

府 食 第 94 号 平成26年1月27日

厚生労働大臣

田村 憲久 殿

食品安全委員会 全市肉全 委員長 熊谷 進制目的制

食品健康影響評価の結果の通知について

食品安全委員会では、食品安全基本法(平成15年法律第48号)(以下「法」 という。)第23条第1項第2号の規定に基づき関係大臣から依頼を受けて食品 健康影響評価を行うほか、自らの判断で食品健康影響評価を行うこととしてい ます。

オクラトキシンAに係る食品健康影響評価は、第278回食品安全委員会(平 成21年3月19日開催)にて、自らの判断で行うことを決定し、評価を進め てきたところです。今般、評価結果について、別添のとおり取りまとめました ので、法23条第2項に基づき通知します。

なお、オクラトキシンAの主な産生菌は、異なる生育条件では異なる種類の 農作物及び食品に生育し、また、オクラトキシンAの汚染の程度は、気候等の 影響を受けやすいことから、リスク管理機関において汚染状況についてのモニ タリングを行うとともに、規格基準について検討をお願いいたします。

府 食 第 94 号 平成26年1月27日

農林水産大臣 林 芳正 殿

> 食品安全委員会 委員長 熊谷 進起員同社 員長山聖

食品健康影響評価の結果の通知について

食品安全委員会では、食品安全基本法(平成15年法律第48号)(以下「法」 という。)第23条第1項第2号の規定に基づき関係大臣から依頼を受けて食品 健康影響評価を行うほか、自らの判断で食品健康影響評価を行うこととしてい ます。

オクラトキシンAに係る食品健康影響評価は、第278回食品安全委員会(平 成21年3月19日開催)にて、自らの判断で行うことを決定し、評価を進め てきたところです。今般、評価結果について、別添のとおり取りまとめました ので、法23条第2項に基づき通知します。

なお、オクラトキシンAの主な産生菌は、異なる生育条件では異なる種類の 農作物及び食品に生育し、また、オクラトキシンAの汚染の程度は、気候等の 影響を受けやすいことから、リスク管理機関において汚染状況についてのモニ タリングを行うとともに、規格基準について検討をお願いいたします。

かび毒評価書

オクラトキシンA

2014年1月

食品安全委員会

	頁
<審議の経緯>	. 3
<食品安全委員会委員名簿>	. 3
<食品安全委員会かび毒・自然毒等専門調査会専門委員名簿>	. 4
要 約	. 6
I. 背景	. 7
1. 経緯	. 7
2. 現行規制等	. 7
1国内規制等	. 7
(2)諸外国等の規制又はガイドライン値	. 7
II. 評価対象物質の概要	. 9
1. 名称、分子式、分子量、構造式	. 9
2. 物理化学的特性	10
3. 産生生物	10
4. 発見の経緯	14
 安全性に係る知見の概要 	15
1. 実験動物等における体内動態	15
(1)吸収、分布、代謝、排泄	16
① 消化管での代謝・変換	16
② 吸収	17
③ 分布	18
④ 代謝	26
⑤ 排泄	28
(2)酵素及び他の生化学的パラメータへの影響	30
(3)実験動物等における体内動態のまとめ	32
 実験動物等における毒性 	33
(1)急性毒性	33
(2)亜急性毒性	34
① マウス	39
② ラット	39
③ ニワトリ	42
④ ウサギ	42
⑤ イヌ	43
⑥ ブタ	43
(3)慢性毒性・発がん性	46
① 44 週間発がん性試験(マウス、混餌投与)	47
② 70 週間発がん性試験(マウス、混餌投与)	47
③ 24 か月間発がん性試験(マウス、混餌投与)	48
④ 13 週間発がん性試験(ラット、強制経口投与)	50
⑤ 9 か月間発がん性試験(ラット、強制経口投与)	50
⑥ 15 か月間発がん性試験(ラット、強制経口投与)	50
⑦ 2 年間発がん性試験(ラット、強制経口投与)	51
⑧ 90 日間発がん性試験(ラット、強制経口投与)	55

	⑨2年間発がん性試験(ラット、混餌投与)	56
	⑩2年間発がん性試験(ラット、混餌投与)	56
	① 2 年間発がん性試験(ラット、混餌投与)	56
	⑩2年間発がん性試験(ブタ、混餌投与)	57
	(4) 生殖発生毒性	57
	① マウス	59
	 ② ラット	60
	③ ウサギ	62
	④ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
	(5) 遺伝毒性	62
	① 遺伝子突然変異	69
	 ② 染色体異常試験及び小核試験 	70
	③ DNA 損傷及び修復	72
	(6)その他(神経毒性、免疫毒性)	73
	① 神経毒性	73
	② 免疫毒性	74
	(7) 腫瘍形成の機序等	78
	① OTA の腎毒性とトランスポーター	78
	② 0TA の発がん性メカニズム	79
	(8) 毒性試験のまとめ	94
З.	ヒトにおける知見	96
	(1) 各国における 暴露量	96
	① 血液中 OTA 濃度	96
	② 尿中 OTA 濃度	98
	③ 母乳中 OTA 濃度	99
	④ OTA 暴露のバイオマーカー1	01
	⑤ 0TA 暴露量の推定1	01
	(2) 疫学研究	03
	(3) ヒトにおける知見のまとめ1	07
4.	諸外国における評価 1	07
	(1) FA0/WHO 合同食品添加物専門家会議(JECFA)1	07
	(2) 国際がん研究機関 (IARC)1	08
	(3) 欧州食品安全機関(EFSA)1	08
5.	日本における暴露状況 1	09
	(1) 汚染実態	09
	(2) 暴露量の推定	12
	(3) 加工・調理による OTA の減衰1	13
IV.	食品健康影響評価1	16
<略	称>	19
く参	照文献> 1	21
く参	考資料1>1	58
く参	考資料2>1	60

<審議の経緯>

2009 年	3月	19 日	第 278 回食品安全委員会(自ら評価の実施を決定)
2010 年	6月	18 日	第17回かび毒・自然毒等専門調査会
2010年	8月	27 日	第18回かび毒・自然毒等専門調査会
2010 年	10 月	26 日	第19回かび毒・自然毒等専門調査会
2011 年	3月	8日	第 20 回かび毒・自然毒等専門調査会
2013 年	6月	21 日	第25回かび毒・自然毒等専門調査会
2013 年	8月	2 日	第26回かび毒・自然毒等専門調査会
2013 年	9月	5 日	第27回かび毒・自然毒等専門調査会
2013 年	9月	25 日	第28回かび毒・自然毒等専門調査会
2013 年	10 月	28 日	第492回食品安全委員会(報告)
2013 年	10 月	29 日	国民からの御意見・情報の募集
\sim	11 月	27 日	
2014 年	1月	23 日	かび毒・自然毒等専門調査会座長より食品安全委員会委員長に
			報告
2014 年	1月	27 日	第 501 回食品安全委員会(報告・審議)
			(同日付けで厚生労働大臣及び農林水産大臣へ通知)

<食品安全委員会委員名簿> 2009年6月30日まで

	2011 年 1 月 6 日まで
見上彪(委員長)	小泉直子(委員長)
小泉直子(委員長代理)	見上彪(委員長代理)
長尾拓	長尾 拓
野村一正	野村一正
畑江敬子	畑江敬子
廣瀬雅雄	廣瀬雅雄
本間清一	村田容常
2011 年 1 月 7 日から	2012 年7月1日から

熊谷 進 (委員長)
佐藤 洋 (委員長代理)
山添 康 (委員長代理)
三森国敏 (委員長代理)
石井克枝
上安平洌子
村田容常

2009年7月1日から

*2011年1月13日から

2012年6月30日まで

熊谷 進(委員長代理*)

小泉直子 (委員長)

長尾 拓

野村一正

畑江敬子

廣瀬雅雄

村田容常

く食品安全委員会かび毒・自然毒等専門調査会専門委員名簿>

2009年10月1日から2011年1月6日まで

熊谷 進(座長*)	渋谷 淳
高鳥浩介(座長代理*)	長島裕二
荒川修	伏谷伸宏
大島泰克	矢部希見子
川原信夫	山浦由郎
久米田裕子	山﨑寛治
合田幸広	山田雅巳
小西良子	芳澤宅實

*2009年12月4日から

2011年3月1日から2011年9月30日まで

芳澤宅實(座長**)	渋谷 淳
高鳥浩介(座長代理**)	長島裕二
荒川修	伏谷伸宏
大島泰克	宮﨑 茂
川原信夫	矢部希見子
久米田裕子	山浦由郎
合田幸広	山﨑寛治
小西良子	山田雅巳

**2011年3月8日から

 2011年10月1日から2013年9月30日まで
 高鳥浩介

 芳澤宅實(座長***)
 高鳥浩介

 宮崎茂(座長代理***)
 長島裕二

 大島泰克
 矢部希見子

 川原信夫
 山浦由郎

 久米田裕子
 山﨑寛治

 小西良子
 山田雅巳

 渋谷淳
 ショ

***2011年11月30日から

 2013年10月1日から
 ド山圭一

 宮崎茂(座長****)
 ド山圭一

 合田幸広(座長代理****)
 鈴木敏之

 荒川修
 豊福肇

 川原信夫
 長島裕二

 久米田裕子
 矢部希見子

 小西良子
 山崎寛治

 渋谷淳
 渡辺麻衣子

- <第25回かび毒・自然毒等専門調査会専門参考人> 梅村隆志 能美健彦
- <第27回かび毒・自然毒等専門調査会専門参考人> 杉山圭一
- <第28回かび毒・自然毒等専門調査会専門参考人> 杉山圭一

^{****2013}年10月15日から

要 約

食品安全委員会は、食品安全委員会が自らの判断で行う食品健康影響評価として、 オクラトキシンA(OTA)の食品健康影響評価を実施した。

評価に用いた試験成績は、体内動態、急性毒性、亜急性毒性、慢性毒性、発がん 性、生殖発生毒性、遺伝毒性、神経毒性、免疫毒性等に関するものである。

OTAは、A. ochraceus、P. verrucosum等の数種の菌によって主に貯蔵食物で産 生されるかび毒で、穀類、コーヒー、ココア、ビール、ワイン等様々な食品でOTA による食品汚染が報告されている。

亜急性毒性試験では、OTAを投与した実験動物種の全てにおいて腎毒性が認められた。腎臓髄質外層外帯の近位尿細管には、部位特異的に巨大核細胞及び肥大した細胞がみられ、尿細管の萎縮及び組織破壊もみられた。ラット及びブタにおいて、これら腎臓へのOTAの影響は用量及び投与期間依存的であることが示されている。

慢性毒性・発がん性試験では、げっ歯類にOTAを経口投与すると主に雄の腎 臓髄質外層外帯に腫瘍が発生した。

遺伝毒性試験では、*in vitro*及び*in vivo*においてOTAにより染色体異常が認められているが、遺伝子の点突然変異は検出されていない。

各種毒性試験について検討した結果、食品安全委員会は、OTA は DNA に間接的 に作用する非遺伝毒性発がん物質であり、TDI を設定することが可能であると考え た。

OTA の非発がん毒性について、各試験において最も低い用量で認められた影響は、 ブタの120日間亜急性毒性試験における腎臓の尿濃縮能の低下及び尿細管上皮細胞 の退行性変性であり、最小毒性量 (LOAEL) は 8 μg/kg 体重/日であったことから、 不確実係数 500 (種差 10、個体差 10、不可逆的な腎障害を指標とした LOAEL 使 用 5) を適用して、TDI を 16 ng/kg 体重/日と設定した。

発がん性に関しては、発がん性に関する NOAEL を基に TDI を設定することと し、米国国家毒性プログラム (NTP) のラットの 2 年間発がん性試験において、 NOAEL は 21 μ g/kg 体重(週5回投与、15 μ g/kg 体重/日に相当)であったことか ら、不確実係数 1000 (種差 10、個体差 10、発がん性 10)を適用して、OTA の発 がん性に関する TDI を 15 ng/kg 体重/日と設定した。

日本における暴露量を推計した結果、平均的な値を示す 50 パーセンタイルでは 0.14 ng /kg 体重/日、高リスクの消費者 (95 パーセンタイル値) でも 2.21 ng/kg 体 重/日であった。現状においては、OTA の暴露量は高リスク消費者においても今回 設定した TDI を下回っていると推定されることから、食品からの OTA の摂取が一 般的な日本人の健康に悪影響を及ぼす可能性は低いものと考えられる。

なお、OTAの主な産生菌は、異なる生育条件では異なる種類の農作物及び食品に 生育し、また、OTAの汚染の程度は、気候等の影響を受けやすいことから、リスク 管理機関において汚染状況についてのモニタリングを行うとともに、規格基準につ いて検討することが望ましいと考える。

I. 背景

1. 経緯

食品安全委員会は、リスク管理機関から依頼を受けて食品健康影響評価を 行うほか、自らの判断で食品健康影響評価を行う役割を有している。

この候補案件については、国民の健康への影響が大きいと考えられるもの、 危害要因等の把握の必要性が高いもの及び評価ニーズが特に高いと判断され るものの中から、食品健康影響評価の優先度が高いと考えられるものを企画 等専門調査会が選定し、国民からの意見・情報の募集などを行った上で、食 品安全委員会が決定している。

2009 年 3 月に食品安全委員会では、「オクラトキシン A」、「デオキシニバ レノール及びニバレノール」及び「食品中のヒ素(有機ヒ素、無機ヒ素)」を、 自ら食品健康影響評価を行う案件として決定し、「オクラトキシン A」及び「デ オキシニバレノール及びニバレノール」については、かび毒・自然毒等専門 調査会で調査審議を行うこととされた。

「オクラトキシンA」については 2008 年 10 月 14 日に開催された第 9 回 かび毒・自然毒等専門調査会での審議において、「デオキシニバレノール及び ニバレノール」の審議の後実施することとされ、第 17 回かび毒・自然毒等専 門調査会(2010 年 6 月 18 日開催)において「デオキシニバレノール及びニ バレノール」の調査会での取りまとめが終了したことから、同専門調査会か ら審議を開始するに至った。

2. 現行規制等

(1) 国内規制等

現在、我が国においては、食品及び動物用飼料ともにオクラトキシン A (OTA) に関する基準値の設定又はリスク管理に係る具体的な措置等は行われていない。

(2)諸外国等の規制又はガイドライン値

OTAのヒト暴露源は主に穀類と考えられている。(参照 1)

コーデックス委員会では、2008 年に小麦、大麦及びライ麦における OTA の最大基準値を 5 µg/kg と設定している。また、実施規範 (Code of Practice) として、「穀類のかび毒汚染の防止及び低減に関する実施規範 (オクラトキシン A、ゼアラレノン、フモニシン及びトリコテセン類に関する付属書を含む)

(CAC/RCP 51-2003)、「ワインのオクラトキシンAによる汚染の防止及び低減に関する実施規範」(CAC/RCP 63-2007)、「コーヒーのオクラトキシンAによる汚染の防止及び低減に関する実施規範」(CAC/RCP 69-2009)及び「ココアのオクラトキシンAによる汚染の防止及び低減に関する実施規範」(2013) を定め、各国に対して汚染低減策の実施を呼びかけている。

EU では、穀類以外の食品についても基準値(EC 規則 No.1881-2006)が

	最大基準値
艮 吅	$(\mu g/kg)$
未加工穀類(コメ及びソバを含む)	5.0
穀類加工品(ベビーフード及び幼小児向け穀類加工	
食品、乳児向け医療用食品並びに小売以外の小麦グ	3.0
ルテンを除く)	
干しブドウ	10.0
焙煎したコーヒー豆及び粉 (水溶性コーヒーを除	5.0
<)	
水溶性コーヒー(インスタントコーヒー)	10.0
ワイン(15%以上のリキュール)、果実ワイン	2.0
アロマワイン、ワインベース飲料	2.0
ブドウジュース	2.0
ベビーフード及び幼小児向け穀類加工食品	0.50
乳児向け医療用食品	0.50
香辛料	
コショウ類	
ナツメグ	15
ショウガ	
ターメリック	
トウガラシ類	30
(唐辛子、唐辛子粉、カイエンペッパー、	(2014 年 12 月 31 日まで)
パプリカ)	15
	(2015年1月1日から)
上記香辛料を含む混合物	15
甘草	
甘草根、お茶用等	20
甘草抽出液(飲料及び菓子類用)	80

表 1 EUの OTA 基準値(EC Regulation No. 1881/2006) (参照 2)

II. 評価対象物質の概要

1. 名称、分子式、分子量、構造式

OTA は、ジヒドロイソクロメンの基本骨格に、7 位のカルボキシル基を介 してフェニルアラニン分子がアミド結合したものである。(参照 3,4)

(1) 化学名

CAS(No.303-47-9)

- 和 名: N-[[(3*R*)-5-クロロ-3,4-ジヒドロ-8-ヒドロキシ-3-メチル-1-オキ ソ-1H-2-ベンゾピラン-7-イル]カルボニル]-L-フェニルアラニン
- 英名: N-[[(3*R*)-5-chloro-3,4-dihydro-8-hydroxy-3-methyl-1-oxo -1H-2-benzopyran-7-yl]carbonyl]-L-phenylalanine

IUPAC

- 和 名: (2*S*)-2-[[(3*R*)-5-クロロ-8-ヒドロキシ-3-メチル-1-オキソ-3,4 -ジヒドロイソクロメン-7-カルボニル]アミノ]-3-フェニルプロパ ン酸
- 英名: (2S)-2-[[(3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4 -dihydroisochromen-7-carbonyl]amino]-3-phenylpropanoic acid
- (2) 分子式: C₂₀H₁₈ClNO₆
- (3) 分子量: 403.82
- (4) 構造式

- 2. 物理化学的特性
 - (a) 性状:結晶構造を持ち、酸性溶液中では緑色蛍光、アルカリ溶液中では 青色蛍光を示す。
 - (b) 融点:169 ℃
 - (c) 比旋光度: [α]²_D¹ 46.8° [c=2.65 mmol/L(1.07 g/L)クロロホルム溶液]
 - (d) 分光学データ: IR スペクトル、UV スペクトル、MS スペクトル及びプ ロトン核磁気共鳴(NMR) スペクトルの報告がある。
 - (e) 溶解性: クロロホルム、エタノール、メタノール及びキシレンに可溶。
 - (f) 安定性:通常の調理条件下で一部分解する。溶液を過剰の次亜塩素酸ナ

トリウム溶液で処理すると完全に分解する。

(g) 液性:酸性化合物でpKa=7.1 である。(参照 3)

3. 産生生物

OTA は、*Aspergillus* 属及び *Penicillium* 属に属する数種の糸状菌によって 産生されるが、菌によっては OTA に加え、オクラトキシン B (OTB)、オク ラトキシンα (OTa) 等の類縁体を産生するものもある。これら類縁体のうち、 食品汚染の報告が多いのは OTA であり、OTB が次に続くが、その他の類縁 体は検出されることはまれである。各種食品における OTA の自然汚染の原因 となる主要糸状菌の分布及び汚染食品等について表 2 に示す。表に示される とおり、OTA 産生菌は熱帯から寒冷地まで多種多様な農産物及び様々な食品 で生育する。

OTA 産生菌種は Aspergillus 属の Circumdati 節である A. ochraceus、A. westerdijkiae 及び A. steynii、Flavi 節である A. alliaceus、Nigri 節である A. carbonarius、A. niger 種複合体(特に A. niger、A. tubingensis)並びに Penicillium 属の P. verrucosum 及び P. nordicum である。各種食品への各菌 の汚染は、それぞれの生態、宿主となる農作物及び食品の特異性、地理的分 布及び発育条件(温度、湿度など)によって、大きく異なる。

これら Aspergillus 及び Penicillium に属する OTA 産生菌の分類については、それぞれ複雑な経緯を経て現在の種名に至っている。

Aspergillus 属 *Circumdati* 節については、まず南アフリカで *A. ochraceus* において OTA 産生能が確認された後、1972 年に米国 (参照 5)にて、当時知 られていた *A. ochraceus* 菌群 (*Circumdati* 節) の 9 種中 7 種 (*A. ochraceus*、

A. melleus、A. ostianus、A. petrakii、A. sclerotiorum、A. sulphureus 及び A. alliaceus)について OTA 産生能が報告されている。この7種のうち A. alliaceus については、その後に A. flavus などのアフラトキシン産生菌が所属 する Flavi節に移されている。なお、A. melleus、A. ostianus 及び A. petrakii の3種は、最近の検証で OTA 産生能を持たないことが確認されている。また、

A. sclerotiorum 及び A. sulphureus については、食品での検出頻度がやや低く OTA の産生量も僅かであるため、食品中の OTA 汚染濃度への寄与が少な

いと考えられている(参照 6)。

生コーヒー豆の OTA 汚染に関与するとされる A. westerdijkiae 及び A. steynii はかつて A. ochraceus に含まれており、最近になって形態的な特徴の 僅かな違いとともに、生育温度の差異によって、A. ochraceus と区別される ようになった(参照 6)。したがって、これまでの多くの OTA 自然汚染に関す る報告では、A. ochraceus の種名の中に A. westerdijkiae、A. steynii が含ま れている可能性がある。なお、南アフリカから報告された OTA 産生菌は、再 同定された結果 A. westerdijkiae と一致したといわれている。日本では、ア ズキ及び唐辛子粉から分離した A. ochraceus から最初に OTA 産生が報告さ れ(参照 7)、次いで、 国産米から分離した A. ochraceus について OTA 産生 が認められている(参照 8,9,10)。

Penicillium 属の OTA 産生菌に関する最初の報告は、1969 年にカナダにお いてハムから分離した P. viridicatum の菌株によるものである(参照 11)。そ の後、 P. viridicatum のかび毒産生について、多数の菌株の検討が行われた 結果、生育速度や集落の色調などの形質並びに OTA 及びシトリニンの産生性 及び分離源(基質)から 3 群に分け、OTA とシトリニンを産生しない P. viridicatum I 型、OTA とシトリニンの産生を主とし穀類、豆類、種実類等の 植物を基質とする菌群を P. viridicatum II 型、OTA のみの産生を主とし熟成 ハムを基質とする菌群を P. viridicatum III 型と分類した(参照 12)。

1979年になり、P. viridicatum III 型は P. verrucosumに移された(参照 13)。 1987年には、II 型についても P. verrucosum が正当名とされた(参照 14)。し たがって、この段階では、OTA を産生する P. viridicatum は P. verrucosum に一括されることとなった。ところが、2001年になり P. verrucosum の OTA 産生菌について、二次代謝物のプロフィールを基に再検討された結果、P. viridicatum II 型に相当する OTA・シトリニン産生菌を P. verrucosum のまま とし、III 型に相当する OTA のみを産生する菌を別種の P. nordicum とする こととされた(参照 15)。なお、両種は酵母エキス・スクロース寒天培地(YES) の集落裏面の色調の違いによって識別できるとされている。

以上のとおり OTA 産生 *Penicillium* の分類については、変遷が認められる ため、2000 年以前の OTA 産生菌については、*A. ochraceus* の場合と同様に 種名に十分留意する必要がある。

現在では、生態的な違いを含めて、*P. verrucosum*は主に温帯地域の寒冷地 で生産される穀類の OTA 汚染源であり、*P. nordicum*は主に食肉加工品やチ ーズなどの OTA 汚染源とされている。*P. nordicum*は高タンパクで塩濃度の 高い食品に汚染が認められ、低温(15°C)条件や 20%の塩濃度でも生育は可 能である(参照 16)。YES 培地に 0~8%の塩を添加して OTA 産生を調べた結 果、塩濃度が 2%のときに OTA 産生量が最大となり、塩を添加していないと きの 2 倍であった(参照 17)。また、ハムの熟成過程において *P. nordicum* の ほかにも *A. ochraceus* 等が汚染することが報告されている(参照 18, 19)。 Aspergillus 属 Nigri節の菌種については、いずれも生育が早く、暗黒褐色 ~黒色の集落を形成し、OTA 産生における高温と多湿環境の影響及び紫外線 に対する強い抵抗性等の生理学的特性が共通している。したがって、しばし ば汚染実態調査等においては、黒色コウジカビ菌群(black aspergilli)とし て扱われている。この菌種の中で、*A. carbonarius* は以前から明確に同定さ れていた種であるが、OTA 産生に関する報告は1995年が最初であり(参照 20)、 これ以降ブドウ、ワイン用ブドウ液及び干しブドウ等の乾燥果実並びに生コ ーヒー豆における重要な汚染原因菌として認識されるようになった。

2000 年以降、ワイン用ブドウ液及びワインの OTA 自然汚染に関連して、 ポルトガル、スペイン、フランス及びイタリアを始めとする地中海沿岸諸国、 オーストラリア並びに南米のワイン用ブドウ生産地における実態調査が実施 され、分離された *A. carbonarius* 菌株がいずれも強力な OTA 産生能を示した。 (参照 21, 22, 23, 24, 25, 26)

一方、コーヒー作物では、南米、東南アジア及びアフリカの海抜 800 m 以 下の熱帯地域で栽培されるロブスタ種に *A. carbonarius* の感染が報告されて いる。コーヒー果実での *A. carbonarius* 感染の気象条件は、高温と降雨によ る多湿にあり、同じ熱帯圏のコーヒー生産地でも海抜 1,000 m 以上の高地で 栽培されるアラビカ種のコーヒーでは、*A. ochraceus、A. westerdijkiae、A. steynii* 等の耐乾性菌が OTA 汚染の主原因となっている。しかしながら、ブ ドウ又はコーヒー栽培で OTA 産生菌が発生する地域であっても、穀類、トウ モロコシ、種実類などの農作物では *A. carbonarius* の検出率が低く、OTA 汚 染への関与は低い。(参照 27, 28, 29, 30, 31)

A. niger 種複合体 (A. niger aggregate) は、A. carbonarius と共に熱帯 圏のブドウ及びコーヒーに同時発生することが多いが、A. carbonarius より も分布に多様性があり、温帯にも広く分布しする。さらに、表 2 に示すよう に穀類、穀類加工品など多種類の食品及び原材料に発生する。また、A. niger 種複合体には、A. nigerのほか、A. awamori、A. foetidus、A. tubingensis 等が含まれる。これらの種は形態学的にも遺伝学的にも非常に類似している ため、これまでの OTA 汚染関連報告では、A. niger 種複合体として一括され、 種複合体にまとめることは実用上差し支えないとの見解があった。しかし最 近ではワイン用ブドウからの分離株の同定において遺伝的多様性による系統 解析が導入され、A. niger と A. tubingensis を識別する調査結果も多数報告 されている。(参照 24, 32, 33)

OTA 自然汚染に関して、*A. carbonarius と A. niger* 種複合体あるいは *A. tubingensis* のいずれが最も OTA 汚染濃度に寄与しているかを判定すること は難しい。地中海沿岸の 6 か国のブドウ栽培における黒色コウジカビ菌群の 分布とブドウの OTA 汚染との関連性を調査した結果から、次のような点が明 らかになっている。

- i) A. niger 種複合体は、ブドウ果実の成熟段階の全てにおいて主体となる菌群 である。
- ii) A. carbonarius の発生率は、A. niger 種複合体より 2~3 倍低く、成熟期から収穫期にかけて増加する。
- iii) A. carbonariusの発生率は高温と降雨による湿度の増加といった条件に影響され、地理的分布を調べると、イスラエルからヨーロッパ南部のフランス、スペインに向かって発生が増加し、気象との相関がみられる。(参照 23, 26)

ブドウから分離された A. carbonarius, A. tubingensis 及び A. niger の OTA 産生を比較するために培養試験を行った結果では、A. carbonarius に短期間 で大量の OTA を産生する菌株が非常に多く認められ、野外での検出率は A. niger 種複合体よりも低いが、A. carbonarius がブドウの OTA 汚染における 主要な菌であった。(参照 23)

このほかに、*Nigri*節には、*A. lacticoffeatus*、*A. sclerotioniger*等の OTA 産生菌が知られているが、ブドウや生コーヒー豆中の OTA 汚染への関与についての十分な情報が得られていない。(参照 34)

表2 食品におけるオクラトキシンA汚染に関与する 主要な *Aspergi / lus* 属及び *Penici / / ium*属かびの種類

菌種	主な汚染食品	地理的分布
<i>Aspergillus</i> 属		
<i>Circumdati</i> 節		
A. ochraceus	穀類、穀類加工品、トウモロコ	温带~熱帯:
	シ、豆類、種実類、香辛料、オ	日本、世界各地
	リーブ、ブドウ、乾燥果実、コ	
	ーヒー豆、乾物類(かつお節	
	等)、食肉加工品、	
A. westerdijkiae	コメ、コムギ、ソルガム、種実	米国、ヨーロッパ、南アフリカ、イ
	類、香辛料、ブドウ、コーヒー	スラエル、インド、タイ、ベトナム、
	豆	中国、オーストラリア、ブラジル、
		ベネズエラ
A. steynii	コメ、ダイズ、ブドウ、コーヒ	スペイン、インド、スリランカ、タ
	<u>一豆</u>	イ、ベトナム、中国、オーストラリ
		ア、パナマ、アルゼンチン
Flavi 節		
A. alliaceus $*_1$	コムギ、種実類、イチジク、タ	米国、メキシコ、英国、イタリア、
	マネギ、ニンニク	アルジェリア、中近東、インド、中
		国、オーストラリア、ペルー

菌種	主な汚染食品	地理的分布
<i>Aspergillus</i> 属		
Nigri 節*2		
A. niger 種複合体*3	穀類、穀類加工品、トウモロコ	温帯~熱帯:
	シ、豆類, 種実類、香辛料、生	日本、世界各地
	鮮果実・野菜 (ブドウ、トマト、	
	タマネギ、ニンニク等)、乾燥	
	果実、コーヒー豆、カカオ豆、	
	食肉、食肉加工品,チーズ	
A. carbonarius	穀類、トウモロコシ、種実類、	米国、ヨーロッパ(地中海沿岸)、
	香辛料、カンキツ、ブドウ、イ	チュニジア、ガーナ、ナイジェリア、
	チジク、乾燥果実、コーヒー豆	中近東、インド、インドネシア、タ
	(ロブスタ種) 、カカオ豆	イ、ベトナム、日本、オーストラリ
		ア、ブラジル、アルゼンチン
<i>Penicillium</i> 属		
<i>Viridicata</i> 節		
P. verrucosum	穀類、穀類加工品、トウモロコ	温帯(特に寒冷地)
	シ、ジャガイモ、タマネギ、豆	米国、カナダ、ロシア、ヨーロッパ、
	類、種実類、チーズ、クリーム、	日本、フィリピン
	ケーキ	
P. nordicum	コムギ、タマネギ、食肉、食肉	カナダ、グリーンランド、ヨーロッ
	加工品、魚卵、塩魚、ジャム、	パ、インドネシア、日本、オースト
	チーズ	ラリア

*1:完全時代は Petromyses alliaceus

*2:黒色コウジカビ菌群(black aspergilli)

*3: A. niger 種複合体には、A. awamori (A. citricus), A. foetidus, A. niger, A. tubingensis などが含まれる。

4. 発見の経緯

OTAは、1960年代の初めに南アフリカにおける病因不明の疾患に関する調 査研究の過程において、毒素産生かびの探索中にトウモロコシから分離され た *Aspergillus ochraceus* (2004年に *A. westerdijkiae* と再同定)の代謝物と して発見され、1965年に単離及び構造決定がなされている。(参照 35, 36)

OTA による農産物の最初の自然汚染の報告は、1969年の米国の市販トウモ ロコシについてであり(参照 37,38)、その後、世界各地で麦類及び豆類での自 然汚染例が報告された(参照 39,40,41)。

さらに、1974年に生コーヒー豆、1990年代には OTA 汚染穀類を原料とし て発酵生産されたビールの汚染(参照 42, 43)、1996年にワインの自然汚染例 (参照 44)が報告されている。また、欧州においては、デンマークなどの北欧 で発生しているブタの腎症やバルカン諸国で発生しているバルカン風土病腎 症の要因の一つであると提唱されていた(参照 45, 46, 47, 48)。これらの状況か ら、これまでに世界各国において大規模な汚染実態調査や疫学調査等が実施 され、OTA の世界的な汚染実態が明らかにされている(参照 1, 21, 22, 23, 43, 49, 50, 51, 52)。

III. 安全性に係る知見の概要

公表文献、FAO/WHO 合同食品添加物専門家会議(JECFA)、欧州食品安 全機関(EFSA)及び国際がん研究機関(IARC)の資料等を基に安全性に関 する主な科学的知見を整理した。

1. 実験動物等における体内動態

OTA の主な代謝経路を図1に示した。OTA は、その一部が消化管で毒性が 低いとされる OTaに加水分解される(参照 4)。肝臓及び腎臓では、OTA は水 酸化酵素ファミリーであるシトクロム P450 (CYP) により酸化され、少量で あるが、OTA の酸化代謝物が認められている。このほか、エチルエステル誘 導体であるオクラトキシン C (OTC)、オクラトキシンキノン/オクラトキシン ハイドロキノン (OTQ/OTHQ)、脱塩素化類縁体である OTB 及びオクラトキ シンβ (OT β)、ラクトン環の開裂、誘導体の抱合体形成 (OTHQ-GSH、 OTHQ-N-acetylcystein、OTA グルコシド等)等、様々な経路で代謝されると する報告がある(参照 53, 54)。主な OTA の関連化合物を参考資料1に示した。

図 1 オクラトキシンAの主な代謝経路

(1)吸収、分布、代謝、排泄

① 消化管での代謝・変換

OTA は *in vitro* でラットの膵臓、十二指腸又は回腸のホモジネートと共 にインキュベーションすることによって OTaに加水分解された(参照 55)。 また、OTA をラットの結腸又は盲腸のホモジネートとインキュベーション すると 6 時間で約 50%が、12 時間で 85~91%が OTaに加水分解された (参 照 56)。一方、ラット腎臓(参照 55)、ラット肝臓(参照 57,58)又はウサギ肝 臓(参照 59,60)のホモジネートと OTA を共にインキュベーションしても、 OTaは検出されなかった。

ddY マウス(雄、一群 5 匹)に 15mg/kg の OTA を腹腔内投与すると、 OTA は、肝臓から胆汁及び小腸へ循環した。肝臓では OTαは検出されず OTA は腸管で加水分解されると考えられた。(参照 61)

Sprague-Dawley ラット(雄、一群 12 匹)に、2.7 mg/kg 体重の[¹⁴C]-OTA を静脈内投与し OTA と OTaを測定した結果、盲腸及び結腸を除く各組織 に検出されたのは主に OTA であり、OTaは盲腸及び結腸でのみ検出された。 著者らは、盲腸内細菌叢に OTA の加水分解能が存在すると考えた。(参照 62)

Sprague-Dawley ラット(雄、一群 4~6匹)を用いて、OTA の体内変換 における胃及び腸管内の細菌叢の影響が調べられた。ネオマイシンを混餌 投与後、ネオマイシン投与群及びネオマイシン非投与の対照群に 1 mg/kg 体重の OTA が経口投与された。5日間の観察期間中、糞及び尿中に排出さ れた OTA 及び OTaは対照群で 68±6 μ g 及び 41±6 μ g であった。一方、 ネオマイシン投与群では 111±14 μ g 及び 21±2 μ g であり、腸管内で細菌 叢による OTA から OTaへの加水分解が阻害されたと考えられた。また、 ネオマイシン投与群の血中 OTA 濃度は対照群に比べ有意に高かった。(参 照 56)

ウシの第1、2、3及び4 胃それぞれの内容物と OTA をインキュベーショ ンした結果、第1~3 胃の内容物に OTA から OTαへの加水分解能が認めら れた。一方、第4 胃内容物においては、加水分解能は認められなかった。*in vivo*において同様の反応速度と仮定すると、飼料中で最大 12 mg/kg までの OTA が分解されると推計された(参照 63, 64)。胃内細菌叢の微生物の数、 活性等により OTA の解毒能に差はあるが、ウシの第1 胃には飼料中の OTA を解毒する作用があることが示されている(参照 65)。

ヒツジ(雌雄及び頭数不明)に5mg/kg 飼料のOTAを混餌投与した結果、 投与1時間後の第1胃液中に OTA 及び OTαが認められたが、血中には両 者とも検出されず、OTA は血液に達する前に解毒されると考えられた。(参 照 66)

OTαへの加水分解に関与する酵素は、ウシ及びラットにおいて、膵液に 含まれる酵素であるカルボキシペプチダーゼ A とキモトリプシンであるこ とが示された (参照 4, 67)。しかしながら、OTA の加水分解に関与する腸 内微生物由来の酵素は同定されていない(参照 56)。かび毒の一種であるペ ニシリン酸は、*in vitro* でカルボキシペプチダーゼ A の酵素反応を阻害し、 OTA の加水分解を抑制する(参照 68) 。

2 吸収

a. 吸収

OTA の吸収部位を調べるために、Wistar ラット(雄、一群3匹)の胃の 両端又は腸管各部位の両端を 4~8cm の長さで結紮・閉管し、その閉鎖胃 腸管腔内に 1.17 mg/kg の OTA 溶液を注入した。注入5分後から10分毎に 門脈血中における OTA の血中濃度を測定した結果、OTA は主に空腸近位 部から吸収されることが認められた。(参照 69,70)

Wistar ラット(雄、匹数不明)の十二指腸内に 0.33mg/kg 体重の OTA を投与すると、投与量の約 60%が投与後 8 時間以内に吸収された。血漿中 に OTA の代謝物は検出されなかった。(参照 71)

Wistar ラット(雄、一群 15 匹)に 2 mg/kg の OTA を経口投与すると、 胆汁中に OTA が認められた。胆汁中の OTA 濃度は 6 時間以内に 1 µg/ml 以上となり、以後減少した。OTA 投与後の胆汁を 24 時間採取し、別のラ ット(雄、一群 6 匹)の胃又は十二指腸に直接注入した結果、投与 24 時間 後にそれぞれ投与量の 1/3 又は 2/3 が血漿中から検出された。本結果は、ラ ットにおける OTA の腸肝循環の所見と考えられる。(参照 72)

Swiss マウス(雄、一群 5 匹)に OTA の加水分解物であるフェニルアラ ニンを OTA と共に 10:1 のモル比で経口投与すると、胃と腸からの OTA の 吸収が増加した。最初の 12 時間で、血清及び肝臓中の OTA 濃度がフェニ ルアラニン非投与群と比較し、それぞれ 8 倍及び 4 倍高い値となった。フ ェニルアラニン投与群の血中 OTA 濃度は、周期性を示さなかった。(参照 73, 74)

b. バイオアベイラビリティ

ラットに 3.6 mg/匹(約 15 mg/kg 体重に相当)の[¹⁴C] - OTA を経口投 与した結果、バイオアベイラビリティ¹⁾は 56%であった(参照 55)。ブタに 0.5 mg/kg 体重並びにウサギ及びニワトリに 2 mg/kg 体重の OTA 経口投 与後のバイオアベイラビリティは、それぞれ 66%、56%及び 40%であった(参 照 75)。コイ、日本ウズラ、NIH-Bethesda マウス(雄)、Wistar ラット(雄) 及びサルに 50 ng/kg 体重の OTA を経口投与した結果、バイオアベイラビ リティは、それぞれ 1.6%、62%、97%、44%及び 57%であった(参照 76)。

¹⁾ 投与量に対する循環血液中における未変化体の総量の割合で示される。

③ 分布

a. 血漿タンパク質との結合

OTA は吸収後、血液中で容易に血清アルブミンと結合し、未結合分画は、 ヒト及びラットで 0.02%、サルで 0.08%、マウス及びブタで 0.1%、日本ウ ズラで 0.2%、コイで 22%であった(参照 76)。また、血球において、痕跡程 度の OTA が検出された(参照 77)。

ブタ、ニワトリ及びラットの血清アルブミンに結合する OTA の結合定数 は、それぞれ 7.1×10⁴ mol⁻¹、5.1×10⁴ mol⁻¹及び 4.0×10⁴ mol⁻¹であった。 血清アルブミン及びその他の血清中の高分子に結合した OTA は、徐々に遊 離 OTA となり、長期間にわたって血液中へ放出される。(参照 74, 75)

アルブミン結合 OTA が OTA の体内動態に与える影響を調べるため、ア ルブミン欠損ラット(雌、一群 3~4 匹)及びその野生型の Sprague-Dawley ラット(雌、一群 2~4 匹)に 4.1 mg/kg 体重の OTA が静脈内投与され、 投与後 90 分まで血漿中、尿中及び胆汁中の OTA 濃度が調べられた。野生 型ラットでは、投与後の尿及び胆汁に排泄される OTA 濃度は低く、血漿中 OTA 濃度は投与 90 分後に 50 µg/ml だった。血漿中ではほとんどの OTA が血清アルブミンと結合していた。一方、アルブミン欠損ラットでは、OTA は投与後に尿及び胆汁から急速に排出され、それに伴って血漿中の遊離 OTA 濃度は急減して投与 10 分後には 0.5 µg/ml となった。遊離 OTA は、 肝臓及び腎臓において濃度勾配に逆らって血液中から胆汁又は尿中に排泄 された。(参照 78)

Wistar ラット(雄、一群 9 匹)に 4 mg/kg 体重/日の OTA と 0、10、20 又は 50 mg/kg 体重/日の酸性薬剤のフェニルブタゾンが 10 日間投与され た。フェニルブタゾンは *in vitro* で OTA とアルブミンの結合を競合的に阻 害する。雄ラットにおいて、フェニルブタゾン存在下で OTA はより強い毒 性を示し、50 mg/kg 体重投与群において LD₅₀ 値が 33 から 21 mg/kg へと 有意に減少した。(参照 79)

OTA と結合するヒト又はブタの血漿中タンパク質が *in vitro* で調べられた。その結果、それぞれの血漿中にアルブミンよりも OTA と強い親和性を示す未同定の高分子(分子量 20 kDa)が認められた。結合定数は、ヒト由来の未同定高分子が 2.3×10¹⁰ mol⁻¹であり、ブタ由来の未同定高分子が 0.59×10¹⁰ mol⁻¹であった。この未同定の高分子への OTA の結合は、血漿中 OTA 濃度 10~20 ng/ml で飽和した。血漿中アルブミンは血漿中 OTA 濃度が数 100 μg/ml 以上で飽和した。(参照 74,80)

b. 組織残留と半減期

OTA が吸収された後の組織及び血清中の OTA 及び OTA 代謝物の残留濃度は、投与期間、投与量、投与した OTA が自然汚染か純品使用か、血清中高分子との結合度合、OTA 半減期、と殺前の OTA 未投与の回復期間の長

さ等に依存する(参照 81)。OTA の半減期が生物種により異なることが報告 されている(表3)。この生物種間差は、OTA の吸収速度、血漿中でのピー ク値、アルブミンなどの血清中高分子への結合度合、排出経路等の違いに よる(参照 75,82)。

種	半減期(時間)	参照文献
ニワトリ	4.1	(参照 75)
ウズラ	6.7	(参照 76)
マウス	$24 \sim 39$	(参照 83)
ラット	$56 \sim 264$	(参照 76, 84, 85, 86, 87, 88)
ブタ	$89 \sim 144$	(参照 75,89)
子ウシ	77	(参照 90)
サル	510	(参照 76)
ヒト	853	(参照 91)

表3 各種動物種におけるオクラトキシン A の半減期

単回経口投与後の OTA の最大血中濃度は、ニワトリでは 0.33 時間後(参 照 75)、ラットでは 4~8 時間後(参照 55, 77)、ウサギでは 1 時間後(参照 75)、 ブタでは 10 時間後 (参照 75)及び子ウシでは 2~4 時間後(参照 90)に認め られた。また、ラットにおける腎臓、肝臓及び心臓での組織中最大濃度は、 血中濃度と同様に 4 時間以内に認められた(参照 55)。

C57B1 マウス(雌雄、一群各4匹)に[¹⁴C]-OTA を約200 ng/g 体重の用 量で静脈内投与し、経時的に1匹ずつと殺してオートラジオグラフィー法 により分布が調べられた。OTA は血液中に4日間以上残留することが示さ れた。この投与量ではOTA は主にタンパク質に結合した状態で存在すると 考えられた。(参照92)

Wistar ラット(雄、一群6匹)に[¹⁴C]-OTA が86 ng/g 体重の用量で単 回静脈内投与され、1 匹ずつと殺し、経時的な OTA の分布の変化が調べら れた。24 時間後の分布濃度は、肺・副腎髄質・皮膚>肝臓>心筋・腎臓> 唾液腺・副腎皮質>筋肉・胃粘膜>骨髄の順であった。(参照 93)

F344 ラット(雄、一群 4 匹)に 1 mg/kg 体重の[³H] -OTA を経口投与した 結果、投与 24 時間後に OTA が血漿中に 14.0%、肝臓に 1.3%、腎臓に 0.3% 認められた。肝臓及び腎臓では 88%以上が未代謝の OTA であった。(参照 94)

Swiss マウス(雄、一群 5 匹) に 0.11µg の[³H]-OTA を含む 6.61µg の OTA を筋肉内投与すると 30 分後には胆汁中及び腸内容物中に[³H]-OTA が 認められた。腸内容物中においては、投与 1 時間後に OTA 濃度が最高値と なった。血中 OTA 濃度は投与 3 時間後で最高値となり、その後速やかな減 少とそれに続く増加が認められた。薬物と毒物の腸肝循環を妨げるコレス チラミンを投与するとこのような減少後の増加はみられなかった。(参照 73)

ICR Swiss マウス(雌、一群2匹)に25 mg/kg 体重のOTA を単回強制 経口投与した後に食道、胃、小腸、腎臓及び肝臓を取り出し、OTA の分布 を免疫組織化学的に調べた結果、投与15分後から6時間後までにOTA が 認められ、大部分は近位尿細管細胞の側底部に分布するが、遠位尿細管細 胞、ヘンレループの細胞、ボーマン氏嚢及び糸球体にも分布が認められた。 集合管と髄放線にOTA は認められなかった。(参照 95)

Wistar ラット(雄、2歳及び6週齢)に 0.5mg/kg 体重の OTA を一日 一回6日間腹腔内投与して腎臓組織の OTA 濃度が調べられた。成熟ラット

(2歳齢)では、腎臓の乳頭部並びに髄質内層及び皮質の OTA 濃度が高く、 髄質外層の2倍以上高い濃度であった。若齢ラット(6週齢)では、乳頭部 の OTA 濃度が最も高く、次いで髄質内層であり、髄質外層及び皮質の濃度 は低かった。(参照 96)

Wistar/AF EOPS ラット(雄、一群 12 匹)に OTA 汚染飼料を 28 日間 給与し、腎臓中及び肝臓中の OTA 濃度が調べられた。ラットの OTA 平均 摂取量は 146.1 µg/kg 体重/日であった。腎臓中及び肝臓中の OTA 濃度の 平均±標準偏差は、それぞれ 79.4±31.4ng/g及び 73.7±31.3ng/g であった。 (参照 97)

ブタ(4週齢、交雑種去勢雄及び雌)に、OTA 汚染飼料(120 ng/g 飼料) を4週間給与した後に腎臓及び肝臓のOTA 濃度を測定した結果、平均濃度 はそれぞれ 12.49 ng/g 及び 1.02 ng/g と、肝臓よりも腎臓で高い傾向が認め られた。(参照 98)

F344 ラット(雌雄、10 及び 15 週齢)に 0.5 mg/kg 体重の OTA を単回 強制経口投与し、投与後 12 時間目から 2 か月目までそれぞれ 3 匹ずつ経時 的にと殺して腎臓及び肝臓中の OTA 濃度を高速液体クロマトグラフィー

(HPLC) で測定した結果、両組織中の OTA 濃度はほぼ等しかった。性差 については、投与前に絶食させたラットでは、最高到達濃度(Cmax)が雌 よりも雄において高く、投与前に絶食させていないラットでは逆の傾向が 認められた。F344 ラット(雄、8 週齢、一群 10 匹)に OTA (0.5mg/kg 体 重/日)を7 又は 21 日間、一日一回強制経口投与した後の腎臓と肝臓の各 組織中 OTA 濃度にも、大きな差異はなかった(参照 99)。

F344 ラット(雌雄、一群各 3 匹) に 0.5 mg/kg 体重(コーン油に溶解) の OTA を単回経口投与した後に、糞尿が 12 時間間隔で収集された。また、 投与 24、48、72、96、672 及び 1,344 時間後に各群のラットをと殺し、血 液、肝臓及び腎臓を採取し、HPLC 又は液体クロマグラフタンデム質量分 析計(LC-MS/MS)を用いてそれぞれの試料中の OTA 及びその代謝物が分 析された。OTA 以外には主に OTαが認められた。尿中に、LC-MS/MS の 分析結果より推定された OTA のへキソース及びペントース抱合体が僅かに 認められたが、OTQ/OTHQ、ラクトン環の開裂した OTA、OTA 及びその 代謝物である OTA のグルタチオン抱合体とグルクロン酸抱合体は検出され なかった。OTA の最大血漿中濃度は、雄では 48 時間後に 4.6 µmol/L、雌 では 24 時間後に 6.0 µmol/L であった。血液からの OTA の減少は一次速度 式に従い、雄及び雌の血漿中 OTA の半減期はそれぞれ 224 及び 231 時間 であった。OTαの血漿中濃度は 10~15 nmol/L と低かった。肝臓の OTA 濃度は、雌より雄の方が高かったがいずれも 12 pmol/g 組織以下であった。 腎臓の OTA 濃度は投与 24 時間後に、雄で 480 pmol/g 組織、雌ではその約 1/3 であった。OTA 濃度は、肝臓より腎臓で高く、投与 24 時間後の雄ラッ トにおける腎臓の OTA 濃度は肝臓の 20 倍であった。肝臓、腎臓共に OTA 濃度は投与 48 時間目には減少しており、投与後 672 時間目には検出限界 (2 pmol/g) 未満であった。OTαは肝臓及び腎臓中には認められなかった。(参 照 86,99)

F344 ラット(雄、一群 3 匹)にコーン油に溶解した 10 mg/kg 体重の OTBを単回又は 2 mg/kg 体重/回(一週間に 5 回)を 2 週間、それぞれ強 制経口投与した後に、組織中及び血液中の OTB 及びその代謝物を LC-MS/MS 及び HPLC で分析した。血漿中及び組織中には OTB のみが検 出された。血漿中、腎臓中及び肝臓中の OTB 濃度は、単回投与後 72 時間 目には、それぞれ 3.8±0.8 nmol/ml、232.6±44.7 pmol/g 及び 245.0±44.7 pmol/g、 2 週間投与後 72 時間目には、それぞれ 0.7±0.2 nmol/ml、42.3± 29.4 pmol/g 及び 61.8±28.5 pmol/g と、腎臓と肝臓における濃度が同程度 であった(参照 100)。一方、0.5 mg/kg 体重の OTA を単回強制経口投与後 72 時間目の血漿中、腎臓中及び肝臓中の OTA 濃度は、それぞれ 4.4±0.4 nmol/ml、271.9±92.9 pmol/g 及び 0.7±1.1 pmol/g であった(参照 86)こと から、著者らは、OTB が腎臓中に残留し難いこと等の OTA と OTB のラッ ト体内動態の相異が、両化合物の毒性の差に関与していると考えた(参照 100)。

F344 ラット(雄、一群3匹)に6 mg/kg 体重のOTA(水溶液)を単回 経口投与した結果、投与後3時間以内に血漿中濃度が最大となり、投与後4 日まで約50 μg/mlの血漿中濃度を維持した後、28日目まで穏やかに減少し た。この期間の半減期は7.57日であった。F344 ラット(雄、一群3~8匹) に5 mg/kg 飼料のOTA (285 μg/kg 体重/日)を2年間給与した場合には、 投与開始から3か月目以降はOTA 血漿中濃度が6~8 μg/mlと安定的に推 移した。(参照 101)

F344 ラット(雌雄、一群各 3 匹) に 0.5 mg/kg 体重の OTA を単回経口 投与し、性別と年齢が OTA の動態に与える影響が調べられた。若齢(10 週齢)及び成熟(15 週齢)ラットの最高血中濃度は、成熟雌で投与後 6 時 間、その他の群では投与後 2 時間となった。成熟雌では、同じ週齢の雄よ り高い最高血中濃度に達した。見かけの分布容積は体重とともに有意に上 昇し、半減期は、若齢雄、成熟雄、若齢雌及び成熟雌でそれぞれ 219 時間、 264 時間、191 時間及び 205 時間であった。OTA 血中濃度の推移を推計し た結果、2 か月後の血中濃度は雌雄で差がみられず、OTA の長期の毒性試 験において認められる雌雄差について動態に基づく説明は難しいと考えら れた。(参照 88)

Wistar ラット(雄、一群4匹)に、50、125、250又は500µg/kg 体重 のOTAが1日おきに10日間投与され、腎臓髄質外層外帯の近位尿細管(S3 セグメント)の尿細管上皮細胞刷子縁又は側底膜 ²にある有機アニオン輸送 システムへの影響が調べられた。S3 セグメントは、50µg/kg 体重より用量 依存的に損傷の程度が増加した。免疫組織化学により、刷子縁に認められ る有機アニオントランスポーターのOAT2及びOAT5並びに側底膜に認め られるOAT1及びOAT3の発現を調べたところ、これらのタンパク質の発 現は、OTA 投与により 250µg/kg 体重までは増加し、500µg/kg 体重では 低下した。250及び 500µg/kg 体重までは増加し、500µg/kg 体重では はるOTA 濃度は、用量依存的に増加した。腎臓において、酸化ストレスの 指標を調べた結果、脂質の分解産物のマロンジアルデヒド(MDA)濃度に 変化はみられず、尿中 8-ヒドロキシ-2'-デオキシグアノシン(8-OHdG)濃 度の変化に用量依存性は認められなかった。(参照 102)

ブタ(スウェーデンランドレース一群 2 頭及びデンマークランドレース 一群 5 頭)において、血液からの OTA の消失率は、腎臓、肝臓及び他の組 織より低かった。(参照 103)

ブタ(デンマークランドレース、雌、一群 4 頭)に 0.8 mg/kg 体重/日の OTA を 5 日間胃内投与して肝臓と腎臓の OTA 濃度が調べられた。OTA は 肝臓に 189 ng/g、腎臓に 283 ng/g 検出された。(参照 104)

ブタ(デンマークランドレース、雌、一群5頭)に1 mg/kg 飼料及びニ ワトリに 0.3~1 mg/kg 飼料の OTA を混餌投与し、組織分布に関する結果 をまとめたところ、組織中 OTA 濃度は腎臓>肝臓>筋肉>脂肪組織の順(参 照 105, 106)であり、ブタ(雌雄及び頭数不明)を用いた 6 週~3 か月の反 復投与試験の結果では、腎臓>筋肉>肝臓>脂肪組織の順であった(参照 89, 107)。

ブタ(雌雄不明、一群 10 頭) に 0、25、50、100 又は 200 µg/kg 飼料(そ れぞれ 0、0.9、1.7、3.4 又は 6.9 µg/kg 体重/日)の OTA を約 3 か月混餌 投与した結果、臓器及び筋肉に僅かな OTA 残留が認められ、腎臓に 4~11 µg/kg、筋肉に 1~6 µg/kg 及び肝臓に 1~4 µg/kg の OTA が検出された。(参 照 107)

²⁾ 極性をもつ細胞の側面と底部側の細胞膜を併せた名称

ブタ(交雑種去勢雄及び雌、4週齢、一群24頭)に、OTA 汚染飼料(120 ng/g 飼料)を4週間給与した後に腎臓及び肝臓各組織中OTA 濃度を測定した結果、平均濃度は腎臓で12.49 ng/g、肝臓で1.02 ng/gと、肝臓よりも腎臓で高い傾向が認められた。(参照 98)

ウシ(ジャージー、雌、一群1頭)に0.317~1.1 mg/kg 飼料の OTA を 11 週間経口投与した結果、一頭の腎臓に OTA が認められたが、筋肉、肝臓、 血液及び尿において OTA は検出限界未満であった。(参照 108)

サバンナモンキー(*Cercopithecus aethiops*、雌、一群3頭)に、0.8、 1.5 又は2 mg/kg 体重の OTA が単回静脈内投与され、21 日間血液及び尿 試料が採取された。OTA 血中濃度は投与後2時間で最大となり、尿中に代 謝物は検出されなかった。サルにおける OTA の血液からのクリアランスは 2 コンパートメントモデルに一致し、OTA の半減期は、19~21 日であった。 体循環コンパートメント(中心)と末梢組織コンパートメントの平均見か け分布容量は、59 ml/kg であった。(参照 109)

OTAの動態プロフィールを調べるため、395 ngの[³H]-OTA(0.14 MBq) がヒト(男性志願者、1名)に空腹時に経口投与され、75 日間血液が採取 された。投与後 8 時間目に、投与した[³H]-OTA の 84.5%以上が血漿中に 認められた。6 日後には血中の[³H]-OTA は、投与量の 36.3%となり、以後 ゆるやかに減少した。HPLC 分析の結果、血中ではほとんどが遊離 OTA で あり、OTA 代謝物は検出されなかった。OTA の血液からのクリアランスは 2 コンパートメントオープンモデルに一致した。この 2 コンパートメントモ デルは、迅速な消失及び分布期とその後の緩やかな消失期(腎臓クリアラ ンス 0.11 ml/分)と続き、半減期は最初の6日間は約 20 時間、6日後から は 35日と算出された。腎臓クリアランスは0.093~0.109 ml/分(およそ 0.13 L/日)と算出された。また、食品に由来する OTA の血中濃度の個体間変動 が、ヒト(男女志願者、8名)において 2 か月間調査された。OTA の血中 濃度は、0.20~0.88 ng/ml であった。血中濃度は、2 名において観察期間中 ほぼ一定に推移したが、6 名においては、観察期間中に増減が認められた。 男女差は認められなかった。(参照 91)

一方、2 コンパートメントモデルでは OTA の投与経路、生物種又は性差 による半減期の違い及び腎臓への集積を十分に説明できず、OTA の動態の 理解に 3 コンパートメントモデル又はそれ以上のコンパートメントモデル に基づく解析が検討された。(参照 110, 111)

c. 卵、乳汁、胎盤及び胎児への移行

ニワトリ(雌、一群27羽)に生後1日目から0.3又は1mg/kg 飼料(0.0375

及び 0.125 mg/kg 体重/日に相当:事務局換算 ³⁾)の OTA を 341 日間給餌 して卵への移行が調べられた。卵中(各群 60~70 個)に OTA は認められ なかった。(参照 112)

ニワトリ (プリマスロック、産卵鶏、一群 4~8 羽) に OTA が 2.5 又は 10 mg/kg 飼料(0.1 又は 0.4 mg/kg 体重に相当) で 7 日間混餌投与された。 4 日目に 10 mg/kg 飼料投与群の卵黄中に 1.1 µg/kgの OTA が検出された。 投与終了 3 日後でも 0.7 µg/kg の OTA が卵黄中に検出された。(参照 113)

ニワトリ(産卵鶏、一群7羽)にOTAが2mg/kg 飼料の用量で3週間 混餌投与された。分析した卵のOTA残留量は検出限界(0.05 µg/kg)未満 であった。(参照 114)

日本ウズラ(産卵用、一群 5 羽)に [¹⁴C]-OTA を 70 µg/kg 体重の用量 で静脈内投与すると、6 時間後には黄色卵胞の周囲に環状に放射能残留が認 められ、24 時間後には卵アルブミン中に OTA が検出された。(参照 115)

日本ウズラ(産卵用、一群 28 羽)にOTA を 0、1、5 又は 20 mg/kg 体 重で単回経口投与すると、5 mg/kg 体重以上の投与群でOTA の卵への移行 が認められた。12 時間後の黄色卵胞のOTA 濃度は、5 mg/kg 体重投与で 13 µg/kg、20 mg/kg 体重投与で 34 µg/kg であった。OTA は、投与 4 日後 の黄色卵胞になお存在し、平均濃度は全卵中より 10 倍高かった。5 mg/kg 体重のOTA 投与群で卵中OTA 濃度は 72 時間後に 2.06 µg/kg と最高値と なった。20 mg/kg 体重投与群において卵中のOTA 濃度は更に高くなり、 産卵が遅延した。(参照 116)

Sprague-Dawley ラット(雌、一群 4~5匹)の授乳期に OTA を 10、50 又は 250 µg/kg 体重の用量で単回経口投与すると、乳中に OTA が認められ た。母動物において乳中と血中の濃度比は 24 時間後に 0.4 及び 72 時間後 に 0.7 であった。72 時間後では母乳中と児動物の血液中の OTA 濃度及び母 乳中と児動物の腎臓中の OTA 濃度との間に直線的相関が認められた。児動 物における血液中及び腎臓中 OTA 濃度は、それぞれ母動物の OTA 濃度よ り高かった。(参照 117)

C57B1 マウス(雌、一群 2~4匹)に 120~170 mg/kg の[¹⁴C]-OTA を静脈内投与し、全身オートラジオグラフィー法による解析が行われた。 [¹⁴C]-OTA は、妊娠 10 日目よりも 8、9 日目に投与したときに迅速に胎盤 を通過した。OTA 投与後 20 分後に子宮壁、胎盤及び胎児組織で放射能が 認められた。妊娠 17 日目に OTA を投与した場合は、胎児に僅かな放射能 が認められた。 (参照 118, 119)

3) JECFA T	ご用いている	換算(IPCS:EHC70)を	用いて摂取量を推定
------------	--------	-----------------	-----------

種	体重(kg)	飼料摂取量(g/動物/日)	摂取量(mg/kg 体重/日)
ヒナ鳥	0.04	50	0.125

妊娠 11 日目及び 13 日目 の Slc:ICR マウス(雌、一群 5~13 匹)に OTA を 5 mg/kg 体重の用量で腹腔内投与し、母動物及び胎児への分布が調べられた。母動物の血漿中及び臓器中の OTA 濃度は投与 2 時間後に最大値に達した。胎盤中の OTA 濃度は、投与 2~6 時間後が高く、以後は他の組織より緩やかに減少した。母動物における OTA の半減期は、妊娠 11 日目投与で 29 時間及び 13 日目投与で 24 時間であった。胎児中の OTA 濃度は投与後 2 時間では母動物血漿中濃度の 0.1%以下であったが、徐々に増加し、11 日目投与では 48 時間後に 4.6%及び 13 日目投与では 72 時間後に 13.3%であった。(参照 83)

Sprague-Dawley ラット(雌、一群 39匹)に0又は 50µg/kg 体重の OTA (炭酸水素ナトリウム水溶液中に溶解)が、交尾2週間前及び妊娠中に週5 回、その後3週間に渡る授乳期に週7回強制経口投与され、OTAの児動物 への移行が調べられた。OTA 非投与群又は投与群の母動物から産まれた児 動物は一群当たり 3~4 匹に分けて交差哺育された。OTA 非投与群の母動 物から産まれ、OTA 非投与群の母動物に哺育された OTA に暴露していな い対照群、OTA 投与群の母動物から産まれた後 OTA 非投与群の母動物に 哺育された出生前暴露群、OTA 非投与群の母動物から産まれた後 OTA 投 与群の母動物に哺育された出生後暴露群及びOTA投与群の母動物から産ま れ、OTA 投与群の母動物に哺育された出生前後暴露群の4群に分類された。 OTA 処置は、母動物の体重に影響せず、児動物の体重、腎重量及び発育に も影響しなかった。児動物の血漿及び腎臓における OTA 濃度は、対照群で それぞれ 11±13 μg/L 及び 4.0±5 μg/kg、出生前暴露群でそれぞれ 130±14 μg/L 及び 42±7 μg/kg、出生後暴露群でそれぞれ 640 ±86 μg/L 及び 180±63 µg/kg であった。出生前後暴露群の児動物の OTA 濃度が最も高く、 血漿及び腎臓における OTA 濃度は 860±100 μg/L 及び 240±52 μg/kg であ った。この結果は哺乳期の児動物における OTA の高吸収や低排泄を示唆し ている。(参照 120)

妊娠 12 日目の Sprague-Dawley ラット(雌、一群 4 匹)に 2.5 mg/kg の [³H]-OTA を皮下投与して各臓器への分布が調べられた。胎児において OTA は、投与 48~72 時間後に最高濃度が認められ、投与量の約 0.1%であった。 (参照 85)

ウサギ (Blanc de Termonde、雌、一群 4 匹) に、190 ng/g 飼料 (16 μg/kg 体重に相当)の OTA を含む自然汚染飼料が哺乳の 3~19 日目に給与された。 OTA は母動物の血液から乳に移行し、最終的に児動物へ移行した。哺乳 19 日目の OTA 濃度比は母動物の血漿を 1 とすると乳では 0.015 であり、乳中 OTA 濃度と児動物血漿中 OTA 濃度には直線的相関が認められた。児動物 における血漿 OTA 濃度に対する腎臓 OTA 濃度の比は、母動物より高く、 児動物においては解毒が緩やかであると考えられた (表 4)。(参照 121)

	オクラト	キシンA 濃度		
	血漿(ng/L)	乳(ng/L)	腎臓(ng/kg)	
母動物	$3,144 \pm 704$	49 ± 11	$1,241 \pm 366$	
 児動物	51 ± 24.8	—	41 ± 25.7	

表4 哺乳ウサギと児動物のオクラトキシンA濃度

(参照 121)

ブタ(雌、一群2頭)にOTA 添加飼料が 0.38 mg/kg 体重/日の用量とな るように調整され、妊娠 21~28 日目に給餌された。OTA は胎盤に 0.04~ 0.06 µg/gの濃度で認められたが、胎児からは検出されなかった(参照 122)。 同様に、妊娠期間中に OTA が 7~16 µg/kg 体重/日で混餌投与されたブタ (デンマークランドレース、雌、一群2頭)の児動物に OTA 残留は認めら れなかった(参照 123)。一方、自然汚染飼料(OTA 193.1 µg/kg 飼料、ゼア ラレノン 152.9 µg/kg 飼料)を摂取した雌ブタから胎児に OTA が移行した とする報告があり、母ブタの血中濃度は 0.20 ng/ml であったが、児動物(6 頭)の出生時の血中濃度は 0.075~0.12 ng/ml であった(参照 124)。

反すう動物では経口摂取された OTA のほとんどが消化管内で分解される と考えられており、ウシ(ジャージー、雌、一群1頭)に 0.317~1.1 mg/kg 飼料の OTA を 11 週間経口投与した結果、乳から OTA は検出されなかった。 (参照 108)

一方、妊娠 3~6 か月目のウシ(ホルスタイン、雌、一群 1 頭)に 0.2、
0.75 又は 1.66 mg/kg 体重/日の OTA を胃内投与した場合には、1.66 mg/kg
体重/日の OTA 投与群においてのみ、投与開始から 3、4 及び 5 日目の乳に
僅かに OTA が検出されたとの報告もある。(参照 125)

④ 代謝

OTA の主な代謝経路を図1(「III. 安全性に係る知見の概要」の冒頭)に 示した。OTA は、主に消化管等で毒性の低い OTαに加水分解される。肝臓 及び腎臓では OTA は CYP により酸化され、少量であるが、OTA の酸化代 謝物が認められている。このほか、脱塩素化、ラクトン環の開裂、抱合体 形成等、様々な経路で代謝される報告がある。(参照 53)

ヒト、ブタ及びラットの肝臓から調整したミクロソームを、還元型ニコ チンアミドアデニンジヌクレオチドリン酸(NADPH)の存在下で OTA と インキュベーションし、得られた代謝物について NMR 及び質量分析器を 用いて確認した結果、少量の 4(*R*)-ヒドロキシオクラトキシン A (4*R*-OH-OTA)及び 4*S*-OH-OTA が生成された。ヒト及びラット肝臓のミ クロソームを用いると 4*R*-OH-OTA が主要な代謝物で、ブタの肝臓ミクロ ソームを用いると 4*S*-OH-OTA が主要な代謝物であり、これらの OTA の加 水分解には CYP が関与していると考えられた。また、両者の加水分解反応 における Vmax 値が低かったことから、これらの代謝物は OTA の主要経路 ではないと著者らは考えた(参照 126)。NADPH 存在下でラット又はヒト肝 臓ミクロソームと OTA をインキュベーションし、HPLC で分析した結果、 OTA の代謝物として 4*R*-OH-OTA が認められたが、その生成率は低く、タ ンパク質 1 mg 当たり 10~25 pmol/分であった(参照 94)。4*R*-OH-OTA は OTA より毒性が低いと考えられているが、4*S*-OH-OTA の毒性については 利用できるデータはない(参照 126, 127, 128)。

OTA の代謝について、各種ミクロソーム標品、ラット CYP 標品及び組換えヒト CYP 標品を用いた *in vitro* 系で OTA の代謝が調べられている。

OTA をラット又はマウスの肝ミクロソーム反応系に添加すると LC-MS/MS でごく少量の4*R*-及び4*S*-OH-OTA が検出されている。げっ歯 類では肝臓に発現する CYP1A2 と CYP3A2 の関与が示唆されている(参照 129)。マウスの腎ミクロソームの存在下で OTA が代謝されて遺伝毒性を示 すとの報告(参照 130)がある一方、ラットの腎ミクロソームでは OTA の遺 伝毒性が検出されないとの報告もある(参照 129)。

4R-OH-OTA の生成に関して、ラットの CYP1A2 及び CYP2C11 の発現 系で検出されず、ヒトの CYP1A1 及び CYP3A4 の存在下で生成が検出され るが、ヒト CYP1A2 には活性が認められなかったとの報告がある(参照 94)。 しかしながら CYP3A4 以外に CYP2C9-1 と CYP1A2 に弱い活性があると する報告もある(参照 129)。このように OTA 代謝に関与する酵素分子種と 活性化部位についての知見は報告間に違いがあり、酵素学的な活性化機序 には未だ不明の点がある。

各種 CYP 誘導剤を前投与したラットの肝臓ミクロソームを用いると 4*R*-OH-OTA の生成率が増加した。アルカリホスファターゼ(ALP)及びγ グルタミルトランスフェラーゼ(γGT)の尿中排泄を指標とした OTA の腎 障害は、CYP 誘導剤の前投与により軽減することから、CYP による酸化に より OTA 毒性は低下すると考えられた。(参照 94, 129, 130)

ウサギ肝臓のミクロソームと OTA を共にインキュベーションすると 10-OH-OTA が形成されることが NMR 及び質量分析計で確認された(参照 59)。反すう動物胃液中で OTA の代謝物である OTC が生成されたことが報 告されている(参照 131)。Wistar ラット(雄、匹数不明)に 50 ng/g の OTA 又は 53.5 ng/g の OTC を経口投与すると、血中 OTA 濃度は 1 時間後に最 大となり、OTC は投与後速やかに体内で OTA に変換されると考えられた (参照 132)。*A. ochraceus* をコメ上でインキュベーションしても OTC は検 出されなかった(参照 133)。

ラット及びヒトの初代培養肝細胞と、毒性を示さない濃度として 10-7~ 10-5 mol/L の[³H]-OTA を *in vitro* で 8 時間共にインキュベーションする と、OTA の生体内代謝物として知られる 4 *R*-OH-OTA のほかに、新たな 2 種の代謝物が認められ、HPLC の分析結果から、OTA のヘキソース又はペ ントースとの抱合体と推定された。このうちペントース抱合体は、ヒトの 初代培養肝細胞を用いた場合には検出されなかった。薬物代謝酵素の誘導 剤である 3-メチルコラントレン刺激により 4-OH-OTA 生成は増加したが、 抱合体生成には変化がなかった。(参照 134)

OTA を BALB/c マウス(雄、一群 5 匹)に 0.5、1.4、8 又は 20 μg/kg 体 重/日の用量で 4 週間経口投与後、腎臓及び精巣における OTA 代謝物を HPLC で解析した結果、両臓器に共通に、OTB、OTHQ-GSH、OTA-GSH、 OTα、OTHQ、OTHQ-N-acetylcystein、脱炭素 OTHQ、4*R*-OH-OTA、OTC 及び未同定の 1 種の代謝物が認められたことが報告されている。(参照 135)

⑤ 排泄

ラットの血中 OTA のクリアランスにおいては、胆汁排泄及び糸球体ろ過 が重要な役割を担っている。これは、遊離 OTA の分子量が 403.82 である ことと関連付けられている。ラットでは分子量 350~450 の範囲にある物質 が胆汁排泄及び糸球体ろ過を受けやすい。主な排出経路である尿又は糞へ の相対的分布は OTA の投与経路、投与量等に依存する(参照 81)。ddY マウ ス(雄、一群 5 匹)に薬物代謝酵素の誘導剤であるフェノバルビタール(PB) を 1 週間前投与した後、OTA を 15 mg/kg 体重の用量で腹腔内投与した。 OTA の胆汁への排泄は PB 非処理群に比較して約 2 倍に増加した。PB 処 理群における投与後 24 時間の尿への排出は、非処理群に比べて OTA は 1/3 に、OTαは1/4に減少した(参照 61)。

Wistar ラット(雄、一群 3~4匹)に OTA を静脈内投与後に胃腸管を灌 流した結果、OTA は腸管からも排出され、腸管灌流液中に顕著な量の OTA が出現した。(参照 69)

Sprague-Dawley ラット(雄、一群 6 匹)にネオマイシンを混餌投与した後、ネオマイシン投与群及びネオマイシン非投与の対照群に 1 mg/kg 体重の OTA を経口投与した。ネオマイシン投与群では OTA から OTαへの加水分解が阻害され、投与量に対する回収率は対照群で 56%及びネオマイシン投与群で 71%であった。(参照 56)

Wistar ラット(雄、一群 3~4 匹)に 15 mg/kg 体重の [¹⁴C]-OTA が単回経口投与された。投与 6 時間後までに放射能活性の 33%が胆汁中に排泄 された。また、投与された OTA の約 56%が、投与後 120 時間の間に OTA 又は OT α として尿及び糞中に排泄された。相対的に OTA より OT α の排泄 量が多かった。また、微量の OT α が胆汁から検出された。(参照 55)

Wistar ラット(雄、匹数不明)に 6.6 mg/kg 体重の OTA を経口又は腹腔内投与すると、8 日間の観察期間中に尿中に排出されたのは OTα、OTA 及び 4*R*-OH-OTA であり、それぞれ投与量の 27%、12%及び 1~2%であった。4*S*-OH-OTA は検出されなかった。OTA と OT α は糞中にも僅かに認

められた。血液中に OTA の代謝物は検出されず、OTA は代謝されると速 やかに尿中に排出された。(参照 71)

アルビノラット(雄、匹数不明)に 6.6 mg/kg 体重の用量で OTA を経口 投与し、5~6 日間の観察期間における回収率が調べられた。尿中には OTA、 OTα及び 4*R*-OH-OTA が検出され、排泄量はそれぞれ投与量の 6.9%、27.2% 及び 1.6%であった。糞中には微量の OTA と OTαが検出された。(参照 136)

F344 ラット(雄、一群 4 匹)に1 mg/kg 体重の[³H]-OTA を経口投与した結果、24 時間の観察期間中、尿中に14±1%及び糞中に18.0±2.6%排出された。尿中には投与量の85%のOTα及び3.9%のOTA、未同定の2種類の代謝物及び微量(0.01%以下)の4*R*-OH-OTA が検出された。糞中にはOTA 及びOTαともに検出されなかった。(参照94)

F344 ラット(雌雄、一群 3 匹)に、0.5 mg/kg 体重(溶媒:コーン油)の OTA が単回経口投与された。投与後 96 時間の観察期間中に尿中 OTA 及び OTαの投与量に対する回収率は、雄ラットでそれぞれ 2.1%及び 4.2%並びに雌ラットではそれぞれ 5.2%及び 3.5%であった。尿中には低濃度の OTA-グルコシドが検出され、LC-MS/MS のデータからペントース又はヘキ ソース抱合体と推定された。96 時間内における糞中の OTA 及び OTαの回 収率は、雄で 5.5%及び 2.9%並びに雌で 1.5%及び 2.2%であった。(参照 86)

F344 ラット(雄、一群 3 匹)に 2 mg/kg 体重の OTA を 1 週間に 5 回、 2 週間強制経口投与し、最終投与 24 時間後に採取した尿を LC-MS/MS で 分析した結果、OTα、ペントース又はヘキソース抱合体並びに痕跡程度の OTB 及び OTHQ が検出された。最終投与 72 時間後にと殺したラットの肝 臓、腎臓及び血漿中に OTA は認められたが、その代謝物は検出されなかっ た。(参照 137)

第1 胃が未発達の生後 10~15 日目の子ウシ(雄、一群2頭)に 0.5 mg/kg 体重の用量で OTA を経口投与してから、120 時間の糞尿が分析された。その結果、投与された OTA の 80~90%が OTaとして排出され、OTaは尿中 にのみ認められた。一方、未代謝の OTA も尿中(3.2~3.3%)及び糞中(7.8~10%)に認められた。(参照 90)

サバンナモンキー(*Cercopithecus aethiops*、雌、一群1頭)に、0.8、
1.5 又は2 mg/kg 体重の OTA を単回静脈内投与し、21 日間血液及び尿試料が採取された。採取試料の分析を行った結果、OTA の平均の総体重当たりクリアランスは、0.22 ml/h/kg 体重であった。(参照 109)

ヒト(男性志願者、1名)に 395 ng の[³H] - OTA (0.14 MBq)を空腹 時に経口投与してから採取した尿中の[³H]化合物が HPLC により分析され た。投与1日後から9日後までの4検体において尿中に排泄された放射性 物質の42~54%が遊離 OTA であった。サンプリング期間を通じて、放射性 物質の14~20%が遊離 OTA よりも速く溶出され、これは OTA 代謝物又は グルクロン酸抱合体と考えられた。投与後6日間の観察期間中に投与量の 20%が尿に排泄された(参照 91)。

血漿中でタンパク質と結合していない OTA は、0.2%以下であることが多 くの動物種で認められている(参照 76)。OTA の尿への排出は尿細管分泌に 依存し、そのほとんどは多様なイオン性薬物の尿細管分泌を媒介する有機 アニオン輸送によると考えられた(参照 138)。

有機アニオントランスポーターの OAT1 を発現させた卵母細胞を用いた 試験で、OTA は OAT1 を介して膜輸送された。アルブミンと結合した OTA については、この OAT1 依存的な OTA 輸送が抑制された。(参照 139, 140)

(2) 酵素及び他の生化学的パラメータへの影響

ラット(雌雄不明、一群 15 匹) に 100 μg/匹/日の OTA を 8 週間経口投 与した結果、血中糖濃度が有意に増加し、血中インスリン濃度は有意に低 下した。肝臓における糖分解酵素活性は低下したが、糖新生酵素活性は増 加した。OTA の糖尿病誘発作用は、膵臓細胞からのインシュリンの合成又 は放出の阻害による糖分解、グリコーゲン生成の抑制並びに糖新生及びグ リコーゲン分解の促進によると考えられた。(参照 141)

Sprague-Dawley ラット(雄、一群 5~6匹)に OTA を 10 mg/kg 体重 の単回又は 0.5~2 mg/kg 体重で 4 日間腹腔内投与した結果、腎臓の小胞体 カルシウムポンプ活性に増加が認められた。4 mg/kg 体重で 4 日間投与し た群ではカルシウムポンプ活性は低下した。(参照 142)

ブタ腎臓皮質細胞を用いて OTA によるタンパク質、RNA 及び DNA の 生合成阻害を調べた結果、OTA によるこれらの高分子化合物生合成の阻害 は細胞内呼吸の障害によるものではないことが示された。(参照 143)

OTA はラット肝臓がん由来 HTC 細胞の増殖を抑制した。HTC 細胞に OTA を添加すると 30 分後にタンパク質合成の阻害、150 分後に RNA 合成 阻害が認められた。OTA 添加後 5 時間の間に、DNA の合成阻害は認めら れなかった。この結果より、OTA のタンパク質合成阻害に伴って RNA の 合成が阻害されることが確認された。(参照 144)

Balb・c マウス(雌雄不明、一群 15 匹)に1 mg/kg 体重又はそれ以上の OTA を腹腔内投与すると、投与量に依存したタンパク質合成阻害が認めら れた。1 mg/kg 体重の OTA 投与 5 時間後のタンパク質合成阻害の程度は、 肝臓、腎臓及び脾臓で異なり、非投与群と比較してそれぞれ 26%、68%及 び 75%であった(参照 145)。OTA のタンパク質合成阻害は mRNA からタン パク質への翻訳レベルで起こり、アミノアシル反応及びペプチド伸長を阻 害することが示された。アミノアシル tRNA 合成酵素は、アミノ酸とその アミノ酸に対応したアンチコドンを有する tRNA との結合に係わる二段階 の反応を触媒する。第一段階では、アミノ酸が AMP と結合してアデニルア ミノ酸となり活性化される。第二段階では、アデニルアミノ酸が tRNA と エステル結合を形成し、アミノアシル tRNA となる。酵母細胞より抽出さ れたフェニルアラニンtRNA 合成酵素を用いてOTA の作用が調べられた結 果、OTA はアミノアシル tRNA 合成酵素のひとつであるフェニルアラニン tRNA 合成酵素の第一段階の反応を主に阻害した(参照 146)。HTC 細胞を 用いた試験では、OTA によるタンパク質合成拮抗阻害が、フェニルアラニ ンの濃度が増加すると回復することが認められた。OTA のタンパク質合成 阻害において、フェニルアラニン tRNA 合成酵素とフェニルアラニンとの 結合を競合的に阻害することが確認された(参照 144)。同様に、ddY マウス

(雄、一群 7~10 匹) における OTA の経口投与による LD₅₀ は 46.0 mg/kg 体重であったが、フェニルアラニン 100 mg/kg 体重を OTA と同時に経口 投与したところ、OTA の経口投与による LD₅₀ は 71 mg/kg 体重となった(参 照 61)。また、Swiss マウス(雌雄不明、一群 10 匹) において、OTA を 0.8 mg/匹 (40 mg/kg 体重に相当)の用量で腹腔内投与するとマウスは 24 時間以内に 100%死亡するが、1 mg のフェニルアラニンを同時に腹腔内投 与することにより、死亡例は認められなかった(参照 147)。

フェニルアラニン tRNA 生成とタンパク質合成に対する影響に関して、 OTB は OTA に対し拮抗作用を示さなかった(参照 148)。OTA 代謝物のタ ンパク質合成抑制作用が酵母を用いて調べられた。OTA の代謝物である 4*R*-OH-OTA は OTA と同様にタンパク質合成抑制作用を示したが、フェニ ルアラニンを分子内に含まない OTaには、タンパク質合成抑制作用は認め られなかった(参照 149,150)。

OTA 分子内のフェニルアラニンをチロシンなどの他のアミノ酸に置き換えると、OTA と同様に各アミノ酸の特異的 tRNA 合成酵素を阻害した。(参照 149)

フェニルアラニン tRNA 合成酵素の OTA に対する結合親和性は、フェニ ルアラニンに対する結合親和性より弱く、酵母のフェニルアラニン tRNA 合成酵素を用いた実験では、OTA に対する親和性はフェニルアラニンに対 する親和性の 1/300 (OTA では K_M =1.3 mmol/L、フェニルアラニンでは K M=3.3 µmol/L) であり、ラットの肝臓では 1/20 程度であった (OTA では K M=0.28 mmol/L、フェニルアラニンでは K_M =6 µmol/L)。(参照 149, 151)

HTC 細胞を OTA 存在下でインキュベーションした結果、HTC 細胞内の OTA 及びその代謝物の濃度は、培地中濃度の 200~300 倍に増加したこと から、OTA はフェニルアラニン tRNA 合成酵素との結合親和性は低くても、 フェニルアラニンより容易に細胞内に濃縮されやすいため、阻害作用を示 すと考えられた。(参照 150)

OTA はまた、フェニルアラニンを基質とする他の酵素にも作用する可能 性はあるが、他の単離された酵素系の活性において、OTA の直接的影響の 証拠は得られなかった。(参照 151)

フェニルアラニン代謝における OTA の影響が、ラットの初代培養肝細胞 で検討された。OTA は 0.12~1.4 mmol/L の濃度でフェニルアラニンから チロシンへの加水分解を触媒するフェニルアラニン加水分解酵素及びその 後のチロシン代謝に関与するホモゲンチジン酸酸化酵素を阻害した。OTA のフェニルアラニン加水分解酵素に対する IC₅₀ は、0.43 mmol/L であった。 OTαにはこの阻害作用は認められなかった。(参照 152)

OTA は、ラット肝臓ミクロソームにおける NADPH 又はアスコルビン酸 依存の脂質過酸化及び腎臓ミクロソームにおける NADPH 依存の脂質過酸 化を増強することが、MDA 生成を指標とする試験により認められた。リン 脂質小胞を用いた *in vitro* 試験により OTA は Fe³⁺と1:1で結合し Fe³⁺か ら Fe²⁺への還元を促進することで脂質の酸化剤として作用し、過酸化脂質 の生成を促進することが示唆された。Wistar ラット(雄、一群 2 匹)に OTA を 6 mg/kg 体重で経口投与すると、過酸化脂質が増加し、過酸化脂質 の生成を示すエタン排出は 7 倍増加した。(参照 153, 154)

ブタの腎臓皮質組織片を、OTA とシトリニン(それぞれ 10⁻⁶~10⁻³ mol/L) のいずれか一方又は両方とインキュベーションした後、テトラエチルアン モニウムイオン及び p-アミノ馬尿酸イオンの輸送能、及び[³H]-ロイシンを 用いたタンパク質合成活性が測定された。その結果、いずれにおいても OTA による阻害が認められた。(参照 155)

Wistar ラット(雄、一群6匹)に OTA を 289 µg/kg 体重で 48 時間ごと に 3 週間強制経口投与する際、活性酸素を除去する抗酸化酵素スーパーオ キシドジスムターゼ (SOD)及びカタラーゼを同時に作用させることで、 これらの OTA 誘発腎毒性への影響が検討された。なお、SOD は活性酸素 を過酸化水素に変換し、生成した過酸化水素はカタラーゼにより更に分解 される。試験期間中、OTA 投与の 1 時間前に SOD 及びカタラーゼを 20 mg/kg 体重で 48 時間おきに皮下注射した結果、OTA で誘発される腎毒性 影響(蛋白尿、クレアチニン血症並びに尿中乳酸脱水素酵素(LDH)、ロイ シンアミノペプチダーゼ(LAP)及びγGT 酵素活性の上昇等)のほとんど が有意に低下し、OTA の尿中排泄は増加した。(参照 156)

ラットにおける OTA の腎臓への影響として、腎糸球体のろ過速度の減少、 近位尿細管以降における水、Na⁺、K⁺及び Cl⁻ 排泄の増加、並びに尿流量に 対する浸透圧クリアランス依存性の増加が認められた。さらに、OTA は、 *in vitro*においてイヌ腎臓細胞における細胞膜アニオン伝導を阻害した。(参 照 157)

(3) 実験動物等における体内動態のまとめ

OTA は、消化管内微生物及び消化酵素によって一部 OTαに分解される。 特にウシなどの反すう動物においては、経口摂取された OTA の大部分が、 吸収される前に第1胃の細菌叢でOTαに分解される。OTA は消化管のうち、 特に小腸から効率よく吸収される。消化管からの吸収後、多くの動物種に おいては、血液を経由して腎臓及びその他の組織に分布することが認めら れている。血漿中ではほとんどの OTA は、アルブミン等のタンパク質と結 合していることが示されている。ラットとブタにおける投与実験の結果か ら、OTA 投与後の組織中 OTA 濃度は、ラットにおいては腎臓と肝臓にお いて同程度又は肝臓よりも腎臓における方が高く、豚においては肝臓より も腎臓の方が高い値であった。OTA の一部は、腎臓及び肝臓で CYP によ り酸化されるが、OTα及び少量の酸化代謝物は、全て OTA より毒性が低い ことが認められている。

OTA は、尿及び糞中に排泄され、種間におけるこれら各経路の相対的寄 与率は、OTA の腸肝循環の程度や血清中タンパク質との結合の程度により 影響されると考えられる。これらの要因は、OTA の半減期の長短にも関与 すると考えられる。半減期は、マウスでは 1~1.5 日、ラットでは 2~11 日、 ブタで 4~6 日、サバンナモンキーでは約 20 日及びヒトでは約 35 日である ことが報告されている。

乳への移行は、ラット、ウサギ及びウシで確認されている。鶏卵への移行は、ニワトリに OTA を大量投与した場合に認められている。

2. 実験動物等における毒性

毒性データの取りまとめに当たっては、主に精製した化合物を投与した データを用いることとした。また、食品中のOTAに関する評価であること から、経口投与のデータを中心に取りまとめた。

(1)急性毒性

各動物種と各暴露経路における LD₅₀ 値を表 5 に示した。イヌ及びブタは OTA に感受性の高い種であり、ラット及びマウスは感受性の低い種である。

括	LD ₅₀ 値(mg/kg 体重)				
1里	経口投与	腹腔内投与	静脈内投与		
マウス	$46 \sim 58$	$22 \sim 40$	$26 \sim 34$		
ラット	$20 \sim 30$	13	13		
ラット(新生児)	3.9	n.d.	n.d.		
イヌ	0.2	n.d.	n.d.		
ブタ	1	n.d.	n.d.		
ニワトリ	3.3	n.d.	n.d.		
n.d.:データフ	なし		(参照 74, 105)		

表5 各動物種におけるオクラトキシンAのLD₅₀値

Long-Evans ラットと Sprague-Dawley ラット(雄、一群 10匹)に、OTA が 0、17 又は 22 mg/kg 体重の用量で単回強制経口投与され、投与 48 時間 後まで観察された。病理組織学的検査及び電子顕微鏡下での観察により、 投与 12~24 時間後には、全ての投与群で膀胱、胃、腸管、心内膜下、脾臓
及び肝臓に多数の局所出血が認められ、脾臓、脳の脈絡叢、肝臓、腎臓及 び心臓における線維素性血栓が認められた。これらの所見は、OTA 投与に よって播種性血管内凝固症(DIC)が誘発されたことを示していた。その原 因は、内因性及び外因性の血液凝固活性化によるものと推定されている。 また、肝臓における肝細胞及びリンパ球の壊死、消化管の絨毛の萎縮を伴 う壊死性腸炎(最も重度な影響は空腸にあった)並びにネフローゼがみら れた。当該研究では、心筋の変化は、血栓形成とその後の虚血障害に関連 したものと考えられた(参照 158)。また、新生児ラットは、成熟ラットより も感受性が高いと考えられている(参照 105)。

Swiss マウス(雄、一群 5~10匹)に、薬物代謝酵素を誘導するフェノ バルビタール(80 mg/kg 体重)を5日間、又は3-メチルコラントレン(20 mg/kg 体重)を2日間、それぞれ経口投与して前処理した後に、OTA を強 制経口投与した場合には、前処理により OTA の LD₅₀ 値が増加するなど OTA の急性毒性が低下した。一方、ミクロソームのモノオキシゲナーゼ阻 害剤であるピペロニルブトキシド(1,400 mg/kg 体重)を投与した場合に は、OTA の投与 144 時間後の LD₅₀ は 40 mg/kg 体重から 18.9 mg/kg 体重 に減少した。(参照 159)

11 又は 25 mg/kg 体重の OTA を胃内投与したウシ (ホルスタイン、5 週 齢、一群 1 頭) は、投与後 24 時間以内に死亡したが、13.3 mg/kg 体重の OTA を胃内投与したウシ (ホルスタイン、妊娠 3~6 か月、一群 1 頭) は、 一過性の病状を示すにとどまった。この研究結果より、ウシにおける致死 的な単回投与量は 13 mg/kg を数 mg/kg 上回るとされた。(参照 125)

(2) 亜急性毒性

OTA の亜急性毒性試験の結果を表 6 に示した。

動物種等	投与	投上	5量	所見	LOAE	NOAEL mg/kg	備考	参照
群)	・ 期間	mg/kg 飼料	mg/kg 体重/日		mg/kg 体重	体重		
マウス、 Swiss、雄 (10)	経口、 45日		0、 1.5~1.7 、3~3.3	 ・肝臓及び腎臓で DNA、 RNA、総タンパク質量及 び酸性・塩基性・中性タ ンパク質量が濃度依存 的に減少。 ・精巣内酵素活性の低下。 	1.5			(参照 160)
ラット、 Wistar、 雄、離乳 後(10)	混餌、 14 日、	0、2.4、 4.8、 9.6、24	0、 0.24、 0.48、 0.96、 2.4 ^(*)	 体重増加の抑制。 BUN 濃度の上昇。 腎臓重量の増加、尿量の 減少、腎障害。 	0.96	0.48	指標: 腎臓重量 の増加	(参照 161)
ラット、 Wistar 雌雄、離 乳後(15)	混餌、 90 日、	0、0.2、1.0、5	0、 0.015、 0.075、 0.37 ^(*)	 体重増加の抑制、腎臓重 量の増加。 BUN に変化なし。 腎臓近位尿細管上皮細胞 の剥離、近位尿細管の基 底膜 ⁴⁾肥厚。 全ての投与群で腎臓近位 尿細管で好酸性変性細胞 及び巨大核細胞の増加。 	0.015		指標: 腎近位尿 細管の形 態変化	
ラット、 Wistar 雄(5)	経口、 3日		0、5、 15	 腎臓皮質への PAH 取り 込みが減少。 近位尿細管の基底膜肥 厚。 	5			(参照 162)
ラット、 Wistar、 雄 (10)	経口、 10日		0、0.5、 1、2	 2 mg/kg 投与群では非投 与の対照群に比べて有意 な尿量の増加。 2 mg/kg 投与群で血中総 タンパク質濃度の上昇。 	2	1		(参照 163)
ラット、 Sprague- Dawley、 雄(6)	経口、 2日		0、2	 腎臓皮質におけるピルビン酸塩からの糖新生は 26%減少し、PEPCK活性は約 55%低下。 				(参照 164)
ラット、 Sprague- Dawley、 雄	経口、 1~5 日		0、 2~2.5	 腎臓で、PEPCK 及び総 mRNA 量の減少。 				(参照 165, 166)
ラット、 Wistar 雄(3)	混餌、 56~8 4 日	0、2	0、 0.145	 腎臓における ALP ロイ シンアミノペプチターゼ 及びγGT 酵素活性の低下 と共に尿中におけるこれ らの酵素活性の増加。 				(参照 167)

表6 オクラトキシンAの亜急性毒性試験の結果

4) 上皮とそれを裏打ちする組織との間にある膜構造

動物種等	投与	投与	F量	所見	LOAE	NOAEL	備考	参照
(動物数/	方法	mø/kø	mø/kø		L ma/lea	mg/kg 休香		
(群)	・期间	mg/ng 飼料	価g/1g 体重/日		mg/kg 休香	半里		
ラット.	経口.		0.0.25.	 ・ ・	111-11		近位尿細	
F344、雄	14日、		0.5, 1,	アポトーシスの増加、巨			管への毒	
(3)	调5回		2	大核細胞の増加			性とは異	
	201		-	 ・ ・ ・			たろ変化	(参昭 168)
				抗原発現の増加			-5 0 × 10	(200)
				 トリメチルアミンオキシ 				
				ドの排泄増加				
ラット	怒口	0 0 2	0 0.02	 ・ 血清中のクレアチーン 				
Wistar	28日	0, 0.2	0, 0.02	BUN ALP ALT MDA				
推 (5)	20 H			進度の有音なト昇 血清				
ан (0)				(成長の) 行忘な工 デ、 皿 行 の				(参照 169)
				 ■ 腎臓近位尿細管の変性。 				
ラット、	混餌、	0, 4	0, 0,4	 ・チロキシン及びプロラク 				
Wistar	30 日	- •	• •	チンの血中濃度の有意な				
雄 (10)				上昇。トリヨードサイロ				
				ニン、テストステロン、				(参照 170)
				インスリン及びコルチゾ				(20,000)
				ールの血中濃度の有意な				
				低下。				
ニワト	混餌	0 4		 • 致死率け 42.5% 				
リ肉用	3 调	0, 1		• 飼料に L-フェニルアラニ				
鶏、雄(10)	0,0			ンを08又は2.4%添加し				(参照 171)
) = 2 () = (= 0)				た場合、致死率はそれぞ				(2
				れ12.5%と15.0%に減少。				
ニワト	混餌、	0, 2		 ・				
リ、肉用	14 日	- •		潤、凝固壊死、充出血、				
鶏、雌雄	以上			クッパー細胞の過形成、				
(32)				肝細胞の硝子様腫大。				
				 腎臓では、局所の出血、 				
				尿細管上皮変性、尿細管				
				肥大、壊死、間質性腎炎、				(会四 170)
				糸球体の萎縮。				(麥照 1/2)
				 ファブリキウス嚢では、 				
				軽度の萎縮、髄質リンパ				
				球の減少、間質結合組織				
				の増生。				
				•脾臓や胸腺ではリンパ球				
				の減少。				
ニワト	混餌、	0、0.5、		 腎臓と肝臓の相対重量増 				
リ、肉用	42 日	1		加。				
鶢(30)				・LDH、γGT 及び AST の				(参照 173)
				 宵臓近位床細管上皮細胞 の重度な壊死 				
- 17 1	油油	0.9		い里皮な炭死。 ・ 旺晴の相対香鳥の左音か				
	(比閂、 3、周	0、2		- 加減の作約 里里の 1 息な 加				
シ、 生別 弾 47 調	U Ш			* 目/JH ₀				(参照 114)
烱、 4 / 迥 齢(7)								
(17)11年								

動物種等	投与	投生	チ量	所見	LOAE	NOAEL	備考	参照
(動物数/ 群)	方法 ・期間	mg/kg 飼料	mg/kg 体重/日		L mg/kg 体重	mg/kg 体重		
ウサギ、 New Zealand White 、 6-8 週齢 (4)	混餌、 60 日	0、0.75	0、0.0225	 ・腎臓近位尿細管上皮細胞 でミトコンドリアクリス テの消失。 ・腎臓近位尿細管上皮細胞 で刷子縁の消失、微繊毛 の萎縮、細胞小器官の消 失を伴う空胞形成。 ・腎臓近位尿細管上皮細胞 で巨大核の形成及び核小 体の消失。 	0.75			(参照 174)
ウサギ、 New Zealand White、雄 (8)	混餌、 30 又 は 60 日	0, 1	0、0.03	 ・体重増加の抑制及び生存率の低下。 ・30日間及び60日間投与で腎臓におけるSOD活性及びカタラーゼ活性並びに60日間投与で肝臓中MDA活性の上昇。 ・投与期間依存的に、腎臓に腫大及び退色がみられた。 	0.03			(参照 175)
イヌ、 ビ ー グ ル 、 雄 (3~6)	経口、 14日		0、0.1、 0.2	 ・腎機能に変化なし。 ・全ての投与群で腎臓尿細 管壊死及び近位尿細管上 皮細胞における細胞質空 胞化及びミエロイド小体 の形成。 ・胸腺と扁桃腺のリンパ系 組織の壊死。 				(参照 176, 177,178)
ブタ、雌 (8)	経口、 5~6 日		0, 1	 ・尿量増加、尿比重低下 ・尿中タンパク量増加、 LDH、GOT、ICDH活性 の上昇。 ・血中タンパク量及び BUNの増加。 ・腎臓近位尿細管及び近位 尿細管上皮細胞の壊死。 				(参照 179)
ブタ、ラ ンドレー ス、雌(9)	混餌、 3~4 か月	0, 0.2, 1, 4	0, 0.008, 0.04, 0.16	 0.2 mg/kg 飼料以上で TmPAH の減少及び TmPAH/Cinの減少。 1 mg/kg 飼料以上で尿の 濃縮能の減少及び尿中タンパク量の増加。 1 mg/kg 飼料以上で GLDH活性の有意な減少及び4 mg/kg 飼料群で LAP活性の有意な減少。 0.2 mg/kg 飼料群の9匹中4匹、1 mg/kg 飼料群の9匹中4匹、1 mg/kg 飼料(40 µg/kg 体重/日)以上の投 与群では全ての個体に腎 臓近位尿細管細胞の刷子 縁縮小、核濃縮及び核分 裂像がみられ、尿細管内 には剥離した尿細管上皮 細胞が認められた。 	0.008		自然汚染大麦	(参照 180)

動物種等	投与	投与量 所見		所見	LOAE	NOAEL	備考	参照
(動物数/ 群)	方法 ・期間	mg/kg 飼料	mg/kg 体重/日		L mg/kg 体重	mg/kg 体重		
ブタ、ランドレー	混餌、 5 日	0、5	0, 0.4	 ・腎臓近位尿細管上皮細胞の壊死。 ・腎臓近位尿細管で NADH-テトラゾリウム 還元酵素、コハク酸脱水素酵素活性の低下。 				
ス、雌、8 ~10週齢 (3)	混餌、 3 か月	0, 1	0, 0.08	 ・腎臓近位尿細管上皮細胞に局所的な萎縮及び壊死。 ・局所的な腎臓間質の線維化。 ・腎臓近位尿細管でNADH・テトラゾリウム還元酵素、コハク酸脱水素酵素、AP活性の低下。 				(参照 181)
フタ、25、 32、又は 50 kg、雌 雄 不 明 (10 又は 12)	混 (((((((((() ((((((((0、1.38 又は 2.33	0、 0.0552 、 0.0932	 ・若齢のブタでは、老齢の ブタに比べ腎臓重量の増 加、腎臓近位尿細管の構 造変化等の毒性に対する 感受性が高かった。 			目然汚染 大麦	(参照 182)
ブタ、ラ ンドレー ス、雌、 25 ~ 38 kg(4)	経口、 5日		0、0.8	 腎臓近位尿細管下部にお ける尿細管上皮細胞の剥 離。 				(参照 104)
ブ タ (6) 種、雌雄 不明	経口、 5週	0、0.2、 1	0.008、 0.04	 0.2 mg/kg 飼料投与より 用量依存的に腎臓皮質の PEPCK 活性及びγGT 活 性が有意に低下。 				(参照 183)
ブタ、ラ ンドレー ス、雌、8 ~12 週齢 (3)	混餌、 5週	0, 0.2, 1	0、 0.008、 0.04 ^(*)	 TmPAH、TmPAH/Clnの 減少。 糖排出の用量依存的増加 1 mg/kg 飼料投与群において腎臓皮質における PEPCK 活性及びγGT 活 性が有意に減少。 				(参照 184)
ブンスガリフ タドレブアント の の 雌 雄 (各 3)	混餌、 90 日	0、0.09、 0.13、 0.18(最 初3か 月)、0、 0.13、 0.305、 0.79(続 く2か 月)	0.0036、 0.0052、 0.0072 (最初3 か月)、 0、 0.0052、 0.0122、 0.0316(続く2 か月)	 全ての用量で、腎臓近位 尿細管上皮細胞に顆粒 状、空胞状変性などの退 行性変性が主に認めら れ、後期には間質に増殖 性変化。 			A. ochraceu sを接種 した大麦	(参照 185)
ブタ、 雌雄	混餌、 1年	0, 0.8	0、 0.032	 軽度の腎症、組織学的に は腎臓近位尿細管上皮細 胞の退行性変性及び間質 の増殖性変化。 				(参照 186)

(*)JECFA 換算

① マウス

Swiss マウス(雄、一群 10 匹)に 0、50 又は 100 µg/動物/日の OTA を 45 日間経口投与した結果、OTA 投与群の肝臓及び腎臓で、DNA、RNA、 総タンパク質量及び酸性・塩基性・中性タンパク質量が濃度依存的に有意 に減少した(参照 160)。同じ条件で OTA を投与した結果、精巣における 脂質過酸化反応が有意に亢進した。非酵素性の抗酸化物質であるグルタチ オン及び総アスコルビン酸濃度の低下、並びに酵素性の抗酸化物質である SOD、カタラーゼ、グルタチオンペルオキシダーゼ、グルタチオンレダク ターゼ及びグルタチオントランスフェラーゼ(GST)の活性は、精巣中で 有意に低下した(参照 187)。

② ラット

Wistar ラット(雄、一群 10 匹)に0、2.4、4.8、9.6 又は24 mg/kg 飼料/日(0、0.24、0.48、0.96 又は2.4 mg/kg 体重/日に相当:JECFA 換算)の粗精製 OTA を離乳後に2週間混餌投与する反復投与毒性試験が実施された。9.6 mg/kg 飼料/日以上の投与群で、体重増加の抑制及び飼料摂餌量の減少が認められた。24 mg/kg 飼料/日投与群では、腎臓の相対重量が増加した。血清中尿素窒素(BUN)は、用量依存的に増加した。全ての投与群で尿量が有意に減少し、比重は有意に増加した。尿の pH は、非投与の対照群の 7.0 に対し、全ての投与群で 6.5 であった。組織学的検査では、全ての投与群に用量依存的に腎臓に病変が認められ、近位尿細管上皮細胞に好酸性の顆粒及び細胞核の濃縮が認められた。また、全ての投与群でへンレループ下降脚に細胞肥大が認められた。24 mg/kg 飼料/日投与群ではへンレループ、遠位尿細管及び上部集合管に細胞の剥離が認められた。(参照 161)

Wistar ラット(雌雄、一群各 15 匹)に 0、0.2、1 又は 5 mg/kg 飼料(0、 0.015、0.075 又は 0.37 mg/kg 体重/日に相当: JECFA 換算)の OTA を含 む半精製飼料を離乳後から 90 日間投与する反復投与毒性試験が実施された。 試験終了後に各群 8 匹をと殺し、残りのラットには回復期間として引き続 き OTA を含まない飼料を 90 日間投与した。5 mg /kg 飼料 OTA 投与群で 雌雄とも体重増加が抑制された。1 mg/kg 飼料以上の投与群において投与 期間後に、腎臓の相対重量は雌雄共に非投与群と比較して減少したが、90 日間の回復期間後には、5 mg/kg 飼料 OTA 投与群の雄を除いて OTA 非投 与群と同じ値まで回復した。投与期間後には、全ての投与群において近位 尿細管上皮細胞における巨大核細胞及び好酸性変性細胞の増加が認められ た。5 mg/kg 飼料 OTA 投与群において近位尿細管上皮細胞の剥離及び尿細 管基底膜の肥厚が認められ、90 日間の回復期間後も尿細管基底膜肥厚は残 存した。腎臓の肉眼的観察では投与後及び回復期間後共に正常であった。 尿パラメータ及び BUN などの血液パラメータは、いずれの投与群において も変化が認められなかった。(参照 161) Wistar ラット(雄、一群 5 匹)に3日間0、5 又は15 mg/kg 体重/日の OTA が経口投与され、最終投与24時間後にと殺された。血中パラアミノ 馬尿酸(PAH)濃度は、非投与群に比べてOTA 投与群で有意に増加した。 腎臓皮質切片を用いて *in vitro*における PAH の取り込み能を調べた結果、 OTA 投与群では非投与群に比べて PAH の取り込みが有意に減少した。組 織学的検査では、OTA 投与群において近位尿細管基底膜の肥厚及び尿細管 細胞内に楕円形に膨張したミトコンドリアが認められた。(参照 162)

Wistar ラット(雄、一群 10 匹)に OTA を 0、0.5、1 又は 2 mg/kg 体 重で 10 日間経口投与する反復経口投与毒性試験が実施された。2 mg/kg 体 重の OTA 投与群では BUN 濃度の低下とともに、尿量の増加が認められた。 血中総タンパク質濃度及び BUN 濃度は OTA 非投与群より高くなったが、 総脂質及びコレステロール濃度は低下した。血中グルコース濃度に変化は なかった。(参照 163)

Sprague-Dawley ラット(雄、一群 4~6匹)に0又は2 mg/kg 体重/日の OTA が 2~5 日間経口投与され、腎臓における糖新生への影響が調べられた。腎臓皮質におけるピルビン酸からの糖新生は、OTA 非投与群に比べて OTA 投与群では 26%減少し、糖新生を制御する酵素の一つであるホスホエノールピルビン酸カルボキシキナーゼ (PEPCK)活性は約 55%低下した。 肝臓では PEPCK 活性の低下は認められなかった。PEPCK の mRNA 量は 腎臓で減少したが、肝臓では減少しなかった。また、Sprague-Dawley ラット(雄、一群 6匹)に 3~5 日間 OTA を強制経口投与すると総 mRNA の量は、腎臓で 50%減少したが、肝臓では変化しなかった。(参照 164, 165, 166)

Wistar ラット (雄、一群 3 匹) に 0 又は 2 mg/kg 飼料 (0 又は 145 µg/kg 体重/日に相当) の OTA を 8~12 週間混餌投与する反復投与毒性試験が実 施された。投与量は、食品及び飼料中にみられる自然汚染の範囲に設定さ れた。腎臓における障害部位を調べるために、1 週間毎に腎臓及び尿におけ る酵素活性が測定された。腎臓における ALP、ロイシンアミノペプチター ゼ及びyGT の活性は投与1週間後より有意に低下し、腎臓における酵素活 性の低下に付随して尿中にこれらの酵素が認められた。ロイシンアミノペ プチターゼ及びyGT は近位尿細管の刷子縁に存在し、その部位に損傷があ ることを示す初期のマーカーである LDH の溶出は、投与開始 4~5 週目に OTA 投与群では尿中の酵素活性が最高値となり、OTA 非投与群と比較して 70%から100%増加した。酵素活性は6週目には減少し、8週目に再び増加 した。著者らは、この結果より尿細管の損傷と再生が繰り返されていると 考えた。PAH クリアランスは、OTA 投与開始から2週目に OTA 非投与群 に比較して 56%減少した。12 週間後には、PAH クリアランスは回復し、 OTA 非投与群に比べ 8%の減少であった。N-アセチルβ-D-グルコシダーゼ 活性は 2 週間後から尿中で上昇した。この酵素はリソソームに存在する酵 素であり、壊死した細胞のリソソームより放出されたと考えられた。腎臓

における *N*-アセチルβ-D-グルコシダーゼ活性は OTA の影響を受けなかった。(参照 167)

F344 ラット(雄、一群3匹)に0、0.25、0.5、1 又は2 mg/kg 体重/日 のOTAを1週間に5日、2週間強制経口投与する反復投与毒性試験が実施 された。用量依存的に血中、肝臓及び腎臓における OTA 濃度が上昇した。 組織学的検査において全ての投与群の腎臓近位尿細管の S3 セグメントに 用量依存的に巨大核及び核異形を有する細胞の増加が認められたことから、 著者は、DNA 合成後の細胞質分裂に異常が生じたことで多核の細胞が増加 すると考察している。2 mg/kg 体重/日投与群では腎臓髄質外層外帯に細胞 配列等の組織障害が認められ、非投与群に比べて分裂期にある細胞数が明 らかに多く、基底膜上又は基底膜から剥離したアポトーシスの細胞が管腔 内に認められた。OTA 投与群の腎臓で、増殖細胞核抗原(PCNA)が用量 に依存して増加し、細胞が増殖していることが示されたが、肝臓の PCNA に増加はみられなかった。OTA 投与群の腎臓及び肝臓から抽出した DNA に、酸化ストレスの指標である 8-OHdG の増加は認められなかった。1 mg/kg 体重/日以上の OTA 投与群では、非投与群より尿量が明らかに増加 し、尿中トリメチルアミンオキシドが増加した。尿中グルコース濃度の上 昇など近位尿細管に毒性を示す物質にみられる典型的な変化は認められず、 著者らはこれらの結果はOTAによる腎毒性には特有のメカニズムが関与し ている可能性を示唆すると考えた。(参照 168)

Wistar ラット(雄、一群 5 匹)に0 又は 0.2 mg/kg 体重の OTA を 28 日間経口投与した。OTA 投与群では、病理組織検査の結果、近位尿細管に変性が認められ、腎組織のうっ血及び炎症細胞の浸潤等 OTA 特異的な腎毒性がみられた。生理学的検査の結果、OTA 投与群では血清中のクレアチニン、BUN、ALP、ALT 及び MDA 濃度が溶媒投与の対照群に比べて有意に高く、血清の抗酸化作用は有意に低かった。(参照 169)

Wistar ラット(雄、一群 10 匹)に 0 又は 4 mg/kg 飼料(0 又は 0.4 mg/kg 体重/日に相当:事務局換算 ⁵⁾)の OTA を 30 日間混餌投与し、ホルモンに 及ぼす影響が調べられた。OTA 投与群では、チロキシン(T4)及びプロラ クチンの血中濃度が、溶媒を投与した対照群に比べて有意に増加し、トリ ヨードサイロニン(T3)、テストステロン、インスリン及びコルチゾールの 血中濃度は有意に減少した。(参照 170)

⁵⁾ JECFA で用いている換算(IPCS:EHC70)を用いて摂取量を推定

種	体重(kg)	飼料摂取量(g/動物/日)	摂取量(mg/kg 体重/日)
ラット	0.1	10	0.100

③ ニワトリ

ニワトリ(肉用鶏、雄、一群 10 羽) に 0 又は 4 mg/kg 飼料の OTA を 3 週間投与する反復投与毒性試験が実施された。OTA 投与群では、非投与群 に比べて体重が減少し、飼料効率が低下した。肝臓や前胃、筋胃及び心臓 の相対重量は増加し、ファブリキウス嚢の相対重量は減少した。致死率は 42.5%であった。飼料にL-フェニルアラニンを 0.8 又は 2.4%添加した場合、 致死率はそれぞれ 12.5%又は 15.0%に減少した。(参照 171)

ニワトリ(肉用鶏、雌雄、一群 32 羽)に0又は2 mg/kg 飼料の OTA を 14 日以上混餌投与した結果、肝臓では肝細胞の硝子様腫大、単核細胞の浸 潤、クッパー細胞の過形成(hyperplasia)、凝固壊死及び充出血がみられ た。腎臓では、局所の出血、尿細管上皮変性、尿細管腫大、壊死及び間質 性腎炎が認められ、糸球体の萎縮もみられた。ファブリキウス嚢では、軽 度の萎縮、髄質リンパ球の減少及び間質結合組織の増生がみられ、脾臓や 胸腺でもリンパ球が減少した。(参照 172)

ニワトリ(肉用鶏、一群 30 羽) に 0、0.5 又は 1 mg/kg 飼料の OTA が 42 日間混餌投与された。その結果、腎臓と肝臓の相対重量増加は OTA 投 与群で認められたが、ファブリキウス嚢と脾臓の相対重量への有意な影響 は見られなかった。血清の LDH、γGT 及びアスパラギン酸アミノトランス フェラーゼ (AST)の上昇並びに腎臓近位尿細管上皮細胞の壊死が認めら れた。(参照 173)

ニワトリ(産卵鶏、47週齢、一群7羽)に0又は2mg/kg 飼料のOTA が3週間混餌投与された。OTA 非投与の対照群では肝臓中にOTA は検出 できなかった(<0.05 µg/kg)が、OTA 投与群では肝臓中 OTA 濃度は15.1 µg/kg であった。対照群と比較して投与群では相対肝臓重量が有意に増加し た。(参照 114)

④ ウサギ

New Zealand White ウサギ(一群4匹)に、OTAを0又は0.75 mg/kg 飼料(0又は0.0225 mg/kg 体重/日に相当:事務局換算⁶⁾)が60日間投与 された。腎臓近位尿細管上皮に巨大核細胞及び細胞の基底膜からの剥離が 認められた。また、刷子縁の消失、微絨毛の萎縮、細胞小器官の消失を伴 う細胞質空胞形成、核小体の消失及びミトコンドリアの内部構造であるク リステの消失が認められた。(参照 174)

New Zealand White ウサギ(雄、一群8匹)にOTAを0又は1mg/kg 飼

種	体重(kg)	飼料摂取量(g/動物/日)	摂取量(mg/kg 体重/日)					
ウサギ	2.0	60	0.030					

⁶⁾ JECFA で用いている換算(IPCS:EHC70)を用いて摂取量を推定

料(0又は0.03 mg/kg 体重/日に相当:事務局換算⁶⁾が30又は60日間 投与された。OTA 投与群では体重増加の抑制及び生存率の低下がみられた。 生理学的検査では、30日及び60日 OTA 投与群の腎臓における SOD 活性 及びカタラーゼ活性並びに60日 OTA 投与群の肝臓における MDA が非投 与の対照群に比べて上昇した。腎臓はOTA 投与30日後には僅かに腫大し、 退色していた。表面全体に白色から変色した病巣がみられた。投与60日後 には、腎臓は更に腫大及び退色していた。電子顕微鏡による組織学的観察 の結果、OTA 投与群ではミトコンドリアの変形及びクリステの消失が認め られた。(参照 175)

⑤ イヌ

ビーグル犬(雄、一群 3~6 匹)に、0.1 又は 0.2 mg/kg 体重/日の OTA がカプセルを用いて 14 日間経口投与された。これらの投与レベルでは腎機 能に変化は認められなかった。組織学的検査により、尿細管壊死及び近位 尿細管上皮細胞における細胞質空胞化及びミエロイド小体と呼ばれる層状 構造物の形成が全ての投与群で認められた。胸腺と扁桃腺のリンパ系組織 の壊死も全ての投与群で認められた。(参照 176, 177, 178)

⑥ ブタ

ブタは、OTA の腎臓毒性について最も感受性の高い種の一つであり、雌 ブタの近位尿細管に特異的な形態的及び機能的変化が報告されている。(参 照 104, 181, 188)

ブタ(雌、一群8頭)に1 mg/kg 体重/日の OTA が 5~6 日経口投与さ れた結果、多飲多尿、尿比重の低下、尿中タンパク質濃度及び糖濃度の上 昇並びに血中タンパク質濃度及び BUN 濃度の上昇が認められた。尿におけ る LDH、AST 及びイソクエン酸脱水素酵素(ICDH)活性は上昇した。組 織学的検査により、尿細管及び集合管の上皮に水腫が認められた。近位尿 細管の上皮細胞に壊死がみられ、近位尿細管腔内には壊死した細胞片及び 基底膜から剥離した細胞が認められた。また、腸管上皮細胞及び粘膜固有 層に壊死が認められ、単球及び好中球の浸潤がみられた。(参照 179)

ブタ(ランドレース、雌、一群 6~11 頭)に OTA で自然汚染された大麦 (OTB、OTC、オクラトキシンエステル、シトリニン、ビリジカタムトキ シン及びアフラトキシンは不検出)を添加した飼料を用いて、0、0.2、1 又 は4 mg/kg 飼料(0、8、40 又は160 µg/kg 体重/日に相当)の OTA を毎 日給与し、投与開始後9日目及び68日目に各群のブタを1匹ずつと殺し、 残りのブタには20kgから90kgに増体重する4か月間、上記飼料が給与さ れた。尿及び血液は、試験開始1週間前、試験開始後1週間目及びその後 は3週間ごとに採取された。血液のpH、糖濃度、ヘマトクリット値、ヘモ グロビン値、クレアチニン濃度、BUN、ナトリウム濃度、カリウム濃度、

塩素濃度、白血球数、LDH 活性、グルタミン酸脱水素酵素 (GLDH) 活性、 LAP 活性及びブタ低分子タンパク(α-porcine low-molecular-weight) 並び に尿の pH、比重、浸透圧、ナトリウム濃度、カリウム濃度、塩素濃度、ク レアチニン濃度、糖濃度、タンパク質、イヌリン及び PAH 濃度が検査され た。肝臓及び腎臓の LDH 活性、GLDH 活性、LAP 活性、ヘキソキナーゼ 活性、AST 活性並びにグルコース 6 リン酸脱水素酵素(G-6-PD)活性が測 定された。0.2、1、又は4 mg/kgの OTA 汚染飼料を給与した各群における 給与期間中の体重当たり一日 OTA 投与量は、それぞれ 7.2~8.6 µg/kg、36.2 ~43.3 µg/kg 又は 145.0~173.6 µg/kg であった。OTA 投与により腎毒性が 認められた。初期に認められた腎毒性は、飲水量の増加と LAP を含む尿量 の増加で、160 µg/kg 体重/日投与群において投与後2週間で尿に LAP が認 められた。LAP は近位尿細管の刷子縁に分布しており、この部位が損傷を 受けたことが示唆された。尿中タンパク質は、40及び160 μg/kg 体重/日の 投与群で投与開始 20 日後より有意に増加した。OTA の用量に依存して、 非投与の対照群と比較して 8 µg/kg 体重/日投与群から PAH の尿細管最大 排泄量(TmpAH)及びTmpAHのイヌリンクリアランスに対する割合が有意 に減少し、尿濃縮能が低下することが認められた。40 µg/kg 体重/日以上の OTA 投与群で GLDH 活性の有意な減少及び 160 μg/kg 体重/日の OTA 投 与群で LAP 活性の有意な減少が認められた。8 μg/kg 体重/日の OTA 投与 群から尿糖の用量依存的な増加がみられ、近位尿細管における糖の再吸収 が阻害されていた。この増加は 40 µg/kg 体重/日の用量以上では有意であ った。と殺後は、剖検及び病理組織学的検査が実施された。90 kg 体重時 の腎臓の剖検所見では、160 μg/kg 体重/日の OTA 投与群において腫大、灰 黄色化及び硬化がみられた。顕微鏡所見として 8 μg/kg 体重/日の OTA 投 与群の9匹中4匹及び40 µg/kg 体重/日の用量以上の全てのブタにおいて 近位尿細管上皮細胞の刷子縁縮小、細胞核の濃縮及び分裂像がみられ、尿 細管内には剥離した尿細管上皮細胞が認められた。40及び160 µg/kg 体重 /日の OTA 投与群においては、全てのブタの腎臓に病変が認められた(参照 180)。以上より、8 μg/kg 体重/日が当該試験の LOAEL と判断された。

ブタ(25、32 又は50 kg のブタ、雌雄不明、一群10 又は12 頭)に自然 汚染大麦を用いて25 kg のブタには0 又は1.38 mg/kg 飼料(0.0552 mg/kg 体重/日に相当:事務局換算⁷⁾を8週間、その他のブタにはそれぞれ70 又 は90 kg になるまで0 又は2.33 mg/kg 飼料(0.0932 mg/kg 体重/日に相 当:事務局換算⁷⁾のOTAを投与した。OTA 投与群には腎臓重量の増加、

⁷⁾ JECFA で用いている換算	算(IPCS:EHC70)を用いて摂取量を推定
------------------------------	-------------------------

種	体重(kg)	飼料摂取量(g/動物/日)	摂取量(mg/kg 体重/日)
ブタ	60	2,400	0.040

近位尿細管の構造変化、尿細管の萎縮及び間質の線維化が認められた。25 kgのブタでは、50kgのブタに比べ OTA の毒性に対する感受性が強く、若 齢時に引き起こされた腎臓の病変は、OTA を含まない飼料に替えても治癒 しなかった。(参照 182)

ブタ(ランドレース、雌、一群3頭)に、0又は5mg/kg 飼料(約0.4 mg/kg 体重/日)のOTAを5日間及び、0又は1 mg/kg 飼料(約0.08 mg/kg 体 重/日)のOTAを3か月間混餌投与し、腎臓における各種脱水素酵素及び リン酸化酵素の活性が調べられた。5mg/kg 飼料のOTAを5日間投与し た群では、いくつかのネフロンにおいて近位尿細管上皮細胞の剥離及び局 所的な壊死がみられた。また、近位尿細管でNADHテトラゾリウム還元酵 素活性の低下及びコハク酸テトラゾリウム還元酵素活性の低下が認められ た。1mg/kg 飼料のOTAを3か月間投与した群では、いくつかのネフロ ンにおいて近位尿細管上皮細胞に局所的な萎縮及び壊死並びに間質の線維 化が認められた。近位尿細管でNADHテトラゾリウム還元酵素、コハク酸 テトラゾリウム還元酵素及び ALP の酵素活性が低下したことから、著者ら は、近位尿細管上皮細胞でエネルギーを産生するミトコンドリアに機能障 害が生じたと考えた。(参照 181)

ブタ(ランドレース、雌、一群4頭)に0又は0.8 mg/kg 体重/日のOTA が5日間経口投与された結果、近位尿細管下部で、尿細管上皮細胞の剥離 が認められた。遠位尿細管及び集合管には変化がみられなかった。(参照 104)

ブタ(種及び雌雄不明、一群 6 頭) に 0、0.2 又は 1 mg/kg 飼料(0、0.008 又は 0.04 mg/kg 体重/日: JECFA 換算)の OTA が 5 週間投与された。用 量依存的な PEPCK 及びγGT 活性の減少が認められた。(参照 183)

ブタ(ランドレース、雌、一群 3 頭)に 0、0.2 又は 1 mg/kg 飼料(0、 0.008 又は 0.04 mg/kg 体重に相当:事務局換算⁷⁾)の OTA が 5 週間経口 投与され、腎臓への影響が調べられた。OTA 投与により T_{mPAH}の有意な減 少、T_{mPAH}/C_hの減少並びに糖排出の増加及び用量依存的な近位尿細管の機 能阻害が認められた。1 mg/kg 飼料投与群において、腎臓皮質における PEPCK 活性及びミトコンドリアの γ GT 活性が OTA 非投与群に比べて有意 に低下したが、肝臓の PEPCK 活性は変化しなかった(参照 184)。

ブタ(ランドレースとブルガリアンホワイトの交雑種、雌雄、一群各 3 頭)に 0、90、130 又は 180 µg/kg 飼料(0、3.6、5.2 又は 7.2 µg/kg 体重 /日に相当:事務局換算⁷⁾)の OTA を 3 か月、続く 2 か月間には 0、130、 305 又は 790 µg/kg 飼料の OTA を投与する反復投与毒性試験が実施された。 試験には OTA とペニシリン酸を産生する *A. ochraceus* を接種した大麦が 用いられた。組織学的、血液学的及び生化学的パラメータの変化が全投与 群で認められた。投与 3 か月後にはアシドーシスの傾向が、5 か月後及び試 験終了 1 か月後では呼吸性アシドーシスが認められ、尿の pH は有意に低 下していた。投与3か月目には主に790 µg/kg 飼料投与群において、更に 5 か月目には全ての投与群において近位尿細管上皮細胞に顆粒状及び空胞 変性などの退行性変性が認められ、間質では線維芽細胞の増殖がみられた (参照 185)。追加試験として、ブタ(ランドレースとブルガリアンホワイト の交雑種、雌雄、一群各3頭)にOTAを1年間800µg/kgの濃度で混餌投 与した結果、近位尿細管上皮細胞の退行性変性並びに間質への炎症性単球 浸潤及び間質線維芽細胞の異常な増殖が確認された。OTA非投与の対照群 ではこれらの異常は観察されなかった(参照 186)。

(3) 慢性毒性・発がん性

OTAの慢性毒性・発がん性試験の結果を表7に示した。

動物種(動	投与方	投与	F量	所見	LOAEL	NOAEL	備考	参照	文献
物数/群)	法・期間	mg/kg 飼料	mg/kg 体重/日		mg/kg 体 重	mg/kg 体 重			
マウス、 ddY、雄 (16)	混餌、5 ~30 週	50	7	 ・OTA 投与 10 週間以下 のマウスでは腎臓及び 肝臓の腫瘍は発生な し。 ・腎細胞腫瘍の発生頻度 は、15、20、25 及び 30 週間投与群で、それ ぞれ 3/15、1/14、2/15 及び 4/17。 ・肝細胞癌の投与 25 週 間(5/15) と 30 週間 (6/17) 投与で増加。 	7		マウスは 投与開始 から 70 週 間観察さ れた。	(参照	189)
マウス、 ddY、 雄 (10)	混餌、44 週	40	5.6	 ・生存した9匹のうち、 5匹に肝細胞癌、9匹 に腎臓の嚢胞性腺腫、 2匹に結節性腎細胞腫 瘍形成。 	5.6			(参照	60)
マウス、 DDD、雄 (20)	混餌、70 週	25	3.5	・全てに腎臓の嚢胞性腺 腫、6匹に腎細胞腫瘍、 8匹に肝細胞癌形成。	3.5			(参照	189)
マウス、 B6C3F1、 雌 雄 (各 50)	混餌、24 か月	1, 40	0.15、6	 ・40 mg/kg 飼料投与群 の雄マウスに腎臓の 良性(発生頻度 53%) と悪性の腫瘍(29%) 発生が認められた。 	6		OTB を 7%及び ベンゼン を 9%含 む飼料。	(参照	190)
ラ <u>ット、</u> F344/N、 雌 雄 (各 80)	強制経 口、9か 月、15か 月、2年、 週5回		0.021、 0.07、0.21	 ・2 年後の腎腫瘍の発生 頻度は、0、21、70、 210 µg/kg 群の雄では それぞれ 1/50、1/51、 20/50、36/51、雌では 0/50、0/51、2/50、8/50。 	0.07	0.021	9 及び 15 か月後に 各群雌雄 各 15 匹を と殺。	(参照	191)

表7 オクラトキシンAの慢性毒性・発がん性試験の結果

動物種(動	投与方	投与	F量	所見	LOAEL	NOAEL	備考	参照	文献
物数/群)	法・期間	mg/kg	mg/kg		mg/kg 体	mg/kg 体			
		飼料	体重/日		重	重			
ラット、	強制経		0, 0.021,	・0.07 mg/kg 体重投与	0.07	0.021		(参照	192)
F344/N	口、90日、		0.070	以上で腎臓髄質外層外				`	,
雄(5)	週5回		0.21	帯の近位尿細管の単細					
				胞死、顕著な巨大核細					
				胞。					
Dark	混餌、3、	5 (3, 6	0.009~0.	・5 ppm の OTA 投与群			人工培養	(参照	193)
Agouti ラ	6 又は 9	又は9か	25	における発がん率は			による		
ット、雄、	か月投与	月投与)		20%。6か月投与群の、			OTA		
8 週	後 2 年ま	又は 0.4		1匹に両側の腎臓に腫			(OTB が		
	で観察及	(2年間)		瘍、9か月投与群の、			$5 \sim 10\%$		
	び年間投			20匹中4匹の片側の腎			混入)。		
	与。			臓に腫瘍が認められ					
				た。					
				・400 ppb の OTA を 2					
				年間混餌投与した群に					
				発がんは認められなか					
				った。				(
フット、	混餌、2 ~		0.05 (フ	・34 匹甲 4 匹(12%)に				(参照	194)
F344、 産	华		ット~333	腎臓がんがみられ、こ					
(34)			g)	の割合はNTPの同用					
			その後は	量のOTA 強制投与結					
			100 mg/ ラット/ロ	果(30%)より少なか					
ゴカニン)日在T O	0 1		 つた。 ・ 取時民知知知の孝婉し日 				(191)
ノタ、ワン	庇閧、Z 左	0, 1	0, 0.041	• 宵順水神官の委帕と同				(参 照	181)
	-+ -		mg/kg 144 舌(*)	川町は间貝の脉相化。					
□吨、8°210 週龄(6)			里``	* 損傷を又りた育職で安 線」を昆細管に 単核					
(0) 中国 回头				細した水和自に単核細胞の浸潤					
				・ 堅臓近位尼細管で					
				「自職近位小和旨て NADH-テトラゾリウ					
				人還元藤麦 コハク酸					
				脱水素酸素活性の減					
				少。					

(*)JECFA 換算

① 44 週間発がん性試験(マウス、混餌投与)

ddY マウス(雄、一群 10 匹) に 0 又は 40 mg/kg(約 5.6 mg/kg 体重/ 日に相当: JECFA 換算)の OTA を含む飼料を 44 週間投与する反復投与毒 性試験が実施された。試験終了後 5 週間は回復期間として観察された。OTA 投与群では 9 匹が生存し、そのうちの 5 匹に肝細胞腫瘍、 9 匹に腎嚢胞性腺 腫及び 2 匹には結節性の腎細胞腫瘍が認められた。 肝臓や腎臓の腫瘍は OTA 非投与の対照群では認められなかった(参照 60)。この種のマウス対照 群に関してのこれら腫瘍の自然発生頻度に関するデータは示されていなか った。観察された肝臓腫瘍が良性か悪性かは、明確に示されていなかった(参 照 74)。

② 70週間発がん性試験(マウス、混餌投与)

同じ研究室で更に2種類の反復投与毒性試験が実施された。DDDマウス

(6 週齢雄、一群 20 匹) に 25 mg/kg の OTA を含む飼料(約 3.5 mg/kg 体 重/日に相当:JECFA 換算)が 70 週間投与された結果、OTA 投与マウス 20 匹全てに腎臓の腎細胞癌が認められたが生存し、そのうち6 匹には結節 性の腎細胞腫瘍が、8 匹には肝細胞癌が認められた。OTA 非投与の対照マ ウスのうち17匹が生存し、1匹に肝細胞癌が認められた。毒性所見として、 腎臓に複数の嚢胞形成、リンパ球の浸潤を伴うネフロンの変形及び線維化 又は尿細管上皮細胞の変性が報告された。ddYマウス(雄、一群 16 匹)を 用いた 70 週間の毒性試験では、50 mg/kg の OTA (約 7 mg/kg 体重/日に 相当: JECFA 換算)を含む飼料が 0、5、10、15、20、25 又は 30 週間投 与され、いずれの群も回復期間として投与開始後 70 週目まで OTA 無添加 の飼料で飼育された。腎臓及び肝臓の腫瘍は、OTA 非投与の対照群及び OTA 投与 10 週間以下のマウスでは認められなかった。肺がんも認められ たが、これは非投与群でも発生し、OTA 投与群において用量依存性が認め られないことより OTA 特異的に発生する腫瘍とは考えられなかった。 腎細 胞癌の発生頻度は、OTA を 15、20、25 又は 30 週間投与した場合、それぞ れ 3/15、1/14、2/15 又は 4/17 であった。腎臓における嚢胞性腺腫の発生は 認められなかった。肝細胞癌の発生頻度の有意な増加が、OTA 投与 25 週 間(5/15)と30週間(6/17)投与群に認められた。当該研究結果における 腫瘍発生頻度を表8に示した(参照 189)。

投与期間 (週)	一群匹数	肝細胞癌(%)	腎細胞癌(%)	肺がん(%)
0	15	0	0	4 (26.7)
5	16	0	0	8 (50.0)
10	15	0	0	3 (20.0)
15	15	0	3 (20.0)	11 (73.3)
20	14	2 (14.3)	1 (7.1)	6 (42.9)
25	15	5 (33.3)	2 (13.3)	4 (26.7)
30	17	6(35.3)	4 (23.5)	8 (47.1)

表8 オクラトキシンAを摂取した ddy 雄マウスの腫瘍発生頻度

これらの試験において、OTA 投与により、乳頭状の嚢胞性腺腫(良性) 及び結節性腎細胞癌の 2 つのタイプの腎臓腫瘍が識別された。これらは、 異型細胞を含み浸潤性の増殖が認められるため、JECFA では悪性であると 評価された。腎臓又は肝臓腫瘍に起因した転移は認められなかった。(参照 4, 189)

③ 24 か月間発がん性試験(マウス、混餌投与)

B6C3F1マウス(雌雄、離乳後、一群各45~50匹)に0、1又は40 mg/kg

のOTA を含む飼料(0、0.15 又は6 mg/kg 体重/日:事務局換算⁸⁾)を24 か月間投与する反復投与毒性試験が実施された。試験に使用された粗精製 OTAは約84%のOTA、7%のOTB及び9%のベンゼンを含むものであった。 40 mg/kg 飼料の OTA 投与群において、体重増加が雌で 25%及び雄で 33% 抑制され、全ての雄に、尿細管上皮の増生(hyperplasia)を伴う腎尿細管 の嚢胞性拡張を特徴とする腎障害が認められた。同投与量の雌においても OTA 非投与の対照群と比較すると腎炎の発症率が高かったが、雄の方が雌 より症状が重かった。対照群又は1 mg/kg 飼料の OTA 投与群では、雌雄 ともに腎臓にがんは認められなかった。40 mg/kg 飼料の OTA 投与群の雄 マウスで、21か月目以降に腎臓に良性の腺腫と主に尿細管上皮細胞に悪性 のがんが認められ、それらの発生頻度は、それぞれ 50 匹中 26 匹(52%) 及び14匹(28%)であった。良性の腺腫が発生した26匹中9匹に悪性の がんが認められた。転移は認められなかった。同投与量の雌マウスの腎臓 に腫瘍は認められなかった(参照 74, 190)。肝細胞癌の発生頻度は、対照群 と比較して雌マウスに統計的に有意な増加がみられた。試験に使用した OTA には、既知の発がん物質であるベンゼンを不純物として 9%含んでい ることを考慮すると、著者らは、その相乗作用の可能性は否定できないと 考えた。当該研究結果における腫瘍発生頻度を表9に示した(参照 190)。

授马群 (mg/kg 飼 料)	一群匹数	腎腺腫	腎細胞癌	肝細胞腺腫	肝細胞癌
		雄			
0	50	0	0	1	0
1	47	0	0	5	3
40	50	26	14	6	4
		雌			
0	47	0	0	0	0
1	45	0	0	1	1
40	49	0	0	2	5

表9 オクラトキシンAを摂取した B6C3F1 マウスの腫瘍発生頻度

この試験において試験開始 18 か月後の生存率は、対照群、1 mg/kg 飼料 及び 40 mg/kg 飼料の OTA 投与群においてそれぞれ 65%、75%及び 98% であり、腎細胞癌による生存率の低下は認められなかった。対照群及び 1 mg/kg 飼料の OTA 投与群では 4 か月目から致命的な閉塞性の泌尿器疾患 の発生がみられた(参照 190)。40 mg/kg 飼料の OTA 投与群で生存率が高

⁸⁾ JECFA で用いている換算(IPCS:EHC70)を用いて摂取量を推定

種	体重(kg)	飼料摂取量(g/動物/日)	摂取量(mg/kg 体重/日)
マウス	0.02	3	0.150

くなった原因は、OTA によるグラム陽性細菌の生育阻害効果及び OTA が 誘発した近位尿細管損傷の結果としての多尿症によると推定されている(参 照 195)。本結果については、同居マウスからの攻撃による傷害が、慢性の 尿路疾患に関与した可能性も指摘されている(参照 196)。

④ 13 週間発がん性試験(ラット、強制経口投与)

F344/N ラット(雌雄、一群各 10 匹)に、0、0.0625、0.125、0.25、0.5 又は1 mg/kg 体重の OTA(純度 98%)を13 週間、1 週間に5 回の頻度で 強制投与する予備試験が米国国家毒性プログラム(NTP)において実施さ れた。試験の結果、腎毒性が明らかに認められた。また、腎臓、心臓及び 脳の相対重量の増加、胸腺の萎縮、胃上皮の壊死、副腎における出血、骨 髄細胞の減少等が認められた。OTA を投与した全てのラットの腎臓に巨大 核細胞がみられ、皮質内帯及び髄質外層外帯の尿細管部分の尿細管上皮細 胞の萎縮も認められた。0.125 mg/kg 体重以上の投与量群では、尿細管上 皮細胞の壊死及び変性がみられた。発がんは認められなかった。(参照 191)

⑤ 9か月間発がん性試験(ラット、強制経口投与)

F344/N ラット(雌雄、一群各 15 匹)に、0、21、70 又は 210 μg/kg 体 重の OTA(純度 98%)を9か月、1 週間に5 回の頻度で強制経口投与する 毒性及び発がん性試験が NTP において実施された。試験の結果、70 及び 210 μg/kg 体重の OTA 投与群の雌雄全てに、巨大核又は倍数体の核と突起 状の核小体を持つ大きな尿細管上皮細胞(有核細胞肥大)が認められた。 有核細胞肥大は尿細管上皮に広く分布し、特に皮髄境界上部の近位尿細管 に多くみられ、投与量の増加に伴って増加した。210 μg/kg 体重投与群の 雄 1 匹に尿細管細胞腺腫が認められた。雌雄ラットに尿細管細胞の過形成 がみられ、過形成病変部位には、好塩基性尿細管が観察された。(参照 191)

⑥ 15 か月間発がん性試験(ラット、強制経口投与)

F344/N ラット(雌雄、一群各 15 匹)に、0、21、70 又は 210 μg/kg 体 重の OTA(純度 98%)を15 か月、1 週間に 5 回の頻度で強制経口投与す る毒性及び発がん性試験が NTP において実施された。試験の結果、70 及 び 210 μg/kg 体重の OTA 投与群の雌雄全てに巨大核細胞が認められた。尿 検査では、投与 3 日後から尿濃縮能の低下が雌雄ともにみられた。尿量が 増加し、210 μg/kg 体重投与群では、比重の低下がみられた。近位尿細管 細胞の刷子縁にある有機アニオン輸送システムの機能障害により尿濃縮能 の低下が認められることが示されている。210 μg/kg 体重投与群の雄 2 匹 及び 70 μg/kg 体重投与群の雄1匹に腎細胞癌並びにそれぞれの投与群の雄 に 1 匹ずつ腎細胞腺腫が認められた。(参照 191)

⑦2年間発がん性試験(ラット、強制経口投与)

F344/N ラット(雌雄、一群各 50 匹)に、0、21、70 又は 210 μg/kg 体 重の OTA (純度 98%)を一週間に 5 回の頻度で 2 年間強制経口投与する毒 性及び発がん性試験が NTP において実施された。試験の結果、以下に記し たように、OTA は F344/N 雄及び雌ラットにおいて明らかな発がん性を示 した。(参照 191)

ラットは毎日2回観察され、最初の13週間は毎週、その後は毎月体重と 摂餌量が記録された。飼料及び水は自由摂取とされた。各群雌雄それぞれ 15 匹のラットが、9 及び 15 か月後にと殺された。210 μg/kg 体重の OTA 投与群において、雄ラットでは18~77週間の間に、雌のラットでは6~89 週間の間に体重が 4~7%減少した。一般状態に変化はみられなかった。血 液学的検査及び血清の化学分析の結果、生物学的に有意な影響は認められ なかった。OTA 投与により尿量の増加と比重の低下が認められ、尿を濃縮 する能力に僅かな変化がみられたが、腎機能の変化は伴わなかった。0、21、 70 及び 210 μg/kg 体重の OTA 投与群で、雄における腎細胞腺腫の発生頻 度は 1/50(2%)、1/51(2%)、6/51(12%)及び 10/50(20%)並びに腎細胞 癌の発生頻度は、0/50(0%)、0/51(0%)、16/51(31%)及び30/50(60%) であった。70及び210 µg/kg 体重の OTA 投与群で、腎細胞腺腫と腎細胞 癌を合わせた発生頻度は、それぞれ 20/51 (39%) 及び 36/50 (72%) であ った。210 µg/kg 体重の OTA 投与群では、腎細胞腺腫及び腎細胞癌が複数 個又は両側の腎臓に認められた。最終と殺の前に死亡又は瀕死の状態の雄 の数は、投与量に依存して増加し、210 µg/kg 体重投与群では有意に増加 した(0、21、70 又は 210 μg/kg 体重の OTA 投与群で、それぞれ 7、19、 23 又は 26 匹)。70 及び 210 µg/kg 体重の OTA 投与群において、生存数の 減少が腎臓腫瘍の存在に起因していると考えられ、死亡したラットのうち 腎細胞癌が認められた割合はそれぞれの投与群で 15/23(65%)及び 18/26 (69%) であった。転移性のがんを有していたラットは、と殺前に死亡す る例が多かった。転移性のがんを有していた割合は、と殺前に死亡したラ ットでは70及び210 µg/kg 体重投与でそれぞれ3/8(38%)及び11/15(73%) であったが、最終日にと殺されたラットでは、それぞれ 0/7 (0%) 及び 3/15 (20%) であった。一方で、OTA を 21 µg/kg 体重投与した群の雄ラット では、生存率の減少が OTA を 70 又は 210 µg/kg 体重投与した群と同様で あったにもかかわらず、腎臓にがんは認められなかった。雌では、腎細胞 腺腫と腎細胞癌の合計頻度は、0、21、70及び 210 µg/kg 体重の OTA 投与 群で、それぞれ 0/51(0%)、0/51(0%)、2/50(4%)及び 8/50(16%)で あった。ラットにおいて OTA により誘発された腎細胞癌は、主に肺及びリ ンパ節に転移した。OTA を 210 µg/kg 体重投与した雌ラットでは、多発性 の乳腺線維腺腫が認められた。乳腺線維腺腫の発生頻度は、対照及び低用 量投与群の 4~5/50 (8~10%) と比較すると 14/50 (28%) と高かった。非

腫瘍性の毒性病変は主として腎臓に関係するものであった。13 週間の予備 試験ラット並びに 9、15 及び 24 か月の毒性試験ラットにおいて、70 及び 210 μg/kg 体重の OTA 投与群の雌雄に、巨大核又は倍数体の核と突起状の 核小体を持つ大きな尿細管上皮細胞(有核細胞肥大)が認められた。(参照 191)

JECFA において、この NTP 試験結果について検討された。雄ラットに おける腎細胞癌発生頻度が、70及び210 µg/kg 体重の OTA 投与群でそれ ぞれ 16/51 (31%) 及び 30/50 (60%) であり、それ以下の低用量投与群で はがんが認められなかったことが着目された。雌ラットの腎細胞癌発生頻 度は低く、21、70 及び 210 μg /kg 体重の OTA 投与群でそれぞれ 0/50、1/50 及び 3/50 であった。腎臓腺腫は、全ての投与群の雄で認められ、投与量に 応じて発生頻度が増加した。雌ラットにおける腎臓腺腫は70及び210 µg/kg 体重投与群でのみ認められた。乳腺線維腺腫は、全ての用量の OTA 投与ラ ットの 45~46% で認められ、OTA 非投与の対照群より有意に高い発生頻度 であった。更に、NTP の試験における腎臓標本がレビューされ、障害部位 は、髄質外層外帯にある近位尿細管 S3 セグメントであることが確認された。 2年間慢性・発がん性試験における組織学的所見として、巨大核細胞及び肥 大した有核細胞の増加による尿細管 S3 セグメントの萎縮と組織障害が認 められた。この変化は、雌雄ともに明らかな用量反応関係を示した。16日 間及び13週間試験において髄質外層外帯を含む尿細管における局所的な細 胞死、細胞分裂の活性化及び尿細管過形成を伴った好塩基性細胞の増加が 認められた。これらの損傷部位と 2 年間試験の発がん部位に相関が認めら れ、発がんのメカニズムに関与する可能性も考えられたが、組織学的な所 見のみでは不十分とされた。髄質外層外帯に関わるこのほかの非腫瘍性の 主な障害は、拡張した異型尿細管、色素嫌性尿細管及び嚢胞性尿細管であ り、嚢胞性尿細管は雄より雌ラットに顕著に認められた。低用量(マイク ログラムオーダー)の OTA が、腎細胞癌を高頻度で誘発し(高用量群雄の 74%)、腎細胞癌は腺腫より多く認められた。腎細胞癌は比較的迅速に発症 し、悪性で急速に進行した。通常とは異なって、未分化の表現型を示す傾 向が認められ、比較的高頻度で転移し、明らかに死亡の原因と考えられる ケースもあった。これら OTA で誘発されるがんの各特徴は、非遺伝毒性発 がん物質である d-リモネンやクロロホルムなどに誘発される腎臓腫瘍にみ られる特徴とは異なっている。未分化で活発な性質を持つ傾向は、フモニ シン B₁で腎尿細管に誘発されるがんと類似性があった。フモニシン誘発の 腫瘍は、スフィンゴ脂質代謝の変化を介した間接的なものと推定されてい る。OTA が DNA に直接作用している可能性も考えられたが、JECFA では OTA の腫瘍の誘発メカニズムが、DNA との直接的な反応によるかどうかは 不明であるとされた。(参照 74)

NTPの試験結果をまとめ、表 10~表 12 に示した。当該試験における雄 ラットの腎腫瘍を指標とした NOAEL は 21 μ g/kg 体重、LOAEL は 70 μ g/kg 体重であった。

表10 雄のマウスとラットにおけるオクラトキシンAによる巨大核及び 発がん性の LOAEL 及び NOAEL

	動物種	影響	試験期間	LOAEL (µg/kg 体重)	NOAEL (µg/kg 体重)
	ラット(雄)a	近位尿細管細胞	90 日間	62.5	設定せず
	の巨大核		9 及び 15 か月間	70	21
		腎臓腫瘍	2 年間	70	21
a	:5日/週で強	制経口投与	NTP (1989) より	(参照 191)	

表11 オクラトキシンAに暴露した雄ラットにおける巨大核の発生頻度

OTA 投与量				
(µg/kg 体重)a	0	21	70	210
巨大核(%)	0/50	1/51(2)	51/51(100)	50/50(100)
a:5日/週で2年間引		NTP(1989)より	(参照 191)	

表12 オクラトキシンAに暴露した雄ラットにおける腎臓腫瘍の発生頻度 OTA 投気量

UIA 仅子里				
(µg/kg 体重/日)a	0	21	70	210
腺腫(%)	1/50(2)	1/51(2)	6/51(12)	10/50(20)
生命表検定	<i>P</i> <0.001	P=0.669	P=0.023	<i>P</i> <0.001
ロジスティック回 帰テスト	<i>P</i> <0.001	P=0.669	P=0.053	P=0.004
がん(%)	0/50	0/51	16/51(31)	30/50(60)
生命表検定	<i>P</i> <0.001	-	<i>P</i> <0.001	<i>P</i> <0.001
ロジスティック回 帰テスト	<i>P</i> <0.001	-	<i>P</i> <0.001	<i>P</i> <0.001
腺腫 及び/又はがん (%)	1/50(2)	1/51(2)	20/51(39)	36/50(72)
生命表検定	<i>P</i> <0.001	P=0.669	<i>P</i> <0.001	<i>P</i> <0.001
ロジスティック回 帰テスト	<i>P</i> <0.001	P=0.669	<i>P</i> <0.001	<i>P</i> <0.001
a:5日/週で2年間	強制経口投与	NTP (1989)	より (参照 191)	

リスク評価のための追加情報を得るために JECFA では、NTP のラット OTA 発がん性試験データ(参照 191)を用いてベンチマークドーズ (BMD) 法⁹により、定量的な評価が実施された。腎臓を標的とした発がんに対する 性及び種感受性として、雄ラット腎臓における腫瘍とがんの組合せ発生頻 度 (表 12)が用量-反応モデリングの最も適当なデータとされた。

シミュレーションには米国環境保護局(EPA)の BMD ソフトウェア ver.1.4.1(参照 197)が用いられた。対照群のバックグラウンド発生頻度と比 較した腫瘍及びがんの発生頻度の 10%増加に対しての BMD₁₀ とその 95% 信頼下限値である BMDL₁₀の値が、250 回の繰り返し計算(イテレーショ ン)を行うことにより推定された。使用したモデルの BMD₁₀ と BMDL₁₀ の値を、関係する統計値とともに表 13 に示した。

算出された OTA の BMD₁₀ 値は 18~33 µg/kg 体重/日、BMDL₁₀ 値は 15 ~ 25 µg/kg 体重/日の範囲であった。適合したモデル¹⁰⁾ の BMD₁₀ 値は 30 µg/kg 体重/日付近、BMDL₁₀ 値は 25 µg/kg 体重/日であった。したがって、 求められた BMDL₁₀ 値は、現行の根拠となっているブタにおける腎毒性を 指標とした LOAEL 8µg/kg 体重/日と比較し、暫定耐容週間摂取量 (PTWI) 設定のために参照する出発点 (Point of departure: POD) として低い値と はならなかった。(参照 198)

モデル	対数 (尤度)	p-值	AIC	χ2	P-値	BMD ₁₀ µg/kg 体重/ 日	BMDL10 µg/kg 体重/ 日
Full model	-71.61						
Gamma multi-hit	-76.36	0.02	158.7	4.91	0.03	30	18
Log-logistic	-75.57	0.05	157.1	3.46	0.06	32	21
Multistage	-77.29	0.01	160.6	5.96	0.01	24	15
Log-probit	-75.05	0.09	156.1	2.64	0.1	33	25
Quantal-linear	-77.74	0.02	159.5	5.99	0.05	18	15
Weibull	-76.68	0.01	159.4	5.27	0.02	28	17
Reduced model	-120.77	< 0.001					

表 1 3 NTP の試験からの雄 F344 ラットにおける腎臓腫瘍発生頻度に基づく BMD₁₀ 及び BMDL₁₀ 算出(JECFA)

AIC:赤池情報量規準の略でモデルの選択基準、一般に小さいほうが良いモデルとされる。

NTP (1989) のデータより。OTA を 5 日/週で 2 年間強制経口投与。表の一部を改変。 (参照 198)

⁹⁾ BMD 手法は、対照群に対し 5%又は 10%で代表的に選ばれた軽度であるが確認可能な反応(ベンチマーク反応)を引き起こすことが感知できる範囲及び推定量を含む実験データに適合する数 学モデルに基づいている。用量-反応評価において、定量的な低濃度の分析が可能なことより、 健康影響のため NOAEL と LOAEL 手法の代案として提唱された(国際化学物質安全性プログ ラム)。BMD の下限値(BMDL)は、BMD の 95%信頼区間片側に相当する下限を意味してい る。下限値を用いることは、その試験の持つ不確かさを考慮に入れ、選択したベンチマーク反応 が限度を超えないことを保証(95%信頼水準)することになる。

¹⁰⁾ モデルの尤度比検定の結果である p-値が有意に 0.1 より大きく、X² 値が小さいほどモデルの 適合度が良好と考えられる。

食品安全委員会では、実験動物における発がん影響についてこの後に公 表された毒性試験結果も含めてレビューした結果、NTPにおけるラットを 用いた試験は、発がん性試験として用量相関が示され、最も低い投与量で 発がん影響が認められていることが確認された。BMD法の適用に当たって は、NTPのラットへの2年間投与試験は週5日投与であることから、一日 当たりの平均投与量として 5/7倍の投与量補正を行うこととした。改訂され た EPAの BMD ソフトウェア ver.2.3.1において全てのモデル(Restriction に関する設定がある場合は on 及び off の両条件)を用いて解析した結果、 LogProbit (Restriction : on)及び LogProbit (Restriction : off)の両モデ ルが適合した。両適合モデルのうち最も低い BMDL₁₀を算出したのは、 LogProbit (Restriction : off)モデルとなり、BMD₁₀は 23.7 μ g/kg 体重/ 日、BMDL₁₀は 16.1 μ g/kg 体重/日であった(表 14)

	0及い DMDL ₁₀ 弁		L女貝云/				
	Power	Slope				BMD_{10}	$BMDL_{10}$
モデル	parameter	parameter	AIC	p 値	許容	µg/kg 体	µg/kg 体重/
						重/日	日
Gamma	restricted		158.866	0.0253		22.1248	13.0134
	unrestricted		158.866	0.0253		22.1248	13.0134
Logistic		not restricted	168.437	0.0003		37.4076	30.6388
LogLogistic	restricted	restricted	157.279	0.05972		2.7799	14.8076
	unrestricted	restricted	157.279	1.1597		22.7799	14.8076
LogProbit	restricted	restricted	156.201	0.1004	OK	23.7466	18.1891
	unrestricted	not restricted	156.201	0.1004	OK	23.7466	16.092
Multistage	restricted(2)		160.789	0.0135		17.4057	11.0617
	restricted(3)		160.789	0.0135		17.4057	11.0617
	Unrestricted(2)		160.789	0.0135		17.4057	10.5968
	Unrestricted(3)		155.253			27.1372	20.7351
Probit		not restricted	166.647	0.0005		35.1238	29.1336
Weibull	restricted		159.52	0.0203		20.4683	12.051
	not restricted		159.52	0.0203		20.4684	12.0357
Quantal-linear			159.753	0.0464		13.2651	10.5944

表14 NTP の試験からの雄 F344 ラットにおける腎臓腫瘍発生頻度に基づく
 BMD₁₀ 及び BMDL₁₀ 算出(食品安全委員会)

⑧ 90 日間発がん性試験(ラット、強制経口投与)

低用量 OTA 投与がラット腎臓における発がんに与える影響を検証する目 的で、F344/N ラット(雄、一群 5 匹)に OTA が 0、21、70 又は 210 µg/kg 体重/日の濃度(NTP による 2 年間試験で用いられた投与量)で、14、28 又は 90 日間、5 日/週で強制経口投与された。血液検査及び尿検査の結果は、 高 用 量 で 血 中 ク レア チ ニ ン の 上 昇 及 び 尿 中 の リ ソ ソ ー ム N-acetyl-6-D-glucosaminidase(NAG)活性が僅かであるが有意に上昇し たことを除いては腎毒性を示す指標はみられなかった。組織検査において、 70 µg/kg 体重以上の投与群で、OTA 誘発腫瘍の発生部位である腎臓髄質外 層外帯の近位尿細管に巨大核細胞及び壊死などの変化が認められた。また、 70 µg/kg 体重以上の投与群において用量及び時間依存的に異常な細胞増殖 が認められ、その範囲は髄放線から髄質外層外帯に認められた。21 µg/kg 体 重/日投与群の腎臓と肝臓には影響がみられなかった。この試験の NOAEL は 21 µg/kg 体重/日であった。OTA で誘発される細胞増殖の促進と腫瘍形 成との間に明らかな相関がみられたことから、著者らは細胞増殖の促進が OTA の発がん性に主要な役割を果たしていると考えた。(参照 192)

⑨2年間発がん性試験(ラット、混餌投与)

Dark Agouti ラット(雄、一群5匹)に5 mg/kg 飼料(0.25 mg/kg 体 重/日に相当)の用量でOTAを3、6 又は9か月投与し、2 年間観察すると 共に0.4 mg/kg 飼料(0.02 mg/kg 体重/日に相当)の用量でOTAを2 年間 投与する慢性毒性試験が実施された。試験には人工培養物(OTBを5~10% 含む。ペニシリン酸とシトリニンは含まず。)が用いられた。5 mg/kg 飼料 のOTA 投与群における発がん率は20%であった。6 か月投与群では1 匹の 両側の腎臓にがんが、9 か月投与群では20 匹中4 匹の片側の腎臓にがんが 認められた。OTA 投与終了後腫瘍発生までの潜伏期間は、35~97 週であっ た。0.4 mg/kg 飼料のOTAを2 年間混餌投与した群に発がんは認められず、 Dark Agouti ラットにおいては無毒性量と考えられた。本実験のOTA 用量 は、NTP 試験の無毒性用量の約2 倍に設定され、平均用量は50 µg/kg 体 重/日から始まり、成体後期では20~30 µg/kg 体重/日であった。(参照 193)

10 2年間発がん性試験(ラット、混餌投与)

F344 ラット(雄、一群 64 匹)に体重が 333 g になるまでは 300 µg/kg 体重/日、その後は 100 µg/匹/日の用量で 2 年間 OTA (OTB を OTA の 5~ 10%含む。ペニシリン酸とシトリニンは含まず。)が混餌投与された。最後 の 18 か月は、血中 OTA 濃度は 8 µg/ml と一定の値となった。腎細胞癌は 投与 75 週目から認められ、ほとんどが片方の腎臓に発生した。腎細胞癌は 明らかに腎実質に発生していたが、腎盂かどうか不明なケースが 2 匹にみ られた。腎腫瘍は 1 匹に認められ、白血病も発症していた。2 年間における 腎腫瘍の発生率は 25% (16/64) 及び腎細胞癌の発生率は 20%であった。 OTA 非投与の対照群 (30 匹)の腎臓にがんはみらなかった。当該試験では、 ラットの体重が 333 g になるまでは NTP における発がん性試験の高投与量 の 2 倍となる用量の OTA が混餌投与されたが、腎細胞癌の発生率は強制経 口投与による NTP 発がん性試験の高投与量群より有意に少なかった。(参 照 193, 194, 199)

① 2年間発がん性試験(ラット、混餌投与)

F344 ラット(一群 34 匹)に2 年間 OTA (OTB を 5~10%含む。ペニ シリン酸とシトリニンは含まず。)が混餌投与された。ラットの体重が 175 g になるまでの OTA 用量は 0.05 mg/kg 体重/日であった。腎臓にがんがみら れたのは 34 匹中 4 匹(12%) であり、NTP における同じ用量の OTA 強制 経口投与による発がん性試験結果(30%)より少なかった。(参照 194)

122年間発がん性試験(ブタ、混餌投与)

ブタ(雌、一群3頭)に1 mg/kg 飼料/日のOTA (25~50 mg/kg 体重/ 日に相当、EFSA の評価(参照 200)では 40 mg/kg 体重/日としている)が2 年間混餌投与された。発がんは認められなかった。投与開始3か月後には、 いくつかのネフロンにおいて近位尿細管上皮細胞に局所的な萎縮及び間質 の線維化が認められた。この腎症は進行性で、2 年後には同様の所見が更に 広範囲にみられ、近位尿細管に構造変化及び壊死が生じ、萎縮した尿細管 の上皮細胞間に単球の浸潤が認められた。腎不全は認められなかった。近 位尿細管では NADPH テトラゾリウム還元酵素、LDH、G-6-PD 及びαグリ セロールフォスファターゼの酵素活性が局所的に低下し、これらの酵素活 性の低下の範囲は、局所的な尿細管萎縮の範囲と一致していた。(参照 105, 181)

(4) 生殖発生毒性

いくつかの発生毒性影響についての試験では、OTA が胎盤を通過し、ラット及びマウスに対する胎児毒性及び催奇形性が示されている。OTA の発 生毒性試験の主なものを表 15 にまとめた。

	F 1					18713	-
動物種等 (動物粉	試験、投与	投	与量	作用	LOAEL (mg/kg	NOAEL	参照文献
(動物数) /群)	刀伝、旁间	mg/kg 飼料	mg/kg 体重/日	•	(mg/kg 体重/日)	(ling/kg 体重/日)	
マウス、 CBA、 妊娠(10)	 発生毒性、 強制経口、 妊娠 8、9 日 妊 娠 ⁻² 日、妊娠 2 ~14 日 		0、1、2、 4 (コーン 油)	 ・全ての投与群で 胎児に影響。 ・妊娠8又は9日 目投与群で胎児の 顔面上部構造の無 形成と形成異常。 			(参照 201)
マウス、 CD-1、 妊娠 (10~13)	発生毒性、 混餌、妊娠 8 日目に投 与し、18 日 目に検査		0、2、3 (タンパ ク質(カ ゼイン) 量を調 整)	・胎児頭蓋顔面の 奇形。	2		(参照 202)
マウス、 ICR、妊 娠	発生毒性、 腹腔内、妊 娠 10 日目 に投与		0、3	・小脳症。	3		(参照 203)
マウス、 遺伝 指症/無 嗅脳 ス、 妊娠	発生毒性、 腹腔内、妊 娠 7.5 日目 に投与		2 (NaHCO 3 溶液)	・神経管欠損。	2		(参照 204)

表15 オクラトキシンAの生殖発生毒性試験の結果

動物種等	試験、投与	投与量		作用	LOAEL	NOAEL	参照文献
(動物数 /群)	力壮、期间	mg/kg 飼料	mg/kg 体重/日		(mg/kg 体重/日)	(mg/kg 体重/日)	
ラット、 Wistar、 妊娠 (12~20)	発生毒性、 腹腔内、妊 娠8日目か ら投与		8 及び9 日目に 2.5、8~11 日目に 1.2、8~13 日目に 0.83 又は 8~15 日 目に 0.63	 ・数回の投与及び 妊娠初期に分けて 投与された。母動 物に最も影響。 ・胎児の吸収胚の 増加、平均胎子数、 平均胎児体重、胎 盤の平均重量減 少。 	4		(参照 205)
ラット、 Wistar、 妊娠	発生毒性、 強制経口、 妊娠8~ 15日		 8 及び9 日目に 2.5、8~11 日目に 1.2、8~13 日目に 0.83 又は 8~15 日 目に 0.63 	・催奇形性、 胎児数、胎児重量 減少。	N/A		(参照 206)
ラット、 Sprague -Dawley 、妊娠 (10)	発生毒性、 強制経口、 妊娠 6 ~15 日		0.25、 0.50、 0.75、1、 2、4又は 8	 ・急性毒性では腎 不全。 ・全ての投与群で 胚の吸収又は体重 減少。 	0.25		(参照 207)
ラット、 Wistar ラ、雄(5)	生殖毒性、 胃内、2,4, 6 又は 8 週 間	2	0.289	・精巣のα-アミラ ーゼ、ALP及び γGT 活性の増加。 ・精子形成不全	0.289		(参照 208)
ラット、 Sprague -Dawley 、妊娠 (6~9)	発生毒性強 制経口、、 妊娠 6~15 日		0, 1	・胎児の骨格、肺、 腎臓奇形。	1		(参照 209)
ラット、 Wistar、 妊娠(10)	発生毒性、 胃内、妊娠 6~15日		0、0.125、 0.25、 0.50、 0.75	 ・0.5 mg/kg 投与 以上で有意な催奇 形性、胚吸収の増加。 ・0.25 mg/kg 投与 以上で有意な胎児 数減少。 	0.25		(参照 210)
ラット、 Wistar、 妊娠(10)	発生毒性、 強制経口、 妊娠 6~15 日		0、2.0、 2.5、 2.75、 3.0、3.5、 4.0	・外水頭症、頭蓋 骨不完全閉鎖、臍 帯ヘルニア、内水 頭症、小眼症、腎 盂拡張、腎臓形成 不全。	2.75		(参照 211)
ウサギ New Zealand White、 妊娠(5)	発生毒性、 強制経口、 妊娠 6~18 日		0、0.025、 0.05、 0.10	・胎児体重と生存 胎児数減少、催奇 形性。	0.10		(参照 212)
Holstein 、妊娠 3-6 か月目 (1)	胃内投与		0.2、 0.75、 1.66	・流産又は胎児死 亡は認められなか った。		1.66	(参照 125)

① マウス

妊娠8又は9日目(膣栓形成を1日目とする。以下同じ。)のCBAマウス(一群10匹)にコーン油に溶解したOTAが0、1、2又は4 mg/kg体重で投与される発生毒性試験が実施された。妊娠19日目にと殺し、母体及び胎児の生死、生存胎児の体重、肉眼的観察並びに骨格が検査された。4 mg/kg体重のOTAを妊娠8又は9日目に投与した群における胎児の死亡率はそれぞれ17.3又は22.2%であった。生存胎児の体重は、用量依存的に減少し、溶媒を妊娠8又は9日目に投与した対照群ではそれぞれ1.04±0.02g又は1.09±0.02gであったが、4 mg/kg体重のOTAを妊娠8又は9日目に投与した群ではそれぞれ0.93±0.02g又は0.62±0.02gであった。4 mg/kg体重のOTA投与群に認められた主な異常の頻度は、妊娠8又は9日目のOTA投与群で脳へルニアがそれぞれ10.4%(7/67)又は89.3%

(50/56)、小眼球症が6%(4/67)又は26.8%(15/56)、眼瞼開裂が6%(4/67) 又は16.1%(9/56)並びに奇形のあご及び舌突出が1.5%(1/67)又は41.1%

(23/56)であった。半数の胎児について更に骨格を調べた結果、椎骨及び 胸骨における癒合が認められた。これらの胎児の異常は、頭蓋骨の骨格と 側部壁の骨の位置及び大きさの配置異常による脳頭蓋の閉鎖の不具合から 起こると考察された。さらに、交尾2日前、妊娠2、4、6、7、10、11、12、 13、14又は16日目に4mg/kg体重のOTAを強制経口投与し、妊娠19日 目に母体及び胎児が観察された結果、胎児への影響は全ての投与群で認め られた。妊娠7日目投与群で胚致死数の有意な増加が、妊娠10、11、13 及び14日目投与群で有意な胎児体重の減少が認められた。妊娠9日目投与 群では、形成阻害への影響が明らかに認められた。(参照 201)

CD-1マウス(雌、一群10~13匹)に精製タンパク質食としてカゼイン を26%、16%、8%又は4%を含有する飼料を交配中及び妊娠中に摂取させ て、OTAの催奇形性作用におけるタンパク質欠乏の影響が調べられた。妊 娠8日目に、0、2又は3mg/kg体重のOTAを単回強制経口投与し、母動 物は妊娠18日目にと殺された。OTA投与は、母動物の摂餌量に影響しな かった。OTA 非投与群の母動物は、いずれのタンパク質食でも死亡例はな かったが、3mg/kg体重のOTA投与群において、26%、16%、8%及び4% のタンパク質食を含有する飼料を摂取させた群のOTA投与後48時間以内 の母動物の死亡数は、それぞれ5、4、1及び14匹であった。胎児の生存率 は、8%及び4%のタンパク質食摂取群においてOTA投与により有意に減少 した。OTA 非投与の対照群のうち26%タンパク質食摂取群及び16%タンパ ク質食摂取群に胎児の外表奇形はみられなかった。OTAの用量依存的に外 表奇形の増加が認められ、その発生頻度はタンパク含有量が少ないほど増 加した OTA 投与により主に唇顎口蓋裂及び骨格異常がみられ、4%のタン パク質食摂取群では四肢及び尾に外見の奇形が認められた。(参照 202)

妊娠 10 日目の ICR マウスに 3 mg/kg 体重の OTA を腹腔内投与した結

果産まれた雄マウス(一群6匹)の脳重量は、OTA を投与しない母動物か ら産まれた雄マウスより有意に少なく、大脳皮質の厚さは有意に薄かった。 発生した小脳症について、6週齢でニューロン及びシナプスの定量的評価を 行ったところ、体性感覚皮質において、OTA に暴露された群では、OTA 非 投与の対照群よりニューロン当たりのシナプス数が少なく、神経細胞樹状 突起の発育不良を示していた。(参照 203)

多指症/無嗅脳症(Pdn/Pdn)マウスには神経管欠損(NTD)が13.2%の 割合で認められた。Pdn/+の雌雄を交雑した後、妊娠7.5日に2mg/kg体 重のOTAを腹腔内投与した結果、神経管欠損の発生頻度は51.6%に増加し た。(参照 204)

② ラット

Sprague-Dawley 妊娠ラット(一群 10 匹) に 0.25、0.50、0.75、1、2、 4 又は 8 mg/kg 体重の用量で、妊娠 6~15 日目まで毎日 OTA が強制経口 投与された。OTA による急性毒性では腎不全が特徴的であり、4 又は 8 mg/kg 体重の OTA 投与群では、それぞれ母動物 1 匹又は 10 匹が死亡し、 胚は吸収されていた。1 又は 2 mg/kg の OTA 投与では、母動物に毒性兆候 は見られなかったが、胚は吸収された。0.25、0.50 又は 0.75 mg/kg の OTA 投与では、妊娠 20 日目に 0.75 mg/kg 投与群の母動物で胎児の吸収率が増 加した。0.25、0.50 又は 0.75 mg/kg 投与群の母動物から得た妊娠 20 日目 の胎児は全てコントロールより体重が低かった。0.75 又は 1.0 mg/kg 投与 群の母動物から得た胎児は発育不良で、鼻の変形は、それぞれ 96 匹中 5 匹 又は 28 匹中 16 匹に認められた。1.0 mg/kg 投与では全てが開眼していた。 その他の主な変化としては、0.25 mg/kg 以上の OTA 投与量で用量依存的 な肋骨の湾曲及び胸骨分節の形成不全がみられた。(参照 207)

Wistar ラット(雄、一群 5 匹)に 289 mg/kg 体重の用量で 2、4、6 又 は 8 週間 OTA が 48 時間毎に強制経口投与された。精巣内のα-アミラーゼ、 ALP 及びγGT 活性が増加し、精子形成不全が認められた。(参照 208)

妊娠 6~15 日目の Wistar ラット(一群 12~20 匹)の5 群に、0.16 mol/L 炭酸水素ナトリウム溶液として、総量 5 mg/kg 体重の OTA が強制経口投 与された。各群の詳細は、妊娠 8 及び 9 日目に 2.5 mg/kg 体重/日の OTA 投与群、妊娠 8~11 日目に 1.25 mg/kg 体重/日の OTA 投与群、妊娠 8~13 日目に 0.83 mg/kg 体重/日の OTA 投与群、妊娠 8~15 日目に 0.63 mg/kg 体 重/日の OTA 投与群並びに OTA 非投与の対照群であった。同様の方法で、 ラット(一群 20 匹)に妊娠 8 及び 9 日目に 2.5 mg/kg 体重の OTA を単回 経口投与、並びに妊娠 8、9 及び 10 日目に 1.67 mg/kg 体重の OTA を単回 経口投与する発生毒性試験が実施された。ラットは全て妊娠 20 日目にと殺 された。各群の雌 1 匹当たりの着床数に有意差はなかった。OTA 総投与量 が同じであっても、数回の投与及び妊娠初期に分けて投与された雌が、最 も影響を受けた。雌1匹当たりの胚吸収の数は、一日の用量に依存する増加がみられ、雌1匹当たりの平均胎児数、胎児体重及び胎盤重量の減少に同様に用量依存性が認められた。1.2 mg/kg体重/日投与以上の投与群で、胎児の出血並びに先天性胸腹臓器ヘルニア(celosemia)がみられ、著者らは、奇形の影響と考察している(参照74,205)。同じグループで、同様にOTAを1.25又は2.5 mg/kg体重/日の用量で計5mg/kg体重投与し、生後82日後まで出生児ラットを観察する発生毒性試験が実施された。用量に依存した減少が出生ラットの平均数、4日後に生存していたラットの平均数及び生存率に認められたが、離乳時生存率には認められなかった。OTAを2.5mg/kg体重で2回投与した群では、82日目の雄と雌の出生児の平均体重が、それぞれ12又は8%減少した。同じ群で、出生15日目に雄の26%に水頭症が観察され、そのうち40%は生後20日までに死亡した。(参照206)

妊娠 6~15 日目の Sprague-Dawley ラット(一群 6~9 匹)に OTA を 0 又は 1 mg/kg 体重/日で経口投与し、妊娠 20 日目にと殺して母動物と胎児 が観察された。胎児体重の減少と吸収胚数の増加が認められたが、母動物 に明らかな悪影響は見られなかった。OTA の暴露を受けた胎児には、頭蓋 骨の骨化不全、胸骨欠損又は尾椎欠損がそれぞれ 30 匹中 6 匹(20%)、4 匹(13.3%)又は 2 匹(6.7%)認められた。腎臓又は肺の奇形がそれぞれ 15 匹中 6 匹(40%)又は 3 匹(20%)認められた。抗酸化作用のある L-メチオニンを 43.0 mg/kg 体重の用量で OTA と同時に投与すると、OTA 非 投与の対照群とほぼ同様の結果となった。(参照 209)

妊娠 6~15 日目の Wistar ラット(一群 10匹)に OTA を 0、0.125、0.25、 0.50 又は 0.75 mg/kg 体重/日で強制経口投与する発生毒性試験が実施され た。0.25 mg/kg 体重/日以上の OTA 投与群で、用量に依存して生存胎児数 が減少し、0.75 mg/kg 体重/日の OTA 投与群では有意に減少した。胎児体 重と頭殿長も用量に依存して減少し、胎児の体重増加は 0.50 mg/kg 体重/ 日以上のOTA 投与群で有意に減少した。外表奇形、骨格及び臓器の異常が、 全ての OTA 投与群において用量に依存して増加し、OTA 0.5 mg/kg 体重/ 日の用量以上で統計的に有意な増加であった。外表奇形には、脳ヘルニア、 頭蓋骨の閉鎖不全、小顎症、小肢症、尾の湾曲、脊柱側湾症及び後部矮小 等が認められた。骨格異常には、多数の骨の不完全骨化及び融合又は分岐 肋骨が認められた。臓器の異常には、水頭症、小眼症、腎盂拡張、停留精 巣等が認められた。胎児の肝臓、腎臓、脳及び眼の組織学的検査において、 0.25 mg/kg 体重/日以上の OTA を投与された母動物の胎児に、水腫、腎臓 の線維化及び尿細管上皮細胞の変性、肝細胞変性、胆管増殖、小脳の不完 全形成並びに水晶体及び網膜の欠損などの発生頻度の増加が認められた。 (参照 210, 213)

妊娠 6~15 日の Wistar ラット(一群 10 匹)に 0、2.0、2.5、2.75、3.0、3.5 又は 4.0 mg/kg 体重/日の OTA が単回経口投与された。妊娠 20 日目に

と殺して母動物と胎児が観察された。OTA は胎児に骨格及び臓器の異常を 誘発し、2.75 mg/kg 体重/日以上の用量で催奇形性が認められた。催奇形性 に対し最も感受性の高い時期は、妊娠6日目と7日目であった。(参照 211)

③ ウサギ

妊娠 6~18 日目の New Zealand White ウサギ (一群 5 匹) に 0.025、0.05 又は 0.10 mg/kg 体重/日の OTA を経口投与する発生毒性試験が実施された。 0.10 mg/kg 体重/日投与群で、胎児体重及び生存胎児数に有意な減少があっ た。胎児には、水頭症、小眼症、球節の突き出し、尾の未発達又は無発育、 波状肋骨、腎臓の無形成並びに頭蓋骨及び背骨の骨化不良の発生頻度が増 加した。肝臓、腎臓、脳及び眼の組織学的検査により、胎児の肝臓及び腎 臓に用量依存的な障害の増加が認められた。(参照 212)

④ ウシ

妊娠 3~6 か月目のウシ(ホルスタイン、雌、一群 1 頭)に 0.2、0.75 又は 1.66 mg/kg 体重/日の OTA が胃内投与された。流産又は胎児死亡はみられなかった。(参照 125)

(5) 遺伝毒性

遺伝毒性試験の結果を表 16 及び表 17 にまとめた。

表16 オクラトキシンAの *in vitro* 遺伝毒性試験結果

試験	生物種	OTA 濃度	代謝活性化			年	参照文献
			活性化に用いた物質	無	有		
冶日目	TA1535	0 1 1 10		—	—		
復/m 売 妹	TA100	0.1, 1, 10, $100, m/7^{2}$	ラット肝臓 S9 mix	—	—	1079	(参照 214)
关於 亦因	TA1537	$100 \mu g/ \mathcal{I} \mathcal{I}$		—	—	1978	
<u> </u> 及共	TA98			—	—		
復帰	TA1535	0.5, 5, 50,		—	—		
突然	TA1537	500 μg/プレ	ラット肝臓 S9 mix	—	—	1980	(参照 215)
変異	TA1538	ート			—		
	TA1535	50、100、200、 400、600 μg/ プレート	ラット肝臓 S9 mix	—	—	1985	
復帰	TA100			—	—		(参照 216)
突然	TA1538			—	—		
変異	TA1537			—	—		
	TA98	-		—	—		
冶日目	TA1535	1 9 9 10		—	—		
復/m 売/好	TA100	1, 3.3, 10, 22, 100, 100	ハムスター及びラットの肝臓 S9	—	—	1989	(参昭 101)
关於 亦因	TA98	33、100 μg/	mix	—	—		(参照 191)
<u></u>	TA97)		_	_		
復帰 突然 変異	TA102,	37、111.1、 333.3、991.2 µg/プレート	ラット肝臓 S9 mix	_	_	1991	(参照 217)

表16-1 細菌を用いた突然変異試験

試験	生物種	OTA 濃度	代謝活性化			年	参照文献
			活性化に用いた物質	無	有		
	TA1535	0.2 µM/2ml		n.d.	+		
復帰	TA100	0.2 µM/2ml	OTA たラット 幻代 位姜 肝細 的 と	n.d.	+		
突然	TA1538	0.2 µM/2ml	位本 た調整性地 9 時間	n.d.	+	1991	(参照 218)
変異	TA1537	0.2 µM/2ml		n.d.	—		
	TA98	0.2 µM/2ml		n.d.	—		
復得	TA1535	0, 121, 403,	マウス腎臓 S9+アラキドン酸 で陽性。	—	+		
突然	TA1538	$-h (0, 0.3, 1, 2mM/\tau)$	マウス腎臓 S9+アラキドン酸で 用量依存的に陽性。	_	+	1999	(参照 130)
<u></u>	TA98	- ト)	マウス肝臓 S9+アラキドン酸で 用量依存的に陽性。	_	+		
復帰	TA100	$10 \sim 200 \text{ mg/}$	ラット腎臓ミクロソーム/細胞質 +NADPH+GSH、ラット肝臓細 的質、ラット肝臓 CSH S-転摘酵	_	_	2001	
突然 変異	TA2638	プレート	記員、フラマト所顧 GSH 5 転換時 素粗抽出物、ラット肝臓 S9+ NADPH+GSH 、ヒト CYP3A4、 HRP+過酸化水素	_	_		(参照 129)
復帰	TA100	25 5 10	とと旺藤が/ 中本 日~20 細胞		—		
突然 変異	TA98	25、 50 mM/L	S9mix	_	_	2002	(参照 219)
	TA100			—	—		
	TA102			_	_		
	TA104	0.01, 0.04,	ラット肝臓 S9 mix(市販)又は	_	_		
復 炉 空 伏	TA1538	0.05、0.1、0.2、	ラット初代培養肝細胞と OTA を	_	_	2003	(参昭 221)
変異	TA1537	0.25, 0.5 mM/	インキュベーションした上清(参	_	_	2005	(221)
	TA98	ブレート	照 220)と同じ条件)	_	_		
	TA1535			_			
	TA97a			_	_	-	
復帰	<i>Escherichia</i> <i>coli</i> WP2	0.1~1000 mg/ml	ラット肝臓 S9 mix	_	_	1005	(参照 21()
安熙 変異	WP2 <i>uvrA</i> -	0.1~1000 mg/ml	ラット肝臓 S9 mix	_	_	1985	(参照 210)
復帰 突然 変異	S. cerevisiae D3	0.1~100 mg/plate	ラット肝臓 S9 mix	_	_	1978	(参照 214)

n.d.:データ無し

表16-2 哺乳類培養細胞を用いた遺伝子突然変異試験

試験	生物種	OTA 濃度	代謝活性化		備考	年	参照文献	
			活性化に用 いた物質	無	有			
復帰突 然変異	C3H マウ ス乳腺細 胞	5、10 mg/ml		_	n.d	・pSV.SPORTlacZ を用いた復帰突然 変異試験。	1977	(参照 222)
前進突 然変異	マウス L5178Y TK+/-	0.1、0.5、1、 2.5、5、7.5、 10、12.5 mg/ml	ラット肝臓 S9 mix	_	_	・25 mg/ml 以上は 細胞毒性。	1985	(参照 216)

試験	生物種	OTA 濃度	代謝活	性化		備考	年	参照文献
			活性化に用	無	有			
			いた物質					
遺伝子変異	マウス胎 児線維芽 細胞由来 NIH/3T3(ヒト CYP 発現)	2、10、50、100 mg/ml	ヒト CYP を 発現させた 細胞		+	 ・ CYP1A1、 CYP1A2、 CYP2C10、 CYP3A4はOTA による変異を誘導 ・ CYP2D6及び CYP2E1は変異を 誘導しなかった。 	1996	(参照 223)
前 然 (HPR T 突 異 セ) ()	チャイニ ーズハム スター V79 細胞	0.1、0.25、0.5、 1、2.5、5、10、 50、100 mM	ラット肝臓 S9 mix	_			2003	(参照 221)
前 進 変 異 (HPR T 突 異 ア ッ マ ノ マ ノ マ ス ()	チャイニ ーズハム スター V79 細胞	35、80、187、 483 mM(3 時 間)	ラット肝臓 及び腎臓 S9 mix	(+)	(+)	 ・用量相関性はない弱い染色体異常。 ・代謝は関係なし。 	2007	(参照
前 然 (マ ロ タ イ ノ イ タ ー 法)	マウスリン フォーマ LY5178/T K+	3、81、188、438 mM(3 時間)	ラット腎臓 S9 mix	(+)	(+)	・81 mM 以上(- S9)又は 3~188 mM(+S9)で弱い 染色体異常。		227)

n.d.:データ無し

表16-3 哺乳類由来細胞を用いた染色体異常試験

試験	生物種	OTA 濃度	代謝活性	ŧ化		備考	年	参照文献
			活性化に用い た物質	無	有			
小核試 験	ヒツジ精嚢 小胞細胞由 来 OSV 細胞	12、18、24、30 μM/L		+		 ・12 μM/L から用量依 存的に陽性。 ・キネトコア染色によ り OTA の作用は主に 構造異常。 	1997	(参照 225)
小核試験	ハムスター 胚由来 SHE 細胞	5、10、15、20 μM/L		+	n.d.	 ・5~15 µM/L で用量 依存性あり。20 µM/L は細胞毒性あり。 ・OTA 培養 36 時間で 影響が最も強く認められた。 ・キネトコア染色によりのTA の作用は構造 異常。 ・細胞内カルシウムの変化による誘発効果、 アクチンフィラメントに作用。 	1999	(参照 226)

試験	生物種	OTA 濃度	代謝活性化		備考	年	参照文献	
			活性化に用い た物質	無	有			
小核	ヒト肝臓が	25 μg/ml (1 時間 又は 2 時間培 養)				・時間依存的な小核を 有する細胞数の増加。	2002	(右四 210)
試験	ん田末 HepG2 細胞	5、10、25、50 μg/ml (24 時間 培養)		+	n.d.	・5~25 μg/ml で小核 を有する細胞数の用 量依存的増加。	2002	(ØR 219)
染色体 異常	CHO 細胞	30、50、100、 160、300 μg/ml		_	_		1989	(参照 191)
染色体 異常	ヒトリンパ 細胞(6名健 常女性)	0.015 μM/L	ラット肝臓 S9 mix	+	+	 ・数的異常及び構造異常。 ・数的異常ではX染 色体のトリソミーが多い(BENによくみられる。) 	1990	(参照 227)
染色体 異常	ウシリンパ 球	0.1、0.5、1、2 μM/L		+	n.d.	 ・0.1 μM/L から用量 依存的な染色体切断、フラグ 染色分体切断、フラグ メンテーション、ギャ ップの増加。 ・0.1 μM/L で 2~3倍、 2 μM/L で 4~5 倍。 	2004	(参照 228)
染色体	チャイニー ズハムスタ ーV79 細胞	24.8、53.2、 114.9、247.6、	ラット肝臓又 は腎臓 S9 mix	_	_	・2476.4 μM は細胞毒 性。	2002	(参照 220)
異常	ヒトリンパ 細胞(健常男 性1名)	532.4、1149.0、 2476.4 μM/L	ラット肝臓 S9 mix	_	_	・532.4µM以上で細 胞毒性。	2008	(参照 229)

n.d.:データ無し

表16-4 インディケーター試験

試験	生物種	OTA 濃度	代謝活性	t化		備考	年	参照文
			活性化に用 いた物質	無	有			献
SOS 試験	B.subtilis rec	$20{\sim}100$ mg/disc		_			1975	(参照 230)
SOS 試験	E.coli			-	n.d.		1986	(参照 87)
SOS 試験	<i>E.coli</i> PQ37	1、2、4 mM		+		 ・ビタミン E の水溶性 型であるトロロックス C (Trolox C) は、OTA の遺伝毒性を完全に消 失させた。 	1994	(参照 231)
DNA 一本 鎖切断	BALB/c 雄マ ウス初代培 養脾臓細胞	10 μg/ml		+	n.d.	・48 時間培養で DNA 一本鎖切断。	1985	(参照 232)
DNA 一本 鎖切断	チャイニー ズハムスタ 一卵巣細胞、	25、50、100、200 μg/ml		+	n.d.	・200 µg/ml で陽性。	1986	(参照
	ラット線維 芽細胞			_	n.d.			233)

試験	生物種	OTA 濃度	代謝活性化		備考	年	参照文	
			活性化に用いた物質	無	有			献
DNA損傷 (コメット アッセイ)	ヒト肝臓が ん由来 HepG2	5、10、15、20、 25、30 μM/L		+	n.d.	・用量依存的に陽性。	2002	(参照 219)
DNA 損傷 (コメット アッセイ)	イヌ腎臓 MDCK 細胞	0.001、0.01、0.1、 10、100、500 μM	ラット肝臓 S9 mix	+	+	 ・S9 mix は DNA 損傷 を増強。 ・濃度依存的に一本鎖 切断を誘導。 	2003	(参照 234)
DNA 損傷 (コメット アッセイ)	チャイニー ズハムスタ 一肺由来 V79 細胞	500、1000、2000 μM/L(1 時間) 0.25、0.5、1、2.5 μM/L(24 時間)		+	n.d.	 ・2.5 μM 以上 24 時間 で生存率低下、アポト ーシス増加。 ・1 時間の OTA 処理 で 500 mM/L以上で増 加傾向、2000 mM/L で Fpg 存在下で有意 に DNA 損傷の増加。 ・24 時間の 0.5 mM/L 以上の OTA 濃度で有 意に DNA 損傷増加 し、Fpg 処理により全 ての用量で増加。 		(余昭
DNA 損傷 (コメット アッセイ)	サバンナモ ンキー腎臓 由来 CV-1 細 胞			+	n.d.	 ・生存率の明らかな低下なし。 ・1mM/L以上でアポトーシス増加。 ・1時間のOTA処理で1000 µM/Lで有意にDNA損傷の増加、Fpg及びEndoIII処理により全ての用量で増加。 ・24時間ではOTAによるDNA損傷の増加は認められなかったが、Fpg処理により全ての用量で増加。 	2005	(参照 235)
DNA 損傷 (コメット アッセイ)	雄ラット初 代培養腎細 胞	25、50、100 μM/L		+	n.d.	・OTA による DNA 損 傷の増加は認められな かった。 ・Fpg 及び EndoIII 存 在下では DNA 損傷増 加。	2005	(参照 235)
DNA 損傷 (コメット アッセイ)	ヒト CYP2C9 又 は CYP3A4 を発現させ た NIH/3T3 細胞	10、25、50、100、 150、 200 mM (8h)	ヒト CYP2C9 又は CYP3A4		+	 ・非発現細胞では OTA の影響ほとんどなし。 ・CYP2C9 発現により 200 µM で陽性。 	2006	(参照 236)
DNA 損傷 (コメット アッセイ)	ヒト初代培 養尿路上皮 細胞	100 µM/L(3h)		±	n.d.	・個人差あり。	2006	(参照 237)

試験	生物種	OTA 濃度	代謝活性化		備考	年	参照文	
			活性化に用 いた物質	無	有			献
DNA 損傷 (コメット アッセイ)	ヒト腎臓由 来 HK-2 細胞	50 μM (6 及び 24 時間)		+	n.d.	 ・6時間では陰性。 ・24時間で陽性で、細胞毒性の影響あり。 ・Fpg及び EndoIII 処理の結果は陽性。DNAの酸化的ダメージを示唆。 	2007	(参照 238)
DNA 損傷 (コメット アッセイ)	ヒト腎臓由 来 HK-2 細胞	50、100、200、 400、600 mM(6 時間)	ラット肝臓 S9 mix	_	±	 ・3 時間では S9 の有無 にかかわらず陰性。 ・ EndoIII 及び Fpg に より酸化的 DNA 損 傷、S9 存在下の Fpg では有意に増加。 	2007	(参照 239)
DNA損傷	CHO 細胞	0.2、0.8、1 mM、 (3 時間)		+	n.d.	・用量依存的に陽性。	2009	(参照 240)
不定期	ACI ラット初 代培養肝細 胞	0.1、1 mM(0.4、 4)		+	n.d.	・1 mM で細胞毒性。	1984	(参照
DNA 合成試験	C3H マウス 初代培養肝 細胞	1、10 mM (4、 40)		+	n.d.	・10 mM で細胞毒性。	1984	241)
不定期 DNA 合成試験	F344 雄ラッ ト初代培養 肝細胞	0.0000025、 0.000005、 0.00025、 0.0005、0.0025、 0.005、0.025、 0.05 μg/ml			n.d.	・0.025 μM 以上で細 胞毒性。	1985	(参照 216)
不定期	F3 44 ラット 肝細胞	0.01、0.1、0.5、 0.75、1 μM		+	n.d.	・1 μM 以上は細胞毒 性。 ・0.75~1 μM で弱い陽 性。		(参昭
DNA 合成試験	ブタ膀胱上 皮細胞	0.25、0.5、0.75、 1、1.5、3 μM		+	n.d.	・0.5~1 μM で用量依 存的に増加 ・1 μM 以上は細胞毒 性。	1997	242)
不定期 DNA 合成 試験	ヒト尿路上 皮細胞	0.05、0.1、0.25、 0.5、0.75、1、1.52 μM/L(24 時間)		+	n.d.		1998	(参照 243)
不定期 DNA 合成 試験	ヒト初代培 養尿路上皮 細胞(胎児か ら 66 歳まで 4 例)	0.05、0.1、0.25、 0.5、0.75、1、1.5、 2 μM/L (24 時間)		+	n.d.	 ・0.5 μM/L 以上では全 ての細胞で細胞毒性 ・0.05 μM/L で DNA の修復率は最大 ・成人由来培養細胞で 0.05~0.5 μM/L の OTA 濃度範囲におい て陽性。 	2000	(参照 244)
姉妹染色 分体交換	ヒト末梢血 リンパ細胞 (PHA 刺激)	5~10 μg/ml			n.d.	・10 μg/L で有糸分裂 阻害。	1984	(参照 245)
姉妹染色 分体交換	CHO 細胞	5、16、50、160、 500 μg/ml(2 時 間)	ラット肝臓 S9 mix	_	+	・S9 存在下で弱い陽 性、用量依存性 ・500 μg/ml は細胞毒 性。	1989	(参照 191)

試験	生物種	OTA 濃度	代謝活性化			備考	年	参照文
			活性化に用	無	有			献
			いた物質					
姉妹染色 分体交換	ヒトリンパ 細胞	0.001、0.01、0.1、 1、 10 μM/L	OTA をラット 初代培養肝細 胞と培養した 調整培地	+	+	・OTA 0.01~0.1 µM/L で陽性 ・10 µM/L で細胞毒性。	1991	(参照 218)
姉妹染色 分体交換	ウシリンパ 球	0.1~2 μM/L	マイトジェン で 72h 刺激後。	+	n.d.	・細胞生存率の減少、 アポトーシスの増加	2004	(参照 228)
姉妹染色	チャイニー ズハムスタ ーV79 細胞	24.8、53.2、 114.9、247.6、	ラット肝臓及 び腎臓 S9 mix		_	・2476.4 µM は細胞毒 性。	2008	(参照
714父撰	ヒトリンパ 細胞	532.4、1149.0、 2476.4 μM	ラット肝臓及 び腎臓 S9 mix	_	_	・532.4 μM は細胞毒 性。		229)

+: 陽性、-:陰性、n.d.:データなし

表17 オクラトキシンAの *in vivo*遺伝毒性試験結果

試験	生物種	OTA 濃度、投与 方法、期間	結果	備考	年	参照文献
小核試験	Swiss マウス	1μg/kg 体重、混 餌、14 日間	+	 ・有糸分裂及び減数分裂における染色体 異常。 ・ビタミンA投与(132 IU/kg 体重/日) は OTA の影響を有意に抑えた。 	1994	(参照 246)
染色体異常 試験	マウス 骨髄細 胞、精子 細胞	1 μg/kg 体重/ 日、混餌、45 日 間	+	 ・有糸分裂及び減数分裂における染色体 異常。 ・ビタミン C 投与(10 mg/kg 体重/日) は OTA の影響を有意に抑えた。 	1994	(参照 247)
染色体異常 試験	F344 ラ ット,雄	0、250、500、 1000、2000 μg/kg 体重、5回 /週、強制経口、2 週間	_	・脾臓細胞において染色分体と染色体欠 失の染色体異常の僅かな増加、統計的 な有意差なし(DNAに直接結合しない 物質でみられる異常)。	2005	(参照 248)
染色体異常 試験	BALB/c 雄マウ ス	0.6、1.2、2.4 mg/kg 体重、腹 腔内、24 時間後 にと殺	+	 ・骨髄細胞において用量依存的に構造的 染色体異常(癒合、切断、リング形成、 欠失)。 	2008	(参照 249)
姉妹染色分 体交換	チャイ ニーズ ター、 女 、 群 3 匹	0、25、50、100、 200、400 mg/kg 体重、経口	_	・100 mg/kg 以上で細胞毒性。	1985	(参照 216)
DNA 損傷、 一本鎖切断、 アルカリ溶 出法	BALB/c マウス、 脾臓細 胞	2.5 mg/kg 体 重、単回、腹腔 内	+	 ・24 時間後に脾臓、腎臓、肝臓で DNA 損傷が認められた。 ・48 時間後には腎臓では回復したが肝臓 ではより強い影響が認められた。 	1985	(参照 232)
DNA 損傷、 一本鎖切断、 アルカリ溶 出法	Wistar ラット、 雄、一群 10 匹	0.29 mg/kg 体 重、強制経口、 48 時間毎に 12 週	+	・腎臓と肝臓で一本鎖切断。	1986	(参照 250)

試験	生物種	OTA 濃度、投与 方法、期間	結果	備考	年	参照文献
コメットア ッセイ	F344 ラ ット、雄	0、250、500、 1000、2000 µg/kg 体重、強 制経口、1 週間に 5 回、2 週間	+	 ・肝臓及び脾臓で 500 μg/kg 以上で用量 依存的な DNA 損傷。 ・腎臓では 250 μg/kg 以上で DNA 損傷、 用量依存性なし。 ・Fpg 処理により腎臓における DNA 損 傷が増加したが、脾臓及び骨髄細胞で は Fpg の影響は認められなかった ・骨髄では 500 μg/kg 以上で DNA 損傷 が増加し、末梢血では陰性。 	2005	(参照 248)
コメットア ッセイ	F344 ラ ット、 雄、一群 5 匹	0、0.03、0.1、 0.3 mg/kg 体重/ 日、経口、4 週間	+	・Fpg 処理により全ての投与群で腎臓及 び肝臓に DNA 損傷がみられた。 ・タンパク質の酸化は認められなかった。	2005	(参照 251)
コメットア ッセイ	Wistar ラット、 雌、一群 5 匹	0.5 mg/kg 体 重、腹腔内、7 , 14 , 21 日間、	+	 ・腎臓、7日から陽性。 ・腎臓組織では OTA 濃度に依存した。 ・DNA 損傷。 	2006	(参照 252)
レポーター 遺伝子アッ セイ	F344 <i>gpt</i> delta ラ ット、雌 雄、一群 5 匹	0.36~0.38 mg/kg 体重混 餌、4 週間・13 週間	+	・腎臓髄質外層外帯でSpi変異体頻度の 有意な増加がみられ、腎臓髄質外層外帯 特異的にDNAの欠失が誘発されている ことを示していた。	2011	(参照 253)

① 遺伝子突然変異

in vitro 試験(表 16-1、16-2)

細菌を用いたほとんどの復帰突然変異試験(Ames 試験)では、代謝活性 化の有無にかかわらず OTA 暴露の影響は認められなかった。

サルモネラ菌株 S. TyphimuriumTA1535、TA1537、TA1538、TA100、 TA98 又は TA97 株を用いた 細菌の復帰突然変異試験(0.1~500 µg OTA/ プレート)の結果は、ラット又はハムスター肝臓 S9 又は HepG2 細胞(ヒ ト肝臓がん由来培養細胞) 由来 S9 による代謝活性化の有無にかかわらず陰 性であった(参照 191, 214, 215, 219)。Wistar ラット初代培養肝細胞を 100 μM/L の OTA と 24 時間培養した後の培養液(200 nM OTA /2ml)を用い た細菌の復帰突然変異試験で、S. TyphimuriumTA1535、TA1538 及び TA100株 において陽性の結果が得られた(参照 218)が、同じ条件を用いて 実施された別の試験では、*S.* TyphimuriumTA100、TA1535、TA97a、TA102、 TA1537 及び TA1538 株において陰性であった(参照 221)。また、NADP の 代わりにアラキドン酸を添加したマウス腎臓ミクロソーム存在下で実施さ れた試験では、S. Typhimurium TA98(403~1210 μg OTA/プレート)、 TA1535 及び TA1538 株 (121~1210 μg OTA/プレート)では陽性であった。 OTA を添加していない条件下では、マウス腎臓ミクロソーム及びアラキド ン酸の有無にかかわらず陰性であった。著者らは、腎臓ミクロソームによ るアラキドン酸依存的なOTAの酸化代謝物が突然変異を誘導する可能性が あると考えた(参照 130)。酸化ストレスに対し感受性がある S.
Typhimurium TA102 及び TA2638 株を用いた OTA の復帰突然変異試験に おいて、ラットの肝臓若しくは腎臓のミクロソーム若しくはホモジネート、 Aloclor 1254 若しくはデキサメゾンで CYP を誘導したラット肝臓 S9 又は ヒト CYP3A4 を用いた代謝活性化の有無にかかわらず、結果は陰性であっ た(参照 129, 217)。

大腸菌 *E. coli* WP2 及び WP2*uvr*A 株並びに酵母菌 *S. cervisiae D3* 株を 用いた OTA の遺伝子突然変異試験の結果、S9 による代謝活性化の有無に かかわらず陰性であった。(参照 214, 216)

哺乳類培養細胞を用いた OTA の遺伝子突然変異試験では、L5178Y 細胞 (マウス胸腺リンパ腫由来細胞株)を用いたマウスリンフォーマ TK 試験 及び V79 細胞(チャイニーズハムスター肺由来細胞株)を用いたヒポキサ ンチンホスホリボシルトランスフェラーゼ(HPRT)突然変異試験において は、Aloclor 1254 で誘導したラット肝臓 S9 による代謝活性化の有無にかか わらず陰性であった(参照 216, 221, 222)。C3H 細胞を用いた突然変異試験 においては陰性であった(参照 222)。一方、ヒト CYP (CYP1A1、CYP1A2、 CYP2C10、CYP2D6、CYP2E1 又は CYP3A4)を導入した NIH/3T3 細胞 (マウス胎児線維芽由来細胞株)では陽性の結果が認められた(参照 223)。 また、L5178Y 細胞を用いたマウスリンフォーマ TK 試験及び V79 細胞を 用いた HPRT 突然変異試験で弱い陽性が認められたとする結果が報告され ているが、当該結果について著者は、これらの細胞で自然発生する突然変

• in vivo 試験(表 17)

F344/NS1c-Tg (*gpt* delta)¹¹⁾ラット(雌雄、一群各5匹)に0又は5 mg/kg 飼料(雄:0.36 mg/kg 体重/日、雌:0.38 mg/kg 体重/日)のOTA を13 週 間混餌投与し、腎臓における遺伝毒性が調べられた結果、点突然変異体頻 度の有意な増加は認められなかった。腎臓から抽出したDNA中の8-OHdG は、OTA 非投与の対照群とOTA 投与群で有意な差がなかった。著者らは、 ラットにおけるOTAの発がん作用にはDNA損傷が関与していると考えた。 (参照 253)

異を OTA が増強している結果であると考察している(参照 224)。

2 染色体異常試験及び小核試験

• in vitro 試験(表 16-3)

ヒトリンパ細胞(健常女性 6 名に由来)を用いた染色体異常試験におい

¹¹⁾ 生体内における遺伝子突然変異誘発性を調べる目的で、gpt 遺伝子及び red/gam (Spi-)を 持つラムダファージが体細胞染色体上に挿入されているラット。gpt 遺伝子をレポーターとし て、部位特異的な点突然変異(塩基置換変異とフレームシフト)が検出でき、Spi-セレクショ ンでは約 10 kb 以下の欠失変異が検出できる。

て、染色体数の異常及び染色体の構造異常が観察された(参照 227)。また、 ウシリンパ細胞を用いた染色体異常試験において OTA は陽性であった。(参 照 228)。V79 細胞及びヒトリンパ細胞(健常男性 1 名に由来)を用いた染色 体異常試験では陰性であった。いずれの染色体異常試験においてもラット 肝臓及び腎臓 S9 による代謝活性化の影響は認められなかった(参照 229)。

小核試験では、OSV 細胞(ヒツジ精嚢小胞細胞由来細胞株)、SHE 細胞 (ハムスター胚由来細胞株)及び HepG2 細胞(ヒト肝細胞癌由来細胞株) を用いた試験で陽性であった。SHE 細胞において OTA の作用を調べた結 果、細胞内カルシウム濃度上昇と共に細胞の収縮とアクチンの重合阻害が 認められた。(参照 219, 225, 226, 246, 247)

姉妹染色分体交換試験において、肝臓又は腎臓由来の S9 mix により活性 化された CHO 細胞 (チャイニーズハムスター卵巣由来細胞株) 及びヒトリ ンパ細胞並びにマイトジェンで刺激したウシリンパ細胞において OTA は陽 性の結果であった(参照 191, 218, 228)。一方、CHO 細胞及び V79 細胞を用 いた姉妹染色分体交換試験ではラット肝臓由来 S9 mix の有無にかかわら ず結果は陰性であった(参照 216, 229)。マイトジェンである PHA で刺激し たヒトのリンパ球を用いた姉妹染色分体交換試験の結果も陰性であった(参 照 245)。

・*in vivo* 試験(表 17)

チャイニーズハムスターに OTA を強制経口投与した姉妹染色分体交換試験の結果は陰性であった。(参照 216)

1 μg/kg 体重/日の用量で 14 日間 OTA を混餌投与したマウスの骨髄細胞 並びに同じ用量で 45 日間投与したマウスの骨髄細胞及び精子細胞を用いた 染色体異常試験の結果、OTA は染色体異常を誘発した。マウスに OTA と 同時に抗酸化剤であるアスコルビン酸又はビタミン A を混餌投与するとこ れらの OTA の影響は、軽減された。(参照 246, 247)

BALB/c マウスに 0.6 、1.2 又は 2.4 mg/kg 体重の用量で腹腔内投与し、 24 時間後にと殺して分離した骨髄細胞の染色体に、用量依存的に癒合、切 断、リング形成及び欠失といった異常が認められた。(参照 249)

F344/NS1c-Tg (*gpt* delta) ラット(雌雄、一群各5匹)に0又は5 mg/kg 飼料(雄:0.36 mg/kg 体重/日、雌:0.38 mg/kg 体重/日)のOTA を13 週 間混餌投与し、腎臓における遺伝毒性が調べられた。*in vivo*における遺伝 毒性を調べた結果、投与4週目に発がん部位である髄質外層外帯特異的に、 OTA 非投与の対照群と比べて Spi⁻変異体頻度の有意な増加がみられ、DNA の欠失が誘発されていることが示された。(参照 253)

71

③ DNA 損傷及び修復

in vitro 試験(表 16-4)

細菌を用いた SOS 試験において、DNA 損傷の結果として生じる DNA 修 復を示す証拠は得られなかったとする報告及び得られたとする報告がある。 後者の報告において認められた OTA の遺伝毒性は、水溶性ビタミン E によ り防止された。BALB/c マウス初代培養脾細胞及び CHO 細胞を用いた哺乳 類培養細胞の *in vitro* 試験の結果、DNA 一本鎖切断が認められている。(参 照 87, 230, 231, 232, 233, 254)

*in vitro*不定期 DNA 合成試験により、損傷した DNA の修復がラット及 びマウスの初代培養肝細胞、ブタ膀胱上皮細胞並びにヒト尿路上皮細胞に 認められた。(参照 216, 241, 242, 243, 244)

マウス線維芽細胞、CHO 細胞、MDCK 細胞(イヌ腎臓由来細胞株)及 び HepG2 細胞を用いる *in vitro* コメットアッセイでは陽性の結果が得られ た(参照 219, 234, 236, 240)。ホルムアミドピリミジン DNA グリコシラーゼ (Fpg) 又はエンドヌクレアーゼ III (EndoIII) による処理を組み込んだコ メットアッセイ¹²⁾により、V79 細胞、CV-1 細胞(サバンナモンキー腎臓由 来細胞株)、HK-2 細胞(ヒト腎臓由来細胞株)において OTA 暴露による DNA の損傷が有意に増加した。また、V79 細胞と HK-2 細胞については、 OTA 暴露によって細胞内活性酸素種 (ROS)が増加することも認められた。 これらの結果は、OTA が DNA 塩基の酸化修飾を誘発していることを示唆 するものと考えられた(参照 235, 238, 239)。

NIH/3T3 細胞において、コメットアッセイにより示された OTA 依存的 な DNA 損傷の増加と ROS の増加との間には相関が認められた(参照 236)。 また、HK-2 細胞を ROS のスカベンジャーである抗酸化剤の N-アセチル-L-システインで処理すると DNA 損傷が低減した(参照 235)。

ヒト初代培養尿路上皮細胞を 100 μM の OTA と共に 3 時間培養するコメ ットアッセイの結果、22 サンプルで陰性、28 サンプルで陽性であり、OTA がヒト DNA に及ぼす影響には個体差が認められた。(参照 237)

in vivo 試験(表 17)

BALB/c マウスに 2.5 μg/kg 体重の OTA を腹腔内投与した試験では、脾臓、肝臓及び腎臓の細胞を用いたアルカリ溶出法による解析の結果、投与 24 時間後に DNA 一本鎖切断が認められた。腎臓では 48 時間後、肝臓では 72 時間後に DNA 一本鎖切断は修復された。(参照 232)

0.29 μg/kg 体重の OTA が 48 時間毎に 12 週間経口投与された Wistar ラ

¹²⁾ Fpg 又は EndoIII は、それぞれ DNA の酸化されたプリン塩基又は酸化されたピリミジン塩 基を認識して除去し、abasic site ができる。それがコメットアッセイにより DNA 損傷として 観察される。

ットから、最終投与直後に摘出された肝臓及び腎臓には DNA 一本鎖切断が 認められた。(参照 250)

F344 ラット(雄)に、0、0.25、0.5、1 又は2 mg/kg 体重の OTA を1 週間に5回、2週間強制経口投与し、最終投与 72時間後にと殺した。コメ ットアッセイにより、肝臓、脾臓及び骨髄細胞では 0.5 mg/kg 体重以上並 びに腎臓では 0.25 mg/kg 体重以上の投与群において用量依存的な DNA 損 傷の増加が認められた。コメットアッセイにおいて、Fpg 処理により、腎 臓及び肝臓の細胞の DNA 損傷の増加が認められた。(参照 248)

0、0.03、0.1 又は 0.3 mg/kg 体重の OTA が 4 週間経口投与され、最終 投与 24 時間後にと殺された F344 ラット(雄)の肝臓及び腎臓の細胞を用 いてコメットアッセイを実施した結果、Fpg による処理を組み込んだ場合 に全ての OTA 用量で DNA 損傷の促進が認められた(参照 251)。0.5 mg/kg 体重の OTA が 7、14 又は 21 日間腹腔内投与され、最終投与 24 時間後に と殺された Wistar ラット(雌)においても、肝臓、腎臓及び脾臓の細胞の コメットアッセイの結果は全て陽性であった(参照 252)。

(6) その他(神経毒性、免疫毒性)

① 神経毒性

マウス

Swiss ICR マウス(雄、一群 4~6匹)に、OTA を 3~6 mg/kg 体重で 腹腔内単回投与 24 時間後に線条体のドーパミンを測定した結果、ドーパミ ンが OTA の用量に依存して減少した。酸化ストレス、酸化的 DNA 損傷及 び酸化的 DNA 修復の一過性阻害も、小脳、大脳皮質、海馬、中脳、尾状核 /被殻及び脳橋/髄質に認められた。(参照 255)

ラット

Wistar ラット(雄、一群4匹)に0又は290µg/kg 体重のOTAが48時間毎に1~6週間、強制経口投与された。4週間後にOTAを投与したラットの体重が僅かに減少したが、摂餌量及び摂水量は、OTA非投与の対照群と有意差はなかった。脳中のOTAは時間依存的に蓄積され、6週間後のOTA濃度はおよそ100 ng/gとなった。摂取4週間後には脳内の遊離チロシンが有意に減少し、遊離フェニルアラニンは有意に増加し、タンパク質合成阻害が生じていると考えられた。組織学的観察の結果、海馬組織の損傷が認められた。(参照256)

F344 ラット(雌、一群 10 匹)に 0 又は 120 μg/kg 体重/日の OTA が 10、 20 又は 35 日間強制経口投与され、脳における OTA の作用が調べられた。 10 日間及び 20 日間の OTA 投与により、大脳皮質、小脳及び海馬の 3 つの 脳領域において可溶性画分及び膜結合画分の LDH 及び N-アセチル-β-D-グ ルコサミニダーゼの活性並びにエクト-5′-ヌクレオチダーゼ、エクト-Ca2 */Mg2*ATPase、アラニンアミノペプチダーゼ及びγGTの活性が変化した。 10日間又は20日間のOTA投与でγGT活性は、3つの脳領域においてOTA 非投与の対照群に比べ有意に増加した。35日間のOTA投与では、ほとん どの酵素活性が対照群と同じレベルとなった。(参照257)

SPF Wag ラット(雌、一群 10 匹)の若齢(12 週齢)及び老齢(27~30 か月齢)ラットに、0、70、340 又は 1,680 µg/kg 体重の OTA が 4 週間強 制経口投与された。両群の 1,680 µg/kg 体重の OTA 投与群で、OTA 非投 与の対照群に比べ有意な死亡率増加がみられた。OTA 投与群で脳白質(小 脳髄質及び脳幹の腹側部)の空胞形成が認められ、若齢ラットの 340 µg/kg 体重/日以上の OTA 投与群と老齢ラットの 70 µg/kg 体重/日以上の OTA 投 与群において、対照群と比べ統計的に有意な増加がみられた。(参照 258)

Wistar ラット(雄、一群 8 匹)に 289 µg/kg 体重/日の OTA 又は OTA 及び活性酸素のスカベンジャーであるメラトニン(10 mg/kg 体重/日)が 飲水により 1 週間経口投与され、海馬の N-メチル-D-アスパラギン酸

(NMDA) 受容体サブユニット 2A (NR2A) 及び 2B (NR2B) タンパク 質の発現が調べられた。溶媒のみを投与された対照群と比較して OTA 投与 ラットでは、NR2A 及び NR2B に有意な減少が認められた。海馬の NMDA レセプターは記憶や学習過程に関与するため、認知機能に影響する可能性 が考えられた。メラトニンは、OTA により引き起こされる NR2A 及び NR2B 減少を阻害した。(参照 259)

2 免疫毒性

in vitro 試験

ヒト末梢血から分離した単核球を *in vitro* で OTA と培養した結果、酸化 ストレスの指標である ROS 及び 8-OHdG が産生された。DNA 損傷応答に 係るγ-H2AX 発現の増加及びコメットアッセイの結果は、OTA による DNA 損傷が生じていることを示していた。抗酸化剤である N-アセチル-L-システ イン (NAC) で前処理すると、OTA に誘導される ROS が減少し、DNA 損 傷も抑制された。CDK4 及びサイクリン D1 タンパク質の発現が減少し、 G1 期遅延の誘導とともにアポトーシスが認められた。これらの結果は、 OTA のヒト免疫細胞に対する OTA の毒性に、ROS 産生、酸化的 DNA 損 傷及び G1 期遅延及びアポトーシスが関与していることを示していた。(参 照 260)

in vivo 試験

マウス

Swiss マウス(雌、一群 30 匹) に 0 又は 4 mg/kg 飼料の OTA が投与され、免疫毒性が調べられた。体重増加、脾臓重量、脾臓リンパ球数、抗 Brucella abortus 抗体産生能及び ConA 刺激による脾臓リンパ球の幼若化 反応において有意差は認められなかった。(参照 261)

BALB/c マウス (雌、一群 8 匹) に、0、6、250 又は 2,600 µg/kg の OTA を含む飼料が28又は90日間投与された(0、1、40又は400 µg/kg 体重/ 日に相当)。250 µg/kg 飼料以上の OTA 投与群で28 日目及び2,600 µg/kg 飼料 OTA 投与群で 90 日目に腎臓重量が減少した。腎臓中の OTA 濃度は、 用量に相関した。体重及びリンパ器官重量に OTA の影響はなかった。白血 球数に差は認められなかったが、2,600 μg/kg 飼料の OTA 投与群で 90 日 目に、OTA 非投与の対照群に比べ脾細胞の数に有意な減少(約20%)が認 められた。28日目の血中又は胸腺中のTリンパ球に変化はみられなかった。 90 日目に、250 µg/kg 飼料以上の OTA 投与群で対照群に比べて未分化細 胞である CD4+/CD8+細胞の有意な増加並びに成熟 CD4+及び CD8+細胞の 割合の減少が認められ、これは OTA が T 細胞の後期の分化へ影響すること を示すと考えられた。24日目に各群10匹のマウスにヒツジ赤血球(SRBC) を腹腔内投与し、28日目に脾細胞を用いてプラーク法により抗 SRBC 抗体 産生能が調べられた結果、用量依存的な抗体産生能の低下が認められた。 一方、OTAは、インフルエンザウイルス PR8 株抗原で免役したマウスの血 清中抗体価に影響を及ぼさなかった。これらの結果は、OTA 暴露がマウス の特定の免疫機能を変化させ、脾臓が OTA に感受性の高い免疫組織である ことが示された。(参照 262)

雌の BALB/c マウス(雌、一群3匹)に、交尾前2週間にわたり、OTA が 0.18(対照群)、30 又は 200 µg/kg 飼料、平均で 5~30 µg/kg 体重/日の OTA 摂取量になるように混餌投与された。出生後の児動物は、全て対照群 の母動物に哺育された。児動物は生後 14 又は 28 日目にと殺され、免疫毒 性試験が実施された。14 日目の児動物において脾臓重量、胸腺重量及びそ れぞれの細胞数に差は認められなかった。28 日目では、200 µg/kg 飼料の OTA 投与群の児動物において胸腺重量及び細胞数は対照群の児動物に比べ てそれぞれ 20%及び 67%増加した。200 µg/kg 飼料の OTA 投与群の児動 物では、脾臓 T 細胞の CD4+及び CD8+細胞の割合が対照群の児動物に比べ て減少傾向にあったが、T 細胞の細胞数及び脾臓の細胞数に変化は認められ なかった。児動物の脾臓又は胸腺リンパ球のマイトジェンに対する増殖反 応、コンカナバリンA(Con A)刺激培養細胞のインターロイキン-2(IL-2) の生成、ヒツジ赤血細胞及びウィルス抗原 PR8 に対する抗体反応並びにナ チュラルキラー(NK) 細胞活性への影響は認められなかった。母動物への OTA 投与は、児動物の免疫機能を抑制しなかった。(参照 262)

ラット

授乳 11 日目の Sprague-Dawley ラット(雌、一群 4~5 匹)に 0、10、 50 又は 250 µg/kg 体重の OTA が単回投与され、授乳 14 日目の児動物につ いて免疫毒性試験が実施された。OTA 非投与の母動物に授乳された児動物 を対照群とした。母動物及び児動物において OTA の血中濃度は OTA の用 量に依存して増加し、乳を通して OTA が児動物に移行したと考えられた。 児動物のリンパ器官重量は OTA 投与により変化しなかった。250 μg/kg 体 重の OTA 投与群では、児動物の脾細胞を用いたリポポリサッカライド (LPS)刺激後の増殖反応は、対照群に比べて有意に減少した。一方、10~50 μg/kg 体重/日投与群では、児動物の脾細胞及び胸腺細胞の Con A 刺激後の 増殖反応は対照群に比べて有意に増加した。(参照 263)

Sprague-Dawley ラット(雌、一群 4~5 匹)に 1 週間に 5 回の頻度で、 0 又は 50 μg/kg 体重の OTA が交尾前 2 週間及び妊娠期間中に反復投与さ れ、授乳中は同量の OTA が毎日投与された。OTA 非投与群又は投与群の 母動物から産まれた児動物は交差哺育され、OTA に暴露していない対照群、 出生前暴露群、出生後暴露群及び出生前後暴露群の 4 群に分類された。児 動物において授乳 14 日目、22 日目又は 13 週における免疫応答が調べられ た。対照群、出生前暴露群、出生後暴露群及び出生前後暴露群における授 乳 14 日目の OTA 血中濃度は、それぞれ 4.1±0.8、130±14、640±86 及 び 860±100 μg/L であった。児動物の体重及びリンパ器官重量に変化は認 められなかった。OTA 出生前暴露群では、Con A の有無に係わらず、脾細 胞の増殖反応が対照群に比較して有意に低かった。5週目にインフルエンザ PR8ウィルス抗原で免役し、その18日後にELISA法により血清中の抗PR8 抗体価を検査した結果、対照群の 10.7 ±0.45 に対し出生前暴露群は 10.0 ±0.36と、抗体価の低下が認められた。13週目における脾細胞のNK細胞 活性に、OTA の影響は認められなかった。本論文では、OTA の出生前暴露 は免疫抑制を誘発し、出生後の暴露はリンパ球のマイトジェン刺激による 増殖を促進すると結論付けている。(参照 263) 。なお、JECFA では、本試 験について、投与した OTA についての詳細な情報がなかったことを指摘し ている(参照 74)。

SPF Wag ラット(雄、一群 10 匹)の若齢(12 週齢)及び老齢(27~20 月齢)ラットに、OTA を 0、70、340 又は 1,680 µg/kg 体重で 4 週間強制 経口投与し、加齢による OTA の免疫毒性への影響が調べられた。1,680 µg/kg 体重投与群で両群に有意な死亡率増加がみられた。高用量の老齢ラ ット群では、死亡のために免疫パラメータの試験ができなかった。両群の 340 µg/kg 体重/日投与群及び若齢の 1,680 µg/kg 体重/日投与群で、それぞ れ OTA 非投与の対照群に比べて血中免疫グロブリンGの減少が認められた。 (参照 258)

若齢ラットの脾臓 T 細胞の比率では、用量依存性の減少を誘発し、1,680 µg/kg 体重投与群で統計的に有意な減少が認められた。(参照 258)

Wistar ラット(雄、一群 10匹)に 0、50、150 又は 450 µg/kg 体重/日

の OTA を 28 日間経口投与し、免疫毒性試験が実施された。この試験は、 OECD ガイドライン 407 (1995 年)¹³にしたがって実施された。全ての OTA 投与群で Yac-1 細胞(マウスリンパ腫由来細胞株)に対する NK 細胞 活性が用量依存的に有意に減少し、450 µg/kg 体重/日投与群では、NK 細 胞活性は完全に抑制された。と殺 4 日前に HRBC で免疫したラットの脾細 胞を用いて HRBC に対する抗体産生能が試験された結果、抗体産生能は用 量依存的に減少したが、統計的に有意ではなかった。細胞障害性 T-細胞活 性は、50 µg/kg 体重/日投与群でのみ低下した。マクロファージの溶菌活性 は、50 及び 450 µg/kg 体重/日投与群で OTA 非投与の対照群に比べ有意に 減少したが、150 µg/kg 体重/日の投与量では減少はなかった。病理組織観 察において、胸腺及び脾臓に変化は認められなかった。(参照 264)

F344 ラット(雌雄、一群 5 匹) に 0、1 又は 4 mg/kg 体重の OTA が 1 週間に 5 回の頻度で、16 日間投与された結果、胸腺用量依存的に相対重量 の減少及び萎縮が認められた(参照 191)。また、Wistar ラット(雄、一群 10 匹)に OTA が 5~50 mg/kg 体重で単回投与された結果、脾臓及びリン パ節内の胚中心に壊死が認められた。(参照 265)

ニワトリ

ニワトリ(雌雄、一群 10~22 羽) に 0、2 又は 4 mg/kg 飼料の OTA が 20 日間投与された。OTA 投与群では、胸腺、脾臓及び腸管パイエル板組織 のリンパ球細胞数が減少した。(参照 266)

ニワトリに 0 又は 5 mg/kg 飼料の OTA が 56 日間混餌投与された結果、 OTA 投与群では、血漿中のα1、α2、β及びγ-グロブリン量が減少した。(参 照 267)

ニワトリに 0、2 又は 4 mg/kg 飼料の OTA が 20 日間混餌投与された結 果、OTA 投与群では用量依存的にリンパ組織及び血清中の IgG、IgA 及び IgM が減少し(参照 268)、OTA が 2 mg/kg 飼料で 5~6 週間投与された結 果、補体価が僅かに減少した(参照 269)。

13 日齢の発育鶏卵(一群 15 個)に 0 又は 2.5 μg/卵の OTA が注射され、 20 日齢の鶏胚において免疫試験が実施された。OTA 投与群では、溶媒を注 射された対照群に比べファブリキウス嚢中 IgG が有意に減少し、IgM が有 意に増加した。同様に OTA に暴露された卵から孵化した 1、2 又は 4 週齢 のニワトリにβ溶血性大腸菌を用いた免疫応答試験では OTA の影響は認め られず、OTA の免疫グロブリンへの影響は一過性であると考えられた。(参 照 270)

¹³⁾ OECD(経済協力開発機構)が化学物の安全性確保のために定めた、28日反復毒性試験のテ ストガイドライン

ニワトリ(一群 10~25 羽) に OTA を 0、0.5 又は 2 mg/kg 飼料で 21 日 間混餌投与した結果、OTA 非投与の対照群と比較し OTA 投与群では、血 清総タンパク質、リンパ球数、胸腺重量、ファブリキウス嚢重量及び脾臓 重量が減少した。(参照 271)

ウサギ

New Zealand White ウサギ(一群 8 匹) に OTA を 0 又は 1 mg/kg 含む 飼料が 30 又は 60 日間投与された。OTA 投与群では液性免疫が抑制された。 細胞性免疫への影響は認められなかった。(参照 175)

(7) 腫瘍形成の機序等

① OTA の腎毒性とトランスポーター

本評価書のII.1.(1)⑤排泄に記載してあるように、OTA が腎臓におい て有機アニオントランスポーターを介して膜輸送されることが示されてお り、腎臓近位尿細管に選択的な OTA の毒性作用は、OTA が近位尿細管細 胞の刷子縁又は側底膜にある有機アニオン輸送システムにより細胞内外に 移行することと関連するという仮説が提唱されている(参照 138, 140, 272, 273, 274)。

Wistar ラット(雄) 腎臓尿細管に挿入したキャピラリーを通じて尿細管 への [³H]-OTA の再吸収が調べられた。管腔内が生理的条件に近い pH8 の 場合には主に近位尿細管、ヘンレのループ上行脚及び集合管で OTA の再吸 収が認められ、管腔内を pH6 と低くすると、上記の部位のほかに近位尿細 管における再吸収の割合が多かった。近位尿細管では有機アニオントラン スポーターの OAT-K1、近位尿細管では H+ジペプチド共輸送体 (H+-dipeitide cotransporters) が OTA の再吸収に関与していると考えら れた(参照 274, 275)。*in vitro* で OAT-K2、OAT1、OAT3、OAT5 並びにヒ ト OAT1、OAT3 及び OAT4 も OTA を輸送することが示されている(参照 276, 277, 278, 279, 280)。また、多剤耐性タンパク質である MRP2 及び MRP1 は、近位尿細管のそれぞれ刷子縁及び側底膜に存在しているが、これらの タンパク質も OTA を輸送することが示唆されている(参照 281)。

Sprague-Dawley ラットの尿細管を部位別に OTA と共に *in vitro* で培養 すると、細胞内 ATP が用量依存的に減少した。近位尿細管の中間(S2)及 び末端(S3) セグメントが、OTA の毒性影響に対し最も感受性が高かった。 OTA のこの作用が OAT1 及び OAT3 阻害剤であるプロベネシドによって抑 制されたことより、OTA は近位尿細管側底膜のこれら有機アニオン輸送経 路を通って細胞内に入ると考えられた(参照 273, 282)。

Sprague-Dawley ラット(雌雄、一群各5匹)において肝臓、腎臓、肺、 十二指腸、空腸、回腸、大腸、小脳及び大脳皮質における mRNA 発現を調 べた結果、OAT1 及び OAT3 は腎臓特異的に発現し、雌ラットと比較する と雄ラットに有意に多く発現していた(参照 283)。C57BL/6 マウス及び 129Jマウス OAT1 の mRNA の発現量は、雌よりも雄が多かったが、OAT2 の mRNA の発現量には性差が認められず、OAT3 の mRNA については 129Jマウスでは雌の方が雄よりも高い発現を示したが、C57BL/6 マウスで は性差がみられなかった。(参照 284)。Wistar ラットの腎臓皮質において、 免疫組織化学により OAT1 は、近位尿細管の主にS2セグメントの側底膜に、 OAT3 は、S1 及び S2 セグメントの側底膜に認められ、雄ラットに多く発 現していた。去勢した雄ラットでは OAT1 の発現が低下し、このラットに アンドロゲンを投与することによって OAT1 の発現が増加した一方、エス トロゲンの投与により OAT1 の発現は更に低下した(参照 285)。これらの結 果は、OTA が雄ラットの腎臓尿細管に吸収されやすいことを示唆しており、 部位特異的な OTA の蓄積が OTA の感受性に関与していると考えられた(参 照 286)。

② OTA の発がん性メカニズム

げっ歯類に OTA を投与すると雄に腎細胞癌が認められる。OTA による 発がん機序として、OTA の活性代謝物による DNA 付加体の形成及び DNA 損傷等の遺伝毒性のほか、非遺伝毒性のメカニズムとして酸化ストレス、 細胞周期の破たん、細胞増殖とアポトーシスの変化、MAP キナーゼ等のシ グナル伝達の変化、ミトコンドリアの機能低下、タンパク合成阻害等の作 用が考えられている。以下にそれらに関する要約を示した。

a. 遺伝毒性発がん物質としてのメカニズム

(a) OTA の代謝活性化と DNA 付加体の形成

DNA 付加体は、生体異物や内因生成物質が共有結合により直接 DNA に 結合して生じる。付加体形成により DNA の合成が阻害されて細胞死又は突 然変異が誘発されるため、DNA 付加体の形成は、発がんのリスク要因とさ れている。OTA 又はその代謝物が直接 DNA に結合するかについては様々 な報告があり、以下にまとめた。

in vitro 試験

NADPH、アラキドン酸等の存在下でマウス、ラット、ウサギ及びブタの 肝臓又は腎臓ミクロソームを用いて DNA 付加体形成に関与する OTA の代 謝活性化が³²P-ポストラベル法により調べられている。代謝活性化しない 条件下では OTA と DNA の付加体と想定されたスポットはみられなかった が、OTA を CYP 又はペルオキシダーゼで代謝活性化すると同スポットが 認められた。(参照 54, 287, 288)

OTA と DNA 又は OTA と DNA モノヌクレオチドを、Swiss 雄マウス又 は Fauves de Bourgogne 雌ウサギの腎臓ミクロソーム存在下で NADPH 又

はアラキドン酸を添加してインキュベートした後に、生成物を ³²P-ポスト ラベル法により解析した。TLC 上に検出されたスポットは DNA 付加体と 推測され、スポット強度を基に、推定した DNA を基質とした場合の DNA 付加体の形成頻度の最大値は、126 付加体/10⁹であった。DNA の 4 種のモ ノヌクレオチドを用いた場合、主にデオキシグアニンを用いた場合にスポ ットがみられた(参照 289)。

OTA、OTBr¹⁴又はOTHQとインキュベートしたWI26細胞(ヒト気管 支上皮細胞株)及びHK2細胞(ヒト腎臓由来細胞株)のDNAを用いた³²P-ポストラベル法による解析ではスポットが検出されたが、OTBと培養した これら細胞株のDNAについてはスポットが検出されなかった。このことか ら著者らはOTBには直接的な遺伝毒性がないとした。(参照 290)

³²P・ポストラベル法で観察されるスポットは、主にデオキシグアニンの C8 と OTA の 5 位塩素が脱落して結合した C-C8-dG-OTA であることが推 察されている。OTA に光照射すると酸化的脱塩素反応が起こり、 OTQ/OTHQ 酸化還元対が生成する。(参照 139, 291, 292)。OTA とヌクレオ シドを混合して光照射すると OTHQ、OTB と共に C-C8-dG-OTA 及び O-C8-dG-OTA¹⁵⁾が生成することが NMR、UV 及びマススペクトルによっ て確認されており(参照 139, 292, 293, 294)、OTA と DNA を *in vitro* で光酸 化した場合、主な生成物は C-C8-dG-OTA であることが LC-MS により示 された(参照 293)。C-C8-dG-OTA は、OTA 及び DNA を鉄(II) イオン、 銅イオン又は西洋ワサビペルオキシダーゼ(HRP)/H₂O₂の存在下でイン キュベートした系においても認められた(参照 139, 292)。

OTHQ を用いた ³²P-ポストラベル法による解析では、代謝活性化のない 条件下で TLC 上にスポットが認められ、その位置が *in vitro* でブタ腎臓ミ クロソーム等により代謝活性化された OTA にみられる主なスポットと同 じような位置であったことから、OTA が代謝により酸化されて OTHQ とな り、DNA と付加体を形成する可能性が考えられた。(参照 295)

一方、³²P-ポストラベル法は、非特異的試験法であるため、TLC 上に観察されるスポットにはOTA分子又はその代謝物分子が含まれない可能性があり、検出されたスポットのいくつかは、OTA で誘発された 酸化ストレス 等による細胞毒性の影響であるとも考えられている(参照 296, 297)。

また、NADPH、GST、HRP、大豆リポキシゲナーゼ等を添加した CYPs 単離酵素又はラット、ヒトの腎臓及び肝臓ミクロソームを用いて OTA の代 謝物を HPLC 及び LC-MS/MS により解析した試験では、OTA 由来の活性 キノン OTQ/OTHQ は検出されず、ラット肝臓ミクロソーム及びヒト

¹⁴⁾ ブロムオクラトキシン。オクラトキシン C5 位の塩素が臭素に置換した化合物

¹⁵⁾ デオキシグアニンの C8 と OTA の 8 位水酸基を介して結合した化合物

CYP3A4 を用いた結果、4*R*-OH-OTA 及び 4*S*-OH-OTA が極めて少量検出 された。(参照 94, 130)

更に、雄ラット肝臓ミクロソーム、雄マウス腎臓ミクロソーム、雄ラッ ト腎臓ミクロソーム、プロスタグランジン H 合成酵素又は HRP 存在下で ³²P-ポストラベル法及び[³H]-OTA を用いた *in vitro* 試験において OTA 及 び OTA 代謝物の DNA 付加体形成は認められなかった(参照 94)。ラット又 はヒト初代培養肝細胞を [³H]-OTA と培養した結果、[³H]-OTA と DNA の 結合は認められなかった(参照 134)。

in vivo 試験

Swiss マウス(雄) に 0.6、1.2 又は 2.5 mg/kg 体重の用量で OTA を単 回投与し、³²P-ポストラベル法を用いて調べた結果、腎臓、肝臓及び脾臓に OTA 投与 24 時間後から TLC 上に DNA 付加体と考えられるスポットが認 められた。スポットの数は腎臓で多く認められ、2.5 mg/kg 体重投与群で は、72 時間後まで腎臓及び肝臓で時間依存的にシグナルの増強がみられた。 0.6 及び 1.2 mg/kg 体重投与群では 48 時間後にスポットの数がピークとな り、72 時間後にはほとんどが消失したことより、DNA 付加体が修復された と考えられた。スポットの強度より、DNA 付加体の頻度は、7~40 付加体 /10⁹ ヌクレオチドと推計された(参照 298)。

OTA を投与されたブタ (0.02 mg/kg 体重/日、3 週間混餌投与)の腎臓 髄質並びに Dark Agouti ラット (週 3 回 2 年間、0.4 mg/kg 体重/日、強制 経口投与及び約 8.3 mg/kg 体重/日、3 日間、強制経口投与)及び F344 ラ ット (6.8 mg/kg 体重/日、3 日間、強制経口投与)の腎臓より抽出した DNA を用いた ³²P-ポストラベル法による解析では、TLC 上の DNA 付加体と想 定されるスポットの位置が、標準物質として用いられた C-C8-dG-OTA に 相当する位置に認められ、検出されたスポットは C-C8-dG-OTA であると 推察された(参照 293, 294)。

³²P・ポストラベル法により BALB/c マウスへの OTA 投与(3.5~1056 µg/kg 体重、強制経口投与)によって、精巣にスポット形成が認められた との報告がある(参照 135)。また、妊娠17日目のSWR/Jマウスに、2.5 mg/kg 体重の OTA を腹腔内投与し、出生1日目の雄児動物の精巣及び腎臓を用い た³²P・ポストラベル法によるスポット強度の解析から、それぞれ 5.2/10⁹及 び 4.2/10⁹ ヌクレオチドの DNA 付加体スポットが生じたと推計された。 TLC 上のスポットは標準として用いた C-C8-dG-OTA のスポットと同じ位 置に認められたという報告がある(参照 135)。

一方、³²P-ポストラベル法により、スポット形成が確認できなかった報告 もあり、以下に述べるように *in vivo* における付加体形成については HPLC 及び LC-MS/MS では確認されていない。

F344 ラット(雄、一群 3 匹) に 0 又は 2 mg/kg 体重の OTA が 週 5 回、

2週間強制経口投与する付加体形成試験が実施された。ラットは OTA 最終 投与72時間後にと殺された。LC-MS/MS 法及び³²P-ポストラベル法を用 いて OTA の代謝物を調べた結果、尿に微量の OTHQ が検出され、血漿、 腎臓及び肝臓には OTA は検出されたが、OTA の代謝物及び OTA に関連し た DNA 付加体は認められなかった。(参照 137,248)

0 又は 210 µg/kg 体重の OTA を 90 日間経口投与した F344 ラット(雄、 一群 5 匹)の腎臓並びに 0、250、500、1,000 又は 2,000 µg/kg 体重の OTA を 2 週間投与した F344 ラット(雄、一群 3 匹)の腎臓における DNA 付加 体の有無が安定同位体希釈 LC-MS/MS 法により調べられた(参照 299)。 OTA の生体における排出速度及び単回投与後に ³²P-ポストラベル法により 検出された腎臓における付加体と想定されるスポット形成の結果(参照 300, 301)を考慮して、ラットは OTA 最終投与の 72 時間後にと殺された。OTA の DNA 付加体(C-C8-dG-OTA)は、OTA を 90 日間投与したラットの腎 臓からは検出されず(検出限界は 3.5 ~6.0 C-C8-dG-OTA/10⁹DNA ヌクレ オチド)、また、OTA を 2 週間投与したラットの腎臓からも検出されなかっ た(検出限界は 1.6 ~6.08 C-C8-dG-OTA/10⁹DNA ヌクレオチド)。著者ら は、以上の結果は、OTA の発がん性を含む腎臓への影響の機序に DNA 付 加体形成が含まれないことを示唆するとした(参照 299)。この解析につい て、LC-MS/MS のクロマトグラフ上のピークは、OTA と DNA の共有結合 を否定するものではないという見解もある(参照 302)。

F344 ラット(雄、一群 4 匹)に[³H]-OTA (1 mg/kg 体重に相当)を経口投 与する *in vivo* 試験の結果、投与 24 時間後に腎臓 DNA と[³H]-OTA の結合 は検出されなかった。検出限界は、2.7 分子付加体/10⁹DNA ヌクレオチド であった。同じサンプルを用いて³²P-ポストラベル法により解析した結果、 OTA 非投与の対照群に対し、OTA 投与群ではスポット強度が増加したが、 この ³²P-ポストラベル法で検出された OTA 投与によるスポットの増加は、 OTA が直接 DNA に結合した結果ではないと考えられた(参照 94)

F344 ラット(雄、一群3匹)に0又は500µg/kg 体重の[¹⁴C]-OTA が単回経口投与され、72時間後にと殺された。肝臓と腎臓から単離した DNAについて AMS(加速質量分析)により¹⁴C 濃度を測定した結果、溶媒のみを投与した対照群と比べ、投与による¹⁴C 濃度の増加が認められなかったことから、DNA 付加体は不検出(検出限界=3付加体/10⁹ヌクレオチド)とされた。(参照 137)。なお、EFSA では、この試験結果を解析する上での問題点として、ほかの試験では OTA 暴露の24時間後に、DNA が単離されているのに対し、この試験では[¹⁴C]-OTA を比較的低濃度で単回投与した72時間後に DNA が単離されているため、DNA 付加体が修復された可能性があることを指摘している。(参照 200)

(b) OTA の in vivo 変異原性

F344/NS1c-Tg (gpt delta) ラット (雌雄、一群 5 匹) に 0 又は 5 mg/kg 飼料(雄: 0.36 mg/kg 体重/日、雌: 0,38 mg/kg 体重/日)の OTA を 13 週 間混餌投与し、腎臓の病理組織学的検査及び変異原性試験が実施された。 OTA 投与群の雄雌ともに投与後 4 週間目には腎臓髄質外層外帯における近 位尿細管上皮細胞にアポトーシス、巨大核細胞及び空胞化が認められた。 雄ラットの腎臓より DNA を抽出してレポーター遺伝子の点突然変異及び 欠失変異を調べた結果、OTA 投与群と非投与群に差はみられなかったが、 腎臓髄質外層外帯を分離して抽出した DNA では、非投与群に比べて Spi-変異体頻度が有意に増加しており、髄質外層外帯特異的に欠失変異が生じ ていることが示された。皮質では、OTA による欠失変異の誘導は認められ ず、皮質及び髄質外層外帯共に点突然変異頻度には差がなかった。(参照 253)。

同じグループにより、腎臓髄質外層外帯における OTA の作用メカニズム を分子病理学的解析により調べる目的で F344/NS1c-Tg (gpt delta) ラッ トに同用量の OTA を 4 週間投与して皮質及び髄質外層外帯における網羅的 遺伝子発現変化が比較された。OTA 投与により髄質外層外帯特異的に発現 が増加したのは、DNA 二重鎖切断修復 (Chek1、Rad18、Bripa1、Brcc3 等)、細胞周期促進、DNA 損傷応答を介した G₂/M 期停止誘発、Bcl-2ファ ミリー遺伝子及びがん抑制遺伝子 p53 に係る遺伝子群であった。DNA 二重 鎖切断修復、特に相同組換えに関連した遺伝子の発現が誘導されているこ とより、OTA 暴露により髄質外層外帯に DNA 二重鎖切断が起こり、相同 組換えを介した修復過程で欠失変異が生じていると推測された。OTA によ る細胞周期促進及び G₂/M 期停止誘発関連遺伝子の発現増加は、細胞周期の 調節異常を示唆しており、巨大核細胞の誘導に関与していると考えられた。 (参照 303)

OTAにより腎臓髄質外層外帯特異的にがん抑制遺伝子 p53に係る遺伝子 群の発現が誘導されたことより、OTA の誘導する DNA 損傷、アポトーシ ス及び巨大核誘発への p53 の関与を調べる目的で、p53KOgpt delta (p53 KO) マウス及びその野生型の gpt delta マウス (WT) に 0、1 又は 5 mg/kg の OTA が 4 週間強制投与された。OTA 投与により、WT マウスの腎臓にお ける p53 の発現が誘導されることが確認された。マウスの発がん用量であ る 5 mg /kg OTA 投与群において、p53 KO マウスでは WT マウスに比べ アポトーシス及び巨大核の出現が髄質外層外帯に増加し、皮質にも認めら れた。変異原性試験の結果、5 mg OTA/kg 投与群の腎臓において p53 KO マウス及び WT マウス共に点突然変異は認められなかったが、Spi-変異の 頻度は p53 KO マウスで有意に増加した。著者らは、OTA が DNA の二重 鎖切断修復における相同組換えを介して DNA 欠損を誘導する可能性があ り、p53 はこの過程で OTA の遺伝毒性作用を抑制していると考えた。(参照 304)

b. 非遺伝毒性発がん物質としてのメカニズム

(a) 酸化ストレス

OTA が *in vitro* 及び *in vivo* で ROS 産生等を介した DNA、タンパク質 及び脂質の酸化を引き起こすことが報告されている。また、in vitro 及び in vivoのコメットアッセイにおいて、OTAの用量依存的に DNA 損傷が認 められており、酸化されたプリン塩基又は酸化されたピリミジン塩基を認 識して除去する Fpg 又は EndoIII 処理により DNA 損傷の促進がみられた 結果は、OTA が DNA 塩基の酸化修飾を誘発していることを示唆していた ((5)遺伝毒性参照)。OTA による酸化ストレスは、動物実験において低 投与量から認められ、長期間の腎毒性及び酸化ストレス等によるエピジェ ネティックなメカニズムがラット腎臓における腫瘍誘発に重要な役割を果 たすとする報告もある。ROS の産生の原因としては、Fe イオン、キノン、 酸化ストレス応答の低下、NO 合成酵素のひとつである iNOS 発現の増加 等が報告されている。また、腎臓には、ペルオキシダーゼが豊富に存在す るため、³²P-ポストラベル法により観察される DNA 付加体形成は OTA そ のものではなく、脂質過酸化反応(LPO)が関与している可能性も考えら れる。LPO による DNA 損傷として、DNA 中の 2'-デオキシグアノシンの 8 位の酸化による 8-OHdG 及びエテノ塩基などの環外 DNA 付加体の生成並 びに脂質の過酸化分解物である MDA とグアニンの反応による付加体が知 られている。(参照 235, 305, 306, 307, 308, 309)

OTA による脂質酸化物の構造活性について、OTA と Fe³⁺複合体による ROS 産生が関与している報告がある一方、Fe³⁺との複合体を形成しない O-アセチルフェニル OTA で脂質酸化が認められることより、これらは OTA の作用には関与しないという報告もある。(参照 310, 311)

in vitro 試験

LLC-PK1 細胞(ブタ腎臓近位尿細管由来細胞株)を OTA の存在下で培養し、酸化ストレス応答が調べられた。OTA は、濃度依存的に ROS の産 生を増加し、15 μM の OTA で培養すると明らかに 8-オキソグアニン ¹⁶⁾の 生成が認められた抗酸化剤である NAC によってこの 8-オキソグアニンの 生成は抑制された。(参照 312)

腎臓における OTA の作用メカニズムを調べる目的で HK-2 細胞を 50 μM の OTA と 6 又は 24 時間培養し、網羅的な遺伝子発現の変化が解析さ

¹⁶⁾ グアニンの8位が酸化されると8-オキソグアニンとなる。ROSによるDNA酸化損傷のマー カーとされている。

れた。細胞生存率は6時間後に83%、24時間後に53%であった。6時間後 にDNAの酸化的損傷の増加と共にROSの産生が増加し、ROSの産生に関 与するミトコンドリア電子伝達系酵素のmRNA発現上昇が認められた。 24時間後には、ROSレベル及び酸化的DNA損傷の増加と共に酸化ストレ ス応答系の遺伝子発現の増加が認められた。DNA切断や付加体形成などの DNA損傷により発現が誘導される細胞周期調節又はアポトーシス関連遺 伝子の発現上昇は検出されなかった。(参照238)

RL-34 細胞(ラット肝細胞由来細胞株)、ラット初代培養肝細胞又はラット NRK 細胞(腎臓近位尿細管上皮細胞由来細胞株)を 1.5~6 µmol/L の OTA と培養する *in vitro* 試験の結果、解毒及び酸化ストレス応答に関与している転写因子 Nrf2 の活性阻害と共に、DNA の酸化的損傷による塩基脱落部位の増加が認められた。Nrf2 経路の活性化剤である Cafestol 及び Kahweol1を用いた前処理によりこれらの OTA の影響が防止されることから、OTA が酸化ストレスに対する生体の抗酸化作用を阻害していることが示唆された。(参照 313)

LLC-PK1 細胞を OTA の存在下で培養し、Nrf2 タンパク質の核内移行及 びトランス活性、Nrf2 遺伝子並びにその標的である GST 及び γ GCS 各遺伝 子の発現に及ぼす OTA の影響が調べられた。OTA (25 μ M) は、Nrf2 タ ンパク質の核内移行とトランス活性を低下させ、各遺伝子の発現を抑制し た(参照 314)。同細胞中の ROS レベル (フローサイトメトリーで測定) の 低下が OTA (1~2.5 μ M) によって、GST とグルタチオンペルオキシダー ゼの活性低下が OTA (10~25 μ M) によってそれぞれ引き起こされた(参照 315)。

HEC293 細胞(ヒト胎児腎臓由来細胞株)を 20 μ M の OTA と 2 時間イ ンキュベートすると、ミトコンドリア膜電位差($\Delta \Psi$ m)の減少、ROS 産 生及び細胞死が誘導された。プロテオーム解析により、網羅的にミトコン ドリアにおけるタンパク質発現の変化を調べた結果、ミトコンドリア電子 伝達系、タンパク合成の阻害、ストレス応答の誘導、細胞死等に係る 66 種 類のタンパク質の発現変動が認められ、OTA のアポトーシス誘導に関与し ていると考えられた。抗酸化物質である NAC は OTA による ROS 産生及 び $\Delta \Psi$ m の減少を抑制し、OTA によるミトコンドリアタンパク質発現誘導 のほとんどを防いだ。これらの結果より、著者らは OTA の毒性には、ミト コンドリアを介した ROS 産生及びアポトーシスが関与していると考えた。 (参照 316)

³²P-ポストラベル法を用いて、*in vitro*及び *in vivo*で、酸化ストレスが DNA 付加体スポット形成に及ぼす影響が調べられた。抗酸化剤であるビタ ミンA、ビタミン C 又はビタミン E をマウスに前投与するとスポットの数 が減少したことが報告されている。(参照 317)

そのほか、HepG2、Caco-2等の培養細胞及びラット初代培養尿細管細胞

等を用いた *in vitro* 実験によって、OTA の毒性に対する酸化ストレスの関 与が示唆されたとする知見が報告されている。(参照 310, 312, 318, 319)

in vivo 試験

Wistar ラット(雄、一群 6 匹) に 0 又は 289 µg/kg 体重の OTA が 48 時間毎に 3 週間経口投与された。OTA 投与 1 時間前に SOD 及びカタラー ゼを皮下注射すると酵素尿、蛋白尿、クレアチニン血症及び OTA の尿中排 泄を指標とした OTA の腎毒性が軽減された。これらの結果は、*in vivo* の OTA 腎毒性にスーパーオキシドラジカルと過酸化水素が関与していること を示唆していた。(参照 156)

Lewis ラット(雄、一群 20 匹)に 0.4 mg/kg 体重の OTA が 1 週間に 3 回の頻度で 2 年間投与された。OTA の腎毒性における酸化ストレスの関与 を調べる目的で抗酸化剤 2-メルカプトエタンスルホン酸(MESNA)¹⁷⁾を 前投与すると、腎臓における OTA 誘導性の巨大核細胞が有意に減少すると 共に ³²P-ポストラベル法で検出された DNA 断片の数と強度が減少した。一 方、腎腺癌を発症したラットは、OTA 投与群では 6/20 であったが、OTA 及び MESNA 投与群では 8/20 であり、MESNA は腎腺癌の発生頻度減少に は効果を示さなかった。著者らは、OTA の巨大核細胞誘導と発がん作用は 異なるメカニズムによると考えた。(参照 300)

Wistar ラット(雄、一群 8 匹) に OTA が 289 µg/kg 体重の用量で、活 性酸素のスカベンジャーであるメラトニンが 10 mg/kg 体重/日の用量で共 投与された。病理組織検査の結果、メラトニンの投与群では OTA で誘発さ れる肝毒性及び腎毒性が軽減された。(参照 320)

赤ワイン中の抗酸化性フラボノイドがOTAの毒性に及ぼす影響を調べる 目的で、赤ワインにOTAを溶解し、Wistar ラット(雄、一群6匹)に289 µg/kg 体重の用量のOTAが1日おきに14日間強制経口投与された。OTA のみの投与では腎臓の脂質ヒドロペルオキシド(LOOH)の増加、還元型 グルタチオン(GSH)/酸化型グルタチオン(GSSG)の低下及びSOD活 性の低下がみられたが、OTAと共に赤ワインを投与することによってこれ らの変化が抑制された。(参照 321)

Sprague-Dawley ラット(雄、一群 10 匹)に 0.2 mg/kg 飼料の OTA を 4 週間混餌投与し、腎臓、肝臓及び脳における DNA の断片化、非タンパク 質チオール基(RSH)、LOOH レベル及びヘムオキシゲナーゼ-1(HO-1) 発現が調べられた。OTA 投与群の腎臓、肝臓及び脳より抽出された DNA を電気泳動した結果スメアが認められ、DNA 損傷が生じていることを示唆

¹⁷⁾ MESNA は腎臓で遊離チオール基を増加させることで酸化ストレスを防ぎ、LPO 産生物を減少させる。

していた。OTA 投与群のラットは OTA 非投与の対照群に比較して、腎臓 及び肝臓の RSH 含量が有意に減少し、全ての組織の LOOH が有意に増加 した。これらの OTA の影響は抗酸化剤であるシアニジン 3-O-β-D-グルコシ ド(C3G)の共投与により抑制された。OTA 投与により腎臓及び肝臓にお いて活性酸素の消去を触媒する HO-1 が有意に誘導された。著者らは、酸 化ストレスが OTA の作用に関与していると考えた。(参照 322)

F344 ラット(雄、一群5匹)に OTA を 21 日又は 12 か月間混餌投与す る毒性試験が実施された。体重が 333 g になるまでは 300 µg/kg 体重/日、 その後は 100 µg/匹/日の OTA を投与した。酸化ストレス応答に関与する GSH 関連酵素であるγ-グルタミルシステイン合成酵素(GCLC)、GSTP1、 GSTA5 及び GSTM1 の発現が OTA 投与群のラット腎臓でいずれの時期に おいても減少していた。ラット初代培養肝細胞及び NRK 細胞を用いた in vitro 試験においても、細胞毒性を生じる濃度より低い濃度の OTA によっ てこれらタンパク質の発現の抑制が認められた。これらの遺伝子の DNA の 調節領域に結合して遺伝子発現を増加させる転写因子 Nrf2 への OTA の影 響をラット初代培養肝細胞及び RL-34 細胞(ラット肝細胞由来細胞株)を 用いて調べた結果、OTAは、Nrf2とDNA 調節領域の結合を抑制し、Nrf2 の転写活性を低下させた。同じ培養条件において DNA の塩基脱落が認めら れ、DNAの酸化損傷が引き起こされていることが示された。12か月間 OTA を投与した群のラット腎臓においても、OTA 非投与の対照群に比べて DNA の塩基脱落部位が有意に増加した。これらの OTA により引き起こされた変 化は、Nrf2 経路の活性化剤により阻害されることが、上記細胞を用いた in vitroの試験系で認められた。以上より、著者らは、Nrf2 が抑制されること によって、酸化ストレスに対する細胞の防御作用が低下することが、OTA の腎毒性及び発がんのメカニズムであろうと考えた。(参照 313)

Wistar ラット(雄、一群6匹)に0、5 ng/kg 又は50 µg/kg 体重のOTA が15日間強制経口投与された。酸化ストレスの指標となる MDA 及びカル ボニル化タンパク質(PCs)の濃度が肝臓では50 µg/kg 体重投与群で有意 に高く、腎臓では、5 ng/kg 体重投与以上の群でOTA 非投与の対照群に比 べて有意に増加していたが、用量反応性はみられなかった。カタラーゼ及 び SOD 活性には変化は認められなかった。(参照 323)

Sprague-Dawley ラット(雄、一群6匹)に0又は0.5 mg/kg 体重/日の OTA を14日間強制経口投与し、腎臓における病理組織検査が実施された。 OTA 投与群の腎臓においてカタラーゼ活性の低下、SOD 活性の上昇及び GSH 濃度の低下がみられ、酸化ストレスが誘導されたことを示していた。 OTA 投与群では OTA 非投与の対照群に比べ、腎臓皮質及び髄質における アポトーシス細胞がそれぞれ 10 倍及び3 倍に増加した。腎臓の MDA 濃度 に変化はみられなかった。OTA と共に抗酸化剤のリコペンを5 mg/kg 体重 /日の用量で強制経口投与すると OTA の GSH 及びアポトーシスへの影響が 軽減された。(参照 324)

OTA が精巣で過酸化脂質の生成を誘導することが報告されている。マウス(雌雄不明、一群 10 匹) に 0、0.05 又は 0.1 mg/匹/日の OTA が 45 日間 経口投与された。マウス精巣中において過酸化脂質の分解物である MDA が用量依存的に有意に増加した。また、SOD、カタラーゼ、グルタチオン ペルオキシダーゼ、グルタチオンレダクターゼ及び GST の活性が用量依存 的に低下し、0.1 mg/匹/日の OTA 投与群では有意に低下した。(参照 187)

Sprague-Dawley albino ラット(雄、一群 10匹)に0又は0.2 mg/kg 飼料のOTAを4週間混餌投与し、NO産生調節に関与するDDAH 及びNO 合成酵素(NOS)誘導への影響が調べられた。OTA 投与群では肝臓と腎臓にNO 合成酵素 NOS アイソフォームの一つである iNOS タンパク質の発現が認められた。腎臓には更に NOS 合成酵素アイソフォームの eNOS 及び内因性の NOS 阻害物質を分解する DDAH-1 タンパク質の過剰発現が認められた。抗酸化作用を有する C3G を同時投与すると、これらの影響は軽減した。(参照 325)

一方、以下のように *in vitro* 及び *in vivo* において、OTA による酸化ストレスが認められなかった報告もある。

F344 ラット(雄、一群 3 匹)に OTA (0、0.3、1 又は 2 mg/kg 体重) を強制経口投与後 4, 8、24 及び 48 時間目の血漿、腎臓及び肝臓中の MDA を GC-MS で測定した結果、いずれの MDA 濃度にも増加が認められなかっ た。また、OTA (1 mg/kg 体重) 投与後、腎臓 DNA 中の 8-OHdG レベル にも増加が認められなかった。(参照 326)

ラット初代培養肝細胞及び NRK 細胞と OTA をインキュベーションし、 NO 産生に係る酵素への影響を調べた結果、HO-1 及び iNOS タンパク質レ ベルの OTA 用量依存的増加が認められた。NO のタンパク質及び DNA へ の影響をそれぞれチロシン残基のニトロ化及び 8・ニトログアニンを指標に 調べた結果、OTA はタンパク質及び DNA のニトロ化を誘導したが、NO の合成阻害は OTA に誘導された 8・ニトログアニン量に変化を及ぼさず、 OTA の DNA への影響に NO は関与していないと考えられた。(参照 309)

OTA を 0.25、0.5、1 又は 2 mg/kg 体重で、5 日/週、2 週間経口投与した F344 ラット(雄、一群 3 匹)の腎臓において、LC-MS/MS により LPO 関連付加体生成を検討する試験が実施された。ラットは最終投与 72 時間後 にと殺された。尿中には OTA の代謝物は検出されなかった。酸化ストレス のマーカーである、MDA 及び 4-ヒドロキシアルケナール並びに DNA にお ける 8-OHdG、1,*N*-エテノデオキシアデノシン及び 1,*N*-プロパノデオキ シグアノシン付加体について定量した結果、OTA 投与による腎臓及び肝臓 におけるこれらの付加体の増加は認められなかった。(参照 168)

F344/NS1c-Tg (*gpt* delta) ラット (雌雄、一群 5 匹) に 0 又は 5 mg/kg 飼料(雄: 0.36 mg/kg 体重/日、雌: 0.38 mg/kg 体重/日)の OTA を 13 週

間混餌投与し、腎臓髄質外層外帯における 8-OHdG を測定した結果、非投 与群及び投与群に差は認められなかった。このラットでは、髄質外層外帯 特異的に遺伝子欠失が認められていることより、DNA の欠失変異には酸化 ストレスは関与していないと著者らは考えた。(参照 253)

(b) 細胞有糸分裂阻害等

in vitro 試験

IHKE 細胞(ヒト腎臓上皮細胞由来細胞株)を 0~50 μ M の OTA と 12 時間又は 24 時間培養した結果、1 μ M 以上の濃度で 24 時間後に有意な細 胞数の減少並びに時間及び用量依存的なアポトーシスの増加が認められた。 OTA 処理群では、多倍染色体を有する巨大核細胞が認められ、染色体の不 分離を示す染色分体橋も観察された。巨大核を含めた染色体異常は 24 時間 後に OTA 非処理の対照群では 1.97±0.16%であったのに対し、10 μ M 及び 50 μ M OTA 処理でそれぞれ 4.36±1.15%及び 7.25±1.16%と有意に増加し た。10 μ M 以上の OTA 濃度では、有糸分裂後期及び終期にある細胞の割 合が有意に減少した。 α チューブリンの免疫組織化学より、OTA が紡錘糸 形成を阻害していることが示唆され、*in vitro*において OTA が用量依存的 に微小管の形成を阻害することが示された。一方、細胞生存に係る NF^kB シグナルは OTA により増強されていた。これらの結果から、著者らは、OTA は紡錘体形成を阻害し、有糸分裂の中期から後期への移行に障害がおき、 巨大核細胞及び細胞分裂異常に関与していると考えた。(参照 327)

V79 細胞又はヒト末梢血リンパ細胞において、OTA は染色体異常試験、 姉妹染色体分体交換試験及び小核試験では陰性であったが、これらの細胞 を OTA と 3 時間培養すると、凝縮して倍加した染色体及び部分的に不規則 に分離した染色分体が認められる細胞数が明らかに増加した。これらの結 果から、OTA は DNA 複製後の細胞分裂を阻害していると考えられた。ま た、V79 細胞を OTA と 24 時間培養したときの IC₅₀ の濃度において、OTA が細胞周期に及ぼす影響をフローサイトメトリーを用いて調べた結果、 G₂/M 期の移行阻害が観察された。DNA の複製阻害は認められなかった。(参 照 224, 229)

CHO 細胞を 0、0.2、0.8 又は 1 mM の OTA と培養すると、多倍染色体 を有する細胞が用量依存的に増加した。0.05 mM~1 mM の OTA 用量で細 胞分裂の過程において DNA のもつれを解消する TopoII の活性が用量依存 的に減少していたことより、OTA が細胞分裂を阻害していると推測された。 (参照 240)

IHKE 細胞を 0、1、5、10、25 又は 50 μM の OTA と培養すると、5 μM 以上の濃度で有糸分裂の阻害が認められ、25 μM 以上の濃度で姉妹染色分体の異常な凝縮及びコヒーシンの欠如による姉妹染色分体の分離と共に、 染色体の構造タンパク質であるヒストンのアセチル化の低下が認められた。 核ホモジネートを用いて測定した核内ヒストンアセチル基転移酵素 (HAT) 活性は、OTA の濃度依存的に低下し (IC50=24.5 μM)、姉妹染色分体を接 着しているコヒーシンの誘導に必要とされている H3Thr3¹⁸⁾のリン酸化が 消失した。ヒストンのアセチル化は、転写活性化を誘導し、有糸分裂、DNA の修復等に重要な役割を果たしていることが知られており、著者らは、HAT の阻害が OTA の一次的な細胞内標的であり、これが発がん作用に関与して いると考えた。(参照 328)

OTA は GES-1 細胞(ヒト胎児消化管粘膜上皮細胞由来細胞株)に G₂期 遅延を誘導した。GES-1 細胞を OTA と 24 時間培養すると、細胞周期を制 御する Cdc25c、Cdc2 及びサイクリン B1 のタンパク質発現が抑制され、 Cdc25c 及び Cdc2 のリン酸化が促進された。これらの結果、G₂期遅延が誘 導されると考えられた。細胞増殖及び細胞生存に関与する MAP キナーゼ

(MAPK) ファミリーメンバーの ERK 及び細胞外シグナル制御キナーゼ 38 (p38) の発現を siRNA により抑制すると G₂ 期遅延にある細胞の割合が 有意に減少したことより、OTA の細胞周期への影響はこれらのシグナルを 介していると考えられた。(参照 329)

OK 細胞 (オポッサム腎臓上皮細胞株)、WI26 細胞及び HK2 細胞を用い て OTA、OTBr 又は OTHQ が細胞増殖に及ぼす影響が調べられた。OK 細 胞に対しては OTA、OTBr、OTB 及び OTHQ の順に毒性が強く、WI26 細 胞に対しては OTA の毒性が最も強く、ついで OTBr と OTB が同程度、 OTHQ には毒性が認められず、HK2 細胞に対しては OTA のみに毒性が認 められた。(参照 290)

in vivo 試験

F344 ラット(雄)に 21、70 又は 210 µg/kg 体重/日の OTA を、14 日間 又は 90 日間(5回/週投与)強制経口投与した後に腎臓を採取し、定量的リ アルタイム PCR アレイで細胞周期及び有糸分裂に関わる遺伝子の発現を、 また、免疫組織化学法及びウェスタンブロット法で関連タンパク質の発現 が調べられた。投与 90 日後に、70 µg/kg 体重以上の OTA 投与群で有糸分 裂の主要制御因子(PLK1、Aurora B、Cdk1^{Cdc2}、サイクリン E1等のサイ クリン、CDK 阻害因子、TopoII、サバイビン等)が OTA により過剰に発 現した。投与 14 日目の 210 µg/kg 体重の OTA 投与群には、90 日後と比較 して程度は低いながらこれら遺伝子の過剰発現が認められたが、70 µg/kg 体重投与群では認められなかった。遺伝子発現の変化と一致し、髄質外層 外帯の近位尿細管細胞におけるタンパク質発現(Cdk1^{cdc2}、p21^{WAF1/CIP1}、 TopoII 及びサバイビン)にも投与後日数と投与量に依存した変化が認めら

¹⁸⁾ ヒストン H3 タンパク質の N 末端側から 3 番目のスレオニン

れ、Aurora B のターゲットであるヒストン H3Ser10¹⁹⁾のリン酸化が亢進さ れていたことから、有糸分裂過程の細胞にアポトーシスが誘導されている ことが示唆された。これらの結果より著者らは、OTA による発がんの初期 に、有糸分裂の障害と染色体の不安定性の原因となる遺伝子とタンパク質 の異常発現が引き起こされると考えた。(参照 330)

F344/NSIc ラット(雄、一群 10 匹)に発がん用量である 210 µg/kg 体 重/日の OTA を 28 日間経口投与すると、近位尿細管に巨大核細胞、細胞増 殖及びアポトーシスが認められた。発がん部位である腎臓髄質外層外帯に おける細胞周期への影響を調べた結果、OTA 投与群では DNA 損傷応答に 係る Cdc2 及び γ H2AX タンパク質の細胞核内における増加並びに G₂/M 期 の移行阻害に関与する Chk-2 タンパク質のリン酸化が認められた。網羅的 な遺伝子発現解析の結果、ユビキチン D (Ubd)の遺伝子発現が有意に増加し ていた。Ubd は、M 期の紡錘体チェックポイントに重要である Mad2 と結 合することが示されており、Mad2 を阻害することにより染色体不安定性を 誘導する可能性が示されている(参照 331)。OTA 投与により Ubd の発現が M 期のみならず G₂期にも認めらたことより、著者らは、G₂期に Ubd の発 現が高い細胞においては、G₂期に続く M 期のスピンドルチェックポイント 監視機構が破綻して染色体不安定性を誘導し、OTA の発がん作用に関与し ていると考えた。(参照 332, 333)

(c) その他

NRK-52E 細胞 (ラット近位尿細管由来細胞株) に 100 又は 1,000 nmol/L 濃度の OTA を暴露すると、上皮堅牢性の喪失又は壊死による細胞数減少及 びアポトーシス増加など、慢性の間質性腎症に特有の変化が確認された。 OTA は、炎症マーカーである NFκB の活性化、線維症のマーカーであるコ ラーゲン分泌及び上皮間葉転換のマーカーであるα-平滑筋アクチンの生成 を誘発した。また、用量依存的に、細胞外シグナル制御キナーゼである 1/2 (ERK 1/2)、JNK 及び p38 も誘導した。(参照 334)

ヒト腎臓尿細管細胞及び肺線維芽細胞の初代培養細胞を用いてOTAの毒性が調べられた。細胞と0.3~10 nmol/LのOTAが2、5又は14日間培養された。カスパーゼ-3活性及びLDH活性が、それぞれアポトーシス及び壊死細胞の指標として測定された。尿細管細胞は、カスパーゼ-3とLDH放出の増加に関して、線維芽細胞より約10倍高い感受性を示し、低濃度(0.3~10 nmol/L)のOTAに14日間暴露することにより、細胞の肥大化が認められた。尿細管細胞特異的にNFkB活性の増加と共に線維症のマーカーであるコラーゲンIII及びフィブロネクチン分泌が増加した。(参照334,335,

¹⁹⁾ ヒストン H3 タンパク質の N 末端側から 10 番目のセリン

336)

OTA によるエピジェネティックな遺伝子発現の変化及びシグナル伝達系の変化が、OTA の発がん性に関与していることを示唆している報告がある。

F344 ラット(雄、一群 4 匹)に体重が 333 g になるまでは 300 µg/kg 体重/日、その後は 100 µg/匹/日の OTA を 7 日間、21 日間又は 12 か月間混 餌投与し、腎臓におけるタンパク質キナーゼ (PKC) 及びヒストンデアセ チラーゼ (HDAC)のタンパク質やナーゼ (PKC) 及びヒストンデアセ チラーゼ (HDAC)のタンパク質の発現が調べられた。OTA 非投与の対照 群と比較して、OTA 投与群では 21 日目以降 PKC のリン酸化が有意に増加 し、PKC の下流シグナル因子である ERK 1/2 等の活性化と相関していた。 インシュリン様成長因子・1 受容体 (IGF-1r)と IGF-1 によって活性化され るイノシトールリン脂質依存性キナーゼ・1 系 (PDK1)の発現増加が OTA 投与 7 日目及び 21 日目で認められたことから、これらが PKC の上流で作 用している可能性が考えられた。また、OTA 投与群では HDAC3 タンパク 質の発現が促進されて、HDAC 酵素の活性化が認められた。著者らは、 HDAC3 を介したヒストン脱アセチル化による遺伝子発現抑制がシグナル 伝達を活性化し、細胞増殖、アポトーシス抑制等を介した発がんに関与し ていると考えた。(参照 337)

野生型ラット及び、結節性硬化症 2 腫瘍抑制遺伝子 (*Tsc2*) 中に優性の 生殖細胞系列変異に対し異型接合を持つ Eker ラットに、210 µg/kg 体重/ 日の OTA が 1、3、7 又は 14 日間強制経口投与された。腎臓の皮質又は髄 質外層外帯における病理組織、細胞増殖活性及び遺伝子発現プロフィール が調べられた。OTA は、皮質に軽度の病理組織変化(前腫瘍性病変)を誘 発し、野生型ラットでは 14 日目に、Eker ラットでは 7 日目から有意に細 胞増殖の増加を引き起こした。OTA 投与群では、代謝酵素遺伝子

(CYP4A12)、DNA 修復遺伝子(SUPT16H)、酸化ストレス応答遺伝子 (SEPP1)等の遺伝子発現が促進される一方、ラパマイシンシグナル経路 の標的であるフォスファチジルイノシトール 3・キナーゼ(PI3K) - AKT- Tsc2 の多数の遺伝子の発現が抑制された。Eker ラットは、全ての影響に対し、 野生ラットより OTA に対する感受性が高かった。当該研究では、影響の全 体傾向から、Tsc2の、OTA の毒性への関与が示唆されている。(参照 338)

OTA の毒性の解明を目的として、cDNA アレイ解析及びプロテオーム解 析により、*in vitro* 及び *in vivo* で網羅的な遺伝子発現又はタンパク質レベ ルの変化が調べられている。

Wistar ラット(雄、一群 10 匹)に 0、1 又は 10 mg/kg 体重の OTA を 経口投与し、24 時間後又は 72 時間後にと殺し、腎臓の組織学的検査が実 施された。両用量とも 72 時間後にと殺したラットの主に皮質及び髄質外層 に変性病変が認められた。壊死を起こした尿細管上皮細胞が、尿細管内に 剥離していた。腎臓皮質における遺伝子発現の変化をマイクロアレイによ り解析した結果、DNA 損傷 (GADD153 及び GADD45)、アポトーシス(ア ネキシン V) 及び炎症反応 (α₂μ グロブリン、セルロプラスミン及びカテプ シン S) に関係している遺伝子の発現に OTA 依存的な増加がみられた。(参 照 339)

F344 ラット(雄、初期体重 175 g、一群 5 匹)に体重が 333 g になるま では 300 μg/kg 体重/日、その後は 100 μg/匹/日の OTA を投与した。肝臓 及び腎臓の遺伝子発現プロフィールが、OTA 投与開始後 7 日、21 日、4 か 月、7 か月及び 12 か月目に調べられた。OTA 投与群の腎臓では、転写因子 である Nrf2によって発現が制御される解毒及び酸化ストレス応答に関与し ている多くの遺伝子(GST、NAD(P)H キノン還元酵素(NQO1)等)並び に脂肪酸代謝及び CYP に関与する遺伝子の発現が抑制され、これらのタン パク質の発現も抑制された。腎臓において、OAT、ナトリウム依存性リン 酸トランスポーター(NaPi-2)などのトランスポーター遺伝子及び細胞外 カルシウム恒常性維持を制御するレギュカルシンの遺伝子の発現が OTA 投 与により抑制された。著者らは、カルシウム恒常性維持の変化並びに転写 因子である HNF4α及び Nrf2 による遺伝子発現の抑制等のエピジェネティ ックな遺伝子機能の変化が酸化ストレスに対する細胞内防御を阻害し、 OTA の発がん性に関与していると考えた。(参照 340)

近位尿細管細胞の in vitro モデルとしてヒト腎臓皮質近位尿細管上皮細 胞由来細胞株である RPTEC/TERT1 細胞及び HK-2 細胞、ラット腎臓尿細 管由来細胞株である NRK-52 細胞並びにヒト及びラットの初代培養近位尿 細管細胞を OTA と培養後、遺伝子発現の変化が cDNA アレイ解析により調 べられた。また、ラットに3 mg/kg 体重/日の OTA を 1、3 又は7 日間投 与し、OTA による腎臓の遺伝子発現の変化が同様に調べられた。それぞれ のモデルにおける遺伝子発現の変化をクラスター解析した結果、ヒト初代 培養近位尿細管細胞モデルとラット in vivoモデルの結果が最も近いクラス ターとなった。OTA の作用は、細胞骨格、ヌクレオソーム制御、転写、ユ ビキチン化及び細胞周期等に係るシグナル伝達経路に関する遺伝子発現に 及んでおり、最も影響が大きかったのはヌクレオソーム制御に関与する遺 伝子発現であった。ヌクレオソーム制御、転写及びユビキチン化に関与す る遺伝子発現には、促進されるもの及び抑制されるものの両方がみられた。 がんの発症に係る遺伝子の多くは発現が促進されていたが、溶質輸送体フ ァミリー遺伝子及び Ras 関連遺伝子は発現が抑制された。酸化ストレスに より活性化される Nrf2 シグナル伝達経路の変化はみられなかった。全ての モデルにおいて細胞骨格系に属するアクチンリモデリング遺伝子であるア ドビリンの産生が最も亢進されていた。著者らはこれらの結果から、OTA の発がん作用機序はエピジェネティックであることを示唆していると考え た。(参照 341)

p53 が OTA の発がん性に及ぼす影響を調べるために、*p53*KO*gpt* delta マウス及び正常な *p53* 遺伝子を有する *gpt* delta マウス(いずれも雄、一

群5匹) に0、1 又は5 mg/kg の OTA が4週間強制経口投与された。病理 学的検査の結果、5 mg/kg の OTA 投与群で腎臓髄質外層外帯に巨大核細胞 及びアポトーシス細胞が認められ、*p53*KO マウスの巨大核細胞の発現頻度 は*p53*遺伝子を正常に有するマウスより高かった。また、*p53*KO マウスで は、髄質内帯の尿細管上皮細胞にも巨大核細胞及びアポトーシス細胞が認 められた。*p53*KO マウスで観察されたアポトーシスの増加は、OTA の誘 導するアポトーシスに *p53* 非依存的な経路が関与している可能性を示唆し ていると考えられた。(参照 304)

(8) 毒性試験のまとめ

実験動物を用いた亜急性毒性試験では、OTA を投与した実験動物全てに 尿細管の部位特異的な腎毒性が認められた。腎臓髄質外層外帯の近位尿細 管 S3 セグメントには、巨大核細胞及び肥大した細胞がみられ、尿細管の萎 縮及び組織破壊も観察された。ラットにおいて、雌雄いずれも用量及び投 与期間依存的にこれらの所見の増強が認められた。OTA は腎臓において有 機アニオントランスポーターを介して膜輸送されることが示されており、 近位尿細管に選択的な OTA の毒性作用は、OTA が近位尿細管細胞の刷子 縁又は側底膜にある有機アニオン輸送システムにより細胞内外に移行する ことと関連すると考えられている。実験動物による亜急性毒性試験におい て、最も低い用量で毒性が認められたのはブタ(雌)で、120 日間 8 、40 又は 160 µg/kg 体重/日の OTA を混餌投与した結果、用量依存的に TmPAH 及び TmPAH のイヌリンクリアランスに対する割合の減少並びに尿糖が増加 した。8 µg/kg 体重/日の OTA 投与群では 9 頭中 4 頭、40 µg/kg 体重/日以 上の OTA 投与群では、全てのブタに尿細管における退行性変性が観察され た。ブタにおける LOAEL は 8 µg/kg 体重/日であった。

慢性毒性・発がん性試験では、げっ歯類に OTA を経口投与すると主に腎 臓髄質外層外帯に腎細胞腺腫及び腎細胞癌が雄に多く発生した。ラットに 0、 21、70 又は 210 μg /kg 体重の OTA を週 5 回強制経口投与した NTP にお ける 2 年間発がん性試験では、70 μg /kg 体重以上の用量で雄ラットの腎臓 に腫瘍が認められた。NOAEL は 21 μg /kg 体重(週 5 回投与、15 μg/kg 体 重/日に相当)であった。また、この NTP 試験のデータを基に BMD 法を用 いて解析した結果、適合モデルのうち最も低い BMDL₁₀ は、16.1 μg/kg 体 重/日 (LogProbit (Restriction : off))であり、上記 NOAEL より高い値 であった。ブタを用いた慢性毒性試験では、40 μg/kg 体重/日の OTA を 2 年間投与した結果、尿細管萎縮や間質の線維化等、進行性の腎障害がみら れたが、がんの誘発は認められなかった。

生殖発生毒性及び免疫毒性は、いずれも腎臓への影響と比べると1~2桁 高い用量で観察された。

遺伝毒性試験の結果、Ames 試験では代謝活性化の有無にかかわらずほと

んどが陰性であり、酵母細胞を用いた SOS 試験及び哺乳類培養細胞を用い た遺伝子突然変異試験の結果のほとんども陰性であった。一方、哺乳類の 培養細胞においてOTAが一本鎖DNA切断を誘導することが示されており、 OTA を投与したマウス又はラットの脾臓、肝臓、腎臓等においてもコメッ トアッセイの結果は陽性であった。コメットアッセイでみられる DNA 損傷 の量は抗酸化剤によって抑制されることが示されている。DNA 修復を示す 不定期 DNA 合成では、ラット肝細胞、ブタ膀胱上皮細胞、ヒト尿路上皮細 胞において陽性であった。姉妹染色分体交換が in vitro のいくつかの試験で みられたが、in vivoの試験では陰性であった。小核試験は、in vitro、in vivo 共に陽性であった。in vitroの染色体異常試験では、陽性及び陰性の結果が 共に得られているが、ラットに発がん用量を経口投与した試験では陰性、 マウスに腹腔内投与した試験では陽性であった。トランスジェニックラッ ト (gpt delta) を用いた in vivo 遺伝毒性試験では、腎臓髄質外層外帯に DNA の欠失変異がみられたが、それがこの部位で発生するがんの原因であ るとする証拠は得られていない。また、同部位における点突然変異は検出 されなかったことが報告されている。

OTA の遺伝毒性発がん物質としてのメカニズムに関して、OTA あるいは その代謝物が DNA に直接作用するか否かを調べる目的で以下のようにさ まざまな試験が実施されている。動物に OTA を投与した *in vivo*における DNA 付加体形成試験において、ポストラベル法により DNA 付加体は検出 されなかった報告がある。一方、ポストラベル法により *in vitro* 及び *in vivo* において、DNA 付加体が検出されたとする報告があるが、その構造解析は されておらず、検出されたとされる付加体が OTA 又は OTA 代謝物と DNA が共有結合したものであるとの確認はされていない。更に、[³H] 又は[¹⁴C] でラベルした OTA をラットに投与した *in vivo* 試験において検出感度はポ ストラベリング法と同等であったが、付加体形成は認められていない。

OTA の非遺伝毒性発がん物質としてのメカニズムに関して、細胞周期の 破たん、タンパク質合成酵素阻害、細胞増殖とアポトーシスの変化、酸化 ストレス、ミトコンドリアの機能低下、MAP キナーゼ等のシグナル伝達の 変化、フェニルアラニン tRNA 合成酵素、ヒストン等のアセチル化阻害等 のエピジェネティックなメカニズムなど、がんに結びつく様々な原因が多 数報告されている。

以上の知見より、OTA 又は OTA 代謝物が DNA 付加体を形成する遺伝毒 性発がん物質ではなく、間接的に DNA に作用する非遺伝毒性発がん物質と 考えることが妥当であると判断された。そこで、発がん性については、「ヒ トに対する経口発がんリスク評価に関する手引き(清涼飲料水を対象)」(平 成 20 年 9 月 2 日化学物質・汚染物質専門調査会決定)の考え方を参考に、 *in vitro* 遺伝毒性試験では陽性であるが、*in vivo* 遺伝毒性試験で DNA への 直接的な作用が確認されず、「発がん性に対する遺伝毒性の関与が不確実」 と考えられることから、発がん影響に関しては、NTPにおける2年間発が ん性試験に基づく NOAELを基に算出し、BMD法の適用は行わないことと し、TDIを設定することとした。(参考資料2参照)

3. ヒトにおける知見

(1) 各国における 暴露量

① 血液中 OTA 濃度

OTA は、ヒトでおよそ 35 日の半減期を有することが示されており(参照 91)、過去数週間における暴露の簡便なバイオマーカーとして OTA の血中 濃度が疫学的研究に幅広く使用されている(参照 74)。

2001 年の JECFA の報告によると、欧州 12 か国、アフリカ 2 か国、カ ナダ及び日本において 1977 年から 1998 年の間にそれぞれ OTA 陽性と報 告された健常者計 3,717 名の血液中 OTA 濃度範囲は、0.1~40 ng/ml(最 大値 160 ng/ml を除く。)であった(参照 74, 198)。日本では、1992~1996 年に東京において OTA 濃度が調査され、OTA が検出されたのは 184 名中 156 名 (85%)、平均値は 0.068 ng/ml、濃度範囲は 0.004~0.28 ng/ml であ った(参照 342)。

EFSA の意見書には、1995~2002 年に報告されたイタリア、クロアチア、 ノルウェー、スウェーデン、モロッコ及びレバノンにおける健常者計 2,322 名の血中 OTA 濃度が記されている。OTA の検出率の範囲は 33%~100%で、 レバノン (検出限界 0.1 ng/ml) で少なく、ノルウェー及びスウェーデン (検 出限界 0.01 ng/ml) で多かった。血中 OTA 濃度の平均の範囲は 0.17 ng/mL (レバノン)~0.56 ng/ml (イタリア、検出限界 0.1 ng/ml) であった。EFSA は、これらの結果より、2001 年に JECFA で報告された結果等と比較する と血中 OTA 濃度が減少傾向にあると述べている。(参照 200)

その後の報告結果を表 18 に要約した。

ポーランドで、1998 年 10 月から 1999 年 4 月にかけて 30 名の妊娠女性 を対象に母体の血清中及びさい帯血血清中の OTA 濃度が測定された。母体 血清中及びさい帯血血清中の OTA 平均濃度には、有意差が認められた。母 体血清中とさい帯血血清中の OTA 濃度には相関がみられ、平均濃度比は 1.96 であった。(参照 343)

2002 年にポルトガルの都市コインブラ及びその周辺の 2 つの農村の計 3 地区に住む健常者 104 名から血液が採取され、血清の OTA 濃度が調べられ た。全ての検体から定量下限値以上の OTA が検出され、地区ごとの平均は 0.42~0.78 µg/L、全体の濃度範囲は 0.14~2.49 µg/L で、男女間の差は認め られなかった。一方の農村における平均濃度は他の 2 地区に比べて有意に 高かった。OTA の定量限界は、血清で 0.1 µg/L 及び全血液で 0.05 µg/L で あった。(参照 344)

チリの2つの農業地帯の88名の健常な男女から採取した血漿中のOTA

濃度が分析された。コルブンで 2004 年 3 月と 7 月に採取された検体の 54% 及びサン・ビセンテ・デ・タグアタグアで 2004 年 10 月に採取された検体 の 91%が OTA 陽性で、検出範囲はそれぞれ、0.07~2.75 及び 0.22~2.12 ng/ml、平均値はそれぞれ 0.44 及び 0.77 ng/ml であった。両地帯の血漿中 OTA 濃度には有意な差が認められた。また、サン・ビセンテ・デ・タグア タグアでは女性の血漿中 OTA 濃度が男性より有意に高かった。両地域の平 均血漿中 OTA 濃度から OTA 摂取量が推計され、コルブン及びサン・ビセ ンテ・デ・タグアタグアでそれぞれ 0.84 及び 1.40 ng/kg 体重/日であった。 OTA の検出限界は 0.1 ng/ml であった。(参照 345)

アルゼンチンでブエノスアイレス州の2地区における435名のヒト血漿 中のOTA 濃度が調べられた。2004年2月にマル・デル・プラタ並びに2005 年4月及び7月にヘネラル・ロドリゲスで採取された検体のそれぞれ63.8% 及び62.3%からOTA が検出され、平均はそれぞれ0.15 ng/ml及び0.43 ng/mlであった。OTA の検出限界は0.012 ng/mlであった。(参照346)

トルコの地中海地方及び黒海地方の2地域で、6歳から80歳までの239 名を対象に2007年7月及び2008年1月に、血清中OTA濃度が測定され た。食事に関するアンケートより、黒海地方ではトウモロコシを含む穀物 類の摂取が地中海地方より多く、地中海地方では野菜、フルーツ及び肉の 摂取が黒海地方より多かった。OTA血清中濃度は、いずれの地域において も冬期に比べて夏期の方が有意に高く、全体の平均はそれぞれ 0.137± 0.013及び0.312±0.034 ng/mlであった。平均血清中濃度に地域差及び男 女差は認められなかった。血清中OTA濃度の最高値は夏期の黒海地方の子 供の検体で測定された1.496 ng/mlであった。黒海地方では夏期、冬季共に 子供(15検体)の血中OTA濃度が大人(96検体)及び老人(8検体)に 比べて有意に高かった(参照 347)。

スペインのリェイダ地方の 9 地区で 2008 年 3 月から 5 月にかけて 279 名の男女から血液を採取して OTA 濃度を調べた結果、275 名に OTA が検 出され、平均値は 0.86±1.07 ng/ml、95 パーセンタイル値は 2.51 ng/ml であった。血漿中 OTA 濃度に男女差及び地域差は認められなかったが、 18~29 歳、30~44 歳及び 45 歳以上と年齢を 3 区分すると、血清 OTA 濃度 は 45 歳以上>18~29 歳>30~44 歳の順で、45 歳以上と 30~44 歳のグルー プでは有意差が認められた。(参照 348)

スペインで 2008 年 7 月から 11 月にかけて 168 名の男女を対象に実施さ れた試験では、対象者全員から OTA が検出され、血漿中 OTA 濃度の平均 は 1.09±0.95 μg/L、濃度範囲は 0.15~5.71 μg/L であった。男性の方が女性 より血清中 OTA 濃度が高い傾向にあった。(参照 349)

国名	採取期間	陽性数と	検出限界	平均血中	濃度範囲	引用文献	報告
		割合(%)	(ng/ml)	濃度 (ng/ml)	(ng/ml)		牛
日本	1992~1996	156/184 (85)		0.068	0.004~0.28	(参照 342)	1998
ドイツ	1995~1998	1596/1732 (92)	0.06	0.23	0.06~2.03	(参照 52)	2002
英国	1999	50/50 (100)	0.2	1.10	0.2~3.11	(参照 52)	2002
ポーランド	1998~1999	30/30 (100)	0.02	1.14	0.14~3.41	(参照 343)	2006
ポルトガル	2002	104/104 (100)	0.1 (LOQ)	$0.42 \sim 0.78$	0.14~2.49	(参照 344)	2008
チリ	2004	62/88 (70)	0.1	$0.44 \sim 0.77$	$0.07 \sim 2.75$	(参照 345)	2006
アルゼンチ ン	2004	127/199 (64)	0.012	0.15	0.012~47.6	(参照 346)	2008
	2005	147/236 (62)		0.43	0.019~74.8		
トルコ	2007 夏期	116/119 (97)	0.025	0.312	0.0279~1.496	(参照 350)	2010
	2008冬期	92/120 (77)		0.137	0.0306~0.887		
スペイン	2008	275/279 (99)	0.075	0.86	0.11~8.68	(参照 348)	2009
スペイン	2008	168/168 (100)	0.01	1.09	0.15~5.71	(参照 349)	2010

表18 健常者の血液中オクラトキシンA濃度

② 尿中 0TA 濃度

感度の高い測定方法を用いて、尿中のOTA濃度の測定が可能になり、尿中OTA濃度とOTA暴露について報告されている(表 19)。

イタリアで、41名から1日分の尿を採取し、OTA 濃度が調べられた。尿 中OTAの検出限界は0.005 ng/ml で、健常者の38検体中22検体中にOTA が検出された。検出されたOTAの濃度範囲は0.012~0.046 ng/ml であっ た。間質性腎炎患者3名の尿を調べたところ、全ての尿にOTA が検出され、 最高値は0.140 ng/ml であった。(参照 351)

英国で 30 日間 50 名を対象に陰膳方式を用いたトータルダイエットスタ ディが実施され、食事、血液及び尿中の OTA を測定することにより、OTA の摂取量とそのバイオマーカーとの関連が調べられた。血液は試験開始 30 日前、試験開始時及び試験中に 1 週間に 1 回採取され、尿は試験前日及び 試験中に 1 週間に 1 回、1 日分が採取された。検出限界は食品、血液及び尿 においてそれぞれ 0.001 ng/g、0.1 ng/ml 及び 0.01 ng/ml であった。OTA 摂取量は、平均して 0.94 ng/kg 体重/日、範囲は 0.26~3.54 ng/kg 体重/日 と推計された。試験開始 30 日前を含め全ての血液検体から OTA が検出さ れ、OTA 濃度範囲は試験開始 30 日前に 0.15~2.17 ng/ml 及び試験中は 0.4 ~3.11 ng/ml であった。尿 50 検体中 46 検体から OTA が検出され、その範 囲は 0.01~0.058 ng/ml であった。OTA 摂取量と血液中 OTA 濃度には相関 が認められなかったが、OTA 摂取量と尿中 OTA 濃度に統計的な相関が認められた。(参照 352)

2003年4月にハンガリーの3地方の5地区に住む健常者88名の尿中OTA 濃度が調べられた。尿は24時間採取された。61%の検体から OTA が検出 され、平均濃度は0.013 ng/ml、その範囲は0.006~0.065 ng/ml であった。 調べられた3地方のうち、1地方における尿中OTA濃度は、他の2地方に 比べて高かった。いずれも男女間に差は認められなかった。(参照 353)

2004年11月にポルトガル(コインブラ)の健常者から採取した尿60検体中42検体からOTAが検出された。平均濃度は0.038 ng/ml、その範囲は0.021~0.105 ng/mlであった。定量限界は0.02 ng/mlであった。(参照354)

ポルトガルの6地区より女性50名、男性45名の合計95名の尿を2007年の冬期及び2008年の夏期に採取し、OTA濃度を調べるコホートスタディが実施された。夏期に比べて冬期のOTA暴露は有意に高く、性差による違いは夏期にのみ認められた。検出限界は、0.0024 ng/mlであった。(参照355)

国名	採取期間	陽性数と 割合(%)	検出限界 (ng/ml)	平均尿中 濃度 (ng/ml)	濃度範囲 (ng/ml)	引用文献	報 告 年	
イタリア		22/38(58)	0.005		$0.012 \sim 0.046$	(参照 351)	2000	
英国		46/50(92)	0.01		$0.01 \sim 0.058$	(参照 352)	2001	
ハンガリー	2003	54/88(61)	0.004	0.013	$0.006 \sim 0.065$	(参照 353)	2005	
ポルトガル	2004	42/60(70)	0.02	0.038	$0.021 \sim 0.105$	(参照 354)	2006	
(LOQ)								
ポルトガル	2007 冬	女性 43/50(86)	0.0024	0.021	n.d.~0.062	(参照 355)	2012	
	2008 夏	42/50(84)		0.016	n.d.~0.040			
	2007 冬	男性 40/45(89)		0.023	n.d.~0.071			
	2008 夏	35/45(78)		0.016	n.d.~0.039			

表19 健常者の尿中オクラトキシンA濃度

③ 母乳中 OTA 濃度

母乳中からの OTA の検出が、各地で報告されている。
JECFA によると、1988 年から 2006 年までに報告された欧州 6 か国、アフリカ 2 か国、ブラジル及びオーストラリアにおける母乳中の陽性割合は、
それぞれ 11%~100%、72%~87%、4%及び 2%であった。(参照 198)
2002 年の Scientific Cooperation (SCOOPTask 3.2.7)²⁰によると、ヒトの母乳 324 検体(ドイツ、イタリア、ノルウェー、スウェーデン)中の
OTA 濃度の範囲は 0.01~0.24 µg/L、最高値は 2.35 µg/L、平均値は 0.09 又

²⁰⁾ EU 加盟国における食事経由の OTA 暴露量評価

は 0.18 µg/L²¹⁾であった(参照 52)。その他の知見を表 20 に示した。

ポーランドにおいて、1998年10月から1999年4月にかけて30人の女性から母体の血液及び母乳が採取され、OTA 濃度が測定された。検出限界は血清及び母乳においてそれぞれ0.02及び0.005 ng/mlであった。母乳中のOTAは13検体中5検体から検出された。母親血清中に対する母乳中のOTA濃度比は、平均して0.0058であり、当該調査の結果、母体血清中と母乳中のOTA濃度に相関が認められたことが報告されている。(参照343)

イタリアで 2007 年1月から6月までに130名 (イタリア名 92 名及びイ タリア国籍でない人 38 名)の妊娠女性を対象に、さい帯血中及び乳中の OTA 濃度並びにアンケートによる食習慣が調べられた。母体のさい帯血検 体の 99%に OTA が検出され、平均±標準偏差は 499.8±553.8 ng/L、範囲 は84~4,835 ng/L であった(検出限界: 25 ng/L)。母乳中の 79%に OTA が検出され、平均±標準偏差は 10±15.6 ng/L であった(検出限界: 0.5 ng/L)。いずれの OTA 濃度においてもイタリア人とイタリア国籍でない人 との間に有意な差はみられなかった。さい帯血中 OTA 濃度と乳中の OTA 濃度との間に相関は認められなかったが、乳中に OTA が検出された検体に おいて、さい帯血中 OTA 濃度とさい帯血中及び母乳中の OTA 濃度比との 間に正の相関が認められた。さい帯血中濃度から推計された OTA 摂取量は、 イタリア人とイタリア国籍でない人において、それぞれ 1.02±1.20 及び 0.87±0.78 ng/kg 体重/日であった。 豚肉、ソフトドリンク、 菓子及び赤ワ インの摂取量とさい帯血中 OTA 濃度に相関が認められた。また、豚肉、ソ フトドリンク、菓子及び種実類等から精製される油の摂取量と乳中の OTA 濃度に相関が認められた。(参照 356)

ドイツの2都市 (ノルトライン・ヴェストファーレン及びニーダーザクセン) で 90 名の女性から母乳が採取され、OTA 濃度が測定された。母乳の50%以上に OTA が検出された (検出限界:10 ng/L)。OTA の平均濃度及び検出範囲はノルトライン・ヴェストファーレンでそれぞれ 24.4±21.1 ng/L 及び 10~100 ng/L、ニーダーザクセンではそれぞれ 14.4±15.1 ng/L 及び 10~78 ng/L であった。(参照 357)

OTA のヒト乳への分泌は、ATP 依存性のトランスポーターである乳がん 耐性タンパク質(BCRP)により仲介されることが示唆されている。BCRP は、ヒトなどの種において、授乳期に高度に発現し各種薬剤や生体異物の 乳中への分泌に関与している。(参照 358, 359, 360)

²¹⁾ 平均値は以下の2つの方法で算出されている: ①LOD 以下の検体に LOD/2 値を適用して平 均を算出し、LOD と LOQ の間に検体については可能であれば測定値を用いた場合、又は② LOQ 以下の検体に LOQ/2 値を適用して平均を算出した場合

国名	採取期間	陽性数と 割合(%)	検出限界 (ng/ml)	平均 OTA 濃度 (ng/ml)	濃度範囲 (ng/ml)	引用文献	報告年
ポーランド	$1998 \sim 1999$	5/13 (38)	0.005	0.0056	$0.0053 \sim 0.017$	(参照 343)	2006
イタリア	2007	45/57	0.0005	0.01	$0.0011 \sim 0.0751$	(参照 356)	2011
		(78.9)					
ドイツ		46/90	0.01	0.0244	$0.01 \sim 0.1$	(参照 357)	2013
		(51)		0.0144	$0.01 \sim 0.078$		

表20 母乳中のオクラトキシンA存在量

④ OTA 暴露のバイオマーカー

尿中 62-マイクログロブリンレベルの上昇が、腎臓尿細管機能障害と関連 して報告されている。食事からの OTA 暴露が高い地域として知られるチュ ニジアに住む原因不明の慢性間質性腎症(chronic interstitial nephropathy:CIN)患者 40名、病因の明らかな CIN 患者 60名及び健常者 40名の血中 OTA 濃度及び 62-マイクログロブリン濃度が測定された。血中 OTA 濃度は原因不明の CIN 患者において健常者及び原因の明らかな CIN 患者より有意に高く、尿中 62-マイクログロブリン濃度は、病因にかかわら ず CIN 患者において健常者より有意に高かった。(参照 361)

最低 4 か月間母乳で育てられた乳児の腎機能を調べる目的で、エジプト において母親と乳児の血清中及び母乳中の OTA 濃度並びに乳児の尿中 62-マイクログロブリンが調べられた。50 名の母親中 36 名(72%)の血清及び 乳中から OTA が検出され、平均濃度及び標準偏差はそれぞ 4.28±3.97 ng/ml 及び 1.89±0.98 ng/ml であった。血清中に 2 ng/ml 以上の OTA が検 出された乳児は、血清中 2 ng/ml 未満の乳児より、尿中 62-マイクログロブ リン濃度及び微量アルブミン尿の程度が一変量解析の結果有意に高かった。 多変量ロジスティック回帰分析の結果、乳児血清中の OTA 濃度と 62-マイ クログロブリン濃度に有意な相関が認められた。(参照 362)

⑤ 0TA 暴露量の推定

欧州における食品中の OTA の汚染実態、血中 OTA 濃度からの OTA 推定 摂取量、食事からの推定 OTA 摂取量及びヒトの OTA 暴露源となる食品に ついて 2002 年の (SCOOP Task 3.2.7) に報告されている。欧州 13 か国の 食品 32 品目、計 18,599 検体について OTA 濃度が調べられた結果、48.8% に汚染がみられた。穀類及び穀類製品 5,180 検体中 2,825 検体 (54.5%) に OTA が検出され、濃度範囲は LOD~8.7 µg/kg、平均は 0.294 µg/kg (うち 陽性平均は 0.484µg/kg) であった。このうち、米については、63 検体中 4 検体 (6.3%) に OTA が検出され、濃度範囲は LOD~1.4 µg/kg、平均は 0.217 µg/kg うち陽性平均は 0.725 µg/kg) であった。(参照 52)

ヒトへの OTA の暴露源として最も割合が高いのは穀類及び穀類製品で、 全体の 44%を占めると考えられた。続いてワインが 10%、コーヒーが 9%、 ビールが 7%、ココアが 5%であった(参照 52)。畜産物については、高用量 の OTA を含む飼料を摂取したブタの主に血液及び腎臓に OTA 汚染が認め られている(参照 89, 107)。また、加工過程において、熟成中のハムの表面 に *P. nordicum*等による OTA 汚染が報告されている(参照 65, 363)。しかし、 畜産物を介した暴露は、血液由来食品等を多く摂取する一部の地域ではヒ トの OTA 総暴露量の 10%程度となる可能性も考えられるが、ほとんどはヒ トにおける OTA 暴露量の 3%を超えない結果となった。

欧州における OTA の汚染実態及び欧州各国の食品摂取量を基に、OTA 暴露推計には穀物及び穀物製品、砂糖及び菓子、温かい飲料、ビール、ワ イン、畜産物並びにフルーツジュースの計 7 品目の食品の汚染実態及び摂 取量が用いられた。4 つのシナリオによる OTA 暴露量が推計された結果、 成人の消費者における平均的な OTA 摂取量は、2~3 ng/kg 体重/日であっ た。高リスクの消費者(97.5 パーセンタイル値)では 6~8 ng/kg 体重/日 の OTA 摂取量となり、一週間に換算すると 40~60 ng/kg 体重であった(参 照 200)。

欧州 6 か国より報告された健常者 2,712 検体の血清及び血液中の OTA 濃 度の平均は 0.34 µg/L (うち陽性平均は 0.35 µg/L) であった。血液中の OTA 濃度を用いて Klaassen による計算式 ²²⁾により算出された OTA の一日摂取 量は 0.41 µg/L~2.34 µg/L であった。ドイツ、スウ_xーデン及びノルウェー では血中 OTA 濃度から推計された OTA 摂取量は、OTA 汚染実態と摂取量 から推計された OTA 摂取量より低かった。一方、スペイン及び英国はその 反対の結果となった。(参照 52)

2002 年の(SCOOP Task 3.2.7)の調査結果より、乳児における OTA 暴露量が推計されている。調査されたヒトの母乳 324 検体の平均濃度より、 乳児の一日の母乳摂取を 600 ml として推計すると、乳児における母乳から の OTA 暴露の範囲は 1.00 ~24.00 ng/kg 体重/日となった。(参照 52)

2007 年の JECFA において、欧州の穀物 OTA 汚染状態及び穀物摂取量から、食事からの OTA 暴露量はおよそ 8~17 ng/kg 体重/週と推定された。 大多数の穀物検体における OTA 汚染レベルは 5 μg/kg 以下であった。(参照 198)

チリの2つの農業地帯の88名の健常な男女から採取した血液中のOTA 濃度が分析された。サンプル採取と並行して、血液提供者に最近3か月間 の食品摂取に関するアンケート調査が実施され、穀物類、豚肉又は鳥肉摂

²²⁾ OTA 暴露量の推定に以下の Klaassen による計算式が用いられた。

K₀=ClpxCp/A=1.97Cp

K₀:一日摂取量(ng/kg 体重/日)、Clp:血漿クリアランス、Cp:血漿 OTA 濃度(血清 OTA

 濃度と同等とされた)、A:生物学的利用能

取量と血清中の OTA 濃度の関係が調べられたが、明らかな相関はみられなかった。(参照 345)

トルコの地中海地方及び黒海地方の2地域で、6歳から80歳までの健常 者 239名を対象に2007年7月及び2008年1月に、血液が採取された。 Breitholtzの推計式(参照364)²³⁾を用いて血清中OTA濃度より推計された OTA摂取量の範囲は0.0144~2.005 ng/kg 体重/日、平均は冬期及び夏期に それぞれ0.182及び0.408 ng/kg 体重/日であった。(参照347)

スペインのリェイダ地方の 9 地区で 2008 年 3 月から 5 月にかけて 279 名の男女から血液を採取し、同時に OTA の暴露源を調べる目的で食事に関 するアンケートが実施された。OTA が含まれると考えられる穀物、ドライ フルーツ、カカオ等 7 分類の食品摂取量と血漿中 OTA 濃度に相関はみられ なかった。Klaassen の推計式を用いて血漿中 OTA 濃度から推計された OTA 摂取量は 1.69 ng/kg 体重/日であり、摂取食品頻度及び文献による食 品別平均 OTA 汚染量から推計された OTA 摂取量は 1.96 ng/kg 体重/日で あった。(参照 348)

スペインで 2008 年 7 月から 11 月にかけて 168 名の男女から血液を採取 し、血漿中 OTA 濃度が測定された。Breitholtz 又は Klaassen の推計式を 用いて試算された OTA 摂取量は 1.47±1.25 又は 2.16±1.88 ng/kg 体重/ 日であった。試験期間中に実施された、摂取した食事に関するアンケート 結果を基に、穀物製品、肉類、ビール、ワイン等を含む 26 の食品グループ と血清 OTA 濃度について回帰解析が実施された。特定の食品と血漿 OTA 濃度との間に有意な関係は認められず、著者らは OTA の暴露は様々な食品 に由来すると考えた。(参照 349)

(2) 疫学研究

OTA は、バルカン地方にみられるバルカン風土病腎症(BEN: Balkan Endemic Nephropathy)及び北アフリカの尿路上皮腫瘍(UTT: Urinary Tract Tumors)の発症に関与している可能性が報告されている。BEN の病因は明らかになっていないが、環境的病因として、OTA のほかに小麦に混入するウマノスズクサ属植物(*Aristolochia clematitis*)の種子の成分で発がん物質であるアリストロキア酸の摂取、低品位炭から飲料用井戸水に浸出した発がん性有機化合物(多環芳香族炭化水素等)の摂取、ウィルス感染等の可能性が挙げられている。(参照 365)

OTA のヒトにおける発がん性については、十分な疫学的証拠がない。

²³⁾ Breitholtz の推計式

OTA 摂取量(ng/kg 体重/日) = Cp X 1.34

Cp:血清 OTA 濃度(ng/ml)

① バルカン風土病腎症

BEN は致命的なヒトの腎臓病であり、バルカン半島中部を流れるダニュ ーブ川沿いのボスニア・ヘルツェゴビナ、ブルガリア、クロアチア、ルーマ ニア及びセルビア地域の主に農村部にみられ、疫学的に地域特異性が認め られている。BEN は、男性より女性にやや多くみられ、男女比は約 1:1.5 と報告されており、死亡頻度は女性の方が高い。1950 年代の疾病の罹患率 は 2~10%と報告されている。(参照 366, 367, 368)

クロアチアの風土病多発地域において実施された 1975~1990 年の間に おける患者の系統的フィールド調査の結果では、罹患率は 0.5~4.4%であっ た。近年は減少の傾向がみられる。(参照 366, 369)

BEN は、風土病多発地域のいくつかの農村の住民に発症がみられるが、 患者のいる農村の近隣にある農村で発症者がみられないケースがあること が地理的特徴のひとつである。ユーゴスラビアにおける疫学的研究より、 BEN は農民に多く発症し、家族に集合的に発症する傾向があるが遺伝性で はないこと、風土病が多発していない地域から風土病多発地域への移住で も発症することが示されている(参照 366, 370, 371)。

BENには急性の症状はなく、発症年齢は主に 30~50 歳で、まれに 10~ 19 歳の患者の報告もある(参照 372)。病理組織学的には、尿細管上皮細胞 の重度の傷害と皮質における広範な間質線維症を伴う間質性及び両側性の 非炎症性及び非閉塞性腎症であり、ゆっくり進行して腎臓が次第に萎縮し 腎不全に至る(参照 365, 367, 373)。初期症状として尿中にタンパク、糖等が 検出され、尿濃縮の異常のほか、貧血がみられる。進行は遅く、数年間の 腎臓疾患の後、腎不全となる。腎臓は病気の進行につれて萎縮し、間質が 線維化し、末期には腎臓重量が劇的に減少する。病理学的には、遠位尿細 管病変、血管病変及び腎臓糸球体病変と共に尿細管間質性疾患並びに腎皮 質の萎縮及び硬化が認められる(参照 374, 375, 376)。病変が最初に現れる部 位については、遠位尿細管、血管又は糸球体と諸説あり、BEN の病因は現 在のところ不明である(参照 365, 376)。

腎盂や尿道などの尿路上部の上皮腫瘍の発生頻度が BEN 患者で高いこ と、また、風土病が多発していない地域より風土病多発地域において高い ことが報告されている(参照 373, 375, 377, 378)。クロアチアの風土病多発地 域において、尿路上皮がんの罹患率は、風土病が多発していない地域の 5.1 倍であった(参照 379)。悪性腫瘍のうち、移行上皮細胞癌が症例中 95%とも っとも高頻度で、扁平上皮細胞癌は症例の 5%であった。1970~1997 年に ベオグラードの泌尿器科で、上部尿路腫瘍の治療を受けた 766 患者の検査 結果において、これら腫瘍の発生頻度は、ユーゴスラビア(セルビア)の 風土病多発地域とその可能性のある地域からの患者が 68%、それ以外の地 域が 32%であった。女性において腫瘍発生頻度が高かった。両側性腫瘍の 発生頻度は風土病多発地域の患者では 13%、風土病が多発していない地域 では2%であった(参照 380)。

これらの疫学的研究結果は、バルカン地方における慢性間質性腎炎又は 上部尿路腫瘍の病因に環境要因が深くかかわっていることを示唆している。 (参照 378,381)

② バルカン風土病腎症とオクラトキシンA

BEN の病因仮説として、汚染された食品を摂取することによる OTA 暴露が高いことが挙げられている。BEN 患者の腎臓における病理組織学的特徴が、OTA を投与したブタと似ていたこと及び風土病多発地域と生産される穀物の OTA 汚染が比較的高頻度である地域とが地理的に重なっていること、風土病が多発している村の住民の血液試料から OTA が検出され、風土病が多発していない地域より統計的に有意に高濃度であったことが報告されている(参照 370, 382, 383, 384)。

1970年代にクロアチア又はブルガリアの風土病多発地域で採取した穀類の試料中のOTA汚染頻度は8%~9%と、風土病が多発していない地域の約3%と比較すると数倍高い頻度で汚染が認められた。1980年3月から4月にかけてユーゴスラビアの風土病が多発している村及び風土病患者がいない村の住民からそれぞれ395及び202検体の血液が採取され、OTA濃度が測定された。風土病が多発している村では、約7%の検体がOTA陽性であり、平均OTA濃度は7.6 ng/g、最大濃度は40 ng/gであった。風土病患者がいない村では、OTA陽性率は5.95%、平均濃度は5.4 ng/g、最大濃度は8 ng/gであった。この試験の検出限界は1~2 ng/g であった。(参照384)

ブルガリアの BEN 患者の多い地方の 2 地区で、20~30 歳の志願者計 19 人を対象に 1 か月間トータルダイエットスタディが実施された。穀物によ る OTA 摂取量は、検出限界(0.07 μg/kg)から 2.6 μg/kg、一週間の平均 OTA 摂取量は 1.86~97.2 μg/kg 体重であった。(参照 48)

ブルガリアのヴラツァ市の風土病多発地域において、BEN と泌尿器系腫 瘍、特に腎盂と尿細管の腫瘍との間に、疫学的類似性が認められた。それ ぞれの発症地域は地理的に相関があり、BEN と泌尿器系腫瘍の発症に相関 が認められた。患者は女性と中年層に多く、家族で集合的な症例がある傾 向が示された。ある地方の村では、100,000人当たりの年齢補正した発症人 数は、腎盂及び尿管腫瘍では男性 43.5、女性 74.2 であり、膀胱腫瘍につい ては、男性 38.7、女性 24.6 であった。(参照 377)

OTA と腎臓病との関連は、アフリカ北部でも報告されている。チュニジ アにおいて一般人の血液中 **OTA** の濃度範囲は、0.7~7.8 ng/ml で、慢性の 腎障害患者では 12~55 ng/ml であった。(参照 385)

以上のように、バルカン諸国の風土病多発地域とそれ以外の地域における血中濃度を比較することにより、バルカン地方特有な腎症の発生と OTA 暴露との関係が調べられている。一方、風土病多発地域では、OTA による
食品汚染がその他の地域より広がっているが、その地域に住む人々の OTA 血中濃度には顕著な上昇がみられず、風土病多発地域と同じ程度の OTA の 血中濃度が、BEN のない国々で認められている。また、食事からの暴露の 比較的高い地域においても、ヒトの OTA 血中濃度はラットを用いた長期間 試験²⁴⁾と比較すると少なくとも 2 桁ほど低いことが指摘されている(参照 321,376)。さらに、OTA を投与したマウスにおける腎細胞癌の発生部位は 腎臓髄質外層外帯であるのに対し、ヒトでは腎盂及び尿道であり、また、 標的となる細胞がマウスでは尿細管上皮細胞であるのに対し、ヒトでは移 行上皮細胞である。このように、OTA を投与したげっ歯類にみられる腎臓 のがんとヒトの BEN に関連した腎臓のがんでは発生部位及び標的細胞に 違いもみられる(参照 376)。

一方、風土病多発地域及びその他地域の尿路上皮癌と腎症の患者から採取した腎臓の組織を³²P-ポストラベル法で解析した結果、60 サンプルのうち 30%の組織に C-C8-dG-OTA を含め、OTA に関連した DNA 付加体が検出されたのに対し、次の③で記載するアリストロキア酸に関連した DNA 付加体は検出されなかった(参照 386)。従って、BEN に OTA が何らかの形でかかわっている可能性も否定できない(参照 387)。

③ バルカン風土病腎症とアリストロキア酸等

近年、アリストロキア酸が BEN の病因である可能性について報告されて いる。BEN で認められる腎症が病態生理学的及び組織病理学的にウマノス ズクサ属植物の慢性中毒により起こるアリストロキア酸腎症と似ており、 バルカン地方の小麦畑に生育しているウマノスズクサ属植物の種子が小麦 に混入することにより小麦粉がアリストロキア酸に汚染されて BEN の病 因となっている可能性が指摘されていた (参照 388)。アストロキア酸は、腎 毒性、発がん性、変異原性等を有することが示されており、マススペクト ロメトリーによりアリストロキア酸が DNA に結合したアリストラクタム -DNA 付加体の構造が確認され、アリストラクタム-DNA 付加体が BEN 患 者の腎臓髄質及び尿路上皮がんに検出されたこと、アリストロキア酸が病 因となる尿路上皮がん患者にみられる *p53* 変異スペクトルが、BEN 患者の 腎臓皮質及び尿路上皮がんでみられた *p53* 変異スペクトルと関連していた こと等がその理由として挙げられている(参照 369,389)。

風土病発生村落近傍の質の悪い石炭の風化により、水溶性の多環芳香族 炭化水素と芳香族アミンが生成し、それらは、鎮痛薬腎症に因果関係のあ

²⁴⁾ NTP におけるラットを用いた発がん毒性試験の結果、腎毒性及び腎臓に腫瘍を誘発したラットの血中平均 OTA 濃度は、非発がん用量であった強制投与による 21 ng OTA/kg 体重 90 日間 試験において 258.2 ng/ml であり、同試験の発がん用量の 70 ng OTA/kg 体重用量では 944.7 ng/ml であった。

るアセトアミノフェンの代謝物に類似していることから、BEN の病因には 複数の要因が作用している可能性も考えられている。(参照 390)

なお、BEN における微量元素(カドミウム、ヒ素、鉛、セレン等)の病 因説については、2年間のフォローアップ研究で有意な影響がないとの報告 がある(参照 391)。

(3) ヒトにおける知見のまとめ

OTA の血中濃度は、ヒトにおける暴露の信頼できるバイオマーカーであ ると考えられる。2001 年の JECFA 評価において、欧州を中心とする 16 か国で実施された実態調査により得られた健常者からの血中濃度は、0.1~ 40 ng/ml であった(最大値 160 ng/ml を除く。)。その後の欧州 4 か国を含 む 6 か国の調査では、OTA の血中濃度は、0.17~0.56 ng/ml であり、初期 の調査と比較して、血中濃度の値が減少傾向にあることを示していた。

OTA のヒトへの暴露と BEN 及び泌尿器系腫瘍との疫学的な関連につい ての知見は、アリストロキア酸等の他の環境要因と共に、OTA もこれらの ヒトの疾病の要因である可能性が示唆されている。しかし、OTA をそれら ヒトの疾病の原因物質と結論付けることのできる十分な根拠は得られてい ない。

4.諸外国における評価

(1) FAO/WHO 合同食品添加物専門家会議(JECFA)

JECFA は、1990 年に OTA の評価を実施し、ブタにおける 90 日間混餌 投与試験の結果、腎臓の機能低下が認められた最小毒性量(LOAEL) 8 µg /kg 体重/日を根拠として、不確実係数 500(種差及び個体差:各 10、LOAEL の採用に伴う追加:5)を用いて、PTWI を 112 ng/kg 体重/週と設定した。 1995 年にこの PTWI は 100 ng/kg 体重/週と四捨五入された(参照 4)。

JECFA は、2001年に OTA を再評価した。OTA の発がん作用機序について、遺伝毒性作用、非遺伝毒性作用等の新しい知見が検討されたが、結論は出なかった。OTA の腎毒性及び発がん性の作用機序について遺伝毒性及び非遺伝毒性の面から検討されたが、依然不明のままであった。いくつかの哺乳類動物種における低用量での悪影響である腎毒性が、ヒトにも同様に起こりうると考えられ、PTWIを 100 ng/kg 体重/週に据え置いた。なお、この値は、発がんに最も感受性の高い雄ラットにおける NOEL を参照すると係数 1,500 に相当する。穀物及び穀物加工品における OTA 実態調査より、5 ng/g 以上の OTA 汚染頻度はそれぞれ 1.2%及び 0.3%並びに 20 ng/g 以上の OTA 汚染頻度はそれぞれ 0.3%及び 0.05%であった。これらのデータ及び欧州型の食品摂取量を基に、穀物及び穀物加工品における OTA 規制値を 5 又は 20 ng/g とした場合の健康影響を定量的な方法を用いて評価した結果、95 パーセンタイルにおける推定 OTA 摂取量は、それぞれ 84 又は

92 ng/kg 体重/週であり、いずれも現行の PTWI より低い値であった。PTWI 以下の摂取量についての明らかなリスクはないと考えられた。(参照 74)

2007年のJECFAにおける再評価では、OTAの毒性作用機序が検討され、 酸化ストレス、細胞増殖等の非遺伝毒性作用の知見が多く確認された。OTA のDNAへの作用については、OTA又はOTAの代謝物が直接DNAに共有 結合し、DNA付加体によって直接的に遺伝毒性が発現するとの証拠は確認 できなかったことより、これまで設定されているPTWIの100 ng/kg 体重 /週を変更する科学的証拠はないとされた。リスク評価のための追加情報を 得るためにJECFAでは、NTPのラットOTA発がん性試験データを用いて BMD 法により、定量的な評価を実施した。求められた BMDL10 値は、現 行の根拠となっているブタにおける腎毒性を指標とした LOAEL 8µg/kg 体重/日と比較し、PTWI 設定のために参照する POD として低い値とはな らなかった。(参照 198)

(2) 国際がん研究機関 (IARC)

IARC では、1993 年に OTA の発がん性について評価を行っている。(参照 3)

OTAの経口投与により、マウスの雌雄で肝細胞腫瘍の発生頻度が増加し、 雄マウスと雌雄ラットにおいて、腎細胞腺腫及び腎細胞癌の発生頻度が増 加した。OTAは、いくつかの動物種において、腎毒性、腎障害及び免疫抑 制作用を誘発した。

ヒトにおいては、OTA の暴露量とバルカン地方の風土病とされる BEN との関連性が示唆されている。バルカン地方では、腎障害と尿路上部に発 生するがんが風土病としてみられるが、これらの患者における OTA の血中 濃度が、罹患していない対照群の血中濃度より高かったとする報告がある。 しかし、OTA のヒトにおける発がんへの影響については、利用できる適当 なデータはなかったとされた。

以上より、IARC では OTA はグループ 2B(ヒトに対し発がん性の可能 性がある)と評価された。

(3) 欧州食品安全機関(EFSA)

EFSA は、2006 年に OTA の評価を実施し、以下の結果を公表している。 (参照 200)

初期の疫学的データからは、OTA は、バルカン半島の特定地域における 腎臓疾患及び腎臓がんの発症に関与している可能性が示唆された。しかし、 これらの疫学データは不完全であり、OTA がヒトに対して腎臓を標的とし た発がん物質であるとする証拠はなかった。発がん性試験においては、OTA は試験された全ての動物種に腎毒性を示し、特徴的な巨大核及び進行性腎 症を誘発した。腎障害の程度は用量依存的であり、OTA が腎臓組織に蓄積 するため、暴露期間とも相関していた。

以上の知見に加え、最近の知見から、部位特異的な腎毒性並びに DNA 損 傷及び遺伝毒性として認められる OTA の毒性について、細胞の酸化的損傷 が関与している可能性が示されていること、また、OTA-DNA 付加体が最 新の化学的測定法で確認できていないことから、EFSA は、閾値に基づく 手法を使用して OTA のリスク評価を実施した。ブタにおける初期の腎毒性 マーカーに基づく LOAEL の 8 µg/kg 体重/日及び不確実係数 450(トキシ コダイナミクス ²⁵⁾の種差:2.5、半減期に基づく薬物動態種差:6、個体差: 10、LOAEL の採用に伴う追加:3)を用いて、OTA に対する耐容週間摂取 量(TWI) 120 ng/kg 体重が設定された。

ヨーロッパにおける食事からの OTA 暴露に関し、最近の分析では、現在 の OTA の週間暴露量は平均で 15~20 ng/kg 体重、OTA を含有する食品を 高摂取する層については 40~60 ng/kg 体重であった。

5. 日本における暴露状況

(1) 汚染実態

1996年に日本で流通しているワイン、ビール、焼酎、泡盛、日本酒、コ ーヒー、ブドウジュース、、醤油等の飲料及び発酵製品 12 品目中の OTA 濃 度について調査が実施された。検出限界は、レギュラーコーヒー及びイン スタントコーヒーで 60 ng/kg、その他の品目では 3 ng/L であった。缶コー ヒー10 検体中 9 検体で平均 28 ng/Lの OTA が検出され、最大値は 133 ng/L であった。インスタントコーヒー²⁶⁾12検体中12検体で平均18 ng/LのOTA が検出され、最大値は 63 ng/L であった。レギュラーコーヒー10 検体は検 出限界未満であった。赤ワインは、検査された 36 検体中 15 検体から OTA が検出され、イタリア産(5 検体全て)、フランス産(7 検体全て)及び日 本産(13 検体中 3 検体)にそれぞれ平均 47、77 及び 4 ng/L の OTA が検 出された。アメリカ産、オーストラリア産、チリ産及び南アフリカ産のワ インは検出限界未満であった。白ワイン(5検体中1検体)、ロゼワイン(5 検体中3検体)及びブレンドワイン(7検体中2検体)からそれぞれ平均6、 24 及び 6 ng/L の OTA が検出された。また、国産ビール(14 検体中 10 検 体) 及び輸入ビール(6検体中3検体)からそれぞれ平均10及び14 ng/L の OTA が検出された。ブドウジュースでは、赤ブドウジュース 9 検体中 2 検体から平均6 ng/LのOTA が検出された。白ブドウジュース3検体は、 検出限界未満であった。醤油5検体全てから平均6.82 ng/LのOTA が検出 された。焼酎、泡盛、日本酒等計 15 検体では検出限界未満であった。(参

²⁵⁾ 化学物質の生体との反応性。化学物質が体内で生体の標的分子に達した後、影響発現に至る 反応。

²⁶⁾ 20gを140mlに溶かして試料とされた。

照 342)

日本において国産の赤ワイン 31 検体及び白ワイン 28 検体を用いて OTA が測定された。それぞれ 5 検体から OTA が検出され、最高値は 0.03 及び 0.022 μg/L であった。検出限界は、赤ワイン及び白ワインでそれぞれ 0.0058 及び 0.0054 μg/L であった。(参照 392)

2004年から2009年にかけて厚生労働科学研究として OTA が汚染する可 能性のある 29 品目、2,093 検体について食品中の OTA 汚染実態調査が実 施された。米を含む穀類については毎年収穫後に検体が採取された。29品 目中 20 品目に定量下限以上の OTA が検出され、汚染率が最も高かったの はココアの 98.7% (陽性数/検体数: 77/78) であり、以下、インスタントコ ーヒー98.4% (124/126)、チョコレート 86.7% (137/158)、パスタ 80.6% (125/155)、ビール 78.5% (95/121)、日本蕎麦 75.3% (137/182)、レーズ ン 63.4% (59/93)、缶コーヒー57.9% (44/76)、そば粉 57.5% (23/40)、焙 煎コーヒー54.8%(46/84)、小麦粉 50.5%(111/220)、コリアンダー45.2% (14/31)、ライ麦 44.0% (22/50)、ワイン 31.7% (39/123)、生コーヒー豆 28.6% (6/21)、オートミール 28.0% (21/75)、乾燥イチジク 14.8% (4/27)、 大麦 8.0%(2/25)、紅茶 4%(1/25)及びコーングリッツ 2.5%(1/44)であ った。平均値が比較的高かったのは、コリアンダー及びココアでそれぞれ 1.58 及び 0.84 µg/kg であった。最大値はオートミール、レーズン及びコリ アンダーでそれぞれ 13.30、12.50 及び 9.67 μg/kg と他の品目に比較すると 高かった。米 110 検体、せんべい 21 検体、スイートコーン 50 件体、ポッ プコーン 15 検体、コーンフレーク 45 検体、キビ 10 検体、ウーロン茶 26 検体、ブドウジュース 44 件体及びかつお節 22 検体において OTA は定量限 界未満であった。定量限界は、ビールで 0.01 μg/kg、ブドウジュース及び

2005~2008 年度に内閣府食品安全委員会食品安全確保総合調査として 国内で市場に流通している食品中のうち汚染実態調査がほとんど実施され ていない食品を中心に、OTA が汚染する可能性のある 18 品目、計 782 検 体の食品について OTA 汚染実態調査が実施された。18 品目の内訳は、オ リーブ、種子等、養殖魚及び輸入養殖エビ、健康食品、食肉製品(生、加 工品)、乳製品(牛乳、加工品)、卵(生、加工品)、血液及び内臓(生、加 工品)、料理用ハーブ類、飲料、ベビーフード及び幼児向け食品、菓子類、 豆類及び豆を用いた製品、キャッサバ、野菜及び野菜を用いた製品、果物 及び果物を用いた製品(ドライフルーツを含む。)、シリアル並びにその他 加工品であった。OTA は HPLC により定量され、定量限界は幼児向け食品 において 0.05 ng/g、その他の食品では 0.5 ng/g であった。OTA が検出され たのは 782 検体のうち 9 検体で検出率は 1.15%と低かった。OTA 汚染の最 高値は 2008 年に購入された料理用ハーブ類の 110 ng/g であった。そのほ か、2005 年に購入された料理月

ワインで 0.05 µg/kg、その他の食品では 0.1 µg/kg であった。(参照 393, 394)

年に購入された料理用ハーブ類 10 検体のうち 1 検体に 0.8 ng/g、2008 年 に購入された健康食品 45 検体中 5 検体及びその他加工品にそれぞれ 0.5~ 6.4 ng/g 及び 1.0 ng/g の OTA が検出された。食肉製品(生、加工品)及び 血液及び内臓(生、加工品)計 172 検体において、OTA は検出限界未満で あった。(参照 395, 396, 397)

2005~2009 年度に農林水産省による国産穀類の OTA 含有実態調査が実施されている。調査の結果、2005 年度の小麦 1 検体で定量限界を超える OTA が検出されているが、その他の全ての検体では、定量限界未満であった(表 21)。

品目	年度	調 査	定量限界	定量	限界未満	最 大 値	平均值	平 均 値
		点数	(mg/kg)	の点	数	(mg/kg)	(mg/kg)	(mg/kg)
					割合		1	2
米 (女米)	2005	98	0.00030	98	100%	< 0.00030	0	0.000082
(2006	100	0.00030	100	100%	<0.00030	0	0.000080
	2007	100	0.00030	100	100%	< 0.00030	0	0.000080
	2008	100	0.00012	100	100%	< 0.00012	0	0.000050
	2009	100	0.00017	100	100%	< 0.00017	0	0.000070
小麦 (<i>本</i> 耒)	2005	99	0.00020	98	99%	0.00071	0.000007	0.000084
(公友)	2006	100	0.00020	100	100%	< 0.00020	0	0.000070
	2007	100	0.00020	100	100%	< 0.00020	0	0.000070
	2008	100	0.00014	100	100%	< 0.00014	0	0.000060
	2009	101	0.00016	101	100%	< 0.00016	0	0.000072
大麦 (精麦)	2008	20	0.00009	20	100%	< 0.00009	0	0.000040
ハトムギ (精白)	2008	10	0.0003	10	100%	< 0.0003	0	0.00010
そば粉	2008	20	0.00023	20	100%	< 0.00023	0	0.000090
ひえ	2008	10	0.00011	10	100%	< 0.00011	0	0.000040
(精白)								
きび (特白)	2008	10	0.00013	10	100%	< 0.00013	0	0.000050
あわ	2008	10	0.00013	10	100%	< 0.00013	0	0.000050
(精白)			0.00010		10070		5	
$ 壮 1 \cdot + + + l $	ナ曲林水	- ニタ	亚武 14-9	9 在 甬	F 国 宏 認	瓶のかび害く	古宝能调本	の結理」(参

表21 国産穀類のオクラトキシンA含有実態調査の網	果(2005~2009 年度	蒦)
---------------------------	----------------	----

注1:本表は農林水産省「平成14-23年度 国産穀類のかび毒含有実態調査の結果」(参照 398)から食品安全委員会にて作成。

注2:全ての品目において定量限界未満の試料数が60%を超えていたことより、以下のようにGEMS/Food が示す方法に従い、平均値①及び②を算出した。

平均値①:定量限界未満の濃度を「0」として算出。

平均値②:検出限界未満の濃度を検出限界とし、検出限界以上かつ定量限界未満の 濃度を定量限界として算出。

東京において、184 人の健常者(男性 130 名、女性 54 名)の血清中の OTA 濃度が調べられた。1992 年、1994 年、1995 年及び 1996 年に採取し たヒト血清の OTA 陽性率はそれぞれ 96%、38%、93%及び 98%で、全体の 85%が OTA 陽性であった。陽性検体の平均値は 68 pg/ml、その範囲は 4~ 278 pg/ml であった。調査の結果、OTA は、主にワイン、ビール等のアル コール飲料、コーヒー及び醤油より摂取されたと著者らは考えた。(参照 342)

(2) 暴露量の推定

2010 年度に厚生労働科学研究として、年齢層別(1~6歳、7~14歳、15 ~19歳及び20歳以上の4階層)の食品摂取量及び前述の2004年から2009 年にかけての OTA 汚染実態調査結果より、OTA の基準値を設定しない場 合又は基準値を 5 μg/kg と設定するシナリオを想定して、日本人における OTA 暴露量がモンテカルロ法を用いたシミュレーションにより推計された。 OTA が含有されると考えられて検査された食品 29 品目中、OTA 汚染が少 なかった食品を除く15品目について、年齢層別に食品摂取量を調査し、摂 取量が全体の1%未満の品目についてはシミュレーションの対象外とした。 その結果、焙煎コーヒー、缶コーヒー、インスタントコーヒー、日本蕎麦、 小麦粉、チョコレート、ココア、ビール及びレーズンの 9 品目について暴 露量推計に用いるサンプルデータが作成された。OTA 暴露量の推計結果を 表 22 に示した。年齢区分別では、体重当たりの一日暴露量は、1~6 歳ま での階層で最も高く、その後、年齢が上がるにしたがって体重当たりの一 日暴露量は低下するが、20歳以上の階層では再び上昇した。OTAの汚染量 が5µg/kgを超える食品はほとんどなく、また平均的な値を示す50パーセ ンタイル値の範囲は 0.08~0.14 ng/kg 体重/日、高リスクの消費者(95 パ ーセンタイル値)の範囲は1.20~2.21 ng/kg 体重/日であった。(参照 393, 399)日本においては、現状では高リスクの消費者においても、OTA 暴露量 は低い推計結果となったが、OTA の主な産生菌は異なる生育条件で異なる 種類の農作物及び食品等に生育し、OTA の汚染の程度は、気候等の影響を 受けやすいことに留意が必要である。

シナリオ*	50 パーセンタ	90 パーセンタ	95 パーセンタ イル	
1- 6才 規制*なし : upper bound	0.14	1.37	2.21	
1- 6才 規制 なし : lower bound	0.14	1.37	2.21	
1- 6才 規制 あり : upper bound	0.14	1.37	2.21	
1- 6才 規制 あり:lower bound	0.14	1.37	2.21	
7-14 才 規制 なし: upper bound	0.11	0.99	1.56	
7-14 才 規制 なし : lower bound	0.10	0.99	1.56	
7-14 才 規制 あり:upper bound	0.11	0.99	1.56	
7-14 才 規制 あり:lower bound	0.10	0.99	1.56	
15-19才 規制 なし : upper bound	0.09	0.78	1.20	
15-19 才 規制 なし : lower bound	0.08	0.78	1.20	
15-19 才 規制 あり:upper bound	0.09	0.78	1.20	
15-19 才 規制 あり : lower bound	0.08	0.78	1.20	
20 才以上規制 なし : upper bound	0.11	0.90	1.49	
20 才以上規制 なし : lower bound	0.08	0.89	1.49	
20 才以上規制 あり:upper bound	0.11	0.90	1.49	
20 才以上規制 あり:lower bound	0.08	0.88	1.48	

表22 モンテカルロ・シミュレーション法による市販食品に由来する OTA 暴露量の推定(ng/kg 体重/日)

*以下4つのシナリオがOTA暴露量の推定に用いられた

・定量限界未満は定量限界値の二分の一(upper bound)とし、規制なし。

・定量限界未満はゼロ(lower bound)とし、規制なし。

・定量限界未満は定量限界値の二分の一(upper bound)とし、規制の基準値は5µg/kg。

・定量限界未満はゼロ(lower bound)とし、規制の基準値は5µg/kg。

(3) 加工・調理による 0TA の減衰

ワイン、コーヒー及び穀類において、加工・調理による OTA 濃度への影響が調べられている。

① ワイン

ワイン醸造過程により、原料ブドウ液中の OTA 初期濃度とは無関係に、 ワイン中の OTA 濃度が一貫して減少することが示されている(参照 400, 401, 402) 。*A. carbonarius* 胞子を樹上のブドウ果実に接種し、果実中に OTA を産生させた。ワインに移行した OTA はブドウ果汁中 OTA の 8.1% であり、ブドウ果汁中の OTA 濃度は、OTA のワインへの移行に影響しな かった。(参照 400) 酵母(*Saccharomyces*)がワイン又は果汁の OTA 含有量に及ぼす影響に ついて酵母 20 菌株を用いて調査された。ワイン醸造中に除去できる自然汚 染 OTA の割合は菌株間にかなりの変動が認められ、残留した OTA は 10~ 60%であった。ブドウ果汁に OTA を添加して発酵させた場合に残留した OTA は、17~32%であった。(参照 403)。

ブドウ園からワイン醸造にいたる OTA リスク管理についての重要管理点 (CCP)が示され、特にワインからの OTA 除去に対する活性炭、ベントナ イトなど種々の吸着材の効果とともにワインの品質、ポリフェノール含量 への影響が検討されている(参照 26,402,404)。

これらの研究における低減率は文献によりかなり異なるが、ワイン醸造が、工程中に OTA を相当量減少させることが示されている。

② コーヒー

A. ochraceus 又は*A. carbonarius* は主に収穫直後のコーヒー果実に感染 し OTA を産生する。乾燥処理が迅速で効果的であれば、OTA は産生しな いことが示されている。(参照 74)

焙煎工程がコーヒー豆中のOTA 濃度を減少させるという一般的な一致は あるものの、報告された減少率は大きく変動している。焙煎温度が、結果 に影響する主要な因子と考えられる。450℃の焙煎温度を用いた試験では、 焙煎時間を 3 段階に設定してコーヒーの最終温度を 175℃、185℃又は 204℃とする試験を行い、軽い焙煎(175℃)では、1 試料で OTA の減少は 起きなかったが、他の3 試料で 60~80%の減少がみられた。深い焙煎(204℃) では、全試料で 90%以上の減少がもたらされた。この工程は、代表的なエ スプレッソコーヒーの淹れ方に相当する。(参照 405)

人工的に汚染させたコーヒー豆 (OTA 30 μg/kg) を用いて、焙煎により 31%、抽出までに 72%、トルコ風コーヒーの調製により 88%、それぞれ OTA が減少したことが報告されている。(参照 406)

また、9 検体の自然汚染したベトナムコーヒー豆を 260℃で 5 分間焙煎す ると、13~93%の範囲で OTA が減少した。この焙煎コーヒー豆からエスプ レッソコーヒーを調製した場合、OTA に更に 16~71%の減少が起き、モカ コーヒーの調製では 17~56%の減少があり、ドリップコーヒーでは 1.2~ 25%の減少が認められた。(参照 407)

コーヒー豆の焙煎は、コーヒー中の OTA を低減するが、減少は変動しや すく、完全に予測できないという結論になる。

わが国では坪内らによって、コーヒー豆の選別による OTA の低減効果が 検討されている。(参照 408)

③ カカオ

ココアやチョコレートなどカカオ豆の加工品について OTA 検出率が高い

ことが報告されている。カカオ豆に OTA 産生菌を接種し、焙煎、脱殻、破砕、圧搾及び添加物の添加といった加工段階を経て、OTA 濃度がどのように推移するかの試験が行われ、加工処理後のチョコレート製品における OTA 減少率が平均 91%になり、製造段階での OTA 低減が示された。(参照 409)

④ 穀類(製粉、加工・調理)

A. ochraceus が産生する OTA で汚染される可能性のある主な食品は、貯蔵食物である。穀物を十分に乾燥し乾燥状態を維持することが重要である。 (参照 74)

試験室の管理条件において *P. verrucosum* を接種して調製した OTA 汚染 全粒小麦を用いて、洗浄、粒外皮のすり落とし、製粉工程における OTA の 消長が追跡された。全粒粉と精白小麦粉の両方を用いたパンを焼いた。外 皮すり落としで、小麦に存在する OTA が最大で 44%まで除去され、パン 焼き工程では、少量の追加減少があったのみであった。洗浄、すり落とし 及びフスマの除去を組み合わせることにより、白パンにおいて 75%の OTA 低減が報告されている。(参照 410)

小麦粉に含まれる OTA の製パン工程での消長について、焼成による OTA の平均低減率は 33%で、同時に行ったトリコテセン類(デオキシニバレノ ール、3・アセチルデオキシニバレノール及びニバレノール)の低減率(48 ~77%)と比較し、焼成に対する OTA の安定性が指摘された。パン生地の 発酵ではトリコテセン類と比較し、OTA はかなり低減(30~34%)するも のの、パンの焼成段階での低減率はトリコテセン類と比較して変化が少な かった。(参照 411)

OTA で汚染した全粒小麦の押し出し加工により, 商業的手順で使用され るような最も苛酷な条件でさえ、OTA は 40%しか減少しなかった(参照 412, 413)。この低減率は、以前、フモニシン、アフラトキシン及びゼアラレノン で報告されたものよりずっと低かった(参照 413)。

コメの調理による OTA の減少については、圧力炊飯の残存率が 60%で通常の炊飯の 72%に比較して効果的であることが報告されている。(参照 414)

Ⅳ. 食品健康影響評価

食品安全委員会が自らの判断で行う食品健康影響評価として、オクラト キシンA(OTA)の食品健康影響評価を実施した。

OTAは、*A. ochraceus、P. verrucosum*等の数種の菌によって産生され、 穀類、コーヒー、ココア、ビール、ワイン等様々な食品におけるOTA汚染 が報告されている。コーデックス委員会では、小麦、大麦及びライ麦にお けるOTAの最大基準値(5 μg/kg)を設定している。

OTAは消化管内微生物及び消化酵素により一部分解されてOTαとなる。 消化管から吸収されたOTAは、多くの動物種において血液を経由して主に 腎臓に分布する。血漿中においてはほとんどのOTAは、アルブミン等のタ ンパク質と結合している。OTAの一部は、腎臓及び肝臓でCYPにより酸化 されるが、これらOTA の酸化物及びOTαの毒性はOTAより低いことが示さ れている。OTAの半減期は、マウスでは1~1.5日、ラットでは2~11日、ブ タで4~6日、サバンナモンキーでは約20日との報告がある。

亜急性毒性試験では、OTAを投与した実験動物種の全てにおいて尿細管 部位特異的な腎毒性が認められた。腎臓髄質外層外帯の近位尿細管S3セグ メントには、巨大核細胞及び肥大した細胞がみられ、尿細管の萎縮及び組 織破壊もみられた。ラット及びブタにおいて、これら腎臓へのOTAの影響 は用量及び投与期間依存的であることが示されている。最も低い用量で毒 性が認められたのはブタ(雌)で、120日間OTAを混餌投与した結果、腎臓 における尿濃縮能の低下及び尿細管上皮細胞における退行性変性が認めら れ、LOAELは8 μg/kg 体重/日であった。

慢性毒性・発がん性試験では、げっ歯類にOTAを経口投与すると主に雄の腎臓髄質外層外帯に腫瘍が発生した。NTPで実施された2年間発がん性試験の結果、用量に依存して雄ラットの腎臓に腫瘍が認められた。LOAEL及びNOAELは、雄ラットで70 μg/kg 体重及び21 μg/kg 体重(いずれも週5 回投与、それぞれ50 μg/kg 体重/日及び15 μg/kg 体重/日に相当)であった。 一方、ブタを用いた慢性毒性試験では、40 μg/kg 体重/日のOTAを2年間投与した結果、尿細管萎縮や間質の線維化等、進行性の腎障害はみられたが、がんの誘発は認められなかった。

遺伝毒性試験では、遺伝子の点突然変異は検出されていないが、培養細胞を用いた試験で染色体異常が検出されている。また、トランスジェニックラット(*gpt* delta)を用いた*in vivo*遺伝毒性試験では腎臓髄質外層外帯にDNAの欠失変異が検出されているが、同部位に点突然変異は認められな

OTA又はその代謝物がDNAと共有結合して付加体を形成するか否かにつ いては不明である。培養細胞を用いた試験並びにげっ歯類及びブタへの OTA投与によりDNA付加体が検出されたとする報告もあるが、現時点では その構造が特定されていない。一方、同様の試験でDNA付加体が検出され なかったとの報告もあり、また、放射ラベルしたOTAを投与した試験では、 OTAのDNA付加体は検出されなかった。以上より、OTAはラットの腎臓髄 質外層外帯に欠失変異を誘発するものの、その変異がDNAへの直接的な作 用に起因することを示す証拠はない。したがって、OTAを遺伝毒性発がん 物質と結論することはできないと考えた。OTAの非遺伝毒性発がん物質と してのメカニズムに関しては、細胞周期の破たん、細胞増殖とアポトーシ スの変化、酸化ストレス、ミトコンドリアの機能低下、MAPキナーゼ等の シグナル伝達の変化、フェニルアラニンtRNA合成酵素、タンパク合成酵素 阻害、ヒストン等のアセチル化阻害等、がんに結びつく様々な原因が寄与 しているとする報告が多数ある。これらの知見より、食品安全委員会では、 OTA又はOTA代謝物がDNA付加体を形成する遺伝毒性発がん物質ではな く、DNAに間接的に作用する非遺伝毒性発がん物質と考えることが妥当で あると判断された。

ヒトへの影響に関して、バルカン風土病腎症及び泌尿器系腫瘍との疫学 的な関連についての知見は、アリストロキア酸等の他の環境要因と共に、 OTAもこれらのヒトの疾病の要因である可能性が示唆されている。しかし、 OTAをそれらのヒトの疾病の原因物質であると結論付けることのできる十 分な根拠は得られていない。

以上を踏まえ、食品安全委員会は、OTAはDNAに間接的に作用する非遺 伝毒性発がん物質であり、TDIを設定することが可能であると考えた。なお、 OTAのヒトを対象とした知見は限られており、用量反応関係の検討に利用 可能な知見がないことから、動物試験の結果に基づいた評価を実施した。

非発がん毒性に関して、各試験から得られたLOAELの最小値は、ブタの 亜急性毒性試験における8µg/kg 体重/日であった。このLOAELに、不確実 係数500(種差10、個体差10、不可逆的な腎障害を指標としたLOAEL使用 5)を適用して、OTAの非発がん毒性に関するTDIを16 ng/kg 体重/日と設 定した。

発がん性に関しては、発がん性に関するNOAELを基にTDIを設定するこ ととし、NTPのラットの2年間発がん性試験において、NOAELは21 μg/kg 体重(週5回投与、15 μg/kg 体重/日に相当)であったことから、このNOAEL に不確実係数1000(種差10、個体差10、発がん性10)を適用して、OTAの 発がん性に関するTDIを15 ng/kg 体重/日と設定した。

日本における暴露量を推定する目的で、流通している食品中のOTA汚染 実態調査が2004年~2010年に行われた結果、ココア、インスタントコーヒ ー、チョコレート、パスタ、日本蕎麦、レーズン、缶コーヒー、焙煎コー ヒー及び小麦粉から50%以上の頻度でOTAが検出された。モンテカルロ法 を用いたシミュレーションにより推計された年齢層別の体重当たりの一日 OTA暴露量は、1~6歳までの階層で最も多かったが、平均的な値を示す50 パーセンタイルでは0.14 ng /kg 体重/日、高リスクの消費者(95パーセン タイル値)でも2.21 ng/kg 体重/日であった。なお、2005年~2008年に行 われた食品中のOTAの汚染実態調査の結果、食肉製品においては検出限界 未満であった。

以上の暴露量の推計結果より、現状においては、OTAの暴露量は高リス ク消費者においても今回設定したTDIを下回っていると推定されることか ら、食品からのOTAの摂取が一般的な日本人の健康に悪影響を及ぼす可能 性は低いものと考えられる。

なお、OTAの主な産生菌は異なる生育条件では異なる種類の農作物及び 食品に生育し、また、OTAの汚染の程度は、気候等の影響を受けやすいこ とから、リスク管理機関において汚染状況についてのモニタリングを行う とともに、規格基準について検討することが望ましいと考える。

<今後の課題>

- OTAの腎臓における発がんメカニズムに関するデータの収集
- OTA のバイオマーカーによる我が国の暴露評価(血液中の OTA 及び代謝物 濃度の測定)
- OTAの健康影響についての疫学的データの収集
- 食品等の OTA 汚染実態データの収集

<略称>

略称	名称
4-OH-OTA	4- ヒドロキシオクラトキシンA
8-OHdG	8-ヒドロキシ-2'-デオキシグアノシン
ALP	アルカリホスファターゼ
ALT	アラニンアミノトランスアミナーゼ
AMP	アデニル酸
AST	アスパラギン酸アミノトランスフェラーゼ
BEN	バルカン風土病腎症
BMD	ベンチマークドーズ
BMDL	BMD の信頼下限値
BMDL ₁₀	頻度が 10%増加する BMD の信頼下限値
BUN	血中尿素窒素
C3G	シアニジン-O-B-グルコシド
Con A	コンカナバリン A
СҮР	シトクロム P450
DNA	デオキシリボ核酸
EFSA	欧州食品安全機関
EndoIII	エンドヌクレアーゼ III
EPA	米国環境保護庁
ERK 1/2	細胞外シグナル制御キナーゼ 1/2
Fpg	ホルムアミドピリミジン DNA グリコシラーゼ
GOT	グルタミン酸オキザロ酢酸トランスアミナーゼ
GSH	還元型グルタチオン
GST	グルタチオントランスフェラーゼ
γGT	γグルタミルトランスフェラーゼ
HDAC	ヒストンデアセチラーゼ
HO-1	ヘムオキシゲナーゼ・1
HPLC	高速液体クロマトグラフィー
HPRT	ヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ
IARC	国際がん研究機関
ICDH	イソクエン酸脱水素酵素
JECFA	FAO/WHO 合同食品添加物専門家会議
LAP	ロイシンアミノペプチダーゼ
LC-MS/MS	液体クロマトグラフタンデム質量分析計
LD_{50}	半数致死量
LDH	乳酸脱水素酵素
LOAEL	最小毒性量
LOOH	脂質ヒドロペルオキシド
LPO	脂質過酸化反応
MDA	マロンジアルデヒド

略称	名称
mRNA	伝令 RNA (リボ核酸)
NAC	N-アセチル-L-システイン
NADPH	還元型ニコチンアミドアデニンジヌクレオチドリン酸
NK	ナチュラルキラー
NMR	核磁気共鳴
NOAEL	無毒性量
NTP	米国国家毒性プログラム
OAT1	有機アニオントランスポーター1
OTA	オクラトキシンA
ОТВ	オクラトキシン B
OTC	オクラトキシン C
OTHQ	オクラトキシンハイドロキノン
OTQ	オクラトキシンキノン
ΟΤα	オクラトキシンα
PAH	パラアミノ馬尿酸
PB	フェノバルビタール
PCNA	增殖細胞核抗原
PC_S	カルボニル化タンパク質
PEPCK	ホスホエノールピルビン酸カルボキシキナーゼ
РКС	タンパク質キナーゼ
POD	Point of departure(健康栄養評価基準値等を設定する際の毒性 反応曲線の基準となる出発点の値)
PTWI	暫定最大耐容一週間摂取量
RNA	リボ核酸
ROS	活性酸素種
RSH	非タンパク質チオール基
SCOOP	Scientific Cooperation
SOD	スーパーオキシドジスムターゼ
TDI	耐容一日摂取量
TmPHA	パラアミノ馬尿酸の尿細管最大排泄量
tRNA	転移 RNA(リボ核酸)
Ubd	ユビキチン D
UDS	不定期 DNA 合成

<参照文献>

- 1 FAO. Worldwide regulations for mycotoxins in food and feed in 2003: FAO Food and Nutrition Papers 81. 2004; 1-165
- 2 EC. Commission Regulation (EC) No 1126/2007. http://www.fsai.ie/uploadedFiles/Commission_Regulation_EC_No_112 6_2007.pdfEC. 2007
- 3 IARC. IARC Monographs on the evaluation of carcinogenic risks to humans; Vol.56: Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. 1993; 489-521
- 4 FAO/WHO (Food and Agriculture Organization/World Health Organization), 1991. Evaluation of certain food additives and contaminants (Thirty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No 806, 1991, a nd corrigenda. World Health Organization, Geneva, Switzerland.
- 5 C. W. Hesseltine, E. E. Vandegraft, D. I. Fennell, M. L. Smith and O. L. Shotwell. Aspergilli as ochratoxin producers. Mycologia. 1972; 64: 539-550
- G J. C. Frisvad, J. M. Frank, J. A. M. P. Houbraken, A. F. A. Kuijpers and R. A. Samson. New ochratoxin A producing species of *Aspergillus* section *Circumdati*. Stud. Mycol. 2004; 50: 23-43
- S. Natori, S. Sakaki, H. Kurata, S. Udagawa, M. Ichinoe, M. Saito and M. Umeda. Chemical and cytotoxicity survey on the production of ochratoxins and penicillic acid by *Aspergillus ochraceus* Wilhelm. Chem.Pharm.Bull. 1970; 18: 2259-2268
- 8 宮木高明,山崎幹夫,堀江義一,宇田川俊一.米に着生する有害糸状菌の 検索と分布について.食衛誌.1970;11:373-380
- M. Yamazaki, Y. Maebayashi and K. Miyaki. Production of ochratoxin
 A by Aspergillus ochraceus isolated in Japan from moldy rice.
 Appl.Mycrobiol. 1970; 20: 452-454
- 10 堀江義一. オクラトキシン生産菌について. Proc. Jpn. Assoc. Mycotoxicol. 1983; 18: 2-5
- W. v. Walbeek, P. M. Scott, J. Harwig and J. W. Lawrence. *Penicillium viridicatum* Westling: A new source of ochratoxin A. Can. J. Microbiol. 1969; 15: 1281-1285
- 12 A. Ciegler, D. I. Fennell, G. A. Sansing, R. W. Detroy and G. A. Bennett. Mycotoxin-producing strains of *Penicillium viridicatum*: Classification into subgroups. Appl.Microbiol. 1973; 26: 271-278
- 13 J. I. Pitt. The Genus *Penicillium* and its teleomorphic states *Eupenicillium* and *Talaromyces*. Academic Press, Inc., London. 1979

- J. I. Pitt. *Penicillium viridicatum*, *Penicillium verrucosum* and production of ochratoxin A. Appl. Environ. Microbiol. 1987; 53: 266-269
- 15 T. O. Larsen, A. Svendsen and J. Smedsgaard. Biochemical characterization of ochratoxin A-producing strains of the genus *Penicillium*. Appl. Environ. Microbiol. 2001; 67: 3630-3635
- 16 S. Sonjak, M. Licen, J. C. Frisvad and N. Gunde-Cimerman. Salting of dry-cured meat - A potential cause of contamination with the ochratoxin A-producing species *Penicillium nordicum*. Food Microbiol. 2011; 28: 1111-1116
- 17 M. Schmidt-Heydt, E. Graf, D. Stoll and R. Geisen. The biosynthesis of ochratoxin A by *Penicillium* as one mechanism for adaptation to NaCl rich foods. Food Microbiol. 2012; 29: 233-241
- 18 F. E. Escher, P. E. Koehler and J. C. Ayres. Production of ochratoxins A and B on country cured ham. Appl Microbiol. 1973; 26: 27-30
- 19 A. Rodriguez, M. Rodriguez, A. Martin, J. Delgado and J. J. Cordoba. Presence of ochratoxin A on the surface of dry-cured Iberian ham after initial fungal growth in the drying stage. Meat Sci. 2012; 92: 728-734
- 20 堀江義一. Aspergillus carbonarius (Aspergillus section Nigri)の ochratoxinA生産性. 日菌報. 1995; 36: 73-76
- 21 L. Sage, D. Garon and F. Seigle-Murandi. Fungal microflora and ochratoxin A risk in French vineyards. J. Agric. Food Chem. 2004; 52: 5764-5768
- P. Battilani, P. Giorni and A. Pietri. Epidemiology of toxin-producing fungi and ochratoxin A occurrence in grape. Eur.J.Pl.Pathol. 2003; 109: 715-722
- P. Battilani, P. Giorni, T. Bertuzzi, S. Formenti and A. Pietri. Black aspergilli and ochratoxin A in grapes in Italy. Int.J.Food Microbiol. 2006; 111: S53-S60
- G. Perrone, G. Mule, A. Susca, P. Battilani, A. Pietri and A. Logrieco.
 Ochratoxin A production and amplified fragment length
 polymorphism analysis of Aspergillus carbonarius, Aspergillus
 tubingensis and Aspergillus niger strains isolated from grapes in Italy.
 Appl. Environ. Microbiol. 2006; 72: 680-685
- 25 P. V. Martinez-Culebras and D. Ramon. An ITS-RFLP method to identify black *Aspergillus* isolates responsible for OTA contamination in grapes and wine. Int.J.Food Microbiol. 2007; 113: 147-153
- 26 A. Visconti, G. Perrone, G. Cozzi and M. Solfrizzo. Managing ochratoxin A risk in the grape-wine food chain. Food Addit.Contam. 2008; 25: 193-202

- H. M. L. J. Joosten, J. Goetz, A. Pittet, M. Schellenberg and P. Bucheli.
 Production of ochratoxin A by Aspergillus carbonarius on coffee cherries. Int.J.Food Microbiol. 2001; 65: 39-44
- 28 M. H. Taniwaki, J. I. Pitt, A. A. Teixeira and B. T. Iamanaka. The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. Int.J.Food Microbiol. 2003; 82: 173-179
- 29 A. I. Kouadio, N. G. Agbo, A. Lebrihi, F. Mathieu and M. Dosso. Effect of the frequency of the mixing of coffee cherries put out for drying on the kinetics of drying and the relationship to ochratoxin A production. Food Addit.Contam. 2006; 23: 295-304
- 30 S. L. Leong, L. T. Hien, T. V. An, N. T. Trang, A. D. Hocking and E. S. Scott. Ochratoxin A-producing Aspergilli in Vietnamese green coffee beans. Lett.Appl.Microbiol. 2007; 45: 301-306
- G. Perrone, A. Susca, G. Cozzi, K. Ehrlich, J. Varga, J. C. Frisvad, M. Meijer, P. Noonim, W. Mahakarnchanakul and R. A. Samson. Biodiversity of *Aspergillus* species in some important agricultural products. Stud. Mycol. 2007; 59: 53-66
- A. Medina, R. Mateo, L. Lopez-Ocana, F. M. Valle-Algarra and M. Jimenez. Study of Spanish grape mycobiota and ochratoxin A production by isolates of *Aspergillus tubingensis* and other members of *Aspergillus* section *Nigri*. Appl. Environ. Microbiol. 2005; 71: 4696-4702
- P. V. Martinez-Culebras, A. Crespo-Sempere, M. Sanchez-Hervas, P. Elizaquivel, R. Aznar and D. Ramon. Molecular characterization of the black *Aspergillus* isolates responsible for ochratoxin A contamination in grapes and wine in ration to taxonomy of *Aspergillus* section *Nigri*. Int.J.Food Microbiol. 2009; 132: 33-41
- 34 R. A. Samson, J. A. M. P. Houbraken, A. F. A. Kuijpers, J. M. Frank and J. C. Frisvad. New ochratoxin A or sclerotium producing species in *Aspergillus* section *Nigri*. Stud. Mycol. 2004; 50: 45-61
- K. J. v. d. Merwe, P. S. Steyn, L. Fourie, D. B. Scott and J. J. Theron.
 Ochratoxin A, a toxic metabolite produced by *Aspergillus ochraceus*Wilh. Nature. 1965; 205: 1112-1113
- 36 D. B. Scott. Toxigenic fungi isolated from cereal and legume products.
 Mycopathol.Mycol.Appl. 1965; 25: 213-222
- O. L. Shotwell, C. W. Hesseltine and M. L. Goulden. Ochratoxin A:
 Occurence as natural contaminant of a corn sample. Appl.Mycrobiol.
 1969; 17: 765-766
- 38 O. L. Shotwell, C. W. Hesseltine, M. L. Goulden and E. E. Vandegraft. Survey of corn for aflatoxin, zearalenone, and ochratoxin. Cereal

Chemists, inc., 1970; 47: 700-707

- 39 P. M. Scott, W. v. Walbeek, J. Harwig and D. I. Fennell. Occurrence of a mycotoxin, ochratoxin A, in wheat and isolation of ochratoxin A and citrinin producing strains of *Penicillium viridicatum*. Can.J.Plant Sci. 1970; 50: 583-585
- 40 P. M. Scott, W. v. Walbeek, B. Kennedy and D. Anyeti. Mycotoxins (ochratoxin A, citrinin and sterigmatocystin) and toxigenic fungi in grains and other agricultural products. J. Agric. Food Chem. 1972; 20: 1103-1109
- P. Krogh, B. Hald and E. J. Pedersen. Occurrence of ochratoxin A and citrinin in cereals associated with mycotoxic porcine nephropathy. Acta Pathol. Microbiol. Scand. Sect. B. 1973; 81: 689-695
- 42 M. Nakajima, H. Tsubouchi, M. Miyabe and Y. Ueno. Survey of aflatoxin B₁ and ochratoxin A in commercial green coffee beans by high-performance liquid chromatography linked with immunoaffinity chromatography. Food Agric.Immun. 1997; 9: 77-83
- R. Mateo, A. Medina, E. M. Mateo, F. Mateo and M. Jimenez. An overview of ochratoxin A in beer and wine. Int.J.Food Microbiol. 2007; 119: 79-83
- B. Zimmerli and R. Dick. Ochratoxin A in table wine and grape-juice:
 Occurrence and risk assessment. Food Addit.Contam. 1996; 13:
 655-668
- 45 P. Krogh. Causal associations of mycotoxic nephropathy. Acta Pathol. Microbiol. Scand. Sect. A. 1978; 269: 1-28
- A. Pfhol-Leszkowicz, T. Petkova-Bocharova, I. N. Chernozemsky and M. Castegnaro. Balkan endemic nephropathy and associated urinary tract tumours: A review on aetiological causes and the potential role of mycotoxins. Food Addit.Contam. 2002; 19: 282-302
- M. M. Abouzied, A. D. Horvath, P. M. Podlesny, N. P. Regina, V. D. Metodiev, R. M. Kamenova-Tozeva, N. D. Niagolova, A. D. Stein, E. A. Petropoulos and V. S. Ganev. Ochratoxin A cconcentrations in food and feed from a region with Balkan Endemic Nephropathy. Food Addit.Contam. 2002; 19: 755-764
- 48 T. Vrabcheva, T. Petkova-Bocharova, F. Grosso, I. Nikolov, I. N. Chernozemsky, M. Castegnaro and S. Dragacci. Analysis of ochratoxin A in foods consumed by inhabitants from an area with Balkan Endemic Nephropathy: A 1 month follow-up study. J. Agric. Food Chem. 2004; 52: 2404-2410
- 49 C. A. D. R. Rosa, V. Palacios, M. Combina, M. E. Fraga, A. D. O. Rekson, C. E. Magnoli and A. M. Dalcero. Potential ochratoxin A

producers from wine grapes in Argentina and Brazil. Food Addit.Contam. 2002; 19: 408-414

- 50 矢崎廣久,高橋治男,七山悠三. 貯蔵肉の *Penicillium verrucosum* var. *verrucosum*による自然汚染とマイコトキシン生産性について. Proc. Jpn. Assoc. Mycotoxicol. 1980; 10: 29-31
- 51 杉本貞三,南沢正敏,高野和子,笹村靖子,鶴田理. Penicillium viridicatum と Aspergillus versicolorによる貯蔵米のオクラトキシンA、シトリニン、およびステリグマトシスチンの自然汚染について.食衛誌. 1977; 18: 176-181
- 52 EC. Assessment of dietary intake of ochratoxin A by the population of EU member states. Reports on tasks for scientific cooperation, Task 3.2.7. http://ec.europa.eu/food/fs/scoop/3.2.7_en.pdf. 2002
- 53 Q. Wu, V. Dohnal, L. Huang, K. Kuca, X. Wang, G. Chen and Z. Yuan. Metabolic pathways of ochratoxin A. Curr Drug Metab. 2011; 12: 1-10
- 54 A. Pfohl-Leszkowicz and R. A. Manderville. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007; 51: 61-99
- 55 S. Suzuki, T. Satoh and M. Yamazaki. The pharmacokinetics of ochratoxin A in rats. Jpn.J. Pharmacol. 1977; 27: 735-744
- 56 M. S. Madhyastha, R. R. Marquardt and A. A. Frohlich. Hydrolysis of ochratoxin A by the microbial activity of digesta in the gastrointestinal tract of rats. Arch.Environ.Contam.Toxicol. 1992; 23: 468-472
- 57 C. E. Hansen, S. Dueland, C. A. Drevon and F. C. Stormer. Metabolism of ochratoxin A by primary cultures of rat hepatocytes. Appl. Environ. Microbiol. 1982; 43: 1267-1271
- 58 S. M. Madhyastha, R. R. Marquardt, A. A. Frohlich, G. Platford and D. Abramson. Effects of different cereal and oilseed substrates on the growth and production of toxihs by *Aspergillus alutaceus* and *Penicdlium verrucosum*. J. Agric. Food Chem. 1990; 38: 1506-1510
- F. C. Stomer, O. Storen, C. E. Hansen, J. I. Pedersen and A. J. Aasen.
 Formation of (4*R*)- and (4*S*)-4-hydroxyochratoxin A and
 10-hydroxyochratoxin A from ochratoxin A by rabbit liver microsomes.
 Appl. Environ. Microbiol. 1983; 45: 1183-1187
- 60 M. Kanisawa and S. Suzuki. Induction of renal and hepatic tumors in mice by ochratoxin A, a mycotoxin. Gann. 1978; 69: 599-600
- 61 K. Moroi, S. Suzuki, T. Kuga, M. Yamazaki and M. Kanisawa. Reduction of ochratoxin A toxicity in mice treated with phenylalanine and phenobarbital. Toxicol.Lett. 1985; 25: 1-5
- 62 P. Galtier, J. L. Charpenteau, M. Alvinerie and C. Labouche. The pharmacokinetic profile of ochratoxin A in the rat after oral and

intravenous administration. Drug Metabol. Dispos. 1979; 7: 429-434

- H. Pettersson, K. H. Kiessling and P. Ciszuk. Degradation of ochratoxin A in rumen. In: Proceedings, V International IUPAC Symposium Mycotoxins and Phycotoxins, September 1-3, 1982, Vienna, Austrria. 1982; Austrian Chemical Society: 313-316
- K. Hult, A. Teiling and S. Gatenbeck. Degradation of ochratoxin A by a ruminant. Appl. Environ. Microbiol. Appl. Environ. Microbiol. 1976; 32: 443-444
- 65 G. Battacone, A. Nudda and G. Pulina. Effects of ochratoxin A on livestock production. Toxins. 2010; 2: 1796-1824
- 66 K. H. Kiessling, H. Pettersson, K. Sandholm and M. Olsen. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl. Environ. Microbiol. 1984; 47: 1070-1073
- 67 M. J. Pitout. The hydrolysis of ochratoxin A by some proteolytic enzymes. Biochem.Pharmacol. 1969; 18: 485-491
- 68 R. W. Paker, T. D. Phillips, L. F. Kubena, L. H. Russell and N. D. Heidelbaugh. Inhibition of pancreatic carboxypeptidase A: A possible mechanism of interaction between penicillic acid and ochratoxin A. J. Environ. Sci. Health. 1982; B17: 77-91
- 69 S. Kumagai and K. Aibara. Intestinal absorption and secretion of ochratoxin A in the rat. Toxicol. Appl. Pharmacol. 1982; 64: 94-102
- S. Kumagai. Effects of plasma ochratoxin A and luminal pH on the jejunal absorption of ochratoxin A in rats. Food Chem. Toxicol. 1988; 26: 753-758
- O. Storen, P. Helgerud, H. Holm and F. C. Stormer. Formation of (4R)-4-hydroxyochratoxin A and ochratoxin α from ochratoxin A by rats. In: Proceedings, V International IUPAC Symposium Mycotoxins and Phycotoxins, September 1-3,1982, Vienna, Austria, Austrian Chem. Soc., Vienna. 1982; 321-324
- 72 R. Fuchs, B. Radic, M. Peraica, K. Hult and R. Plestina. Enterohepatic circulation of ochratoxin A in rats. Period.Biol. 1988; 90: 39-42
- A. Roth, K. Chakor, E. E. Creppy, A. Kane, R. Roschenthaler and G. Dirheimer. Evidence for an enterohepatic circulation of ochratoxin A in mice. Toxicology. 1988; 48: 293-308
- FAO/WHO (Food and Agriculture Organisation/World Health Organisation),
 2001. Ochratoxin A. In: Safety evaluation of certain mycotoxins in food,
 Prepared by the 56th Meeting of the Joint FAO/WHO Expert Committee on
 Food Additives (JECFA). WHO Food Additives Series 47, pp 281–387. World
 Health Organisation, Geneva, Switzerland.

- P. Galtier, M. Alvinerie and J. L. Charpenteau. The pharmacokinetic profiles of ochratoxin A in pigs, rabbits and chickens. Food Cosmet. Toxicol. 1981; 19: 735-738
- S. Hagelberg, K. Hult and R. Fuchs. Toxicokinetics of ochratoxin A in several species and its plasma-binding properties. J. Appl. Toxicol. 1989; 9: 91-96
- P. Galtier. Contribution of pharmacokinetic studies to mycotoxicology ochratoxin A. Vet. Sci. Commun. 1978; 1: 349-358
- S. Kumagai. Ochratoxin A: Plasma concentration and excretion into bile and urine in albumin-deficient rats. Food Chem. Toxicol. 1985; 23: 941-943
- P. Galtier, R. Camguilhem and G. Bodin. Evidence for *in vitro* and *in vivo* interaction between ochratoxin A and three acidic drugs. Food Cosmet. Toxicol. 1980; 18: 493-496
- 80 R. Stojkovic, K. Hult, S. Gamulin and R. Plestina. High affinity binding of ochratoxin A to plasma constituents. Biochem.Int. 1984; 9: 33-38
- 81 T. Kuiper-Goodman and P. M. Scott. Risk Assessment of the Mycotoxin Ochratoxin A. Biomed. Environ. Sci. 1989; 2: 179-248
- D. R. Dietrich, A. H. Heussner and E. O'Brien. Ochratoxin A: comparative pharmacokinetics and toxicological implications (experimental and domestic animals and humans). Food Addit.Contam. 2005; 22: 45-52
- Y. Fukui, K. Hoshino, Y. Kameyama, T. Yasui, C. Toda and H. Nagano.
 Placental transfer of ochratoxin A and its cytotoxic effect on the mouse
 embryonic brain. Food Chem. Toxicol. 1987; 25: 17-24
- P. Galtier, B. Boneu, J. L. Charpenteau, G. Bodin, M. Alvinerie and J.
 More. Physiopathology of haemorrhagic syndrome related to ochratoxin A intoxication in rats. Food Cosmet. Toxicol. 1979; 17: 49-53
- M. B. Ballinger, T. D. Phillips and L. F. Kubena. Assessment of the distribution and elimination of ochratoxin A in the pregnant rat. J.Food Saf. 1986; 8: 11-24
- H. Zepnik, W. Volkel and W. Dekant. Toxicokinetics of the mycotoxin ochratoxin A in F344 rats after oral administration. Toxicol.Appl.Pharmacol. 2003; 192: 36-44
- Y. Auffray and P. Boutibonnes. Evaluation of the genotoxic activity of some mycotoxins using *Escherichia coli*, in the SOS spot test. Mutat.Res. 1986; 171: 79-82
- 88 A. Vettorazzi, E. Gonzalez-Penas, I. F. Troconiz, L. Arbillaga, L. A. Corcuera, A. G. Gil and A. L. d. Cerain. A different kinetic profile of

ochratoxin A in mature male rats. Food Chem. Toxicol. 2009; 47: 1921-1927

- 89 H. P. Mortensen, B. Hald and A. Madsen. Feeding experiments with ochratoxin A contaminated barley for bacon pigs. 5. Ochratoxin A in pig blood. Acta Agric.Scand. 1983; 33: 235-239
- O. Sreemannarayana, A. A. Frohlich, T. G. Vitti, R. R. Marquardt and
 D. Abramson. Studies of the tolerance and disposition of ochratoxin A
 in young calves. J.Anim.Sci. 1988; 66: 1703-1711
- 91 I. Studer-Rohr, J. Schlatter and D. R. Dietrich. Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Arch. Toxicol. 2000; 74: 499-510
- R. Fuchs, L.E. Appelgren and K. Hult. Distribution of ¹⁴C-ochratoxin A in the mouse monitored by whole-body autoradiography. Pharmacol. Toxicol. 1988; 63: 355-360
- A. Breitholtz-Emanuelsson, R. Fuchs, K. Hult and L. E. Appelgren.
 Synthesis of 14C-ochratoin A and 14C-ochratoxin B and a comparative study of their distribution in rats using whole body autoradiography. Pharmacol.Toxicol. 1992; 70: 255-261
- J. C. Gautier, J. Richoz, D. H. Welti, J. Markovic, E. Gremaud, F. P. Guengerich and R. J. Turesky. Metabolism of ochratoxin A: Absence of formation of genotoxic derivatives by human and rat enzymes. Chem. Res. Toxicol. 2001; 14: 34-45
- 95 S. C. Lee, J. T. Beery and F. S. Chu. Immunohistochemical fate of ochratoxin A in mice. Toxicol Appl Pharmacol. 1984; 72: 218-227
- 96 G. Schwerdt, K. Bauer, M. Gekle and S. Silbernagl. Accumulation of ochratoxin A in rat kidney in vivo and in cultivated renal epithelial cells in vitro. Toxicology. 1996; 114: 177-185
- 97 N. Aoudia, E. K. Tangni and Y. Larondelle. Distribution of ochratoxin A in plasma and tissues of rats fed a naturally contaminated diet amended with micronized wheat fibres: effectiveness of mycotoxin sequestering activity. Food Chem Toxicol. 2008; 46: 871-878
- 98 N. Aoudia, P. Callu, F. Grosjean and Y. Larondelle. Effectiveness of mycotoxin sequestration activity of micronized wheat fibres on distribution of ochratoxin A in plasma, liver and kidney of piglets fed a naturally contaminated diet. Food Chem Toxicol. 2009; 47: 1485-1489
- 99 A. Vettorazzi, I. F. de Troconiz, E. Gonzalez-Penas, L. Arbillaga, L. A. Corcuera, A. G. Gil and A. L. de Cerain. Kidney and liver distribution of ochratoxin A in male and female F344 rats. Food Chem Toxicol. 2011; 49: 1935-1942
- 100 A. Mally, H. Keim-Heusler, A. Amberg, M. Kurz, H. Zepnik, P. Mantle,

W. Volkel, G. C. Hard and W. Dekant. Biotransformation and nephrotoxicity of ochratoxin B in rats. Toxicol Appl Pharmacol. 2005; 206: 43-53

- P. G. Mantle. Interpretation of the pharmacokinetics of ochratoxin A in blood plasma of rats, during and after acute or chronic ingestion. Food Chem. Toxicol. 2008; 46: 1808-1816
- 102 V. Zlender, D. Breljak, M. Ljubojevic, D. Flajs, D. Balen, H. Brzica, A. M. Domijan, M. Peraica, R. Fuchs, N. Anzai and I. Sabolic. Low doses of ochratoxin A upregulate the protein expression of organic anion transporters Oat1, Oat2, Oat3 and Oat5 in rat kidney cortex. Toxicol Appl Pharmacol. 2009; 239: 284-96
- 103 K. Hult, E. Hokby, U. Hagglund, S. Gatenbeck, L. Rutqvist and G. Sellyey. Ochratoxin A in pig blood: method of analysis and use as a tool for feed studies. Appl. Environ. Microbiol. 1979; 38: 772-776
- 104 F. Elling, J. P. Nielsen, E. B. Lillehoj, M. S. Thomassen and F. C. Stømer. Ochratoxin A-induced porcine nephropathy: Enzyme and ultrastructure changes after short-term exposure. Toxicology. 1985; 23: 247-254
- 105 J. Harwig, T. Kuiper-Goodman and P. M. Scott. Microbial food toxicants: Ochratoxins. In: Rechcigl, M., ed., Handbook of Foodborne Diseases of Biological Origin, Boca Raton, FL: CRC Press. 1983; 193-238
- 106 P. Krogh, F. Elling, B. Hald, A. E. Larsen, E. B. Lillehoj, A. Madsen and H. P. Mortensen. Time-dependent disappearance of ochratoxin A residues in tissues of bacon pigs. Toxicology. 1976; 6: 235-242
- 107 A. Madsen, H. P. Mortensen and B. Hald. Feeding experiments with ochratoxin A contaminated barley for bacon pigs. I. Influence on pig performance and residues. Acta Agric. Scand. 1982; 32: 225-239
- 108 B. J. Shreeve, D. S. P. Patterson and B. A. Roberts. The 'carry-over' of aflatoxin, ochratoxin and zearalenone from naturally contaminated feed to tissues, urine and milk of dairy cows. Food Cosmet Toxicol. 1979; 17: 151-152
- 109 M. A. Stander, T. W. Nieuwoudt, P. S. Steyn, G. S. Shephard, E. E. Creppy and V. Sewram. Toxicokinetics of ochratoxin A in vervet monkeys (*Cercopithecus aethiops*). Arch. Toxicol. 2001; 75: 262-269
- J. Fink-Gremmels. Conclusion from the workshops on ochratoxin A in food: recent developments and significance. Organized by ILSI Europe in Baden (Austria), 29 June-1 July 2005. Food Addit.Contam. 2005; 22(suppl.1): 1-5
- 111 W. Follmann and S. Lucas. Effects of the mycotoxin ochratoxin A in a

bacterial and a mammalian in vitro mutagenicity test system. Arch.Toxicol. 2003; 77: 298-304

- P. Krogh, F. Elling, B. Hald, B. Jylling, V. E. Petersen, E. Skadhauge and C. K. Svendsen. Experimental avian nephropathy. Pathol.Microbiol.Scand.A. 1976; 84: 215-221
- T. Juszkiewicz, J. Piskorska-Pliszczynska and H. Wisniewska. Ochratoxin A in laying hens.: Tissue deposition and passage into eggs.
 "In: Mycotoxins and Phycotoxins. Proceedings of the V international IUPAC Symposium, Vienna, Technical University, 1-2 September.". 1982; 122-125
- M. Denli, J. C. Blandon, M. E. Guynot, S. Salado and J. F. Perez. Efficacy of a new ochratoxin-binding agent (OcraTox) to counteract the deleterious effects of ochratoxin A in laying hens. Poult. Sci. 2008; 87: 2266-2272
- 115 R. Fuchs, L.E. Appelgren, S. Hagelberg and K. Hult. Carbon-14-ochratoxin A distribution in the Japanese quail. (*Coturnix coturnix japonica*) monitored by whole body autoradiography. Poult. Sci. 1988; 67: 707-714
- 116 J. Piskorska-Pliszczynska and T. Juszkiewicz. Tissue deposition and passage into eggs of ochratoxin A in Japanese quail. J. Environ. Pathol. Toxicol. Oncol. 1990; 10: 8-10
- A. Breitholtz-Emanuelsson, I. Palminger-Hallen, P. O. Wholin, A. Oskarsson, K. Hult and M. Olsen. Transfer of ochratoxin A from lactating rats to their offspring: A short-term study. Nat.Toxins. 1993; 1: 347-352
- 118 L. E. Appelgren and R. G. Arora. Distribution of ¹⁴C-labelled ochratoxin A in pregnant mice. Food Chem. Toxicol. 1983; 21: 563-568
- L. E. Appelgren and R. G. Arora. Distribution studies of ¹⁴C-labelled aflatoxin B₁ and ochratoxin A in pregnant mice. Vet Res.Commun. 1983; 7: 141-144
- 120 I. P. Hallen, A. Breitholtz-Emanuelsson, K. Hult, M. Olsen and A. Oskarsson. Placental and lactational transfer of ochratoxin A in rats. Nat.Toxins. 1998; 6: 43-49
- 121 E. V. Ferrufino-Guardia, E. K. Tangni, Y. Larondelle and S. Ponchaut. Transfer of ochratoxin A during lactation: Exposure of suckling via the milk of rabbit does fed a naturally-contaminated feed. Food Addit.Contam. 2000; 17: 167-175
- 122 D. S. P. Patterson, B. A. Roberts and B. J. Small. Metabolism of ochratoxins A and B in the pig during early pregnancy and the accumulation in body tissues of ochratoxin A only. Food

Cosmet.Toxicol. 1976; 14: 439-442

- 123 H. P. Mortensen, B. Hald, A. E. Larsen and A. Madsen. Ochratoxin A contaminated barley for sows and piglets. Pig performance and residues in milk and pigs. Acta Agric.Scand. 1983; 33: 349-352
- H. Barnikol and A. Thalmann. [Clinical observations in the pig in relation to the mycotoxins ochratoxin A and zearalenone.].[in German]. Tierarztl. Umsch. 1988; 43: 74-82
- 125 W. E. Ribelin, K. Fukushima and P. E. Still. The toxicity of ochratoxin to ruminants. Can. J. Comp. Med. 1978; 42: 172-176
- F. C. Stomer, C. E. Hansen, J. I. Pedersen, G. Hvistendahl and A. J. Aasen. Formation of (4R)- and (4S)-4-hydroxyochratoxin A from ochratoxin A by liver microsomes from various species. Appl. Environ. Microbiol. 1981; 42: 1051-1056
- R. D. Hutchison, and P. S. Steyn. The isolation and structure of 4-hydroxyochratoxin A and 7-carboxy-3,4-dihydro-8-hydroxy-3-methylisocoumarin from Penicillium viridicatum. Tetrahedron Lett. 1971; 43: 4033-4036.
- R. F. Omar, H. V. Gelboin and A. D. Rahimtula. Effect of cytochrome p450 induction on the metabolism and toxicity of ochratoxin A. Biochem.Pharmacol. 1996; 51: 207-216
- H. Zepnik, A. Pahler, U. Schauer and W. Dekant. Ochratoxin A-induced tumor formation: is there a role of reactive ochratoxin A metabolites? Toxicol.Sci. 2001; 59: 59-67
- 130 S. Obrecht-Pflumio, T. Chassat, G. Dirheimer and D. Marzin. Genotoxicity of ochratoxin A by *Salmonella* mutagenicity test after bioactivation by mouse kidney microsomes. Mutat. Res. 1999; 446: 95-102
- 131 P. Galtier and M. Alvinerie. *In vitro* transformation of ochratoxin A by animal microbial floras. Ann Rech Vet. 1976; 7: 91-98
- R. Fuchs, K. Hult, M. Peraica, B. Radic and R. Plestina. Conversion of ochratoxin C into ochratoxin A in vivo. Appl Environ Microbiol. 1984; 48: 41-42
- H. L. Trenk, M. E. Butz and F. S. Chu. Production of ochratoxins in different cereal products by *Aspergillus ochraceus*. Appl Microbiol. 1971; 21: 1032-1035
- K. Gross-Steinmeyer, J. Weymann, H. G. Hege and M. Metzler. Metabolism and lack of DNA reactivity of the mycotoxin ochratoxin A in cultured rat and human primary hepatocytes. J.Agric.Food Chem. 2002; 50: 938-945
- 135 J. E. Jennings-Gee, M. Tozlovanu, R. Manderville, M. S. Miller, A.

Pfohl-Leszkowicz and G. G. Schwartz. Ochratoxin A: *In utero* exposure in mice induces adducts in testicular DNA. Toxins. 2010; 2: 1428-1444

- 136 O. Storen, H. Holm and F. C. Stormer. Metabolism of ochratoxin A by rats. Appl. Environ. Microbiol. 1982; 44: 785-789
- A. Mally, H. Zepnik, P. Wanek, E. Eder, K. Dingley, H. Ihmels, W. Volkel and W. Dekant. Ochratoxin A: lack of formation of covalent DNA adducts. Chem.Res.Toxicol. 2004; 17: 234-242
- 138 P. P. Sokol, G. Ripich, P. D. Holohan and C. R. Ross. Mechanism of ochratoxin A transport in kidney. J,Pharmacol.Exp.Ther. 1988; 246: 460-465
- J. Dai, G. Park, J. L. Perry, Y. V. Il'ichev, D. A. J. Bow, J. B. Pritchard,
 V. Faucet, A. Pfohl-Leszkowicz, R. A. Manderville and J. D. Simon.
 Molecular aspects of the transport and toxicity of ochratoxin A.
 Acc.Chem.Res. 2004; 37: 874-881
- M. Tsuda, T. Sekine, M. Takeda, S. H. Cha, Y. Kanai, M. Kimura and
 H. Endou. Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther. 1999; 289: 1301-1305
- S. Subramanian, A. Kanthasamy, N. Balasubramanian, N. Sekar and
 S. Govindasamy. Ochratoxin A toxicity on carbohydrate metabolism in rats. Bull. Environ. Contam. Toxicol. 1989; 43: 180-184
- A. D. Rahimtula and X. Chong. Alterations in calcium homeostasis as a possible cause of ochratoxin A nephrotoxicity. In: Castegnaro, M., Plestina, R., Dirheimer, G., Chernozemsky, I.N. and Bartsch, H., eds, Mycotoxins, Endemic Nephropathy and Urinary Tract Tumours (IARC Scientific Publications No. 115) Lyon: IARCPress. 1991; 207-214
- 143 R. C. Braunberg, O. Gantt, C. Barton and L. Friedman. *In vitro* effects of the nephrotoxins ochratoxin A and citrinin upon biochemical function of porcine kidney. Arch.Environ.Contam.Toxicol. 1992; 22: 464-470
- E. E. Creppy, A. A. Lugnier, G. Beck, R. Roschenthaler and G. Dirheimer. Action of ochratoxin A on cultured hepatoma cells-reversion of inhibition by phenylalanine. FEBS Lett. 1979; 104: 287-290
- E. E. Creppy, R. Roschenthaler and G. Dirheimer. Inhibition of protein synthesis in mice by ochratoxin A and its prevention by phenylalanine. Food Chem. Toxicol. 1984; 22: 883-886
- E. E. Creppy, A. A. J. Lugnier, F. Fasiolo, K. Heller, R. Roschenthaler and G. Dirheimer. In vitro inhibition of yeast phenylalanyl-tRNA synthetase by ochratoxin A. Chem.Biol.Interact. 1979; 24: 257-261

- 147 E. E. Creppy, M. Schlegel, R. Roschenthaler and G. Dirheimer.
 Phenylalanine prevents acute poisoning by ochratoxin A in mice.
 Toxicol.Lett. 1980; 6: 77-80
- 148 A. Roth, E. E. Creppy, A. Kane, H. Bacha, P. S. Steyn, R. Roschenthaler and G. Dirheimer. Influence of ochratoxin B on the ochratoxin A inhibition of phenylalanyl-tRNA formation in vitro and protein synthesis in hepatoma tissue culture cells. Toxicol.Lett. 1989; 45: 307-313
- E. E. Creppy, D. Kern, P. S. Steyn, R. Vleggaar, R. Roschenthaler and
 G. Dirheimer. Comparative study of the effect of ochratoxin A analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol.Lett. 1983; 19: 217-224
- 150 E. E. Creppy, F. C. Stormer, D. Kern, R. Roschenthaler and G. Dirheimer. Effects of ochratoxin A metabolites on yeast phenylalanyl-tRNA synthetase and on the growth and in vivo protein synthesis of hepatoma cells. Chem. Biol. Interactions. 1983; 47: 239-247
- R. Roschenthaler, E. E. Creppy and G. Dirheimer. Ochratoxin A: On the mode of action of a ubiquitous mycotoxin. Toxin Reviews. 1984; 3: 53-86
- 152 E. E. Creppy, K. Chakor, M. J. Fisher and G. Dirheimer. The mycotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes and in vivo. Arch.Toxicol. 1990; 64: 279-284
- A. D. Rahimtula, J. C. Bereziat, V. Bussacchini-Griot and H. Bartsch.
 Lipid peroxidation as a possible cause of ochratoxin A toxicity.
 Biochem.Pharmacol. 1988; 37: 4469-4477
- R. F. Omar, B. B. Hasinoff, F. Mejilla and A. D. Rahimtula. Mechanism of ochratoxin A stimulated lipid peroxidation. Biochem.Pharmacol. 1990; 40: 1183-1191
- 155 R. C. Braunberg, C. Barton, O. O. Gantt and L. Friedman. Interaction of ctrinin and ochratoxin A. Nat.Toxins. 1994; 2: 124-131
- 156 I. Baudrimont, A. M. Betbeder, A. Gharbi, A. Pfohl-Leszkowitcz, G. Dirheimer and E. E. Creppy. Effect of superoxide dismutase and catalase on the nephrotoxicity induced by subchronical administration of ochratoxin A in rats. Toxicology. 1994; 89: 101-111
- 157 M. Gekle, H. Oberleithner and S. Silbernagl. Ochratoxin A impairs "postproximal" nephron function in vivo and blocks plasma membrane anion conductance in Madin-Darby canine kidney cells in vitro. Pflugers Arch. 1993; 425: 401-408

- 158 M. A. Albassam, S. I. Yong, R. Bhatnagar, A. K. Sharma and M. G. Prior. Histopathologic and electron microscopic studies on the acute toxicity of ochratoxin A in rats. Vet. Pathol. 1987; 424: 427-435
- 159 K. Chakor, E. E. Creppy and G. Dirheimer. In vivo studies on the relationship between hepatic metabolism and toxicity of ochratoxin A. Arch.Toxicol.Suppl. 1988; 12: 201-204
- 160 R. Verma and D. Chakraborty. Alterations in DNA, RNA and protein contents in liver and kidney of mice treated with ochratoxin and their amelioration by *Emblica officinalis* aqueous extract. Acta Pol. Pharm. 2008; 65: 3-9
- 161 I. C. Munro, C. A. Moodie, T. Kuiper-Goodman, P. M. Scott and H. C. Grice. Toxicologic changes in rats fed graded dietary levels of ochratoxin A. Toxicol. Appl. Pharmacol. 1974; 28: 180-188
- 162 S. Suzuki, Y. Kozuka, T. Satoh and M. Yamazaki. Studies on the nephrotoxicity of ochratoxin A in rats. Toxicol. Appl. Pharmacol. 1975; 34: 479-490
- 163 F. Hatey and P. Galtier. [Short term toxicity of ochratoxin A in rats; some biochemical manifestations of intoxication .].[in French]. Ann. Rech. Vet. 1977; 8: 7-12
- H. Meisner and P. Selanik. Inhibition of renal gluconeogenesis in rats by ochratoxin. Biochem. J. 1979; 180: 681-684
- 165 H. Meisner and L. Polsinelli. Changes of renal mRNA species abundance by ochratoxin A. Biochem.Pharmacol. 1986; 35: 661-665
- 166 H. Meisner, M. A. Cimbala and R. W. Hanson. Decrease of renal phosphoenolpyruvate carboxykinase RNA and poly(A)⁺ RNA level by ochratoxin A. Arch. Biochem. Biophys. 1983; 223: 264-270
- 167 A. Kane, E. E. Creppy, R. Röschenthaler and G. Dirheimer. Changes in urinary and renal tubular enzymes caused by subchronic administration of ochratoxin A in rats. Toxicology. 1986; 42: 233-243
- 168 A. Mally, W. Volkel, A. Amberg, M. Kurtz, P. Wanek, E. Eder, G. Hard and W. Dekant. Functional, biochemical and pathological effects of repeated oral administration of ochratoxin A to rats. Chem.Res.Toxicol. 2005; 18: 1242-1252
- 169 H. Malekinejad, A. A. Farshid and N. Mirzakhani. Liquorice plant extract reduces ochratoxin A-induced nephrotoxicity in rats. Exp Toxicol Pathol. 2011; 63: 125-130
- 170 Kumar SN, Telang AG, Singh KP, Jain AK, Afroz M and Patil RD. Experimentally induced toxicity of ochratoxin A and endosulfan in male Wistar rats: A hormonal disorder. J. Animal and Veterinary Advances. 2011; 10: 1750-1755

- 171 R. M. Gibson, C. A. Bailey, L. F. Kubena, W. E. Huff and R. B. Harvey. Impact of L-phenylalanine supplementation on the performance of three-week-old broilers fed diets cintaining ochratoxin A. 1. Effects on body weight, feed conversion, relative organ weight, and mortality. Poult. Sci. 1990; 69: 414-419
- S. Gupta, N. Jindal, R. S. Khokhar, R. K. Asrani, D. R. Ledoux and G.
 E. Rottinghaus. Individual and combined effects of ochratoxin A and *Salmonella enterica* serovar Gallinarum infection on pathological changes in broiler chickens. Avian Pathol. 2008; 37: 265-272
- 173 N. Q. Hanif, G. Muhammad, M. Siddique, A. Khanum, T. Ahmed, J. A. Gadahai and G. Kaukab. Clinico-pathomorphological, serum biochemical and histological studies in broilers fed ochratoxin A and a toxin deactivator (Mycofix[®] Plus). Br. Poult. Sci. 2008; 49: 632-642
- M. Kumar, P. Dwivedi, A. K. Sharma, N. D. Singh and R. D. Patil. Ochratoxin A and citrinin nephrotoxicity in New Zealand White rabbits: An ultrastructual assessment. Mycopathologia. 2007; 163: 21-30
- P. C. Prabu, P. Dwivedi and A. K. Sharma. Toxicopathological studies on the effects of aflatoxin B₁, ochratoxin A and their interaction in New Zealand White rabbits. Exp Toxicol Pathol. 2013; 65: 277-286
- 176 D. N. Kitchen, W. W. Carlton and E. J. Hinsman. Ochratoxin A and citrinin induced nephrosis in beagle dogs III. Terminal renal ultrastructural alterations. Vet. Pathol. 1977; 14: 392-406
- 177 D. N. Kitchen, W. W. Carlton and J. Tuite. Ochratoxin A and citrinin induced nephrosis in beagle dogs. I. Clinical and clinicopathological features. Vet. Pathol. 1977; 14: 154-172
- D. N. Kitchen, W. W. Carlton and J. Tuite. Ochratoxin A and citrinin induced nephrosis in beagle dogs. II. Pathology. Vet. Pathol. 1977; 14: 261-272
- 179 G. M. Szczech, W. W. Carlton, J. Tuite and R. Caldwell. Ochratoxin A toxicosis in swine. Vet Pathol. 1973; 10: 347-364
- P. Krogh, N. H. Axelsen, F. Elling, N. Gyrd-Hansen, B. Hald, J. Hyldgaard-Jensen, A. E. Larsen, A. Madsen, H. P. Mortensen, T. Moller, O. K. Petersen, U. Ravnskov, M. Rostgaard and O. Aalund. Experimental porcine nephropathy. Changes of renal function and structure induced by ochratoxin A- contaminated feed. Acta Pathol Microbiol Scand Suppl. 1974; 0: 1-21
- 181 F. Elling. Ochratoxin A-induced mycotoxic porcine nephropathy: alterations in enzyme activity in tubular cells. Acta Pathol. Microbiol.

Scand. 1979; 87: 237-243

- 182 F. Elling. Feeding experiments with ochratoxin A-contaminated barley to bacon pigs. IV. Renal lesions. Acta. Agric. Scand. 1983; 33: 153-159
- 183 H. Meisner and P. Krogh. Phosphoenolpyruvate carboxykinase as a selective indicator of ochratoxin A induced nephropathy. Dev. Toxicol. Environ. Sci. 1986; 14: 199-206
- 184 P. Krogh, N. Gyrd-Hansen, B. Hald, S. Larsen, J. P. Nielsen, M. Smith, C. Ivanoff and H. Meisner. Renal enzyme activities in experimental ochratoxin A-induced porcine nephropathy: diagnostic potential of phosphoenolpyruvate carboxykinase and gamma-glutamyl transpeptidase activity. J. Toxicol. Environ. Health. 1988; 23: 1-14
- 185 S. D. Stoev, S. Vitanov, G. Anguelov, T. Petkova-Bocharova and E. E. Creppy. Experimental mycotoxic nephropathy in pigs provoked by a diet containing ochratoxin A and penicillic acid. Vet. Res. Commun. 2001; 25: 205-223
- 186 S. D. Stoev, M. Paskalev, S. MacDonald and P. G. Mantle. Experimental one year ochratoxin A toxicosis in pigs. Exp. Toxicol. Pathol. 2002; 53: 481-487
- 187 R. Verma and D. Chakraborty. *Emblica officinalis* aqueous extract ameliorates ochratoxin-induced lipid peroxidation in the testis of mice. Acta Pol. Pharm. 2008; 65: 187-194
- 188 P. Krogh and F. Elling. Mycotoxic nephropathy. Vet. Sci. Commun. 1977; 1: 51-63
- 189 M. Kanisawa. Synergistic effect of citrinin on hepatorenal carcinogenesis of Ochratoxin A in mice. In: Kurata,H. and Ueno,Y., Toxigenic Fungi - Their Toxins and Health Hazard. Tokyo: Kodansha and Amsterdam: Elsevier. 1984; 245-254
- 190 A. M. Bendele, W. W. Carlton, P. Krogh and E. B. Lillehoj. Ochratoxin A carcinogenesis in the (C57BL/6J \times C3H)F₁ mouse. J. Natl. Cancer Inst. 1985; 75: 733-742
- 191 NTP. NTP technical report on the toxicology and carcinogenesis studies of ochratoxin A (CAS NO. 303-47-9) in F344/N rats (gavage studies). NIH Publication No. 88-2813 (G. Boorman, Ed.), Research Triangle Park, NC U.S. Department of Health and Human Services National Institutes of Health. 1989
- 192 E. Rached, G. C. Hard, K. Blumbach, K. Weber, R. Draheim, W. K. Lutz, S. Ozden, U. Steger, W. Dekant and A. Mally. Ochratoxin A: 13-week oral toxicity and cell proliferation in male F344/N rats. Toxicol.Sci. 2007; 97: 288-298
- 193 P. G. Mantle. Minimum tolerable exposure period and maximum

threshold dietary intake of ochratoxin A for causing renal cancer in male Dark Agouti rats. Food Chem Toxicol. 2009; 47: 2419-2424

- 194 P. Mantle and E. Kulinskaya. Lifetime, low-dose ochratoxin A dietary study on renal carcinogenesis in male Fischer rats. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010; 27: 1566-1573
- 195 A. M. Bendele and W. W. Carlton. Incidence of obstructive uropathy in male B6C3F₁ mice on a 24-month carcinogenicity study and its apparent prevention by ochratoxin A. Lab. Anim. Sci. 1986; 36: 282-285
- 196 C. N. Rao. Obstructive uropathy in group caged male B6C3F1 mice on a 24-month carcinogenicity study. Lab. Anim. Sci. 1987; 37: 8-9
- 197 USEPA. Benchmark dose software (BMDS) version 1.4.1. http://www.epa.gov/ncea/bmds/about.html. 2007
- 198 FAO/WHO (Food and Agriculture Organisation/World Health Organisation), 2008. Ochratoxin A. In: Safety evaluation of certain food additives and contamination, Prepared by the 68th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series 59, pp 354–437. World Health Organisation, Geneva, Switzerland.
- 199 P. Mantle, E. Kulinskaya and S. Nestler. Renal tumourigenesis in male rats in response to chronic dietary ochratoxin A. Food Addit.Contam. 2005; 22:58-64
- 200 EFSA. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Comission related to ochratoxin A in food. the EFSA Journal. 2006; 365: 1-56
- 201 R. G. Arora and H. Frölén. Interference of mycotoxins with prenatal development of the mouse. II. Ochratoxin A induced teratogenic effects in relation to the dose and stage of gestation. Acta Vet. Scand. 1981; 22: 535-552
- 202 J. Singh and R. D. Hood. Maternal protein deprivation enhances the teratogenicity of ochratoxin A in mice. Teratology. 1985; 32: 381-388
- 203 Y. Fukui, S. Hayasaka, M. Itoh and Y. Takeuchi. Development of neurons and synapses in ochratoxin A-induced microcephalic mice: A quantitative assessment of somatosensory cortex. Neurotox. Teratol. 1992; 14: 191-196
- 204 R. Katagiri, M. Kurome, Y. Teshima, E. Ueta and I. Naruse. Prevention of ochratoxin A-induced neural tube defects by folic acid in the genetic polydactyly/arhinencephaly mouse, *Pdn/Pdn*. Congenit. Anom. 2007; 47: 90-96
- 205 J. Moré and P. Galtier. [Toxicity of ochratoxin A. I. Embryotoxic and

teratogenic effect in rats.] [in French]. Ann. Rech.Vet. 1974; 5: 167-178

- J. Moré and P. Galtier. [Toxicity of ochratoxin A. II. Effect of treatment on the progeny (F₁ and F₂) of intoxicated rats.][in French]. Ann. Rech.Vet. 1975; 6: 379-389
- 207 M. H. Brown, G. M. Szczech and B. P. Purmalis. Teratogenic and toxic effects of ochratoxin A in rats. Toxicol. Appl. Pharmacol. 1976; 37: 331-338
- 208 A. Gharbi, O. Trillon, A. M. Betbeder, J. Counord, M. F. Gauret, A. Pfohl-Leszkowicz, G. Dirheimer and E. E. Creppy. Some effects of ochratoxin A, a mycotoxin contaminating feeds and food, on rat testis. Toxicology. 1993; 83: 9-18
- 209 M. A. Abdel-Wahhab, S. A. Nada and M. S. Arbid. Ochratoxicosis: Prevention of developmental toxicity by L-methionine in rats. J. Appl. Toxicol. 1999; 19: 7-12
- P. B. Wangikar, P. Dwivedi and N. Sinha. Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B₁. I. Maternal toxicity and fetal malformations. Birth Defects Res. B Dev. Reprod. Toxicol. 2004; 71: 343-351
- 211 R. D. Patil, P. Dwivedi and A. K. Sharma. Critical period and minimum single oral dose of ochratoxin A for inducing developmental toxicity in pregnant Wistar rats. Reprod. Toxicol. 2006; 22: 679-687
- P. B. Wangikar, P. Dwivedi, N. Sinha, A. K. Sharma and A. G. Telang. Teratogenic effects in rabbits of simultaneous exposure to ochratoxin A and aflatoxin B₁. with special reference to microscopic effects. Toxicology. 2005; 215: 37-47
- P. B. Wangikar, P. Dwivedi, A. K. Sharma and N. Sinha. Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B₁. II. Histopathological features of teratological anomalies induced in fetuses. Birth Defects Res. B Dev. Reprod. Toxicol. 2004; 71: 352-358
- F. C. Wehner, P. G. Thiel, S. J. v. Rensburg and I. P. C. Demasius.
 Mutagenicity to *Salmonella typhimurium* of some Aspergillus and Penicillium mycotoxins. Mutat.Res. 1978; 58: 193-203
- 215 M. H. Kuczuk, P. M. Benson, H. Heath and A. W. Hayes. Evaluation of the mutagenic potential of mycotoxins using *Salmonella typhimurium* and *Saccharomyces cerevisiae*. Mutat.Res. 1978; 53: 11-20
- A. M. Bendele, S. B. Neal, T. J. Oberly, C. Z. Thompson, B. J. Bewsey,
 L. E. Hill, M. A. Rexroat, W. W. Carlton and G. S. Probst. Evaluation of
 ochratoxin A for mutagenicity in a battery of bacterial and
 mammalian cell assays. Food Chem. Toxicol. 1985; 23: 911-918
- 217 F. E. Würgler, U. Friederich and J. Schlatter. Lack of mutagenicity of

ochratoxin A and B, citrinin, patulin and cnestine in *Salmonella typhimurium* TA102. Mutat.Res. 1991; 261: 209-216

- 218 A. Hennig, J. Fink-Gremmels and L. Leistner. Mutagenicity and effects of ochratoxin A on the frequency of sister chromatid exchange after metabolic activation. In: Castegnaro, M., Plestina, R., Dirheimer, G., Chernozemsky, I.N. and Bartsch, H., eds, Mycotoxins, Endemic Nephropathy and Urrinary Tract Tumours, Lyon, France, International Agency for Research on Cancer. (IARC Scientific Publication No. 115). 1991; 255-260
- V. Ehrlich, F. Darroudi, M. Uhl, H. Steinkellner, M. Gann, B. J. Majer,
 M. Eisenbauer and S. Knasmuller. Genotoxic effects of ochratoxin A in human-derived hepatoma (HepG2) cells. Food Chem. Toxicol. 2002; 40: 1085-1090
- H. Bartsch, C. Malaveille, A. M. Camus, G. Martel-Planche, G. Brun, A. Hautefeuille, N. Sabadie, A. Barbin, T. Kuroki, C. Drevon, C. Piccoli and R. Montesano. Validation and comparative studies on 180 chemicals with *S.typhimurium* strains and V79 Chinese hamster cells in the presence of various metabolizing systems. Mutat.Res. 1980; 76: 1-50
- W. Follmann and S. Lucas. Effects of the mycotoxin ochratoxin A in a bacterial and a mammalian in vitro mutagenicity test system. Arch.Toxicol. 2003; 77: 298-304
- 222 M. Umeda, T. Tsutsui and M. Saito. Mutagenicity and inducibility of DNA single-strand breaks and chromosome aberrations by various mycotoxins. Gann. 1977; 68: 619-625
- 223 E. M. d. Groene, I. G. A. M. Hassing, M. J. Blom, W. Seinen, J. Fink-Gremmels and G. J. Horbach. Development of human cytochrome P450-expressing cell lines: Application in mutagenicity testing of ochratoxin A. Cancer Res. 1996; 56: 299-304
- 224 N. Palma, S. Cinelli, O. Sapora, S. H. Wilson and E. Dogliotti. Ochratoxin A-induced mutagenesis in mammalian cells is consistent with the production of oxidative stress. Chem Res Toxicol. 2007; 20: 1031-1037
- 225 G. H. Degen, M. M. Gerber, S. Obrecht-Pflumio and G. Dirheimer. Induction of micronuclei with ochratoxin A in ovine seminal vesicle cell cultures. Arch. Toxicol. 1997; 71: 365-371
- 226 E. Dopp, J. Müller, C. Hahnel and D. Schiffmann. Induction of genotoxic effects and modulation of the intracellular calcium level in Syrian hamster embryo(SHE) fibroblasts caused by ochratoxin A. Food Chem. Toxicol. 1999; 37: 713-721

- 227 Y. Manolova, G. Manolov, L. Parvanova, T. Petkova-Bocharova, M. Castegnaro and I. N. Chernozemsky. Induction of characteristic chromosomal aberrations, particularly X-trisomy, in cultured human lymphocytes treated by ochratoxin A, a mycotoxin implicated in Balkan endemic nephropathy. Mutat.Res. 1990; 231: 143-149
- 228 M. B. Lioi, A. Santoro, R. Barbieri, S. Salzano and M. V. Ursini. Ochratoxin A and zearalenone: a comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Mutat. Res. 2004; 557: 19-27
- 229 P. Mosesso, S. Cinelli, J. Pinero, R. Bellacima and G. Pepe. In vitro cytogenetic results supporting a DNA nonreactive mechanism for ochratoxin A, potentially relevant for its carcinogenicity. Chem. Res. Toxicol. 2008; 21: 1235-1243
- 230 Y. Ueno and K. Kubota. DNA-attacking ability of carcinogenic mycotoxins in recombination-deficient mutant cells of *Bacillus subtillis*. Cancer Res. 1976; 36: 445-451
- 231 C. Malaveille, G. Brun and H. Bartsch. Structure-activity studies in *E. coli* strains on ochratoxin A (OTA) and its analogues implicate a genotoxic free radical and a cytotoxic thiol derivative as reactive metabolites. Mutat. Res. 1994; 307: 141-147
- E. E. Creppy, A. Kane, G. Dirheimer, C. Lafarge-Frayssinet, S. Mousset and C. Frayssinet. Genotoxicity of ochratoxin A in mice: DNA single-strand break evaluation in spleen, liver and kidney. Toxicol. Lett. 1985; 28: 29-35
- 233 R. Stetina and M. Votava. Induction of DNA single-strand breaks and DNA synthesis inhibition by patulin, ochratoxin A, citrinin, and aflatoxin B₁, in cell lines CHO and AWRF. Folia Biol. 1986; 32: 128-144
- 234 S. Lebrun and W. Föllmann. Detection of ochratoxin A-induced DNA damage in MDCK cells by alkaline single cell gel electrophoresis (comet assay). Arch.Toxicol. 2002; 75: 734-741
- H. G. Kamp, G. Eisenbrand, J. Schlatter, K. Wurth and C. Janzowski.
 Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary calls. Toxicology. 2005; 206: 413-425
- Y. Simaro Doorten, S. Nijmeijer, L. d. Nijs-Tjon and J. Fink-Gremmels.
 Metabolism-mediated ochratoxin A genotoxicity in the single-cell gel electrophoresis (comet) assay. Food Chem. Toxicol. 2006; 44: 261-270
- 237 S. Lebrun, K. Golka, H. Schulze and W. Föllmann. Glutathione S-transferase polymorphisms and ochratoxin A toxicity in primary

human urothelial cells. Toxicology. 2006; 224: 81-90

- 238 L. Arbillaga, A. Azqueta, J. H. M. v. Delft and A. L. d. Cerain. *In vitro* gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicol.Appl.Pharmacol. 2007; 220: 216-224
- L. Arbillaga, A. Azqueta, O. Ezpeleta and A. L. d. Cerain. Oxidative DNA damage induced by ochratoxin A in the HK-2 human kidney cell line: Evidence of the relationship with cytotoxity. Mutagenesis. 2007; 22: 35-42
- 240 S. Cosimi, L. Orta, S. Mateos and F. Cortés. The mycotoxin ochratoxin A inhibits DNA topoisomerase II and induces polyploidy in cultured CHO cells. Toxicol. In Vitro. 2009; 23: 1110-1115
- 241 H. Mori, K. Kawai, F. Ohbayashi, T. Kuniyasu, M. Yamazaki, T. Hamasaki and G. M. Williams. Genotoxicity of a variety of mycotoxins in the hepacyte primary culture/DNA repair test using rat and mouse hepatocytes. Cancer Res. 1984; 44: 2918-2923
- 242 A. Dorrenhaus and W. Föllmann. Effects of ochratoxin A on DNA repair in cultures of rat hepatocytes and porcine urinary bladder epithelial cells. Arch.Toxicol. 1997; 71: 709-713
- A. Flieger, A. Dorrenhaus, K. Golka, H. Schulze and W. Föllmann.
 Genotoxic effect of the mycotoxin ochratoxin A in cultured human urothelial cells. Occup.Hyg. 1998; 4: 297-307
- A. Dorrenhaus, A. Flieger, K. Golka, H. Schlze, M. Albrecht, G. H. Degen and W. Föllmann. Induction of unscheduled DNA synthesis in primary human urothelial cells by the mycotoxin ochratoxin A. Toxicol.Sci. 2000; 53: 271-277
- 245 R. Cooray. Effects of some mycotoxins on mitogen-induced blastogenesis and SCE frequency in human lymphocytes. Food Chem. Toxicol. 1984; 22: 529-534
- 246 D. Kumari and S. P. Sinha. Effect of retinol on ochratoxin-produced genotoxicity in mice. Food Chem. Toxicol. 1994; 32: 471-475
- 247 S. Bose and S. P. Sinha. Modulation of ochratoxin-produced genotoxicity in mice by vitamin C. Food Chem. Toxicol. 1994; 32: 533-537
- A. Mally, G. Pepe, S. Ravoori, M. Fiore, R. C. Gupta, W. Dekant and P. Mosesso. Ochratoxin A causes DNA damge and cytogenetic effects but no DNA adducts in rats. Chem.Res.Toxicol. 2005; 18: 1253-1261
- 249 A. Bouslimi, C. Bouaziz, I. Ayed-Boussema, W. Hassen and H. Bacha. Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on
chromosome aberrations in mice bone marrow cells. Toxicology. 2008; 251: 1-7

- 250 A. Kane, E. E. Creppy, A. Roth, R. Röschenthaler and G. Dirheimer. Distribution of the [³H]-label from low doses of radioactive ochratoxin A ingested by rats, and evidence for DNA single-strand breaks caused in liver and kidneys. Arch.Toxicol. 1986; 58: 219-224
- 251 H. G. Kamp, G. Eisenbrand, C. Janzowski, J. Kiossev, J. R. Latendresse, J. Schlatter and R. J. Turesky. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats. Mol. Nutr. Food Res. 2005; 49: 1160-1167
- D. Zeijezic, A.-M. Domijan and M. Peraica. DNA damage by ochratoxin
 A in rat kidney assessed by the alkaline comet assay. Braz. J. Med.
 Biol. Res. 2006; 39: 1563-1568
- 253 D. Hibi, Y. Suzuki, Y. Ishii, M. Jin, M. Watanabe, Y. Sugita-Konishi, T. Yanai, T. Nohmi, A. Nishikawa and T. Umemura. Site-specific *in vivo* mutagenicity in the kidney of *gpt* delta rats given a carcinogenic dose of ochratoxin A. Toxicol Sci. 2011; 122: 406-414
- 254 J. Reiss. Detection of genotoxic properties of mycotoxins with the SOS chromotest. Naturwissenschaftern. 1986; 73: 677-678
- V. Sava, O. Reunova, A. Velasquez, R. Harbison and J. Sanchez-Ramos.
 Acute neurotoxic effects of the fungal metabolite ochratoxin-A.
 Neurotoxicology. 2006; 27: 82-92
- 256 A. Belmadani, G. Tramu, A. M. Betbeder and E. E. Creppy. Subchronic effects of ochratoxin A on young adult rat and partial prevention by aspartame, a sweetner. Hum. Exp. Toxicol. 1998; 17: 380-386
- 257 T. Zanic-Grubisic, A. Santini, I. Cepelak, K. Barisic, D. Juretic and S. Pepeljnjak. Influence of ochratoxin A treatment on the activity of membrane bound enzymes in rat brain regions. Biol. Chem. Hoppe Seyler. 1996; 377: 121-127
- 258 P. M. Dortant, G. W. M. Peters-Volleberg, H. V. Loveren, R. R. Marquardt and G. J. A. Speijers. Age-related differences in the toxicity of ochratoxin A in female rats. Food Chem. Toxicol. 2001; 39: 55-65
- 259 N. Delibas, I. Altuntas, Z. Yonden and N. Ozcelik. Ochratoxin A reduces NMDA receptor subunits 2A and 2B concentrations in rat hippocampus: partial protective effect of melatonin. Hum. Exp. Toxicol. 2003; 22: 335-339
- 260 J. Liu, Y. Wang, J. Cui, L. Xing, H. Shen, S. Wu, H. Lian, J. Wang, X. Yan and X. Zhang. Ochratoxin A induces oxidative DNA damage and G1 phase arrest in human peripheral blood mononuclear cells *in vitro*. Toxicol Lett. 2012; 211: 164-171

- 261 M. G. Prior and C. S. Sisodia. The effects of ochratoxin A on the immune response of Swiss mice. Can. J. Comp. Med. 1982; 46: 91-96
- 262 A. Thuvander, A. Breitholtz-Emanuelsson, D. Brabencova and I. Gadhasson. Prenatal exposure of Balb/c mice to ochratoxin A: Effects on the immune system in the offspring. Food Chem. Toxicol. 1996; 34: 547-554
- 263 A. Thuvander, E. Funseth, A. Breitholtz-Emanuelsson, I. P. Hallen and A. Oskarsson. Effects of ochratoxin A on the rat immune system after perinatal exposure. Nat. Toxins. 1996; 4: 141-147
- 264 L. Alvarez, A. G. Gil, O. Ezpeleta, J. A. Garcia-Jalon and A. L. d. Cerain. Immunotoxic effects of ochratoxin A in Wistar rats after oral administration. Food Chem. Toxicol. 2004; 42: 825-834
- 265 M. Kanisawa, S. Suzuki, Y. Kozuka and M. Yamazaki. Histopathological studies on the toxicity of ochratoxin A in rats I. Acute oral toxicity. Toxicol. Appl. Pharmacol. 1977; 42: 55-64
- 266 P. Dwivedi and R. B. Burns. Pathology of ochratoxicosis A in young broiler chicks. Res.Vet.Sci. 1984; 36: 92-103
- V. Rupic, B. Liker, S. Muzic, C. Bogdanic and I. Balzer. [The effects of ochratoxin A in feed on the blood content of lipids and proteins in chickens.]. [in Serbo-Croatian]. Arh. Hig. Rada. Toxsikol. 1978; 29: 139-145
- 268 P. Dwivedi and R. B. Burns. Effect of ochratoxin A on immunoglobulins in broiler chicks. Res. Vet. Sci. 1984; 36: 117-121
- 269 M. L. Campbell. Jr, J. D. May, W. E. Huff and J. A. Doerr. Evaluation of immunity of young broiler chickens during simultaneous aflatoxicosis and ochratoxicosis. Poult. Sci. 1983; 62: 2138-2144
- 270 R. B. Harvey, L. F. Kubena, S. A. Naqi, J. E. Gyimah, D. E. Corrier, B. Panigrahy and T. D. Phillips. Immunologic effects of low levels of ochratoxin A in ovo: Utilization of a chicken embryo model. Avian Dis. 1987; 31: 787-791
- 271 G. S. Singh, H. V. S. Chauhan, G. J. Jha and K. K. Singh. Immnosuppression due to chronic ochratoxicosis in broiler chicks. J.Comp.Pathol. 1990; 103: 399-410
- 272 C. Friis, R. Brinn and B. Hald. Uptake of ochratoxin A by slices of pig kidney cortex. Toxicology. 1988; 52: 209-217
- 273 H. Endou, C. Koseki, H. Yamada and T. Obara. Evaluation of nephrotoxicity using isolated nephron segments. Dev. Toxicol. Environ. Sci. 1986; 14: 207-216
- 274 A. Dahlmann, W. H. Dantzler, S. Silbernagl and M. Gekle. Detailed mapping of ochratoxin A reabsorption along the rat nephron *in vivo*:

the nephrotoxin can be reabsorbed in all nephron segments by different mechanisms. J Pharmacol Exp Ther. 1998; 286: 157-162

- 275 M. Zingerle, S. Silbernagl and M. Gekle. Reabsorption of the nephrotoxin ochratoxin A along the rat nephron *in vivo*. J Pharmacol Exp Ther. 1997; 280: 220-224
- 276 A. Takeuchi, S. Masuda, H. Saito, T. Abe and K. Inui. Multispecific substrate recognition of kidney-specific organic anion transporters OAT-K1 and OAT-K2. J Pharmacol Exp Ther. 2001; 299: 261-267
- 277 N. Anzai, P. Jutabha, A. Enomoto, H. Yokoyama, H. Nonoguchi, T. Hirata, K. Shiraya, X. He, S. H. Cha, M. Takeda, H. Miyazaki, T. Sakata, K. Tomita, T. Igarashi, Y. Kanai and H. Endou. Functional characterization of rat organic anion transporter 5 (*Slc22a19*) at the apical membrane of renal proximal tubules. J Pharmacol Exp Ther. 2005; 315: 534-544
- H. Kusuhara, T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S. H. Cha, Y. Sugiyama, Y. Kanai and H. Endou. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem. 1999; 274: 13675-13680
- 279 K. Y. Jung, M. Takeda, D. K. Kim, A. Tojo, S. Narikawa, B. S. Yoo, M. Hosoyamada, S. H. Cha, T. Sekine and H. Endou. Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001; 69: 2123-2135
- E. Babu, M. Takeda, S. Narikawa, Y. Kobayashi, A. Enomoto, A. Tojo,
 S. H. Cha, T. Sekine, D. Sakthisekaran and H. Endou. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002; 1590: 64-75
- 281 I. Leier, J. Hummel-Eisenbeiss, Y. Cui and D. Keppler. ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000; 57: 1636-1642
- 282 K. Y. Jung and H. Endou. Nephrotoxicity assessment by measuring cellular ATP content. II. Intranephron site of ochratoxin A nephrotoxicity. Toxicol. Appl. Pharmacol. 1989; 100: 383-390
- 283 S. C. N. Buist, N. J. Cherrington, S.Choudhuri, D. P. Hartley and C. D. Klaassen. Gender-specific and developmental influences on the expression of rat organic anion transporters. J. Pharmacol. Exp. Ther. 2002; 301: 145-151
- 284 S. C. N. Buist and C. D. Klaassen. Rat and mouse differences in gender-predominant expression of organic anion transporter (Oat1-3; *Slc22a6-8*) mRNA levels. Drug Metab. Dispos. 2004; 32: 620-625
- 285 M. Ljubojevic, C. M. Herak-Kramberger, Y. Hagos, A. Bahn, H. Endou,

G. Burckhardt and I. Sabolic. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am J Physiol Renal Physiol. 2004; 287: F124-138

- A. Mally. Ochratoxin a and mitotic disruption: mode of action analysis of renal tumor formation by ochratoxin A. Toxicol Sci. 2012; 127: 315-330
- 287 C. E. Adlouni, E. Pinelli, B. Azemar, D. Zaoui, P. Beaune and A. Pfohl-Leszkowicz. Phenobarbital increases DNA adduct and metabolites formed by ochratoxin A: Role of CYP 2C9 and microsomal glutathione-S-transferase. Environ. Mol. Mutag. 2000; 35: 123-131
- 288 A. Pfohl-Leszkowicz, E. Pinelli, H. Bartsch, U. Mohr and M. Castegnaro. Sex- and strain-specific expression of cytochrome P450s in ochratoxin A-induced genotoxicity and carcigenocity in rats. Mol. Carcinog. 1998; 23: 76-85
- 289 S. Obrecht-Pflumio and G. Dirheimer. In vitro DNA and dGMP adducts formation caused by ochratoxin A. Chem. Biol. Interactions. 2000; 127: 29-44
- K. Hadjeba-Medjdoub, M. Tozlovanu, A. Pfohl-Leszkowicz, C. Frenette,
 R. J. Paugh and R. A. Manderville. Structure-activity relationships imply different mechanisms of action for ochratoxin A-mediated cytotoxicity and genotoxicity. Chem Res Toxicol. 2012; 25: 181-190
- R. A. Manderville. A case for the genotoxicity of ochratoxin A by bioactivation and covalent DNA adduction. Chem. Res. Toxicol. 2005; 18: 1091-1097
- J. Dai, M. W. Wright and R. A. Manderville. Ochratoxin A forms a carbon-bonded C8-deoxyguanosine nucleoside adduct: implications for C8 reactivity by a phenolic radical. J Am Chem Soc. 2003; 125: 3716-3717
- 293 P. G. Mantle, V. Faucet-Marquis, R. A. Manderville, B. Squillaci and A. Pfohl-Leszkowicz. Structures of covalent adducts between DNA and ochratoxin A: A new factor in debate about genotoxicity and human risk assessment. Chem Res Toxicol. 2010; 23: 89-98
- 294 V. Faucet, A. Pfohl-Leszkowicz, J. Dai, M. Castegnaro and R. A. Manderville. Evidence for covalent DNA adduction by ochratoxin A following chronic exposure to rat and subacute exposure to pig. Chem. Res. Toxicol. 2004; 17: 1289-1296
- M. Tozlovanu, V. Faucet-Marquis, A. Pfohl-Leszkowicz and R. A. Mandeville. Genotoxicity of the hydroquinone metabolite of ochratoxin
 A: Structure-activity relationships for covalent DNA adduction.

Chem.Res.Toxicol. 2006; 19: 1241-1247

- 296 A. Mally and W. Dekant. DNA adduct formation by ochratoxin A: review of the available evidence. Food Addit. Contam. 2005; 22: 65-74
- R. J. Turesky. Perspective: ochratoxin A is not a genotoxic carcinogen. Chem. Res. Toxicol. 2005; 18: 1082-1090
- 298 A. Pfohl-Leszkowicz, K. Chakor, E. E. Creppy and G. Dirheimer. DNA adduct formation in mice treated with ochratoxin A. In: Castegnaro, M., Plestina, R., Dirheimer, G., Chernozemsky, I.N. and Bartsch, H., eds, Mycotoxins, Endemic Nephropathy and Urinary Tract Tumours. Lyon, France, Internationak Agency for Research on Cancer (IARC Scientific Publications No. 115). 1991; 245-253
- 299 T. Delatour, A. Mally, J. Richoz, S. Ozden, W. Dekant, H. Ihmels, D. Otto, D. Gasparutto, M. Marin-Kuan, B. Schilter and C. Cavin. Absence of 2'-deoxyguanosine-carbon 8-bound ochratoxin A adduct in rat kidney DNA monitored by isotope dilution LC-MS/MS. Mol. Nutr. Food Res. 2008; 52: 472-482
- 300 A. Pfohl-Leszkowicz, H. Bartsch, B. Azemar, U. Mohr, J. Esteve and M. Castegnaro. MESNA protects rats against nephrotoxicity but not carcinogenicity induced by ochratoxin A, implicating two separate pathways. Med. Biol. 2002; 9: 57-63
- 301 A. Pfohl-Leszkowicz, Y. Grosse, A. Kane, E. E. Creppy and G. Dirheimer. Differential DNA adduct formation and disappearance in three mouse tissues after treatment with the mycotoxin ochratoxin A. Mutat Res. 1993; 289: 265-273
- 302 A. Pfohl-Leszkowicz, W. Gabryelski and R. A. Manderville. Formation of 2'-deoxyguanosine-carbon 8-bound ochratoxin A adduct in rat kidney DNA. Mol Nutr Food Res. 2009; 53: 154-155; author reply 156-157
- D. Hibi, A. Kijima, K. Kuroda, Y. Suzuki, Y. Ishii, M. Jin, M. Nakajima,
 Y. Sugita-Konishi, T. Yanai, T. Nohmi, A. Nishikawa and T. Umemura.
 Molecular mechanisms underlying ochratoxin A-induced genotoxicity:
 global gene expression analysis suggests induction of DNA
 double-strand breaks and cell cycle progression. J Toxicol Sci. 2013;
 38: 57-69
- D. Hibi, A. Kijima, Y. Suzuki, Y. Ishii, M. Jin, Y. Sugita-Konishi, T. Yanai, A. Nishikawa and T. Umemura. Effects of p53 knockout on ochratoxin A-induced genotoxicity in p53-deficient gpt delta mice. Toxicology. 2013; 304: 92-99
- 305 J. A. Swenberg and R. R. Maronpot. Chemically induced cell proliferation as a criterion in selecting doses for long-term bioassays.

In: Chemically Induced Cell Proliferation: Implications for Risk Assessment ,New York: Wiley-Liss. 1991; 245-251

- 306 D. R. Dietrich and J. A. Swenberg. Renal carcinogenesis. In: Hook, J.B. and Goldstein, R.S., eds, Toxicology of the Kidney., New York: Raven Press. 1993; 495-537
- 307 G. C. Hard. Mechanisms of chemically induced renal carcinogenesis in the laboratory rodent. Toxicol. Pathol. 1998; 26: 104-112
- 308 M. Marin-Kuan, V. Ehrlich, T. Delatour, C. Cavin and B. Schilter. Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin A. J Toxicol. 2011; 2011: 645361
- 309 C. Cavin, T. Delatour, M. Marin-Kuan, F. Fenaille, D. Holzhauser, G. Guignard, C. Bezencon, D. Piguet, V. Parisod, J. Richoz-Payot and B. Schilter. Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol Sci. 2009; 110: 84-94
- 310 D. Hoehler, R. R. Marquardt, A. R. McIntosh and G. M. Hatch. Induction of free radicals in hepatocytes, mitochondria and microsomes of rats by ochratoxin A and its analogs. Biochim. Biophys. Acta. 1997; 1357: 225-233
- 311 H. Xiao, S. Madhyastha, R. R. Marquardt, S. Li, J. K. Vodela, A. A. Frohlich and B. W. Kemppainen. Toxicity of ochratoxin A, its opened lactone form and several of its analogs: Structure-activity relationships. Toxicol. Appl. Pharmacol. 1996; 137: 182-192
- 312 G. J. Schaaf, S. M. Nijmeijer, R. F. Maas, P. Roestenberg, E. M. d. Groene and J. Fink-Gremmels. The role of oxidative stress in the ochratoxin A-mediated toxicity in proximal tubular cells. Biochim Biophys Acta. 2002; 1588: 149-158
- C. Cavin, T. Delatour, M. Marin-Kuan, D. Holzhauser, L. Higgins, C. Bezencon, G. Guignard, S. Junod, J. Richoz-Payot, E. Gremaud, J. D. Hayes, S. Nestler, P. Mantle and B. Schilter. Reduction in antioxidant defences may contribute to ochratoxin A toxicity and carcinogenicity. Toxicol.Sci. 2007; 96: 30-39
- C. Boesch-Saadatmandi, A. E. Wagner, A. C. Graeser, C. Hundhausen,
 S. Wolffram and G. Rimbach. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J Anim Physiol Anim Nutr (Berl). 2009; 93: 547-554
- 315 C. Boesch-Saadatmandi, A. Loboda, A. Jozkowicz, P. Huebbe, R. Blank, S. Wolffram, J. Dulak and G. Rimbach. Effect of ochratoxin A on redox-regulated transcription factors, antioxidant enzymes and glutathione-S-transferase in cultured kidney tubulus cells. Food Chem Toxicol. 2008; 46: 2665-2671

- 316 X. L. Shen, Y. Zhang, W. Xu, R. Liang, J. Zheng, Y. Luo, Y. Wang and K. Huang. An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells. J Proteomics. 2013; 78: 398-415
- 317 Y. Grosse, L. Chekir-Ghedira, A. Huc, S. Obrecht-Pflumio, G. Dirheimer, H. Bacha and A. Pfohl-Leszkowicz. Retinol, ascorbic acid and alpha-tocopherol prevent DNA adduct formation in mice treated with the mycotoxins ochratoxin A and zearalenone. Cancer Lett. 1997; 114: 225-229
- 318 M. C. Guerra, F. Galvano, L. Bonsi, E. Speroni, S. Costa, C. Renzulli and R. Cervellati. Cyanidin-3-O-beta-glucopyranoside, a natural free-radical scavenger against aflatoxin B1- and ochratoxin A-induced cell damage in a human hepatoma cell line (Hep G2) and a human colonic adenocarcinoma cell line (CaCo-2). Br J Nutr. 2005; 94: 211-220
- A. Russo, L. L. Fauci, R. Acquaviva, A. Campisi, G. Raciti, C. Scifo, M. Renis, G. Galvano, A. Vanella and F. Galvano. Ochratoxin A-induced DNA damage in human fibroblast: protective effect of cyanidin 3-O-beta-d-glucoside. J Nutr Biochem. 2005; 16: 31-37
- 320 G. Aydin, N. Ozcelik, E. Cicek and M. Soyoz. Histopathologic changes in liver and renal tissues induced by ochratoxin A and melatonin in rats. Hum.Exp.Toxicol. 2003; 22: 383-391
- 321 A. A. E. Bertelli, M. Migliori, C. Filippi, N. Gagliano, E. Donetti, V. Panichi, V. Scalori, R. Colombo, C. Mannari, J. P. Tillement and L. Giovannini. Effect of ethanol and red wine on ochratoxin A-induced experimental acute nephrotoxicity. J. Agric. Food Chem. 2005; 53: 6924-6929
- C. D. Giacomo, R. Acquaviva, A. Piva, V. Sorrenti, L. Vanella, G. Piva,
 G. Casadei, L. L. Fauci, A. Ritieni, M. Bognanno, L. D. Renzo, M. L.
 Barcellona, M. Morlacchini and F. Galvano. Protective effect of
 cyanidin 3-O- beta -D-glucoside on ochratoxin A-mediated damage in
 the rat. Br. J. Nutr. 2007; 98: 937-943
- A. M. Domijan, M. Peraica, A. L. Vrdoljak, B. Radić, V. Zlender and R.
 Fuchs. The involvement of oxidative stress in ochratoxin A and fumonisin B₁ toxicity in rats. Mol. Nutr. Food Res. 2007; 51: 1147-1151
- S. S. Palabiyik, P. Erkekoglu, N. D. Zeybek, M. Kizilgun, D. E. Baydar,
 G. Sahin and B. K. Giray. Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. Exp Toxicol Pathol. 2013; 65: 853-861
- 325 V. Sorrenti, C. D. Giacomo, R. Acquaviva, M. Bognanno, E. Grilli, N.

D'Orazio and F. Galvano. Dimethylarginine dimethylaminohydrolase/nitric oxide synthase pathway in liver and kidney: protective effect of cyanidin 3-O-beta-D-glucoside on ochratoxin-A toxicity. Toxins . 2012; 4: 353-363

- 326 J. C. Gautier, D. Holzhaeuser, J. Markovic, E. Gremaud, B. Schilter and R. J. Turesky. Oxidative damage and stress response from ochratoxin a exposure in rats. Free Radic Biol Med. 2001; 30: 1089-1098
- 327 E. Rached, E. Pfeiffer, W. Dekant and A. Mally. Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics? Toxicol. Sci. 2006; 92: 78-86
- K. Czakai, K. Muller, P. Mosesso, G. Pepe, M. Schulze, A. Gohla, D. Patnaik, W. Dekant, J. M. Higgins and A. Mally. Perturbation of mitosis through inhibition of histone acetyltransferases: the key to ochratoxin a toxicity and carcinogenicity? Toxicol Sci. 2011; 122: 317-329
- 329 Y. Wang, J. Liu, J. Cui, L. Xing, J. Wang, X. Yan and X. Zhang. ERK and p38 MAPK signaling pathways are involved in ochratoxin A-induced G2 phase arrest in human gastric epithelium cells. Toxicol Lett. 2012; 209: 186-192
- M. Adler, K. Müller, E. Rached, W. Dekant and A. Mally. Modulation of key regulators of mitosis linked to chromosomal instability is an early event in ochratoxin A carcinogenicity. Carcinogenesis. 2009; 30: 711-719
- 331 C. B. Lim, D. Zhang and C. G. Lee. FAT10, a gene up-regulated in various cancers, is cell-cycle regulated. Cell Div. 2006; 1: 20
- E. Taniai, H. Hayashi, A. Yafune, M. Watanabe, H. Akane, K. Suzuki,
 K. Mitsumori and M. Shibutani. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis. Arch Toxicol. 2012; 86: 1453-1464
- 333 E. Taniai, A. Yafune, H. Hayashi, M. Itahashi, Y. Hara-Kudo, K. Suzuki, K. Mitsumori and M. Shibutani. Aberrant activation of ubiquitin D at G₂ phase and apoptosis by carcinogens that evoke cell proliferation after 28-day administration in rats. J Toxicol Sci. 2012; 37: 1093-1111
- 334 C. Sauvant, H. Holzinger and M. Gelke. The nephrotoxin ochratoxin A induces key parameters of chronic interstitial nephropathy in renal proximal tubular cells. Cell physiol. Biochem. 2005; 15: 125-134
- 335 G. Schwerdt, H. Holzinger, C. Sauvant, M. Königs, H.-U. Humpt and

M. Gekle. Long-term effects of ochratoxin A on fibrosis and cell death in human proximal tubule of fibroblast cells in primary culture. Toxicology. 2007; 232: 57-67

- 336 C. Sauvant, H. Holzinger, S. Mildenberger and M. Gekle. Exposure to nephrotoxic ochratoxin A enhances collagen secretion in human renal proximal tubular cells. Mol. Nutr. Food Res. 2005; 49: 31-37
- 337 M. Marin-Kuan, S. Nestler, C. Verguet, C. Bezencon, D. Piguet, T. Delatour, P. Mantle, C. Cavin and B. Schilter. MAPK-ERK activation in kidney of male rats chronically fed ochratoxin A at a dose causing a significant incidence of ranal carcinoma. Toxicol. Appl. Pharmacol. 2007; 224: 174-181
- 338 K. Stemmer, H. Ellinger-Ziegelbauer, H. J. Ahr and D. R. Dietrich. Carcinogen-specific gene expression profiles in short-term treated Eker and wild type rats indicative of pathways involved in renal tumorigenesis. Cancer Res. 2007; 67: 4052-4068
- 339 A. Luhe, H. Hildebrand, U. Bach, T. Dingermann and H. J. Ahr. A new approach to studying ochratoxin A (OTA)-induced nephrotoxicity: expression profiling *in vivo* and *in vitro* employing cDNA microarrays. Toxicol Sci. 2003; 73: 315-328
- M. Marin-Kuan, S. Nestler, C. Verguet, C. Bezencon, D. Piguet, R. Mansourian, J. Holzwarth, M. Grigorov, T. Delatour, P. Mantle, C. Cavin and B. Schilter. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin A carcinogenecity in rat. Toxicol.Sci. 2006; 89: 120-134
- P. Jennings, C. Weiland, A. Limonciel, K. M. Bloch, R. Radford, L. Aschauer, T. McMorrow, A. Wilmes, W. Pfaller, H. J. Ahr, C. Slattery, E. A. Lock, M. P. Ryan and H. Ellinger-Ziegelbauer. Transcriptomic alterations induced by ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol. 2012; 86: 571-589
- 342 Y. Ueno. Residue and risk of ochratoxin A in human plasma and beverages in Japan. Mycotoxins. 1998; 47: 25-32
- 343 J. Postupolski, K. Karlowski and P. Kubik. Ochratoxin A in maternal and foetal blood and in maternal milk. Rocz.Panstw.Zaki.Hig.. 2006; 57: 23-30
- C. M. Lino, M. L. Baeta, M. Henri, A. M. P. Dinis, A. S. Pena and M. I.
 N. Silveira. Levels of ochratoxin A in serum from urban and rural Portuguese populations and estimation of exposure degree. Food Chem Toxicol. 2008; 46: 879-885
- 345 K. Munoz, M. Vega, G. Rios, S. Munoz and R. Madariaga. Preliminary

study of ochratoxin A in human plasma in agricultural zones of Chile and its relation to food consumption. Food Chem. Toxicol. 2006; 44: 1884-1889

- A. M. Pacin, E. V. C. Bovier, E. Motta, S. L. Resnik, D. Villa and M. Olsen. Survey of Argentinean human plasma for ochratoxin A. Food Addit.Contam. 2008; 25: 635-641
- 347 P. Erkekoglu, S. Sabuncuoglu, S. Aydin, G. Sahin and B. Giray. Determination of seasonal variations in serum ochratoxin A levels in healthy population living in some regions of Turkey by enzyme-linked immunosorbent assay. Toxicon. 2010; 55: 507-513
- 348 M. B. Coronel, V. Sanchis, A. J. Ramos and S. Marin. Assessment of the exposure to ochratoxin A in the province of Lleida, Spain. Food Chem Toxicol. 2009; 47: 2847-2852
- 349 A. Medina, E. M. Mateo, R. J. Roig, A. Blanquer and M. Jimenez. Ochratoxin A levels in the plasma of healthy blood donors from Valencia and estimation of exposure degree: comparison with previous national Spanish data. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010; 27: 1273-1284
- 350 A. Stachurska, M. Kozakowska, A. Jozkowicz, J. Dulak and A. Loboda. Aristolochic acid I and ochratoxin A differentially regulate VEGF expression in porcine kidney epithelial cells-The involvement of SP-1 and HIFs transcription factors. Toxicol Lett. 2011; 204: 118-126
- 351 M. Pascale and A. Visconti. Rapid method for the determination of ochratoxin A in urine by immunoaffinity column clean-up and high-performance liquid chromatography. Mycopathologia. 2001; 152: 91-95
- 352 J. Gilbert, P. Brereton and S. MacDonald. Assessment of dietary exposure to ochratoxin A in the UK using a duplicate diet approach and analysis of urine and plasma samples. Food Addit.Contam. 2001; 18: 1088-1093
- B. Fazekas, A. Tar and M. Kovacs. Ochratoxin A content of urine samples of healthy humans in Hungary. Acta Vet.Hung. 2005; 53: 35-44
- 354 A. Pena, M. Seifrtova, C. Lino, I. Silveira and P. Solich. Estimation of ochratoxin A in Portuguese population: new data on the occurrence in human urine by high performance liquid chromatography with fluorescence detection. Food Chem. Toxicol. 2006; 44: 1449-1454
- 355 S. C. Duarte, M. R. Alves, A. Pena and C. M. Lino. Determinants of ochratoxin A exposure--a one year follow-up study of urine levels. Int J Hyg Environ Health. 2012; 215: 360-367

- 356 G. Biasucci, G. Calabrese, R. D. Giuseppe, G. Carrara, F. Colombo, B. Mandelli, M. Maj, T. Bertuzzi, A. Pietri and F. Rossi. The presence of ochratoxin A in cord serum and in human milk and its correspondence with maternal dietary habits. Eur J Nutr. 2011; 50: 211-218
- 357 K. Munoz, K. M. Wollin, H. Kalhoff and G. H. Degen. [Occurrence of the mycotoxin ochratoxin a in breast milk samples from Germany]. [in German]. Gesundheitswesen. 2013; 75: 194-197
- J. W. Jonker, G. Merino, S. Musters, A. E. v. Herwaarden, E. Bolscher,
 E. Wagenaar, E. Mesman, T. C. Dale and A. H. Schinkel. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat.Med. 2005; 11: 127-129
- 359 J. Schrickx, Y. Lektarau and J. Fink-Gremmels. Ochratoxin A secretion by ATP-dependent membrane transporters in Caco-2 cells. Arch.Toxicol. 2006; 80: 243-249
- 360 A. E. v. Herwaarden, E. Wagenaar, B. Karnekamp, G. Merino, J. W. Jonker and A. H. Schinkel. Breast cancer resistance protein (Brcp1/Abcg2) reduced systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis. 2006; 27: 123-130
- 361 W. Hassen, S. Abid, A. Achour, E. Creppy and H. Bacha. Ochratoxin A and beta2-microglobulinuria in healthy individuals and in chronic nephropathy patients in the centre of Tunisia: a hot spot of ochratoxin A exposure. Toxicology. 2004; 199: 185-193
- A. M. Hassan, H. A. Sheashaa, M. F. A. Fattah, A. Z. Ibrahim, O. A. Gaber and M. A. Sobh. Study of ochratoxin A as an environmental risk that causes renal injury in breast-fed Egyptian infants. Pediatr. Nephrol. 2006; 21: 102-105
- 363 L. Iacumin, L. Chiesa, D. Boscolo, M. Manzano, C. Cantoni, S. Orlic and G. Comi. Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol. 2009; 26: 65-70
- A. Breitholtz, M. Olsen, A. Dahlback and K. Hult. Plasma ochratoxin
 A levels in three Swedish populations surveyed using an ion-pair
 HPLC technique. Food Addit Contam. 1991; 8: 183-192
- 365 V. Stefanovic, D. Toncheva, S. Atanasova and M. Polenakovic. Etiology of Balkan endemic nephropathy and associated urothelial cancer. Am.J.Nephrol. 2006; 26: 1-11
- 366 S. Ceovic, A. Hrabar and M. Saric. Epidemiology of Balkan endemic nephropathy. Food Chem. Toxicol. 1992; 30: 183-188
- M. Radonic, Z. Radosevic and V. Zupanic. Endemic nephropathy in Yugoslavia. "In: The kidney, Baltimore: Williams & Wilkins". 1966;

503-522

- 368 C. A. Tatu, W. H. Orem, R. B. Finkelman and G. L. Feder. The etiology of Balkan endemic nephropathy: still more questions than answers. Environ Health Perspect. 1998; 106: 689-700
- A. P. Grollman and B. Jelakovic. Role of environmental toxins in endemic (Balkan) nephropathy. J.Am.Soc.Nephrol. 2007; 18: 2817-2823
- 370 T. Petkova-Bocharova, I. N. Chernozemsky and M. Castegnaro. Ochratoxin A in human blood in relation to Balkan endemic nephropathy and urinary system tumours in Bulgaria. Food Addit.Contam. 1988; 5: 299-301
- 371 M. Castegnaro, H. Bartsch and I. Chernozemsky. Endemic nephropathy and urinary tract tumors in the Balkans. Cancer Res. 1987; 47: 3608-3609
- 372 I. S. Stoyanov, I. N. Chernozemsky, I. G. Nicolov, I. I. Stoichev and T. K. Petkova-Bocharova. Epidemiologic association between endemic nephropathy and urrinary system tumours in an endemic region. J.Chron.Dis. 1978; 31: 721-724
- 373 M. Vukelic, B. Sostaric and M. Belicza. Pathomorphology of Balcan endemic nephropathy. Food Chem. Toxicol. 1992; 30: 193-200
- G. Borso. Characteristecs of clinical data on endemic nephropathy. "In: Cvorisec,D., Ceovic,S. and Stavljenic-Rucavina,A., eds, Endemic Nephropathy in Croatia, Zagreb: Academia Croatia Scientiarum Medicarum". 1996; 73-75
- M. Vukelic, B. Sostaric and R. Fuchs. Some pathomorphological features of Balcan endemic nephropathy in Croatia. "In: Castegnaro, M., Plestina, R., Dirheimer, G., Chernozemsky, I.N. & Bartsch, H., eds, Mycotoxins, Endemic Nephropathy and Urinary Tract Tumours . (IARC Scientific Publication No. 115), Lyon: IAPCPress". 1991; 37-42
- 376 A. Mally, G. C. Hard and W. Dekant. Ochratoxin A as a potential etiologic factor in endemic nephropathy: lessons from toxicity studies in rats. Food Chem. Toxicol. 2007; 45: 2254-2260
- 377 I. G. Nicolov, I. N. Chernozemsky, T. Petkova-Bocharova, I. S. Stoyanov and I. I. Stoichev. Epidemiologic characteristics of urinary system tumors and Balkan nephropathy in an endemic region of Bulgaria. Eur.J.Cancer. 1978; 14: 1237-1242
- 378 S. Ceovic and M. Miletic-Medved. Epidemiological features of endemic nephropathy in tha focal area of Brodska Posavina, Croatia. "In: Cvorisec,D., Ceovic,S. and Stavljenic-Rukavina,A., eds, Endemic

Nephropathy in Croatia. Zagreb: Academia Croatia Scientiarum Medicarum.". 1996; 7-21

- B. Sostaric and M. Vukelic. Characteristics of urinary tract tumours in the area of Balkan endemic nephropathy in Croatia. "In: Castegnaro,M., Plestina,R., Dirheimer,G., Chernozemsky,I.N. and Bartsch,H., eds, Mycotoxins, Endemic Nephropathy and Urinary Tract Tumours (IARC Scientific Publications No. 115), Lyon: IARCPress". 1991; 29-35
- 380 M. Djokic, J. Hadzi-Djokic, J. Nikolic, D. Dragicevic and D. Radivojevic. [Comparison of upper urinary tract tumors in the region of Balkan endemic nephropathy with those in other Yugoslav regions.][in French]. Prog. Urol. 1999; 9: 61-68
- 381 A. Schiller, P. Gusbeth-Tatomir, N. Pavlovic, D. Ferluga, G. Spasovski and A. Covic. Balkan endemic nephropathy: a still unsolved puzzle. J.Nephrol. 2008; 21: 673-680
- 382 R. Plestina, S. Ceovic, S. Gatenbeck, V. Habazin-Novak, K. Hult, E. Hokby, P. Krogh and B. Radic. Human exposure to ochratoxin A in areas of Yugoslavia with endemic nephropathy. J Environ Pathol Toxicol Oncol. 1990; 10: 145-148
- M. Pavlovic, R. Plestina and P. Krogh. Ochratoxin A contamination of foodstuffs in an area with Balkan (endemic) nephropathy. Acta Pathol. Microbiol. Scand. B. 1979; 87: 243-246
- 384 K. Hult, R. Plestina, V. Habazin-Novak, B. Radic and S. Ceovic. Ochratoxin A in human blood and Balkan endemic nephropathy. Arch.Toxicol. 1982; 51: 313-321
- 385 K. Maaroufi, A. Achour, M. Hammami, M. e. May, A. M. Betbeder, F. Ellouz, E. E. Creppy and H. Bacha. Ochratoxin A in human blood in relation to nephropathy in Tunisia. Hum Exp Toxicol. 1995; 14: 609-614
- 386 A. Pfohl-Leszkowicz, M. Tozlovanu, R. Manderville, M. Peraica, M. Castegnaro and V. Stefanovic. New molecular and field evidences for the implication of mycotoxins but not aristolochic acid in human nephropathy and urinary tract tumor. Mol. Nutr. Food Res. 2007; 51: 1131-1146
- 387 M. Peraica, A. M. Domijan, M. Miletic-Medved and R. Fuchs. The involvement of mycotoxins in the development of endemic nephropathy. Wien Klin Wochenschr. 2008; 120: 402-407
- 388 M. E. De Broe. Chinese herbs nephropathy and Balkan endemic nephropathy: toward a single entity, aristolochic acid nephropathy. Kidney Int. 2012; 81: 513-515

- A. P. Grollman, S. Shibutani, M. Moriya, F. Miller, L. Wu, U. Moll, N. Suzuki, A. Fernandes, T. Rosenquist, Z. Medverec, K. Jakovina, B. Brdar, N. Slade, R. J. Turesky, A. K. Goodenough, R. Rieger, M. Vukelic and B. Jelakovic. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci U S A. 2007; 104: 12129-12134
- 390 V. Stefanovic and M. Polenakovic. Fifty years of research in Balkan endemic nephropathy: where are we now? Nephron Clin. Pract. 2009; 112: c51-56
- 391 W. Karmaus, P. Dimitrov, V. Simeonov, S. Tsolova, A. Bonev and R. Georgieva. Metals and kidney markers in adult offspring of endemic nephropathy patients and controls: a two-year follow-up study. Environ.Health. 2008; 7:11
- 392 堀井幸江,橋口知一,伊木由香理,須藤茂俊. LC/MS/MS による国産ワ イン中のオクラトキシンA の分析. J. ASEV Jpn. 2010; 21: 3-7
- 393 小西良子. 食品中のカビ毒および暴露評価に関する研究. 厚生労働科学 研究費補助金研究事業. 2010
- 394 Y. Sugita-Konishi, Y. Kamata, T. Sato, T. Yoshinari and S. Saito. Exposure and risk assessment for ochratoxin A and fumonisins in Japan. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013; 30: 1392-1401
- 395 財団法人日本分析センター.内閣府食品安全委員会.平成17年度食品安 全保全総合調査.食品中に含まれるカビ毒(オクラトキシン、アフラト キシン、ゼアラレノン)の汚染実態調査報告書..2006
- 396 財団法人食品分析センター.内閣府食品安全委員会.平成18年度食品安 全保全総合調査.食品中に含まれるカビ毒(オクラトキシン、アフラト キシン、ゼアラレノン)の汚染実態調査報告書..2007
- 397 財団法人食品分析センター.内閣府食品安全委員会.平成 20 年度食品安 全保全総合調査.食品中に含まれるカビ毒(オクラトキシン、アフラト キシン、ゼアラレノン)の汚染実態調査報告書..2010
- 398 農林水産省. 国産穀類のかび毒実態調査結果. http://www.maff.go.jp/j/syouan/seisaku/risk_analysis/priority/kabidok u/tyosa/pdf/14_23.pdf.
- 399 H. Sakuma, Y. Watanabe, H. Furusawa, T. Yoshinari, H. Akashi, H. Kawakami, S. Saito and Y. Sugita-Konishi. Estimated dietary exposure to mycotoxins after taking into account the cooking of staple foods in Japan. Toxins. 2013; 5: 1032-1042
- 400 A. Fernandes, N. Ratola, A. Cerdeira, A. Alves and A. Venancio. Changes in ochratoxin A concentration during winemaking. Am. J. Enol. Viticult. 2007; 58: 92-96

- 401 S.-L. Leong, A. D. Hocking and E. S. Scott. Effect of temperature and water activity on growth and ochratoxin A production by Australian *Aspergillus carbonarius* and *A.niger* isolates on a simulated grape juice medium. Int.J.Food Microbiol. 2006; 110: 209-216
- 402 S.-L. Leong, A. D. Hocking and E. S. Scott. The effect of juice clarification, static or rotary fermentation and fining on ochratoxin A in wine. Aust. J. Grape Wine Res. 2006; 12: 245-251
- 403 A. Caridi, F. Galvano, A. Tafuri and A. Ritieni. Ochratoxin A removal during winemaking. Enzyme Microb. Technol. 2006; 40: 122-126
- 404 H. M. Kurtbay, Z. Bekçi, M. Merdivan and K. Yurdakoç. Reduction of ochratoxin A levels in red wine by bentonite, modified bentonites, and chitosan. J. Agric. Food Chem. 2008; 56: 2541-2545
- 405 S. Romani, G. G. Pinnavaia and M. D. Rosa. Influence of roasting levels on ochratoxin A content in coffee. J. Agric. Food Chem. 2003; 51: 5168-5171
- E. A. Nehad, M. M. Farag, M. S. Kawther, A. K. M. Abdel-Samed and
 K. Naguib. Stability of ochratoxin A (OTA) during processing and
 decaffeination in commercial roasted coffee beans. Food Addit.Contam.
 2005; 22: 761-767
- 407 A. P. d. Obanos, E. Gonzalez-Penas and A. L. d. Cerain. Infuluence of roasting and brew preparation on the ochratoxin A content in coffee infusion. Food Addit.Contam. 2005; 22: 463-471
- 408 坪内春夫. コーヒーのカビ毒汚染と選別による除去. 日本食品微生物学 会雑誌. 1994; 11: 23
- P. Manda, D. S. Dano, J. H. Kouadio, A. Diakite, B. Sangae-Tigori, M. J. M. Ezoulin, A. Soumahoro, A. Dembele and G. Fourny. Impact of industrial treatments on ochratoxin A content in artificially contaminated cocoa beans. Food Addit.Contam. 2009; 26: 1081-1088
- 410 K. A. Scudamore, J. Banks and S. J. MacDonald. Fate of ochratoxin A in the processing of whole wheat grains during milling and bread production . Food Addit.Contam. 2003; 20: 1153-1163
- 411 M. Valle-Algarra, E. M. Mateo, A. Medina, F. Mateo, J. V. Gimeno-Adelantado and M. Jimenez. Changes in ochratoxin A and type B trichothecenes contained in wheat flour during dough fermentation and bread-baking. Food Addit.Contam. 2009; 26: 896-906
- 412 K. A. Scudamore, J. N. Banks and R. C. E. Guy. Fate of ochratoxin A in the processing of whole wheat grain during extrusion. Food Addit.Contam. 2004; 21: 488-497
- 413 M. Castells, S. Marin, V. Sanchis and A. J. Ramos. Fate of mycotoxins

in cereals during extrusion cooking: a review. Food Addit.Contam. 2005; 22: 150-157

414 J. W. Park, S. H. Chung, C. Lee and Y. B. Kim. Fate of ochratoxin A during cooking of naturally contaminated polished rice. J Food Prot. 2005; 68: 2107-2111

<参考資料1>

OTA 及び主な OTA 関連化合物の構造

化学物質、構造式	詳細	
ОТА	名称	N-[[(3 <i>R</i>)-5-クロロ-3,4-ジヒドロ-8-ヒドロキシ-3-
		メチル-1-オキソ-1H-2-ベンゾピラン-7-イル]
O OH OH OH		カルボニル]- L-フェニルアラニン
		N-[[(3 <i>R</i>)-5-chloro-3,4-dihydro-8-hydroxy-3-
A LIJ		methyl-1-oxo-1H-2-benzopyran-7-yl]carbonyl]-
CI "CH3		L-phenylalanine
	分子式	$C_{20}H_{18}ClNO_6$
	分子量	403.82
	CAS No.	303-47-9
ΟΤα	名称	(3 <i>R</i>)-5-クロロ-3,4-ジヒドロ-8-ヒドロキシ-3-
0 04 0		メチル-1-オキソ-1H-2-ベンゾピラン-7-カルボン
I I I		酸
HO' T TO		(3 <i>R</i>)-5-chloro-3,4-dihydro-8-hydroxy-3-methyl-
CH3		1-oxo-1H-2-benzopyran-7-carboxylic acid
ĊI	分子式	$C_{11}H_9ClO_5$
	分子量	256.64
	CAS No.	19165-63-0
ОТВ	名称	N-[[(3 <i>R</i>)-3,4,5-トリヒドロ-8-ヒドロキシ-3-メチ
		ル-1-オキソ-1H-2-ベンゾピラン-7-イル]カルボ
очо он о		ニル]・L・フェニルアラニン
N N N		N-[[(3R)-3,4,5-trihydro-8-hydroxy-3-methyl-1-
H CH		oxo-1H-2-benzopyran-7-yl]carbonyl]-L-
H Sis		phenylalanine
	分子式	$C_{20}H_{19}NO_6$
	分子量	369.37
	CAS No.	4825-86-9
ОТС	名称	N-[](3 <i>R</i>)-5-クロロ-3,4-ジヒドロ-8-ヒドロキシ-3-
		メチル-1-オキソ-1H-2・ベンゾピラン-7・イル]カ
C ₂ H ₅		ルボニル]·L·フェニルアラニンエチル
С С С С С С С С С С С С С С С С С С С		N-[[(3 <i>R</i>)-5-chloro-3,4-dihydro-8-hydroxy-3-
N		methyl-1-oxo-1H-2-benzopyran-7-yl]carbonyl]-
" СН3		L- phenylalanine ethyl ester
ĊI	分子式	$C_{22}H_{22}ClNO_6$
	分子量	431.87
	CAS No.	4865-85-4

4 <i>R</i> -OH-OTA	名称	N-[[(3 <i>R</i> ,4 <i>R</i>)-5-クロロ-3,4-ジヒドロ-4,8-ジヒド
		ロキシ・3・メチル・1・オキソ・1H-2・ベンゾピラン
∧ 0 , 0H		-7-イル]カルボニル]-L-フェニルアラニン
		N-[[(3R4R)-5-chloro-3.4-dihydro-4.8-dihydrox
N O		v-3-methyl-1-oxo-1H-2-benzopyran-7-yll
СН3		carbonyll-L-phenylalanine
сі Н он	分子式	C ₂₀ H ₁₈ ClNO ₇
	分子量	419.82
	CAS No.	35299-87-7
4 <i>S</i> -OH-OTA	名称	N-[[(3 <i>R</i> .4 <i>S</i>)-5-クロロ-3.4-ジヒドロ-4.8-ジヒドロ
 ○ ○		キシ-3-メチル-1-オキソ-1H-2-ベンゾピラン-7-
		イル]カルボニル]-L-フェニルアラニン
N N O		N-[[(3R,4S)-5-chloro-3,4-dihydro-4,8-dihydroxy
CH3		-3-methyl-1-oxo-1H-2-benzopyran-7-yllcarbon
CI HO H		vl]-L- phenylalanine
	分子式	$C_{20}H_{18}ClNO_7$
	分子量	419.82
	CAS No.	82598-16-1
10-OH-OTA	名称	N-[[(3 <i>R</i>)-5-クロロ-3.4-ジヒドロ-8-ヒドロキシ-3-
O OH OH OH		ヒドロキシメチル-1-オキソ-1H-2-ベンゾピラン
		-7-イル]カルボニル]-L-フェニルアラニン
H L I		N-[[(3 <i>R</i>)-5-chloro-3.4-dihydro-8-hydroxy-3-
CI CI		hvdroxymethyl-1-oxo-1H-2-benzopyran-7-yl
		carbonyl]-L-phenylalanine
	分子式	$C_{20}H_{18}CINO_7$
	分子量	419.82
	CAS No.	35299-87-7
OTHQ	名称	N-[[(3 <i>R</i>)-3,4-ジヒドロ-5,8-ジヒドロキシ-3-メチ
		ル-1-オキソ-1H-2-ベンゾピラン-7-イル]カルボ
		ニルー・L・フェニルアラニン
N N O		N-[[(3 <i>R</i>)-3.4-dihydro-5.8-dihydroxy-3-methy]-1
CH3		-oxo-1H-2-benzopyran-7-vl]carbonyl]-L-
ОН		phenylalanine
	分子式	$C_{20}H_{19}NO_7$
	分子量	385.37
	CAS No.	205034-32-8
ΟΤΘ	名称	N-[[(3 <i>R</i>)-3458-テトラヒドロ-3-メチル-158-
		トリオキソー1日-2-ベンゾピラン-7-イル]カルボニ
0 08		ルート・ファニルアラニン
		N-[[(3 <i>R</i>)-3 4 5 8-tetrahydro-3-methyl-1 5 8-
N N O		trioxo-1H-2-benzonyran-7-yllcarbonyll-L-
CH3		phenylalanine
ő	分子式	CooHugNOz
	分子量	383.36
	CAS No	00.00
	UND INU.	

<参考資料2>

ヒトに対する経口発がんリスク評価に関する手引き(清涼飲料水を対象)

(平成 20 年 9 月 2 日 化学物質・汚染物質専門調査会決定)

はじめに

これまで、清涼飲料水の安全性評価において、発がん性を示す物質については、 遺伝毒性発がん物質と判断することが適切でない場合は一般毒性の NOAEL か ら TDI を求め、遺伝毒性発がん物質の可能性が高い場合は毒性学的閾値の設定 ができないことから定量的な評価を行わないこととしていた。その最大の理由 は、遺伝毒性発がん物質の評価法については国内外での合意が得られていない との見解によるものであった。

遺伝毒性発がん物質は、他の物質(非発がん物質や非遺伝毒性発がん物質)に 比べてヒトが暴露されたときのリスクが一般的に高く、その暴露量は他の物質 より低く管理するか、理想的には限りなくゼロにすることが求められる。しか しながら、一元的なリスク管理では制御が困難な環境汚染物質においては、現 実的に暴露を完全に避けることが困難な事態や、さらにこれまで未検出であっ た物質でも分析技術の進歩により検出可能になってきているという現実に直面 している。このため、遺伝毒性発がん物質についても食品安全委員会としての 定量的な評価結果をリスク管理機関に答申することがより求められている。ま た、評価法に合意が得られていないとされている理由は、米国と欧州で異なっ た手法を用いているためであるが、近い将来に両者の手法が統一される可能性 は極めて少ない。

以上のことから、現時点において遺伝毒性発がん物質の発がんリスクを求める ことが適切であると考え、発がん性を有する物質の評価方法の全体の枠組みや 考え方について整理した。(評価手順について別紙参照)

○発がんに対する遺伝毒性の関与を考慮し、TDI または発がんリスクの設定に ついて検討する。

○非発がん影響と発がん影響の評価は独立して実施する。

○原則として、経口摂取に基づくリスク評価を行うこととするが、経口摂取の 定量的評価に必要な場合は、経口摂取以外の暴露による有害性評価結果も十分 に考慮する。

○発がん性のリスク計算に関しては、新しいデータが得られた場合、または明 確に考え方を変えるべき根拠が生じた場合を除き、算出方法が公開/公認され ている場合は原則として既存のリスク評価値を継承する。

1.「発がん性に対する遺伝毒性の関与がない」と判断される場合の評価(I)

(in vitro 遺伝毒性試験、in vivo 遺伝毒性試験のいずれも陰性の場合など)

■TDI を算出する。

○疫学研究または動物実験から発がん性に関する NOAEL を得ることができる 場合

・不確実係数で割って TDI を求める。

【不確実係数の考え方】

①動物からヒトへの外挿として10

②個体差として10

③発がん性に対して 1-10

○発がん性に関する NOAEL を得ることができない場合はベンチマークドーズ 法の適用を考慮する(National Toxicology Program [NTP] による2用量試験 で低用量でも発がん性が認められる場合を想定)。

2.「発がん性に対する遺伝毒性の関与が不確実」と判断される場合の評価(Ⅱ)

(*in vitro* 遺伝毒性試験では陽性であるが、*in vivo* 遺伝毒性試験のデータが不 +分で判断できない場合など)

■TDI と数理モデルによる発がんユニットリスクを、併記あるいは一方を記載 する。

(1) TDI の算出について

○疫学研究または動物実験から発がん性に関する NOAEL を得ることができる 場合

・不確実係数で割って TDI を求める。

【不確実係数の考え方】

①動物からヒトへの外挿として10

②個体差として10

③発がん性に対して 1-10

なお、遺伝毒性のデータ不足などに対して係数を追加することがあり得る。

○発がん性に関する NOAEL を得ることができない場合はベンチマークドーズ 法の適用を考慮する(NTP による2用量試験で低用量でも発がん性が認められ る場合を想定)。

(2) 数理モデルによる発がんユニットリスクの算出について

○発がんユニットリスクについては、我が国の水道水での評価値が妥当であれ ばその値を参照する。「我が国の水道水での評価」で発がんリスクを記述してい ない場合は、EPA 等の他機関の既存の評価データの妥当性を考慮し、妥当であ ればその値を参照する。なお、新たな知見が得られた場合には、その知見につ いて検討することとする(新規にリスク算出が必要な場合は、ベンチマークド ーズを用いた数理モデル(直線外挿等)を検討する)。

○発がんユニットリスクの記載方法は、1mg/kg体重/日の用量で生涯にわたり
 経口暴露した時の発がんリスクとして表記する(Linearized multistage modelの場合は slope factor: qに相当する)。:○○/(mg/kg体重/日)

○発がんユニットリスクの数値化とともに、遺伝毒性についての情報を記載する。また、参考として、発がんリスクレベル10⁻⁴~10⁻⁶に相当する摂取量を記載する。

3.「発がん性に対する遺伝毒性の関与が強く疑われる、または、関与がある」 と判断される場合の評価(Ⅲ)

(*in vitro* 遺伝毒性試験、*in vivo* 遺伝毒性試験のいずれでも明らかに陽性の 場合など)

■原則として TDI を設定せず、数理モデルを用いて発がんユニットリスクを求める。

○発がんユニットリスクについては、我が国の水道水での評価値が妥当であれ ばその値を参照する。「我が国の水道水での評価」で発がんリスクを記述してい ない場合は、EPA 等の他機関の既存の評価データの妥当性を考慮し、妥当であ ればその値を参照する。なお、新たな知見が得られた場合には、その知見につ いて検討することとする(新規にリスク算出が必要な場合は、ベンチマークド ーズを用いた数理モデル(直線外挿等)を検討する)。

○発がんユニットリスクの記載方法は、1mg/kg体重/日の用量で生涯にわたり
 経口暴露した時の発がんリスクとして表記する(Linearized multistage model の場合は slope factor: qに相当する)。:○○/(mg/kg 体重/日)

○発がんユニットリスクの数値化とともに、遺伝毒性についての情報を記載する。また、参考として、発がんリスクレベル10⁻⁴~10⁻⁶に相当する摂取量を記載する。

別紙

オクラトキシンAに係る食品健康影響評価に関する審議結果(案)についての 意見・情報の募集結果について

- 1. 実施期間 平成25年10月29日~平成25年11月27日
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 1通
- 4. 意見・情報の概要及びかび毒・自然毒等専門調査会の回答

	意見・情報の概要※	専門調査会の回答
1	オクラトキシンは、少し学生時代に	食品安全委員会は、国民の健康の
	研究してました。	保護が最も重要であるという基本的
		認識の下、規制や指導等のリスク管
	こんなに分厚い内容で、結論は規格	理を行う関係行政機関(リスク管理
	基準は決めていない。	機関)から独立して、科学的知見に
	昔から決めるべきって学会などで言	基づき客観的かつ中立公正に、食品
	われていたと思います。	に含まれる可能性のある危害要因が
	なんのための論文なのかがよくわか	人の健康に与える影響についてのリ
	りません。	スク評価を行っています。
		オクラトキシンAのリスク評価に
		当たっては、体内動態、急性毒性、
		亜急性毒性、慢性毒性、発がん性、
		生殖発生毒性、遺伝毒性、神経毒性、
		免疫毒性等の試験成績を用いて審議
		され、非発がん毒性については、ブ
		タの120日間亜急性毒性試験におい
		てLOAELが8 µg/kg 体重/日で
		あったことから、TDIを16 ng/kg

体重/日と設定しました。また、発が
ん毒性については、NTPによるラ
ットの2年間発がん性試験において
NOAELが21 µg/kg 体重(週5日
投与)であったことから、TDIを
 15 ng/kg 体重/日と設定しました。
本評価書は、これらの評価に用いた
全ての知見と評価結果を取りまとめ
たものです。
なお、具体的な規格や基準の設定
については、食品安全委員会の評価
結果を踏まえ、今後、リスク管理機
関である厚生労働省が判断すること
となります。本評価書においては、
「リスク管理機関において、規格基
準について検討することが望ましい
と考える。」ことを記載しておりま
す。寄せられた御意見については、
リスク管理機関にお伝えいたしま
す。

※いただいた御意見については、全て原文のまま記載しています。