平成27年10月21日

食品安全委員会 委員長 佐藤 洋 殿

動物用医薬品専門調査会 座長 青山 博昭

動物用医薬品に係る食品健康影響評価に関する審議結果について

平成27年1月8日付け厚生労働省発食安0108第10号をもって厚生労働省から食品安全委員会に意見を求められたイプロニダゾールに係る食品健康影響評価について、当専門調査会において審議を行った結果は別添のとおりですので報告します。

動物用医薬品評価書

イプロニダゾール

2015年10月

食品安全委員会動物用医薬品専門調査会

目 次

ļ.
○審議の経緯
〇食品安全委員会委員名簿
〇食品安全委員会動物用医薬品専門調査会専門委員名簿
〇要約
I. 評価対象動物用医薬品の概要
1.用途 ······
2. 有効成分の一般名
3.化学名 ····································
4. 分子式 ···································
5.分子量 ····································
6.構造式 ····································
7. 使用目的及び使用状況
II. 安全性に係る知見の概要 ····································
1. 薬物動態試験
(1)薬物動態試験(ラット)
(2)薬物動態試験(豚)
(3)薬物動態試験(七面鳥)
(4)代謝試験(イヌ)<参考資料>
(5)代謝試験(<i>in vitro</i>) ····································
2. 残留試験10
(1)残留試験(豚)10
(2)残留試験(七面鳥)11
3. 遺伝毒性試験
4. 急性毒性試験 ······· 14
5. 亜急性毒性試験 14
(1)13 週間亜急性毒性試験(ラット)①<参考資料>14
(2)13 週間亜急性毒性試験(ラット)②<参考資料>15
(3)13 週間亜急性毒性試験(イヌ)<参考資料>15
6. 慢性毒性及び発がん性試験 ······18
(1)104 週間慢性毒性試験(イヌ)
(2) 109 週間慢性毒性/発がん性併合試験(ラット)
(3) 89 又は 100 週間発がん性試験(マウス)
7. 生殖発生毒性試験
(1)3世代繁殖試験(ラット)
(2) 発生毒性試験(ラット)

(3) 発生毒性試験 (ウサギ)	19
III. 国際機関等における評価 ····································	
IV. 食品健康影響評価 ····································	21
 表 14 JECFA における各種試験の無毒性量等の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23 23
プルス	ചാ

<審議の経緯>

2005年 11月 29日 一律基準告示(参照1)

2015 年 1月 13 日 厚生労働大臣から残留基準設定に係る食品健康影響評価について 要請(厚生労働省発食安 0108 第 10 号)、関係資料の接受

2015年 1月 20日 第545回食品安全委員会(要請事項説明)

2015年 7月 17日 第181 回動物用医薬品専門調査会

2015 年 8月 25日 第 574 回食品安全委員会 (報告)

2015年 8月 26日 から9月24日まで 国民からの意見・情報の募集

2015年 10月 21日 動物用医薬品専門調査会座長から食品安全委員会委員長へ報告

<食品安全委員会委員名簿>

(2015年6月30日まで) (2015年7月1日から)

熊谷 進(委員長) 佐藤 洋(委員長)

佐藤 洋(委員長代理) 山添 康(委員長代理)

山添康(委員長代理)熊谷進三森国敏(委員長代理)吉田緑石井克枝石井克枝上安平冽子堀口逸子村田容常村田容常

<食品安全委員会動物用医薬品専門調査会専門委員名簿>

(2015年9月30日まで)

山手 丈至 (座長)須永 藤子山崎 浩史小川 久美子 (座長代理)辻 尚利吉田 和生青木 博史寺岡 宏樹吉田 敏則青山 博昭能美 健彦渡邊 敏明

石川 さと子舞田 正志石川 整松尾 三郎川治 聡子宮田 昌明

(2015年10月1日から)

青山 博昭 (座長)須永 藤子山崎 浩史小川 久美子 (座長代理)辻 尚利吉田 和生青木 博史寺岡 宏樹吉田 敏則石川 さと子能美 健彦渡邊 敏明

 石塚 真由美
 舞田 正志

 島田 章則
 宮田 昌明

要約

寄生虫駆除剤である「イプロニダゾール」(CAS No.14885-29-1)について、JECFA の評価書等を用いて食品健康影響評価を実施した。

評価に用いた試験成績等は、薬物動態 (ラット、豚、七面鳥及びイヌ)、残留 (豚及び七面鳥)、遺伝毒性、急性毒性 (マウス、ラット及びウサギ)、亜急性毒性 (ラット及びイヌ)、慢性毒性及び発がん性 (マウス、ラット及びイヌ)、生殖発生毒性 (ラット及びウサギ) 等の試験成績である。

イプロニダゾールは、*in vitro* の細菌を用いた復帰突然変異試験及び Fluctuation test で 陽性であった。また、*ex vivo* (宿主経由試験)の復帰突然変異試験で陽性であった。一方、哺乳動物を用いた試験では、試験条件が不適切で遺伝毒性を評価できなかったとする報告があった。以上のことから、イプロニダゾールが生体にとって問題となる遺伝毒性を示す可能性については否定できないと判断した。

マウスを用いた89又は100週間発がん性試験及びラットを用いた109週間慢性毒性/発がん性併合試験が実施されている。マウスを用いた試験では、1,000 ppm 投与群で肺腫瘍の有意な増加が、ラットを用いた試験では、2,000 ppm 投与群の雌で乳腺腫瘍の発生率の上昇がみられたことから、発がん性が示唆された。また、腫瘍発生への遺伝毒性の可能性を否定できなかった。

以上のことから、イプロニダゾールについては、遺伝毒性を示す可能性を否定することができず、発がん性が示唆されたことから、ADIを設定すべきでないと判断した。

評価対象動物用医薬品の概要

1. 用途

寄生虫駆除剤

2. 有効成分の一般名

和名:イプロニダゾール

英名: Ipronidazole

3. 化学名

IUPAC

英名: 2-isopropyl-1-methyl-5-nitro-1*H*-imidazole

CAS (No. 14885-29-1)

英名: 1-methyl-2-(1-methylethyl)-5-nitro-1*H*-imidazole

4. 分子式

C7H11N3O2

5. 分子量

169.18

6. 構造式

$$O_2N$$
 N
 CH_3
 CH_3
 CH_3
 CH_3

(参照 2)

7. 使用目的及び使用状況

イプロニダゾールは、5-ニトロイミダゾール類に属する寄生虫駆除剤・抗原虫剤である。本剤及び類縁化合物のジメトリダゾール、ロニダゾール及びメトロニダゾールは類似の構造を有し、いくつかの共通した性質を示す。5-ニトロ基が作用に必須であり、その還元により種々の組織高分子に共有結合する Nヒドロキシルアミン誘導体が生成され、抗菌作用及び抗原虫作用を示すと報告されている。(参照 3)

JECFA の評価書によれば、海外では、七面鳥のヒストモナス症及び豚赤痢の予防及び治療に使用される。(参照 3~5) 予防及び治療には、それぞれ約 0.00625%及び 0.025% の混餌濃度で用いられる。また、すでに混餌投与(0.00625%)中の七面鳥には、治療のために飲水投与(0.0125%)が可能であるとされている。豚赤痢の予防には連続混餌投与(混餌濃度: $100 \, \text{g}/$ トン)が、治療には $7 \, \text{日間の飲水投与}$ (飲水濃度: $200 \sim 800 \, \text{mg}/$ ガロン)が有効であるとされている。(参照 5)

EU 及び米国では、かつてイプロニダゾールを含有する動物用医薬品が承認されていたが、現在は承認されていない。(参照 6、7)

日本では、ヒト用及び動物用医薬品の承認はない。

今回、厚生労働大臣から食品衛生法(昭和 22 年法律第 23 号)第 11 条第 1 項の規定 に基づき、食品中の残留基準を設定することについて、食品健康影響評価が要請されている。

II. 安全性に係る知見の概要

本評価書では、JECFA の評価書等を基に、イプロニダゾールの毒性に関する主な知見を整理した。(参照 $2\sim5$)

検査値等略称を別紙1及び2に示した。

1. 薬物動態試験

(1)薬物動態試験(ラット)

① 経口投与

胆管カニューレを装着したラット(系統不明、雌 5 匹)にイミダゾール環の 2 位の炭素を 14 C で標識したイプロニダゾール(以下「 $[ring-2^{14}C]$ 標識イプロニダゾール」という。)を 4 日間連続経口投与(22.5 mg/kg 体重/日) 1 し、薬物動態試験が実施された。

投与した総放射活性の 31%が糞中 (消化管内容物含む) に排泄され、胆汁中には 34%、尿中には 27%が排泄された。カーカス 2 、肝臓及び腸からは総放射活性の 1.4%が回収された。放射活性の総回収率は 92%であった。 (参照 3、4) 糞中放射活性の 71%が水溶性であった。 核磁気共鳴、赤外分光法、質量分析法等の分析法により、糞中の水溶性代謝物の約 34%は、2,3-ジヒドロ-2-(2'-ヒドロキシイソプロピル)-3-メチル-4-ニトロ-1Hイミダゾール-5-オール (以下「代謝物 A」という。) と同定された。カニューレを装着したラットへの総投与量の約 15%がこの水溶性代謝物として単離された。 (参照 5)

上記の試験において、 $[ring-2^{14}C]$ 標識イプロニダゾールの 4 日間連続経口投与後の尿、糞、胆汁並びにカーカス、肝臓及び腸の放射活性が、それぞれ 27%、31%、34%及び 1.4% であったことから、イプロニダゾールの経口吸収率は、少なくとも 60%以上と推定された。

② 腹腔内投与

ラット (系統、性別及び匹数不明)を用い独立して実施された 2 試験において、 $[ring-2^{14}C]$ 標識イプロニダゾールの単回腹腔内投与 ($20.5 \, mg/kg$ 体重)後の尿、糞及び呼気中から、それぞれ投与放射活性の約 30%、58%及び 3%が検出された。グルスラーゼ 3処理前及び処理後ともに、尿及び糞中からベンゼン抽出された投与放射活性は、それぞれ僅かに 0.5%及び 1.0%であった。尿並びに糞中の水及びベンゼン抽出物のペーパークロマトグラフィー及び TLC では、イプロニダゾール及び 1-メチル-2-(2'-ヒドロキシイソプロピル)-5-ニトロイミダゾール (HIP、以下「代謝物 B」という。)のどちらも認められなかった。クロマトグラムの原点に残った放射活性は、極性成分を示すものであり、 $14CO_2$ の産生はイミダゾール環の開環を示すものと結論された。(参照 5)

¹ 参照 5 の資料では、20 mg/kg 体重/日と記載されている。

² 臓器を取り除いた残渣(以下同じ)

^{3 6-}グルクロニダーゼ/スルファターゼ (加水分解酵素、以下同じ)

(2)薬物動態試験(豚)

豚(4 週齢、体重 7 kg、雄 1 頭)に $[ring-2^{14}C]$ 標識イプロニダゾールを単回経口投与 (43.11 mg カプセル/頭、混餌濃度 0.0126%相当)し、薬物動態試験が実施された。 投与後 5 日間で、投与放射活性の 97.9%が尿、糞及び組織中に回収された。

投与5日後の各組織における各抽出画分中の総残留濃度を表1に示した。(参照3、

5) 各組織中残留物の約31~71%は水溶性であった。消化管内容物の放射活性は、総回収放射活性の53.3%を占めるが、ベンゼン抽出されず、消化管内容物にはイプロニダゾール及び代謝物 B は存在しないことが示された。また、約29~68%が組織中残留物として留まった。抽出不可能な残留物は、共有結合(結合残留)又はイプロニダゾール由来断片の生体内成分への取り込みを含むと考えられた。この試験では、代謝物は同定されなかった。(参照5)

表 1 [ring-2¹⁴C]標識イプロニダゾール投与 5 日後の豚組織における 各抽出画分中の総残留濃度

	11周日四月 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
◇□◇☆レ	総残留濃度(ng eq/g)								
組織	ベンゼン可溶画分	水溶性画分	不溶性画分	合計					
肝臓	0.10	136.95	55.62	192.7					
腎臓	ND	129.44	60.04	189.5					
筋肉	0.486	12.66	27.97	41.1					
脂肪	2.95	7.70	9.95	20.6					
皮膚	2.09	13.81	20.36	36.3					
血液	0.07	47.55	4.39	52.01					

ND:検出されず(ベンゼン可溶画分(腎臓)の検出限界: 0.132 ng eq/g)

上記試験の豚より採取した肝臓を凍結乾燥し、ラット(系統、性別不明、4 匹)に経口投与(肝臓中総残留濃度:イプロニダゾールとして 0.62 μg eq/g)した。

豚由来肝臓組織を投与したラットの排泄物及び組織中の放射活性回収率を表2に示した。(参照5)

(3)薬物動熊試験(七面鳥)

1日齢から生後 14 週までイプロニダゾールを混餌投与(混餌濃度 0.00625%)して前処理した七面鳥(14 週齢、2 羽)に $[ring-2^{14}C]$ 標識イプロニダゾールを単回経口投与(20 mg カプセル/匹、混餌濃度 0.00625%相当)し、薬物動態試験が実施された。

投与5日後の組織中の平均総放射活性濃度は、肝臓285.40、腎臓257.72、胸筋64.85、脚及び翼筋71.21、脂肪24.81及び皮膚/脂肪92.18 ng eq/g であった。(参照3、5)

各組織から 2 種類の関連化合物が同定されたが、未変化のイプロニダゾール及び代謝物 B であった。代謝物 B の構造は、赤外分光法、核磁気共鳴、紫外線分光法及び質量分析法から推定され、合成された標準物質との比較により確認された。

未変化のイプロニダゾール及び代謝物 B が排泄量の約 40%を占めた。その他の代謝物は高親水性であり、酵素による加水分解前及び加水分解後ともに有機溶媒中に抽出されなかった。(参照 3、5)

上記試験の七面鳥から採取した肝臓又は筋肉を凍結乾燥後にペレット化し、ラット(系統、性別及び匹数不明)に経口投与(肝臓及び筋肉中総残留濃度:イプロニダゾールとしてそれぞれ 0.96 及び 0.22 µg eq/g)した。七面鳥組織の投与前 24 時間、投与(24 時間)中及び投与後 24 時間の尿、胆汁及び糞を採取し、投与 24 時間後のカーカス、肝臓、消化管及び消化管内容物を採取して総放射活性を測定した。

七面鳥由来肝臓又は筋肉組織を投与したラットの排泄物及び組織中の放射活性回収率を表2に示した。(参照3、5)

表 2 豚又は七面鳥の[ring-2¹⁴C]標識イプロニダゾール残留組織の経口投与後における ラットの排泄物及び組織中の投与放射活性回収率(%)

ラットの排泄物及び組織										
投与約	組織 a	糞	消化管 内容物	合計 b	胆汁	カーカス	消化管 組織	肝臓	尿	合計c
豚	肝臓	45.61	0.09	45.70	1.72	_	0.13	0.52	42.54	44.91
レ云自	肝臓	56	0.36	56.36	2.77	3.11	0.25	0.42	42.8	49.35
七面鳥	筋肉	23.3	0.38	23.68	5.96	8.23	0.51	0.73	52.35	67.78

a: 投与組織中総残留濃度: 豚/肝臟 0.62 μg eq/g、七面鳥/肝臟 0.96 μg eq/g、七面鳥/筋肉 0.22 μg eq/g、

b:非吸収放射活性の合計、c:吸収放射活性の合計、一:記載なし

(4)代謝試験(イヌ) <参考資料 4>

イヌ(ビーグル種、雌、匹数不明)にイミダゾール環の2位の炭素を 14 C で標識したイプロニダゾールの異性体 5 を経口投与(50 mg/kg 体重)し、代謝試験が実施された。総投与放射活性の50%が尿中に排泄された。

少量の未変化体とともに、ニトロ基を含む 3 種類の主要代謝物が単離された。そのうちの 1 種類は、イプロニダゾールの主要代謝物である代謝物 B の異性体と同定された。他の 2 種類の極性代謝物もイソプロピル鎖の酸化により第一級炭素原子がジオール及びカルボン酸に変換され生成された。(参照 3)

(5) 代謝試験 (in vitro)

[ring-2¹⁴C]標識イプロニダゾール及び豚肝臓ミクロソーム調製物を好気性又は嫌気性条件下でインキュベートし、代謝物が検討された。グルスラーゼ処理前及び処理後に、ベンゼン可溶性代謝物をペーパークロマトグラフィーで分離し、ラジオクロマトグラムスキャンにより同定して、試料の酸化及びLSCにより定量した。

好気性条件下では、ベンゼン抽出物から代謝物 B のみが検出され、遊離型 31.2%、結合型 3.8%であった。

フラビンアデニンジヌクレオチド (ニトロ還元エンハンサー) を含む嫌気性条件下では、グルスラーゼ処理前及び処理後のいずれの場合においても、ベンゼン抽出物からは

⁴ イプロニダゾールを用いた試験ではないことから参考資料とした。

⁵ 2位のイソプロピル基と5位のニトロ基を入れ替えたイプロニダゾールの異性体(5-イソプロピル-1-メチル-2-ニトロ-1*H*イミダゾール)

イプロニダゾール及び代謝物 A は検出されなかった。(参照 5)

2. 残留試験

(1) 残留試験(豚)

① 混餌投与

豚(品種及び性別不明、5週齢、3頭/時点) にイプロニダゾールを6週間混餌投与(混餌濃度0.02%) し、休薬期間(0、3、4、5、6 及び7 日)後の各組織(肝臓、腎臓、筋肉及び脂肪)中のイプロニダゾール及び代謝物 Bの濃度が GC(検出限界:50 ng/g)により測定された。

イプロニダゾールはいずれの組織からも検出されなかった。代謝物 B の平均組織中濃度は、休薬 0 日後の筋肉及び脂肪中でそれぞれ 327 ng/g 及び検出限界未満(47 ng/g)であり、休薬後はいずれの組織のいずれの測定時点においても検出されなかった。(参照 5)

豚(品種及び性別不明、5週齢、3頭/時点) にイプロニダゾールを6週間混餌投与(混餌濃度0.01%) し、休薬期間(0.2.3.4.5及び6日)後の各組織(肝臓、腎臓、筋肉及び皮膚/脂肪)中のイプロニダゾール及び代謝物Bの濃度がGC(検出限界:2 ng/g)により測定された。

イプロニダゾールの平均組織中濃度は、休薬0日後の筋肉及び皮膚/脂肪中でそれぞれ検出限界以下 (0.5及び1.6 ng/g)であり、休薬後はいずれの組織のいずれの測定時点においても検出されなかった。

代謝物 B の平均組織中濃度は、休薬 0 日後の筋肉及び皮膚/脂肪中でそれぞれ 167.5 及び 77 ng/g であったが、休薬後はいずれの組織のいずれの測定時点においても検出されなかった。(参照 5)

豚(品種及び性別不明、7週齢、3頭/時点)にイプロニダゾールを 14週間混餌投与(混餌濃度 0.01%)し、休薬期間($0\sim5$ 日)後の各組織(肝臓、腎臓、大腿筋、腰筋、皮下脂肪及び内部脂肪)中のイプロニダゾール及び代謝物 B の濃度が GC(検出限界: 2 ng/g)により測定された。

休薬期間 0 日では、イプロニダゾールの平均組織中濃度は、腰筋及び内部脂肪中でそれぞれ 2.8 及び 3.4 ng/g、大腿筋及び皮下脂肪で検出限界以下(それぞれ 1.4 及び 1.9 ng/g)であり、代謝物 B の平均組織中濃度は、大腿筋、腰筋、皮下脂肪及び内部脂肪中でそれぞれ 29.8、43.2、15.5 及び 7.1 ng/g であった。休薬後はいずれの組織のいずれの測定時点においてもイプロニダゾール及び代謝物 B ともに検出されなかった。(参照 5)

② 飲水投与

豚(品種及び性別不明、平均体重 77.6 kg、3 頭/時点)にイプロニダゾールを <math>7 日間飲水投与 [44 mg/kg 体重(混餌投与時用量(混餌濃度 0.01%)の $7\sim15$ 倍の用量に相当)] し、休薬期間($0\sim7$ 日)後の各組織(肝臓、腎臓、大腿筋、腰筋、皮膚/脂肪及び内部脂肪)中のイプロニダゾール及び代謝物 B の濃度が GC(検出限界: 2 ng/g)によ

り測定された。

結果を表3に示した。イプロニダゾール及び代謝物Bの濃度は、それぞれ休薬5日後及び3日後で、いずれの組織においても検出限界以下となった。(参照5)

表 3 豚におけるイプロニダゾール 7 日間飲水投与(44 mg/kg 体重)後のイプロニダゾール及び代謝物 B の組織中濃度(ng/g)

					休到	薬期間(日)				
試料		,	イプロニ	ダゾール	/		代謝物 B				
	0	1	2	3	4	5	0	1	2	3	4
肝臓	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
腎臓	5.4	ND	ND	ND	ND	ND	2.1	ND	ND	ND	ND
大腿筋	448.1	98.9	9.3	ND	7.5	ND	4,913.3	72.0	4.4	ND	ND
腰筋	433.4	69.0	5.6	ND	ND	ND	3,296.0	196.0	11.4	ND	ND
皮膚/脂肪	545.9	20.3	10.3	2.4	2.4	ND	934.4	64.6	19.1	ND	ND
内部脂肪	843.5	55.1	32.0	3.6	ND	2.0	2,064.0	74.4	5.6	ND	ND

ND: 検出されず (検出限界: 2 ng/g)

(2) 残留試験(七面鳥)

① 混餌投与

七面鳥 (9 週齢、性別不明、10 羽/時点)にイプロニダゾールを 12 週間混餌投与(混餌濃度 0.00625%)し、休薬期間(0、1、2、3、4、5 及び 6 日)後の各組織中のイプロニダゾール及びヒドロキシ代謝物(代謝物 B)の濃度が GC-ECD(検出限界: 2 ng/g)により測定された。

イプロニダゾールは 12 週間混餌投与後の組織中からは検出されなかった。組織中の代謝物 B 濃度を表 4 に示した。代謝物 B は休薬 4 日後以降の組織では検出されなかった。(参照 5)

表 4 七面鳥におけるイプロニダゾール 12 週間混餌投与 (0.00625%) 後の 代謝物 B の組織中濃度 (ng/g)

組織	休薬期間(日)							
术旦和以	0	1	2	3	4			
肝臓	ND	ND	ND	ND	ND			
腎臓	ND	ND	ND	ND	ND			
筋肉	64.2	21.5	ND	ND	ND			
皮膚/脂肪	90	8.5	3.6	2.0	ND			

ND:検出されず(検出限界:2 ng/g)

七面鳥(24 週齢、雄 5 羽/時点)にイプロニダゾールを 7 日間混餌投与(混餌濃度 0.025%)し、休薬期間($0\sim9$ 日)後の各組織中のイプロニダゾール及び代謝物 B の濃度が GC(検出限界: 2 ng/g)により測定された。

結果を表 5 に示した。イプロニダゾールは休薬 1 日後、代謝物 B は休薬 2 日後の組織で検出されなかった。 (参照 5)

表 5 七面鳥におけるイプロニダゾール混餌投与(0.025%, 7日間)後のイプロニダゾール及び代謝物 B の組織中濃度(ng/g)

	休薬期間(日)							
組織	イプロニ	ダゾール	代謝物 B					
	0	1	0	1	2			
肝臓	ND	ND	ND	ND	ND			
腎臓	ND	ND	ND	ND	ND			
筋肉	ND	ND	106.8	17.7	ND			
皮膚/脂肪	115.0	ND	66.2	19.9	ND			

ND: 検出されず (検出限界: 2 ng/g)

七面鳥 [18 週齢、雌雄計 54 羽(5 羽/時点)] にイプロニダゾールを 4 週間混餌投与 (混餌濃度 0.00625%) した後、引き続き標準用量の 10 倍の濃度で 2 日間混餌投与 (混餌濃度 0.0625%) して、休薬期間 ($0\sim6$ 日)後の各組織中のイプロニダゾール及び代謝 物 B の濃度が GC (検出限界: 2 ng/g) により測定された。

結果を表 6 に示した。イプロニダゾールの残留は休薬期間 1 日を超えた時点で、代謝物 B の残留は休薬期間 3 日を超えた時点では認められなかった。(参照 5)

表 6 七面鳥におけるイプロニダゾール混餌投与(0.00625%を4週間及び0.0625%及び2日間)後のイプロニダゾール及び代謝物Bの組織中濃度(ng/g)

	休薬期間(日)								
組織	イプロニ	ダゾール		代謝物 B					
	0	1	0	1	2	3			
肝臓	ND	ND	ND	ND	ND	ND			
腎臓	ND	ND	ND	ND	ND	ND			
筋肉	10.2	ND	1,185.5	113.0	ND	ND			
皮膚/脂肪	8.2	ND	957.3	152.4	2.2	ND			

ND:検出されず(検出限界:2 ng/g)

② 飲水投与

七面鳥(24 週齢、雄 5 羽/時点)にイプロニダゾールを 7 日間飲水投与(飲水濃度 0.0125%)し、休薬期間($0\sim9$ 日)後の各組織中のイプロニダゾール及び代謝物 B の濃度が GC(検出限界: 2 ng/g)により測定された。

結果を表 7 に示した。イプロニダゾールの残留は休薬期間 1 日を超えた時点で、代謝物 B の残留は休薬期間 4 日を超えた時点では認められなかった。(参照 5)

表 7 七面鳥におけるイプロニダゾール 7 日間飲水投与 (0.0125%) 後の イプロニダゾール及び代謝物 B の組織中濃度 (ng/g)

	休薬期間(日)									
組織	イプロニ	プロニダゾール 代謝物 B						イプロニダゾール		
	0	1	0	1	2	3	4			
肝臓	ND	ND	ND	ND	ND	ND	ND			
腎臓	ND	ND	ND	ND	ND	ND	ND			
筋肉	0.9	ND	24.5 8.0 0.6 0.4 ND							
皮膚/脂肪	52.0	0.8	35.5	22.1	5.5	4.2	0.4			

ND:検出されず(検出限界:2 ng/g)

③ 混餌投与及び飲水投与の併用投与

七面鳥 [18 週齢、雌雄計 50 羽(5 羽/時点)] にイプロニダゾールを 7 週間混餌投与 (混餌濃度 0.00625%) し、7 週間の投与期間の最後の 7 日間は飲水投与(飲水濃度 0.0125%)を併用して、休薬期間($0\sim7$ 日)後の各組織中のイプロニダゾール及び代謝 物 B の濃度が GC(検出限界: 2 ng/g)により測定された。

結果を表 8 に示した。イプロニダゾールの残留は休薬期間 1 日を超えた時点で、代謝物 B の残留は休薬期間 2 日を超えた時点では認められなかった。(参照 5)

表 8 七面鳥におけるイプロニダゾール 7 日間混餌 (0.0625%) 及び飲水 (0.0125%) 併用投与後のイプロニダゾール及び代謝物 B の組織中濃度 (ng/g)

		休薬期間(日)								
組織	イプロニ	ダゾール	代謝物 B							
	0	1	0	1	2					
肝臓	ND	ND	ND	ND	ND					
腎臓	ND	ND	ND	ND	ND					
筋肉	0.6	ND	141.5	0.9	ND					
皮膚/脂肪	96.9	0.3	172.4	3.3	0.6					

ND:検出されず(検出限界:2 ng/g)

3. 遺伝毒性試験

イプロニダゾールの遺伝毒性試験結果を表9にまとめた。(参照3)

ほかに3種類の試験(小核試験、優性致死試験及びヒト細胞遺伝学試験)が実施され、いずれも結果は陰性であったが、試験条件が不適切であった。(参照3)

表 9 イプロニダゾールの遺伝毒性試験結果

試験対象		用量	結果	
in vitro	復帰突然変異試 験	Salmonella typhimurium TA100	$0.1 \sim 0.5 \text{ mmol/L} \text{ (-S9)}$	陽性
		S. typhimurium TA1530、TA1532、TA1964	1~4 mg/mL (−S9)	陽性

	Fluctuation test	Klebsiella pneumoniae	0.02~1.0 mmol/L	陽性
		Escherichia coli	$0.02{\sim}1.0$ mmol/L	陽性
		Citrobacter freundii	0.1~1.0 mmol/L	陽性
ex	宿主経由試験	S. typhimurium	100 又は 150 mg/kg 体重、経	
vivo	(復帰突然変異	TA1530	口投与	陽性
	試験)		宿主:マウス	

JECFA は、イプロニダゾールは細菌を用いた試験で変異原性を示したが、哺乳動物の試験では試験条件が不十分であり、遺伝毒性を適切に評価できなかったと報告している。(参照3、4)

イプロニダゾールは、*in vitro* の細菌を用いた復帰突然変異試験及び Fluctuation test で陽性であった。また、*ex vivo*(宿主経由試験)の復帰突然変異試験で陽性であった。 JECFA で報告されている哺乳動物を用いた試験(小核試験、優性致死試験及びヒト細胞遺伝学試験)については、試験条件が不適切であったとする報告のみで、詳細が不明である。

以上のことから、食品安全委員会動物用医薬品専門調査会は、イプロニダゾールが生体にとって問題となる遺伝毒性を示す可能性については否定できないと判断した。

4. 急性毒性試験

イプロニダゾールの急性毒性試験結果を表 10 に示した。(参照3)

動物種	性別等	投与経路	LD ₅₀ (mg/kg 体重)	
		経口	970	
マウス	雌雄	腹腔内	600	
		皮下	>400	
51	雌雄(成体)	経口	920	
ラット	雌雄(新生児)	経口	205	
ウサギ	雌雄	経口	960	

表 10 イプロニダゾールの各種動物における LD_{50} (mg/kg 体重)

5. 亜急性毒性試験

O. 里忒注母注武器

(1)13週間亜急性毒性試験(ラット)①<参考資料 6>

ラット (系統不明、雌雄各 5 匹/群) を用いたイプロニダゾールの 13 週間混餌投与 (0、20、80 又は 320 mg/kg 体重/日) による亜急性毒性試験が実施された。

体重増加量及び摂餌量は、全ての群で同等であった。

血液学的検査及び尿検査では、投与による影響はみられなかった。

剖検では投与による病理学的変化はみられなかった。臓器重量では、全ての投与群の 雄の肝臓及び腎臓の絶対重量が増加し、320 mg/kg 体重/日投与群で肝臓の相対重量が増

⁶ 病理組織学的検査が実施されず、試験の詳細が報告されていないことから参考資料とした。

加した。病理組織学的検査は実施されなかった。(参照3) JECFA は本試験のNOELを設定していない。

(2) 13 週間亜急性毒性試験 (ラット) ②<参考資料 7>

ラット(系統不明、雌雄各 8 匹/群)を用いたイプロニダゾールの 13 週間混餌投与(0、20、80 又は 320 mg/kg 体重/日) による亜急性毒性試験が実施された。

体重は320 mg/kg 体重/日投与群の雌雄で有意に減少した。

摂餌量は、20 mg/kg 体重/日投与群の雌を除く全ての群で同等であった。この 20 mg/kg 体重/日投与群の雌は他の群の雌よりも摂餌量が多かった。

眼検査、血液学的検査、臨床生化学的検査及び尿検査では、投与による変化はみられなかった。

320 mg/kg 体重/日投与群の雄では肝細胞肥大がみられた。(参照3、4)

JECFA は、 $320 \,\mathrm{mg/kg}$ 体重/日投与群の雄の肝細胞肥大に基づき、本試験の NOEL を $80 \,\mathrm{mg/kg}$ 体重/日と設定している。(参照 4)

(3) 13 週間亜急性毒性試験(イヌ) <参考資料 8>

イヌ (ビーグル種、雄雌各 2 匹/群) を用いたイプロニダゾールの 13 週間経口投与 (0、 20、 80 又は 160 mg/kg 体重/日、カプセル、週 6 日投与)による亜急性毒性試験が実施された。

160 mg/kg 体重/日投与群では、2 例が死亡し、更に1 例は瀕死状態のため安楽死処置された。4 例目についても試験開始後7 週間で投与を中止した。この投与群の全例で体重減少、脱水症状、流涎、流淚、振戦、運動失調及び瞳孔拡張がみられた。剖検では、内臓のうっ血及び肝腫大がみられた。

80 mg/kg 体重/日投与群では、軽度の流涙及び流涎、僅かな体重減少並びに肝臓重量の増加がみられた。病理組織学的検査では、肝細胞質の軽度の顆粒状変化及び胆管周囲における間葉系細胞の増加がみられた。(参照3、4)

JECFA は、本試験の NOEL を 20 mg/kg 体重/日と設定している。(参照 4)

6. 慢性毒性及び発がん性試験

(1) 104 週間慢性毒性試験 (イヌ)

イヌ(ビーグル種、雌雄各 8 匹/群)を用いたイプロニダゾールの 104 週間混餌投与 [混餌濃度:0, 20, 200 又は 2,000 ppm(0, 0.51, 5.4 又は 62 mg/kg 体重/日に相当)] による慢性毒性試験が実施された。投与開始約 1 年後に各群雌雄各 2 匹を中間検査に用いた。毒性所見を表 11 に示した。

投与開始後 99 週で死亡した 1 例(雄)を除き全例が試験期間終了まで生存した。 一般状態では、投与群で皮膚炎、耳の炎症及び流涎の発生頻度が増加した。

体重では、試験終了時に 2,000 ppm 投与群の雌雄で対照群より有意な低下がみられ

⁷ 試験の詳細が報告されていないことから参考資料とした。

⁸ 動物数が少ないことから参考資料とした。

た。

平均摂餌量は、試験期間を通して、投与群で対照群に比べて少ない傾向がみられた。しかし、有意な変化はなかった。

眼検査では、投与による影響はみられなかった。

血液生化学的検査では、2,000 ppm 投与群の雌雄で ALP が試験期間を通して有意に 上昇した。また、雄では、投与開始後 24 か月を除き K が有意に低下した。雌では、投 与開始 6 か月後及び 9 か月後のみ K の有意な低下がみられた。

剖検では、2,000 ppm 投与群で脂肪組織の減少が認められた(10/11 例)。

臓器重量では、2,000 ppm 投与群で肝臓(雌雄)及び肺(雌)の相対重量が有意に増加した。

病理組織学的検査では、2,000 ppm 投与群で肝細胞内の顆粒状色素の増加がみられた。 200 ppm 以下投与群では投与による影響は認められなかった。(参照 3、4)

JECFA は、本試験の NOEL を 200 ppm (5.4 mg/kg 体重/日に相当) と設定している。(参照 4)

食品安全委員会動物用医薬品専門調査会は、本試験において、2,000 ppm (62 mg/kg 体重/日に相当) 投与群に体重低下及び肝細胞内の顆粒状色素の増加がみられたことから、NOAEL を 200 ppm (5.4 mg/kg 体重/日に相当) と設定した。

投与量	雌雄
2,000 ppm	 ・体重低下 ・ALP 上昇 ・K 低下 (雄:3~21 か月、雌:6~9 か月のみ) ・脂肪組織の減少 ・肝臓相対重量増加 ・肝細胞内顆粒状色素増加
200 ppm	毒性所見なし

表 11 イヌを用いた 104 週間慢性毒性試験の毒性所見

(2) 109 週間慢性毒性/発がん性併合試験 (ラット)

ラット (SD 系、雌雄各 50 匹/群) を用いたイプロニダゾールの 109 週間混餌投与 [混餌濃度:0、20、200 又は 2,000 ppm (0、1、10 又は 110 mg/kg 体重/日に相当)] による慢性毒性/発がん性併合試験が実施された。

生存率は、雄では全ての群で同等であったが、雌では $20 \, \mathrm{ppm}$ 及び $2,000 \, \mathrm{ppm}$ 投与群で対照群より低かった。

一般状態では、投与に起因する変化はみられなかった。

体重では、2,000 ppm 投与群の雌雄で投与開始後 51 週に有意な減少がみられた。数例で大きな乳腺腫瘍がみられたため、その後の体重の統計学的解析は行われなかった。しかし、投与開始 2 年目以降では、全ての投与群の平均体重が対照群よりも低値であった。

摂餌量は、全ての投与群ともに対照群と同等であった。

血液学的検査及び血液生化学的検査では、ある種の測定項目で投与による変化がみら

れた。これらの変化は僅かであり、この試験より高い用量で実施された 13 週間亜急性 試験 [II. 5. (1) 及び(2)] では変化がみられなかったことから、変化がみられたこれらの 所見は、生物学的に重要なものではないと考えられた。

剖検及び病理組織学的検査では、投与による非腫瘍性病変はみられなかった。腫瘍性病変については、2,000 ppm 投与群の雌で乳腺腫瘍の発生率の上昇がみられた。また、同群では、腫瘍の発現が早く(75 週間後の腫瘍発生率の比較)、担がん動物 1 匹当たりの乳腺腫瘍の発生個数は、対照群に比べ増加していた(表 12)。(参照 3、4)

JECFA は、本試験の結果から、2,000 ppm 投与群の雌では乳腺腫瘍が形成されると結論した。しかし、この系統のラットでは腫瘍発生率が一般的に高く、対照群における高い腫瘍発生率のため明確な NOEL の設定はできなかったと報告している。(参照 4)

本試験において、対照群を含む全群の腫瘍発生率が高く、各検査項目への影響が考えられたが、詳細な情報が不明であることから、食品安全委員会動物用医薬品専門調査会は、明確な NOAEL を設定することはできないと判断した。また、2,000 ppm (110 mg/kg 体重/日に相当) 投与群の雌で乳腺腫瘍の発生率の上昇がみられたことから、発がん性が示唆された。

表 12 ラットを用いたイプロニダゾールの 109 週間慢性毒性/発がん性併合試験における雌の乳腺腫瘍の発生数(発生率%)

項目	投与量(ppm)					
(共日	0	20	200	2,000		
乳腺腫瘍発生数*	42 (84%)	32 (64%)	37 (74%)	48 (96%)		
投与開始 75 週間後の 腫瘍発生数及び発生率	7 (14%)	12 (24%)	10 (20%)	18 (36%)		
担がん動物1匹当たり の乳腺腫瘍の発生個数	2.76	2.72	3.08	3.68		

n=50

(3)89又は100週間発がん性試験(マウス)

マウス (CD-1 系、雌雄各 80 匹/群) を用いたイプロニダゾールの混餌投与 [混餌濃度:0(2 群)、20、200 又は 1,000 ppm (0、3、30 又は 150 mg/kg 体重/日に相当)] による発がん性試験が実施された。投与期間は雄で 89 週間、雌で 100 週間であった。

体重及び摂餌量は、投与群と対照群で同等であった。生存率には投与群と対照群で有意な差はなかった。100週間混餌投与後の生存率は20%であった。

剖検では、投与による変化はみられなかった。

腫瘍性病変については、1,000 ppm 投与群の雌雄で肺の良性増殖性病変(過形成及び腺腫)の有意な増加がみられた(p<0.05)。肺の過形成及び腫瘍性病変の発生数を表 13に示した。病変数の有意な増加は、肺の過形成及び腺腫のみであったが、1,000 ppm 投与群では複数の腫瘍(雌雄)及び癌(雄)を有する個体数の軽度の増加がみられた。肺腺腫は、この系統のマウスにおける一般的な腫瘍であるが、1,000 ppm 投与群での発生

^{*:}過去の3試験から得られた背景データ(非投与群の雌における良性乳腺腫瘍発生数):22/43 (51%)、31/44 (70%) 及び29/47 (62%)

率は背景データ (同一施設における過去の 8 試験の対照データ: $2/50\sim10/59$ 、 $2/50\sim10/59$ 、 $2/59\sim11/59$)を超えていた。過形成については、背景データがなかったが、対照群より有意に増加していた (p<0.05)。

白内障の発症に関する追加の眼検査が 13 週間毎及び試験終了時に実施された。投与による眼に対する影響はみられなかった。(参照 3、4)

JECFA は、本試験の NOEL を 200 ppm (30 mg/kg 体重/日に相当) と設定している。 (参照 4)

食品安全委員会動物用医薬品専門調査会は、本試験において、肺の過形成以外の非腫瘍性病変に係る詳細な情報が不明であることから、NOAELを設定することは適切ではないと判断した。また、1,000 ppm(150 mg/kg 体重/日に相当)投与群で肺腫瘍の有意な増加がみられたことから、発がん性が示唆された。

表 13 マウスを用いたイプロニダゾールの 89 又は 100 週間発がん性試験における 肺の過形成及び腫瘍性病変の発生数

性別			雄					雌		
投与量 (ppm)	0	0	20	200	1,000	0	0	20	200	1,000
被験動物数	78	79	77	78	78	79	78	80	79	79
過形成	8	8	3	11	36*	8	8	7	13	25*
腺腫	8	8	7	13	25*	6	5	3	4	20*
複数の腺腫を有する 個体数	0	2	1	2	7	0	0	1	1	6
癌腫	3	2	3	1	7	0	3	0	3	2
複数の癌腫を有する 個体数	0	0	0	0	1	0	0	0	1	1
腺腫及び又は癌腫	11	9	10	13	27	6	8	3	6	21

^{*} p<0.05

7. 生殖発生毒性試験

(1)3世代繁殖試験(ラット)

ラット (CFY 系、雄 10 匹及び雌 20 匹/群) にイプロニダゾールを混餌投与 [混餌濃度:0、20、200 又は 2,000 ppm(0、1、10 又は 100 mg/kg 体重/日に相当)] し、3 世代繁殖試験が実施された。各群ともに 80 日間混餌投与した後、交配した。

2,000 ppm 投与群の親動物(雌雄)及び妊娠雌で体重増加抑制がみられた。交尾行動、 分娩、同腹児数及び出生後の成長には、投与による影響はみられなかった。精巣の退行 性変化(精細管の損傷、精子形成の不全)が各投与群で1例ずつみられたが、受胎率に は投与による影響はみられなかった。(参照3、4)

JECFA は、本試験における NOEL を $200 \, \mathrm{ppm}$ ($10 \, \mathrm{mg/kg}$ 体重/日に相当) と設定している。(参照 4)

食品安全委員会動物用医薬品専門調査会は、本試験において、2,000 ppm(100 mg/kg 体重/日に相当)投与群の親動物及び妊娠雌で体重増加抑制がみられたことから、NOAELを 200 ppm(10 mg/kg 体重/日に相当)と設定した。

(2) 発生毒性試験 (ラット)

妊娠ラット(Füllingsdorf アルビノ、39 匹/群)に、イプロニダゾールを強制経口投与 (0,10 又は 100 mg/kg 体重/日)し、発生毒性試験が実施された。投与を妊娠 $6\sim15$ 日に行った。対照群及び投与群をそれぞれ 2 群に分け、第 1 群の母動物を妊娠 20 日に安楽死させ、子宮及び胎児の検査を行った。第 2 群の母動物は出産させ、授乳期間を通じて哺育させた。児動物は、生後 22 日に安楽死させた。

受胎率、同腹児数、同腹児体重及び吸収胚率は、全ての群で同等であった。骨格奇形 及び内臓奇形はみられなかった。児動物の生存率及び発育には投与による影響はみられ なかった。(参照 3、4)

JECFA は、100 mg/kg 体重/日投与群で投与による何らの影響もみられなかったことから、本試験の NOEL を 100 mg/kg 体重/日と設定している。(参照 4)

食品安全委員会動物用医薬品専門調査会は、本試験において、最高用量の 100 mg/kg 体重/日投与群で投与による影響がみられなかったことから、母動物、胎児及び児動物に対する NOAEL をいずれも 100 mg/kg 体重/日と設定した。催奇形性はみられなかった。

(3) 発生毒性試験(ウサギ)

妊娠ウサギ(Yellowsilver、20 匹/群)に、イプロニダゾールを強制経口投与(0、1、10 又は 100 mg/kg 体重/日)し、発生毒性試験が実施された。投与を妊娠 $6\sim18$ 日に行い、妊娠 29 日に全ての母動物を検査した。

100 mg/kg 体重/日投与群の母動物に、体重増加抑制及び鎮静がみられ、吸収胚数が有意に増加した。

胎児には、投与に起因する骨格奇形及び内臓奇形はみられなかった。(参照3、4)

JECFA は、10 mg/kg 体重/日投与群で投与による何らの影響もみられなかったことから、本試験の NOEL を 10 mg/kg 体重/日と設定している。(参照 4)

食品安全委員会動物用医薬品専門調査会は、本試験において、100 mg/kg 体重/日投与群の母動物に体重増加抑制、鎮静及び吸収胚数の増加がみられたことから、母動物及び胎児に対する NOAEL を 10 mg/kg 体重/日と設定した。催奇形性はみられなかった。

III. 国際機関等における評価

1. JECFA における評価

JECFA は、1989年にイプロニダゾールを評価している。

イプロニダゾールは、細菌を用いた試験で変異原性を示したが、哺乳動物の試験では 試験条件が不十分であり、遺伝毒性を適切に評価できなかった。また、ラットを用いた 109週間慢性毒性/発がん性併合試験の結果から、イプロニダゾール高用量投与群の雌で は乳腺腫瘍が形成されると結論された。しかし、この試験に用いられた系統のラットで は腫瘍発生率が一般的に高く、対照群において腫瘍発生率が高かったため明確な NOEL の決定はできなかった。

このため、JECFA は、ラットを用いた 109 週間慢性毒性/発がん性併合試験が NOEL を決定するには不適切であったことから、イプロニダゾールの一日摂取許容量 (ADI) を設定することはできないと判断している。(参照 3、4)

他にも懸念事項として、代謝試験において、イプロニダゾールは5-ニトロイミダゾールを特徴付ける代謝経路、特に、酸化が2-アルキル基で起こり、還元が5-ニトロ基で起こる可能性、分子の切断によりイミダゾール環が断片化し、生体内成分への取り込みがある程度進むことが考えられたが、一方で結合残留物が形成される可能性があり、JECFAは、この可能性を安全性評価の際に考慮しなければならないとしている。(参照5)

IV. 食品健康影響評価

イプロニダゾールは、*in vitro* の細菌を用いた復帰突然変異試験及び Fluctuation test で陽性であった。また、*ex vivo*(宿主経由試験)の復帰突然変異試験で陽性であった。一方、哺乳動物を用いた試験では、試験条件が不適切で遺伝毒性を評価できなかったとする報告があった。以上のことから、イプロニダゾールが生体にとって問題となる遺伝毒性を示す可能性については否定できないと判断した。

マウスを用いた 89 又は 100 週間発がん性試験及びラットを用いた 109 週間慢性毒性 /発がん性併合試験が実施されている。マウスを用いた試験では、1,000 ppm 投与群で肺腫瘍の有意な増加が、ラットを用いた試験では、2,000 ppm 投与群の雌で乳腺腫瘍の発生率の上昇がみられたことから、発がん性が示唆された。また、腫瘍発生への遺伝毒性の可能性を否定できなかった。

以上のことから、イプロニダゾールについては、遺伝毒性を示す可能性を否定することができず、発がん性が示唆されたことから、ADIを設定すべきでないと判断した。

表 14 JECFA における各種試験の無毒性量等の比較

動物種	試験	投与量(mg/kg 体重/日)	無作用量(mg/kg 体重/日)
マウス	89~100 週間発	0, 20, 200, 1,000 ppm (0,	30 (200 ppm、NOEL)
	がん性	3、30、150)、混餌投与	肺腫瘍増加
ラット	13 週間亜急性毒	0、20、80、320、混餌投与	-
	性		320 雄:肝臓重量増加
	13 週間亜急性毒	0、20、80、320、混餌投与	80 (NOEL)
	性		肝細胞肥大(雄)、体重減少
	109 週間慢性毒	0、20、200、2,000 ppm(0、	-
	性/発がん性併合	1、10、110)、混餌投与	110 雌:乳腺腫瘍の発生率上昇
	3世代繁殖	0、20、200、2,000 ppm(0、	10 (200 ppm、NOEL)
		1、10、100)、混餌投与	親動物及び妊娠雌の成育不良、
	発生毒性	0、10、100、強制経口投与	100 (NOEL)
			投与による影響なし
			催奇形性なし
ウサギ	発生毒性	0、1、10、100、強制経口投与	10 (NOEL)
			母動物:体重増加遅延、鎮静
			胚:吸収胚数增加
			催奇形性なし
イヌ		0、20、80、160、経口投与(カ	20 (NOEL)
	性	プセル)、週6日	肝臓重量増加、肝臓病変(肝細胞の
			細胞質顆粒状変化、胆管周囲におけ
			る間葉系細胞の増加)
		0、20、200、2,000 ppm(0、	5.4 (200 ppm、NOEL)
	性	0.51、5.4、62)、混餌投与	体重増加量減少、肝細胞変化(細胞
			内顆粒状色素の増加)
ADI 設定根拠			-
ADI 設定根拠資料			-
ADI		-	

^{-:} 設定せず

<別紙1:代謝物/分解物略称>

略称等	化学名
代謝物A	2,3-ジヒドロ- 2 - $(2'$ -ヒドロキシイソプロピル)- 3 -メチル- 4 -ニトロ- $1H$
	イミダゾール-5-オール
代謝物 B	1-メチル-2-(2'-ヒドロキシイソプロピル)-5-ニトロイミダゾール
	(HIP)

<別紙2:検査値等略称>

略称等	名称
ADI	一日摂取許容量
ALP	アルカリホスファターゼ
EMEA	欧州医薬品審査庁
FDA	米国食品医薬品庁
GC	ガスクロマトグラフィー
GC-ECD	電子捕獲型検出器付きガスクロマトグラフィー
JECFA	FAO/WHO 合同食品添加物専門家会議
LD_{50}	半数致死量
LSC	液体シンチレーションカウンター
NOAEL	無毒性量
NOEL	最大無作用量
TLC	薄層クロマトグラフィー

<参照>

- 1. 食品衛生法 (昭和 22 年法律第 233 号) 第十一条第三項の規定により人の健康を損な うおそれのない量として厚生労働大臣が定める量を定める件 (平成 17 年厚生労働省 告示第 497 号)
- 2. The Merck Index, 15th, 2013.
- 3. JECFA: Toxicological evaluation of certain veterinary drug residues in food. WHO Food Additives Series, No. 25, 1990.
- 4. JECFA: Evaluation of certain veterinary drug residues in food (Thirty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series, No. 788, 1989.
- 5. JECFA: Residues of some veterinary drugs in foods and animals. FNP 41/2, 1989.
- 6. EMEA: COMMITTEE FOR VETERINARY MEDICINAL PRODUCT, Position Paper on Availability of Veterinary Medicines agreed on March 1999. EMEA/CVMP/151/99-FINAL, 1999.
- 7. FDA: Approved Product, Section 6.0-Voluntary Withdrawal, 2015.

動物用医薬品 (イプロニダゾール) に係る食品健康影響評価に関する審議結果(案)についての意見・情報の募集結果について

- 1. 実施期間 平成27年8月26日~平成27年9月24日
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 動物用医薬品「イプロニダゾール」に係る食品健康影響評価に関する審議 結果(案)について、上記のとおり、意見・情報の募集を行ったところ、期間中に意見・情報はありませんでした。

動物用医薬品「イプロニダゾール」に係る評価書の変更点

修正	食品安全委員会第582回会合資料	食品安全委員会第574回会合資料
箇所	(変更後)	(変更前)
P.17	本試験において、対照群を含む全群の腫瘍発生率が高く、	本試験において、対照群を含む全群の腫瘍発生率が高く、
$L\downarrow 11$	各検査項目への影響が考えられたが、詳細な情報が不明であ	各検査項目への影響が考えられたことから、食品安全委員会
	<u>る</u> ことから、食品安全委員会動物用医薬品専門調査会は、明	動物用医薬品専門調査会は、明確な NOAEL を設定すること
	確な NOAEL を設定することはできないと判断した。(略)	はできないと判断した。(略)
P20	III. <u>国際機関等における評価</u>	III. <u>食品健康影響評価</u>
$\mathrm{L}\downarrow 1$	<u>1. JECFA における評価</u>	1. 国際機関等における評価
		<u>(1)JECFA における評価</u>
P21	IV. 食品健康影響評価	2. 食品健康影響評価
$\mathrm{L}\downarrow 1$		

[※] P; ページ数、L↓; 当該ページの上から数えた行数、L↑; 当該ページの下から数えた行数