平成 30 年 5 月 23 日

食品安全委員会 委員長 佐藤 洋 殿

香料ワーキンググループ座長 山崎 壮

添加物に係る食品健康影響評価に関する審議結果について

平成 29 年 11 月 29 日付け厚生労働省発生食 1129 第 1 号をもって厚生労働大臣から食品安全委員会に意見を求められたイソブチルアミン、イソプロピルアミン、sec-ブチルアミン、プロピルアミン、ヘキシルアミン、ペンチルアミン、2-メチルブチルアミンに係る食品健康影響評価について、当ワーキンググループにおいて審議を行った結果は別添のとおりですので報告します。

添加物評価書

イソブチルアミン、イソプロピルアミン、sec-ブチルアミン、プロピルアミン、ヘキシルアミン、ペンチルアミン、2-メチルブチルアミン

2018年5月

食品安全委員会 香料ワーキンググループ

目次

	頁
〇審議の経緯	3
〇食品安全委員会委員名簿	3
〇食品安全委員会香料ワーキンググループ専門委員名簿	3
〇要 約	5
I. 評価対象品目の概要	6
1.用途	6
2. 名称、構造式、分子式及び分子量	6
3. 起源又は発見の経緯	6
4. 我が国及び諸外国における使用状況	7
5. 我が国及び国際機関等における評価	7
(1)我が国における評価	7
(2)JECFA における評価	8
(3)EU における評価	8
6. 評価要請の経緯及び添加物指定の概要	8
7. 評価に適用されるべき指針	8
Ⅱ. 一日摂取量の推計	9
Ⅲ. 安全性に係る知見の概要	
1. 代謝等	
(1)代謝等に関する知見	
(2) まとめ	
	14
(1)評価に用いた試験結果	
(2)遺伝毒性の評価	
3. 一般毒性	
(1)ステップ1(構造クラス分類)	
(2)ステップ2	
(3)ステップ A3	
(4)参考資料	18
Ⅳ. 食品健康影響評価	19
<別紙1・略称>	20

<別紙2:構造クラス分類>	21
<参照>	22

<審議の経緯>

2017年12月1日 厚生労働大臣から添加物(香料)「イソブチルアミン」、「イ

ソプロピルアミン」、「sec-ブチルアミン」、「プロピルアミン」、「ヘキシルアミン」、「ペンチルアミン」及び「2-メチルブチルアミン」の指定に係る食品健康影響評価について要

請(厚生労働省発生食1129第1号)、関係書類の接受

2017年12月5日 第676回食品安全委員会(要請事項説明)

2018年 2月 5日 第1回香料ワーキンググループ

2018年 4月17日 第693回食品安全委員会(報告)

2018年 4月18日から5月17日まで 国民からの意見・情報の募集

2018年 5月23日 香料ワーキンググループ座長から食品安全委員会委員長へ

報告

<食品安全委員会委員名簿>

(2017年1月7日から)

佐藤 洋 (委員長)

山添 康 (委員長代理)

吉田 緑

山本 茂貴

石井 克枝

堀口 逸子

村田 容常

く食品安全委員会香料ワーキンググループ専門委員名簿>

(2017年10月1日から)

山崎 壮(座長)

西 信雄(座長代理)

伊藤 清美

梅村 隆志

紙谷 浩之

久保田 紀久枝

佐藤 恭子

髙須 伸二

塚本 徹哉

戸塚 ゆ加里

山田 雅巳

吉成 浩一

<参考人>

杉山 圭一 (かび毒・自然毒等専門調査会専門委員)

要約

添加物(香料)として使用される「イソブチルアミン」(CAS 登録番号: 78-81-9)、「イソプロピルアミン」(CAS 登録番号: 75-31-0)、「sec-ブチルアミン」(CAS 登録番号: 13952-84-6)、「プロピルアミン」(CAS 登録番号: 107-10-8)、「ヘキシルアミン」(CAS 登録番号: 111-26-2)、「ペンチルアミン」(CAS 登録番号: 110-58-7)及び「2-メチルブチルアミン」(CAS 登録番号: 96-15-1)(以下「指定要請香料 7 品目」という。)について、「香料に関する食品健康影響評価指針」(2016年5月食品安全委員会決定。以下「香料指針」という。)に基づき、各種資料を用いて食品健康影響評価を実施した。

本ワーキンググループとしては、構造及び代謝に関する類似性から、指定要請香料7品目を一つにまとめて扱うことができると考えた。

本ワーキンググループとしては、類縁化合物の評価も踏まえ、指定要請香料 7 品目には遺伝毒性の懸念はないと判断した。

本ワーキンググループとしては、指定要請香料 7 品目は構造クラス I に分類されると判断した。また、指定要請香料 7 品目は、いずれも、安全性に懸念がない産物に代謝されると予見できると判断した。さらに、指定要請香料 7 品目の推定一日摂取量は、 $0.02\sim2\,\mu g/$ 人/日であり、いずれも、構造クラス I の摂取許容値($1,800\,\mu g/$ 人/日)を下回ったことから、指定要請香料 7 品目は安全性に懸念がないと予測できると判断した。

以上から、本ワーキンググループとしては、指定要請香料 7 品目は、香料指針に 基づき評価した結果、食品の着香の目的で使用する場合、安全性に懸念がないと考 えた。

I. 評価対象品目の概要

1. 用途

香料 (参照 1)

2. 名称、構造式、分子式及び分子量

表 1 名称、CAS 登録番号、構造式、分子式及び分子量

	名称	CAS 登録番号	構造式、分子式及び分子量
1	和名:イソブチルアミン	78-81-9	CH ₃
	英名:Isobutylamine		H ₃ C NH ₂
	IUPAC名:2-Methylpropan-1-amine		$C_4H_{11}N = 73.14$
2	和名:イソプロピルアミン	75-31-0	CH₃
	英名:Isopropylamine		H ₃ C NH ₂
	IUPAC 名:Propan-2-amine		C ₃ H ₉ N 59.11
3	和名:secブチルアミン	13952-84-6	NH ₂
	英名:sec Butylamine		H ₃ C CH ₃
	IUPAC名:Butan-2-amine		$C_4H_{11}N$ 73.14
4	和名:プロピルアミン	107-10-8	H ₃ C,
	英名:Propylamine		NH ₂
	IUPAC 名: Propan-1-amine		C_3H_9N 59.11
5	和名:ヘキシルアミン	111-26-2	H ₃ C NH ₂
	英名:Hexylamine		$C_6H_{15}N$ 101.19
	IUPAC 名:Hexan-1-amine		
6	和名:ペンチルアミン	110-58-7	H ₃ C NH ₂
	英名:Pentylamine		$C_5H_{13}N = 87.16$
	IUPAC 名:Pentan-1-amine		
7	和名:2-メチルブチルアミン	96-15-1	CH ₃
	英名: 2-Methylbutylamine		H_3C NH_2
	IUPAC 名:2-Methylbutan-1-amine		$C_5H_{13}N = 87.16$

(参照 2、3、4)

3. 起源又は発見の経緯

厚生労働省に指定要請香料 7 品目の添加物としての指定及び規格基準の設定を要請した者(以下「指定等要請者」という。)によれば、指定要請香料 7 品目は、いずれも脂肪族第 1 級アミンであり、それぞれ表 2 に示した食品中に存在することが報告されている。(参照 1、5)

表 2 食品からの検出例

	名称	存在する主な食品及び濃度(ppm)*
1	イソブチルアミン	キノコ (20) 、ココア (0.056~2.793) 、コ
		ーヒー (1)
2	イソプロピルアミン	ニンジン(7)、トウモロコシ(2.3)、豚肉
		(0.1)
3	secブチルアミン	ビール、チーズ、ココア
4	プロピルアミン	紅茶(20~29)、チーズ(2~8.7)、キノコ(3)
5	ヘキシルアミン	リンゴ、ビール、チーズ、ルタバガ、シェリ
		ー、パン、ワイン
6	ペンチルアミン	コーヒー (2~15)、ハツカダイコン (6.9)、
		カリフラワー (3.3)
7	2-メチルブチルアミン	チーズ、ココア、ブドウ、ワイン

※ 検出報告例から検出濃度の上位 3 例を転記し、濃度について括弧内に ppm で表示した。なお、検出濃度が示されていなかった物質については検出例を全て転記した。

4. 我が国及び諸外国における使用状況

我が国においては、指定要請香料 7 品目の使用は認められていない。 欧州連合 (EU)、米国、オーストラリア及びニュージーランドにおいては、 指定要請香料 7 品目は、いずれも使用が認められている。米国では焼き菓子、 アイシング、スナック菓子、チーズ、乳製品、果実加工品等の加工食品に使用 されている。(参照 1 、 4 、 6 、 7 、 8)

5. 我が国及び国際機関等における評価

(1) 我が国における評価

食品安全委員会において、指定要請香料7品目についての評価は行われていない。

なお、FAO/WHO 合同食品添加物専門家会議(JECFA¹)及び欧州食品安全機関(EFSA)は、指定要請香料 7 品目を含む複数の香料について、(2)及び(3)のとおり「脂肪族及び芳香族のアミン及びアミド」のグループとして評価を行っており、食品安全委員会は、当該グループに含まれる化合物のうち、脂肪族第 1 級アミンについては、2009年に「イソペンチルアミン」、2010年に「ブチルアミン」について、また、脂肪族第 1 級アミン以外の香料については、2010年に「フェネチルアミン」、「トリメチルアミン」、「ピペリジン」及び「ピロリジン」について、いずれも、「食品の着香の目的で使用す

¹ 本文中で用いられた略称については、別紙1に名称等を示す。

る場合、安全性に懸念がないと考えられる」と評価²している。(参照 9、10、11、12、13、14)

(2) JECFA における評価

2005 年、JECFA は、第 65 回会合において、指定要請香料 7 品目を含む複数の香料について、「脂肪族及び芳香族のアミン及びアミド」のグループとして評価した。JECFA は、指定要請香料 7 品目のいずれについても、構造クラス I とし、その摂取許容値(1,800 μ g/人/日)を下回るため、現状の摂取レベルにおいて安全性に懸念はないとした。(参照 3)

2008年、JECFAは、第69回会合において、指定要請香料7品目を含む複数の香料の摂取量について、米国及び欧州における年間生産量に基づくMaximized Survey-Derived Intake (MSDI) 法により評価を行い、指定要請香料7品目のいずれについても、現状の摂取レベルにおいて安全性に懸念はないとした。(参照 15)

(3) EU における評価

2008 年、EFSA は、指定要請香料 7 品目を含む複数の香料について、「JECFA (第 65 回会合)で評価された脂肪族及び芳香族 3 のアミン及びアミド」のグループとして評価し、指定要請香料 7 品目についての JECFA の評価結果を支持するとした。2011 年及び 2015 年に、EFSA はこの評価結果について再確認している。(参照 3 、 1 6 、 1 7 、 1 8)

6. 評価要請の経緯及び添加物指定の概要

今般、指定要請香料 7 品目について、厚生労働省に指定及び規格基準の設定の要請がなされ、関係書類が取りまとめられたことから、食品安全基本法第 24 条第 1 項第 1 号の規定に基づき、食品安全委員会に対して、食品健康影響評価の依頼がなされたものである。

厚生労働省は、食品安全委員会の食品健康影響評価結果の通知を受けた後に、 指定要請香料7品目について、「着香の目的以外に使用してはならない」旨の使 用基準を設定し、成分規格を定め、新たに添加物として指定することを検討す るとしている。(参照1)

7. 評価に適用されるべき指針

指定要請香料 7 品目については、「着香の目的以外に使用してはならない」旨の使用基準の設定が検討されることから、本ワーキンググループとしては香料

² 「国際的に汎用されている香料の安全性評価の方法について(最終報告・再訂正版)」(平成 15 年 11 月 4 日)に基づき評価された。

³ FGE.86では、改訂 (FGE.86Rev2) により、現在「芳香族」は「アリールアルキル」と記載されている。

指針に基づき評価を行うこととした。

Ⅱ. 一日摂取量の推計

指定等要請者は、指定要請香料 7 品目について、MSDI 法に基づき算出された、JECFA (2009) 及び EFSA (2011、2015) による推定摂取量並びに国際フレーバー工業協会 (IOFI) による 2010 年の米国及び欧州における年間使用量の値から推計した摂取量を表 3 のように比較した。過少な見積もりを防ぐため、最大値をそれぞれの指定要請香料の推定一日摂取量としている。(参照15、17、18、19)

表 3 評価対象物質の年間使用量及び MSDI 法による推定一日摂取量 4 (使用量: kg/年、摂取量: μg/人/日)

8- 1 1	174 · 174 <u>—</u>	. με//	<u> </u>					
名称	地域		欧州			米国		推定一日
	報告者	JECFA	EFSA	IOFI ⁵	JECFA	EFSA	IOFI ⁵	摂取量
								(μg/人/目)
イソブチル	使用量	0.1		0.1	0.6		0	
アミン	摂取量	0.01	0.012	0.01	0.07	0.09	0	0.09
イソプロピ	使用量	0.1		0	0.1		0	
ルアミン	摂取量	0.01	0.012	0	0.01	0.02	0	0.02
secブチル	使用量	0.1		0	14		0	
アミン	摂取量	0.01	0.012	0	2	2	0	2
プロピルア	使用量	0.1		0	ND		0	
ミン	摂取量	0.01	0.012	0	ND	0.02	0	0.02
ヘキシルア	使用量	0.2		0.1	ND		0	
ミン	摂取量	0.02	0.024	0.01	ND	0.007	0	0.024
ペンチルア	使用量	0.3		0.1	ND		0	
ミン	摂取量	0.03	0.037	0.01	ND	0.2	0	0.2
2-メチルブ	使用量	0.1		0	0.1		0	
チルアミン	摂取量	0.01	0.012	0	0.01	0.02	0	0.02

※ ND については、JECFA(2009)において"ND, no intake data reported"とされている。

本ワーキンググループとしては、指定要請香料7品目がこれまで我が国で使

⁴ 摂取量[μ g/人/日]は(年間使用量[kg/年]× 10^9)/(消費人口[人]×補正係数×365[日])により求められた。JECFA (2009)では消費人口として欧州: 32,000,000、米国: 28,000,000、補正係数は欧米とも 0.8 が使用された。 EFSA (2011、2015)では欧州での摂取量推定に消費人口 37,500,000、補正係数 0.6 が使用された。また、消費人口はその地域の人口の 1/10 とされた。なお、補正係数は報告されていない使用量を補正するものであるとされている。

⁵ 参照19には推定摂取量の記載はないことから、指定等要請者がJECFA(2009)と同じ計算式、パラメータを用い、推定摂取量を計算。

用されていなかったことを踏まえれば、報告されている欧州及び米国における 摂取量のうち最大値を用いても、我が国における摂取量の推計が過少になるこ とはないと考えた。さらに、正確には指定後の追跡調査による確認が必要と考 えられるが、既に指定されている香料物質の我が国と欧米における推定摂取量 が同程度との情報があることも踏まえ、指定等要請者が、指定要請香料 7 品目 の我が国における推定一日摂取量を、表 3 のとおり推計したことは妥当と判断 した。(参照 2 0)

なお、表 2 で食品中での濃度が報告されている化合物について、代表的な食品中 6での濃度及び喫食量 7を基に、食品由来の摂取量推計を行った。その結果、イソブチルアミンで 320 μ g/人/日(キノコ由来)、イソプロピルアミンで 138.6 μ g/人/日(ニンジン由来)、プロピルアミンで 48.0 μ g/人/日(キノコ由来)及びペンチルアミン 8で 266.6 μ g/人/日(コーヒー由来 9)となり、香料としての摂取量は、いずれも食品由来の摂取量の 1,000 分の 1 以下であった。(参照 2 1)

Ⅲ. 安全性に係る知見の概要

1. 代謝等

香料指針を踏まえ、代謝等について検討した。

(1)代謝等に関する知見

第1級アミンの代謝に関するレビューは①~④のとおりである。また、指定要請香料7品目のうち、プロピルアミン、ペンチルアミン及び sec ブチルアミン並びに食品安全委員会が過去に評価を行った化合物を含むその他の第1級アミンについての個別の知見は⑤~⑦のとおりである。

① アミンオキシダーゼに関するレビュー (Blaschko (1952))

多くの脂肪族アミンは、アミンオキシダーゼの基質となり、炭素鎖長に応じて酸化速度と基質親和性は異なる。アミンオキシダーゼはメチルアミンを酸化しないが、エチルアミンの酸化を弱いながら触媒し、炭素鎖長が増加するに従い酸化速度は増大する。炭素鎖の炭素原子数が5又は6で酸化速度は最大となり、炭素鎖長が更に増加すると、酸化速度は低下する。なお、モルモット肝臓由来アミンオキシダーゼは、ブチルアミン 10だけでなくイソブチルアミンも酸化するが、secブチルアミンを酸化しない。また、アミンオキシ

10

⁶表2の濃度から複数の食品に対して算出できる場合は、摂取量が最も多くなる食品を選んだ。

⁷ 平成 28 年国民健康・栄養調査 (平成 29 年 12 月) の食品群別摂取量に基づき、喫食量をキノコ 16.0 g/人/日、ニンジン 19.8 g/人/日、コーヒー133.3 g/人/日として算出した。

⁸ 表 2 ではコーヒー中の濃度が $2\sim15$ ppm とされているが、過大な見積りとならないよう 2 ppm として算出した。

⁹ 平成 28 年国民健康・栄養調査 (平成 29 年 12 月) では「コーヒー・ココア」とされている。

¹⁰ 原著では n-butylamine とされている。

ダーゼは多くのモノアミンを酸化するが、ジアミンを酸化することはない。 アミンオキシダーゼの酵素活性は、哺乳動物では一般に肝臓で最も高い。(参 照 2 2)

② モノアミンオキシダーゼ (MAO) に関するレビュー (Benedetti (2001)) 外因性化学物質の代謝に関わる酸化酵素には、シトクロム P450 ファミリーの酵素 (P450) に属するモノオキシゲナーゼ以外に、フラビン含有モノオキシゲナーゼ (FMO)、アミンオキシダーゼ等がある。アミンオキシダーゼに分類されるフラビン・アデニンジヌクレオチド (FAD) 含有アミンオキシダーゼは、基質特異性から MAO 及びポリアミンオキシダーゼに分類され、更にMAO は基質特異性及び阻害物質への感受性から MAO-A 及び MAO-B に分類される。

脂肪族アミン類の MAO による酸化反応では、窒素原子に隣接する α 位炭素原子が反応してイミンが生成し、生じたイミンは非酵素的に加水分解されてアルデヒド及びアンモニア又はアルデヒド及びアミンが生成する。また、この α 位炭素原子にメチル基が導入されると、MAO による酸化を受けなくなる。一方、P450 はニコチンアミド・アデニンジヌクレオチドリン酸(NADPH)の存在下で脂肪族アミンを α -アミノアルコールに変換する反応を触媒する(③参照)。

ヒトを含む哺乳類では MAO-A 及び MAO-B の発現には高い組織特異性がある。両酵素はともに、中枢神経系及び肝臓に多く存在する一方、ヒトの心筋では MAO-A より MAO-B の発現量が多いが、ラットの心臓では MAO-A の発現量が多く、MAO-B はほぼ発現していない。また、肝臓及び肺における MAO-A 及び MAO-B の発現量は、ヒトとラットで同程度である。このように、MAO-A 及び MAO-B の発現量には種差が存在する。(参照23)

③ アミンの代謝に関するレビュー(薬物代謝学(2010))

脂肪族アミンの窒素原子に隣接するアルキル基の α 位炭素原子及び水素原子間の結合は一般的に反応性が高く、第1級アミンは P450 により水酸化され、不安定な中間体の α -アミノアルコール(カルビノールアミン)が生成する。その後非酵素的にアミンが遊離し、アルデヒド又はケトンが生成する(脱アミノ反応又は N-脱アルキル反応)。なお、P450(群)による触媒作用は基質特異性が低く、第1級、第2級及び第3級アミンのいずれもが基質になり得る。一方で、FMO や MAO による触媒作用には基質特異性が知られており、一般的に FMO は塩基性の強い第3級アミン、第2級アミン等を、MAO は脂溶性直鎖アミン及びカテコールアミンをそれぞれ酸化的脱アミノ化する。アンフェタミン(β -メチルフェネチルアミン)は、ウサギでは CYP2 群の

P450 により酸化され、フェニルアセトン及びアンモニアが生成するが、ラットではこの酵素群の活性が低く、主に芳香環のp位が水酸化されたpヒドロキシアンフェタミンが生成される。このように、CYP2 群の P450 の活性には種差が存在する。(参照 24)

4) 脂肪族アミンの代謝に関するレビュー(JECFA (2006))

脂肪族アミンでは、主に FMO、MAO 又はアミンオキシダーゼにより窒素原子に隣接する α 位の炭素原子が水酸化され、イミン中間体を経て、酸化的脱アミノ化によりアルデヒド ¹¹及びアンモニアが生成する。アルデヒドは更に酸化されてカルボン酸となる。生じたカルボン酸及びアミンは既知の生体内物質の代謝経路に入り、アンモニアは尿素として尿中に排泄される。

また、脂肪族第 1 級アミンで α -置換炭素を有する化合物は、P450 により ニトロソ化合物を経てオキシムとなる可能性があるが、オキシムは不安定で 速やかに加水分解される。

以上から、経口摂取された脂肪族アミンは、消化管で速やかに吸収され、 既知の代謝経路で極性代謝物に変換された後、尿中から速やかに消失すると 考えられる。(参照3)

⑤ エチルアミン、プロピルアミン、ペンチルアミン及びイソペンチルアミン (Williams (1959)) (JECFA (2006) で引用)

メチルアミンはヒトにおいて容易に代謝されるが、エチルアミンはメチルアミンほど容易に代謝されない。ヒトでは投与されたエチルアミンの大部分は尿素に変換されるが、エチルアミン塩酸塩(2g)を投与した場合、尿中に排泄された未変化体は32%であった。

プロピルアミンはヒトにおいてはエチルアミンより代謝されやすく、ヒトにプロピルアミン塩酸塩 (6g) を投与した場合、尿中に排泄された未変化体は 9.5%であった。

ペンチルアミン ¹²はアセトン、吉草酸及び尿素に、イソペンチルアミン ¹³はイソ吉草酸及び尿素にそれぞれ変換され、モルモット肝臓スライス中で、対応するアルデヒドに変換されるほか、イソペンチルアミンの場合は、イソペンチルアルコール ¹⁴の臭いが検出された。(参照3、25)

⑥ ブチルアミン、ペンチルアミン、イソペンチルアミン、フェネチルアミン (JECFA (2006)、Pugh & Quastel (1937)、McEwen (1965)、Bernheim

¹¹ 指定要請香料 7 品目のうちのイソプロピルアミン、*sec-*ブチルアミン等、アミノ基が第 2 級炭素に結合しているものについてはケトンが生成すると考えられる。

¹² 原著では amylamine とされている。

¹³ 原著では isoamylamine とされている。

¹⁴ 原著では isoamylalcohol とされている。

& Bernheim (1937) (JECFA (2006) で引用) 及び Richter (1938))

ブチルアミンのモルモット肝臓スライス中での代謝物の一つとして、アセト酢酸が検出された。ペンチルアミン、イソペンチルアミン及びβ-フェネチルアミンが、単離されたモルモット肝アミンオキシダーゼにより酸化的脱アミノ化されることが観察された。主な代謝物として、バレルアルデヒド、イソバレルアルデヒド及びフェニルアセトアルデヒドが検出された。

ブチルアミン及びフェネチルアミン ¹⁵は、ヒト血漿から単離されたモノア ミンオキシダーゼにより酸化的脱アミノ化された。

イソペンチルアミン 13 (1.0 mg) をウサギ肝臓ホモジネートと反応させると、速やかに酸化的脱アミノ化され、反応は 30 分後に定常状態となった。フェネチルアミン 15 (1.0 mg) をウサギ肝臓ホモジネートと反応させると、30 分後に被検物質の 80%が、4 時間後に全量が酸化的脱アミノ化された。また、いずれの場合もアンモニアが生成した。

イソペンチルアミン 13 (100 mg) 及びフェネチルアミン 15 (300 mg) をヒトに経口投与したとき、尿中において各アミンの濃度の上昇は見られなかった。(参照 3 、 2 6 、 2 7 、 2 8 、 2 9)

⑦ sec ブチルアミン(FAO/WHO 合同残留農薬専門家会議(JMPR)(1976) 及び Yamazoe ら(2011))

sec-ブチルアミンをウシに混餌投与(10 又は 100 ppm)し、食用組織、乳汁及び排泄物中の分布が調査された。給餌 3 日後の乳汁中に sec-ブチルアミンが検出されたことから、sec-ブチルアミンは吸収されることが示された。 sec-ブチルアミンは 28 日間混餌投与終了直後、筋肉、肝臓、脂肪及び腎臓中に残存していた。尿及び糞便中の sec-ブチルアミンの測定結果より、sec-ブチルアミンが容易に血中に吸収され、主に尿中に排泄されることが示唆されている。

sec-ブチルアミンをイヌ (2 匹) に投与 (投与経路は不明、5,000 又は 10,000 ppm) したとき、酸性条件下で蒸留された尿中において、酸化的脱アミノ化により生成したエチルメチルケトンがジフェニルヒドラゾンとして検出された。また、sec-ブチルアミンの窒素は、生物学的プールに取り込まれ消失したとされている。(参照 3 0)

また、P450 分子種の 1 つである CYP2E1 の代謝予測モデルが開発されており、sec-ブチルアミンをこのモデルに適用すると、アミノ基の酸化又は窒素原子に隣接する α 位炭素原子の酸化が起こると予測される。なお、CYP2E1 は肝臓に高発現し、エタノール、アセトン、アニリン等の極性のある低分子

-

¹⁵ 原著では β -phenylethylamine とされている。

(2) まとめ

本ワーキンググループとしては、次のように考えた。

脂肪族第 1 級アミンは、容易に生体に吸収された後、MAO 等のアミンオキシダーゼ、FMO 又は P450 によって酸化的脱アミノ化反応を受けて、対応するアルデヒド又はケトンに代謝される。アルデヒドは更にカルボン酸に酸化され、尿中に排泄される。なお、これらの酵素の発現量及び活性には、一部で種差が報告されている。

Blaschko (1952) を踏まえ、指定要請香料 7 品目のうち sec ブチルアミンを除く 6 品目については、主に MAO により代謝され、排泄されると判断した。sec ブチルアミンについては、JMPR (1976) において、投与した動物で代謝され、排泄されることが確認されている。また、Yamazoe ら(2011)における CYP2E1 の代謝予測モデルによると、sec ブチルアミンは P450 分子種の 1 つである CYP2E1 により酸化的な代謝を受けると予測された。したがって、指定要請香料 7 品目はいずれも、他の一般的な脂肪族第 1 級アミンと同様、酸化的脱アミノ化により、アンモニア及び対応する脂肪族アルデヒド又はケトンとなり、アルデヒドは更に酸化されてカルボン酸となると予測された。

以上を踏まえ、指定要請香料 7 品目は、香料としての低用量を摂取する場合は、ヒトにおいても、既知の生体内物質の代謝経路に入り、速やかに代謝され、排泄されると判断した。また、構造及び代謝に関する類似性から、指定要請香料 7 品目を一つにまとめて扱うことができると判断した。

2. 遺伝毒性

(1)評価に用いた試験結果

指定要請香料 7 品目のうち 4 品目 (イソブチルアミン、イソプロピルアミン、sec ブチルアミン及びペンチルアミン) に関する復帰突然変異試験成績が提出されている。また、代謝経路、代謝産物等が指定要請香料 7 品目に類似していると考えられる類縁化合物として、エチルアミン、イソペンチルアミン及びブチルアミンに関する遺伝毒性試験成績が提出されている。(参照 2、3 2)

前述 (p14) の代謝等に関するまとめを踏まえると、指定要請香料 7 品目のうちイソブチルアミン、プロピルアミン、ヘキシルアミン、ペンチルアミン及び 2-メチルブチルアミンは、指定等要請者により類縁化合物とされた 3 物質と同じく、いずれも酸化的脱アミノ化により脂肪族飽和アルデヒドに変換され、脂肪酸となり、既知の代謝経路により代謝されると考えられる。また、指定要請香料 7 品目のうちイソプロピルアミン及び sec-ブチルアミンは、酸

化的脱アミノ化により脂肪族飽和ケトンに代謝されると考えられる。

本ワーキンググループとしては、前述 (p14) の代謝等に関するまとめを踏まえ、指定要請香料 7 品目を一つにまとめて遺伝毒性を評価できると考えた。 なお、指定要請香料 7 品目及び指定等要請者により類縁化合物とされた 3 物質は、全て脂肪族第 1 級アミンに属する化合物であり、前述 (p8) のとおり、JECFA 及び EFSA は、これらの全てを含む「脂肪族及び芳香族のアミン及びアミド」のグループとして評価している。(参照 3 、 1 6 、 1 7 、 1 8)

(2)遺伝毒性の評価

a. 類縁化合物の妥当性

本ワーキンググループとしては、エチルアミン、イソペンチルアミン及びブチルアミンは、前述(p14)の代謝等に関するまとめを踏まえ、指定要請香料 7 品目の遺伝毒性の評価に用いる類縁化合物として妥当であると判断した。

b. ステップ1

提出された指定要請香料及び類縁化合物に関する遺伝毒性の試験成績は、 表 4 のとおりである。

表 4 指定要請香料及び類縁化合物に関する遺伝毒性の試験成績

指標	試験種類	試験対象	被験物質	用量等	試験結果概要	参照
		細菌	イソブ	平 最高用量	陰性	Mortelmans 5
	変異試験	(Salmonella	チルア	10,000 μg/plate	(代謝活性化	(1986)
然変	(in	typhimurium	ミン		系の有無にか	(JECFA
異	vitro)	TA98、TA100、	1 -	最高用量	かわらず)	(2006) ,
		TA1535 及び	アミン	10,000 µg/plate		EFSA (2008,
		TA1537)	16			2011、2015)で
				最高用量		引用)
			ルアミ	3,333 µg/plate		(参照3、1
			\mathcal{V}^{17}			6, 17, 1
						8, 33)
		細菌		平最高用量	陰性	Zeiger 5
	変異試験	(S.	ロピル	10,000 μg/plate	(代謝活性化	(1987)
	(in	typhimurium	アミン		系の有無にか	(JECFA
	vitro)	TA98、TA100、	18		かわらず)	(2006) ,
		TA1535 及び		平 最高用量		EFSA (2008,
		TA1537)	アミン	3,333 µg/plate		2011、2015)で
			19			引用)
				最高用量		(参照3、1
			チルア	3,333 µg/plate		6, 17, 1
			ミン			8, 34)

¹⁶ 原著では monoethylamine とされている。

_

¹⁷ 原著では n-amylamine とされている。

¹⁸ 原著では mono-isopropylamine とされている。

¹⁹ 原著では n-butylamine とされている。

	復帰突然	細菌	イソペ	米二	最高用量	陰性 20	財団法人食品薬
	変異試験	(S. typhimurium	イナハンチルアミン	独	2,500 μg/plate	(代謝活性化	品安全センター 秦野研究所
	vitro) (GLP)	TA98、TA100、 TA1535、			存在下の S. typhimurium	かわらず)	(2007a) (イ ソペンチルアミ
		TA1537 及び Escherichia coli			群) 5,000 µg/plate		ン評価書 (2009) で引
		WP2uvrA)			(<i>E. coli</i> 及び代謝 活性化系 非 存在下		用) (参照 9、
					O S. typhimurium		35)
	復帰突然	細菌	sec-ブ	⇒☆	群) 最高用量	陰性 21	JMPR (1982)
	変異試験	(S.	sec ノ チルア ミン	计	50.0 μl/plate (₺	(代謝活性化	(参照 36)
	(in vitro)	typhimurium TA98、TA100、 TA1535、	~~		*	系の有無にかかわらず)	
		TA1537、 TA1538 及び <i>E.</i>			最高用量 100 µl/plate(S.	陰性 ²² (代謝活性化	
		coli WP2)			typhimurium TA1535	系の有無にかかわらず)	
					TA1537、TA1538 及び <i>E. coli</i> WP2		
					群) 500 µl/plate(S.		
					typhimurium		
3/4 <i>b</i>	/2 /\ FII	TW [5]		±==÷	TA98 及び TA100 群)	nv III	
染色 体異	組換え試	酵母 (Saccharomyces	チルア	評	最高用量 0.5%	陰性 (代謝活性化	
常	験	cerevisiae D3)	ミン		最高用量 7.5%(代謝活性化 系非存在下)		
	染色体異 常試験	チャイニーズ・ハ ムスター肺由来細			最高用量 200 μg/mL(代謝		財団法人残留農 薬研究所
	(in vitro)		アミン		活性化系非存在	系の有無及び	
	(GLP)	,,,,,,				かわらず)	ン評価書 (2009) で引 用)
					128 μg/mL(代謝		(参照9、
					活性化系非存在 下) (24 時間処 理)		37)
	染色体異 常試験	チャイニーズ・ハ ムスター肺由来細		類	140, 220, 320,	倍数性細胞の 増加(730	財団法人食品薬 品安全センター
	(in vitro)	胞(CHL/IU 細 胞)			μg/mL(6 時間処 理)	μg/mL:代謝 活性化系非存	秦野研究所 (2006) (ブチ
	(GLP)	, , , , , , , , , , , , , , , , , , ,			/	在下、490	ルアミン評価書

_

²⁰ 代謝活性化系非存在下の *S. typhimurium* 4 株については 1250 μg/plate 以上の用量で、代謝活性化系非存在下の *E. coli* WP2*uvrA* 及び代謝活性化系存在下の全ての株については 2500 μg/plate 以上の用量で、それぞれ生育阻害が認められたとされている。

 $^{^{21}}$ S. typhimurium 5 株での 25.0 µl/plate 以上の用量及び E. coli WP2 での 50.0 µl/plate の用量で生育阻害が認められたとされている。

²² S. typhimurium TA98 及び TA100 株での 500 μl/plate の用量で生育阻害が認められたとされている。

²³ 代謝活性化系存在下での観察対象は 490 μg/mL まで。

			最高用量 600 ²⁴ μg/mL(代謝活性 化系非存在下) (24 時間処理)	μg/mL:代謝 活性化系存在 下) 陰性	(2010) で引 用) (参照10、 38)
小核試験 (in vivo) (GLP)	マウス (CD1、雄 各群 5 匹、骨髄)		最高用量 250 mg/kg(2 日間強 制経口投与)	陰性	財団法人残留農 薬研究所 (2007b) (イ ソペンチルアミ ン評価書 (2009) で引 用) (参照9、 39)
小核試験 (in vivo) (GLP)	マウス(CD1、雄 各群 5 匹、骨髄)	類	最高用量 250 mg/kg(2 日間強 制経口投与)	陰性	財団法人食品薬 品安全センター 秦野研究所 (2007b) (ブ チルアミン評価 書(2010) で引 用) (参照10、 40)

※ 評:評価対象香料、類:類縁化合物

ブチルアミンについては、添加物「ブチルアミン」の評価書(2010)において、「哺乳類培養細胞を用いた染色体異常試験において代謝活性化系の有無に関わらず観察対象とした最高用量群においてのみ数的異常が認められているが、構造異常は認められておらず、高用量まで試験されたマウスの in vivo 骨髄小核試験では陰性であることから、本物質には、少なくとも香料として用いられる低用量域では、生体にとって特段問題となる遺伝毒性はないものと考えられた」と評価されていることも踏まえ、本ワーキンググループとしては、指定要請香料7品目のうち表4中の4品目及び類縁化合物3物質の遺伝毒性の試験結果を評価した結果、指定要請香料7品目には遺伝毒性の懸念はないと判断した。

3. 一般毒性

(1) ステップ1 (構造クラス分類)

指定等要請者は、香料指針に基づき、別紙2のとおり、指定要請香料7品目をいずれも構造クラスIに分類した。(参照2)

本ワーキンググループとしては、指定等要請者による分類を是認し、指定要請香料7品目は構造クラスIに分類されると判断した。

-

²⁴ 観察対象は 300 μg/mL まで。

(2) ステップ2

本ワーキンググループとしては、前述 (p14) の代謝等に関するまとめを踏まえ、指定要請香料 7 品目は、いずれも、安全性に懸念がない産物に代謝されると予見できると判断し、ステップ A3 に進むこととした。

(3) ステップ A3

指定要請香料 7 品目の推定一日摂取量は、前述 (p9) の推計のとおり、0.02 ~2 μ g/人/日であり、いずれも、構造クラス I の摂取許容値 (1,800 μ g/人/日) を下回る。

したがって、本ワーキンググループとしては、指定要請香料 7 品目は安全性に懸念がないと予測できると判断した。

(4)参考資料

① ブチルアミン類に関する急性毒性試験(Cheever ら(1982)(JECFA(2006)で引用))

ブチルアミン類に関する急性毒性の試験成績は、表 5 のとおりである。

表 5 ブチルアミン類に関する急性毒性の試験成績

			** ** *
動物種 (性別)	被験物質	LD ₅₀ (mg/kg 体重)	参照
ラット (雄)	ブチルアミ	365.7	Cheever 5 (1982) (JECFA
(雌)	ン	382.4	- (2006) で引用) (参照3、41)
ラット (雄)	イソブチル	224.4	
(雌)	アミン	231.8	
ラット (雄)	sec-ブチル	157.5	
(雌)	アミン	146.8	_

② ラット 13 日間反復吸入ばく露毒性試験 (Gage (1970) (JECFA (2006) で引用))

Alderley Park ラット(雄、各群 7 匹)に sec ブチルアミンを表 6 のような投与群を設定して、1 日 6.5 時間、13 日間にわたって吸入ばく露させる試験が実施されている。

表 6 用量設定

用量設定0 (対照群)、233 ppmmg/kg 体重/日0、11525 mg/kg 体重/日に換算

²⁵ JECFA (2006) は Fassett (1978、非公表文献) に基づき換算したとしている。

その結果、不快症状、嗜眠及び体重増加の遅延が見られたが、剖検では異常は見られなかった。

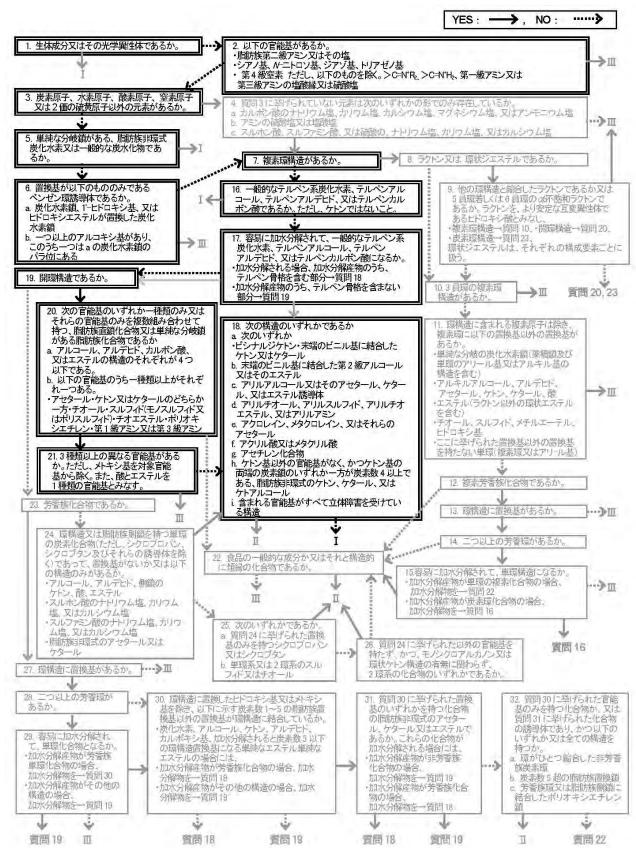
JECFA (2006) は、この摂取量で毒性影響はなかったとして NOEL を 115 mg/kg 体重/日又はそれ以上としている。(参照 3 、 4 2)

Ⅳ. 食品健康影響評価

本ワーキンググループとしては、構造及び代謝に関する類似性から、指定要請香料7品目を一つにまとめて扱うことができると考えた。

本ワーキンググループとしては、類縁化合物の評価も踏まえ、指定要請香料 7品目には遺伝毒性の懸念はないと判断した。

本ワーキンググループとしては、指定要請香料 7 品目は構造クラス I に分類されると判断した。また、指定要請香料 7 品目は、いずれも、安全性に懸念がない産物に代謝されると予見できると判断した。さらに、指定要請香料 7 品目の推定一日摂取量は、 $0.02\sim2~\mu g/\Lambda/H$ であり、いずれも、構造クラス I の摂取許容値($1,800~\mu g/\Lambda/H$)を下回ったことから、指定要請香料 7 品目は安全性に懸念がないと予測できると判断した。


以上から、本ワーキンググループとしては、指定要請香料 7 品目は、香料指針に基づき評価した結果、食品の着香の目的で使用する場合、安全性に懸念がないと考えた。

<別紙1:略称>

略称	名称等
EFSA	European Food Safety Authority: 欧州食品安全機関
EU	European Union:欧州連合
FAO	Food and Agriculture Organization:国際連合食糧農業機関
IOFI	International Organization of the Flavor Industry:国際フレー
	バー工業協会
JECFA	Joint FAO/WHO Expert Committee on Food Additives :
	FAO/WHO 合同食品添加物専門家会議
JMPR	Joint FAO/WHO Meeting on Pesticide Residues: FAO/WHO 合
	同残留農薬専門家会議
MSDI	Maximized Survey-Derived Intake
WHO	World Health Organization:世界保健機関

<別紙2:構造クラス分類>

イソブチルアミン、イソプロピルアミン、secブチルアミン、プロピルアミン、ヘキシルアミン、ペンチルアミン、2-メチルブチルアミン

<参照>

- 1 厚生労働省、「イソブチルアミン」「イソプロピルアミン」「 \sec -ブチルアミン」「プロピルアミン」「ヘキシルアミン」「ペンチルアミン」「2-メチルブチルアミン」の食品安全基本法第 24 条に基づく食品健康影響評価について 第 676 回食品安全委員会(平成 29 年 12 月 5 日)
- ² 日本香料工業会,イソブチルアミン、イソプロピルアミン、sec-ブチルアミン、 プロピルアミン、ヘキシルアミン、ペンチルアミン、2-メチルブチルアミン 概 要書
- ³ Aliphatic and Aromatic Amines and Amides. WHO Food Additive Series 56, Safety evaluation of certain food additives. Sixty-fifth Report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva(2005), 2006; 327-403
- ⁴ Commission Implementing Regulation (EU) No 872/2012 of 1 October 2012. Official Journal of the European Union. EU 2012; L267/1-7, 113-4. adopting the list of flavouring substances provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex I to Regulation (EC) No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and Commission Decision 1992/217/EC
- ⁵ Nijssen LM, van Ingen-Visscher CA, and Donders JJH (ed): VCF Volatile Compounds in Food online database, Version 16.4 Zeist (The Netherlands): Triskelion B. V., 1963-2017
- ⁶ FDA, Everything Added to Food in the United States (EAFUS). 2017 年 11 月 21 日
- ⁷ Australia New Zealand Food Standards Code Standard 1.1.2 Definitions used throughout the Code. F2017C00715. FSANZ: 7 Sep. 2017; 1, 4, 7
- ⁸ Smith RL, Cohen SM, Doull J, Feron VJ, Goodman JI, Marnett LJ, et al., GRAS flavoring substances 22, Food Technol 2005; 59(8): 24-62
- 9 食品安全委員会:添加物評価書 イソペンチルアミン,2009年11月12日
- 10 食品安全委員会:添加物評価書 ブチルアミン,2010年3月4日
- 11 食品安全委員会:添加物評価書 フェネチルアミン,2010年3月18日
- 12 食品安全委員会:添加物評価書 トリメチルアミン,2010年7月29日
- 13 食品安全委員会:添加物評価書 ピペリジン,2010年5月20日
- 14 食品安全委員会:添加物評価書 ピロリジン,2010年6月3日

- ¹⁵ WHO Technical Report Series 952, Evaluation of certain food additives. Sixtyninth report of the Joint FAO/WHO Expert Committee on Food Additives, Rome(2008), 2009
- ¹⁶ EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food, Scientific Opinion, Flavouring Group Evaluation 86, (FGE.86): Consideration of aliphatic and aromatic amines and amides evaluated by JECFA (65th meeting), The EFSA Journal 2008; 745: 1-46
- ¹⁷ EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food, Scientific Opinion, Flavouring Group Evaluation 86, Revision 1 (FGE.86Rev1): Consideration of aliphatic and aromatic amines and amides evaluated by JECFA (65th meeting), The EFSA Journal 2011; 9(4): 1-42
- ¹⁸ EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food, Scientific Opinion, Flavouring Group Evaluation 86, Revision 2 (FGE.86Rev2): Consideration of aliphatic and arylalkyl amines and amides evaluated by JECFA (65th meeting), The EFSA Journal 2015; 13(1): 1-49
- ¹⁹ IOFI Global Poundage Survey Committee, Global Poundage Survey 2010. Geneva, Switzerland 2013
- 20 新村嘉也, 食品用香料及び天然添加物の化学的安全性確保に関する研究 食品香料の規格のあり方及び流通量調査による暴露量評価に関する研究 日本における食品香料化合物の使用量実態調査, 平成 14 年度厚生労働科 学研究報告書
- 21 厚生労働省,平成28年国民健康・栄養調査報告 第1部 栄養素等摂取状況調 査の結果、平成29年12月
- ^{2 2} Blaschko H, Amine Oxidase and amine metabolism, Pharmacol Rev 1952; 4(4): 415-58
- ^{2 3} Benedetti MS, Biotransformation of xenobiotics by amine oxidases, Fundam Clin Pharmacol 2001; 15: 75-84
- 24 加藤隆一, 山添康, 横井毅編:薬物代謝学 医療薬学・医薬品開発の基礎とし て (第3版), 東京化学同人, 2010; 21-2, 46-58, 63
- ²⁵ Williams RT, Detoxication mechanisms the metabolism and detoxication of drugs, toxic substances and other organic compounds, 2nd ed., John Wiley & Sons Inc., New York 1959, 127-87.
- ²⁶ Pugh CEM and Quastel JH, Oxidation of aliphatic amines by brain and other

tissues, Biochem J 1937; 31(2): 286-91

- ²⁷ McEwen CM Jr, Human plasma monoamine oxidase I. Purification and identification, J Biol Chem 1965; 240(5): 2003-10
- ²⁸ Bernheim F and Bernheim MLC, The oxidation of mescaline and certain other amines, J Biol Chem 1938; 123: 317-26
- ²⁹ Richter D, Elimination of amines in man, Biochem J 1938; 32: 1763-9
- ³⁰ WHO Pesticide Residues Series No. 5, 1975 evaluations of some pesticide residues in food, the Joint Meeting of the FAO Working Party of Experts on Pesticide Residues and the WHO Expert Committee on Pesticide Residues, Geneva(1975), 1976
- ³ Yamazoe Y, Ito K, and Yoshinari K, Construction of a CYP2E1-template system for prediction of the metabolism on both site and preference order, Drug Metab Rev 2011; 43(4): 409-39
- 32 日本香料工業会, 文献検索結果 脂肪族第1級アミン, 2017.
- ^{3 3} Mortelmans K, Haworth S, Lawlor T, Speck W, Tainer B, and Zeiger E, Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals, Environ Mutagen 1986; vol.8 suppl. 7: 1-119
- ^{3 4} Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K, and Speck W, Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals, Environ Mutagen 1987; vol.9 suppl. 9: 1-109
- 35 財団法人食品薬品安全センター秦野研究所、イソペンチルアミンの細菌を用い る復帰突然変異試験に関する試験 (厚生労働省委託試験),2007a
- ^{3 6} FAO, FAO Plant Production and Protection Paper 42, Pesticide residues in food: 1981 evaluations, the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues, Geneva(1981), 1982
- 37 財団法人残留農薬研究所、イソペンチルアミンの哺乳類培養細胞を用いる染色 体異常試験 (厚生労働省委託試験),2007a
- 38 財団法人食品薬品安全センター秦野研究所, ブチルアミンのチャイニーズ・ハム スター培養細胞を用いる染色体異常試験(厚生労働省委託試験),2006
- 39 財団法人残留農薬研究所, イソペンチルアミンのマウスを用いる小核試験 (厚生 労働省委託試験), 2007b
- 40 財団法人食品薬品安全センター秦野研究所,ブチルアミンのマウスを用いる小 24

核試験に関する試験(厚生労働省委託試験), 2007b

- ^{4 1} Cheever KL, Richards DE, and Plotnick HB, The acute oral toxicity of isomeric monobutylamines in the adult male and female rat, Toxicol Appl Pharmacol, 1982; 63: 150-2
- $^{\rm 4.2}\,$ Gage JC, The subacute inhalation toxicity of 109 industrial chemicals, Br J Ind Med, 1970; 27: 1-18

イソブチルアミン、イソプロピルアミン、*sec*-ブチルアミン、プロピルアミン、ヘキシルアミン、ペンチルアミン、2-メチルブチルアミンに係る食品健康影響評価に関する審議結果(案)についての意見・情報の募集結果について

- 1. 実施期間 平成 30 年 4 月 18 日~平成 30 年 5 月 17 日
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 イソブチルアミン、イソプロピルアミン、sec-ブチルアミン、プロピルアミン、ヘキシルアミン、ペンチルアミン、2-メチルブチルアミンに係る食品健康影響評価に関する審議結果(案)について、上記のとおり、意見・情報の募集を行ったところ、期間中に意見・情報はありませんでした。