

鹿慢性消耗性疾患(CWD)(概要)(案)

ファクトシート

《作成日:平成〇年〇月〇日》

2 3 4

5

6

7

8 9

10

11 12

13

14

1

1. 鹿慢性消耗性疾患(CWD)とは

鹿慢性消耗性疾患(Chronic Wasting Disease: CWD)は、シカ科の動物が罹患する伝達性海綿状脳症(Transmissible Spongiform Encephalopathy: TSE)であり、アメリカアカシカ(Cervus canadensis)、アカシカ(Cervus elaphus)、ミュールジカ(Odocoileus hemionus)、オグロジカ(Odocoileus hemionus)、オジロジカ(Odocoileus virginianus)、ニホンジカ(Cervus nippon)、ヘラジカ(Alces alces)及びトナカイ(Rangifer tarandus)が感受性動物であることが知られている 1,2)。これまでに日本における発生は確認されていない(2017年9月末現在)。また、食品を介した経路も含めて、病原体である CWD プリオンが、人へ感染することを示す証拠はこれまでに確認されていない。一方、近年、諸外国では CWD のシカ科動物間における感染拡大が報告されている。これらのことを踏まえ、査読を受けた科学論文として報告されている知見を整理し、本ファクトシートとして取りまとめた。

15 16

16 17

2. 発生状況

- 18 CWD は、米国、カナダ、韓国及びノルウェーにおいて発生が確認されている。
- 19 1967年、米国コロラド州の野生動物研究施設で捕獲・飼養されていたミュールジカで、
- 20 原因不明の消耗性疾患として初めて報告され、1978年に TSE であることが明らかにされ
- 21 た。米国では、1997年に野生動物のサーベイランスを開始し、これまでに、野生・飼育下
- 22 合わせて 24 州 *において発生が確認されている(図1) 1,3,4,5)。
- 23 カナダでは、1996年にサスカチュワン州の農場において初めて報告され、以降、アルバ
- 24 一タ州及びサスカチュワン州で発生が確認されている(図1)3.60。カナダへは、米国サウ
- 25 スダコタ州から輸入された個体から侵入したと考えられている ♡。
- 26 韓国では、2001年に忠清北道の農場において、1997年にカナダサシュカチュワン州
- 27 から輸入されたアメリカアカシカで初めて報告され、以降、6道において計86例の発生が
- 28 確認されている(図2) 8,9,10)。
- 29 ノルウェーでは、2016年に野生のトナカイで初めて報告され、以降、2地域において 8
- 30 例の発生が確認されている(図3)^{2,11)}。
- 31 日本では、家畜伝染病予防法(昭和 26年5月31日法律第166号)により、伝達性海綿
- 32 状脳症(TSE)として家畜伝染病に指定されている。2003年 6月から、「伝達性海綿状脳
- 33 症 (TSE) 検査対応マニュアル」に基づき、サーベイランスの対象とされているが、2017
- 34 年 6 月末現在、発生は確認されていない 12)。さらに、国立研究開発法人農業・食料産業技
- 35 術総合研究機構 動物衛生研究所 (現 動物衛生研究部門) が、2003年から 2010年にかけ
- 36 て行ったサーベイランスでも、発生は確認されていない 13,14)。

^{*} アーカンソー州、コロラド州、イリノイ州、アイオワ州、カンザス州、メリーランド州、ミシガン州、ミネソタ州、ミズーリ州、モンタナ州、ネブラスカ州、ニューメキシコ州、ニューヨーク州、ノースダコタ州、オハイオ州、オクラホマ州、ペンシルバニア州、サウスダコタ州、テキサス州、ユタ州、バージニア州、ウェストバージニア州、ウィスコンシン州、ワイオミング州

2

3

4

5

6

7

8

9

10 11

3. CWDの病態、診断及び感染経路

感染動物は、数年の潜伏期間の後、進行性に削痩、衰弱、流延等の症状を呈し、 $3\sim4$ か月で死に至る。病理学的検査による空胞変性の確認、免疫組織化学検査、酵素免疫測定法(ELISA)、ウエスタンブロット法による脳内又はリンパ節に蓄積した異常プリオンたん白質(\PrPSc)の検出による診断が可能であり、また、現行の BSE 検査が CWD の診断・サーベイランスにも応用可能とされている 13,14)。

 \Pr PSc は、主に脳、脊髄、扁桃、リンパ節、脾臓等に蓄積するが、心筋や骨格筋に蓄積が認められたとの報告もある 15,16,17)。また、牛海綿状脳症(BSE)とは異なり、血液、唾液、尿及び糞中からも感染性が確認されており、直接又は間接接触によるシカからシカへの水平感染が生じることが示唆されている 16,18,19)。

Distribution of Chronic Wasting Disease in North America

OVD in free ranging populations

図1 米国・カナダにおける発生状況 4)

■USGS

図2 韓国における発生状況

(韓国動物防疫統合システム HP¹⁰⁾のデータに基づき作成)



図3 ノルウェーにおける発生状況 2)

4. 人に対する影響

査読を受けた科学論文として報告されている CWD プリオンの人に対する影響に関する研究結果の概要を以下にまとめた。

- ・CWDプリオンが人のプリオン病の原因となったことを示す疫学的な知見はない。
- ・サルへの投与実験では、リスザル(Saimiri sciureus)が CWD プリオンに対して高い感受性を示す一方、カニクイザル(Macaca fascicularis)に対しては、高い種間バリアの存在が示唆されている。また、人のプリオンたん白質(PrP)を発現するトランスジェニックマウスへの投与実験においても、高い種間バリアの存在が示唆されている。
- ・CWD プリオンが経口で牛に感染したことを示す疫学的又は実験的な知見はなく、脳内接種により CWD に感染した牛の脳をサルに経口投与した結果、現時点で感染は確認されていない。
- 詳細は以下のとおりである。

(1)疫学的知見

米国疾病予防管理センター(CDC)、Belays ら及び Anderson らは、CWD との関連が疑われた米国のクロイツフェルト・ヤコブ病(Creutzfeldt—Jakob disease: CJD)患者 12 症例について、CWD 流行地域の鹿肉へのばく露状況等を調査したが、CWD プリオンが人間に伝達したことを強く示す証拠は得られなかった 20,21,22,23)。1979 年から 2000 年の間のデータに基づく、米国の CWD 流行地域であるコロラド州及びワイオミング州 における CJD の年齢調整死亡率 †は、それぞれ 1.2/100 万人及び 0.8/100 万人と、米国内のその他の地域と同様であった。また、55 歳未満で死亡した CJD 患者の割合は、コロラド州で全体の 13.4%であり、国全体の 10.2%と大きく変わらず、ワイオミング州では 22 年間のサーベイランスで CJD 患者は 1 例も確認されなかった。著者は、これらのことは、CWD プリオンのヒトへの伝達のリスクが、あったとしても低いことを示唆するとしている 220。

Anderson らは、CWD に感染したシカやアメリカアカシカの組織検体を扱う研究所に 勤務していた女性が記憶障害等を示したことから、診断を行った結果、CJD ではなくア ルツハイマー病であったと報告している ²³⁾。

MaWhinney らは、米国コロラド州内の CWD 流行郡と非流行郡における CJD 又は神経変性疾患(55 歳より高齢のアルツハイマーを除く)で死亡する相対リスク及び州内の 1979-1998 年と 1999-2001 年における当該相対リスクを調べた結果、両郡で統計学的に有意な差はなかったとしている 24 。

Garruto ら及び Olszowy らは、2005 年にニューヨーク州で開催されたイベントで、 CWD 感染鹿の肉を食した人々81 名を対象に毎年アンケート調査を行った結果、2005 年から 2011 年にかけて、健康状態の有意な変化はなかったとしている 25,26 。

[†] 観察集団と基準集団の年齢構成の違いを考慮して補正した死亡率

(2) ヒトモデル動物への投与実験

①サルへの投与実験

Marsh らは、CWD 感染ミュールジカの脳組織 40 mg 相当を $2 頭のリスザルへ脳内接種する実験を行った。その結果、<math>2 頭中 2 頭に感染が認められた <math>^{27}$)。

Race らは、CWD 感染ミュールジカ、アメリカアカシカ又はオジロジカの脳組織 $2 \, \mathrm{mg}$ 又は $20 \, \mathrm{mg}$ 相当を $13 \, \mathrm{ig}$ のリスザルへ脳内接種、及び脳組織 $600 \, \mathrm{mg}$ 相当を $12 \, \mathrm{ig}$ のリスザルへ経口投与する実験を行った。その結果、それぞれ $13 \, \mathrm{ig}$ 中 $13 \, \mathrm{ig}$ 及び $12 \, \mathrm{ig}$ 頭中 $11 \, \mathrm{ig}$ に感染が認められた。さらに、Race らは、同脳組織 $5 \, \mathrm{mg}$ 相当を $6 \, \mathrm{ig}$ のカニクイザルへ脳内接種、及び脳組織 $800 \, \mathrm{mg}$ 相当を $8 \, \mathrm{ig}$ のカニクイザルへ経口投与する実験を行った。その結果、いずれのカニクイザルにも感染は認められなかった。リスザルとカニクイザルとの、CWD プリオンに対する感受性の違いについて著者は、「進化学的にはカニクイザルは人により近縁であり、人も CWD に対して耐性をもつだろう」と考察している 28,29)。

Comoy らは、1 頭のカニクイザルに対し、CWD 感染オジロジカの脳組織 40 mg 相当を脳内に、脳組織 8 mg 相当を扁桃内に接種する実験を行った。その結果、当該サルは、接種後 87 か月時点で症状を示さず生存中とされている。また、2 頭のカニクイザルに対し、CWD 感染牛の脳組織 40 mg 相当を脳内に、脳組織 8 mg 相当を扁桃内に接種する実験を行った。その結果、2 頭のサルは、接種後 87 か月時点で症状を示さず生存中とされている(CWD の牛への感染性については、「5. ②牛への感染に関する知見」を参照)30。

②ヒトPrP発現トランスジェニックマウスへの投与実験

Kong らは、CWD 感染アメリカアカシカの脳組織 0.3~mg 相当を、ヒト PrP(コドン 129M 型)を生理的な発現量と同程度発現する 29~匹のトランスジェニックマウス (Tg40) 又はヒト PrP (コドン 129M 型)を生理的な発現量の約 2~倍発現する 22~匹のトランスジェニックマウス (Tg1) に脳内接種する実験を行った。その結果、いずれのマウスにも感染は認められなかった 31)。

Tamgüney らは、CWD 感染アメリカアカシカ、ミュールジカ又はオジロジカの脳組織 0.3~mg 相当を、ヒト PrP(コドン 129M 型)を生理的な発現量の約 2 倍発現するそれぞれ 39 匹、15 匹又は 13 匹のトランスジェニックマウス(Tg(HuPrP)440)に脳内接種する実験を行った。その結果、いずれのマウスにも感染は認められなかった 32 。

Sandberg らは、CWD 感染ミュールジカの脳組織 0.3~mg 相当を、ヒト PrP(コドン 129V 型)を生理的な発現量の約 6 倍発現する 14~Emoトランスジェニックマウス (Tg152)、ヒト PrP (コドン 129M 型)を生理的な発現量の約 4 倍発現する 13~Emoトランスジェニックマウス (Tg45) 又はヒト PrP (コドン 129M 型)を生理的な発現量の約 2 倍発現する 14~Emoトランスジェニックマウス (Tg35) に脳内接種する実験を行った。その結果、いずれのマウスにも感染は認められなかった 33)。

Wilson らは、CWD 感染オジロジカの脳組織 2 mg 相当を、ヒト PrP (コドン 129M

型)を生理的な発現量と同程度発現する 24 匹のトランスジェニックマウス (HuMM)、ヒト PrP (コドン 129M/V 型)を生理的な発現量と同程度発現する 24 匹のトランスジェニックマウス (HuMV) 又はヒト PrP (コドン 129V 型)を生理的な発現量と同程度発現する 24 匹のトランスジェニックマウス (HuVV) に脳内接種する実験を行った。その結果、いずれのマウスにも感染は認められなかった 34 。

Kurt らは、CWD 感染アメリカアカシカの脳組織に由来する 1-5%脳乳剤 20- $30~\mu$ L を、ヒト PrP(コドン 129M 型)を生理的な発現量と同程度発現する 12 匹のトランスジェニックマウス(Tg40)に脳内接種する実験を行った。その結果、いずれのマウスにも感染は認められなかった 350。

5. その他の関連知見

① in vitro でのヒトPrPの変換

プリオンの感染性を検討するに当たり、in vitro での知見は、生体内でのより複雑な感染機序を省略化したものであり、実際の感染性を必ずしも反映するものではないが、PMCA (Protein Misfolding Cyclic Amplification) 法や RT-QuIC (Real-time Quaking-induced Conversion) 法を用いた in vitro の反応系で、ヒト PrP が CWD プリオンによって変換されるといった現象が報告されている 36,37)。

②牛への感染に関する知見

Gould らは、米国コロラド州の CWD 流行地域における成牛 262 頭(22 群から抽出)について、TSE への感染の有無を調査した。脳組織の病理所見及び IHC による確認の結果、TSE である証拠は確認できなかった。著者は、「統計学的な解析の結果、当該 22 群には TSE の感染牛はいない可能性が高いと結論できる」としている 38)。

Hamir ら及び Greenlee らは、CWD 感染ミュールジカ、オジロジカ又はアメリカアカシカの脳組織 100 mg 相当を、牛に脳内接種する実験を行った。その結果、それぞれ 13 頭中 3 頭、14 頭中 12 頭又は 14 頭中 2 頭に感染が認められた 39,40,41,42)。

Hamir らは、2011年に発表した総説において、CWD 感染シカ(種類不明)由来の脳組織 50g相当を経口投与した牛が、投与後 9年経過時点で症状を示していないとしている 430。

参考、各国機関による対応等

2 これまでに CWD の発生が確認されている国及びその周辺国における CWD プリオンの 人へのリスクに関する対応等を以下にまとめた。

各国機関は、「疫学的には CWD が人で伝達した証拠はない」又は「人への伝達のリスク が低い」との趣旨の見解を示している。ただし、米国疾病予防管理センター(CDC)は、 近年学会で発表された研究結果を基に、「CWDがヒトに対するリスクとなる可能性がある という懸念を生じさせ、ヒトの CWD へのばく露を防止することの重要性を示唆してい る。」としている。また、欧州食品安全機関(EFSA)は、in vitro での実験結果に基づき、 「CWD 感染シカ科動物と人の間における絶対的な種間バリアを示す証拠はない。」として

9 10 いる。

この他、病原体株の可塑性やデータの不足による不確定性についても言及されており、 ノルウェー食品安全科学委員会(VKM)は、ノルウェーのヘラジカで確認された従来型と は異なるCWDのリスクについて、「現段階の知見からは、食品安全に関して確固たる結論 に至ることはできない。」としている。

詳細は以下のとおりである。

なお、日本においては、現時点では CWD の発生は確認されていない。農林水産省は、 家畜防疫の観点から、CWD 発生国からのシカ科動物及びシカ科動物由来畜産物の輸入停 止措置を講じている 44,45,46)。また、厚生労働省は、関係事業者に対し、これらの国から輸 入を行わないよう指導している 47,48)。

19 20 21

22 23

24

25

26

27

28 29

30

31 32

33

34 35

36

37

1

3

4 5

6 7

8

11 12

13

14

15

16 17

18

1. 米国 5

米国疾病予防管理センター (CDC) は、2017 年 8 月に更新したホームページ上で、 人への影響に関して、以下の見解を示している。

CWD は、実験的にリスザルやヒトの遺伝子を持ったマウスへ感染することが示され ている‡。加えて、2009年から始まったカナダとドイツの科学者による研究は、これま で CWD に感染することが示されている他のどの動物よりも遺伝的にヒトに近縁なサル である、マカク属のサルへの CWD の伝達の有無を評価している。2017 年 7 月 10 日、 彼らは、研究経過の要約を報告した。そのなかで、彼らは、CWDに感染したシカ及び アメリカアカシカの肉(筋組織)又は脳組織を給餌されたマカク属のサルに CWD が伝 達することを示した。給餌した肉のなかには、無症状の CWD 感染シカ (健康に見え、 症状を発現する前のシカなど)に由来するものもあった。これらの無症状のシカに由来 する肉から、マカク属のサルの CWD への感染は可能であった。また、病原体を脳に直 接接種されたマカク属のサルに対しても、CWDが感染可能であった。

この研究は、CWD がマカク属のサルへ伝達は成立しないとしたこれまでの研究とは、 異なる結果を示した。異なる実験結果が生じた原因は不明である。これまで、ヒトでの CWD の症例は確認されておらず、ヒトが CWD に感染することを示す直接的な証拠は ない。一方、この研究は、CWD がヒトに対するリスクとなる可能性があるという懸念

[‡]食品安全委員会注)2017年9月末現在、ヒトの遺伝子を持ったマウスへの感染の成立は、査読を受けた科学論文 としては報告されていない。ただし、学会 PRION 2016 TOKYO で、Kong らが報告している。

を生じさせ、ヒトの CWD へのばく露を防止することの重要性を示唆している。

CWD に感染している可能性のあるシカやアメリカアカシカと接触するリスクが大きい人々について、何らかのプリオン病が高率に発生しているか否かを調査するための追加研究が進行中である。何らかの症状が現れるまでには長期間を要するため、仮にあったとして CWD の人へのリスクがどういったものかを解明するには、長年の研究を要すると、科学者らは予想している。

CWD がヒトにまん延しうるとすれば、シカやアメリカアカシカの喫食に由来すると思われる。2006-2007 年に米国の居住者を対象に行われた CDC の調査によると、調査を受けた 20%近くのヒトがシカやアメリカアカシカを狩猟したことがあり、3分の 2以上のヒトがそれらの肉を食した経験があると答えた。しかし、これまでヒトでは CWD への感染は報告されていない。

狩猟者は、CWD 発生地域で捕獲されたシカ及びアメリカアカシカの肉を食すかどうかを決めるに当たって、受け入れることができるリスクの程度を含めて、多くのことを検討する必要がある。CWD 発生地域でシカ及びアメリカアカシカを捕獲した狩猟者は、州の野生動物及び公衆衛生に関するに関するガイダンスをチェックし、動物の検査が推奨又は義務付けられているかどうかを確認するべきである。CDC は、CWD の存在が確認されている地域においては、肉を食す前にこれらの動物の検査を検討することを推奨する。

CWD の検査は、いくつかの州の野生当局が、動物群における CWD の有病率を調べる目的で行うモニタリングツールである。検査は全ての州で実施されているものではなく、州ごとにこれらの検査の実施方法も異なる。検査結果が陰性であることは、その動物個体が CWD に感染していないことを保証するものではないが、CWD へのばく露リスクを大きく減少させる。

可能な限りの安全のために、そして潜在的な CWD へのばく露リスクを減少させるために、CWD 発生地域で狩猟を行う際には、狩猟者は以下のことを注意するべきである。

- 〇病気が疑われる、異常行動を示している、あるいは死亡している (轢死した)シカ 及びアメリカアカシカは、狩猟の対象としない、取り扱わない、肉を食さないこと。
- 〇シカを解体する際は、
 - ・ラテックス製又はゴム製の手袋を着用すること。
 - ・動物の内臓(特に脳又は脊髄)の取扱いを最小限にすること。
 - ・家庭用ナイフやキッチン用品を使用しないこと。
- 〇州の野生動物及び公衆衛生に関するに関するガイダンスをチェックし、動物の検査 が推奨又は義務付けられているかどうかを確認すること。推奨事項は州ごとに異な るが、検査に関する情報は多くの州の野生局で得られる。
- 37 〇シカやアメリカアカシカの肉を食す前に、CWDの検査をよく検討すること。
- 38 ○シカやアメリカアカシカを商業的に加工する際には、多数の動物に由来する肉の交 39 差を避けるため、個体ごとの加工の依頼を検討すること。

OCWD 検査陽性の動物に由来する肉は食しないこと。

米国農務省動植物検疫所は、商業的に飼養されているシカ及びアメリカアカシカについて規制を設けている。当局は、国家 CWD 群認定プログラムを実施している。自主的なプログラムとして、州及び飼養者は、群における CWD のリスクを減少させるための要件を満たしていることを確認している。群認定プログラムに参加していない群は、CWD のリスクが高い可能性がある。

2. カナダ 6)

カナダ食品検査庁 (CFIA) は、2007年に公表し、2017年7月に更新されたファクトシートで、人への影響に関して、以下の見解を示している。

現在のところ、シカやアメリカアカシカでの CWD の人への伝達を示す直接的な科学的証拠はない。しかしながら、CWD に感染したことがわかっている動物由来の組織は人の利用や消費に供しないことを推奨する。

人の CWD に汚染された可能性のある製品へのばく露を低減するため、国家又は州レベルで、感染動物のフードチェーンへの混入防止、野生のシカ科動物での CWD 発生地域における狩猟者への警告などの措置が講じられている。

3. ノルウェー

(1) ノルウェー食品安全科学委員会 (VKM) 49,50)

VKM は、2016 年 6 月及び 2017 年 3 月に公表した報告書 (Phase I 及びⅡ) で、 人への影響に関して、以下の見解を示している。

Phase Iの結論は以下のとおりである。

- 1. CWD の病原体の可塑性に関する不確定性及びノルウェーで分離された株の伝達性に関するデータの欠如を考慮しても、本科学的意見書は、CWD による人獣 共通感染症のリスクは極めて低いと考える。
- 2. 人の健康への影響は、サーベイランスの結果やプリオン株の特徴の同定を踏ま えて継続的に評価される必要がある。人獣共通感染症の可能性について示すあら ゆる研究を検討する必要がある。
- 3. 死亡したシカ科動物又は CWD の症状を示す動物は、所管当局及び訓練を受けた職員によって取り扱われることから、狩猟者や獣肉処理施設の職員へのリスクは無視できる。しかしながら、情報は適切な言語によって周知される必要がある。
- 4. 健康な動物の肉のみが、人の消費に適すとされていることから、CWD 感染動物の消費に関連したリスクは極めて低い。本件は、2016年以前の猟期に収穫された肉についても適用される。
- 5. ベリー類、その他の植物又は土壌を介した人の健康へのリスクは無視できると 考えられる。

上記 Phase Iの結論に関し、Phase IIでは、以下のとおり見直しを行っている。

- 〇トナカイについては、人獣共通感染症の可能性や食品安全の問題に関する評価に 関連した新たな情報はない。したがって、上記の1、2及び5は依然として妥当 である。
- 〇シカ科動物は、症状を示す数か月前から CWD の病原体を保有・排出していることから、上記の3及び4について、無症状であるからといって人へのばく露を排除できるわけではないことを強調する。
- 〇ヘラジカについては、ヘラジカ症例及びその病原体の特徴の同定に関する予備試験の結果から、トナカイや北米のシカ科動物で確認されたものと有意に異なるという重要な特徴が明らかとなった。このことは、人獣共通感染症の可能性について、従来型の CWD とは異なる可能性があるという不確定性を生じる。現段階の知見からは、食品安全に関する確固たる結論に至ることはできない。予防原理によって潜在的なリスクが減少される。

結論は以下のとおりである。

- 〇現段階の証拠及び人獣共通感染症の可能性に関する不確定性の程度を踏まえると、 フードチェーンのみならず、その他の直接又は間接的なばく露源を介したものも 含め、人へのばく露リスクを最小化するための、積極的かつ予防的な措置が重要 である。
- 〇人へのばく露を防止するための最も重要な措置は、シカ科動物における CWD の 有病率を減少させること、望ましくは、風土病となる前に疾病を根絶することで ある。

(2) ノルウェー食品安全庁(NFSA) 51)

NFSA は、2016 年 9 月に公表した「CWD に関する狩猟者への情報」で、人への影響に関して、以下の見解を示している。

CWD は人への感染リスクが極めて低い動物の疾病である。最近の国立獣医研究所の分析によると、ノルウェーにおける CWD は 2 タイプある可能性がある。ノルウェー公衆衛生研究所及び国立獣医研究所の助言を受けて、我々は現在、検査陽性動物への予防的アプローチを採用している。本病が人へ感染するリスクは極めて低いが、安全側に立ち、検査陽性動物の肉はフードチェーンに入っていない。

検査陽性動物を所有する狩猟者は、その肉や残さを処分するため、NFSAから連絡を受けることになっている。したがって、該当者は検査結果が出るまで肉を保管し、配布しないようにされたい。

4. 欧州連合(EU) 52,53)

欧州食品安全機関 (EFSA) は、2011年1月及び2017年1月に公表した科学的意見書で、人への影響に関して、以下の見解を示している。2017年の科学的意見書は、2011年の見解を更新したものである。内容は以下のとおりである。

○感染が種間バリアを超えて起こるか否かに関わらず、TSE の病原体の宿主への感染性には、多くの因子が影響する。現時点では、CWD を含むあらゆる動物のプリオ

ン病について、人獣共通感染症である可能性を直接的に評価するための、全ての宿 主及び病原体の可変性を網羅した実験系はない。

- OCWD はリスザルには伝達するが、カニクイザルやヒト PrP 発現マウスを含む他の動物モデルへの in vivo における伝達は現時点では報告されていない。
- Oin vitro で増幅された CWD によって、ヒト PrP が PMCA で変換されるという新たな知見が得られた。また、RT-QuIC を用いた実験は、タンパク間相互作用のレベルで、CWD の人への伝達を阻害する分子バリアは、従前考えられていたよりも脆弱である可能性を示唆している。
- 〇上記の2点を踏まえると、CWD 感染シカ科動物と人の間における絶対的な種間バリアを示す証拠はない。
- OCWD の株、有病率、宿主の範囲及び人獣共通感染症である可能性については、完全には解明されていない。現時点で得られている宿主の範囲や人へのリスクに関する全てのデータは、北米のシカ科動物で確認された CWD 症例によるものである。 ノルウェーの CWD 症例に関する予備試験による知見は、欧州と北米の株が異なる可能性を示唆している。
- OCWD プリオンは、骨格筋やその他の可食部位にも存在し、このことは、人が流行地域において感染物を消費する可能性を示す。
- OCWD の人への感染が成立するためのばく露量や、それが株や宿主でどう変わるのかについては、データがない。経口ばく露のレベルは、動物での TSE の有病率及びフードチェーンに入る動物組織に分布する感染性に大きく影響される。後者については、BSE やスクレイピーでは、SRM 除去で減じられているが、北米で消費されているシカ科動物では、当該措置は義務付けられていない。
- 〇これまでに実施された疫学調査によれば、ヒトの sCJD の発生と CWD へのばく露には、関係性は示されていない。sCJD のサーベイランスは、欧州及び北米における年間平均致死率が、100 万人当たり 1-1.5 症例と、比較的一致していることを示している。

<参考文献>

1

8

33

34

- 2 1. 米国農務省(USDA)
- 3 https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/sa_alt 4 ernate_livestock/sa_cervid_health/sa_cwd/ct_cwd_index 5
 - 2. Stokstad E. Norway seeks to stamp out prion disease. Science 356(6333), 2017, 12-13
- 6 3. Chronic Wasting Disease Alliance 7 http://cwd-info.org/
 - 4. 米国地質研究所(USGS)
- 9 https://www.nwhc.usgs.gov/disease information/chronic wasting disease/
- 10 5. 米国疾病管理予防センター (CDC)
- 11 https://www.cdc.gov/prions/cwd/index.html
- 12 6. カナダ食品検査庁(CFIA)
- 13 http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/reportable/cwd/eng/13301 14 43462380/1330143991594
- 15 7. Kahn S, Dubé C, Bates L, Balachandran A, Chronic wasting disease in Canada: Part 1, 16 Can Vet J 45(5), 2004, 397-404.
- 17 8. Green KM, Castilla J, Seward TS, Napier DL, Jewell JE, Soto C, Telling GC, Plos Pathog 18 4(8), 2008, e1000139
- 19 9. Kim TY, Shon HJ, Joo YS, Mun UK, Kang KS, Lee YS, Additional Cases of Chronic 20 Wasting Disease in Imported Deer in Korea(Public Health), J Vet Med Sci 67(8), 2005, 21 753-759
- 22 10. 韓国農村畜産部動物貿易統合システム(KAHIS) 23 http://www.kahis.go.kr/home/lkntscrinfo/selectLkntsOccrrncList.do?openFlag=Y
- 24 11. ノルウェー国立獣医学研究所 (NVI) 25 https://www.vetinst.no/sykdom-og-agens/chronic-wasting-disease
- 26 12. 農林水産省、伝達性海綿状脳症(TSE)検査対応マニュアル、平成 15年6月17日付15生畜第 27 1337号、農林水産省生産局畜産部長通知、2003
- 28 13. Masujin K, Shimada K, Kimura KM, Imamura M, Yoshida A, Iwamaru Y, Mohri S, 29 Yokovama T, Applicability of current bovine spongiform encephalopathy (BSE) diagnostic 30 procedures for chronic wasting disease (CWD), Microbiol Immunol 51, 2007, 1039-1043
- 31 14. 横山隆、辻知香、横山真弓、ニホンジカのプリオン病 (CWD) サーベイランス、JVM 65(6), 2012. 32 479-481
 - 15. Jewell JE, Brown J, Kreeger T, Williams ES, Prion protein in cardiac muscle of elk (Cervus elaphus nelsoni) and white-tailed deer (Odocoileus virginianus) infected with chronic wasting disease, J. Gen. Virol 87, 2006, 3443-3450
- 36 16. Angers RC, Browning SR, Seward TS, Sigurdson CJ, Miller MW, Hoover EA, Telling GC, 37 Prions in skeletal muscles of deer with chronic wasting disease, Science 311(5764), 2006, 38
- 39 17. Daus ML, Breyer J, Wagenfuehr K, Wemheuer WM, Thomzig A, Schulz-Schaeffer WJ, 40 Beekes M, Presence and seeding activity of pathological prion protein (PrP(TSE)) in 41 skeletal muscles of white-tailed deer infected with chronic wasting disease, PLoS One 42 10(1), 2011, e0116094
- 43 18. Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mason GL, 44 Hays SA, Hayes-Klug J, Seelig DM, Wild MA, Wolfe LL, Spraker TR, Miller MW, Sigurdson 45 CJ, Telling GC, Hoover EA, Infectious prions in the saliva and blood of deer with chronic 46 wasting disease, Science 314(5796), 2006, 133-6
- 47 19. Sigurdson CJ, Spraker TR, Miller MW, Oesch B, Hoover EA, PrP(CWD) in the myenteric 48 plexus, vagosympathetic trunk and endocrine glands of deer with chronic wasting disease, 49 J Gen Virol 82(10), 2001, 2327-34
- 50 20. Belay ED, Gambetti P, Schonberger LB, Parchi P, Lyon DR, Capellari S, McQuiston JH, 51 Bradley K, Dowdle G, Crutcher JM, Nichols CR, Creutzfeldt-Jakob disease in unusually
- 52 young patients who consumed venison, Arch Neurol 58(10), 2001, 1673-8
- 53 21. Centers for Disease Control and Prevention, Fatal Degenerative Neurologic Illnesses in

2

3

4 5

6

7

8

9

10

11

21

25

26

27

28

29

30

31

32

33

34

38

39

40

41

- Men Who Participated in Wild Game Feasts—Wisconsin, 2002, MMWR 52, 2003, 125-7
- 22. Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB. Chronic Wasting Disease and Potential Transmission to Humans, Emerg Infect Dis 10, 2004,
- 23. Anderson CA, Bosque P, Filley CM, Arciniegas DB, Kleinschmidt-Demasters BK, Pape WJ, Tyler KL, Colorado surveillance program for chronic wasting disease transmission to humans: lessons from 2 highly suspicious but negative cases, Arch Neurol 64(3), 2007, 439-441
- 24. Samantha MaWhinney, W. John Pape, Jeri E. Forster, C. Alan Anderson, Patrick Bosque, and Michael W. Miller, Human Prion Disease and Relative Risk Associated with Chronic Wasting Disease. Emerg Infect Dis 12(10), 2006, 1527-1535
- 12 25. Ralph M Garruto, Chris Reiber, Marta P Alfonso, Heidi Gastrich, Kelsey Needham, Risk 13 behaviors in a rural community with a known point-source exposure to chronic wasting 14 Environmental Health 7, 2008, 31
- 15 26. Olszowy KM, Lavelle J, Rachfal K, Hempstead S, Drouin K, Darcy JM, Reiber C, Garruto 16 RM. Six-year follow-up of a point-source exposure to CWD contaminated venison in an 17 Upstate New York community: risk behaviours and health outcomes 2005-2011, Public 18 Health 128(9), 2014, 860-8
- 19 27. Marsh RF, Kincaid AE, Bessen RA, Bartz JC, Interspecies transmission of chronic wasting 20 disease prions to squirrel monkeys (Saimiri sciureus), J Virol 79(21), 2005, 13794-6
- 28. Race B, Meade-White KD, Miller MW, Barbian KD, Rubenstein R, LaFauci G, Cervenakova 22 L, Favara C, Gardner D, Long D, Parnell M, Striebel J, Priola SA, Ward A, Williams ES, 23 Race R, Chesebro B, Susceptibilities of Nonhuman Primates to Chronic Wasting Disease, 24 Emerg Infect Dis 15(9), 2009, 1366-76
 - 29. Race B, Meade-White KD, Phillips K, Striebel J, Race R, Chesebro B, Chronic wasting disease agents in nonhuman primates, Emerg Infect Dis 20(5), 2014, 833-7
 - 30. Comoy EE, Mikol J, Luccantoni-Freire S, Correia E, Lescoutra-Etchegaray N, Durand V, Dehen C, Andreoletti O, Casalone C, Richt JA, Greenlee JJ, Baron T, Benestad SL, Brown P, Deslys JP. Transmission of scrapie prions to primate after an extended silent incubation period, Sci Rep 5, 2015, 11573-
 - 31. Kong Q, Huang S, Zou W, Vanegas D, Wang M, Wu D, Yuan J, Zheng M, Bai H, Deng H, Chen K, Jenny AL, O'Rourke K, Belay ED, Schonberger LB, Petersen RB, Sy MS, Chen SG, Gambetti P. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models, J Neurosci 25(35), 2005, 7944-9
- 35 32. Tamguney G, Giles K, Bouzamondo-Bernstein E, Bosque PJ, Miller MW, Safar J, 36 DeArmond SJ, Prusiner SB, Transmission of elk and deer prions to transgenic mice, J 37 Virol 80(18), 2006, 9104-14
 - 33. Sandberg MK, Huda Al-Doujaily, Christina J. Sigurdson, Markus Glatzel, Catherine O'Malley, Caroline Powell, Emmanuel A. Asante, Jacqueline M. Linehan, Sebastian Brandner, Jonathan D. F. Wadsworth, John Collinge, Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein, J Gen Virol 91(10), 2010, 2651-2657
- 43 34. Chris Plinston, Nora Hunter, Cristina Casalone, Cristiano Corona, Fabrizio Tagliavini, Silvia 44 Suardi, Margherita Ruggerone, Fabio Moda, Silvia Graziano, Marco Sbriccoli, Franco 45 Cardone, Maurizio Pocchiari, Loredana Ingrosso, Thierry Baron, Juergen Richt, Olivier 46 Andreoletti, Marion Simmons, Richard Lockey, Jean C. Manson, Rona M. Barron, Chronic 47 Wasting Disease and Atypical forms of BSE and scrapie are not transmissible to mice 48 expressing wild-type levels of human PrP, J Gen Virol 93, 2012, 1624-29
- 49 35. Kurt TD, Jiang L, Fernández-Borges N, Bett C, Liu J, Yang T, Spraker TR, Castilla J, 50 Eisenberg D, Kong Q, Sigurdson CJ, Human prion protein sequence elements impede 51 cross-species chronic wasting disease transmission, J Clin Invest 125(4), 2015, 1485-96
- 52 36. Nicholas J Haley, Jürgen A Richt, Evolution of Diagnostic Tests for Chronic Wasting 53 Disease, a Naturally Occurring Prion Disease of Cervids, Pathogens 6, 2017, 35-
- 54 37. Kurt TD, Sigurdson CJ, Cross-species transmission of CWD prions, Prion 10(1), 2016,

83-91

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

28 29

35

36

37

43

44 45

- 38. Gould DH, Voss JL, Miller MW, Bachand AM, Cummings BA, Frank AA, Survey of cattle in northeast Colorado for evidence of chronic wasting disease: geographical and high-risk targeted sample, J Vet Diagn Invest 15(3), 2003, 274-7
- 39. Hamir AN1, Cutlip RC, Miller JM, Williams ES, Stack MJ, Miller MW, O'Rourke KI, Chaplin MJ, Preliminary findings on the experimental transmission of chronic wasting disease agent of mule deer to cattle, J Vet Diagn Invest 13(1), 2001, 91-6
- 40. Hamir AN, Kunkle RA, Cutlip RC, Miller JM, O'Rourke KI, Williams ES, Miller MW, Stack MJ, Chaplin MJ, Richt JA, Experimental transmission of chronic wasting disease agent from mule deer to cattle by the intracerebral route, J Vet Diagn Invest17(3), 2005, 276-81
- 41. Hamir AN, Miller JM, Kunkle RA, Hall SM, Richt JA, Susceptibility of cattle to first-passage intracerebral inoculation with chronic wasting disease agent from white-tailed deer, Vet Pathol 44(4), 2007, 487-93
- 42. Justin J. Greenlee, Eric M. Nicholson, Jodi D. Smith, Robert A. Kunkle, Amir N. Hamir, Susceptibility of cattle to the agent of chronic wasting disease from elk after intracranial inoculation, J Vet Diagn Invest 24(6), 2012, 1087–1093
- 43. Amir N. Hamir, Marcus E. Kehrli Jr, Randall C. Cutlip, Experimental interspecies
 transmission studies of the transmissible spongiform encephalopathies to cattle:
 comparison to bovine spongiform encephalopathy in cattle, J Vet Diagn Invest 23(3), 2011,
 407-20
- 21 44. 農林水産省、米国及びカナダから日本向けに輸出される鹿等の家畜衛生条件の停止について、 22 平成 13 年 10 月 26 日付 13 生畜第 3957 号、農林水産省生産局畜産部衛生課長通知、2001
- 23 45. 農林水産省、韓国から日本向けに輸出されるシカ科動物及び同科動物由来の畜産物等の取扱い 24 について、平成 14年 10月 2日付 14生畜第 4588号、農林水産省生産局畜産部衛生課長通知、 25 2002
- 26 46. 農林水産省、ノルウェーにおける鹿慢性消耗病(CWD)発生に伴う検疫対応について、平成 28 27 年 4 月 8 日付 28 消安第 149 号、農林水産省消費・安全局長通知、2017
 - 47. 厚生労働省、輸入鹿肉等の取扱いについて、平成 14 年 10 月 2 日付食監発第 1002002 号、厚生 労働省医薬局食品保健監視安全課長通知、2002
- 30 48. 厚生労働省、輸入鹿肉等の取扱いについて、平成28年4月8日付生食輸発0408第1号、厚生 31 労働省医薬・生活衛生局生活衛生・食品安全部監視安全課輸入食品安全対策室長通知
- 32 49. ノルウェー食品安全科学委員会(VKM), CWD in Norway, Opinion of the Panel on 33 Biological Hazards of the Norwegian Scientific Committee for Food Safety, VKM Report 34 2016: 26, 978-82-8259-216-1
 - 50. ノルウェー食品安全科学委員会(VKM), CWD in Norway a state of emergency for the future of cervids (Phase II), Opinion of the Panel on Biological Hazards of the Norwegian Scientific Committee for Food Safety, VKM Report 2017: 9, 978-82-8259-266-6
- 38 51. ノルウェー食品安全庁(NFSA)
 39 https://www.mattilsynet.no/language/english/animals/information_for_hunters_about_chro
 40 nic wasting disease cwd.23747
- 41 52. 欧州食品安全機関(EFSA), Scientific Opinion on any possible epidemiological or molecular association between TSEs in animals and humans, EFSA Journal 9(1), 2011, 1945-
 - 53. 欧州食品安全機関(EFSA),EFSA Journal 15(1), 2017, 4667-

46 参考文献の URL は、平成 29 年(2017 年)10 月 3 日時点で確認したものです。情報を掲載してい

47 る各機関の都合により、URLが変更される場合がありますのでご注意ください。