

# 情報発信、意見交換会等の現状

(「平成28年度食品安全委員会運営状況報告書(案)」補足資料)

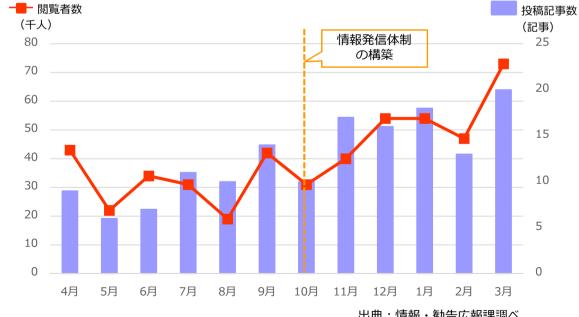


## [ 内容 ]

|    |                                                      | ベーシ |
|----|------------------------------------------------------|-----|
| 1  | 様々な手段を通じた情報の発信・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 1   |
| 2  | 「食品の安全」に関する科学的な知識の普及啓発・・・・・・・・・                      | 2   |
| 3  | 関係機関・団体との連携体制の構築・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 3   |
| 4  | 学術団体との連携・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 4   |
| (耆 | <b>ᡷ考)</b> 食品安全モニターに対して行ったアンケート調査結果・・・・・・            | 5   |

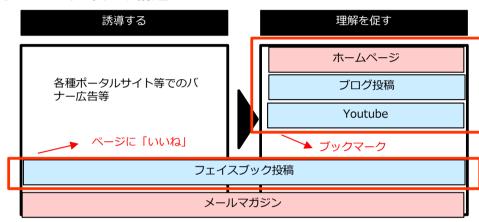


## 様々な手段を通じた情報の発信


- ○フェイスブックによる情報発信は、その体制の構築以降(H28.10~)、投稿記事数、閲覧者数ともに大きく伸びている状況。 今後は、フェイスブックのもつ情報ソースに「誘導する」役割も踏まえつつ、その戦略的活用を進めることが必要。
- ○「視覚的に理解しやすい媒体による情報提供手法」(※)の一つとして、新たに食品安全委員会公式Youtubeを立ち上げ (本年5月内閣府承認) ※平成29年度食品安全委員会運営計画

## ○フェイスブックの閲覧者数の推移

|        | 25年度   | 26年度    | 27年度    | 28年度    |
|--------|--------|---------|---------|---------|
| 閲覧者数   | 10,310 | 139,762 | 411,810 | 490,246 |
| 「いいね」数 | 436    | 1,302   | 2,976   | 3,694   |


出典:情報・勧告広報課調べ

## ○フェイスブックの閲覧者数の月別推移(平成28年度)



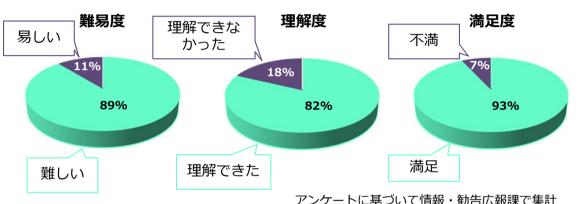
## 出典:情報・勧告広報課調べ

## ○Webメディアの構造



専門家との勉強会(H29.3開催)資料に基づき情報・勧告広報課が作成

## ○内閣府食品安全委員会公式Youtube運営方針(抜粋)


内閣府食品安全委員会では、食品の安全性に関する科学的な知 識を深めていただくためにYoutubeアカウントを取得し、情報発 信を行います。Youtubeアカウントを通じた情報発信にあたり、 当アカウントの運営方針を以下のとおり定めます。

- 1 投稿内容
- (1) 食品の安全性に関する科学的な知識の普及啓発動画
- (2) その他食品の安全に関する情報
- 2 投稿者 内閣府食品安全委員会事務局情報・勧告広報課



- 2 「食品の安全」に関する科学的な知識の普及啓発(「精講:食品健康影響評価」)
  - 「精講:食品健康影響評価」については、「加熱時に生じるアクリルアミド」をテーマとして開催(H29.3)。食品関係事業者を中心に120名以上が参加。
  - ○内容は専門性が高かったため、参加者の9割近くが「難しい」と感じた一方、「満足した」との評価も9割を上回った。
  - ○運営面については、机がなくメモが取りにくかったとの意見が多く、受講環境については大幅な見直しが必要。また、「ライバル企業の前では質問しにくい」などの声も聞かれたことから、質疑応答についても改善が必要。

#### ○平成28年度 精講:食品健康影響評価の評価



アンケードに至っいて旧報・副口仏和跡に来

## ○平成28年度 精講:食品健康影響評価の参加者構成

| 参加者の属性     |     |
|------------|-----|
| 食品関係事業者    | 62% |
| 食品関係以外の事業者 | 3%  |
| 一般消費者      | 4%  |
| その他        | 31% |

アンケートに基づいて情報・勧告広報課で集計 \*その他には「マスコミ」「公務員」「学生」が含まれる ○精講:食品健康影響評価に対する主な意見(ほぼ原文)

#### (講義内容)

- ・評価報告書を読んで理解しにくかったところが、今回の説明で 理解できた。
- ・摂取量の推定のところが難解でした。
- ・膨大なデータ採取、解析法について、十分納得しました。
- ・評価方法の部分が少し難しかった。もう一度しっかり(評価書 を)読みたいと思います。
- 精講とはいえ、むずかしい。
- ・用語の意味を知っていれば分かることが、知らなければ分からない。

## (運営面)

- ・個別テーマについて深く解説を聴くことができた。いろいろな テーマで続けていただきたい。
- ・メモを取りたいため机が欲しい(同様な意見多数あり)。
- ・説明時間をもう少し余裕をもって設定してほしい(同様な意見 複数あり)。



- 3 関係機関・団体との連携体制の構築(マスメディアとの連携)
  - ○マスコミ関係者に対する食品安全に係る知識の普及活動は、「報道関係者との意見交換会」(2か月に1回開催)により対応 ○意見交換会の形式を一部変更した結果、満足度は向上したものの、理解度はテーマ等により変動。引き続き、意見交換会に参加 するマスメディア関係者のすそ野の拡大を図るとともに、意見交換会の内容の充実を図る。

## ○開催実績(直近5回)

| 開催月    | テーマ        |
|--------|------------|
| 5      | 化学物質       |
| 7      | 食中毒        |
| 10     | 情報利用       |
| H29. 1 | 0157と薬剤耐性菌 |
| 5      | カフェイン      |

## ○出席者内訳(29年度第1回:「カフェイン」)

|           | 出席者数<br>(割合) |
|-----------|--------------|
| 全国紙       | 8 (35%)      |
| 専門誌(食品)   | 5 (22%)      |
| 専門誌(農業)   |              |
| 週刊誌       |              |
| ネットニュース関係 | 4 (17%)      |
| 雑誌・その他    | 6 (26%)      |
| のべ人数      | 23(100%)     |

#### 出典:情報・勧告広報課調べ

## ○意見交換会の満足度、理解度



アンケートに基づいて情報・勧告広報課が集計

## 4 学術団体との連携

- ○学術関係者との連携強化については、食品安全委員会委員等による講演等による学会参加、ブース展示を通じて実施。
- ○レギュラトリーサイエンスに関し、優れた研究成果のあった研究者については、その功績に報いるための顕彰制度(大臣賞など)を創設し、大臣表彰授与式を開催予定。
- ○海外のリスク評価機関との連携は進展。一方、国内の大学、独立行政法人や地方自治体の研究機関等との連携が課題。

## ○平成28年度 食品安全委員会委員により講演を行った学会

| 日本毒性学会(7月2日)       | 愛知県 |
|--------------------|-----|
| 日本先天異常学会(7月30日)    | 兵庫県 |
| 日本食品微生物学会(9月15日)   | 東京都 |
| 日本防菌防黴学会(9月26日)    | 東京都 |
| 日本養護教諭教育学会(10月8日)  | 北海道 |
| 日本マイコトキシン学会(12月1日) | 東京都 |
| 日本毒性病理学会(1月26日)    | 大阪府 |

出典:情報・勧告広報課調べ

## ○顕彰制度の概要

#### ○趣旨

食品健康影響評価等の実施に当たっては、高度な科学的知見を持った学識 経験者等の役割が大きい。一方、食品安全に関する表彰制度等が存在しない。 このため、学識経験者等の貢献に報いるため、食品安全担当大臣による表 彰制度を新設。

#### ○表彰対象

- ① 食品健康影響評価事業の企画・実施に貢献した者 (食品安全委員会の委員等)
- ② レギュラトリーサイエンスを発展させることにより、 食品健康影響評価・調査技術の向上等に貢献した者
- ③ 科学的知識の普及に多大な貢献をした者

## ○平成28年度 学会へのブース展示状況

| PRION 2016 TOKYO(5月10日~5月13日) | 東京都 |
|-------------------------------|-----|
| ifia JAPAN 2016(5月18日~20日)    | 東京都 |
| 日本調理科学会(8月28日、29日)            | 愛知県 |
| 日本栄養改善学会(9月8日、9日)             | 青森県 |
| 日本環境変異原学会(11月17日、18日)         | 茨城県 |
| 日本毒性病理学会(1月26日、27日)           | 大阪府 |

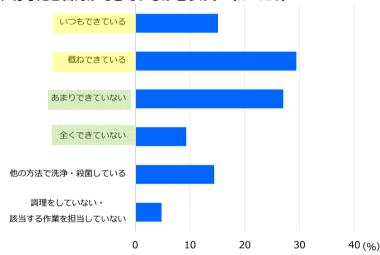
出典:情報・勧告広報課調べ

## ○海外のリスク評価機関との連携状況

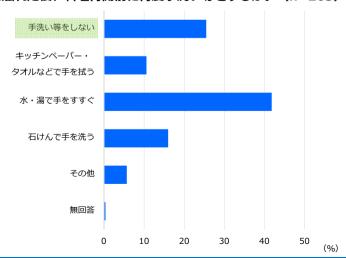
| MoC締結   |                              |
|---------|------------------------------|
| 2009/12 | 欧州食品安全機関(EFSA)               |
| 2010/7  | 豪州・ニュージーランド食品基準機関<br>(FSANZ) |
| 2015/9  | ポルトガル経済食品安全庁(ASAE)           |
| 2015/10 | フランス食品環境労働衛生安全庁(ANSES)       |
| 2016/7  | ドイツ連邦リスク評価研究所(BfR)           |

MoC: Memorandum of Cooperation (協力覚書)




平成29年4月26日開催 国際会議




## (参考) 食品安全モニターに対して行ったアンケート調査結果

- ○食品安全モニターに対して行った「食品安全に関する意識等を把握するためのアンケート調査」(H29.2)において、米国食品医薬品庁 (FDA)が定期的に実施しているアンケート調査項目と同様の質問を設定。
- ○この結果、食中毒予防の三原則について、「生の肉や魚を切った後の包丁やまな板の処理」や「通信端末機器に触れた後、料理再開前の 再手洗い」などで対応が分かれた。これら結果を参考として、本年度のアンケート調査の質問項目を設定予定。
- ○なお、食品の安全性に係る危害要因についてのアンケートでは、それまで上位であった「残留農薬」が順位を落とす。
  - 一方、「いわゆる健康食品」が順位を上げる結果となった。

Q:「下準備:生の肉や魚を切った後は、包丁やまな板を洗って熱湯をかけた後に使う。」 について、あなたご自身ができているかどうか。(n=418)



O:通信端末機器に触れた後、料理再開前に再度手洗い等をするか。(n=263)



「残留農薬」を不安に思う食品安全モニターの割合は、調査開始時は9割近くあったが、減少傾向で推移し、28年度は調査会誌以来、初めて50%を下回る結果となった。

#### ○「とても不安である」「ある程度不安である」の合計の割合上位7位

| 年度 | 1位   | 2位           | 3位           | 4位           | 5位          | 6位                       | 7位                       |
|----|------|--------------|--------------|--------------|-------------|--------------------------|--------------------------|
|    |      |              |              |              |             |                          |                          |
| 28 | 食中毒等 | いわゆる<br>健康食品 | かび毒          | 薬剤耐性菌        | 放射性<br>物質   | アレルゲンと<br>なる物質を含<br>む食品  | 汚染物質                     |
| 27 | 食中毒等 | いわゆる<br>健康食品 | 放射性<br>物質    | 汚染物質         | 家畜用<br>抗生物質 | 残留農薬                     | 食品添加物                    |
| 26 | 食中毒等 | 放射性<br>物質    | いわゆる<br>健康食品 | 残留農薬         | 家畜用<br>抗生物質 | 汚染物質                     | 食品添加物                    |
| 25 | 食中毒等 | 放射性<br>物質    | 汚染物質         | いわゆる<br>健康食品 | 残留農薬        | 家畜用<br>抗生物質              | 器具・容器包<br>装からの溶出<br>化学物質 |
| 24 | 食中毒等 | 放射性<br>物質    | 汚染物質         | 残留農薬         | 家畜用<br>抗生物質 | 器具・容器包<br>装からの溶出<br>化学物質 | いわゆる<br>健康食品             |

食中毒等:有害微生物・ウイルス等による食中毒

薬剤耐性菌:家畜用抗生物質による薬剤耐性菌



出典:情報・勧告広報課調べ