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(2) Update: use of the benchmark dose approach in risk assessment
(EFSA, 2017)

2. Assessment

2. 1. Introduction

This document addresses not only the analysis of dose-response data
from experimental studies but also considers the application to data

from observational epidemiological studies.

(%)

2.3.3. Interpretation and properties of the NOAEL and the BMDL
)
For human (epidemiological) data, lower BMR values may be used
because the observed response is often lower than 10% (see Section
2.5.2).
)

2.5.8. Epidemiological dose-response data

In principle, the BMD approach would also be applicable to human
data. BMD analysis of human data will be the subject of a separate
guidance document of the EFSA SC.

(3) Benchmark Dose Technical Guidance (U.S. EPA, 2012)

2.2. Selection of the Benchmark Response Level (BMR)
2.2.1. Quantal (Dichotomous) Data

26



)

In addition, for epidemiological data, response rates of 10% extra
risk would often involve upward extrapolation, in which case it is
desirable to use lower levels, and 1% extra risk is often used as a
BMR.

(%)

In summary:

- An extra risk of 10% is recommended as a standard reporting level
for quantal data, for the purposes of making comparisons across
chemicals or endpoints. The 10% response level has customarily been
used for comparisons because it is at or near the limit of
sensitivity in most cancer bioassays and in noncancer bioassays of
comparable size. Note that this level is not a default BMR for
developing PODs or for other purposes.

- Biological considerations may warrant the use of a BMR of 5% or
lower for some types of effects (e.g., frank effects), or a BMR
greater than 10% (e.g., for early precursor effects) as the basis of
a POD for a reference value.

Sometimes, a BMR lower than 10% (based on biological
considerations), falls within the observable range. From a
statistical standpoint, most reproductive and developmental studies
with nested study designs easily support a BMR of 5%. Similarly, a
BMR of 1% has typically been used for quantal human data from
epidemiology studies. In other cases, if one models below the
observable range, one needs to be mindful that the degree of
uncertainty in the estimates increases. In such cases, the BMD and
BMDL can be compared for excessive divergence. In addition, model

uncertainty increases below the range of data.

2.2.2. Continuous Data
For continuous data, there are various possibilities for selecting
the BMR. Regardless of which option is used, it is recommended that
the BMD (and BMDL) corresponding to a change in the mean response
equal to one control SD from the control mean always be presented

for comparison purposes. This value would serve as a standardized
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basis for comparison, akin to the BMD corresponding to 10% extra
risk for dichotomous data.

)
A one SD shift in the control mean corresponds to an extra risk of
10% for the proportion of individuals below the 1.4th percentile or
above the 98.6th percentile of controls for normally distributed
effects. 8 (See Figure 3 for an illustration.) While a one SD change
is the recommended BMR for comparisons across BMDs, this value may
not always be suitable as a BMR for determining a POD. That is, a
change of one SD in the control mean would be statistically
significant in most studies with 10 or more animals per dose group,
and the corresponding BMD would generally be interpreted as a LOAEL,
depending, of course, on the biological significance of the outcome
being measured. Thus, as previously discussed for quantal data,
judgments about the biological and statistical characteristics of
the data must be made. For example, for frank effects, a lower BMR
may be warranted (e.g., 0.5 SD).

)
In summary:

Preferred approach: If there is a minimal level of change in
the endpoint that is generally considered to be biologically
significant, then that amount of change can be used to define the
BMR.

If individual data are available and a decision can be made
about which individual levels can be reasonably considered adverse,
then the data can be implicitly dichotomized using the hybrid model
or explicitly dichotomized based on that cutoff value, and the BMR
can be set as above for quantal data. Note that implicit
dichotomization is preferred over explicit dichotomization, because
of the loss of information associated with the latter.

« In the absence of any other idea of what level of response to
consider adverse, a change in the mean equal to one control SD (or
lower, e.g., 0.5 SD, for more severe effects) from the control mean
should be used.

)
2.3.3. Selecting the Model
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2.3.3.2. Experimental design

)
The inclusion of covariates on individuals is sometimes desirable
when fitting dose response models. For example, litter size has
often been included as a covariate in modeling laboratory animal
data in developmental toxicity studies. Another example is in
modeling epidemiology data when certain covariates (e.g., age,
parity) are included that are expected to affect the outcome and
might be correlated with exposure. If the covariate has an effect on
the response, including it in a model may improve the precision of
the overall estimate by accounting for variation that would
otherwise end up in the residual variance. Any variable that is
correlated (non—causally) with dose and which affects outcome should

be considered as a covariate.

APPENDIX A. EXAMPLES

A. 6. Human Data

Opportunities for modeling human toxicological data are limited, and
the human studies are less standardized than studies of experimental

animals; thus modeling of human data is done on a case—specific

basis. (M%)

(4) EHC239 PRINCIPLES FOR MODELLING DOSE-RESPONSE FOR THE RISK
ASSESSMENT OF CHEMICALS (IPCS, 2009)

6.6 Benchmark dose and benchmark response selection

)
The BMR is the response for which the BMD is to be calculated. There
are both technical and policy aspects associated with selecting the
BMR. The technical aspects have to do with just how the BMR is
expressed; different types of end-points, such as quantal and
continuous, require different treatments. Also, in somewhat more
complicated situations, such as when covariates have been used in
the modelling, the BMD depends on the BMR and possibly on the values

of the covariates. Policy issues have to do with just how high or
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low down the dose-response curve the BMR should be. This section
discusses the technical issues surrounding the choice of BMR and
some of the consequences that need to be considered in making the
policy decision about where to set the BMR, but it does not directly

address the choice of its particular value.

The way in which the BMR is expressed depends upon the kind of
response variable being modelled. For end-points with two states
(affected/not affected), the BMR is usually expressed in a way that
adjusts for background. Two equations are common. One is that of
added risk (AR):

BMR , = f(BMD)— £(0)

where fx represents the dose-response function evaluated at dose x.

The other, which is probably most widely used, is extra risk (ER):

Bﬂ”{RER — f(Bﬁ’rﬂ)) B f(ﬂ)
I-7(0)

where added risk is divided by the non—affected fraction of the

nonexposed population. The response at the BMDy is always smaller
than the response at the BMD,y for the same numerical value of BMR
when there is a background incidence. However, for small to moderate
background response, the difference is small.

A third equation, common in epidemiological analyses, but applicable

to animal studies as well, is relative risk (RR):
BMR,, = f ( BM’D) I f ((})

BMRs for continuous end-points can be expressed directly in terms of
changes in the mean response level or indirectly in terms of the
fraction of experimental animals that exceed (or drop below) some
critical level. For example, the BMD for mean adult body weight
might be selected to be the dose at which the mean body weight drops
below 90% of the body weight in controls or at which brain
acetylcholinesterase activity is inhibited by 10% relative to
control levels (this is often termed the critical effect size). One

might also specify a fixed value or fixed drop in the mean,
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selecting, for example, the dose at which the mean nerve conduction
velocity drops below a fixed rate or a fixed difference from that in
unexposed individuals. For end-points that demonstrate a sigmoidal
response, as does enzyme induction, it has been suggested (Murrell
et al., 1998; see Gaylor & Aylward, 2004, for a contrary argument)
that a formulation similar to extra risk be used: for these end-
points, the authors suggest that the BMD is best characterized as
the dose at which the response is a specified fraction of the total
dynamic range (e.g. the difference between background and maximum
possible induction) of the response. The Gaylor & Aylward (2004)
approach considers a certain setting within the definition of the
response (i.e. a 1% change) and compares the uncertainties in the
resulting BMD with the uncertainties in BMDs estimated using the
specific setting in the “hybrid” approach. Thus, their conclusion
may not hold in general terms (e.g. considering a 5% or 10% change

in response relative to the total dynamic range).

Indirect or “hybrid” approaches have been advocated by Crump
(2002) and Gaylor and his co—authors (Gaylor & Slikker, 1994; Kodell
et al., 1995). In indirect approaches, the relationship between the
mean of a continuous variable and dose is modelled, in the same
manner as in the direct approaches. Next, a critical value for the
continuous variable is determined that is to be considered as
adverse, and an extra (or additional) risk BMR is selected for which
to calculate a BMD. It is preferable that the critical value be
based upon biological considerations, but it may otherwise be a
value in the tail of the distribution of values in the control
group. As the mean response increases, so will the fraction of
subjects that exceed the previously determined critical value. The
BMD is the dose at which the fraction exceeding the critical value
corresponds to the fraction of affected animals associated with the
BMR as defined for quantal data (e.g. BMRg).
It is possible to approximate the BMD as calculated in the previous
paragraph (Crump, 1995) for a critical value corresponding to a
“small” (e.g. 0.1-2%) risk in the control group and extra risk in

the vicinity of 10%. This BMD corresponds approximately to the dose
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at which the mean of the response variable differs from the control
mean by an amount equal to the standard deviation of the control
group. This gives another way to specify a BMR for continuous
variables, based on the variability of the animals used in the
bioassays.

)
In some cases, the dose is not the only independent variable in a
dose-response model. For example, in epidemiological studies, often
many covariates that help characterize an individual and that might
influence the response variable and be incidentally associated with
the exposure variable are included in analyses in an attempt to
reduce bias in the estimates of the effects of exposure (see section
6.2.1.4). In developmental bioassays, characteristics of the dam or
the litter as a whole (e.g. number of implantation sites) may be
used as a covariate in the modelling to help explain some of the
additional variation among litters usually seen in such studies.
Even adult-only rodent bioassays are usually segregated by sex.
Typically, then, the assessor needs to decide for which values of
the covariates BMDs need to be calculated. When there are few,
discrete covariates, it may make sense to calculate a separate BMD
for each set of values (e.g. a BMD for both males and females). When
covariates are continuous (or treated as such, as in number of
implantation sites), in an animal bioassay, it is usual to pick a
typical value in the control group. However, if BMD changes with the
value of the continuous variable, a detailed analysis of the
dependency should be undertaken (e.g. modelling the BMD as a
function of that covariate). If the variable makes sense for
extrapolation to the human situation, it might be informative to
calculate the BMDs for several values of the covariate, to evaluate
the sensitivity of the BMD to the range of covariate values for

humans.

(5) EHC240 Principles and methods for the risk assessment of
chemicals in food (IPCS, 2020)
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Chapter 5 Dose-response assessment and derivation of health-based
guidance values

5.2.3 Modelling observational data from epidemiological studies
5.2.3.2 Analyses

Although most of the methodology described in this chapter can in
principle be applied to estimating the BMD and corresponding
confidence interval using observational data from epidemiological
studies, there are important methodological considerations that may
require adaptations. These relate to the fact that DRM has, to a
large extent, been designed around the use of data from controlled
laboratory animal experiments. The types of information available
from observational epidemiological studies often differ from the

types of information derived from experimental animal studies.

For BMD modelling, the lack of a controlled experimental setting is
the most important difference between observational studies and
controlled experimental studies. The observational setting means
that adjustment for several covariates is often needed when doing a
BMD analysis. PROAST/EFSA BMD software does allow analysis of
covariates. If the currently existing BMD software is not designed
to deal with such multivariable modelling requirements, this is not
problematic, as many existing statistical packages (STATA, SAS and
R, to name a few) can be used for such purposes. Even if existing
BMD software were to be updated to allow for the handling of several
covariates, another issue is that access to individual participant
data from human studies is severely restricted by data protection
requirements — that is, sending or sharing individual participant
data containing sensitive health and sociodemographic information is

often not compatible with data protection regulations.

Although these are important concerns, the problem of data sharing
can be overcome by modelling aggregated (or quantile) data. For that
purpose, confounder—adjusted summary statistics that reflect the
underlying dose-response curve must be generated. This can be done

by dividing the exposure variable into enough quantiles (quartiles,
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quintiles, deciles or finer subdivision) and then, using
multivariable analyses, generating the expected confounder—adjusted
response in each quantile using the lowest quantile of exposure as
the point of comparison (Wheeler et al., 2017). Such an approach is
compatible with how epidemiological data are frequently analysed and
reported. The loss of information when using aggregated quantile
data is generally considered non—-substantial if the numbers of
quantiles generated are sufficiently large to allow for proper
evaluation of the underlying dose—response curve. The only
specifications needed for such an approach are that, for each
quantile, the authors report the response (e.g. mean response,
proportional hazard or excess risk), its standard error, the number
of subjects and the median exposure. For quantal outcomes where
relative risk estimates are used, it is also important for authors
to provide information that allows for the extraction of the
absolute risk in each quantile. This approach is essentially
comparable to how controlled animal experiments are analysed, where

the use of summary statistics, not individual data, is accepted.

Another difference between modelling data from human observational
studies and modelling data from experimental studies is the lack of
a well-defined control group, or “zero dose” . For human
observational studies, the equivalent of a zero dose would be the
lowest quantile that is used as the point of comparison. The
exposure level and the background response for that point depend on
the number of quantiles generated to describe the dose-response
curve. The exposure level for that point may also differ across
study populations, which highlights the need to model more than one
study, if possible, to establish whether consistent results can be
obtained. Extrapolation beyond the observed data should generally

not be done without clear justification.

In human observational studies, the exposure range is often narrower
than that which can be created in experimental settings (i.e.
laboratory animal studies often use much higher doses than those to

which humans would normally be exposed); in contrast, the sample
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size is usually much larger. A narrow exposure range has the
implication that the full theoretical (e.g. sigmoidal) dose-response
curve is often not observed. Instead, the dose-response curve
depends on the level and range of exposure in the observed
population, and it can be either nonlinear (at the two extremes of
the sigmoidal curve) or approximately linear. The use of linear
models can therefore in some cases be justified at the expense of
using more complex nonlinear models. In such cases, the benefit of
using BMD analyses is confined to determining the BMD and
corresponding confidence intervals based on a predefined response
that is considered biologically relevant (the BMR). Furthermore, the
high variability in human observational studies, relative to the
controlled settings in an experimental animal study, means that the
same default BMR frequently applied in laboratory animal studies is
not necessarily applicable. The BMR used in human settings should be
based on what is considered normal or abnormal from a clinical point
of view or acceptable or unacceptable from a public health point of

view.
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