低値、頭頂間骨や胸部椎骨		
	の骨化遅延 (胎児)		

NOAEL等は、[]内に示した参照文献に従った。

1) 参照 29 は、結晶尿を毒性影響とするより DEG の一部が代謝されたことを示すマーカーとした。

(3) 遺伝毒性試験

遺伝毒性試験の結果の概要を表IV-8に示す。

表IV-8 DEGの遺伝毒性試験

試験系	対象	試験条件	結果	出典
in vitro				
復帰突然	Salmonella typhi-	0、5~300 μmol / プレート、 (-S9)	陰性	Pfeiffer and
変異	murium TA98、			Dunkelberg 1980(参
	TA100、TA1535、			照 29 より引用)
	TA1537	プレインキュベーション法、0(水)、	陰性	参照 35
		100、333、1,000、3,333、10,000 μg		
		/ プレート、 (+/-S9)		
	S.typhimurium	$1.0, 3.0, 10, 30, 111.8 \text{ mg} / \mathcal{I}$	陰性	Union Carbide Co
	TA98、TA100、	レート、 (+/-S9)		1984 (Reports
	TA1535、TA1537、			47-20) (参照 29よ
	TA1538			り引用)
SOS 試験	E. coli PQ37	10 μL	陰性	Von der Hude et al.
				1988 (参照 29 より
				引用)
遺伝子	CHO 細胞 HGPRT 欠	30~50 mg/mL、(+/-代謝活性化系)	陰性	Union Carbide Co
突然変異	損株			1984 (Reports
				47-94) (参照 34 よ
				り引用)
姉妹染色	CHO 細胞	$30\sim50$ mg/mL, (+/-S9)	陰性	Union Carbide Co
分体交換				1984 (Reports
				47-94) (参照 34 よ
				り引用)
染色体	CHO 細胞	0、30、35、40、45、50 mg/mL、2	陰性	Union Carbide Co
異常		時間(+S9)又は、8及び12時間(-S9)		1984 (Reports
		処理		47-95) (参照 29よ
				り引用)

遺伝毒性試験の結果は、出典の参照文献の記載に従った。

(4) ヒトにおける影響

薬物の溶媒として DEG を用い、その飲用で腎毒性及び死亡がみられた例が 複数報告されており、心臓、消化管、肺、腎臓、膵臓、中枢と末梢神経及び肝 臓に対する障害もみられている(参照 9)。ハイチにおいて、DEG が混入したアセトアミノフェンシロップを摂取した 18 歳未満の子どもに急性腎不全による死亡が発生した事例を調査した研究では、DEG の推定毒性量(estimated toxic dose)の中央値は 1.34 mL/kg(範囲 $0.22\sim4.42$ mL/kg)であった。DEGが混入したアセトアミノフェンシロップを摂取し、かつ、毒性症状のない子どもにおいては、DEG の摂取量の中央値は 0.67 mL/kg($0.05\sim2.48$ mL/kg)であった(参照 73)。

(5) 国内外の機関による評価等

DEG について、OECD SIDS ではげっ歯類を用いた経口反復投与毒性試験において腎臓毒性を誘発することが示され、NOAEL を 105 mg/kg/日としている。細菌及び哺乳動物細胞を用いた *in vitro* 変異原性試験(±S9 活性化)、染色体異常及び姉妹染色分体交換試験結果は陰性であった。試験数は限られているが、動物における発がん性の証拠はないとしている。DEG のマウスを用いた 2 世代試験において 6,130 mg/kg においてペア当たりの出産回数及び腹当たりの生存児数が減少した。マウス及びラットを用いた発生毒性試験において1,000 mg/kg を超える用量で胎児の体重減少、骨格的変異などが観察された。(参照 29)

<参考>12

5. シクロヘキサンジメタノール (CHDM)

OECD の第 26 回 SIAM(2008)で評価された初期評価文書類(参照 11)並びに米国高生産量化学物質(HPV)チャレンジプログラムにおいて米国 EPA OPPT(Office of Pollution Prevention and Toxics)によりレビューされた screening-level hazard characterization(2007)、テストプラン(test plan)及びロバストサマリー(robust summary)(参照 36)を参照した。

(1) 体内動態

雌雄の SD ラットに 14 C 標識した CHDM (cis:trans=3:7) の単回強制経口投与 (40(雄)、400(雌雄) mg/kg 体重) すると、消化管から速やかに吸収され、48 時間以内に 95%が尿中に、2.5%が糞中に排泄された。尿中代謝物はシクロヘキサンジカルボン酸及び (4-ヒドロキシメチル) シクロヘキサンカルボン酸であった。血清中には CHDM 及び (4-ヒドロキシメチル) シクロヘキサンカルボン酸が検出され、血中からの CHDM の消失半減期は 13 分であった

(Divincenzo and Zieler 1980;参照 11より引用)。

(2) 実験動物における影響

実験動物を用いた経口投与による毒性試験のうち、比較的低い NOAEL の値等が得られている試験について、表 \mathbb{N} -9 に試験結果の概要を示す。

¹² 現在、CHDM は食品用途の PEN の製造には使用されていないため参考とした。

表IV-9 CHDMのNOAEL等

試験	方法	結果	NOAEL 等	出典
			(mg/kg 体重/日)	
急性毒	ラット(10 匹、用量ごと又		経口 LD ₅₀ : 3,200	Eastman
性	は総数)、強制経口投与、	6,400 mg/kg 体重:投与1時間	~6,400 [参照	Kodak Co.
	(400~6,400mg/kg 体重)、	以内に1匹死亡、総死亡数の記	11、36]	1965 (参照
	単回	載なし		11、36 より
				引用)
反復投	SD ラット、(雄 12 匹、雌	12.5 mg/mL:死亡(2/22)、血尿	NOAEL:	Eastman
与毒性	10 匹/群)、飲水投与(飲水	又は茶/赤色尿、軟便及び/又は便	479(雄)、754	Kodak Co.
	中 0、4.0、8.0、12.5	の減少、体重及び体重増加の減	mg/kg 体重/日	2000(参照
	mg/mL:雄:0、256、479、	少、摂餌量低下、尿タンパク増加	(雌)[参照 11、	11、36 より
	861 mg/kg 体重/日、雌 : 0、		36]	引用)
	440、754、1,754 mg/kg 体			
	重/日)			
	13 週間			
生殖・	SD ラット(雌雄各 12 匹/	【生殖・発生毒性】	NOAEL	Eastman
発生毒	群)、飲水投与(飲水中 0、	12.5 mg/mL: 精子の運動性低下	生殖毒性 1,360	Kodak Co.
性	4.0、8.0、12.5 mg/mL : 雄:	* (雄親動物)、生殖能に変化な	発生毒性 854	1996 (参照
	0、256、479、861 mg/kg	し(親動物)、生後 0~4 日の体重	全身毒性	11、36 より
	体重/日、雌:0、385、854、	及び体重増加量の減少、生後 0	479(雄)	引用)
	1,360 mg/kg 体重/日)	~4 日の生存率低下(児動物)	854(雌)	
	交配 56 日前~哺育 4 日、	【全身毒性】	[参照 36]	
	約 13 週間	12.5 mg/mL:血尿又は茶/赤変	NOEL: 854 (母	
		色尿、体重及び体重増加量の減	動物及び胎児毒	
		少、摂餌量減少 (雌雄の親動物)	性) [参照 11]	

NOAEL 等は、[]内に示した参照文献に従った。

(3)遺伝毒性試験

遺伝毒性試験の結果の概要を表IV-10に示す。

表IV-10 CHDMの遺伝毒性試験

試験系	対象	試験条件	結果	出典
in vitro				
復帰突然 変異	S.typhimurium TA98、TA100、 TA1535、TA1537、 TA1538、 S. cerevisiae D4	0 (DMSO) 、0.1、1.0、10、100、 500、1,000 (+S9 のみ) μg/プレート、 (+/-S9)	陰性	Litton Bionetics. Inc. 1977(参照 11 より引用)
	S.typhimurium TA98、TA100、 TA1535、TA1537、 E.coli WP2 uvrA	プレインキュベーション法、0 (水)、 33.3、100、300、1,000、3,000、5,000 μg / プレート、 (+/-S9)	陰性	NIER 2003c (参照 11 より引用)
染色体異 常	CHL/IU 細胞	0 (水)、1,000、2,000、5,000 μg/mL、 6 時間(+/-S9)又は 24 時間(-S9) 処理	陰性	NIER 2003d(参照 11 より引用)

^{*} 統計学的有意差なし

in vivo				
染色体異	SD ラット(雌雄各 5	0 (水)、500、1,000、2,000 mg/kg	陰性	Covance
常	匹/群)、骨髄細胞	体重、単回強制経口投与、18及び42		Laboratories Inc.
		時間処理		2000(参照 11 より引
				用)

遺伝毒性試験の結果は、出典の参照文献の記載に従った。

(4) ヒトにおける影響

今般の評価において、関連する知見は入手できなかった。

(5) 国内外の機関による評価等

CHDM について、OECD SIDS では、ヒトの健康への影響に関して以下のようにまとめている。

経口反復投与毒性について、OECD TG408 に従って実施されたラットを用いた CHDM の 13 週間飲水投与試験では、最高用量投与群の雄雌ともに、死亡、茶/赤変色尿、軟便又は便の減少及び体重減少がみられ、雄では対照群に比べ平均体重が減少した。この影響に基づき、NOAEL は、雄で 479 mg/kg 体重/日及び雌で 754 mg/kg 体重/日と判断した。

生殖毒性について、OECD TG421 に従って実施されたラットを用いた生殖/発生毒性スクリーニング試験において、CHDM を 13 週間飲水投与したところ、最高用量投与群に精子運動性の減少傾向がみられたが、生殖能への影響はなかった。最高用量投与群でみられた茶/赤変色尿に基づき、NOAEL は、雄で 479 mg/kg 体重/日、雌で 854 mg/kg 体重/日と判断した。1,360 mg/kg 体重投与群の児動物の生後 0 日の平均体重及び生後 0~4 日の生存率は対照群より低かった。いずれの用量群においても血液学的、臨床生化学的又は病理学的検査に影響は観察されなかった。精子運動性の減少と児動物の生存率に基づき生殖/発生毒性のLOAEL と NOAEL はそれぞれ 1,360 及び 854 mg/kg 体重と判断した。

遺伝毒性について、得られた遺伝毒性試験の情報は、*in vitrol in vivo* において、CHDM は遺伝毒性ではないことを示唆している。また、発がん性に関する情報は得られなかったとしている。(参照 11)

6. アンチモン (Sb)

(1) 食品安全委員会の評価

食品安全委員会が清涼飲料水の規格基準改正に係る化学物質として 2012 年に行った食品健康影響評価では、発がん性については、水溶性アンチモンの経口摂取による発がん性を示す知見は得られていない。遺伝毒性については、生体にとって特段問題となる遺伝毒性はないと考えられる。摂水量減少、摂餌量減少、体重増加抑制及び肝線維症等の肝臓の器質的変化がみられた酒石酸アンチモニルカリウムのラット 90 日間亜急性毒性試験のデータから、NOAEL はアンチモンとして 6.0 mg/kg 体重/日であり、不確実係数 1,000 (種差 10、個

体差 10、亜急性毒性所見からの外挿 10)で除した $6.0 \mu g/kg$ 体重/日をアンチモンの耐容一日摂取量(TDI)と設定した。(参照 39)

(2) 国内外の機関による評価等

国際機関では以下の TDI 等が設定されている。

世界保健機関(WHO)飲料水水質ガイドライン第4版(2011)(参照 40)

水質ガイドライン値: 0.02 mg/L (TDI: 6 μg Sb/kg 体重/日)

国際がん研究機関(IARC) (1989) の評価(参照 41)

- 三酸化アンチモン:グループ2B(ヒトに対して発がん性を示す可能性がある)
- 三硫化アンチモン:グループ3(ヒトに対する発がん性について分類できない)

7. ゲルマニウム (Ge)

(1) 体内動態

ラットに 10.0 mg の二酸化ゲルマニウム水溶液 13 (6.94 mg ゲルマニウム相当) を強制経口投与した結果、投与後 4 時間以内に投与量の 73.6%、投与後 8 時間以内に 96.4%が吸収された。投与後 8 時間以内にほとんどのゲルマニウムが吸収されたが、血中ゲルマニウム濃度は 4 µg/mL を超えることはなく、投与 4 時間後において、5.11 mg のゲルマニウムが吸収された場合に、血中のゲルマニウムの割合は投与量の 0.5 %未満であった。このことから、吸収されたゲルマニウムは速やかに血中から消失することが示唆された。(参照 74)

ラットに 100 mg/kg のメタゲルマニウム酸ナトリウムを腹腔内投与した結果、投与後 24 時間以内に投与量の 70%が排泄され(尿中に 64.8%、糞中に 4.7%)、投与後 5 日間以内に投与量の 91.8%(尿中に 78.8%、糞中に 13.0%)が排泄された。(参照 74)

ヒトにおいて、食品から摂取された二酸化ゲルマニウム等の無機ゲルマニウム化合物は、体内で吸収されやすく、全身に広く分布し、脾臓に最も高濃度に存在する。無機ゲルマニウムは主に腎臓から排泄され、半減期は $1\sim4$ 日であると報告されている(Casarett & Doull's Toxicology 6th ed.; 参照 61 より引用)。

(2) 実験動物における影響

実験動物を用いた経口投与による毒性試験のうち、比較的低い投与量で行われている試験について、表IV-11に試験結果を示す。

表IV-11 GeのNOAEL等

試験 NOAEL 等 出典 方法 結果 (mg/kg 体重/目) 経口 LD_{50} (二酸化ゲルマニウム):マウス:6,300 mg/kg、ラット:3,700 mg/kg参照 70 急性毒 Wistar ラット(雌、投与 体重減少(12週以降)、不活性 反復投 記載なし1) 参照 76 与毒性 群 20 匹、対照群 16 匹)、 及び気力低下(20週)、死亡(23 混餌投与(二酸化ゲルマニ 週、高窒素血症、1匹)、ヘマト

¹³ 投与前に二酸化ゲルマニウムを水酸化ナトリウム水溶液に溶解したものを pH 7.3 に中和。

ウム:混餌中 0、75 mg/kg 体重/日) 24 週間投与、投与開始 24、 26、40 週後に剖検 Long-Evans ラット(雌雄、 各群 52~56 匹)、飲水投与 (ゲルマン酸ナトリウ ム:ゲルマニウム元素とし て 5 μg/mL (0.3692 mg/kg 体重/日相当)) 離乳時から自然死まで投	クリット値低下(12週、32週、36週)、血中尿素窒素増加(28週、40週)、血清クレアチニン値低下(16週、20週、28週、32週)、クレアチニンクリアランス低下(24週)、ナトリウム排泄画分及び尿タンパク当たりのN・アセチル・β・D・グルコサミナーゼ値高値(24週)、血清リン酸塩高値(40週)、では高値(40週)、下生量増加、肝重量減少(いずれも24週)、尿細管変性率上昇(24週、26週、40週)体重低値(雄:540日齢、雌:360日齢、540日齢)、生存率低下(雄:9~27か月齢*、雌:360日齢、540日齢)、生存率低下(雄:9~27か月齢*、雌:360日齢、540日齢)、生均空腹時の治療症がよりでは(雄)、平均空腹時の流行がよりでは(雄)、平均空腹時の流行がよりでは、平均空腹時の流行がよりでは、120円のに値(雄)、平均空腹時の流行がよりでは、120円のに値(雄)、平均空腹時の流行がよりには、120円のにして、120円の場所を表しまり、120円の場所を表しまりには、120円のの場所を表しまりには、120円のの場所を表しまりには、120円のの場所を表しまりには、120円のの場所を表しまりには、120円ののは、120円のののののののののののののののののののののののののののののののののののの	記載なし ¹⁾	参照 77
与 CDマウス (雄:71 匹、雌: 65 匹)、飲水投与 (ゲルマ	タンパク尿の匹数増加(2+~ 4+、雌雄不明) ³⁾ 、腫瘍発生率 減少(雌雄不明)、肝臓での脂肪 変性の発生率増加(雌雄不明) 体重低値(雄:360、540日齢、 雌:540日齢)、生存率低下(雄:	記載なし ¹⁾	参照 78
ン酸ナトリウム: ゲルマニ ウム元素として 5 μg/mL ⁴⁾ (0.3692 mg/kg 体重/ 日)) 離乳時から自然死まで投 与	18か月齢)、寿命中央値短縮*、 寿命短縮 ⁵⁾ **(雌) ※腫瘍発生率の増加なし		
Lewis ラット(雄、6週齢、各群 5 匹、対照群 9 匹)混 餌投与(二酸化ゲルマニウム:150 mg/kg 体重/日: ①13週間投与又は②4週間投与の後 9週間対照群と同じ餌)、13週間	① : 摂餌量減少* (8 週以降)、不体重減少(12 週以降)、不活性及び気力低下(10 週以降)、血清クレアチニン増加、血中尿素窒素増加、血清総タンパク量低下、AST上昇、ALT上昇、血清リン酸塩上昇、クレアチニンクリアランス減少(いずれも13週)、遠位尿細管上皮のミトコンドリアの腫大*、腎重量増加、心臓重量減少、肝重量減少	記載なしり	参照 79
	②:死亡 ⁶⁾ (1/5匹)、血清クレ アチニン増加 (13週)、遠位尿		

	細管上皮のミトコンドリアの腫 大*	
アルビノラット(雄、 10 匹)、混餌投与及び 投与(二酸化ゲルマニ ⁷⁾ 、混餌:0.9、8.4、 mg/kg 体重/日、飲水 17、169 mg/kg 体重 13 週	が飲水 89.8 mg/kg 体重/日:死亡 ⁸⁾ 、 中 ウム 体重増加量減少*、 89.8 : 1.4、 飲水:	参照 80

* 有意差の記載なし

- ** 統計学的有意差なし
- 1) 単一用量の試験であるため、NOAEL は設定できない。
- 2) 寿命の長さ上位 10%の平均死亡日齢
- 3) 重症度の高いグレード 3+~4+に限って解析すると、蛋白尿の匹数について投与群と対照群と の間に有意差なし。
- 4) 全ての群の餌中にゲルマニウムを $0.32 \, \mu g/g$ (湿重量) 含む。餌由来のゲルマニウム一日推定 摂取量は $19.2 \, \mu g/kg$ 体重/日 (対照群)。
- 5) 寿命の長さ上位 10%の平均死亡日齢
- 6) 死因は悪液質と推測される(13週齢)。
- 7) 投与前に二酸化ゲルマニウム溶液を pH 7.3 に中和
- 8) 89.8 mg/kg 体重/日投与群 5 匹、8.4 mg/kg 体重/日投与群 1 匹 (いずれも投与開始 4 週間以内)、対照群 1 匹 (投与開始 7 週目)
- 9) 17 mg/kg 体重/日投与群 5 匹、169 mg/kg 体重/日投与群 8 匹(いずれも投与開始 4 週間以内) 10) 17 mg/kg 体重/日投与群について、投与開始 3 週間以内では著しい体重増加量の減少が認められ、死亡するラットがいたが、投与開始 4 週目以降まで生存したラットについては、対照群と比べ体重増加量の増加が認められた。

169 mg/kg 体重/日投与群について、投与開始3週間以内では、ほぼ体重増加が認められず、 生存したラットについて次の5週間では対照群と同様の体重増加量が認められ、その後、体重 増加は認められなかった。

(3)遺伝毒性試験

今般の評価において、関連する知見は入手できなかった。

(4) ヒトにおける影響

ゲルマニウムを摂取したヒトに腎不全、体重減少、倦怠感、胃腸障害、貧血、筋力低下、神経障害、骨髄障害、肝障害等がみられたという報告が複数報あるが、これらの報告のうち、無機ゲルマニウム及び二酸化ゲルマニウムの LOAEL はそれぞれ $0.9\sim6.7$ mg/kg 体重/日及び $0.7\sim23$ mg/kg 体重/日とされている(参照81)。

ヒトにおける経口摂取時の二酸化ゲルマニウムの TDLo(最小中毒量)は男性で 1,614 mg/kg 体重/22 週、女性では 1,660 mg/kg 体重/17 週であり、毒性の症

状としては食欲不振、悪心、嘔吐及び尿細管の変性(急性腎不全、急性尿細管壊死)が報告されている(参照 61)。

我が国において、36 mg/日 (0.58 mg/kg 体重/日 ¹⁴) の無機ゲルマニウムの錠剤をセルフメディケーションとして約6年間服用した女性において、食欲不振、頭痛、吐き気、末梢神経障害、書字困難、歩行困難、腎障害等が生じた。その後、同錠剤の服用を中止したものの、これらの症状の改善は認められず、肺炎及び敗血症を併発し死亡したという報告がある(参照 70、71)。

(5) 国内外の機関による評価等

今般の評価において、関連する知見は入手できなかった。

8. 二酸化チタン

国内の食品用途の PEN 製品の製造に添加剤として使用される二酸化チタンはナノ物質ではないことから、評価対象をナノ物質でない二酸化チタンに限定した。環境省 化学物質の環境リスク評価(2010)(参照 55)及び厚生労働省 初期リスク評価書(2011)(参照 56)を参照した。

(1) 体内動態

二酸化チタンを 0.25%の濃度で餌に添加してラットに投与(投与量の記載なし)した結果、7 日間で投与量の 92%が糞中に排泄され、そのほとんどが 2 日以内の排泄であった (参照 63)。ラットに二酸化チタン(粒子径 $0.5~\mu m$)を 10 日間強制経口投与(12.5~mg/kg 体重/日)した結果、体内のチタン 粒子は腸間膜のリンパ組織で最も多くみられ、次いで大腸や腹膜、肝臓にもあり、小腸や脾臓、肺でも僅かにみられたが、心臓や腎臓にはなかった。体内への取り込みは投与量の 11.9% と見積もられたが、胃や大腸等の組織を除外しても 6.5% が吸収されたと報告されている。(参照 47)

(2) 実験動物における影響

実験動物を用いた経口投与による毒性試験について、表IV-12 に試験結果の概要を示す。

表IV-12 二酸化チタンの NOAEL 等

試験	方法	結果	NOAEL 等	出典
			(mg/kg 体重/日)	
急性毒	経口 LD50: ラット及びマウ	スともに 10,000 mg/kg 体重		参照 56
性				
反復投	B6C3F1 マウス(雌雄各	死亡なし、体重増加への影響な	NOAEL: 13,000	NCI 1979
与毒性	50 匹/群)、混餌投与(0、	し、組織に影響なし	mg/kg 体重/日程	(参照 55
	0.625, 1.25, 2.5, 5, 10%)		度(10%を換算)	より引用)
	13 週間		以上[参照 55]	

¹⁴ 原著 (参照 7) に該当女性の体重は 62 kg と記されていることから、 $36 \text{ mg/H} \div 62 \text{ kg}$ 体重 = 0.58 mg/kg 体重/日と算出した。

	Fischer 344 ラット (雌雄	死亡なし、体重増加への影響な	NOAEL: 5,000	NCI 1979
	各 50 匹/群)、混餌投与(0、	し、組織に影響なし	mg/kg 体重/日程	(参照 55
	0.625, 1.25, 2.5, 5, 10%)		度 (10%を換算)	より引用)
	13 週間		以上[参照 55]	317147
	Fischer 344 ラット (雌雄	生存率、体重、組織への影響な	NOAEL:2,500	NCI 1979
	各 50 匹/群)、混餌投与(0、	L	mg/kg/日程度	(参照 55
	2.5、5%)		(5%を換算)以	より引用)
	103 週間		上[参照 55]	
	Ficher 344 ラット(雌雄	生存率、体重、血液、臨床生	NOAEL:2,500	Bernard et
	各 50 匹/群)、混餌投与	化学成分への影響なし	mg/kg/日程度	al. 1990(参
	(TiO ₂ で被覆した雲母	(・5%群の雄で副腎髄質過形成	(5%を換算)以	照 55より
	(TiO ₂ 28%、雲母 72%)	がみられた(26/50 匹、発生率	上[参照 55]	引用)
	を 0、1、2、5%)	は有意に高かった)。		
	130 週間	このため、1、2%群で未検鏡で		
		あった組織切片も含めて再検査		
		したところ、5%群での副腎髄質		
		過形成の発生率は依然として有		
		意に高かったが、対照群との差		
		は半減し、腫瘍も含めた副腎髄		
		質での増殖性病変の発生率は		
		5%群と対照群でほぼ同じであ		
		り、投与に関連した影響はなか		
		ったと判断された。)		
	モルモット (2匹)、経口	一般状態等に悪影響なし、組織	記載なし ¹⁾	Lehman
	投与 (0.6 g/日)	への影響なし		and Herget
	390 日間			1927(参照
	(mg/kg 体重/日単位への			55 より引
	換算値の記載なし)			用)
	ウサギ (2匹)、経口投与	一般状態等に悪影響なし、組織	記載なし1)	Lehman
	(3 g/日)	への影響なし		and Herget
	390 日間			1927(参照
	(mg/kg 体重/日単位への			55 より引
	換算値の記載なし)			用)
	ネコ (2匹)、経口投与 (3	一般状態等に悪影響なし、組織	記載なし ¹⁾	Lehman
	g/日)	への影響なし		and Herget
	390 日間			1927(参照
	(mg/kg 体重/日単位への			55 より引
	換算値の記載なし)			用)
	イヌ (1匹)、経口投与 (9	一般状態等に悪影響なし、組織	記載なし ¹⁾	Lehman
	g/日)	への影響なし		and Herget
	390 日間			1927(参照
	(mg/kg 体重/日単位への			55 より引
	換算値の記載なし)			用)
発がん	B6C3F1 マウス(雌雄各	雌では甲状腺の濾胞細胞腺腫の	記載なし	NCI 1979
性	50 匹/群)、混餌投与(0、	発生率に有意な減少傾向がみら		(参照 55 よ
	2.5、5%)	れたが、発生率に有意差なし		り引用)
	103 週間			
	(mg/kg 体重/日単位への			
	換算値の記載なし)			
	Fischer 344 ラット(雌雄	雄で外皮系の角化棘細胞腫、雌	記載なし	NCI 1979
	各 50 匹/群)、混餌投与(0、	で甲状腺のC細胞腺腫又は癌の		(参照 55 よ
-			•	

2.5、5%)	発生率に有意な増加傾向、雄で		り引用)
103 週間	白血病の発生率に有意な減少傾		
(mg/kg 体重/日単位への	向がみられたが、いずれも有意		
換算値の記載なし)	差のある変化ではなかった。		
Fischer 344 ラット(雌雄	130 週後も生存していた雄の	記載なし	Bernard et
各 60 匹/群)、混餌投与	10/17、10/16、13/16、22/25 匹、		al. 1990 (参照
(TiO2 で被覆した雲母を	雌の 16/23、7/12、7/16、17/20		55 より引用)
0、1、2、5%)	匹に単核細胞白血病がみられ、		
130 週間	その発生率は雄の5%群で有意		
(mg/kg 体重/日単位への	に高かった。しかし、試験期間		
換算値の記載なし)	中に死亡したラットを含めた全		
	数でみると、有意な発生率の増		
	加を示した腫瘍はなかった。		

NOAEL等は、[]内に示した参照文献に従った。

1) 単一用量の試験であるため、NOAELは設定できない。

(3)遺伝毒性試験

遺伝毒性試験の結果の概要を表IV-13に示す。

表Ⅳ-13 二酸化チタンの遺伝毒性試験

試験系	対象	試験条件	結果	出典
in vitro			1	
遺伝子突然変異	ネズミチフス菌	(+/-S9)	陰性	Dunkel et al. 1985、 Zeiger et al. 1988 (参 照 55より引用)
	大腸菌	(+/-S9)	陰性	Dunkel et al. 1985 (参照 55より引用)
	マウスリンパ腫細胞 (L5178Y)	(+/-S9)	陰性	Myhr and Caspary1991(参照 55 より引用)
	ラットII 型肺胞上皮 細胞(RLE-6TN)	(-S9)	陰性	Driscoll et al. 1997 (参照 55 より引用)
DNA 傷害	枯草菌	(-S9)	陰性	Kanematsu et al. 1980 (参照 55より 引用)
	マウス繊維芽細胞 (C3H10T1/2)	(-S9)	陰性	Poole et al. 1986(参 照 55より引用)
不定期 DNA 合成	ラット肝細胞	初代培養(·S9)	陰性	Tennant et al. 1987 (参照 55 より引用)
DNA 合成 の阻害	ヒト肺線維芽細胞 (WI-38)	(-S9)	陰性	Lemaire et al. 1982 (参照 55 より引用)
染色体異 常	チャイニーズハムス ター卵巣 (CHO-WBL)細胞	(+/-S9)	陰性	Ivett et al.1989 (参 照 55より引用)
姉妹染色 分体交換	チャイニーズハムス ター卵巣 (CHO-WBL)細胞	(+/-S9)	陰性	Ivett et al.1989(参 照 55より引用)
	チャイニーズハムス ター卵巣(CHO-K1)	(-S9)	陽性	Lu et al. 1998(参照 55 より引用)

	細胞			
小核	チャイニーズハムス ター卵巣(CHO-K5) 細胞	(+/-S9)	陰性	Miller et al. 1995 (参 照 55より引用)
	シリアンハムスター 胚細胞	初代培養(-S9)	陰性	Rahman et al. 2002 (参照 55 より引用)
	チャイニーズハムス ター卵巣 (CHO-K1) 細胞	(-S9)	陽性	Lu et al. 1998(参照 55 より引用)
in vivo	-			
伴性劣性 致死突然 変異	ショウジョウバエ	経口投与又は注射	陰性	Foureman et al. 1994 (参照 55より 引用)
体細胞突 然変異	ショウジョウバエ	経口投与	陰性	Tripathy et al. 1990 (参照 55 より引用)
DNA 傷害	ラット (肝細胞)	経口投与	陰性	Kitchin and Brown1989(参照 55 より引用)
染色体異 常	マウス (骨髄)	腹腔内投与	陰性	Shelby and Witt 1995(参照 55より 引用)
姉妹染色 分体交換	マウス (骨髄)	腹腔内投与	陰性	NTP(参照 55 より引 用)
小核	マウス (骨髄)	腹腔内投与	陽性	Shelby et al. 1993 (参照 55 より引用)
	マウス (骨髄)	腹腔内投与	陰性	Karlsson et al. 1991 (参照 55より引用)

遺伝毒性試験の結果は、出典の参照文献の記載に従った。

(4)ヒトにおける影響

経口摂取された二酸化チタンは実質的に無害と考えられている。ヒトが二酸化チタン約 450 g (1 ポンド)を経口摂取しても健康への影響が見られないまま 24 時間以内に排泄された報告がなされている。 (参照 50、53、54)

(5) 国内外の機関による評価等

環境省が行った化学物質の環境リスク評価において、経口ばく露については、中・長期毒性のラットの試験から得られた二酸化チタンの NOAEL 2,500 mg/kg/日以上(影響のなかった最大用量)が信頼性のある最も低用量の知見と判断し、2,500 mg/kg/日(チタンとして 1,500 mg/kg/日)を無毒性量等に設定するとしている(参照 55)。

FAO/WHO 合同食品添加物専門家会議(JECFA)は、1969 年に二酸化チタンの一日摂取許容量(ADI)を「制限しない(not limited)」と設定している(参照 62)。

9. PEN 抽出物

PEN からの抽出物の経口急性毒性試験が実施されている(参照 1,37,38)。 表 \mathbb{N} -14 に結果を示す。

表IV-14 PEN抽出物の毒性試験

試験	方法	結果	経口 LD ₅₀	出典
急性毒	CD(SD)ラット(雌雄 10 匹/	5,000 mg/kg 体重投与群に死亡	5,000 mg/kg 体重	参照 37
性	群)、強制経口投与(2,500、	(雄1匹、雌2匹)	超[参照 37]	
	5,000 mg/kg 体重)、単回			
	CD(SD)ラット(雌雄 5 匹/	5,000 mg/kg 体重投与群に死亡	5,000 mg/kg 体重	参照 38
	群)、強制経口投与(5,000	(雄2匹、雌1匹)	超[参照 38]	
	mg/kg 体重)、単回			

経口 LD50 は、[]内に示した参照文献に従った。

V. ハザードとなりうる物質の推定一日摂取量と毒性指標との比較

ハザードとなりうる物質について、現在入手できる知見に基づき、個別物質ごとに溶出試験結果から一日摂取量を試算し、推定一日摂取量と TDI 等の毒性指標を比較した。毒性に関する情報については、国内外の機関による信頼できる評価書を主に参照し、同一の毒性試験等の結果から異なる機関によって異なる NOAEL が判断されている場合は最も低い値を用いた。

現在流通している PEN 製品は、PEN のみの合成樹脂からなる製品である。また、現在の PEN の製造には、モノマーとしては DMNDC 及び EG のみが用いられている。入手できた器具又は容器包装の溶出試験データは、主として現在我が国で流通している PEN 製の飲食器を試験試料としたデータであったことから、本専門調査会としては、PEN 製の飲食器について我が国におけるヒトへの健康影響を検討した。

今後、我が国における PEN を主成分とする合成樹脂製の器具・容器包装について、PEN 以外の成分を含む PEN を主成分とする合成樹脂製の器具又は容器包装を含め、最新の分析技術に対応した溶出試験、溶出物質からのばく露及び安全性に関する知見を蓄積する必要がある。

1. モノマー

DMNDC 及び EG については、ハザードとなりうる物質であるが、溶出試験結果は全て不検出であった。最も高い検出下限値は DMNDC にあっては 0.01 mg/kg、EG にあっては 0.11 mg/kg であった。ヒト(体重 0.11 kg)が食事の際に使用する食器は全て PEN 製食器と仮定し、かつ、ヒトが摂取する全ての食品(食品 0.11 kg/人/日と仮定)が PEN 製食器に接触し、その PEN 製食器から検出下限値相当のモノマーが溶出すると仮定して保守的な一日摂取量を試算した。その結果、DMNDC は 0.00036 mg/kg 体重/日、EG は 0.11 mg/ kg 体重/日であった。

DMNDC について、遺伝毒性は認められておらず、入手できた毒性情報の中で最も低い NOAEL は、1,000 mg/kg 体重/日(ラット反復投与毒性・生殖発

生毒性併合試験)であった。EG について、発がん性及び遺伝毒性は認められておらず、入手できた毒性情報の中で最も低い NOAEL は、40 mg/kg 体重/日(ラット 2 年間反復投与毒性試験)であった。

DMNDC 及び EG の溶出試験結果は全て不検出であったが、仮に、これらの NOAEL と保守的な一日摂取量の試算値とを比較すると、DMNDC については、NOAEL は保守的な一日摂取量の試算値の約 280 万倍であった。また、EG については、約 360 倍であったが、溶出試験結果は全て不検出であり、検出下限値相当の EG が溶出すると仮定したことから、NOAEL と実際の一日摂取量にはより大きな開きがあると推測された。以上から、DMNDC 及び EG の食品中への溶出によりヒトの健康に影響を与える可能性は無視できると考えた。

BHEN について、ばく露及び安全性に関するデータなど、評価に必要なデータが不足していたが、

- ①入手できた溶出試験において、実際の使用状況を考慮した溶出条件では最大で検出下限値(1 ppb)程度であったこと
- ②BHEN は DMNDC と EG のエステル化合物であり、DMNDC 及び EG については前述のとおり、食品中への溶出によりヒトの健康に影響を与える可能性は無視できると考えられること

から、BHEN の食品中への溶出によりヒトの健康に影響を与える可能性は 無視できると考えた。

2. 触媒

- (1) アンチモン系無機化合物
 - ①一日摂取量の推定
 - a. PEN 製食器からの溶出

アンチモンの溶出試験結果は全て不検出であり、 $0.05~\mu g/m L$ 以下であった。 ヒト(体重 55.1~k g)が食事の際に使用する食器を全て PEN 製食器と仮定し、かつ、ヒトが摂取する全ての食品(食品 2~k g/L/日と仮定)が PEN 製食器に接触し、その PEN 製食器から検出下限値相当($0.05~\mu g/m L$)のアンチモンが溶出すると仮定して保守的な一日摂取量を試算した結果、 $1.8~\mu g/k g$ 体重/日であった。

b. 大気、飲料水及び食事からの摂取

入手できた文献データを用いて算出した日本人(成人)のアンチモンの推定一日摂取量は、 $1.7 \mu g/kg$ 体重/日であった。それぞれのばく露経路からのアンチモンの一日摂取量の推定結果を表V-1 に示す。なお、食事からのアンチモンの摂取量については、限られたデータから算出されたものであった。

表 V-1 ばく露経路(大気、飲料水、食事)の積算に基づく日本人のアンチモン 推定一日摂取量

ばく露	 経路	ばく露媒体中	ばく露媒体の	推定一日摂取	体重 1 kg あた
		Sb 濃度	一日摂取量	量(μg/人/日)	り推定一日摂
			[仮定]	, 0	取量(μg/kg 体
					重/日)
					[体重 55.1
					kg ⁴⁾ と仮定]
吸入	大気	0.0083 μg/m ³	20 m³/人/日	0.17	
		1)			
経口	飲料水	$6.0~\mu \mathrm{g/L}$ $^{2)}$	2 L/人/日	12.0	
	食事			80 3)	
合計				92.17	1.7

- 1) 参照 57 の大気中の Sb 濃度の最大値を用いた。
- 2) 参照 58 の水道水 (浄水) 中の Sb 濃度の最大値を用いた。
- 3) 参照 59 の食事からの Sb の一日摂取量の平均値を用いた。
- 4) 参照 60

②推定一日摂取量と TDI との比較

アンチモンについて、溶出試験結果は全て不検出であり、ヒトが食事の際に使用する食器を全て PEN 製食器と仮定し、かつ、PEN 製食器から溶出試験の検出下限値相当($0.05\,\mu g/mL$)の Sb が食品中に溶出すると仮定して算出した保守的な一日摂取量の試算値は $1.8\,\mu g/kg$ 体重/日であった。この試算値と、他のばく露経路からの推定一日摂取量 $1.7\,\mu g/kg$ 体重/日(表 V-1)を合計した推定一日摂取量は $3.5\,\mu g/kg$ 体重/日であった。この値は、酒石酸アンチモニルカリウムを投与したラット 90 日間亜急性毒性試験の NOAEL $6.0\,m g/kg$ 体重/日を不確実係数 1,000(種差 10、個体差 10、亜急性毒性所見からの外挿 10)で除したアンチモンの TDI $6.0\,\mu g/kg$ 体重/日(参照 39)を下回っていた。また、水溶性アンチモンの経口摂取による発がん性を示す知見は得られておらず、生体にとって特段問題となる遺伝毒性はないと考えられると判断されている(参照 39)。以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上から、300、以上がら、300 、30

(2) ゲルマニウム系無機化合物

①一日摂取量の推定

a. PEN 製食器からの溶出

ゲルマニウムの溶出試験結果は全て不検出であり、 $0.1 \, \mu g/mL$ 以下であった。 ヒト (体重 $55.1 \, kg$) が食事の際に使用する食器は全て PEN 製食器と仮定し、かつ、ヒトが摂取する全ての食品(食品 $2 \, kg/$ 人/日と仮定)が PEN 製食器に接触し、その PEN 製食器から検出下限値相当($0.1 \, \mu g/mL$)のゲルマニウムが溶出すると仮定して保守的な一日摂取量を試算した結果、 $3.6 \, \mu g/kg$ 体重/日であった。

b. 食事からの摂取

入手できた文献データを用いて算出した日本人(成人)のゲルマニウムの推定一日摂取量(ばく露経路を食事に限定)は、 $4.3~\mu g/kg$ 体重/日であった。ゲルマニウムの一日摂取量の推定結果を表V-2 に示す。なお、食事からのゲルマニウムの摂取量については、限られたデータから算出されたものであった。

表 V -2	日本人	の食事から	らのゲルマ	′ニウム推定−	-日摂取量
1 V V	H /T`/\	~ TO TO 1	, , , , , , , ,		ロバルモ

ばく露絡	圣路	ばく露媒体中	ばく露媒体の	推定一日摂取	体重 1 kg あた
		Ge 濃度	一日摂取量	量(μg/人/日)	り推定一日摂
			[仮定]		取量 (μg/kg 体
					重/日)
					[体重 55.1
					kg²ថ と仮定]
経口	食事			236 1)	
合計				236	4.3

- 1) 参照 59 の食事からの Ge の一日摂取量の平均値を用いた。
- 2) 参照 60

②推定一日摂取量と毒性指標との比較

ゲルマニウムについて、溶出試験結果は全て不検出であり、ヒトが食事の際に使用する食器を全て PEN 製食器と仮定し、かつ、PEN 製食器から溶出試験の検出下限値相当($0.1\,\mu g/mL$)のゲルマニウムが食品中に溶出すると仮定して算出した保守的な一日摂取量の試算値と他のばく露経路からの推定一日摂取量を合計した推定一日摂取量は、過大な見積もりであるが、 $7.9\,\mu g/kg$ 体重/日であった。ヒトにおいて、無機ゲルマニウム及び二酸化ゲルマニウムのLOAEL がそれぞれ $0.9\sim6.7\,m g/kg$ 体重/日及び $0.7\sim23\,m g/kg$ 体重/日との報告があるが、NOAEL に関する報告は見当たらなかった。

ゲルマニウムについて合計した推定一日摂取量 7.9 μg/kg 体重/日と NOAEL を比較することはできなかったが、溶出試験結果は全て不検出であった。ゲルマニウムについては、現在、食品衛生法に基づく個別規格は設定されていないため、従来からの使用方法の変更や使用量の増加等がない限りにおいて、規格を新たに設定しても健康影響が生じるリスクが高まるとは考えられないと判断した。一方、検出下限値を下げた溶出試験データ、ばく露や安全性に関する情報などが不足していた。

3. 添加剤 (二酸化チタン)

PEN 製食器からの二酸化チタンの溶出試験データはないが、水、塩酸、硝酸及びアルコールに溶けないことが知られていることから、食品への溶出量は低いと考えられる(参照 50)。また、経口摂取された二酸化チタンは実質的に無害と考えられていることなどを踏まえると、ナノ物質でない二酸化チタン

の食品中への溶出によりヒトの健康に影響を与える可能性は無視できると考えた。

4. PEN の製造過程において生成すると考えられる物質(オリゴマーを含む)

PEN の製造過程で生成する物質や分子量 1,000 以下の構造が同定されていない物質については、入手できた溶出試験結果(Ⅱ. 6. 各国の規制と溶出試験結果を参照)において、オリゴマーと推定される物質等の溶出が僅かに認められているが、溶出物質の構造、安全性に関する情報、ばく露実態の評価に必要な溶出試験データなど、評価に必要なデータが不足していた。

Ⅵ. 食品健康影響評価

食品安全委員会器具・容器包装専門調査会は、厚生労働省から評価要請された PEN を主成分とする合成樹脂製の器具・容器包装につき新たに規格を設定することについて、食品健康影響評価を実施した。

PEN を主成分とする合成樹脂製の器具又は容器包装の使用により、食品を介して健康影響が生じる可能性としては、当該器具又は容器包装からの溶出物質が食品に移行し、それを食品とともに摂食した場合が考えられる。本専門調査会は、当該器具又は容器包装から溶出する可能性のある物質を特定するため、厚生労働省から提供のあった PEN の製造原料や製造方法(使用する触媒や添加剤を含む。)に関する情報、溶出試験結果のデータ及び国内外の規制等に係る情報を整理し、これらの資料を用いて、ハザードとなりうる物質を検討した。

さらに、毒性に関する情報については、厚生労働省から提供のあった情報に加え、本専門調査会において国内外の機関による評価書等を収集し、これらの資料も用いて、ハザードとなりうる物質ごとに、それらに関する毒性情報及び推定一日摂取量の試算値を基に、我が国におけるヒトへの健康影響を検討した。推定一日摂取量については、溶出試験結果が不検出の場合、ヒトが食事の際に使用する食器を全て PEN 製食器と仮定し、かつ、ヒトが摂取する全ての食品が PEN 製食器に接触し、その PEN 製食器から検出下限値相当の当該物質が溶出すると仮定して保守的な試算を行った。また、毒性に関する情報については、国内外の機関による信頼できる評価書を主に参照し、同一の毒性試験等の結果から異なる機関によって異なる NOAEL が判断されている場合は最も低い値を用いた。

なお、現在流通している PEN 製品は、PEN のみの合成樹脂からなる製品である。また、現在の PEN の製造には、モノマーとしては DMNDC 及び EG のみが用いられている。したがって、入手できた器具・容器包装の溶出試験データは、主として現在我が国で流通している PEN 製の飲食器を試験試料としたデータであった。

結果は以下のとおりである。

①現在、食品用途の PEN の製造に使用されている物質であり、ヒトが PEN 製の飲食器から食品を介して摂取する可能性のある物質のうち、モノマーであ

- る DMNDC、EG 及び PEN の製造過程で生じる BHEN、重合触媒であるアンチモン系無機化合物並びに添加剤である二酸化チタンについて物質ごとに健康影響を検討した結果、食品中への溶出によりヒトの健康に影響を与える可能性は無視できる。
- ②PEN 製の器具又は容器包装は、既に国内外において使用されており、食品を介した摂取による健康影響は報告されていない。
- ③重合触媒であるゲルマニウム系無機化合物については、溶出試験結果は不検 出であったが、検出下限値を下げた溶出試験データ、ばく露や安全性に関す る情報などが不足している。
- ④PEN の製造過程において生成する物質や分子量 1,000 以下の構造が同定されていない物質の溶出が僅かに認められているが、溶出物質の構造、安全性に関する情報、ばく露実態の評価に必要な溶出試験データなど、評価に必要なデータが不足している。

以上のように、PENを主成分とする合成樹脂製の器具又は容器包装の使用に際しハザードとなりうる物質全てについて十分な科学的データを得ることはできなかったが、PENを主成分とする合成樹脂製の器具又は容器包装については、食品衛生法に基づく個別規格は設定されていない現状を踏まえると、従来からの使用方法の変更や使用量の増加等がない限りにおいて、規格を新たに設定しても健康影響が生じるリスクが高まるとは考えられないと判断した。

リスク管理機関は、規格を設定することにより健康影響が生じるリスクの低減を図るとともに、規格を設定した際には速やかに食品安全委員会に報告されたい。また、前述の③及び④から、リスク管理機関は、今後、我が国における PEN を主成分とする合成樹脂製の器具又は容器包装からの溶出物質について、PEN 以外の成分を含む PEN を主成分とする合成樹脂製の器具又は容器包装を含め、最新の分析技術に対応した溶出試験、ばく露及び安全性に関する情報を積極的に収集する必要がある。新たな知見が蓄積された際にはリスク管理機関は、速やかに評価を求めることを検討すべきである。

なお、リスク管理機関は、PENを主成分とする合成樹脂製の器具・容器包装と同様に、PEN以外の合成樹脂製の器具又は容器包装についても、情報を積極的に収集し、新たな知見が蓄積された際には、速やかに評価を求めることを検討すべきである。

<別紙:略称等>

略称	日本語名称
ADI	一日摂取許容量
ALT	アラニンアミノトランスフェラーゼ
AST	アスパラギン酸アミノトランスフェラーゼ
ATSDR	米国毒性物質疾病登録機関
BHEN	ビスヒドロキシエチレン-2,6-ナフタレート
BMD	ベンチマークドーズ
BMDL	ベンチマークドーズの 95%信頼区間の下限値
CHDM	1,4-シクロヘキサンジメタノール
DEG	ジエチレングリコール
DMNDC	2,6-ナフタレンジカルボン酸ジメチル
DMT	テレフタル酸ジメチル
EG	エチレングリコール
EPA	米国環境保護庁
EU	欧州連合
EVOH	エチレンビニルアルコール
FCN	食品接触物質届出制度
FDA	米国食品医薬品庁
GC	ガスクロマトグラフィー
GPC	ゲル浸透クロマトグラフィー
HPLC	高速液体クロマトグラフィー
IARC	国際がん研究機関
ICP-MS	誘導結合プラズマ質量分析法
IR	赤外分光法
JECFA	FAO/WHO 合同食品添加物専門家会議
LD_{50}	半数致死量
LOAEL	最小毒性量
MHEN	2,6-ナフタレンジカルボン酸モノ (2-ヒドロキシエチル)
Mn	数平均分子量
MRL	毒性最小リスクレベル
MS	質量分析計
Mw	重量平均分子量
m/z	質量分析計により観測された検出成分の分子量
NDCA	2,6-ナフタレンジカルボン酸
NOAEL	無毒性量
NOEL	無作用量
NTP-CERHR	米国国家毒性計画-ヒト生殖リスク評価センター
OECD	経済協力開発機構
OML	総移行限度値

PA	ナイロン
PE	ポリエチレン
PEN	ポリエチレンナフタレート
PET	ポリエチレンテレフタレート
PP	ポリプロピレン
PS	ポリスチレン
PVA	ポリビニルアルコール
PVC	ポリ塩化ビニル
PVDC	ポリ塩化ビニリデン
RfD	参照用量
SEC	サイズ排除クロマトグラフィー
SIAM	SIDS 初期評価会合
SIAP	SIDS 初期評価プロファイル
SIAR	SIDS 初期評価報告
SIDS	スクリーニング用データセット
SML	特定移行限度値
TDI	耐容一日摂取量
TDLo	最小中毒量
WHO	世界保健機関

<参照>

- 1. ポリエチレンナフタレートを主成分とする合成樹脂製の器具又は容器包装の個別規格 への追加について: ポリ衛協 (ポリオレフィン等衛生協議会) 2011 年 3 月 24 日
- 2. 高分子データベース:独立行政法人物質・材料研究機構 http://polymer.nims.go.jp/
- 3. SIAR {SIDS(Screening Information Data Set)Initial Assessment Repor}, SIAP (SIDS Initial Assessment Profile) and SIDS Dossier CAS No. 840-65-3 Dimethyl 2,6-naphthalenedicarboxylate, SIAM(SIDS Initial Assessment Meeting) 9th 1999 assessed., OECD (Organisation for Economic Co-operation and Development) HPV Programme (High Production Volume Chemicals Programme), OECD Existing Chemicals Database

http://webnet.oecd.org/hpv/ui/Default.aspx

- 4. CERI・NITE (財団法人 化学物質評価研究機構・独立行政法人 製品評価技術基盤機構): 有害性評価書 No.34 エチレングリコール Ver. 1.0, 2005 NEDO (独立行政法人 新エネルギー・産業技術総合開発機構) (参照 1 添付資料 23)
- 5. ICSC (International Chemical Safety Card): 0270 ETHYLENE GLYCOL Date of Peer Review: March 1999 IPCS (International Programme on Chemical Safety)
- 6. PubChem(CID 11109472) http://pubchem.ncbi.nlm.nih.gov/compound/11109472#section=Top
- 7. CERI・NITE(財団法人 化学物質評価研究機構・独立行政法人 製品評価技術基盤機構): 有害性評価書 No.44 テレフタル酸ジメチル Ver. 1.0, 2006 NEDO (参照 1 添付資料 25)
- 8. ICSC: 0262 DIMETHYL TEREPTHALATE Date of Peer Review: October 2005 IPCS
- 9. 既存化学物質安全性 (ハザード) 評価シート 整理番号 99-16 ジエチレングリコール 1999 CERI (参照 1 添付資料 27)
- 10. ICSC: 0619 DIETHYLEN GLYCOL Date of Peer Review: November 2007 IPCS
- SIAR, SIAP and SIDS Dossier CAS No. 105-08-8 1,4-Cyclohexanedimethanol, SIAM 26th 2008 assessed, OECD HPV Programme, OECD Existing Chemicals Database

http://webnet.oecd.org/hpv/ui/Default.aspx

- 12. PEN のポリオレフィン等衛生協議会自主規格 (参照 1 添付資料 30, 未公表)
- 13. FDA 申請時の溶出試験データ (参照 1 添付資料 5, 未公表)
- 14. オリゴマーの分析 (参照 1 添付資料 4, 未公表)
- 15. モノマーの分析 (参照 1添付資料 3, 未公表)
- 16. 総溶出量試験 (参照 1添付資料 2, 未公表)
- 17. FDA での PEN 規格条件での溶出試験結果 (参照 1 添付資料 33, 未公表)
- 18. ポリ衛協自主規格条件での材質試験および溶出試験結果(参照 1 添付資料 31, 未公表)
- 19. 2,6-ナフタレンジカルボン酸ジメチルエステルのラットを用いる単回経口投与毒性試験 (株)日本バイオリサーチセンター,厚生省,既存化学物質毒性データベース (参照 1 添付資料 11)
- 20. NDC のラットへの急性毒性試験 (米国)(参照 1 添付資料 12, 未公表)
- 21. 2,6-ナフタレンジカルボン酸ジメチルエステルのラットを用いる経口投与による反復 投与毒性・生殖発生毒性併合試験(株)日本バイオリサーチセンター,厚生省,既存化 学物質毒性データベース(参照 1 添付資料 10)
- 22. NDC の 13 週間亜急性毒性試験 (米国) (参照 1 添付資料 13, 未公表)
- 23. NDC の変異原性試験 (AMES TEST) (米国) (参照 1 添付資料 19, 未公表)

- 24. NDC の細菌を用いる復帰突然変異試験 (財)日本食品薬品安全センター,厚生省, 既存化学物質毒性データベース (参照 1 添付資料 8)
- 25. NDC の細胞遺伝子突然変異試験 (米国) (参照 1 添付資料 20, 未公表)
- 26. NDC のチャイニーズ・ハムスター培養細胞を用いる染色体異常試験 (財)日本食品薬品安全センター,厚生省 既存化学物質毒性データベース (参照 1 添付資料 9)
- 27. NDC の染色体異常試験(米国) (参照 1 添付資料 21, 未公表)
- 28. NDC の小核試験(米国) (参照 1 添付資料 22, 未公表)
- 29. SIAR, SIAP and SIDS Dossier CAS No. (Nos.) 107-21-1, 111-46-6, 112-27-6, 112-60-7, 4792-15-8, Chemical Name(s) Ethylene glycol, Diethylene glycol, Triethylene glycol, Tetraethylene glycol, Pentaethylene glycol (Ethylene Glycols Category), SIAM 18th 2004 assessed, OECD HPV Programme, OECD Existing Chemicals Database
 - http://webnet.oecd.org/hpv/ui/Default.aspx
- 30. Toxicological Profile for Ethylene Glycol. ATSDR (Agency for Toxic Substances and Disease Registry) U.S. Department Of Health And Human Services, Public Health Service, November 2010
- 31. NTP-CERHR (National Toxicology Program-Center for the Evaluation of Risks to Human Reproduction) Monograph on the Potential Human Reproductive and Developmental Effects of Ethylene Glycol NIH Publication No. 04-4481, January 2004
- 32. Ethylene glycol (CASRN 107-21-1) Oral RfD assessment last revised 1989 US EPA (Environmental Protection Agency)/ IRIS (Integrated Risk Information System) http://www.epa.gov/iris/subst/0238.htm
- 33. SIAR, SIAP and SIDS Dossier, Dimethyl terephthalate, 120-61-6, SIAM 11th 2001 assessed, OECD HPV Programme, OECD Existing Chemicals Database http://webnet.oecd.org/hpv/ui/Default.aspx
- 34. ECB (Europian Chemicals Bureau): IUCLID (International Uniform Chemical Information Database) Dateset, 2,2'-Oxidiethanol(111-46-6) (reference (193), (204)) (2000 CD-ROM edition) European chemical Substances Information System (ESIS)
- 35. NTP: Salmonella study summary. Study ID: 248390, NTP database search application (参照 1 添付資料 24)
- 36. Screening-level hazard characterization For HPV (High Production Volume) Chemicals 1,4-Cyclohexanedimethanol (CAS No. 105-08-8). August 2007 HPV Chemicals branch risk assessment division, Office of Pollution Prevention and Toxics) US EPA, HPV Challenge Program Test Plan for 1,4-cyclohexanedimethanol (CAS No.;105-08-8). 及び robust summary. Eastman Chemical Company Nov.,18 2002., EPA High Production Volume Information System (参照 1 添付資料 29)
- 37. 低分子 PEN 抽出物の単回経口投与毒性試験(参照 1 添付資料 6, 未公表)
- 38. BHEN の急性経口毒性試験(参照 1 添付資料 7, 未公表)
- 39. 内閣府食品安全委員会 清涼飲料水評価書 アンチモン 2012年8月
- 40. Guidelines for drinking-water quality, fourth edition. 2011 WHO (World Health Organization)
- 41. ANTIMONY TRIOXIDE AND ANTIMONY TRISULFIDE. Monographs on the Evaluation of Carcinogenic Risks to Humans, 1989 Volume 47 291-305, IARC (International Agency for Research on Cancer)
- 42. 日本の食品包装材料用途別使用実態調査報告書 ポリ衛協 技術資料第 63 号 2006;要 約 (参照 1 添付資料 1)
- 43. 河村葉子, 馬場二夫:食品安全性セミナー7 器具・容器包装 中央法規出版株式会社,

- 2002; 268-271
- 44. COMMISSION REGULATION (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food (OJ L 12, 15.1.2011, p. 1), Amended by Commission Implementing Regulation (EU) No 321/2011 of 1 April 2011(OJ L 87, 2.4.2011 p. 1) and Commission Regulation (EU) No 1282/2011 of 28 November 2011 (OJ L 328, 10.12.2011, p.22)
- 45. FDA での PEN 規格 21CFR (Code of Federal Regulation Title 21) §177.1637 (参照 1 添付資料 32)
- 46. FDA での使用条件: 21CFR §176.160 (参照 1 添付資料 34)
- 47. Jani PU, McCarthy DE, Florence AT: Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int. J. Pharm 1994; 105: 157-168
- 48. 厚生労働省医薬食品局食品安全部基準審査課長通知「食品健康影響評価に係る補足資料の提出について」(平成27年3月16日付け食安基発0316第2号)
- 49. Mutsuga M, Kawamura Y, Sugita-Konishi Y, Hara-Kudo Y, Takatori K, Tanamoto K: Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food Addit Contam 2006; 23(2): 212-218.
- 50. ACGIH 2001 Titanium Dioxide
- 51. 厚生省告示第 370 号 昭和 34 年 12 月 28 日 http://www.mhlw.go.jp/file/06-Seisakujouhou-11130500-Shokuhinanzenbu/00000 35338.pdf
- 52. Mutsuga M, Kawamura Y, Tanamoto K: Analytical method for formaldehyde, acetaldehyde and PET cyclic oligomers in polyethylene terephthalate products. Jpn. J. Food Chem. 2003; 10(3): 138-144
- 53. Heaton N: Titanium oxide pigments, their development and possibilities. Chem. Trade J 1929; 85: 439
- 54. Deribere M: Titanium compounds and hygiene. Ann Hyg Publ Ind 1941; 18: 133-137
- 55. 環境省 化学物質の環境リスク評価 第8巻 チタン及びその化合物 平成22年3月
- 56. 厚生労働省 初期リスク評価書 酸化チタン (IV) 2011年7月
- 57. 環境省 有害大気汚染物質モニタリング調査結果(優先取組物質以外の有害大気汚染物質) 平成 24 年度
 - http://www.env.go.jp/air/osen/monitoring/materials.html
- 58. 公益社団法人日本水道協会 水道水質データベース 平成 24 年度
- 59. 瀬亜希子, 村上美香, 畑井郁乃, 東川佳絵, 張作文, 文燦錫, 他:無機質成分表を利用した食事中無機質摂取量の検討 食物学会誌; 1996: 51: 23-32
- 60. 内閣府食品安全委員会 食品健康影響評価に用いる平均体重の変更について 2014 年 3 月
- 61. 独立行政法人 国立健康・栄養研究所 健康食品の安全性・有効性情報 ゲルマニウム に関する情報 Ver.090115)
 - http://hfnet.nih.go.jp/contents/detail979.html
- 62. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) http://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=2723
- 63. Lloyd LE, Rutherfordet BE, Crampton EW: A comparison of titanic oxide and chromic oxide as index materials for determining apparent digestibility. J Nutr 1955; 56: 265-271

- 64. EU 指令 90/128EEC & amendments 96/11/EC と試験結果 (参照 1 添付資料 35, 未公表)
- 65. Melnick RL: Toxicites of ethylene glycol and ethylene glycol monoethyl ether in Fischer 344/N rats and B6C3F1 mice. Environmental Health Perspectives 1984; 57: 147-155
- 66. Robinson M, Pond CL, Laurie RD, Bercz JP, Henningsen G, Condie LW: Subcute and subchronic toxicity of ethylene glucol administered in drinking water to Sprague-Dawley rats. Drug and chemical toxicology 1990; 13(1): 43-70
- 67. Price CJ, Kimmel CA, Tyl RW, Marr MC: the developmental toxicity of ethylene glycol in rats and mice. Toxicology and applied pharmacology 1985; 81: 113-127
- 68. Neeper-Bradley, Tyle RW, Fisher LC, Kubena MF, Vrbanic MA, Losco PE:
 Determination of a no-observed-effect level for developmental toxicity of ethylene
 glycol administered by gavage to CD rats and CD-1 mice. Fundamental and applied
 toxicology 1995; 27: 121-130
- 69. Maronpot RR, Zelenak JP, Weaver EV, Smith NJ: Teratogenicity study of ethylene glycol in rats. Drug and chemical toxicology 1983; 6(6): 579-594
- 70. Handbook on the toxicology of metals fourth edition volume I: General consideration Chapter 37 Germanium
- 71. Asaka T, Nitta E, Makifuchi T, Shibazaki Y, Kitamura Y, Ohhara H et al.: Germanium intoxication with sensory ataxia. Journal of the neurological science 1995; 130: 220-223
- 72. Ballantyne B, Snellings WM: developmental toxicity study with diethylene glycol dosed by gavage to CD rats and CD-1 mice. Food and chemical toxicology 2005; 43: 1637-1646
- 73. O'Brien KL, Selanikio JD, Hecdivert C, Placide M-F, Louis M, Barr DB et al.: Epidemic of pediatric deaths from acute renal failure caused by diethylene glycol poisoning. JAMA 1998; 279: 1175-1180
- 74. Rosenfeld G: Studies of the metabolism of germanium. Arch Biochem Biophys 1954; 48: 84-94
- 75. Krasavage WJ, Yanno FJ, Terhaar CJ: Dimethyl terephthalate(DMT):Acute toxicity, subacute feeding and inhalation studies in male rats. Am Ind Hyg Assoc J 1973; 34: 455-462
- 76. Sanai T, Okuda S, Onoyama K, Oochi N, Takaichi S, Mizuhira V et al.: Chronic tubulointerstitial changes induced by germanium dioxide in comparison with carboxyethylgermanium sesquioxide. Kidney International 1991; 40: 882-890
- 77. Schroeder HA, Kanisawa M, Frost DV, Mitchener M: Germanium, Tin and Arsenic in rats: Effects on growth, survival, pathological leisions and life span. J Nutr 1968; 96: 37-45
- 78. Schroeder HA, Balassa JJ: Arsenic, Germanium, Tin and Vanadium in mice: Effects on growth, survival and tissue levels. J Nutr 1967; 92: 245-253
- 79. Sanai T, Oochi N, Okuda S, Osato S, Kiyama S, Komota T et al.: Subacute nephrotoxicity of germanium dixide in the experimental animal. Toxicol Appl Pharmacol 1990; 103: 345-353
- 80. Rosenfeld G, Wallace EJ: Studies of the acute and chronic toxicity of germanium. AMA Arch Ind Hyg Occup Med 1953; 8: 466-479
- 81 Tao SH, Bolger PM: Hazard assessment of germanium supplements. Toxicol Pharmacol 1997; 25: 211-219