

府 食 第 7 5 5 号 平成 2 1 年 8 月 6 日

農林水産大臣 石破 茂 殿

食品安全委員会 委員長 小泉

食品健康影響評価の結果の通知について

平成21年4月24日付け21消安第627号をもって貴省から当委員会に意見を 求められた豚サーコウイルス(2型)感染症(1型-2型キメラ)(デキストリン誘導 体アジュバント加)不活化ワクチンに係る食品健康影響評価の結果は下記のとおりです ので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知 します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

豚サーコウイルス(2型)感染症(1型-2型キメラ)(デキストリン誘導体アジュバント加)不活化ワクチン(スバキシンPCV2/スバキシンPCV2 FDAH)が適切に使用される限りにおいては、食品を通じてヒトの健康に影響を与える可能性は無視できるものと考えられる。

動物用医薬品評価書

豚サーコウイルス(2型) 感染症(1型-2型キメラ) (デキストリン誘導体アジュバント加) 不活化ワクチン(スバキシン PCV2 / スバキシン PCV2 FDAH)

2009年8月

食品安全委員会

目次

	頁
〇審議の経緯······· 〇食品安全委員会委員名簿······ 〇食品安全委員会動物用医薬品専門調査会専門委員名簿··············· 〇要約·····	3 3
I. 評価対象動物用医薬品の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5 5 5 5
Ⅲ. 安全性に係る知見の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 7 8
Ⅲ. 食品健康影響評価····································	·· 10

〈審議の経緯〉

2009年 4月 24日 農林水産大臣より製造販売の承認に係る食品健康影響評価に

ついて要請(21消安第627号)

厚生労働大臣より残留基準設定に係る食品健康影響評価につ

いて要請(厚生労働省発食安第0424001号)

関係書類の接受

2009年 4月 30日 第284回食品安全委員会(要請事項説明)

2009年 5月 15日 第110回動物用医薬品専門調査会

2009年 6月 25日 第291回食品安全委員会 (報告)

2009年 6月 25日より 2009年 7月 24日 国民からの御意見・情報の募集

2009年 8月 4日 動物用医薬品専門調査会座長より食品安全委員会委員長へ報告

2009年 8月 6日 第297回食品安全委員会(報告)

(同日付け農林水産大臣及び厚生労働大臣に通知)

〈食品安全委員会委員名簿〉

(2009年6月30日まで) (2009年7月1日から)

見上 彪 (委員長) 小泉 直子 (委員長)

小泉 直子 (委員長代理) 見上 彪 (委員長代理*)

 長尾
 拓

 野村
 一正

 畑江
 敬子

 廣瀬
 雅雄

 長尾
 拓

 野村
 一正

 畑江
 敬子

 廣瀬
 雅雄

本間 清一 本間 清一

*:2009年7月9日から

〈食品安全委員会動物用医薬品専門調査会専門委員名簿〉

(2008年4月1日から)

三森 国敏 (座長)

井上 松久 (座長代理)

今井 俊夫 頭金 正博

今田 由美子 戸塚 恭一

江馬 眞 中村 政幸 小川 久美子 能美 健彦

下位 香代子 山崎 浩史

津田 修治 吉田 緑

寺岡 宏樹

(参考人)

澤田 純一

要約

豚サーコウイルス (2型) 感染症 (1型-2型キメラ) (デキストリン誘導体アジュバント加) 不活化ワクチン (スバキシン PCV2、スバキシン PCV2 FDAH) について食品健康影響評価を実施した。

本製剤の主剤は、病原性を持たない豚サーコウイルス 1型(PCV1)のウイルスカプシドタンパク質をコードするオープンリーディングフレーム 2(ORF2)を免疫原性のある豚サーコウイルス 2型(PCV2)の ORF2 に置換して作出した PK-15 細胞培養 1型-2型キメラ豚サーコウイルス cPCV株であり、不活化されている。豚サーコウイルス感染症は人獣共通感染症とはみなされていない。

アジュバント等の添加剤については、物質の使用状況、既存の毒性評価及び本製剤の接種量を考慮すると、本製剤の含有成分の摂取による健康影響は無視できると考えられる。

また、アジュバント消長試験では、接種84日後においてアジュバントの残留は認められなかった。

以上のことから、本生物学的製剤が適切に使用される限りにおいては、食品を通じてヒトの健康に影響を与える可能性は無視できるものと考えられる。

I. 評価対象動物用医薬品の概要

(スバキシン PCV2 及びスバキシン PCV2 FDAH は名称のみが異なる同一製剤(一物 9名称)である。)

1. 主剤 (参照 1)

主剤は、不活化 PK-15 細胞培養 1 型-2 型キメラ豚サーコウイルス c PCV1-2 株である。 本製剤 2 mL(1 頭分)中に不活化 PK-15 細胞培養 1 型-2 型キメラ豚サーコウイルス c PCV1-2 株が RP(相対力価)1.0 以上含まれる。

2. 効能・効果(参照 1)

豚サーコウイルス2型感染に起因する死亡豚及び発育不良豚の発生率の低減、増体量の低下の改善、臨床症状の改善及びウイルス血症の低減である。

3. 用法•用量(参照 1)

3~5 週齢の子豚に 2 mL を 1 回、頚部筋肉内に注射する。

本評価結果に基づき、リスク管理機関において使用制限期間が設定されることとなっている。¹

4. 添加剤等(参照 1)

本製剤 $2\,\mathrm{mL}$ (1 頭分) 中にアジュバントとしてデキストリン誘導体アジュバント溶液 (デキストリン誘導体/ポリソルベート類、10 濃縮リン酸緩衝食塩液、硬化油、精製水) が $20\,\mathrm{vol}$ %、保存剤として $5\,\mathrm{w/v}$ %チメロサール溶液 (ホウ酸ナトリウム、チメロサール、エデト酸四ナトリウム (EDTA)、精製水) が $0.1\,\mathrm{vol}$ %以下 (チメロサールとして $0.01\,\mathrm{w/v}$ % 以下)、溶剤 としてへペス加 MEM 溶液 (MEM、ヘペス $(4-(2-\mathrm{hydroxyethyl})-1-\mathrm{piperazineethanesulfonic\,acid})、炭酸水素ナトリウム、精製水) (残量) が使用されている。<math>^2$

5. 開発の経緯及び使用状況等 (参照 2~4)

豚サーコウイルスは非病原性と考えられている 1 型 (PCV1) と離乳後の発育不良及び削痩などを主徴とする離乳後多臓器性発育不良症候群 (Postweaning Multisystemic Wasting Syndrome : PMWS) を引き起こす 2 型 (PCV2) に区別される。PCV2 は世界中に分布し、日本でも SPF 農場を含むほとんどの豚集団に浸潤しており、PCR による PCV2 の DNA 検出率が個体別で 82.7 %であった(2007 年)という報告もある。発生農場では、主に 7~15 週齢の豚の 5~20 %が発症し、致死率は最大 80 %を示し、養豚経営に甚大な被害を引き起こす。近年では PCV2 と豚皮膚炎腎症症候群 (Porcine Dermatitis Nephropathy Syndrome : PDNS)との関連も示唆されている。

アメリカにおいて、病原性を持たないPCV1のウイルスカプシドタンパク質をコード

¹ 承認申請書では、使用上の注意においてと畜場出荷前12週間は使用しないこととしている。

² 本製剤の一部の添加剤等については、「食品安全委員会の公開について」(平成 15 年 7 月 1 日内閣府食品安全委員会決定)に基づき、「企業の知的財産等が開示され、特定の者に不当な利益若しくは不利益をもたらすおそれがある」ことから、本評価書には具体的な物質名を記載していない。

するオープンリーディングフレーム 2(ORF2)を免疫原性のある PCV2 の ORF2 に置換した 1 型-2 型キメラ豚サーコウイルス(1-2ePCV)ePCV1-2 株が作出され、豚において PCV2 感染に対する防御免疫を誘導することが示された。本製剤の主剤は、PCV2に対する免疫原性を保持しつつも豚に対して安全である ePCV1-2 株を、PK-15 細胞を用いて増殖させ、バイナリエチレンイミンで不活化したものである。

本製剤は、2006 年 4 月にアメリカで承認され、2007 年にはタイ、2008 年にはフィリピン、ブラジル及びパナマで承認され使用されている。

Ⅱ. 安全性に係る知見の概要

1. **ヒトに対する安全性**(参照 1、5~22)

豚サーコウイルスの主要な宿主は豚であり、人獣共通感染症の病原体とは考えられていない。また、主剤である cPCV1-2 株は不活化されており、ヒトに対する病原性を持たない。(参照 1)

本製剤のアジュバントとして使用されているデキストリン誘導体アジュバント溶液は、デキストリン誘導体をポリソルベート類で溶解したものに硬化油を加えたものである。デキストリン誘導体は医薬品や化粧品、及び被包剤や増粘安定剤の用途で食品添加物として使用されている。また、表1に示すようにラット及びイヌで LD_{50} が2,000 mg/kg体重以上であった(参照5)。

不活化剤として使用されているバイナリエチレンイミンはチオ硫酸ナトリウムにより中和されており、過去に動物用医薬品専門調査会においてワクチン中の含有量等を考慮し、摂取による健康影響は無視できる範囲であると評価を行っている(参照6)。

保存剤として使用されているチメロサール溶液中のホウ酸ナトリウムは食品中に含まれる物質で、動物実験では 13 mg/kg 体重/日以上の摂取により有害作用が報告されている (参照 7)。

溶剤として使用されているへペス加MEM溶液中の炭酸水素ナトリウムは食品添加物として使用されており、JECFAにおいて ADI を設定しない物質とされている (参照 8、9)。 MEM (Minimum Essential Medium) については、主に無機塩類、ビタミン及びアミノ酸で構成され、これらの成分のうち塩化ナトリウム、塩化コリン、グルコース及びフェノールレッド以外は食品添加物としての使用が認められた物質である。塩化ナトリウム及びグルコースはともに通常食品として摂取されており、塩化コリンはヒト用医薬品として使用されており、表 1 に示すようにラット及びマウスで LD_{50} が 3,000 mg/kg 体重以上であった(参照 $10\sim14$)。フェノールレッドは微量で pH 指示薬として使用されている(参照 15)。また、へペスについては、 $in\ vitro\$ 実験の生理的緩衝液に使用される物質で薬理作用を持たず、毒性が少なく、細胞培養液にもよく用いられる。また、表 1 に示すようにウズラにおいて LD_{50} が 300 mg/kg 体重以上であった(参照 $16\sim18$)。

アジュバント中のポリソルベート類、硬化油及びリン酸緩衝食塩液、チメロサール溶液中のチメロサール及びエデト酸四ナトリウム(EDTA)は、いずれも過去に食品安全委員会で評価されている(参照 19~22)。

以上より、物質の使用状況、既存の毒性評価及び本製剤の接種量を考慮すると、本製

剤に使用されている添加剤の含有成分はヒトの健康に影響を与えるものとは考えられない。

表 1 添加剤の経口投与における LD50 (参照 5、13、16)

添加剤	対象動物	LD ₅₀ (mg/kg 体重)
デキストリン誘導体	ラット	> 2,000
	イヌ	> 2,000
塩化コリン	ラット	3,400
	マウス	3,900
へペス	ウズラ	316

2. 豚に対する安全性

下記の試験により、本製剤の豚に対する安全性が確認されている。

(1) 豚に対する安全性及びアジュバント消長試験(参照4、23)

豚(LWD系、3週齢、去勢雄3頭/群)を用いて、本製剤の単回筋肉内注射(常用量、10倍量、対照:無投与)試験を実施し、本製剤の安全性及びアジュバントの消長について検討した。設定した試験群は表2のとおりである。

表 2 スバキシン PCV2 の筋肉内接種による安全性及びアジュバント消長試験

試験群	投与量(mL/頭)	頭数(頭)	接種後観察期間(日間)
対照	無投与	3	
常用量	用量 2		21
10 倍量	20	3	
アジュバントI	2	3	63(9 週間)
アジュバントⅡ	ントII 2 3 84 (12 週間)		84(12 週間)
アジュバントⅢ	2	3	112(16 週間)

常用量及び 10 倍量群ともに一般状態、体温、体重、血液学的検査及び臓器重量に投与に起因する影響は認められなかった。血液生化学的検査において、10 倍量群で、接種14 及び21 日後に血清中クロールの有意な低値及びナトリウムの低値傾向が認められたが、腎臓機能の変化及び下痢等の電解質喪失を示唆する一般状態の変化も認められなかったことから臨床上特に問題となる変化ではないと考えられた。また、常用量及び 10 倍量群ともにいくつかの項目で変化が認められたものの、いずれも接種前の値と有意差が認められず本製剤接種に起因する影響ではないと判断された。

注射部位については、臨床所見として 10 倍量群の 1 頭に腫脹が接種翌日から 21 日後まで認められたのみであった。接種 21 日後の剖検において、常用量及び 10 倍量群ともに淡褐色部が認められたが、病理組織学的検査では、両群ともにリンパ球と思われる円形細胞やマクロファージ等の炎症性細胞浸潤、線維芽細胞の増生及び脂肪組織の増生が認められた。10 倍量群では、さらにリンパ球の濾胞様浸潤、好中球浸潤及び筋線維変性

も認められたが、線維化は認められなかった。接種 63 日後に剖検したアジュバント I 群では、肉眼で認められた淡褐色部は病理組織学的検査において脂肪組織の増生及び筋線維の変性が認められたのみであり、炎症性細胞浸潤は認められなかった。また、アジュバントⅡ及びⅢ群では接種に起因する影響は認められなかった。(表3)

	試験群		常用量	10 倍量	アジュバントI	アジュバントⅡ	アジュバントⅢ
解剖時点		接種2	1日後	接種63日後	接種84日後	接種 112 日後	
動物数(頭)		3	3	3	3	3	
剖検		淡褐色部位	3	3	3	0	0
	炎症性細胞浸潤	3	3	0	0	0	
	所	線維芽細胞増生	3	3	0	0	0
病理組織	見	筋線維変性	0	3	1	0	0
学的検査		リンパ球濾胞様浸潤	0	2	0	0	0
		好中球浸潤	0	2	0	0	0
		脂肪組織増生	1	3	3	0	0

表 3 注射部位筋肉の剖検及び病理組織学的検査所見

いずれの投与群においても、病理組織学的検査においてアジュバント残留を示唆する変化は認められなかった。

以上より、本製剤接種により 10 倍量群で血清中クロールの低値及びナトリウムの低値傾向が認められた以外に変化が認められなかったことから、本製剤の常用量の臨床使用において、安全性に問題はないと考えられた。また、接種 84 日後の注射部位ではアジュバント様残留物質は認められなかった。

(2) 豚に対する臨床試験(参照4、24)

国内2施設において、計1,241頭(ワクチン接種群619頭、対照群622頭)の子豚に本製剤(2 mL/頭)を頚部筋肉内に単回接種し、一般状態及び注射部位の観察ならびにそのスコア化により、本製剤の安全性について検討した。なお、対照群には生理食塩水を同量投与した。

一般状態及び臨床スコアでは、投与4週後までの臨床スコア及び有害事象の発現頻度において、群間で有意差は認められなかった。また、本製剤接種後、アナフィラキシー及びその他の重篤な異常による死亡は認められず、注射部位の異常はいずれの群においても認められなかった。

以上より、本製剤接種に起因する一般状態及び注射部位の異常が認められなかったことから本製剤の安全性に問題はないと考えられた。

3. その他(参照1)

本製剤は、主剤の不活化の確認、マイコプラズマ混入否定試験、無菌試験及び3~5週 齢の子豚を用いた安全性試験等が規格として設定され、それぞれの試験が実施され問題 のないことが確認された。さらに、これらについては製造方法の中に規定されている。 また、本製剤の製造用株については、原株並びに5代及び7代継代株について、その 遺伝的安定性及びカプシドタンパク質発現の安定性が確認されている。

Ⅲ. 食品健康影響評価

上記のように、豚サーコウイルス感染症は人獣共通感染症とはみなされていない。また、本製剤の主剤である PK-15 細胞培養 1 型-2 型キメラ豚サーコウイルス cPCV1-2 株は不活化されており、安全性試験及び臨床試験においても、豚に対する病原性を示さないとされている。

アジュバント等の添加剤については、物質の使用状況、既存の毒性評価及び本製剤の接種量を考慮すると、本製剤の含有成分の摂取による健康影響は無視できると考えられる。

また、アジュバント消長試験では、接種84日後においてアジュバントの残留は認められなかった。

以上のことから、本生物学的製剤が適切に使用される限りにおいては、食品を通じてヒトの健康に影響を与える可能性は無視できるものと考えられる。

<別紙 検査値等略称>

略称	名称
ADI	1日摂取許容量
JECFA	FAO/WHO 合同食品添加物専門家会議
LD_{50}	半数致死量
PCR	ポリメラーゼ連鎖反応

<参照>

8

- 1 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書: スバキシン PCV2 (未公表)
- 2 恒光裕. "豚サーコウイルス感染症",動物の感染症.小沼操,明石博臣,菊池直哉, 澤田拓士,杉本千尋,宝達勉編.第二版,近代出版,2006,p183-184
- 3 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 添付資料: 起源又は開発の経緯(未公表)
- 4 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 添付資料: 概要(未公表)
- 5 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 追加資料:1 スバキシン PCV2((財) 化学及血清療法研究所)の治験実施計画書の参考資料2より一部抜粋(未公表)
- 6 食品安全委員会. 食品健康影響評価の結果の通知について(平成20年1月10日付け 府食23号): 豚サーコウイルス(2型・組換え型) 感染症(カルボキシビニルポリマーアジュバント加) 不活化ワクチン(インゲルバック サーコフレックス), 2008年
- Opinion of the Scientific Panel on Dietetic products, nutrition and allergies [NDA] related to the Tolerable Upper Intake Level of Boron (Sodium Borate and Boric Acid)

 http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620766601.ht
 - 第7版 食品添加物公定書解説書 廣川書店, 1999, D-885-889
- 9 JECFA. TOXICOLOGICAL EVALUATION OF SOME ANTIMICROBIALS, ANTIOXIDANTS, EMULSIFIERS, STABILIZERS, FLOUR-TREATMENT AGENTS, ACIDS AND BASES,1965, FAO Nutrition Meeting Report Series No.40
- 10 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 追加資料: 6 SAFC 社製 MEM の培地組成表 (未公表)
- 11 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 追加資料:7 塩化ナトリウム MSDS (関東化学) (未公表)
- 12 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 追加資料:9 グルコース MSDS (和光純薬) (未公表)
- 13 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 追加資料:8 塩化コリン MSDS (ナカライテスク株式会社) (未公表)
- 14 経腸栄養剤(経口・経管両用) エンシュア・リキッド 独立行政法人 医薬品医療機器総合機構 医療用医薬品の添付文書情報 http://www.info.pmda.go.jp/go/pack/3259109S1025 1 16/
- 15 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 追加資料: 10 日生研牛呼吸器病4種混合生ワクチン 動物用医薬品専門調査会審 議結果(一部抜粋)(未公表)

- 16 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 追加資料: 11 HEPES MSDS(シグマ) (未公表)
- 17 最新 医学大辞典 第2版 医歯薬出版株式会社
- 18 ステッドマン医学大辞典 改訂第5版 株式会社メジカルビュー社
- 19 食品安全委員会. 食品健康影響評価の結果の通知について (平成 19 年 6 月 7 日付け 府食 573 号):添加物評価書 ポリソルベート類 (ポリソルベート 20,60,65,80),2007 年
- 20 食品安全委員会. 食品健康影響評価の結果の通知について (平成 19 年 10 月 4 日付け 府食 974 号):動物用医薬品評価書 α溶血性レンサ球菌・類結節症混合(油性 アジュバント加)不活化ワクチン(ノルバックス類結/レンサ Oil)) に係る食品健康影響評価について、2007 年
- 21 食品安全委員会. 16 消安第 31 号に係る食品健康影響評価の結果の通知について(平成 16 年 6 月 17 日付け 府食 668 号の 1(別添)):動物用医薬品評価書 豚ボルデテラ感染症精製 (アフィニティ-クロマトグラフィ部分精製)・豚パスツレラ症混合不活化ワクチン (スワイバック AR コンポ 2) の食品健康影響評価について, 2004 年
- 22 食品安全委員会. 食品健康影響評価の結果の通知について(平成 20 年 4 月 24 日付け 府食 449 号):動物用医薬品評価書 フルニキシンメグルミンを有効成分とする牛の注射剤(フォーベット 50 注射液)), 2008 年
- 23 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 添付資料:安全性に関する資料(未公表)
- 24 (財) 化学及血清療法研究所. 動物用医薬品製造販売承認申請書 スバキシン PCV2 添付資料: 臨床試験 (未公表)