資料7

(案)

農薬評価書

プロチオコナゾール (第3版)

2015年10月22日 食品安全委員会農薬専門調査会

2015/10/22 第 128 回農薬専門調査会幹事会 プロチオコナゾール評価書(案)

1	日 次	
2	Ī.	Ę
3	〇 審議の経緯	3
4	〇 食品安全委員会委員名簿	4
5	〇 食品安全委員会農薬専門調査会専門委員名簿	4
6	〇 要 約	8
7		
8	I. 評価対象農薬の概要	9
9	1. 用途	9
10	2. 有効成分の一般名	9
11	3. 化学名	9
12	4. 分子式	9
13	5. 分子量	9
14	6. 構造式	9
15	7. 開発の経緯1	0
16		
17	Ⅱ. 安全性に係る試験の概要1	1
18	1. 動物体内運命試験1	1
19	(1)ラット(i) 1	1
20	(2)ラット(ii)1	5
21	(3)ラット(代謝物 M17)1	5
22	(4)ヤギ(i) 1	8
23	(5) ヤギ(ii) 1	9
24	(6)ヤギ(代謝物 M17)2	.1
25	2. 植物体内運命試験	.2
26	(1)小麦① 2	.2
27	(2)小麦② 2	.3
28	(3)小麦③ 2	4
29	(4) らっかせい①	.5
30	(5) らっかせい②	.6
31	(6) てんさい① 2	.6
32	(7) てんさい② 2	.7
33	3. 土壌中運命試験	8.
34	(1)好気的土壌中運命試験① 2	8.
35	(2) 好気的土壌中運命試験② 2	9
36	4. 水中運命試験3	0
37	(1)加水分解試験3	0
38	(2)水中光分解試験	n

2015/10/22 第 128 回農薬専門調査会幹事会 プロチオコナゾール評価書(案)

1	5. 土壌残留試験	30
2	6.作物等残留試験	31
3	(1)作物残留試験	31
4	(2)畜産物残留試験	31
5	7. 原体を用いた毒性試験	32
6	(1)一般薬理試験	32
7	(2)急性毒性試験	32
8	(3)眼・皮膚に対する刺激性及び皮膚感作性試験	33
9	(4)亜急性毒性試験	34
10	(5)慢性毒性試験及び発がん性試験	36
11	(6)生殖発生毒性試験	40
12	(7)遺伝毒性試験	43
13	8. 代謝物 M17 を用いた毒性試験	44
14	(1) 急性毒性試験 (代謝物 M17)	44
15	(2) 眼・皮膚に対する刺激性及び皮膚感作性試験(代謝物 M17)	44
16	(3) 亜急性毒性試験(代謝物 M17)	45
17	(4)慢性毒性試験及び発がん性試験(代謝物 M17)	48
18	(5)生殖発生毒性試験(代謝物 M17)	50
19	(6)遺伝毒性試験(代謝物 M17)	56
20	9. 代謝物 M07 カリウム塩を用いた毒性試験	56
21	(1)急性毒性試験(代謝物 M07 カリウム塩)	56
22	(2)90 日間亜急性毒性試験(ラット、代謝物 M07 カリウム塩)	56
23	(3)発生毒性試験(ラット、代謝物 M07 カリウム塩)	57
24	(4)遺伝毒性試験(代謝物 M07 カリウム塩)	57
25	10. その他の代謝物(代謝物 M08、M24 及び M25 並びに M47 のアグリコン)	58
26	(1) 急性毒性試験(代謝物 M08、M24 及び M25 並びに M47 のアグリコン)	58
27	(2)遺伝毒性試験(代謝物 M08、M24 及び M25 並びに M47 のアグリコン)	58
28		
29	Ⅲ. 食品健康影響評価	59
30		
31	- 別紙 1:代謝物/分解物略称	71
32	別紙 2:検査値等略称	75
33	別紙3:作物残留試験(海外)	77
34	別紙4:畜産物残留試験	101
35	- 参照	104
36		

<審議の経緯>

2 一第1版関係一

1

2008年 5月 28日 インポートトレランス申請(小麦、大麦等)

2008年 6月 2日 厚生労働大臣から残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安第0602004号)

2008年 6月 3日 関係書類の接受 (参照 1~86)

2008年 6月 5日 第241回食品安全委員会(要請事項説明)

2008年 8月 20日 第18回農薬専門調査会確認評価第一部会

2009年 2月24日第48回農薬専門調査会幹事会

2009年 5月 28日 第 287 回食品安全委員会(報告)

2009年 5月 28日 から6月 26日まで 国民からの意見・情報の募集

2009年 7月 22日 農薬専門調査会座長から食品安全委員会委員長へ報告

2009 年 7月 23 日 第 295 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照87)

2010年 11月 9日 残留農薬基準告示 (参照 88)

4 一第2版関係一

3

5

2013年 2月 15日 インポートトレランス設定の要請(小麦、ばれいしょ等)

2013年 6月 11日 厚生労働大臣から残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安 0611 第 9 号)(参照 89)

2013年 6月 12日 関係書類の接受 (参照 90、91)

2013年 6月 17日 第 478 回食品安全委員会(要請事項説明)

2013 年 8 月 5 日 第 484 回食品安全委員会 (審議)

(同日付け厚生労働大臣へ通知) (参照92)

2014年 10月 3日 残留農薬基準告示 (参照 93)

6 一第3版関係一

2015 年 4 月 1 日 インポートトレランス設定の要請(うり科果菜類等)

2015年 6月 23日 厚生労働大臣から残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安 0611 第 9 号)、関係書 類の接受(参照 94~98)

2015年 6月 30日 第567回食品安全委員会(要請事項説明)

2015年 8月 24日 第 48 回農薬専門調査会評価第三部会

2015年 10月 22日 第128回農薬専門調査会幹事会

7 8

<食品安全委員会委員名簿> 1

(2009年6月30日まで) (2011年1月6日まで) (2012年6月30日まで) 見上 彪(委員長) 小泉直子(委員長) 小泉直子(委員長)

小泉直子(委員長代理*) 熊谷 進(委員長代理*) 見上 彪(委員長代理*)

長尾 拓 長尾 拓 長尾 拓 野村一正 野村一正 野村一正 畑江敬子 畑江敬子 畑江敬子 廣瀬雅雄** 廣瀬雅雄 廣瀬雅雄 本間清一 村田容常 村田容常

*:2007年2月1日から *:2009年7月9日から *:2011年1月13日から

**: 2007年4月1日から

(2015年6月30日まで) (2015年7月1日から)

佐藤 洋(委員長) 熊谷 進(委員長)

佐藤 洋(委員長代理) 山添 康(委員長代理)

山添 康(委員長代理) 熊谷 進 三森国敏 (委員長代理) 吉田 緑 石井克枝 石井克枝 上安平洌子 堀口逸子 村田容常 村田容常

く食品安全委員会農薬専門調査会専門委員名簿> 3

(2010年3月31日まで)

小林裕子

2

鈴木勝士 (座長) 平塚 明 佐々木有 林 真(座長代理) 代田眞理子 藤本成明 相磯成敏 高木篤也 細川正清 玉井郁巳 赤池昭紀 堀本政夫 石井康雄 田村廣人 本間正充 泉 啓介 津田修治 松本清司 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 中澤憲一* 臼井健二

山手丈至 太田敏博 永田 清 與語靖洋 義澤克彦** 大谷 浩 納屋聖人

小澤正吾 西川秋佳 吉田 緑

川合是彰 若栗 忍 布柴達男 根岸友惠

三枝順三***	根本信雄	
		*

*: 2009年1月19日まで

**: 2009年4月10日から

***: 2009年4月28日から

1

(2012年3月31日まで)

納屋聖人 (座長) 平塚 明 佐々木有 林 真(座長代理) 代田眞理子 福井義浩 相磯成敏 高木篤也 藤本成明 赤池昭紀 玉井郁巳 細川正清 浅野 哲** 田村廣人 堀本政夫 石井康雄 津田修治 本間正充 泉 啓介 津田洋幸 増村健一** 上路雅子 長尾哲二 松本清司 臼井健二 永田 清 柳井徳磨 太田敏博 長野嘉介* 山崎浩史 小澤正吾 西川秋佳 山手丈至 川合是彰 布柴達男 與語靖洋 川口博明 根岸友惠 義澤克彦 桑形麻樹子*** 根本信雄 吉田 緑

八田稔久

三枝順三*:2011年3月1日まで**:2011年3月1日から

***: 2011年6月23日から

若栗 忍

2

(2014年3月31日まで)

• 幹事会

小林裕子

納屋聖人 (座長)上路雅子松本清司西川秋佳* (座長代理)永田 清山手丈至**三枝順三 (座長代理**)長野嘉介吉田 緑赤池昭紀本間正充

• 評価第一部会

上路雅子 (座長)津田修治山崎浩史赤池昭紀 (座長代理)福井義浩義澤克彦相磯成敏堀本政夫若栗 忍

• 評価第二部会

 吉田 緑 (座長)
 桑形麻樹子
 藤本成明

 松本清司 (座長代理)
 腰岡政二
 細川正清

	In the Late	
泉啓介	根岸友惠	本間正充
• 評価第三部会	1.1	N NI.
三枝順三(座長)	小野、敦	永田 清
納屋聖人(座長代理)	佐々木有	八田稔久
浅野 哲	田村廣人	増村健一
・評価第四部会		
西川秋佳*(座長)	川口博明	根本信雄
長野嘉介(座長代理*; 座長**)	代田眞理子	森田 健
山手丈至(座長代理**)	玉井郁巳	與語靖洋
井上 薫**		*:2013年9月30日まで
		**: 2013年10月1日から
(2014年4月1日から)		
• 幹事会		
西川秋佳 (座長)	小澤正吾	林 真
納屋聖人(座長代理)	三枝順三	本間正充
赤池昭紀	代田眞理子	松本清司
浅野 哲	永田 清	與語靖洋
上路雅子	長野嘉介	吉田 緑*
• 評価第一部会	2021 7/11/1	
上路雅子 (座長)	清家伸康	藤本成明
赤池昭紀(座長代理)	林	堀本政夫
相磯成敏	平塚明	山崎浩史
浅野 哲	福井義浩	若栗 忍
篠原厚子	田 ノ 4% 日	
• 評価第二部会		
吉田 緑(座長)*	腰岡政二	細川正清
松本清司(座長代理)	佐藤 洋	本間正充
小澤正吾	杉原数美	山本雅子
川口博明	根岸友惠	吉田 充
	似序久态	
桑形麻樹子		
評価第三部会二世順三 (南里)	古十年山	中山
三枝順三(座長)	高木篤也	中山真義
納屋聖人(座長代理)	田村廣人	八田稔久
太田敏博	中島美紀	増村健一
小野教	永田 清	義澤克彦
・評価第四部会		

2015/10/22 第 128 回農薬専門調査会幹事会 プロチオコナゾール評価書(案)

西川秋佳 (座長)佐々木有本多一郎長野嘉介 (座長代理)代田眞理子森田 健井上 薫**玉井郁巳山手丈至加藤美紀中塚敏夫與語靖洋

*: 2015年6月30日まで
**: 2015年9月30日まで

要 約

トリアゾール系殺菌剤である「プロチオコナゾール」 (CAS No. 178928-70-6) について、各種資料を用いて食品健康影響評価を実施した。なお、今回、作物残留試験(うり科果菜類等)の成績等が新たに提出された。

各種毒性試験結果から、プロチオコナゾール投与による影響は主に肝臓(肝細胞肥大等)、腎臓(腎炎等)及び甲状腺(T4低下)に認められた。神経毒性、発がん性、催奇形性及び遺伝毒性は認められなかった。また、代謝物 M17 投与による影響は主に肝臓に認められ、次世代への影響がプロチオコナゾールよりも明らかに認められた。各種試験結果から、農産物中の暴露評価対象物質をプロチオコナゾール及び代謝物 M17 と設定した。

【西川専門委員より】

(網掛け部) 甲状腺 $(T_4$ 低下) \rightarrow 削除 (F_4) 所細胞肥大はありますが、甲状腺の病理組織学的変化を伴っていないので、主たる毒性とは言えない)

無毒性量の比較では代謝物 M17 の方が原体に比べて概して低く、最も低い無毒性量は2年間慢性毒性/発がん性併合試験の雄ラットの1.1 mg/kg 体重/日であった。植物体内運命試験では M17 の方がプロチオコナゾールよりも多く存在していること及び次世代への影響が M17 でより明らかに認められることを勘案して、M17 で得られた無毒性量を一日摂取許容量 (ADI) 及び急性参照用量 (ARfD) 設定の根拠にすることが妥当と考えられた。 各試験で得られた無毒性量のうち最小値は代謝物 M17 のラットを用いた 2 年間慢

性毒性/発がん性併合試験の1.1 mg/kg体重/日であったことから、これを根拠として、安全係数100で除した0.011 mg/kg体重/日を一日摂取許容量(ADI)と設定した。また、プロチオコナゾール及び代謝物 M17 の単回投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、代謝物 M17 のウサギを用いた発生毒性試験の無毒性量である2 mg/kg体重/日であり、認められた所見は母動物に影響がみられない用量での胎児における骨格異常等であったことから、妊婦又は妊娠している可能性のある女性に対する急性参照用量(ARfD)は、これを根拠として、安全係

数 100 で除した 0.02 mg/kg 体重と設定した。また、一般の集団に対しては、代謝物

M17のラット及びマウスを用いた急性毒性試験の無毒性量である 100 mg/kg 体重を

32 根拠として、安全係数 100 で除した 1 mg/kg 体重を ARfD と設定した。

I. 評価対象農薬の概要 1 2 1. 用途 3 殺菌剤 4 2. 有効成分の一般名 5 和名:プロチオコナゾール 6 7 英名: prothioconazole (ISO 名) 8 3. 化学名 9 10 **IUPAC** 和名: (RS)-2-[2-(1-クロロシクロプロピル)-3-(2-クロロフェニル)-2-11 ヒドロキシプロピル]-2,4-ジヒドロ-1,2,4-トリアゾール-3-チオン 12 13 英名:(RS)-2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-14 hydroxypropyl]-2,4-dihydro-1,2,4-triazole-3-thione 15 16 CAS (No.178928-70-6) 17 和名: 2-[2-(1-クロロシクロプロピル)-3-(2-クロロフェニル)-2-18 ヒドロキシプロピル]-1,2-ジヒドロ-3H-1,2,4-トリアゾール-3-チオン 19 20 21 英名: 2-[2-(1-chlorocyclopropyl)-3-(2-cholorophenyl)-2-22hydroxypropyl]-1,2-dihydro-3*H*-1,2,4-triazole-3-thione 234. 分子式 24 $C_{14}H_{15}Cl_2N_3OS$ 25 26 27 5. 分子量 28 344.3 29 30 6. 構造式

7. 開発の経緯

な生育を阻害する。

1

7

- プロチオコナゾールは、バイエルクロップサイエンス社により開発されたトリア ゾール系殺菌剤である。麦類の赤かび病及び赤かび病の産生するかび毒抑制に、種 子処理あるいは散布処理で効果を示す。病原菌に対する作用機構は、他のトリアゾール系殺菌剤と同様にエルゴステロールの生合成の過程において 2,4-メチレンジ ヒドロラノステロールの C14 位の脱メチル化を阻害することにより、菌類の正常
- 8 プロチオコナゾールは、国内では農薬登録されておらず、EU、豪州、米国及び 9 カナダで登録されている。
- 10 今回、インポートトレランス設定の要請(うり科果菜類等)がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験 [$II.1\sim4$] は、プロチオコナゾールのフェニル基の炭素を 14 C で均一に標識したもの($[phe^{-14}C]$ プロチオコナゾール)、トリアゾール環の 3 及び 5 位の炭素を 14 C で標識したもの($[tri^{-14}C]$ プロチオコナゾール)又は代謝物 M17 のフェニル基の炭素を 14 C で均一に標識したもの($[phe^{-14}C]$ M17)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)からプロチオコナゾールの濃度(mg/kg 又は $\mu g/g$)に換算した値として示した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

(1) ラット(i)

Wistar ラット (一群雌雄各 5 匹) に、 $[tri^{-14}C]$ プロチオコナゾールを 2 mg/kg 体重 (以下[1.(1)]において「低用量」という。) 若しくは 150 mg/kg 体重 (以下[1.(1)]において「高用量」という。) で単回経口投与、低用量の非標識体を 14 日間(雄)~15 日間(雌)反復経口投与した後、低用量の $[phe^{-14}C]$ プロチオコナゾールを単回経口投与又は雄ラット(5 匹)に $[phe^{-14}C]$ プロチオコナゾールを 5 mg/kg 体重で単回経口投与して動物体内運命試験が実施された。

① 吸収

a. 血中濃度推移

血漿中薬物動態学的パラメータは表1に示されている。

投与後の血漿中放射能濃度の経時変化は投与用量、投与回数によらず類似していた。いずれの試験群でも血漿中放射能濃度は投与後速やかに上昇し、投与後 1時間以内に C_{max} に達し、その後 $1\sim2$ 時間程度その濃度を保ったことから、腸肝循環が示唆された。この血漿中放射能濃度の挙動は雌でより顕著であった。放射能の消失は速やかで、 β 相の $T_{1/2}$ は $8\sim19$ 時間であった。(参照 1、2、90、95)

表 1 血漿中薬物動態学的パラメータ

標識体	[tri-1	4C]プロラ	チオコナン	デール	[phe-14C]プロ	!チオコナ	ゾール
投与量	2 mg/kg 体重		150 mg/kg 体重		2 mg/kg 体重	5 mg/k	kg 体重
仅 分 里	(単回)		(単回)		(単回) (反復)		復)
性別	雄	雌	雄	雌	雄	雄	雌
T _{max} (hr)	0.43	0.52	0.71	0.63	0.18	0.21	0.38
C_{max} (µg/mL)	0.43	0.92	69.8	45.0	0.65	0.47	0.35
$T_{1/2}\left[lpha$ 相 $ ight]$ (hr)	0.926	0.499	0.404	0.350	0.446	0.597	0.424
T _{1/2} [β相] (hr)	16.8	18.7	9.83	9.16	8.08	11.9	8.91
AUC (hr·μg/mL)	6.31	8.43	358	249	5.84	1.77	1.67

b. 吸収率

胆汁中排泄試験 [1. (1) **4** b.] の胆汁及び尿中排泄率並びに動物体内(約 1%TAR)の放射能の合計から経口投与後 48 時間の吸収率は少なくとも 93%であった。(参照 1、2、90、95)

② 分布

血中濃度推移検討試験[1.(1)①a.]で得られた臓器・組織を用いて体内分布試験が実施された。

主要組織における残留放射能濃度は表2に示されている。

と殺時の動物体における放射能の残留量は、[tri-14C]プロチオコナゾール投与 168 時間後で 0.1~1.5%TAR、[phe-14C]プロチオコナゾール投与 48 時間後で 1~6%TAR と少なかった。大部分の臓器及び組織における残留放射能濃度は低かったが、肝臓では比較的高濃度が検出され、次いで胃腸管、腎臓、赤血球で高かった。いずれの投与群においても、残留放射能濃度は雌に比べて雄で高かったが、高用量投与群及び反復投与群の甲状腺における濃度は雄に比べて雌で高かった。低用量単回投与群の雌雄、高用量投与群の雄及び反復投与群の雄では、甲状腺の残留放射能濃度は検出限界未満であった。(参照 1、2、90、95)

表 2 主要組織における残留放射能濃度 (μg/g)

標識体	投与条件	性別	投与 168 時間後
	2 mg/kg 体重	雄	肝臓(0.248)、腎臓(0.020)、胃腸管(0.013)、赤血球(0.013)、肺(0.009)、脾臓(0.004)、心臓(0.004)、皮膚(0.004)、大腿骨(0.003)、カーカス1(0.003)、血漿(0.002)
[tri-14C]	(単回)	雌	腎臓(0.020)、肺(0.017)、肝臓(0.013)、赤血球(0.007)、胃腸管(0.007)、脾臓(0.005)、心臓(0.004)、カーカス(0.003)、血漿(0.003)
プロチオ コナゾール	150	雄	肝臓(0.017)、赤血球(0.005)、腎臓(0.004)、肺(0.002)、心臓 (0.002)、脾臓(0.002)、胃腸管(0.002)、血漿(0.001)
	mg/kg 体重 (単回)	雌	甲状腺(0.057)、副腎(0.008)、腎周囲脂肪(0.005)、卵巣(0.004)、 肝臓(0.004)、肺(0.004)、腎臓(0.003)、子宮(0.003)、 胃腸管(0.002)、赤血球(0.002)、カーカス(0.002)、脾臓(0.002)、 骨格筋(0.002)、血漿(0.0004)
標識体	投与量	性別	投与 48 時間後
	5 mg/kg 体重 (単回)	雄	肝臓(0.596)、胃腸管(0.425)、腎臓(0.050)、甲状腺(0.025)、 赤血球(0.012)、肺(0.012)、副腎(0.008)、血漿(0.007)
[phe-14C] プロチオ	2	雄	肝臓(0.605)、胃腸管(0.076)、腎臓(0.048)、肺(0.015)、 赤血球(0.014)、脾臓(0.006)、血漿(0.005)
コナゾール	mg/kg 体重 (反復)	雌	甲状腺(0.057)、胃腸管(0.043)、肝臓(0.030)、腎臓(0.018)、 副腎(0.007)、肺(0.006)、腎周囲脂肪(0.005)、卵巣(0.004)、 赤血球(0.004)、子宮(0.004)、カーカス(0.004)、脾臓(0.003)、 心臓(0.002)、血漿(0.002)

¹組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

.

③ 代謝

3 4

5

6 7 8

9 10

11 12

13 14

15 16

17

18 19

20

た尿、糞及び胆汁を用いて、代謝物同定・定量試験が実施された。

尿、糞及び胆汁中の代謝物は表3に示されている。

代謝物の組成には標識位置の違いによる明確な差異は認められなかった。尿、 糞及び胆汁から未変化のプロチオコナゾールを含む 18 成分が同定され、未変化 のプロチオコナゾール、代謝物 M03 又は M04 及び M17 が 10%TAR を超えて認 められた。

血中濃度推移検討試験[1.(1)①a.]及び胆汁中排泄試験[1.(1)④b.]で得られ

尿中では 10%TAR を超える代謝物は認められず、少量の代謝物として雌では 主に代謝物 M03 又は M04 が、雄では代謝物 M34 及び M35 が認められた。糞中 における主要成分は未変化のプロチオコナゾール及び代謝物 M17 であった。胆 汁中における主要成分はグルクロン酸抱合された代謝物 M03 及び M04 であった が、糞中では抱合化された代謝物はほとんど検出されなかった。

主要代謝経路は、①グルクロン酸抱合による代謝物 M03 又は M04 の生成、② 脱イオウによる代謝物 M17 の生成、③代謝物 M17 のフェニル基の酸化的水酸化 により生じる代謝物 M20、M21、M30 又は M31 とその後のグルクロン酸抱合に よる代謝物 M27、M32 の生成と考えられた。 (参照 1、2、90、95)

表3 尿、糞及び胆汁中の代謝物(%TAR)

標識体	投与条件	性別	試料	プロチオコ ナゾール	代謝物
			尿	_	M40(2.3)、M34(0.8)、M35(0.8)
	2	雄	糞	1.4	M21(5.3), M30(5.0), M31(3.6), M17(3.5), M20(1.4), M02(1.3), M09(0.4), M08(0.3),
	mg/kg 体重 (単回)		尿	0.5	M03 又は M04(4.5)、M34(1.4)、M40(0.8)、 M35(0.2)、M17(0.1)
[tri-14C]		雌	糞	21.1	M17(13.2)、M02(4.4)、M21(2.6)、M06(1.6)、 M09(1.5)、M31(1.2)、M30(1.1)M20(1.1)、 M08(0.6)
プロチオコナゾール	150 mg/kg 体重	雄	尿	0.04	M40(0.9)、M34(0.3)、M35(0.2)、M03 又は M04(0.1)、M17(0.02)
			糞	22.3	M17(13.5)、M02(7.7)、M09(2.6)、M21(2.4)、 M20(1.8)、M30(1.2)、M31(0.8)、M08(0.7)、 M06(0.4)
	(単回)		尿	1.0	M03 又は M04(7.7)、M34(0.6)
		雌	糞	19.4	M17(17.7)、M02(8.2)、M09(2.7)、M21(2.0)、 M20(1.8)、M31(1.2)、M30(0.9)
[phe-14C]	5	+#-	尿	_	M34(0.7)、M35(0.5)
プロチオ	mg/kg 体重	雄	糞	10.6	M17(6.7), M30(2.9), M21(2.3), M02(2.0),

コナゾール	(単回)				M31(2.0), M20(1.1), M06(0.7), M09(0.7), M08(0.4)
			尿	_	M34(0.5), M35(0.2)
	2 mg/kg 体重		粪	13.1	M21(5.5), M30(5.1), M17(3.7), M02(3.0), M31(2.7), M20(2.2), M06(1.0), M09(1.0), M08(0.5)
	(反復)		尿	0.9	M03 又は M04(3.9)、M34(1.0)
		雌	糞	9.9	M17(15.5)、M02(3.0)、M08(0.6)、M09(1.0)、 M20(1.4)、M21(3.6)、M30(4.5)、M31(1.8)、
[tri- ¹⁴ C] プロチオ コナゾール	2 mg/kg 体重 (単回)	雄	胆汁	4.6	M03 又は M04(45.5)、M27+M32+M38(9.5)、 M02(1.9)、M17(0.4)
[phe-14C] プロチオ コナゾール	2 mg/kg 体重 (単回)	雄	胆汁	3.4	M03 又は M04(46.6)、M27+M32+M38(7.9)、 M02(2.2)、M17(0.5)

-:検出されなかった。

4 排泄

a. 尿、糞及び呼気中排泄

血中濃度推移検討試験[1.(1)①a.]で得られた尿、糞及び呼気を用いて排泄試験が実施された。

尿及び糞中排泄率は表 4 に示されている。

性別、投与量及び投与回数によらず、放射能の回収率は $90\sim108\%$ TARであった。総排泄量は $90\sim100\%$ TARであり、投与放射能は、主に糞中に排泄された。 尿中排泄量は雌の方が雄より僅かに多かった。呼気への排泄はほとんど認められなかった(投与後48時間で0.06%TAR)。(参照1,2,90,95)

111213

1

2 3

4

56

7

8

9

10

表 4 尿及び糞中排泄率 (%TAR)

洒並 从	[tr	i- ¹⁴ C]プロチ	オコナゾー	[phe- ¹⁴ C]プロチオコナゾール				
標識体		(投与後)	168 時間)	(投与後 48 時間)				
投与量	2 mg/k	g 体重	150 mg/	/kg 体重	2 mg/kg 体重	5 mg/kg 体重		
仅分里	(単回) (単回) (単回)		(単回)	(反復)				
性別	雄	雌	雄	雌	雄	雄	雌	
尿	10.5	16.0	3.7	11.8	4.6	5.1	10.2	
糞	84.5	78.4	95.9	87.8	85.4	93.2	86.8	
総排泄量	95.0	94.4	99.6	99.6	90.0	98.3	97.0	

14 15

16

17

18

b. 胆汁中排泄

胆管カニューレを挿入した Wistar ラット(雄 8 匹)に $[tri^{-14}C]$ プロチオコナゾールを低用量で単回十二指腸内投与又は胆管カニューレを挿入した Wistar ラット(雄 20 匹)に $[phe^{-14}C]$ プロチオコナゾールを低用量で単回経口投与して、

胆汁中排泄試験が実施された。 1

胆汁、尿及び糞中排泄率は表5に示されている。

投与放射能の80~90%TARが胆汁から回収され、主に胆汁を介して糞中に排 泄されると考えられた。 (参照1、2、90、95)

5 6

2

3

4

表 5 胆汁、尿及び糞中排泄率(%TAR)

	[tri-¹⁴C]プロチオコナゾール	[phe-14C]プロチオコナゾール
標識体	(投与後 48 時間)	(投与後6時間)
胆汁	90.2	82.2
尿	2.0	1.2
糞	1.3	1.5
総排泄量	93.5	84.9

7 8

(2) ラット(ii)

10

9

11

12 13

14 15

16 17

18

19

20

Wistar ラット (雌雄各 9 匹) に[tri-14C]プロチオコナゾールを 4 mg/kg 体重で 単回経口投与し、定量的全身オートラジオグラフィーを用いて体内分布試験が実 施された。

主要組織における残留放射能濃度は表6に示されている。

雄では投与1時間後にほとんどの臓器及び組織で放射能濃度が最大となり、雌 では雄より吸収が遅延し、投与8時間後に最大となった。最高濃度は肝臓で認め られ、次いで腎臓(腎髄質又は腎皮質)及び脂肪(褐色脂肪又は腎周囲の脂肪) で高濃度の残留が認められた。甲状腺及び副腎における残留放射能濃度も比較的 高かった。いずれの臓器及び組織においても、放射能の消失は速やかであり、ほ とんどの臓器及び組織の投与 24 時間後における残留放射能濃度は最高濃度の 1/2 未満まで減少し、投与 168 時間後では定量限界に近く、最高濃度の約 10%未 満まで減少した。(参照1、3、90、95)

2122

表 6 主要組織における残留放射能濃度 (μg/g)

性別	雄:投与1時間後/雌:投与8時間後	投与 168 時間後
雄	肝臓(1.78)、腎髄質(0.64)、褐色脂肪(0.36)、腎皮質(0.3)、腎周囲脂肪(0.29)、副腎(0.27)、甲状腺(0.23)、膀胱(0.11)、血液(0.11)	肝臓(0.17)、腎髄質(0.02)、腎皮質(0.02)、 皮膚(0.01)、血液(0.01)
	肝臟(0.86)、膀胱(0.63)、甲状腺(0.29)、	甲状腺(0.02)、肝臓(0.01)、腎髄質(0.01)、
雌	褐色脂肪(0.25)、腎髄質(0.21)、副腎 (0.14)、腎周囲脂肪(0.13)、血液(0.13)	副腎(0.01)、腎皮質(0.01)、肺(0.01)、 皮膚(0.01)、血液(0.01)

23 24

25

26

(3) ラット(代謝物 M17)

Wistar ラット(雄 5 匹)に、[phe-14C]M17 を 1 mg/kg 体重で単回経口投与し、 動物体内運命試験が実施された。

① 吸収

a. 血中濃度推移

血漿中薬物動態学的パラメータは表7に示されている。

血漿中放射能濃度は投与後速やかに上昇し、投与 1.49 時間後に C_{max} に達した。 その後 時間程度その濃度を保ったことから、腸肝循環が示唆され、放射能の消失半減期は 44.3 時間と算出された。(参照 1、4、90、95)

表 7 血漿中薬物動態学的パラメータ

標識体	[phe-14C]M17
T _{max} (hr)	1.49
C _{max} (µg/mL)	0.052
$T_{1/2}$ (hr)	44.3
AUC (hr·μg/mL)	1.54

b. 吸収率

胆汁中排泄試験[1.(3) **4**b.] の胆汁及び尿中排泄率の合計から得られた吸収率は少なくとも 90.6%であった。(参照 1、4、90、95)

② 分布

排泄試験 [1. (3) ②a.] で得られた臓器・組織を用いて体内分布試験が実施された。また、Wistar ラット(雄 10 匹)に、 $[phe^{-14}C]M17$ を 5 mg/kg 体重で単回経口投与して、定量的全身オートラジオグラフィーを用いて体内分布試験が実施された。

1 mg/kg 体重投与群の投与 48 時間後の主要組織における残留放射能濃度は表8に示されている。

投与 48 時間後の動物体における放射能の残留量は約 5%TAR と少なかった。 肝臓で最も高濃度の放射能が検出され、次いで胃腸管、腎臓、赤血球、肺であった。それ以外の臓器及び組織における残留放射能濃度は 0.002~0.009 μg/g と低く、M17 の関連成分が臓器及び組織中に蓄積する可能性は示唆されなかった。 (参照 1、4、90、95)

表 8 主要組織における残留放射能濃度 (ug/g)

				•	
		投与 48	時間後		
肝臓(0.68)、	胃腸管(0.16)、	腎臓(0.06)、	赤血球(0.03)、	肺(0.01)、	血漿(0.01)

③ 代謝

胆汁中排泄試験[1.(3)(4)b.]で得られた胆汁を試料として、代謝物同定・定量

試験が実施された。 1

投与後48時間の胆汁中の代謝物は表9に示されている。

胆汁中に最も多く検出された代謝物は、M55及びM56と推定された。そのほ かに代謝物 M27、M38、M51、M52 及び M53 が検出された。

主要代謝経路は、①フェニル基の酸化的水酸化により生じる代謝物 M26 のグ ルクロン酸抱合による代謝物 M27 の生成、②フェニル基の水酸化による代謝物 M51 及び M55 の生成とそのグルクロン酸抱合による代謝物 M52 及び M56 の 生成と考えられた。(参照1、4、90、95)

9 10

8

2

3

4

5

6 7

表 9 投与後 48 時間における胆汁中の代謝物 (%TAR)

試料	プロチオコナ ゾール	代謝物			
胆汁	_	M55+M56a(14.5)、M53+M38(9.3)、 M51+M52(8.9)、M27(3.8)、M55+M56a(3.1)			

-:検出されなかった a: M55 及び M56 の立体異性体と推定された。

11 12

13

14

15

16 17

18

4 排泄

a. 尿、糞及び呼気中排泄

Wistar ラット (一群雄 5 匹) に、[phe-14C]M17 を 1 mg/kg 体重で単回経口投 与して、排泄試験及び呼気排泄試験が実施された。

投与後48時間における尿、糞及び呼気中排泄率は表10に示されている。

投与後48時間で投与放射能の大部分が尿及び糞中に排泄された。主に糞中に 排泄され、呼気中排泄はほとんど認められなかった。(参照1、4、90、95)

19 20 21

表 10 投与後 48 時間における尿、糞及び呼気中排泄率 (%TAR)

試料	排泄試験	呼気排泄試験
呼気		0.2
尿	11.2	9.8
糞	67.9	74.4
総排泄率	79.1	84.4

/:該当なし

22 23

24

25 26

27

28

b. 胆汁中排泄

胆管カニューレを挿入した Wistar ラット (雄 5 匹) に、[phe-14C]M17 を 5 mg/kg 体重で単回十二指腸内投与して、胆汁中排泄試験が実施された。

投与後48時間における胆汁、尿及び糞中排泄率は表11に示されている。

投与後48時間で85%TARが胆汁から回収され、主に胆汁を介して糞中に排泄 されると考えられた。 (参照1、4、90、95)

表 11 胆汁、尿及び糞中排泄率 (%TAR)

試料	[phe ⁻¹⁴ C]M17
胆汁	85.0
尿	5.6
糞	2.0
総排泄率	92.6

23

(4) ヤギ (ii)

4 5 6

巡乳ヤギ (Bunte Deutsche Edelziege 種、雌1頭) に、[phe-14C]プロチオコ ナゾールを 10 mg/kg 体重/日 (246 mg/kg 飼料相当) の用量で 1 日 1 回、24 時 間間隔で3回経口投与して、動物体内運命試験が実施された。

1回目の投与の0.25~24時間後に採血し、血中濃度推移について検討された。

やかに減少した。 $T_{1/2}$ は 5.3 時間で、投与 24 時間後には血漿中放射能濃度は 0.1

血漿中放射能濃度は投与 1 時間後に C_{max} (1.70 $\mu g/mL$) に達し、その後は速

1及び2回目投与8時間後の乳汁中放射能濃度は、それぞれ0.042及び0.071

ug/mL であったが、各投与の 24 時間後ではそれぞれ 0.02 及び 0.026 μg/mL に

減少した。したがって、プロチオコナゾール及び代謝物が乳汁中に蓄積する可能

と殺時(最終投与5時間後)の可食部(肝臓、腎臓、筋肉及び脂肪)では、腎

臓(6.76 µg/g)及び肝臓(6.09 µg/g)で残留放射能濃度が高かった。脂肪及び

筋肉中の残留放射能濃度は低く、それぞれ $0.15\sim0.17$ 及び $0.08\sim0.10$ $\mu g/g$ であ った。可食部における残留量は約1%TARと少なかったが、これは未排泄の放射

能の大部分が胃腸管に残存していたためと推察された。 (参照 1、5、90、95)

7 8

① 吸収

② 乳汁中濃度推移

9 10

11

12

13

14

15 16

17

18

19

20

2122 23

24

25 26

27

28 29

30

31

32

33

④ 乳汁及び可食部中の代謝物同定・定量

③ 可食部における残留量

乳汁及び可食部(肝臓、筋肉、腎臓及び脂肪)を試料として、代謝物同定・定 量試験が実施された。

乳汁及び可食部中の代謝物は表 12 に示されている。

μg/mL まで減少した。 (参照 1、5、90、95)

性はないと推察された。(参照1、5、90、95)

乳汁中では未変化のプロチオコナゾールを含め 12 成分が同定された。乳汁中 の主要成分は代謝物 M03 であった。肝臓、筋肉、腎臓及び脂肪中の代謝物の分 布は比較的類似し、主要成分は未変化のプロチオコナゾール及び代謝物 M03 で あった。ほかに肝臓では代謝物 M09、脂肪では代謝物 M17 が多く検出された。 (参照 1、5、90、95)

表 12 乳汁及び可食部中の代謝物 (%TRR)

試料	プロチオコ ナゾール	代謝物
乳汁	0.9	M03 ^a (12.0), M22+M32+M38(3.8), M17(2.8), M34(2.4), M09(2.1), M18(2.0), M14(2.0), M02(1.3)
肝臓	12.9	M09(11.2), M03a(10.0), M11(5.1), M35(5.0), M02(2.8), M10(2.4), M21(1.5), M32(1.5), M17(1.2)
筋肉	13.4	M03a(14.8), M11(5.4), M09(4.9), M17(3.0), M10(2.1), M02(1.1)
腎臓	18.0	M03a(34.3), M11(7.4), M10(4.0), M09(3.1), M02(2.6), M17(1.3)
脂肪	13.3	M17(19.0), M03a(10.1), M09(3.6), M11(3.2), M10(2.5), M02(0.8)

a:代謝物 M20 が<0.7~1.8%含まれると推定された。

⑤ 排泄

投与開始後からと殺時(最終投与 5 時間後)までに、66.6%TAR が尿、糞及び乳汁中に認められた。尿中排泄率は 42.4%TAR、糞中排泄率は 24.2%TAR であり、主に尿中に排泄された。乳汁中への移行率は極めて少なく、0.02%TAR であった。1及び2回目の投与後 24 時間以内に約 $16\sim17\%$ TAR(単回投与量の約 50%)が尿中に排泄されたことから、速やかな吸収及び排泄が示唆された。(参照 1、5、90、95)

(5) ヤギ([tri-14C]プロチオコナゾール)

泌乳ヤギ(Bunte Deutsche Edelziege 種、雌 1 頭)に、 $[tri^{-14}C]$ プロチオコナゾールを 10 mg/kg 体重/日(195 mg/kg 飼料相当)の用量で 1 日 1 回、24 時間間隔で 3 回経口投与して、動物体内運命試験が実施された。

① 吸収

1回目の投与の $0.25\sim24$ 時間後に採血し、血中濃度推移について検討された。 血漿中放射能濃度は投与0.5 時間後に C_{max} ($2.47~\mu g/mL$) に達し、その後は速やかに減少した。 T_{max} は0.57 時間、 C_{max} は $2.58~\mu g/mL$ 、 $T_{1/2}$ は7.7 時間と算出され、投与24 時間後には血漿中放射能濃度は $0.19~\mu g/mL$ まで減少した。(参照1、6、90、95)

② 乳汁中濃度推移

1 及び 2 回目投与 8 時間後の乳汁中放射能濃度は、それぞれ 0.127 及び 0.242 $\mu g/mL$ であったが、各投与の 24 時間後ではそれぞれ 0.080 及び 0.151 $\mu g/mL$ に減少した。したがって、プロチオコナゾール及び代謝物が乳汁中に蓄積する可

能性は低いと推察された。(参照1、6、90、95)

③ 可食部における残留量

と殺時(最終投与 5 時間後)の可食部(肝臓、腎臓、筋肉及び脂肪)では、肝臓 (6.25 μ g/g) 及び腎臓 (4.51 μ g/g) で残留放射能濃度が高かった。脂肪及び筋肉中の残留放射能濃度は低く、それぞれ $0.11\sim0.21$ 及び $0.12\sim0.14$ μ g/g であった。可食部における残留量は約 1%TAR と少なかったが、これは未排泄の放射能の大部分が胃腸管に残存していたためと推察された。(参照 1、6、90、95)

④ 乳汁及び可食部中の代謝物同定・定量

乳汁及び可食部(肝臓、筋肉、腎臓及び脂肪)を試料として、代謝物同定・定量試験が実施された。

乳汁及び可食部中の代謝物は表13に示されている。

乳汁中では未変化のプロチオコナゾールを含む 7 成分が同定された。乳汁中の主要成分は代謝物 M48 であった。肝臓、筋肉、腎臓及び脂肪中の代謝物の定性的分布は比較的類似し、共通の代謝物が検出された。主要成分は未変化のプロチオコナゾール、代謝物 M03 及び M11 であった。ほかに筋肉では代謝物 M48、脂肪では代謝物 M17 が多く検出された。(参照 1、6、90、95)

表 13 乳汁及び可食部中の代謝物 (%TRR)

試料	プロチオコ ナゾール	代謝物
乳汁	3.2	M48(41.1)、M03a(4.4)、M01(4.4)、M11(3.6)、M09(3.3)、M17(1.4)
肝臓	16.8	M09(11.0)、M54(6.5)、M03a(6.1)、M11(5.0)、M17(4.9)、M02(4.6)、 その他の代謝物の硫酸抱合体(3.9)、M21(2.9)、M48(2.0)、M06(0.6)
筋肉	7.2	M48(29.6)、M03a(13.6)、M11b(8.0)、M02+M09c(5.3)、M17(0.9)
腎臓	19.5	M03 ^a (33.9), M11 ^b (11.6), M48(9.0), M09(3.6), M02(3.4), M17(3.0)
脂肪	16.1	M17(15.1)、M48(12.4)、M03a(11.9)、M11(11.2)、M02+M09c(8.3)

a: 代謝物 M20 が少量含まれると推定された。

b: 代謝物 M10 及びその他のプロチオコナゾール水酸化体のグルクロニドと推定された。

c: 代謝物 M02 及び M09 の混合画分、両者が明確に分離されなかった。

ヤギにおけるプロチオコナゾールの主要代謝経路は、①グルクロン酸抱合による代謝物 M03 及び M02 の生成、②フェニル基の酸化的水酸化による代謝物 M09 等のプロチオコナゾールの水酸化体の生成とグルクロン酸抱合による代謝物 M11 の生成、③脱イオウによる代謝物 M17 の生成、④代謝物 M17 のフェニル基の酸化的水酸化による代謝物 M21 及び M31 の生成とグルクロン酸抱合による代謝物 M22 又は M32 の生成、⑤プロチオコナゾール又は代謝物 M21 のフェニル基の酸化による代謝物 M14 又は M55 の生成、⑥トリアゾール環の開裂による

代謝物 M48 (チオシアネート) の生成と推定された。

⑤ 排泄

投与開始後からと殺時(最終投与 5 時間後)までに、58.8%TAR が尿、糞及び乳汁中に認められた。尿中排泄率は 34.5%TAR、糞中排泄率は 24.2%TAR であり、主に尿中に排泄された。乳汁中への移行は極めて少なく、0.03%TAR であった。1 及び 2 回目の投与後 24 時間以内に約 $16\sim17\%$ TAR (単回投与量の約 50%)が尿中に排泄されたことから、速やかな吸収及び排泄が示唆された。 (参照 1、6、90、95)

(6) ヤギ (代謝物 M17)

泌乳ヤギ(Bunte Deutsche Edelziege 種、雌 1 頭) に、 $[phe^{-14}C]M17$ を 10 mg/kg 体重/日(195 mg/kg 飼料相当)の用量で 1 日 1 回、24 時間間隔で 3 回経口投与して、動物体内運命試験が実施された。

① 血中濃度推移

1回目の投与の $0.25\sim24$ 時間後に採血し、血中濃度推移について検討された。 血漿中放射能濃度は投与時間後に C_{max} ($2.0~\mu g/mL$)に達した後、速やかに 減少した($T_{1/2}:8.3$ 時間)。投与24時間後には血漿中放射能濃度は $0.144~\mu g/mL$ まで減少した。(参照1、7、90、95)

② 乳汁中濃度推移

1及び2回目投与8時間後の乳汁中放射能濃度は、それぞれ0.270及び0.282 $\mu g/mL$ であったが、各投与の24 時間後ではそれぞれ0.074 及び0.084 $\mu g/mL$ に減少した。したがって、未変化のM17 及びその関連成分が乳汁中に蓄積する可能性は低いと推察された。(参照1、7、90、95)

③ 可食部における残留量

と殺時(最終投与 5 時間後)の可食部(肝臓、腎臓、筋肉及び脂肪)では、肝臓(18.4 μ g/g)及び腎臓(19.0 μ g/g)で残留放射能濃度が高かった。脂肪及び筋肉中の残留放射能濃度は低く、それぞれ 0.22~0.24 及び 0.23~0.28 μ g/g であった。可食部における残留量は 1.9%TAR と少なかったが、これは未排泄の放射能の大部分が胃腸管に残存していたためと推察された。(参照 1、7、90、95)

④ 乳汁及び可食部中の代謝物同定・定量

乳汁及び可食部(肝臓、筋肉、腎臓及び脂肪)を試料として、代謝物同定・定量試験が実施された。

乳汁及び可食部中の代謝物は表14に示されている。

乳汁中から未変化の M17 は検出されなかった。乳汁中の主要成分は、代謝物 M59、M60 と M61 の混合物であった。ほかに代謝物 M55、M56 及び M18 も比較的多く検出された。

肝臓、筋肉、腎臓及び脂肪中の代謝物の定性的分布は比較的類似し、共通の代謝物が検出されたが、定量的分布は異なっていた。各試料中の主要成分は、肝臓では未変化の M17 及び代謝物 M21、腎臓では代謝物 M18 及び M55、筋肉中では代謝物 M55 及び M56、脂肪中では未変化の M17、代謝物 M55 及び M21 であった。(参照 1、7、90、95)

表 14 乳汁及び可食部中の代謝物 (%TRR)

試料	M17	代謝物
乳汁	_	M59+M60+M61(44.0)、M18(6.2)、M56(5.5)、M55(5.4)、 M38/M22(5.1)、M32+M57+M58(2.6)、M31(1.6)、M30(1.4)
肝臓	31.2	M21(8.4)、M55°(5.8)、M30°(4.8)、M38/M22(2.8)、 M32+M57+M58(2.7)、M31°(2.2)、M56(1.2)、M20(1.0)
腎臓	7.7	M18(24.1)、M55(21.0)、M38/M22(7.3)、M32+M57+M58(4.9)、M21(4.1)、M56(1.6)、M20(1.2)
筋肉	1.8	M55(20.9)、M56(10.8)、M32e(5.9)、M22(5.8)、M38(5.2)、M20(4.8)、M18d(3.6)、M21(3.0)、M30(2.8)、M31e(1.7)
脂肪	13.9	M55(22.9)、M21(14.6)、M31(5.4)、M32+M57+M58(5.3)、M22(4.7)、M56(4.3)、M18/M38(4.2)

- -:検出されず。
- a: 代謝物 M18 が含まれることが示唆された。
- b: 代謝物 M24 が含まれることが示唆された。
- c: 脱チオ-4,5-ジヒドロキシ-ジエンのグルクロニドも含まれることが示唆された。
- d: 代謝物 M32 及び M57 も含まれることが示唆された。
- e:代謝物 M20 が微量含まれることが示唆された。

⑤ 排泄

投与開始後からと殺時(最終投与 5 時間後)までに、73.9%TAR が尿、糞及び乳汁中に認められた。尿中排泄率は 53.1%TAR で、糞中排泄率は 20.7%TAR であり、主に尿中に排泄された。乳汁中への移行は極めて少なく、0.05%TAR であった。1 及び 2 回目の投与後 24 時間以内に約 $21\sim23\%$ TAR が尿中に排泄されたことから、速やかな吸収及び排泄が示唆された。(参照 1、7、90、95)

2. 植物体内運命試験

(1) 小麦①

春小麦(品種: Kadett)の種子に、 $[phe^{-14}C]$ プロチオコナゾールをアセトニトリルに溶解し、 $7.97~\mu g$ /種子(通常量)又は $39.9~\mu g$ /種子(5倍量)の用量で処理し、処理当日に播種し、処理57~日後に青刈り茎葉を、110~日後に飼料用茎葉を、処理153~日後に麦わら及び玄麦をそれぞれ採取して、植物体内運命試験が実施された。

種子処理後の小麦における残留放射能濃度及び代謝物は表 15 に示されている。 1 2 通常量処理区では、いずれの試料においても残留放射能濃度は 0.03 mg/kg 以 下と低かったため、詳細な分析は実施されなかった。5倍量処理区では、青刈り 3 茎葉、飼料用茎葉及び収穫期の麦わらの残留放射能(0.07~0.0280.28 mg/kg) 4 の 75~85%が抽出されたが、その約 50%が水相に留まり、有機溶媒に移行した 5 6 放射性成分のみの同定を行った。青刈り茎葉及び飼料用茎葉の抽出液からそれぞ 7 れ8成分、麦わらから10成分が同定された。いずれにおいても未変化のプロチ オコナゾールの残留量は少なく、主要代謝物は青刈り茎葉では代謝物 M20+M21 8 及び M17、飼料用茎葉では代謝物 M17、麦わらでは代謝物 M28 及び M17 であ 9 った。玄麦中の残留放射能量は少なかったため分析は実施されなかった。水溶性 10 画分の残留放射能の同定は実施されていないので全体の同定率は 33%以下であ 11 った。上路専門委員、與語専門委員修文 12 13

(参照 1、8、90、95)

表 15 種子処理後の小麦における残留放射能濃度及び代謝物 (%TRR)

処理区	試料	残留放射能濃度	プロチオコ	代謝物
处连区		(mg/kg) ナ	ナゾール	1人耐物
	青刈り茎葉	0.02		
通常量	飼料用茎葉	0.02		
地币里	麦わら	0.03		
	玄麦	0.008		
	青刈り茎葉	0.07	0.4	M20+M21(12.0)、M17(10.9)、 M05a(2.1)、M23(1.5)、M24(1.5)、 M08(1.3)、M07(0.6)
5倍量	飼料用茎葉	0.09	0.8	M17(6.4), M20+M21(3.8), M24(2.5), M23(1.8), M05a(1.5), M47(0.8), M07(0.2), M25(0.2)
	麦わら	0.28	0.6	M17 ^b (11.7), M28 ^a (10.6), M21(3.8), M24(3.3), M23(2.9), M20(2.4), M47(1.4), M25(0.8), M07(0.4)
	玄麦	0.01		

a:仮同定

b: 抱合体含む。

17 18

19

20

2122

23

2425

16

14

15

(2) 小麦②

春小麦(品種:Kadett)に、乳剤に調製した[phe-14C]プロチオコナゾールを 推奨使用量 (200 g ai/ha) の 10%過剰量 (220 g ai/ha) の用量で分けつ初期及 び開花期の2回散布処理し、2回目処理6日後に青刈り茎葉を、26日後に飼料用 茎葉を、処理 48 日後に麦わら及び玄麦をそれぞれ採取して、植物体内運命試験 が実施された。

散布処理後の小麦における残留放射能濃度及び代謝物は表 16 に示されている。

青刈り茎葉、飼料用茎葉及び麦わらから 13 成分が、玄麦からは 8 成分が同定された。いずれにおいても未変化のプロチオコナゾールの残留量は少なく、主要代謝物として M17 がいずれの部位からも 10%TRR を越えて検出された。ほかに代謝物 M08、M20、M21、M24 及び M28 が比較的多く検出されたが、いずれも 10%TRR 未満であった。玄麦中の残留放射能の約 40%の非抽出残留物をジアスターゼで処理して 14.7%が可溶化されたが、ジクロロメタン相には分配されなかった。(参照 1、9、90、95)

表 16 散布処理後の小麦における残留放射能濃度及び代謝物(%TRR)

試料	残留放射能濃度 (mg/kg)	プロチオコ ナゾール	代謝物
青刈り茎葉	10.5	3.3	M17(35.4), M28(8.6), M07(7.1), M08(6.9), M24(4.5), M05(2.5), M20(2.4), M21(1.2), M23(1.1), M26(0.1)
飼料用茎葉	8.9	2.6	M17°(20.7), M24(9.4), M20(8.5), M21(6.7), M08(5.1), M25(4.6), M07(3.3), M28(2.6), M23(1.2), M05(0.9), M47(0.7), M26(0.5)
麦わら	26.7	3.7	M17°(29.0), M07(8.4), M28(7.3), M08(6.1), M24(5.8), M20(2.9), M21(2.7), M25°(2.0), M47(1.8), M05(1.3), M23(1.2), M26(0.7)
玄麦	0.08	1.0	M17(15.9), M28(8.4), M24(2.8), M05(1.3), M08(1.3), M20+M21 ^b (1.1)

a: ベンジルプロピオジオールと明確に分離せず、個別の定量ができなかった。

(3) 小麦③

春小麦(品種: Butte)に、フロアブル剤に調製した[tri-14C]プロチオコナゾールを推奨使用量の1.4倍量に相当する量として合計470g ai/ha(1回目:178g ai/ha、2回目:292g ai/ha)の用量で分けつ初期及び開花期の2回処理し、2回目処理6日後に青刈り茎葉を、2回目処理26日後に飼料用茎葉を、2回目処理64日後に麦わら及び玄麦をそれぞれ採取して、植物体内運命試験が実施された。

散布処理後の小麦における残留放射能濃度及び代謝物は表 17 に示されている。 [phe-14C]プロチオコナゾール処理[2.(2)]と比べて著量多量の放射能が玄麦から検出された。 上路専門委員修文

青刈り茎葉、飼料用茎葉及び麦わらのいずれにおいても未変化のプロチオコナゾールの残留量は少なく、主要代謝物は M17、M41 又は M42 であった。玄麦では未変化のプロチオコナゾール及び代謝物 M17 は検出されず、主要代謝物として代謝物 M41 及び M43 が 10% TRR を越えて検出された。遊離のトリアゾールは作物のいずれの部位からも検出されなかった。(参照 1、10、90、95)

b: M20 と M21 の合量、明確に分離できなかった。

^{。:} 抱合体を含む。

表 17 散布処理後の小麦における残留放射能濃度及び代謝物 (%TRR)

試料	残留放射能濃度	プロチオコ	代謝物
	(mg/kg)	ナゾール	
青刈り茎葉	7.96	5.0	M17(18.8)、M41(12.0)、M28a(3.4)、M25(2.9)、M42(2.8)、M39a(2.2)、M26(2.0)、M08(2.0)、M32a(1.9)、M43(1.4)、M45(1.0)、M19/M12 の混合画分(0.7)、M42/M43 の混合画分(0.4)
飼料用茎葉	11.2	2.9	M41(24.8)、M17(11.8)、M42(7.6)、M24(6.8)、M28a(6.3)、M43(4.5)、M45(2.0)、M19/M12 の混合画分(2.0)、M42/M43 の混合画分(1.7)、複数成分 c(1.7)、M08(1.0)
麦わら	7.94	6.1	M17(8.8)、M42(7.7)、M24(6.2)、M26 ^b (5.5)、M28 ^{a,b} (5.0)、M43(4.6)、M41(4.0)、複数成分 ^c (2.2)、M45(2.1)、M25(2.1)、M44(1.6)、M42/M43 の混合画分(0.7)、M08(0.6)
玄麦	4.97	_	M41(71.1)、M43(19.0)、M42(0.4)

- -:検出されず。
- a: 複数の異性体を含む。
- b:酸加水分解抽出液から検出された M26 の量を M28 に加えた。
- 。: 熱水抽出画分に認められ、明確に分離できなかったプロチオコナゾール、代謝物 M08、M17、M25、M40、M41 及び M42 の総量。

(4) らっかせい①

らっかせい(品種: Georgia Green)に、乳剤に調製した $[phe^{-14}C]$ プロチオコナゾールを推奨使用量(812 g ai/ha)の10%過剰量(893 g ai/ha)の用量で、子房柄が土中に入り始めた時期から最初のさやが展開する頃までに、 $20\sim22$ 日間隔で計3回散布し、成熟期(最終処理21日後)に子実及び茎葉部を採取して、植物体内運命試験が実施された。

らっかせいにおける残留放射能濃度及び代謝物は表 18 に示されている。

茎葉部から未変化のプロチオコナゾールを含む 12 成分が同定された。茎葉部の主要代謝物は M17 及び M37 であり、ほかに代謝物 M15、M16 及び M20 も比較的多く検出された。子実では未変化のプロチオコナゾールは検出されず、約50% TRR が脂肪酸中に取り込まれた。子実における主要代謝物は M36 及び M37 であった。(参照 1、11、90、95)

表 18 らっかせいにおける残留放射能濃度及び代謝物 (%TRR)

試料	残留放射能濃度 (mg/kg)	プロチオコ ナゾール	代謝物
茎葉部	108	1.8	M17(28.2), M37(14.1), M15+M16(7.4), M20(7.3), M36(5.2), M05a(3.2), M07(2.1), M21(2.0), M08(1.6), M28a,b(1.2)
子実 (ヘキサン	0.30	_	脂肪酸(42.6)、M37(12.2)、M36(5.4)、 M28 ^{a,b} (3.4)、M07(1.5)

3

4

 $\frac{5}{6}$

7

1

1011

12

13 14

15 16

17

18 19

還流抽出)			
子実 (MSPD法)	0.29	_	脂肪酸(47.8)、M36(9.0)、M37(7.6)、 M28(1.0)

-:検出されず。

a:仮同定成分。

b:酸加水分解中に検出された脱チオ-ヒドロキシを含む。

 $\frac{1}{2}$

3

4

5

6 7

8

9

10

11

12

13

14

15

(5) らっかせい②

らっかせい(品種: Georgia Green)に、乳剤に調製した $[tri^{-14}C]$ プロチオコナゾールを、推奨使用量(812 g ai/ha)の 10%過剰量(893 g ai/ha)の用量で、子房柄が土中に入り始めた時期から最初のさやが展開する頃までに $20\sim22$ 日間隔で計 3 回散布し、成熟期(最終処理 14 日後)に子実及び茎葉部を採取して、植物体内運命試験が実施された。

らっかせいにおける残留放射能濃度及び代謝物は表19に示されている。

茎葉部から未変化のプロチオコナゾールを含む 18 成分が同定された。茎葉部の主要代謝物は M17 であり、ほかに代謝物 M20 も比較的多く検出された。子実では未変化のプロチオコナゾールは検出されず、主要代謝物として M41 及び M42 が 10%TRR を越えて検出された。遊離のトリアゾールは茎葉部及び子実からは検出されなかった。(参照 1、12、90、95)

161718

表 19 らっかせいにおける残留放射能濃度及び代謝物 (%TRR)

試料	残留放射能濃度 (mg/kg)	プロチオコ ナゾール	代謝物		
茎葉部	47.4	6.6	M17(23.6), M28a,b,c(7.6), M20(6.6), M29a,c(6.0), M05a(5.4), M37(4.2), M08(3.6), M21(3.0), M07(2.7), M39(1.7), M15+M16c(1.5), M45(1.5), M41(1.2), M43(0.7), M42(0.6), M44a(0.5)		
子実 (MSPD 法)	1.40	_	M41(47.8)、M42(24.5)、M17(6.2)、脂肪酸(3.0)、 M43(1.2)		

- -:検出されず。
- a:仮同定成分。
- b:酸加水分解中に検出された脱チオ-ヒドロキシを含む。
- c: 複数の異性体の合量。

222324

25

26

27

28

29

30

19

20

21

(6) てんさい①

てんさい(品種: Holly Hybrids)に、フロアブル剤に調製した[phe- 14 C]プロチオコナゾールを推奨使用量(単回推奨使用量: 200 g ai/ha)の 1.44 倍量(4回合計で 1,150 g ai/ha)の用量で収穫 49、35、21 及び 7 日前の計 4 回処理し、成熟期(最終処理 7 日後)に茎葉部及び根部を採取して、植物体内運命試験が実施された。

てんさいにおける残留放射能濃度及び代謝物は表 20 に示されている。

6

7

表 20 てんさいにおける残留放射能濃度及び代謝物 (%TRR)

茎葉部から未変化のプロチオコナゾールを含む8成分が同定された。茎葉部の

主要代謝物は M17 及び M36 であり、ほかに代謝物 M12 及び M13 が合量で

10%TRR 検出された。根部からは未変化のプロチオコナゾールは検出されず、2

種類の代謝物が検出された。根部の主要代謝物はM17(57.3%TRR)であった。

試料	残留放射能濃度 (mg/kg)	プロチオコ ナゾール	代謝物
茎葉部	4.33	7.5	M17(28.8)、M36a(10.5)、M12a(8.1)、 M28a(5.1)、M08(2.0)、M13a(1.9)、M24(1.6)
根部	0.12	_	M17(57.3), M08(2.5)

-:検出されず。

a: 仮同定成分、複数の異性体を含む。

(参照 1、13、90、95)

9 10 11

12 13

14

15 16

17

18

19

20

21

8

(7) てんさい②

てんさい(品種: Holly Hybrids)に、フロアブル剤に調製した[tri-14C]プロチ オコナゾールを推奨使用量(単回推奨使用量: 200 g ai/ha) の 1.45 倍量(4回 合計で 1,160 g ai/ha) の用量で収穫 49、35、21 及び 7 日前の計 4 回散布し、成 熟期(最終処理7日後)に茎葉部及び根部を採取して、植物体内運命試験が実施 された。

てんさいにおける残留放射能濃度及び代謝物は表 21 に示されている。

茎葉部から未変化のプロチオコナゾールを含む 13 成分が同定された。茎葉部 の主要代謝物は M17 及び M36 であり、ほかに代謝物 M12 及び M28 が比較的多 く検出された。根部からは未変化のプロチオコナゾールは検出されず、4種類の 代謝物が検出された。根部において代謝物 M17 及び M41 が 10%TRR を越えて 検出された。遊離のトリアゾールは検出されなかった。(参照1、14、90、95)

2223 24

表 21 てんさいにおける残留放射能濃度及び代謝物

試料	残留放射能濃度 (mg/kg)	プロチオコ ナゾール (%TRR)	代謝物(%TRR)
茎葉部	5.15	5.1	M17(19.2)、M36a,b(9.9)、M28a(6.5)、 M12a,b(6.1)、M45+M46(5.1)、M07(4.0)、 M42(4.0)、M44b(3.8)、M08(2.0)、M41(1.6)、 M26(1.2)
根部	0.13	_	M41(29.3), M17(25.5), M36 a,b(5.4), M08(1.5)

2526 -:検出されず。

a: 仮同定成分。

27

b: 複数の異性体を含む。

植物体内におけるプロチオコナゾールの主要代謝経路は、①イオウの酸化による代謝物 M07 の生成とその後のイオウの脱離による代謝物 M17 の生成、②代謝物 M17 のフェニル基の酸化的水酸化による代謝物 M20 又は M21 の生成と M28 の生成、③代謝物 M17 のクロロベンジルメチレンの水酸化による M24 の生成とその後のアセチル化による M25 の生成、④プロチオコナゾール又は代謝物 M17 のトリアゾールの脱離によるベンジルプロピルジオールの生成とその抱合体(代謝物 M47)及び M41 の生成、⑤代謝物 M41 の M42 又は M43 への変換と推定され、ほかに、らっかせいにおいては、代謝物 M07 のフェニル基の水酸化による代謝物 M15 及び M16 の生成並びにてんさいにおいては、代謝物 M36 の生成であると推定された。

3. 土壤中運命試験

(1) 好気的土壌中運命試験①

[phe- 14 C]プロチオコナゾールを、砂壌土 (ドイツ) 及びシルト質埴壌土 (米国) に、0.267 mg/kg 乾土となるように添加し、暗条件下、20Cで最長 $120 \text{ 日間イン キュベートして、好気的土壌中運命試験が実施された。$

好気的土壌における放射能分布は表 22 に示されている。

いずれの土壌においても、抽出放射能は経時的に減少した。それに伴い、未抽出残留物及び $^{14}\mathrm{CO}_2$ が増加した。未抽出残留物は処理 14 日後に最大(約 $41\sim45\%$ TAR)となった後、試験終了時には減少したことから、未抽出残留物も分解を受ける可能性が示唆された。

未変化のプロチオコナゾールは、処理直後の約82%TARから速やかに減少し、1日後には40%未満まで減少した。好気的土壌中における主要分解物はM17であった。分解物M17は未変化のプロチオコナゾールの減少に伴って速やかに増加し、処理3日後には最大約20~40%TARまで増加した。未変化のプロチオコナゾールは処理3日後以降も減少したが、分解物M17の量は増加しなかったことから、分解物M17も土壌中で徐々に分解を受けることが推定された。少量分解物としてM06、M07及びM08が同定された。これらの分解物も試験期間中のいずれかの時点まで増加後、120日後には減少した。

プロチオコナゾールの推定半減期は、砂壌土で 1.2 日、シルト質埴壌土で 21 日と算出された。 (参照 1、15、90、95)

表 22 好気的土壌における放射能分布 (%TAR)

土壌	砂均	É 土	シルト質埴壌土		
処理後日数(日)	1	120	1	120	
総抽出放射能	62.0	57.3	64.6	44.9	
プロチオコナゾール	15.2	3.1	38.8	10.5	
M06	3.8	1.7	3.4	1.5	

M07	_	3.0	_	3.8
M08	< 0.1	1.7	0.5	2.4
M17	38.6	42.3	15.0	18.5
M26	_	1.4	_	2.2
$^{14}\mathrm{CO}_2$	0.4	4.1	< 0.1	5.5
揮発性有機物	<0.1	<0.1	<0.1	<0.1
未抽出残留物	28.6	35.6	30.7	46.2

-:検出されず。

2 3

(2) 好気的土壌中運命試験②

[phe-¹⁴C]プロチオコナゾール又は[tri-¹⁴C]プロチオコナゾールを、シルト土壌 (ドイツ) 及び壌質砂土 (米国) に $0.267 \, \text{mg/kg}$ 乾土となるように添加し、暗条 件下、20%で最長 $365 \, \text{日間インキュベートして、好気的土壌中運命試験が実施された。$

好気的土壌における放射能分布は表 23 に示されている。

いずれの土壌においても、抽出放射能は経時的に減少し、それに伴って未抽出 残留物及び $^{14}CO_2$ が増加した。 $^{14}CO_2$ の生成量は、 $[phe^{-14}C]$ プロチオコナゾール 処理区の方が $[tri^{-14}C]$ プロチオコナゾール処理区より多かった。

未変化のプロチオコナゾールは、いずれの土壌でも処理直後の 73~96%TAR から速やかに減少し、1 日後にはシルト土壌で 10%TAR 未満まで、壌質砂土では約 50%TAR まで減少した。好気的土壌中における主要分解物は M17 及び M06であった。分解物 M17 は未変化のプロチオコナゾールの減少に伴って速やかに増加し、処理 7 日後にはシルト土壌で約 50%TAR、壌質砂土で約 30%TAR まで増加した。その後は徐々に分解を受け、処理 365 日後にはシルト土壌で 10%TAR 未満、壌質砂土で約 5%TAR 程度まで減少した。分解物 M06 はシルト土壌で処理 1 日後(11~13%TAR)、壌質砂土で処理 7 日後(14~15%TAR)に最大となったが、処理 365 日後には 10%TAR 未満まで減少した。少量分解物として M07 及び M08 も同定された。

プロチオコナゾールの推定半減期は、シルト土壌で約0.3日、壌質砂土で約1日と算出された。 (参照1、16、90、95)

表 23 好気的土壌における放射能分布 (%TAR)

土壌	シルト土壌				壌質砂土			
+ == ⇒\$\	[phe-14C]		[tri-14C]		[phe-14C]		[tri-14C]	
標識体	プロチオコナゾール		プロチオコナゾール		プロチオコナゾール		プロチオコナゾール	
処理後日数(日)	1	365	1	365	1	365	1	365
総抽出放射能	68.4	25.0	68.7	33.4	74.3	47.9	76.3	54.1
プロチオコナゾール	7.9	<2.0	9.0	5.9	46.3	2.3	52.1	4.6
M06	11.3	2.8	12.8	3.1	6.6	7.1	6.4	7.6

M07	_	3.1	_	3.3	_	<2.0	_	2.3
M08	_	<2.0		<2.0	_	< 2.0	_	< 2.0
M17	39.8	6.3	38.8	6.1	14.3	21.9	11.7	23.7
M20	<2.0	<2.0	<2.0	_	_	<2.0	_	<2.0
M23	<2.0	2.9	< 2.0	2.3	_	< 2.0	_	< 2.0
M40				_			_	< 2.0
M50	_	<2.0			_	<2.0		
$^{14}\mathrm{CO}_2$	0.2	17.9	< 0.1	5.3	0.1	6.1	< 0.1	0.7
揮発性有機物	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
未抽出残留物	28.2	47.3	30.3	56.4	20.6	38.2	22.1	42.8

- : 検出されず。

4. 水中運命試験

(1) 加水分解試験

[phe- 14 C]プロチオコナゾールを、pH 4(酢酸緩衝液)、pH 7(トリス緩衝液)及び pH 9(ホウ酸緩衝液)の各滅菌緩衝液に 4 mg/L となるように添加した後、暗条件下、25Cで 7 日間インキュベートして加水分解試験が実施された。

プロチオコナゾールは 7 日間の試験期間中ほとんど分解せず、いずれの pH でも試験終了時の残存量は 90%TAR 以上であり、加水分解に対して安定であった。 pH 4 の酢酸緩衝液では分解物 M17 が僅かに増加(処理 0 日で 2.2%TAR、処理 7 日後で 5.3%TAR)した。(参照 1、17、90、95)

(2) 水中光分解試験

pH 7 のリン酸緩衝液に、 $[phe^{-14}C]$ プロチオコナゾール又は $[tri^{-14}C]$ プロチオコナゾールを、4.5~mg/L となるように添加した後、 $25^{\circ}C$ で 18 日間キセノン光(平均光強度: $750~W/m^2$ 、波長: $300^{\circ}800~nm$)を照射して、水中光分解試験が実施された。

プロチオコナゾールは光照射で比較的速やかに分解し、照射 11 日後には 1%TAR 未満まで減少した。プロチオコナゾールの分解と共に分解物 M17 が増加し、照射 11 日後に最大($54\sim56\%$ TAR)となり、その量は試験終了時までほとんど変わらなかった。分解物 M49 も照射 11 日後に最大($10\sim13\%$ TAR)となり、その後減少した。ほかに $[tri^{-14}C]$ プロチオコナゾールに特有な分解物として、M40 が照射 18 日後に最大 11.9%TAR 検出された。いずれの標識体処理においても、少量の $^{14}CO_2$ ($0.5\sim3\%$ TAR)が生成された。

プロチオコナゾールの水中光分解における推定半減期は 47 時間と算出された。 (参照 、18、90、95)

5. 土壌残留試験

土壌残留試験については、参照した資料に記載がなかった。

6. 作物等残留試験

(1)作物残留試験

海外において、穀類等を用いて、プロチオコナゾール及び代謝物 M17 を分析対象化合物とした作物残留試験が実施された。なお、プロチオコナゾールを代謝物 M17 (脱チオ) に変換した後に分析しており、残留値を両成分の合量で示した。

結果は別紙 3 に示されている。プロチオコナゾール及び代謝物 M17 の合量の最大残留値は、最終散布 7 日後に収穫したブルーベリー(果実)の 1.07 mg/kg であった。(参照 1、19、90、91、95、96、97、98)

(2) 畜産物残留試験

① 乳牛①

泌乳牛 10 頭(ホルスタイン種、試験群各 3 頭、対照群 1 頭)に、プロチオコナゾールを 9.9 mg/kg 飼料 (0.5 倍量)、29.5 mg/kg 飼料 (1.5 倍量)及び 98.4 mg/kg 飼料 (5 倍量)に相当する用量で、1 日 1 回、28 日間カプセル経口投与し、投与開始 0、4、8、12、16、18、20、22、24、26 及び 28 日後に乳汁を、と殺時に筋肉、脂肪、肝臓及び腎臓を採取して、プロチオコナゾール、代謝物 M09 及び M17 を分析対象化合物とした畜産物残留試験が実施された。

結果は別紙4①に示されている。

【與語専門委員より】

別紙 4①と投与量が異なっている。

【事務局より】

再度報告書を確認し、別紙 4①の投与量を修正しました。

乳汁中においては、プロチオコナゾール、代謝物 M09 及び M17 の合量は投与 1 週間で定常状態となり、98.4 mg/kg 飼料投与群の乳汁中にプロチオコナゾールが $0.0029\sim0.0061~\mu$ g/g、代謝物 M09 及び M17 が検出限界未満($0.003~\mu$ g/g 未満及び $0.001~\mu$ g/g 未満)であった。29.5 mg/kg 飼料投与群では、プロチオコナゾールが検出限界未満($0.001~\mu$ g/g 未満) $\sim0.0026~\mu$ g/g、M09 及び M17 が検出限界未満($0.003~\mu$ g/g 未満及び $0.001~\mu$ g/g 未満)であった。

臓器及び組織における残留放射能濃度は、98.4 mg/kg 飼料投与群において、プロチオコナゾールは最大 $0.790~\mu g/g$ (腎臓)、 $M09~が最大 <math>0.518~\mu g/g$ (肝臓)及び $M17~が最大 <math>0.0297~\mu g/g$ (肝臓)認められた。29.5 mg/kg 飼料投与群において、プロチオコナゾールは最大で $0.176~\mu g/g$ (腎臓)、M09~は最大で <math>0.181~m g/g (肝臓)及び $M17~は最大で <math>0.0113~\mu g/g$ (肝臓)認められた。9.9 mg/kg 飼料投与群において、プロチオコナゾールは最大 0.0631 (肝臓)、 $M09~は最大で <math>0.0539~\mu g/g$ (肝臓)及び $M17~は最大で <math>0.007~\mu g/g$ (肝臓)認められた。(参照 1.20、90、95)

2 乳牛2

巡乳牛 10 頭(ホルスタイン種、試験群各 3 頭、対照群 1 頭)に代謝物 M17 を 45.1 mg/kg 飼料(1.3 倍量)、2925 mg/kg 飼料(7.3 倍量)及び 125100 mg/kg 飼料(31 倍量)に相当する用量で、1 日 1 回、28 日間カプセル経口投与し、投与開始 3、5、7、10、12、14、17、19、21、24、26、27 及び 28 日後に乳汁を採取し、最終投与 $15\sim17$ 時間後にと殺して、筋肉、脂肪、肝臓及び腎臓を採取し、代謝物 M17、M20 及び M21 を分析対象化合物とした畜産物残留試験が実施された。

結果は別紙4②に示されている。

【與語専門委員より】

別紙 4②の投与量と本文の投与量が異なっている。

【事務局より】

再度報告書を確認し、投与量を修正しました。

乳汁中の代謝物 M17、代謝物 M20 及び代謝物 M21 の合量は 45.1 及び 2925 mg/kg 飼料投与群において定量限界(0.004 μ g/g)未満であり、125100 mg/kg 飼料投与群においては投与開始 1 週で定常状態となり、試験期間を通じて残留量は僅か($0.008\sim0.012$ μ g/g)であった。

臓器及び組織における残留放射能濃度は、 $\underline{125100}$ mg/kg 飼料投与群においては、代謝物 M17 が最大で 1.19 μ g/g(肝臓)、代謝物 M20 が 0.477 μ g/g(腎臓)及び代謝物 M21 が最大 0.383 μ g/g(腎臓)認められた。 $\underline{2925}$ mg/kg 飼料投与群において、代謝物 M17 が最大 0.178 μ g/g(肝臓)、代謝物 M20 が 0.0635 μ g/g(腎臓)及び代謝物 M21 が最大 0.0853 μ g/g(腎臓)認められた。 $\underline{5.14}$ mg/kg 飼料投与群では、代謝物 M17 が最大 0.0303 μ g/g(肝臓)、代謝物 M20 が 0.0132 μ g/g(肝臓)及び代謝物 M21 が最大で 0.0192 μ g/g(腎臓)認められた。(参照 1、21、90、95)

7. 原体を用いた毒性試験

(1) 一般薬理試験

一般薬理試験については、参照した資料に記載がなかった。

(2) 急性毒性試験

① 急性毒性試験

プロチオコナゾール原体を用いた急性毒性試験が実施された。結果は表 24 に示されている。 (参照 1、22~24、90、95)

表 24 急性毒性試験結果概要 (原体)

投与	動物種	LD ₅₀ (mg	g/kg 体重)	投与量(mg/kg 体重)
経路	性別・匹数	雄	雌	及び観察された症状
経口*	Wistar ラット 雌雄各 3 匹	>5,000	>5,000	雌雄:5,000 5,000 mg/kg 体重:下痢、活動性低下 死亡例なし
経皮	Wistar ラット 雌雄各 5 匹	>2,000	>2,000	雌雄: 2,000 2,000 mg/kg 体重:皮膚発赤、痂皮(雌) 死亡例なし
		LC_{50} (mg/L)	暴露量:4.99 mg/L
吸入	Wistar ラット 雌雄各 5 匹	>4.99	>4.99	粗毛、立毛、呼吸緩徐、努力性呼吸、 鼻汁、活動性低下 死亡例なし

*:溶媒として 2%CremophorEL 水溶液を用いた。

② 急性神経毒性試験

Wistar ラット (一群雌雄各 12 匹) を用いた強制経口 (原体:0、200、750 及び 2,000 mg/kg 体重、溶媒:0.5%MC+0.4%Tween80 水溶液) 投与による急性神経毒性試験が実施された。一般状態及び FOB において、750 mg/kg 体重以上投与群の雌雄において、軟便とそれに関連したと思われる肛門周囲の汚れが認められた。また、750 mg/kg 体重以上投与群の雄及び 2,000 mg/kg 体重投与群の雌において、自発運動量及び移動運動量の減少が認められた。

死亡率、体重変化、剖検及び病理組織学的検査(神経組織)においては、検体 投与の影響は認められなかった。

本試験において、750 mg/kg 体重以上投与群の雄で自発運動量低下等、雌で軟便及び肛門周囲の汚れが認められたので、無毒性量は雌雄とも 200 mg/kg 体重であると考えられた。急性神経毒性は認められなかった。(参照 1、25、90、95)

(3)眼・皮膚に対する刺激性及び皮膚感作性試験

ヒマラヤウサギ (一群雄 3 匹)を用いた眼及び皮膚刺激性試験が実施された。 眼及び皮膚に対する刺激性は認められなかった。 (参照 26、27)

DH モルモットを用いた皮膚感作性試験(Maximization 法)が実施され、陰性であった。(参照 1、28、90、95)

(4) 亜急性毒性試験

① 90日間亜急性毒性試験(ラット)

Wistar ラット(一群雌雄各 10 匹)を用いた強制経口(原体:0、20、100 及び 500 mg/kg 体重/日、溶媒:0.5%Tyrose 水溶液)投与による 90 日間亜急性毒性試験が実施された。0 及び 500 mg/kg 体重/日投与群については別途回復群を設け、4 週間の回復期間を設定した。また、各群雌雄各 5 匹を衛星群とし、投与開始 4 週後に免疫学的検査が行われた。

各投与群で認められた毒性所見は表 25 に示されている。

肝薬物代謝酵素の測定において、500 mg/kg 体重/日投与群の雄で EH 及び UDP-GT、同投与群の雌で EH の増加が認められた。

本試験において、500 mg/kg 体重/日投与群の雄で肝細胞細胞質好酸性化、小葉中心性肝細胞肥大等、雌で肝絶対及び比重量²増加等が認められたので、無毒性量は雌雄とも100 mg/kg 体重/日であると考えられた。(参照1、25、90、95)

表 25 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
500 mg/kg 体重/日	・飲水量増加(投与1週以降) ・T.Chol 増加 ・尿中蛋白濃度増加 ・脾絶対及び比重量減少 ・肝細胞細胞質好酸性化、小葉中 心性肝細胞肥大 ・腎好塩基性尿細管(増悪化)	・飲水量増加(投与1週以降) ・T.Chol 増加、TG減少 ・尿中蛋白濃度増加 ・肝絶対及び比重量増加 ・肝絶対及び比重量増加 ・肝細胞細胞質好酸性化、小葉中 心性肝細胞肥大
100 mg/kg 体重/日 以下	毒性所見なし	毒性所見なし

② 90 日間亜急性毒性試験(マウス)

ICR マウス(一群雌雄各 10 匹)を用いた強制経口(原体:0、25、100 及び 400 mg/kg 体重/日、溶媒:0.5%Tyrose 水溶液)投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表 26 に示されている。

肝薬物代謝酵素測定において、400 mg/kg 体重/日投与群の雌で UDP-GT の増加、100 mg/kg 体重/日以上投与群の雄で ECOD、EROD 及び EH の増加、25 mg/kg 体重/日以上投与群の雌において、ECOD、EROD、ALD 及び GST の増加が認められた。

本試験において、100 mg/kg 体重/日以上投与群の雌雄で小葉中心性肝細胞肥大、肝細胞細胞質好酸性化等が認められたので、無毒性量は雌雄とも 25 mg/kg 体重/日であると考えられた。 (参照 1、30、90、95)

² 体重比重量を比重量という(以下同じ。)。

表 26 90 日間亜急性毒性試験(マウス)で認められた毒性所見

投与群	雄	雌
400 mg/kg 体重/日	・TP 及び Alb 減少 ・肝絶対重量増加 ・肝細胞空胞化、肝細胞限局性壊死	・T.Chol 増加 ・肝絶対重量増加 ・肝細胞空胞化、肝細胞限局性 壊死、門脈周囲性肝細胞脂肪化
100 mg/kg 体重/日 以上	・肝比重量増加・肝細胞質細胞質好酸性化、小葉中心性肝細胞肥大、小葉中心性肝細胞脂肪化	・肝比重量増加・肝細胞細胞質好酸性化、小葉中心性肝細胞肥大
25 mg/kg 体重/日	毒性所見なし	毒性所見なし

③ 90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた強制経口(原体:0、25、100 及び 300 mg/kg 体重/日、5 日/週、溶媒:0.5%MC+0.4%Tween80 水溶液)投与による 90 日間亜急性毒性試験が実施された。なお、0 及び 300 mg/kg 体重/日投与群はさらに雌雄各 4 匹を回復群とし、90 日間投与した後、8 週間の休薬期間が設けられた。

各投与群で認められた毒性所見は表 27 に示されている。

100 mg/kg 体重/日投与群の雌で肝 EH の増加が認められた。

病理組織学的検査において、100 mg/kg 体重/日以上投与群及び回復群に認められた腎臓の病変は、腎皮質、時に髄質にかけて限局性から多発性の間質の線維化を伴う慢性的な炎症像を示した。多くの病巣には炎症性細胞浸潤がみられ、隣接する尿細管に時として代償性と考えられる過形成様の変化を呈した。被膜に隣接する病巣にはのう胞が観察された。

回復群においては、主群で認められたほとんどの変化は回復したが、腎臓の<u>病</u> 理組織学的変化形態学的変化については回復が認められなかった(のう胞:雄1 例、間質性腎炎:雄2例、雌1例)。西川専門委員修文

本試験において、100 mg/kg 体重/日以上投与群の雌雄で間質性腎炎(急性及び慢性)等が認められたので、無毒性量は雌雄とも 25 mg/kg 体重/日であると考えられた。(参照 1、31、90、95)

表 27 90 日間亜急性毒性試験 (イヌ) で認められた毒性所見

投与群	雄	雌
300 mg/kg 体重/日	・ALT 及び GGT 増加	・ALT、ALP 及び GGT 増加
	・T ₄ 減少	・T ₄ 減少
	肝及び腎比重量増加	・肝、腎及び胸腺比重量増加
	・腎のう胞 (皮質) 、腎尿細管上皮	
	変性(上皮細胞肥大及び核濃縮を	
	伴う融解)	
100 mg/kg 体重/日	・ALP 増加	・間質性腎炎 (急性及び慢性)

以上	・間質性腎炎 (急性及び慢性)	
25 mg/kg 体重/日	毒性所見なし	毒性所見なし

3

4

5

6

7

8

9

④ 90 日間亜急性神経毒性試験 (ラット)

Wistar ラット (一群雌雄各 12 匹) を用いた強制経口 (原体:0、100、500 及び1,000 mg/kg 体重/日、5日/週、溶媒:0.5%MC+0.4%Tween80 水溶液) 投与による 90 日間亜急性神経毒性試験が実施された

各投与群で認められた毒性所見は表 28 に示されている。

本試験において、500 mg/kg 体重/日以上投与群の雌雄で尿による被毛の汚れ等が認められたので、無毒性量は雌雄とも 100 mg/kg 体重/日であると考えられた。 亜急性神経毒性は認められなかった。(参照 1、32、90、95)

10 11

表 28 90 日間亜急性神経毒性試験(ラット)で認められた毒性所見

投与群	雄	雌
1,000 mg/kg 体重/日	・口腔周囲着色 [§]	・口腔周囲着色 [§]
	(投与 25 日以降)	(投与74日以降)
	自発運動量及び移動運動量減少	・自発運動量(投与4週)及び移動
	(いずれも投与4週)	運動量減少(投与4週及び13週)
500 mg/kg 体重/日	・尿による被毛の汚れ(投与 18	・尿による被毛の汚れ(投与25日
以上	日以降)	以降)
	・体重増加抑制 [§] (投与7日以降)	
100 mg/kg 体重/日	毒性所見なし	毒性所見なし

^{§:}有意差はないが、検体投与の影響と考えられた。

1213

14

1516

17

18

19

⑤ 28 日間亜急性経皮毒性試験 (ラット)

Wistar ラット(一群雌雄各 10 匹)を用いた経皮[原体:0、100、300 及び 1,000 mg/kg 体重/日、6 時間/日、5 日/週(投与 3 週後まで)及び 7 日/週(投与第 4 週)] 投与による 90 日間亜急性神経毒性試験が実施された。

いずれの検査項目においても検体投与の影響は認められなかったことから、本試験における無毒性量は、雌雄とも本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。(参照 1、33、90、95)

202122

23

24

2526

27

28

29

(5) 慢性毒性試験及び発がん性試験

① 1年間慢性毒性試験(ラット)

Wistar ラット(一群雌雄各 20 匹)を用いた強制経口(原体:0、5、50 及び 750 mg/kg 体重/日、7日/週、溶媒:0.5%Tyrose 水溶液)投与による 1 年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表 29 に示されている。

本試験において、750 mg/kg 体重/日投与群の雌雄で体重増加抑制、肝細胞細胞質好酸性化等が認められたので、無毒性量は雌雄とも50 mg/kg 体重/日である

と考えられた。(参照1、34、90、95)

表 29 1年間慢性毒性試験(ラット)で認められた毒性所見

投与群	雄	雌
750 mg/kg 体重/日	 ・排尿行動増加(投与11週以降)、流涎(投与13週以降) ・体重増加抑制(投与13週以降) ・飲水量増加(投与1週以降) ・Hb減少 ・ALP、T.Bil、T.Chol、BUN及びCre増加、TP及びAlb減少、T4減少 ・尿量増加、尿比重、尿中蛋白濃度、尿pH減少及び尿沈渣内黄褐色球状結晶物 ・肝及び腎比重量増加 ・肝和胞細胞質好酸性化 ・慢性腎症増悪化 ・膀胱上皮過形成及び限局性炎症性細胞浸潤 	・排尿行動増加(投与 11 週以降)、流涎(投与 32 週以降) ・体重増加抑制(投与 24 週以降) ・飲水量増加(投与 1 週以降) ・ALP、T.Bil、T.Chol、BUN 及び Cre 増加、Glu 及び T4減少 ・尿量増加、尿 pH 減少及び尿沈渣 内黄褐色球状結晶物 ・肝絶対及び比重量増加、腎比重量 増加 ・肝細胞細胞質好酸性化 ・慢性腎症増悪化 ・膀胱上皮過形成及び限局性炎症性 細胞浸潤
50 mg/kg 体重/日 以下	毒性所見なし	毒性所見なし

4

5

② 1年間慢性毒性試験(イヌ)

6 7

8

9

10

11

体重/日、5日/週、溶媒:0.5%MC+0.4%Tween80 水溶液)投与による 1年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表30に示されている。

本試験において、40 mg/kg 体重/日以上投与群の雄で体重増加抑制、腎慢性炎症等、雌で腎結晶様物質沈着等が認められたので、無毒性量は雌雄とも5 mg/kg 体重/日であると考えられた。(参照1、35、90、95)

121314

表 30 1年間慢性毒性試験(イヌ)で認められた毒性所見

ビーグル犬(一群雌雄各 4 匹)を用いた強制経口(原体:0、5、40 及び 125 mg/kg

投与群	雄	雌	
125 mg/kg 体重/日	・AST 及び Cre 増加 ・肝比重量増加 ・腎結晶様物質沈着(炎症部位) ・肝色素沈着(鉄及び胆汁色素由 来) 肝クッパー細胞色素沈着(鉄	・体重増加抑制(投与1~52週)・肝及び腎比重量増加・腎慢性炎症・肝色素沈着(鉄及び胆汁色素由来)肝クッパー細胞色素沈着(鉄由来)	
40 mg/kg 体重/日 以上	由来) ・体重増加抑制(投与 1~52 週) ・ALP 増加 ・腎慢性炎症	・腎結晶様物質沈着(炎症部位) ・ALP 増加	
5 mg/kg 体重/日	毒性所見なし	毒性所見なし	

③ 2年間発がん性試験(ラット)

3 4 5

6

7

8 9

10 11

12 13

14

15 16

17

18 19

20

21

2223

24

2526

27

Wistar ラット(一群雌雄各 50 匹)を用いた強制経口(原体:0、5、50 及び 750 mg/kg 体重/日、7日/週、溶媒: 0.5%Tyrose 水溶液) 投与による 2 年間発が ん性試験が実施された。750 mg/kg 体重/日投与群については、試験途中で毒性 が強く現れたことから、雄では投与84週時から500 mg/kg体重/日、雌では投与 56 週時から 625 mg/kg 体重/日に用量が下げられた。

各投与群で認められた毒性所見は表 31 に示されている。

眼科学的検査において、750/625 mg/kg 体重/日投与群の雌で水晶体水性裂の発 生頻度が増加し、雄においても有意差はないものの増加傾向が認められた。この 変化は、白内障の前兆と考えられる変化であり、ラットの加齢に伴って発現しや すいことが知られているため、検体による特異的な毒性変化ではなく、同群に生 じている全身的な毒性影響の二次的な変化と考えられた。

病理組織学的検査において、750/500 mg/kg 体重/日投与群の雄及び 750/625 mg/kg 体重/日投与群の雌で、膀胱の移行上皮細胞過形成が認められた。この病 変には炎症を伴う例が認められ、これは尿沈渣で観察された黄褐色の球状の結晶 物に起因した刺激又は擦過に関連した変化の可能性が示唆された。

750/500 mg/kg 体重/日投与群の雄では、鼻腔の炎症、肺の誤嚥性炎症、膵臓の 血管周囲炎/動脈炎、精巣の精細管萎縮、精巣上体の乏精子症、前立腺萎縮の発生 頻度が増加したが、これらは途中死亡例で多くみられており、全身状態の悪化に 伴った変化と考えられた。

腫瘍性病変の発生頻度に検体投与の影響は認められなかった。

本試験において、50 mg/kg 体重/日以上投与群の雄で小葉中心性肝細胞肥大等、 雌で ALP 増加等が認められたので、無毒性量は雌雄とも 5 mg/kg 体重/日である と考えられた。発がん性は認められなかった。 (参照1、36、90、95)

表 31 2年間発がん性試験(ラット)で認められた毒性所見

投与群	雄	雌
750/500(雄)、	・死亡率増加(18か月以降)	・死亡率増加(12~18 か月)
750/625(雌)	・蒼白(投与 54 週以降)、削痩(投	・蒼白(投与39週以降)、削痩(投
mg/kg 体重/日	与 4 週以降)、鼻口部血液付着	与 11 週以降)、鼻口部血液付着
	(投与 57 週以降) 及び一般状態	(投与 35 週以降)、一般状態悪
	悪化(投与4週以降)	化(投与 26 週以降)及び排尿行
	・体重増加抑制(投与 1、2 週及び	動増加(投与 11 週以降)
	11 週以降)	・体重増加抑制(投与3週、29週
	飲水量増加(投与1週以降)	以降)
	・RBC、Hb 及び Ht 減少、WBC	飲水量増加(投与1週以降)
	及び Neu 増加	・RBC、Hb 及び Ht 減少、WBC 及
	・ALP 及び T.Bil 増加、BUN 及び	び Neu 増加
	Cre 増加、Glu、TP 及び Alb 減	・T.Bil 増加及びカルシウム増加

50 mg/kg 体重/日 以上	少、T.Chol 増加、カルシウム及び無機リン増加 ・尿量及び尿蛋白量増加、尿比重及び尿蛋白量増加、尿比重及び尿質性調力。 ・尿沈渣内黄褐色球状結晶物・肝比重量増加及び腎比重量増加・変異肝細胞巣(好酸性細胞)・膀胱移行上皮細胞過形成・上皮小体び漫性過形成・上皮小体び漫性過形成・排尿行動増加(投与11週以降)・小葉中心性肝細胞肥大(好酸性化を伴う)・慢性腎症増悪化・T4低下	・尿量増加及び尿比重減少 ・尿沈渣内黄褐色球状結晶物 ・肝絶対及び比重量増加、腎比重量 増加 ・小葉中心性肝細胞肥大(好酸性化 を伴う)、変異肝細胞巣(好酸性 細胞) ・慢性腎症増悪化 ・膀胱移行上皮細胞過形成 ・ALP 増加 ・T4 低下
5 mg/kg 体重/日	毒性所見なし	毒性所見なし

④ 18 か月間発がん性試験(マウス)

ICR マウス (一群雌雄各 60 匹) を用いた強制経口 (原体:0、10、70 及び 500 mg/kg 体重/日、7 日/週、溶媒:0.5%Tyrose 水溶液) 投与による 18 か月間発がん性試験が実施された。

各投与群で認められた毒性所見は表 32 に示されている。

腫瘍性病変の発生頻度に検体投与の影響は認められなかった。

本試験において、70 mg/kg 体重/日以上投与群の雌雄で体重増加抑制等が認められたので、無毒性量は雌雄とも 10 mg/kg 体重/日であると考えられた。発がん性は認められなかった。(参照 1、37、90、95)

表 32 18 か月間発がん性試験(マウス)で認められた毒性所見

投与群	雄	雌
500 mg/kg 体重/日	・被膜下尿細管変性(間質線維化 を伴う)	・肝絶対重量増加・小葉中心性肝細胞肥大(好酸性化を伴う)・腎尿細管変性/再生、被膜下尿細管変性(間質線維化を伴う)
70 mg/kg 体重/日 以上	・体重増加抑制 ¹⁾ ・肝絶対及び比重量増加 ・小葉中心性肝細胞肥大(好酸性 化を伴う) ・腎尿細管変性/再生	・体重増加抑制 ²⁾ ・肝比重量増加
10 mg/kg 体重/日	毒性所見なし	毒性所見なし

 $^{2)}$: 70 mg/kg 体重/日投与群では投与 6 週以降、500 mg/kg 体重/日投与群では投与 4 週以降に認められた。

 $^{^{1)}}$: 70 mg/kg 体重/日投与群では投与 10 週以降、 500 mg/kg 体重/日投与群では投与 6 週以降に認められた。

(6) 生殖発生毒性試験

① 2世代繁殖試験(ラット)

Wistar Hannover ラット (Crl:WI(HAN)BR、一群雌雄各 30 匹) を用いた強制経口 (原体:0、10、100 及び 750 mg/kg 体重/日、溶媒:0.5%MC+0.4%Tween80水溶液) 投与による 2 世代繁殖試験が実施された。

各投与群で認められた毒性所見は表33に示されている。

本試験において、親動物では 100 mg/kg 体重/日以上投与群の雄で肝絶対及び 比重量増加又は体重増加抑制が、750 mg/kg 体重/日投与群の雌で着床数減少、 体重増加抑制等、児動物では 750 mg/kg 体重/日投与群の雌雄で体重増加抑制等 が認められたので、無毒性量は親動物の雄で 10 mg/kg 体重/日、雌で 100 mg/kg 体重/日、児動物は雌雄とも 100 mg/kg 体重/日であると考えられた。(参照 1、 38、90、95)

1314

1

2 3

4

5

6 7

8

9

10

表 33 2世代繁殖試験(ラット)で認められた毒性所見

:	表 33 2 世代繁雅試験(フット)で認められた毒性所見				
	投与群	親:P、児:F ₁		親:F ₁ 、	児:F ₂
	 	雄	雌	雄	雌
親動物	750 mg/kg 体重/日	 ・流延(投与4 週次(投与4 週次(投) 一次(投) 中域(投) 中域(投)<!--</td--><td>・流以 (投 多 3 週 れ (投 を 4 次 後 9 3 週 れ (投 を 5 3 週 制) ・体 振期間) ・肝 量 増 細 股 加</td><td> ・流涎、被毛汚れ ・肝比重量増加 ・腎比重量増加 ・肝細胞肥大 ・腎好塩基性 尿細管 </td><td>・流・体重増加 ・振動 ・振動間 ・振動間 ・摂動間 ・野川 ・野川 ・肝神野神 ・肝神野神 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田</td>	・流以 (投 多 3 週 れ (投 を 4 次 後 9 3 週 れ (投 を 5 3 週 制) ・体 振期間) ・肝 量 増 細 股 加	 ・流涎、被毛汚れ ・肝比重量増加 ・腎比重量増加 ・肝細胞肥大 ・腎好塩基性 尿細管 	・流・体重増加 ・振動 ・振動間 ・振動間 ・摂動間 ・野川 ・野川 ・肝神野神 ・肝神野神 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田 ・野田
	100 mg/kg 体重/日以上 10 mg/kg 体重/日	・肝絶対及び比重 量増加 毒性所見なし	100 mg/kg 体重/日 以下 毒性所見なし	・体重増加抑制	100 mg/kg 体重/ 日以下 毒性所見なし
児動物	750 mg/kg 体重/日	・流涎(離乳後) ・体重増加抑制 ・包皮分離遅延 ・脾絶対重量 減少	・流涎(離乳後)・体重増加抑制・膣開口日短縮・脾絶対及び比重 量減少	・体重増加抑制 ・脾絶対重量減少	・体重増加抑制 ・脾絶対及び比重 量減少
	100 mg/kg 体重/日以下	毒性所見なし		毒性所見なし	

② 発生毒性試験(ラット)(i)

Wistar ラット (Hsd Cpd:WU、一群雌 26 匹) の妊娠 $6\sim19$ 日に強制経口(原体:0、80、500 及び 1,000 mg/kg 体重/日、溶媒:0.5%CMC 水溶液)投与する発生毒性試験が実施された。

各投与群で認められた毒性所見は表34に示されている。

本試験において、500 mg/kg 体重/日以上投与群の母動物で体重増加抑制等、1,000 mg/kg 体重/日投与群の胎児で低体重等が認められたので、無毒性量は母動物で80 mg/kg 体重/日、胎児で500 mg/kg 体重/日であると考えられた。小眼球症の増加については、発生毒性試験(ii)[7.(6)③]の結果、本検体の特異的な作用ではなく、検体の母動物に対する影響により、本系統のラットが有する自然発生病変が増強されたものと考えられた。また、全投与群で第14肋骨が増加したが[出現頻度:対照群から順に0.7%、7.1%、10.6%、25.2%]、そのほとんどが痕跡状のものであり、かつ500 mg/kg 体重/日以下投与群では、背景データの範囲内(背景データ最高値:24.4%、1990~1994年)であったことが、発生毒性試験[7.(6)③及び8.(5)④]で確認されている。(参照1、39、90、95)

表 34 発生毒性試験 (ラット) (i) で認められた毒性所見

投与群	母動物	胎児
1,000 mg/kg 体重/日	・摂餌量減少(妊娠 6~11 日)	・低体重 (雌雄)
	・ALT 及び ALP 増加	・小眼球症
		・第 14 肋骨(痕跡又は点)
		・第 6 胸骨体不完全骨化
		・第4尾椎骨体不完全骨化
500 mg/kg 体重/日	・排尿行動増加(妊娠 $6\sim20$ 日)	500 mg/kg 体重/日以下
以上	・補正*体重増加抑制	毒性所見なし
	・体重増加抑制 ¹⁾	
	・飲水量増加(妊娠 6~20 日)	
	・T.Chol 増加	
	・T ₄ 減少	
80 mg/kg 体重/日	毒性所見なし	

^{*:}補正体重増加量[=(妊娠 20 日の体重-妊娠 0 日の体重)-(妊娠子宮重量)]の減少として 認められた。

③ 発生毒性試験 (ラット) (ii)

Wistar Hannover ラット (Crl:WI(HAN)、一群雌 25 匹)の妊娠 6~19 日に強制経口 (原体:0、20、80 及び 750 mg/kg 体重/日、溶媒:0.5%CMC 水溶液)投与する発生毒性試験が実施された。本試験は、発生毒性試験(i) [7.(6)②]の1,000 mg/kg 体重/日投与群において認められた、小眼球症及び第 14 肋骨(痕跡又は点)の増加について、これらが母動物の毒性に起因して、試験に用いた動物の系統に依存した自然発生性の変化を増加させたものであることを明らかに

^{1): 500} mg/kg 体重/日投与群では妊娠 $6\sim7$ 日及び $10\sim11$ 日、1,000 mg/kg 体重/日投与群では妊娠 $6\sim8$ 日及び $10\sim11$ 日に認められた。

するために実施された。本試験では自然発生性の小眼球症が少ないとされる系統 1 2のラットを用いた。

各投与群において認められた毒性所見は表35に示されている。

胎児における外表検査では、小眼球症はいずれの試験群においても認められな かった。眼球に対する精査の結果、眼球の重量、角膜の直径及び面積、眼球の直 径及び長さにおいて、対照群と各投与群との間に差は認められなかった。

骨格検査では、750 mg/kg 体重/投与群で第 14 肋骨(痕跡)の発生頻度が増加 した。第14肋骨は骨格変異であり、骨格異常に分類される所見が発現していな いことから、催奇形性を示唆するものではないと判断した。

本試験において、750 mg/kg 体重/日投与群の母動物で体重増加抑制、摂餌量 減少等、胎児で第14肋骨(痕跡)の発生頻度増加が認められたので、無毒性量 は母動物及び胎児で 80 mg/kg 体重/日と考えられた。 (参照 1、40、90、95)

表 35 発生毒性試験 (ラット) (ii) で認められた毒性所見

投与群	母動物	胎児
750 mg/kg 体重/日	・補正*体重増加抑制 ・摂餌量減少(妊娠 6~12 日)	・第 14 肋骨(痕跡)増加
	・飲水量増加(妊娠 9~20 日) ・BUN、T.Chol 及び ALP 増加	
80 mg/kg 体重/日 以下	毒性所見なし	毒性所見なし

*:補正体重増加量「=(妊娠 20 日の体重-妊娠 0 日の体重)-(妊娠子宮重量)〕の減少として 認められた。

④ 発生毒性試験(ラット)(iii)

Wistar Hannover ラット (Crl:WI(HAN)、一群雌 29~30 匹) の妊娠 6~19 日に経皮 [I. 原体群 (原体: 1,000 mg/kg 体重/日、原体純度 98.8%、湿らせた 原体のみ)、II. 乳剤群(プロチオコナゾール 25%、有効成分 250 mg/kg 相当)、 III. 乳剤希釈群(乳剤を脱イオン水で4倍希釈、有効成分62.5 mg/kg相当)、 IV. 対照群(0 mg/kg 体重/日、脱イオン水のみ)、6 時間/日] 投与する発生毒性 試験が実施された。

いずれの投与群においても、母動物及び胎児とも検体投与の影響は認められな かったので、本試験における無毒性量は、母動物及び胎児とも本試験の最高用量 1.000 mg/kg 体重/日と考えられた。催奇形性は認められなかった。(参照 1、41、 90, 95)

⑤ 発生毒性試験(ウサギ)

チンチラウサギ (一群雌 24 匹) の妊娠 $6\sim27$ 日に強制経口 (原体:0、10、 30、80 及び 350 mg/kg 体重/日、溶媒: 0.5%CMC 水溶液) 投与する発生毒性試 験が実施された。

42

29

30

31 32

33

28

3

4

5 6

7

8

9 10

11 12

13

14

15

16

17

18 19

20

21 22

23 24

25

26

母動物において、350 mg/kg 体重/日投与群では、体重減少(妊娠 7~16 日)、体重増加抑制(妊娠 7~28 日)及び摂餌量減少(妊娠 6~11 日以降)が認められた。同群では、流産(妊娠 22~25 日)動物数及び全吸収胚動物が各 3 例に認められた結果として着床後死胚数(初期)及び率の増加、生存胎児数減少が認められ、母動物に対する毒性の結果によるものと考えられた。

胎児において、350 mg/kg 体重/日投与群の雌雄に低体重が認められ、低体重に関連したと考えられる第5 胸骨体及び後肢末節骨の骨化遅延が認められた。

本試験における無毒性量は、母動物及び胎児で 80 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 1、42、90、95)

(7)遺伝毒性試験

プロチオコナゾール原体の細菌を用いた復帰突然変異試験、チャイニーズハムスター肺由来培養細胞 (V79) を用いた染色体異常試験及び遺伝子突然変異試験、ラット肝初代培養細胞を用いた *in vitro* UDS 試験、ラットを用いた *in vivo/in vitro* UDS 試験及びマウス骨髄細胞を用いた小核試験が実施された。

試験結果は表 36 に示されている。その結果、染色体異常試験において、構造的染色体異常が増加し、ラット肝初代培養細胞を用いた UDS 試験では弱い DNA 損傷性が疑われた。しかし、 $in\ vivo/in\ vitro$ における UDS 試験、小核試験では全て陰性であったことを考慮すると、プロチオコナゾールに生体にとって問題となる遺伝毒性はないと考えられた。(参照 1、43~49、90、95)

表 36 遺伝毒性試験概要 (原体)

試験		対象	処理濃度・投与量	結果
in vitro	復帰突然変異試験	Salmonella typhimurium (TA98、TA100、TA102、 TA1535、TA1537 株)	①16~5,000 μg/7° ν-\ (+/-S9)	陰性
	UDS 試験	ラット肝初代培養細胞	①1~40 μg/mL ②0.5~20 μg/mL	陽性*
	染色体異常 試験	チャイニーズハムスター 肺由来培養細胞 (V79)	4 時間処理: 75~150 μg/mL (+/-S9) 4 時間処理(追加試験): 50~100 μg/mL (+/-S9)	陽性**
	遺伝子突然 変異試験	チャイニーズハムスター 肺由来培養細胞(V79) (Hprt 遺伝子座)	①25~175 μg/mL (-S9) ②5~150 μg/mL (-S9) ①275~200 μg/mL (+S9)	陰性
in vivo	UDS 試験	Wistar ラット(肝細胞) (一群雄 4 匹)	2,500、5,000 mg/kg (単回経口投与) 投与 4、16 時間後	陰性
	小核試験	NMRI マウス(骨髄細胞) (一群雌雄各 5 匹)	250 mg/kg 体重 (単回腹腔内投与) 投与 16、24、48 時間後	陰性

小核試験	NMRI マウス (骨髄細胞 (一群雄 5 匹)	胞)50、100、200 mg/kg 体重 (2 回腹腔内投与)	陰性
		最終投与 24 時間後	

注) +/-S9: 代謝活性化系存在下及び非存在下

456

7 8

2

 $\overline{3}$

8. 代謝物 M17 を用いた毒性試験

(1) 急性毒性試験(代謝物 M17)

代謝物M17を用いた急性毒性試験が実施された。結果は表37に示されている。 (参照1、50~52、90、95、99)

9 10 11

表 37 急性毒性試験結果概要 (代謝物 M17)

衣 5/ 总注母住武毅和未做安(飞剧物 MI/)						
投与	動物種	LD ₅₀ (mg/kg 体重)		投与量(mg/kg 体重)及び観察された症状		
経路	性別・匹数	雄	雌	1文子重(IIIg/Kg 平重)及び観点された症状		
	Wistar ラット 雌雄各 5 匹	2,810	2,510	雄:100、500、2,000、2,500、3,150、4,000 雌:100、1,000、2,000、3,150、4,000 雄 500 mg/kg 体重以上及び雌 1,000 mg/kg 体重以上:運動性低下、立毛、努力性呼吸 及び反射の低下 雄 2,500 mg/kg 体重、雌 2,000 mg/kg 体重 以上で死亡例		
経口*	NMRI マウス 雌雄各 5 匹	2,240	3,460	雌雄:100、500、1,000、2,000、2,500、3,150、4,000、5,000 500 mg/kg 体重以上の雌雄:運動性及び呼吸障害、立毛、よろめき歩行、眼瞼裂狭小、流涙、痙攣状態、一時的反転(temporary rolling over)、全身衰弱及び横臥位雄:1,000 mg/kg 体重以上で死亡例雌:2,000 mg/kg 体重以上で死亡例		
経皮	Wistar ラット 雌雄各 5 匹	>5,000	>5,000	雌雄:5,000 症状及び死亡例なし		
	Wistar	LC_{50} (n	ng/L)	暴露量:5.07 mg/L		
吸入	ラット 雌雄各 5 匹	>5.07	>5.07	症状及び死亡例なし		

^{*:}溶媒として1%CremophorEL水溶液を用いた。

12 13 14

15

16

17

(2) 眼・皮膚に対する刺激性及び皮膚感作性試験(代謝物 M17)

NZW ウサギ (一群雌 3 匹) を用いた眼及び皮膚刺激性試験が実施された。眼及び皮膚に対する刺激性は認められなかった。 (参照 1、53、54、90、95)

DH モルモットを用いた皮膚感作性試験 (Buehler 法) が実施され、陰性であ

^{* :} 用量相関性がないものの、修復期細胞の有意な増加(1回目試験 5 及び 10 $\mu g/mL$ 、2回目試験 10 及び 15 $\mu g/mL$ で有意に増加)が認められた。

^{**:} 染色体の構造的異常が認められた(数的異常の増加はなし)。

1 った。(参照1、55、90、95)

2

3

4

56

7

(3) 亜急性毒性試験(代謝物 M17)

① 90 日間亜急性毒性試験 (ラット、代謝物 M17)

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (代謝物 M17:0、30、125、500 及び 2,000 ppm: 平均検体摂取量は表 38 参照) 投与による 90 日間亜急性毒性試験が実施された。0 及び 2,000 ppm 投与群 (一群雌雄各 10 匹) については別途回復群を設け、5 週間の回復期間を設定した。

8 9

10

表 38 90 日間亜急性毒性試験 (ラット、代謝物 M17) の平均検体摂取量

投与群		30 ppm	125 ppm	500 ppm	2,000 ppm
平均検体摂取量	雄	2.2	9.7	37.2	162
(mg/kg 体重/日)	雌	3.0	12.4	50.9	212

11 12

各投与群で認められた毒性所見は表39に示されている。

13 14 肝臓中の肝薬物代謝酵素測定において、雄では 2,000 ppm 投与群で O-DEM が、 500 ppm 以上投与群で P450 が増加した。 雌では 500 ppm 投与群で N-DEM、

15

O-DEM が、125 ppm 以上投与群で P450 が増加した。 本試験において、125 ppm 以上投与群の雄で肝細胞肥大及び空胞化等、500

1617

ppm以上投与群の雌で肝比重量増加、肝細胞肥大等が認められたので、無毒性量は雄で 30 ppm(2.2 mg/kg 体重/日)、雌で 125 ppm(12.4 mg/kg 体重/日)で

19 あると考えられた。 (参照 1、56、90、95)

2021

18

表 39 90 日間亜急性毒性試験 (ラット、代謝物 M17) で認められた毒性所見

投与群	雄	雌
2,000 ppm	・体重増加抑制(投与1週以降)	体重増加抑制(投与1週以降)
	・AST、ALT、ALP 及び GLDH 増加	・ALT 及び T.Chol 増加
	肝絶対及び比重量増加	肝絶対重量増加
		・肝細胞空胞化 (3例) 、び漫性
		肝細胞脂肪化(2例)及び小葉
		中間帯/中心性肝細胞脂肪化(1例)
500 ppm 以上	・TG 減少	・肝臓中 TG 増加
	・肝臓中 TG 増加	・肝比重量増加
		肝細胞肥大
125 ppm 以上	・肝細胞肥大、肝細胞空胞化及び小葉	125 ppm 以下
	中間帯/中心性肝細胞脂肪化	毒性所見なし
30 ppm	毒性所見なし	

2223

24

② 90 日間亜急性毒性試験(マウス、代謝物 M17)

B6C3F1マウス (一群雌雄各 10 匹) を用いて混餌 (代謝物 M17:0、40、200、

1,000 及び 5,000 ppm: 平均検体摂取量は表 40 参照) 投与し、90 日間亜急性毒性試験が実施された。

表 40 90 日間亜急性毒性試験(マウス、代謝物 M17)の平均検体摂取量

投与群		40 ppm	200 ppm	1,000 ppm
平均検体摂取量	雄	11.5	58.9	294
(mg/kg 体重/日)	雌	16.0	79.5	392

各投与群で認められた毒性所見は表 41 に示されている。

5,000 ppm 投与群の雌雄では、投与開始後うずくまり、活動低下、一般状態の 悪化が認められ、投与開始1週後までに全動物が死亡又は切迫と殺された。

肝臓中の肝薬物代謝酵素測定において、1,000 ppm 投与群の雌で GST の増加が認められた。200 ppm 以上投与群の雌雄で ECOD の増加、同投与群の雌で EROD の増加が認められた。40 ppm 以上投与群の雌雄で ALD の増加、同投与群の雄で EROD の増加が認められた。

本試験において、200 ppm 以上投与群の雄で体重増加抑制、肝細胞肥大等、40 ppm 以上投与群の雌で肝細胞肥大が認められたので、無毒性量は雄で 40 ppm (11.5 mg/kg 体重/日)、雌で 40 ppm (16.0 mg/kg 体重/日) 未満であると考えられた。 (参照 1、57、90、95)

表 41 90 日間亜急性毒性試験(マウス、代謝物 M17)で認められた毒性所見

<u> </u>	町里心は毎は武器(マラク、10割物	1117/ て心のプライの一番 エアア				
投与群	雄	此隹				
5,000 ppm	・全動物死亡又は切迫と殺(投与3~5日) ・うずくまり、活動低下、一般状態悪化(いずれも投与0週) ・肝細胞空胞化(主に雄)、肝細胞壊死 ・脾ろ胞萎縮、赤脾髄細胞数減少、色素貪食マクロファージ					
	・腺胃部多発性びらん(雄1例、雌2	例)				
1,000 ppm	 ・RBC、Ht 及び MCV 減少、MCH 及び MCHC 増加 ・AST、ALT、GLDH 及び TG 増加、 T.Chol 減少 ・小葉中心性肝細胞空胞化(脂肪化) 及び限局性肝細胞壊死 	・体重増加抑制(投与2週以降) ・AST、ALT、GLDH及びBUN 増加、T.Chol減少 ・限局性肝細胞壊死 ・卵巣出血性変化				
200 ppm 以上	・体重増加抑制(投与5週以降)・ALP増加、Alb減少・肝絶対及び比重量増加、脾絶対及び比重量増加・肝細胞肥大	・肝絶対及び比重量増加・肝細胞単細胞壊死				
40 ppm	毒性所見なし	・肝細胞肥大				

③ 90日間亜急性毒性試験(イヌ、代謝物 M17)

ビーグル犬 (一群雌雄各 4 匹) を用いて混餌 (代謝物 M17:0、40、200 及び 1,000 ppm: 平均検体摂取量は表 42 参照) 投与し、90 日間亜急性毒性試験が実施された。

表 42 90 日間亜急性毒性試験 (イヌ、代謝物 M17) の平均検体摂取量

投与群		40 ppm	200 ppm	1,000 ppm
平均検体摂取量	雄	1.58	7.81	37.8
(mg/kg 体重/日)	雌	1.62	8.53	42.8

各投与群で認められた毒性所見は表 43 に示されている。

 1,000 ppm 投与群の雌雄で、N-DEM、O-DEM、P450、ECOD 及び EH の増加、同投与群の雄では GST の増加が認められた。

本試験において、1,000 ppm 投与群の雌雄で肝細胞細胞質好酸性化等が認められたので、無毒性量は雌雄とも 200 ppm (雄: 7.81 mg/kg 体重/日、雌: 8.53 mg/kg 体重/日)であると考えられた。 (参照 1、58、90、95)

表 43 90 日間亜急性毒性試験(イヌ、代謝物 M17)で認められた毒性所見

投与群	雄	雌
1,000 ppm	・肝臓中 TG 増加 ・肝細胞細胞質好酸性化	・肝臓中 TG 増加 ・肝絶対及び比重量増加 ・肝細胞細胞質好酸性化
200 ppm 以下	毒性所見なし	毒性所見なし

④ 30週間亜急性毒性試験(イヌ、代謝物 M17)

 ビーグル犬 (一群雌雄各 4 匹) を用いて混餌 (代謝物 M17:0、40、300 及び 2,000 ppm: 平均検体摂取量は表 44 参照) 投与し、30 週間亜急性毒性試験が実施された。

表 44 30 週間亜急性毒性試験 (イヌ、代謝物 M17) の平均検体摂取量

投与群		40 ppm	300 ppm	2,000 ppm
平均検体摂取量	雄	1.35	10.1	69.8
(mg/kg 体重/日)	雌	1.54	11.1	77.2

各投与群で認められた毒性所見は表 45 に示されている。

2,000 ppm 投与群の雌雄で、N-DEM、O-DEM 及び P450 の増加が認められた。

本試験において、2,000 ppm 投与群の雌雄で ALP 増加、肝細胞細胞質好酸性

化等が認められたので、無毒性量は雌雄とも300 ppm(雄:10.1 mg/kg 体重/日、
 雌:11.1 mg/kg 体重/日) であると考えられた。(参照1、60、90、95)

表 45 30 週間亜急性毒性試験 (イヌ、代謝物 M17) で認められた毒性所見

27 10 10 10 10 10 10 10 10 10 10 10 10 10							
投与群	雄	雌					
2,000 ppm	・ALP 増加 ・肝臓中 TG 増加 ・肝絶対及び比重量増加 ・肝細胞細胞質好酸性化 ・T4減少	・ALP 増加 ・肝臓中 TG 増加 ・肝絶対及び比重量増加 ・肝細胞細胞質好酸性化 ・T4減少					
300 ppm 以下	毒性所見なし	毒性所見なし					

(4)慢性毒性試験及び発がん性試験(代謝物 M17)

① 2年間慢性毒性/発がん性併合試験(ラット、代謝物 M17)

Wistar ラット (一群雌雄各 60 匹) を用いた混餌 (代謝物 M17:0、20、140 及び 980 ppm: 平均検体摂取量は表 46 参照) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

表 46 2年間慢性毒性/発がん性併合試験(ラット、代謝物 M17)の平均検体摂取量

投与群		20 ppm	140 ppm	980 ppm
平均検体摂取量	雄	1.1	8.0	57.6
(mg/kg 体重/日)	雌	1.6	11.2	77.4

各投与群で認められた毒性所見は表 47 に示されている。

病理組織学的検査において、980 ppm 投与群の雌で、卵巣のう胞の増加及び萎縮の発生頻度減少が認められ、卵巣の比重量増加と関連した変化であるが、加齢性変化の遅延に伴った所見と考えられた。また、同群の雌に認められた脳の側頭葉圧迫及び水頭症/脳室拡張の発生頻度減少は、下垂体腫瘍の発生頻度の減少に関連した変化と考えられた。ほかに、980 ppm 投与群の雄で下垂体前葉のう胞の発生頻度増加(9/44 例)が認められたが、その発生頻度は背景データ(3/50~11/50匹)の範囲内であり、毒性変化投与に起因する毒性影響ではないと考えられた。また、雌で脊髄の神経根神経症発生頻度増加が認められたが、その他の神経組織において増加した病変はないことから自然発生病変である可能性が高く、毒性学的意義に乏しい変化と考えられた。西川専門委員修文

腫瘍性病変の発生頻度に検体投与の影響は認められなかった。

本試験において、140 ppm 以上投与群の雌雄で肝細胞空胞化及び脂肪化が認められたので、無毒性量は雌雄とも 20 ppm (雄: 1.1 mg/kg 体重/日、雌: 1.6 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。(参照 1、59、90、07)

29 95)

表 47 2 年間慢性毒性/発がん性併合試験 (ラット、代謝物 M17) で認められた 毒性所見

投与群	雄	雌		
980 ppm	・Hb、Ht 及び MCHC 減少	・体重増加抑制(投与 31 週以降)		
	・TG 減少	・RBC、Hb 及び Ht 減少		
	・肝絶対及び比重量増加	肝比重量増加		
	小葉中心性肝細胞脂肪化、肝細胞	・肝細胞肥大及び肝細胞細胞質好酸		
	肥大及び肝細胞細胞質好酸性化	性化		
	・甲状腺 C 細胞限局性過形成	・肺泡沫細胞集簇		
		・甲状腺コロイド内鉱質沈着		
		•副腎皮質限局性過形成		
140 ppm 以上	肝細胞空胞化、肝細胞脂肪化(単	肝細胞空胞化、肝細胞脂肪化(単		
	細胞)	細胞)		
20 ppm	毒性所見なし	毒性所見なし		

4 5

6

7

8

② 2年間発がん性試験(マウス、代謝物 M17)

B6C3F1マウス(発がん性群:一群雌雄各50匹、12か月と殺群:一群雌雄各 10 匹) を用いて混餌(代謝物 M17:0、12.5、50 及び 200 ppm: 平均検体摂取 量は表 48 参照) 投与し、2 年間発がん性試験が実施された。

9 10

表 48 2 年間発がん性試験 (マウス、代謝物 M17) の平均検体摂取量

投与群		12.5 ppm	50 ppm	200 ppm
平均検体摂取量	雄	3.1	12.8	51.7
(mg/kg 体重/日)	雌	5.1	20.3	80.0

11 12

各投与群で認められた毒性所見は表 49 に示されている。

13 14 15

に認められた。12 か月時における TG の減少は、明らかな用量相関性がないこ と及び背景データ (0.26~2.94 mmol/L) に比べ対照群が高値 (3.82 mmol/L)

16 17

を示していたことから、偶発的な変化であると考えられた。また、24 か月時に おける TG の減少は、明らかな用量相関性がないこと及び各投与群の個体値はい

血液生化学的検査では、雄の全投与群において TG の減少が 12 及び 24 か月時

18

ずれも背景データ値の範囲内にあることから、偶発的な変化であると考えられた。

19

腫瘍性病変の発生頻度に検体投与の影響は認められなかった。

20 21

本試験において、50 ppm 以上投与群の雌雄で小葉中心性肝細胞脂肪化が認め られたので、無毒性量は雌雄とも 12.5 ppm (雄:3.1 mg/kg 体重/日、雌:5.1 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。(参照 1、61、90、

23

22

95)

24

25

表 49 2年間発がん性試験(マウス、代謝物 M17)で認められた毒性所見

投与群	雄	雌
200 ppm	肝比重量増加	・肝細胞肥大(12か月時のみ)
50 ppm 以上	小葉中心性肝細胞脂肪化	小葉中心性肝細胞脂肪化
12.5 ppm	毒性所見なし	毒性所見なし

(5) 生殖発生毒性試験(代謝物 M17)

① 2世代繁殖試験(ラット、代謝物 M17)

SD ラット (一群雌雄各 30 匹) を用いた混餌 (代謝物 M17:0、40、160 及び 640 ppm: 平均検体摂取量は表 50 参照) 投与による 2 世代繁殖試験が実施された。

表 50 2世代繁殖試験 (ラット、代謝物 M17) の平均検体摂取量

投与群			40 ppm	160 ppm	640 ppm
	D ##\f\	雄	2.7	10.4	42.6
平均検体摂取量	P世代	雌	3.0	12.0	49.5
(mg/kg 体重/日)	T ##/#	雄	2.5	10.0	41.2
	F ₁ 世代	雌	4.8	18.6	72.6

各投与群で認められた毒性所見は表 51 に示されている。

親動物では 640 ppm 投与群において難産が認められた(P 世代で 4 例、 F_1 世代で 3 例)。

児動物では、640 ppm 投与群の F_1 動物において、剖検所見で腎盂拡張、尿管拡張及び肝肥大の発生頻度が出生 $0\sim4$ 日後の児動物で増加したが、哺乳 21 日後の児動物及び F_2 動物には認められなかったので、検体投与の影響ではないと考えられた。

表 51 2世代繁殖試験 (ラット、代謝物 M17) で認められた毒性所見

			* ** =		
	投与群 親:P、児:F1 雄 雌		親:F ₁ 、児:F ₂		
			雌	雄	雌
親	640 ppm	・肝絶対及び比重	・難産、切迫と殺(4	• 体重增加抑制	・難産、切迫と殺
動		量増加	例)(妊娠 23~24		(3例)

物			日)		肝絶対及び比重
			摂餌量減少(哺育		量増加
			期間)		肝細胞空胞化
			肝絶対及び比重量		(小葉中心性肝
			増加		細胞脂肪化)
			肝細胞空胞化(小		• 肝細胞壊死
			葉中心性肝細胞		
			脂肪化)		
			• 肝細胞壊死		
	160 ppm	肝細胞空胞化	160 ppm 以下	肝細胞空胞化	160 ppm 以下
	以上	(小葉中心性	毒性所見なし	(小葉中心性	毒性所見なし
		肝細胞脂肪化)		肝細胞脂肪化)	
	$40\mathrm{ppm}$	毒性所見なし		毒性所見なし	
児	640 ppm	・同腹児数減少		・同腹児数減少	
動		・出生4日後生存	率減少	・出生 4 日後生存 ²	率減少
物		• 体重增加抑制		• 体重増加抑制	
	$160\mathrm{ppm}$	毒性所見なし		毒性所見なし	
	以下				

② 発生毒性試験 (ラット、代謝物 M17) (i)

Wistar ラット (妊娠 21 日帝王切開群:一群雌 25 匹、妊娠 16 日帝王切開群:一群雌 10 匹) の妊娠 $6\sim15$ 日に経口 (代謝物 M17:0、10、30 及び 100 mg/kg 体重/日、溶媒:0.5%CremophorEL 水溶液) 投与する発生毒性試験が実施された。

各投与群で認められた毒性所見は表 52 に示されている。

妊娠 16 日で帝王切開した母動物について、肝機能検査(ALT 及び AST 測定)及び肝の病理組織学的検査を実施した結果、ALT 及び AST 活性に影響は認められなかった。

本試験において、100 mg/kg 体重/日投与群の母動物で体重増加抑制等、10 mg/kg 体重/日以上投与群の胎児で第 14 肋骨の増加が認められたので、無毒性量は母動物で 30 mg/kg 体重/日、胎児で 10 mg/kg 体重/日未満であると考えられた。 (参照 1、63、90、95)

表 52 発生毒性試験 (ラット、代謝物 M17) (i)で認められた毒性所見

投与群	母動物	胎児
100 mg/kg 体重/日	・体重増加抑制 a,b (妊娠 6~11 日) ・摂餌量減少 a,b (妊娠 6~11 日) ・肝絶対及び比重量増加 a ・肝炎症巣程度増加 a、小葉中心性 肝細胞肥大 a、小葉中心性肝細胞 脂肪化 a ・着床後死胚数及び率増加 b、生存 胎児数減少 b	

30 mg/kg 体重/日	30 mg/kg 体重/日以下	・胸骨体、第1頚椎体、四肢の基
以上	毒性所見なし	節骨の不完全骨化又は未骨
10 mg/kg 体重/日		・第 14 肋骨増加
以上		

a:妊娠 16 日帝王切開群 b:妊娠 21 日帝王切開群

③ 発生毒性試験 (ラット、代謝物 M17) (ii)

Wistar ラット(一群雌 25 匹)の妊娠 $6\sim19$ 日に経口(代謝物 M17:0、1 及び 3 mg/kg 体重/日、溶媒:0.5%CremophorEL 水溶液)投与する発生毒性試験が実施された。本試験は、先に実施された発生毒性試験(i)[8.(5)②]で 10 mg/kg 体重/日以上投与群の胎児において第 14 肋骨増加が認められ、胎児の無毒性量が設定できなかったので、無毒性量を得るために、さらに低用量が設定された。

母動物においては、検体投与の影響は認められなかった。

胎児における骨格検査で、3 mg/kg 体重/日投与群で第 $14 \text{ 肋骨の発生頻度が増加した(左側 } 25%、右側 26%)。しかし、この発生頻度は背景データ(左:<math>5\sim32\%$ 、右: $3\sim27\%$)の範囲内にあること、この変化を有する胎児をもつ母動物数に有意差はなかったことから、この発生頻度増加は検体投与に関連しない偶発的な所見と考えられた。

本試験における無毒性量は、母動物及び胎児で本試験の最高用量 3 mg/kg 体重/日と考えられた。 (参照 1、64、90、95)

ラットを用いた発生毒性試験(i)及び(ii)の総合評価として、胎児に対する無毒性量は3 mg/kg体重/日であると考えられた。

④ 発生毒性試験 (ラット、代謝物 M17) <第 14 肋骨の再評価>

ラットを用いた発生毒性試験(i)[8.(5)②]及び(ii)[8.(5)③]において、第 14 肋骨の発生頻度増加が認められたが、その程度については検査されていなかった。したがって、この第 14 肋骨の程度を骨格標本から再度精査した。

過剰肋骨の長さから、正常肋骨の半分以上の長さのものを過剰肋骨、それに満たない長さの点状あるいはコンマ状のものを痕跡とした。

第14肋骨の再評価の結果は表53に示されている。

表に示されているように、第 14 肋骨は各群ともほとんどが痕跡に分類された。 過剰肋骨に分類されたのは、各群で $0\sim2$ 例であり、低頻度であった。この発生頻度に用量相関性もみられず、検体投与の影響とは考えられなかった。また、痕跡については 3 mg/kg 体重/日投与群で発生頻度が増加したが、本試験の対照群の発生頻度と同等であること、及び背景データ(左側: $5\sim32\%$ 、右側: $3\sim27\%$)の範囲内であること、さらに第 14 肋骨を有する胎児をもつ母動物数に有意差は

ないことから、検体投与の影響とは考えられなかった。(参照1、65、90、95)

2 3

1

表 53 発生毒性試験 (ラット、代謝物 M17) における第 14 肋骨の再評価

試験	本試験		追加試験	
投与群(mg/kg 体重/日)	0	0	1	3
各試験における検査胎児数	156	146	133	155
第 14 肋骨を有した胎児数	38	17	19	43
痕跡	35(22.4%)	16(11.0%)	19(14.3%)	43*(27.7%)
過剰肋骨	2 (1.3%)	0 (0.0%)	1 (0.75%)	2 (1.3%)
計	35(22.4%)	16(11.0%)	19(14.3%)	43*(27.7%)

^{*:} p<0.001 (カイ二乗検定)

4 5 6

7

8

9

10

11

12

⑤ 発生毒性試験 (ラット、代謝物 M17) (iii)

Wistar ラット (群構成は表 54 参照) の妊娠 $6\sim15$ 日に経口 (代謝物 M17:0 及び 30 mg/kg 体重/日、溶媒: 0.5%CremophorEL 水溶液) 投与する発生毒性試験が実施された。本試験は、先に実施された発生毒性試験 (i) [8.(5)②] において 10 mg/kg 体重/日投与群の胎児で認められた第 14 肋骨が、出生後の発育過程でどのように推移するかを調べる目的で実施された。このため、妊娠 20 日の胎児 (帝王切開群) と生後 6 週児 (生育群) について、第 14 肋骨の発現が精査された。

131415

表 54 発生毒性試験(ラット、代謝物 M17)(iii)における群構成

投与量(mg/kg 体重/日)	0	30*
帝王切開群(匹)	15	16
生育群 (匹)	15	23

^{*:} 当初、各群 30 匹で開始したが死亡や十分な児動物が得られなかったことから9 匹を追加した。

1718

19

16

20 割検所見、受胎率及び妊娠率に検体投与の影響は認められなかった。帝王切開群、 21 生育群ともに哺育率が減少した。これは、生後6日以内に21匹中5匹の雌の同 22 腹児が全て死亡したことによるものであった。そのほかに、帝王切開群では胎盤 23 重量増加、数例に胎盤のうっ血及び壊死状の辺縁部、また、生育群では同腹児減 少がみられ、その後も児動物の死亡が認められ、これらの児動物ではミルクスポ

ットがみられなかったことから、母動物の哺育能への影響が示唆された。

25

生育群の哺育 21 日の児動物の生存率が 30 mg/kg 体重/日投与群で減少した。

母動物においては、帝王切開群及び生育群ともに一般状態、体重変化、摂餌量、

2728

26

骨格検査において、30 mg/kg 体重/日投与群の帝王切開群で、全ての胎児に第14 の位置に肋骨(痕跡)又は過剰肋骨が認められ、その発生頻度は有意に高かった(痕跡:対照群50.0%、投与群57.1%、過剰肋骨:対照群7.1%、投与群42.9%)。

また、第15及び16位においても30 mg/kg 体重/日投与群では低頻度に肋骨(痕跡)が認められた。第14肋骨の発生頻度増加以外にも、口蓋裂、前肢の骨異形成、胸骨や舌骨等での骨化遅延が認められた。

生育群において、第 14 の位置に肋骨(痕跡)又は過剰肋骨が認められ、その発生頻度は 30 mg/kg 体重/日投与群で有意に高かった(痕跡:対照群 15.4%、投与群 18.8%、過剰肋骨:対照群 0%、投与群 56.3%)。また、第 15 及び 16 位には肋骨(痕跡)はなかった。

生育群及び帝王切開群の結果を比較すると、第 14 位の過剰肋骨の頻度に差は みられなかったが、肋骨(痕跡)については、対照群及び検体投与群ともに生後 6 週時において発生頻度が減少した。また、帝王切開時に検体投与群で低頻度な がら発現していた第 15 及び 16 位の肋骨(痕跡)も生後 6 週時には認められなか った。

本試験において、妊娠 20 日にみられる肋骨の痕跡 (コンマ状及び点状) は生後の発育過程でその多くが消失することが示唆された。また、過剰肋骨は発育過程でほとんど消失しないと考えられた。 (参照 1、66、90、95)

⑥ 発生毒性試験(ウサギ、代謝物 M17)

ヒマラヤウサギ(一群雌 15 匹)の妊娠 $6\sim18$ 日に経口(代謝物 M17:0、2、10 及び 50 mg/kg 体重/日、溶媒:0.5%CremophorEL 水溶液)投与する発生毒性試験が実施された。

母動物においては、50 mg/kg 体重/日投与群で血液様排泄物(3 例:全吸収胚あるいはほとんどが吸収胚であったことに関連)、体重増加抑制(妊娠 0~29 日)、肝細胞肥大、受胎率減少、着床後死胚数及び死胚率増加及び生存胎児数の減少が認められた。

10 mg/kg 体重/日以上投与群において肝臓のクッパー細胞集簇、円形細胞浸潤 (限局性)及び肝細胞細胞質の好酸性化が認められた。

2 及び 10 mg/kg 体重/日投与群においては、着床後死胚数(2 mg/kg 体重/日: 1.7、10 mg/kg 体重/日: 1.2)及び死胚率の増加が認められたが、用量相関性がないこと及び背景データ($0.3\sim2.2$)の範囲内であることから、これらの変化については検体投与の影響とは考えられなかった。

胎児においては、50 mg/kg 体重/日投与群で5例(2 腹)に口蓋裂、10 mg/kg 体重/日投与群で2例に重複奇形(2 腹)及び5例(3 腹)に関節弯曲が認められ、10 mg/kg 体重/日以上投与群で奇形を有する1 腹当たりの胎児数が増加した(対照群:0.13、10 mg/kg 体重/日投与群:0.54、50 mg/kg 体重/日投与群:0.70)。関節弯曲については、10 mg/kg 体重/日投与群で5例、50 mg/kg 体重/日投与群で1例の発生であり、用量相関性がないこと及び背景データとの比較により、胎児単位では僅かに高値(背景データ最高値:5.6%、本試験:7.6%)を示したが、腹単位では背景データ(背景データ最高値:31.3%、本試験:23.1%)以下であ

ったことから、検体投与との関連性は低いものと考えられた。口蓋裂については、 胎児単位及び腹単位とも背景データ(背景データ最高値(胎児単位):1.5%、本 試験:13.5%)より高値を示した。口蓋裂の認められた50 mg/kg 体重/日投与群 においては、母動物に体重増加抑制、肝細胞肥大等の母毒性が認められた。また、 口蓋裂は、ラットよりウサギの方が発生率が高く、母動物に毒性的影響を与える 投与量でその発生が増加しやすい奇形の1つであると考えられている。したがっ て、本試験で認められた口蓋裂の増加は、自然発生性の奇形が検体投与に起因し た母毒性によって増幅されたものと考えられた。

その他の奇形及び変異の発生頻度に検体投与の影響は認められなかった。 本試験における無毒性量は、母動物及び胎児で 2 mg/kg 体重/日であると考えられた。(参照 1、67、90、95)

⑦ 発達神経毒性試験 (ラット、代謝物 M17)

Wistar ラット(一群雌 30 匹)の妊娠 6~哺育 21 日に混餌(代謝物 M17:0、40、160 及び 500 ppm: 平均検体摂取量は表 55 を参照)投与する発達神経毒性試験が実施された。

表 55 発達神経毒性試験 (ラット、代謝物 M17) における平均検体摂取量

投与群	40 ppm	160 ppm	500 ppm	
平均検体摂取量	妊娠期間	3.6	15.1	43.3
(mg/kg 体重/日)	哺乳期間	8.1	35.7	105

母動物において、500 ppm 投与群では、繁殖率の低下、妊娠期間の延長及び3 例に難産(死亡胎児を有していた。妊娠22 日にと殺。)が認められた。妊娠13 及び20 日に実施した FOB では検体投与の影響は認められなかった。

児動物において、500 ppm 投与群の 3 母動物で各 1 例の死産児が認められた。 160 ppm 以上投与群において不正咬合(腹側切歯)、500 ppm 投与群において 吻合部(鼻口部)の変位が認められた。しかし、これらの異常の発生頻度増加に ついては、代謝物 M17[8.(5)①]及びプロチオコナゾール[7.(6)①]の 2 つの繁殖試験において再現性がみられなかったこと及び認められた不正咬合の発生頻度の状況から、遺伝的なバリエーションが原因で発現した可能性が高いことから、これらの所見は検体投与に起因したものではないと考えられた。その他の検査項目(体重変化、性成熟指標、FOB、自発運動量及び移動運動量、聴覚性驚愕反応、 受動的回避、水迷路、眼科学的検査、剖検、脳の肉眼的及び組織学的形態計測並びに病理組織検査)に検体投与の影響は認められなかった。

本試験において、母動物では 500 ppm 投与群で繁殖率の低下及び難産動物が認められ、児動物では検体投与の影響は認められなかったので、無毒性量は母動物で 160 ppm (15.1 mg/kg 体重/日)、児動物で本試験の最高用量 500 ppm (43.3

mg/kg 体重/日) と考えられた。発達神経毒性は認められなかった。(参照 1、68、
 90、95)

(6) 遺伝毒性試験(代謝物 M17)

代謝物 M17 の細菌を用いた復帰突然変異試験、チャイニーズハムスター由来 卵巣細胞 (CHO) を用いた染色体異常試験及びチャイニーズハムスター肺由来 培養細胞 (V79) を用いた遺伝子突然変異試験、ラット肝初代培養細胞を用いた *in vitro* UDS 試験及びマウスを用いた小核試験が実施された。

試験結果は表 56 に示されているとおり、全て陰性であった。 (参照 1、69~ 73、90、95)

表 56 遺伝毒性試験概要(代謝物 M17)

	-			
	試験	対象	処理濃度・投与量	結果
in vitro	復帰突然変異 試験	S. typhimurium (TA98、TA100、TA1535、 TA1537 株)	8~5,000 μg/7° ν-\ (+/-S9) 150~2,400 μg/7° ν-\ (+/-S9)	陰性
	UDS 試験	ラット肝初代培養細胞	5~60 μg/mL	陰性
	染色体異常 試験	チャイニーズハムスター 由来卵巣細胞(CHO)	4 時間処理: 5~125 μg/mL (+/-S9)	陰性
	遺伝子突然変異試験	チャイニーズハムスター 肺由来培養細胞(V79) (<i>Hprt</i> 遺伝子座)	5 時間処理: 12.5~250 μg/mL (-S9) 50~500 μg/mL (+S9)	陰性
in vivo	小核試験	NMRI マウス(骨髄細胞) (一群雌雄各 5 匹)	350 mg/kg 体重 (単回腹腔内投与) 投与後 16、24、48 時間後	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

9. 代謝物 M07 カリウム塩を用いた毒性試験

(1) 急性毒性試験(代謝物 M07 カリウム塩)

代謝物 M07 カリウム塩の Wistar ラット (一群雌雄各 3 匹) を用いた強制経口 (代謝物 M07 カリウム塩、雄:200 mg/kg 体重、雌:200 及び 2,000 mg/kg 体重) 投与による急性毒性試験が実施された。代謝物 M07 カリウム塩の LD $_{50}$ は雄で 200 mg/kg 体重超、雌で 200~2,000 mg/kg 体重であった。2,000 mg/kg 体重 投与群の雌で不調和歩行、努力性呼吸、活動性及び反応性低下が認められ、3 例全例が投与翌日までに死亡した。200 mg/kg 体重投与群では雌雄とも死亡例は認められなかった。(参照 1、74、90、95)

(2) 90 日間亜急性毒性試験 (ラット、代謝物 MO7 カリウム塩)

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (代謝物 M07 カリウム塩:0、30、125、500 及び 2,000 ppm: 平均検体摂取量は表 57 参照) 投与による 90 日

1 間亜急性毒性試験が実施された。

2

3

表 57 90 日間亜急性毒性試験(ラット、代謝物 MO7 カリウム塩)の平均検体摂取量

投与群		30 ppm	125 ppm	500 ppm	2,000 ppm
平均検体摂取量	雄	2.1	8.7	34.3	136
(mg/kg 体重/日)	雌	2.6	9.7	40.4	163

4 5

6

7 8

9

10

雌においては、いずれの投与群においても検体投与の影響は認められなかった。 雄においては、2,000 ppm 投与群において膀胱の移行上皮過形成の発生頻度増加 が認められた。また、2,000 ppm 投与群で EH 及び UDP-GT、500 ppm 以上投 与群で GST の増加が認められた。

本試験における無毒性量は、雄で $500~\rm ppm$ ($34.3~\rm mg/kg$ 体重/日)、雌で本試験の最高用量 $2{,}000~\rm ppm$ ($163~\rm mg/kg$ 体重/日)であると考えられた。(参照 1、75、90、95)

111213

14

15

16

17

18 19

20

2122

(3)発生毒性試験(ラット、代謝物 MO7 カリウム塩)

Wistar ラット(一群雌 25 匹)の妊娠 $6\sim20$ 日に強制経口(代謝物 M07 カリウム塩:0、30、150 及び 750 mg/kg 体重/日、溶媒:0.5%CremophorEL 水溶液)投与する発生毒性試験が実施された。

母動物において、750 mg/kg 体重/日投与群で体重増加抑制、摂餌量減少、全吸収胚動物(3例)、着床後死胚数及び死胚率増加が認められた。

胎児において、750 mg/kg 体重/日投与群で低体重及び四肢の指骨の未骨化の増加が認められた。

本試験における無毒性量は、母動物及び胎児で 150 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 1、76、90、95)

 $\frac{23}{24}$

25

26

(4)遺伝毒性試験(代謝物 M07 カリウム塩)

代謝物 M07 のカリウム塩の細菌を用いた復帰突然変異試験が実施された。 試験結果は表 58 に示されているとおり、陰性であった。(参照 1、77、90、95)

272829

表 58 遺伝毒性試験概要(代謝物 MO7 カリウム塩)

試験		対象	処理濃度・投与量	結果
in vitro	復帰突然変異 計驗	S. typhimurium (TA98、TA100、TA102、 TA1535、TA1537 株)	16~5,000 μg/7° ν-ト (+/-S9)	陰性

注)+/-S9:代謝活性化系存在下及び非存在下

10. その他の代謝物(代謝物 M08、M24 及び M25 並びに M47 のアグリコン)

(1) 急性毒性試験(代謝物 MO8、M24 及び M25 並びに M47 のアグリコン)

代謝物 M08、M24 及び M25 並びに代謝物 M47 のアグリコンのラットを用い た急性経口毒性試験が実施された。

結果は表 59 に示されている。 (参照 1、78~81、90、95)

6 7

1

2

3

4

5

表 59 急性毒性試験結果概要 (代謝物 MO8、M24 及び M25 並びに M47 のアグリコン)

化合物	投与	動物種	LD ₅₀ (mg/kg 体重)		細索された庁伴
16亩物	経路*	性別・匹数	雄	雌	観察された症状
代謝物 M08	経口	Wistar ラット 雌雄各 3 匹	>2,000	>2,000	活動性低下、反応性低下、不調 和歩行及び努力性呼吸 2,000 mg/kg 体重で雄 1 例死亡
代謝物 M24	経口	Wistar ラット 雌雄各 3 匹	>2,000	>2,000	活動性低下、反応性低下、不調 和歩行及び努力性呼吸 死亡例なし
代謝物 M25	経口	Wistar ラット 雌雄各 3 匹	>2,000	>2,000	立毛、活動性低下、反応性低下 及び不調和歩行 死亡例なし
代謝物 M47 のアグリコン	経口	Wistar ラット 雌雄各 3 匹	>2,000	>2,000	雌:流涎 雄:症状なし 死亡例なし

*:溶媒として 2%CremophorEL 水溶液を用いた。

8 9

10

(2) 遺伝毒性試験(代謝物 MO8、M24 及び M25 並びに M47 のアグリコン)

プロチオコナゾールの代謝物 M08、M24 及び M25 並びに代謝物 M47 のアグ 11 リコンの細菌を用いた復帰突然変異試験が実施された。 12

結果は表 60 に示されているとおり、全て陰性であった。(参照 1、82~85、 90, 95)

14 15 16

13

表 60 遺伝毒性試験概要 (代謝物 MO8、M24 及び M25 並びに M47 のアグリコン)

	代謝物	試験	対象	処理濃度・投与量	結果				
	代謝物 M08	復帰突然変異 試験	S. typhimurium (TA98、TA100、	16~5,000 μg/7° ν-\ (+/-S9) 1.6~500 μg/7° ν-\ (+/-S9)	陰性				
	代謝物 M24		TA102、TA1535、 TA1537 株)	16~5,000 μg/ブ° ν-ト (+/-S9)	陰性				
	代謝物 M25			16~5,000 μg/7° ν-ト (+/-S9)	陰性				
	代謝物 M47 のアグリコン			16~5,000 μg/7° ν-\ (+/-S9) 4~256 μg/7° ν-\ (+/-S9)	陰性				
17	7 注)+/-S9: 代謝活性化系存在下及び非存在下								

18

Ⅲ.食品健康影響評価

- 2 参照に挙げた資料を用いて、農薬「プロチオコナゾール」の食品健康影響評価を 3 実施した。なお、今回、作物残留試験(うり科果菜類等)の成績等が新たに提出さ 4 れた。
- 5 ¹⁴C で標識したプロチオコナゾールのラットを用いた動物体内運命試験の結果、
- 6 経口投与されたプロチオコナゾールの吸収及び排泄は速やかであり、吸収率は少な
- 7 くとも93%と算出された。投与放射能は主に胆汁中に排泄された。臓器・組織への
- 8 蓄積性は認められなかった。主要代謝物は M03、M04(胆汁中) 及び M17(糞中)
- 9 であった。

1

- 10 ¹⁴C で標識したプロチオコナゾールの泌乳ヤギを用いた動物体内運命試験の結果、
- 11 投与放射能は主に尿中に排泄され、乳汁中では僅かに認められた。可食部の残留放
- 12 射能濃度は、肝臓及び腎臓で高かったが、脂肪及び筋肉では低かった。乳汁中の主
- 13 要成分は M03、可食部における主要成分は未変化のプロチオコナゾール及び M03
- 14 であった。
- 15 ¹⁴C で標識したプロチオコナゾールの植物体内運命試験の結果、いずれの植物に
- 16 おいても未変化のプロチオコナゾールの残留量は少なく、可食部又は飼料として利
- 17 用される部位において単一の成分として 10%TRR を超えて認められた代謝物は、
- 18 M17、M37、M41、M42 及び M43 であった。茎葉部の主要代謝物は M17 であっ
- 19 た。^①玄麦では未変化のプロチオコナゾール及び M17 とも検出されず、主要成分は
- 20 M41 及び M43 であった。らっかせいの子実における主要代謝物は²M41 及び M42
- 21 であった。
- 22 <u>海外において</u>³プロチオコナゾール及び代謝物 M17 を分析対象化合物とした作
- 23 物残留試験<u>が実施された</u>の結果、プロチオコナゾール及び代謝物 M17 合量の最大
- 24 残留値は、ブルーベリー(果実)の 1.07 mg/kg であった。 與語専門委員コメント
- 25 に基づき事務局修文

【與語専門委員より】

網掛け部①: (3) 小麦②の試験では、両方とも検出されている。

網掛け部②: (4) らっかせい①の子実では M36 や M37 が主要代謝物という記載がある。

【事務局より】

最近の記載ぶりに合わせて再度見直し、記載整備しました。なお、らっかせい①子実で認められた M36 は主な代謝物とされていますが、10%TRR は超えていないことから食品健康影響評価では記載しませんでした。

【與語専門委員より】

網掛け部③:今回インポートトレランス設定の要請だが、海外での作物残留試験結果の記載は不要か?

【事務局より】

26

27

海外の試験結果であることが分かるよう修正しました。

プロチオコナゾール、代謝物 M09 及び M17 を分析対象化合物とした畜産物残留 試験の結果、プロチオコナゾールが腎臓で最大 0.790 μg/g、代謝物 M09 及び M17

- 1 がそれぞれ肝臓で最大 $0.518~\mu g/g$ 及び $0.0297~\mu g/g$ 検出され、代謝物 M17、M20 及び M21 を分析対象化合物とした畜産物残留試験の結果、M17 投与では、M17 が 肝臓で最大 $1.19~\mu g/g$ 、代謝物 M20 及び M21 がそれぞれ腎臓で最大 $0.477~\mu g/g$ 及 び $0.383~\mu g/g$ 検出された。いずれの成分も乳汁中の残留量は $0.007~\mu g/g$ 以下であった。 與語専門委員修文
 - 各種毒性試験結果から、プロチオコナゾール投与(原体)による影響は、主に肝臓(肝細胞肥大等)、腎臓(腎炎等)及び甲状腺(T4低下)に認められた。神経毒性、発がん性及び生体にとって問題となる遺伝毒性は認められなかった。発生毒性試験において、ラットでは小眼球症及び第 14 肋骨の増加が認められた。小眼球症は母体毒性の発現する用量での発生であり、第 14 肋骨の増加は、そのほとんどが痕跡に分類され、発生頻度は背景データの範囲を僅かに上回る程度であった。また、ウサギでは胎児に影響は認められなかった。これらのことから、プロチオコナゾールに催奇形性はないと考えられた。

【西川専門委員より】

(網掛け部) 甲状腺 $(T_4$ 低下) \Rightarrow 削除 (肝細胞肥大はありますが、甲状腺の病理組織学的変化を伴っていないので、主たる毒性とは言えない)

プロチオコナゾールの代謝物 M17 においても、各種毒性試験が実施され、M17 投与による影響は主に肝臓(肝細胞肥大等)に認められた。発がん性、発達神経毒性及び遺伝毒性は認められなかった。繁殖試験において、母動物に難産及び死産児数増加が、発生毒性試験において、ラットでは第 14 肋骨の増加、ウサギでは口蓋裂の増加が認められた。ラットの第 14 肋骨の増加については、そのほとんどが痕跡に分類され、発生頻度は背景データの範囲内であった。

植物体内運命試験の結果、10%TRR を超える代謝物として M17、M37、M41、M42 及び M43 が認められ、このうち代謝物 M37、M41、M42 及び M43 はラットにおいて検出されなかった。このうち、代謝物 M37 は代謝物 M17 を経由して生成する抱合体であり、仮に生体内で脱抱合され腸管で吸収されても、速やかに抱合体となるため毒性は低いと考えられること、代謝物 M41 及び M43 の急性経口毒性はプロチオコナゾールと同等であり、遺伝毒性の結果が陰性であったこと (参照 102)、代謝物 M42 は M40(1,2,4-トリアゾール)及び代謝物 M41 から生成する化合物であり、その毒性は代謝物 M41 及び M43 と同等であると考えられること、代謝物 M17 はラットにおいても検出されるもののプロチオコナゾールに比べて毒性が強く、作物への残留も多いと考えられたこと等から、農産物中の暴露評価対象物質をプロチオコナゾール(親化合物)及び代謝物 M17 と設定した。

各試験における原体の無毒性量等は表 61、代謝物 M17 の無毒性量等は表 62、原体、代謝物 M17 及び代謝物 M07 カリウム塩の無毒性量の比較は表 63、原体及び代謝物 M17 の単回経口投与等により惹起されると考えられる毒性影響等は表 64-1 及び表 64-2 にそれぞれ示されている。

表 61~64-2 に示されているように、無毒性量の比較では代謝物 M17 の方が原体

1 に比べて概して低く、最も低い無毒性量は 2 年間慢性毒性/発がん性併合試験の雄 2 ラットの 1.1 mg/kg 体重/日であった。植物体内運命試験では M17 の方がプロチオ 3 コナゾールよりも多く存在していること及び次世代への影響が M17 でより明らか に認められることを勘案して、M17 で得られた無毒性量を一日摂取許容量(ADI)

及び急性参照用量(ARfD)設定の根拠にすることが妥当と考えられた。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量のうち最小値が代謝物 M17 のラットを用いた 2 年間慢性毒性/発がん性併合試験の 1.1 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.011 mg/kg 体重/日を ADI と設定した。

また、プロチオコナゾール及び代謝物 M17 の単回投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、代謝物 M17 のウサギを用いた発生毒性試験の無毒性量である 2 mg/kg 体重/日であり、認められた所見は母動物に影響がみられない用量での胎児における骨格異常等であったことから、妊婦又は妊娠している可能性のある女性に対する急性参照用量(ARfD)は、これを根拠として、安全係数 100 で除した 0.02 mg/kg 体重と設定した。また、一般の集団に対しては、代謝物 M17 のラット及びマウスを用いた急性毒性試験の無毒性量である 100 mg/kg 体重を根拠として、安全係数 100 で除した 1 mg/kg 体重を ARfD と設定した。

18 19

56

7

8

9 10

11

12

13

14

15

1617

ADI 0.011 mg/kg 体重/日

(ADI 設定根拠資料) 代謝物 M17 の慢性毒性/発

がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 1.1 mg/kg 体重/日

(安全係数) 100

20

ARfD (1) 1 mg/kg 体重

※一般の集団

(ARfD 設定根拠資料) 代謝物 M17 の急性毒性試

験

(動物種) マウス及びラット

(投与方法) 強制経口

(無毒性量) 100 mg/kg 体重

(安全係数) 100

ARfD (2) 0.02 mg/kg 体重

※妊婦又は妊娠している可能性のある女性

(ARfD 設定根拠資料) 代謝物 M17 の発生毒性試

			験
		(動物種)	ウサギ
		(投与方法)	強制経口
		(無毒性量)	2 mg/kg 体重/日
		(安全係数)	100
1		(5)	
2	参考		
3	~ •	(プロチオコナゾール) (20	000年)~
J	/9MLIV	ADI	0.05 mg/kg 体重/日
		(ADI 設定根拠資料)	8 8
		(動物種)	イヌ、ラット
		(期間)	1、2年間
		(投与方法)	強制経口、混餌
		(無毒性量)	5.0 mg/kg 体重/日
4		(安全係数)	100
4		ARfD	0.0 m m/l-m 休重
		※妊婦又は妊娠している	0.8 mg/kg 体重 可能性のなる女性
		(ARfD 設定根拠資料)	
		(動物種)	ラット
		(投与方法)	強制経口
		(無毒性量)	80 mg/kg 体重/日
		(安全係数)	100
5			
		ARfD(一般集団)	設定の必要なし
6			
7	<JMPR	(代謝物 M17) (2008 年)	>
		ADI	0.01 mg/kg 体重/日
		(ADI 設定根拠資料)	慢性毒性/発がん性併合試験
		(動物種)	ラット
		(期間) (投与方法)	2 年間 混餌
		(無毒性量)	化四 1.1 mg/kg 体重/日
		(安全係数)	1.1 mg/kg 中重/日 100
8			
J		ARfD	0.01 mg/kg 体重
		※妊婦又は妊娠している	0 0
		(ARfD 設定根拠資料)	
		(動物種)	ラット
		(海川// 土/	/ /

1	(投与方法) (無毒性量) (安全係数)	強制経口 1 mg/kg 体重/日 100
1	ARfD	1 mg/kg 体重
	※一般の集団	A DI TO DI SANGA
	(ARfD 設定根拠資料) (動物種)	急性毒性試験 ラット、マウス
	(投与方法)	強制経口
	(無毒性量)	100 mg/kg 体重
0	(安全係数)	100
2 3	<eu(プロチオコナゾール)(2007)< td=""><td>午) <</td></eu(プロチオコナゾール)(2007)<>	午) <
5	ADI	+) / 0.05 mg/kg 体重/日
	(ADI 設定根拠資料)	0 0
	(動物種)	イヌ、ラット
	(期間)	1、2年間
	(投与方法) (無毒性量)	強制経口、混餌 5.0 mg/kg 体重/日
	(安全係数)	100
4		100
	ARfD	0.2 mg/kg 体重
	ARfD (ARfD 設定根拠資料)	0.2 mg/kg 体重 発生毒性試験
		0 0
	(ARfD 設定根拠資料)	発生毒性試験
	(ARfD 設定根拠資料) (動物種)	発生毒性試験 ラット
	(ARfD 設定根拠資料) (動物種) (投与方法)	発生毒性試験 ラット 強制経口
5	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量)	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日
5 6	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量)	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日
	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100
	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料)</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験
	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料) (動物種)</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験 ラット
	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料)</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験
	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料) (動物種) (期間) (投与方法) (無毒性量)</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験 ラット 2 年間 混餌 1.1 mg/kg 体重/日
	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料) (動物種) (期間) (投与方法)</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験 ラット 2 年間 混餌
	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007年)="" m17)=""> ADI (ADI 設定根拠資料) (動物種) (期間) (投与方法) (無毒性量) (安全係数)</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験 ラット 2 年間 混餌 1.1 mg/kg 体重/日 100
6	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料) (動物種) (期間) (投与方法) (無毒性量) (安全係数) ARfD</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験 ラット 2 年間 混餌 1.1 mg/kg 体重/日 100 0.01 mg/kg 体重
6	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料) (動物種) (期間) (投与方法) (無毒性量) (安全係数) ARfD (ARfD 設定根拠資料)</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験 ラット 2 年間 混餌 1.1 mg/kg 体重/日 100 0.01 mg/kg 体重 発生毒性試験
6	(ARfD 設定根拠資料) (動物種) (投与方法) (最小毒性量) (安全係数) <eu(代謝物 (2007="" m17)="" 年)=""> ADI (ADI 設定根拠資料) (動物種) (期間) (投与方法) (無毒性量) (安全係数) ARfD</eu(代謝物>	発生毒性試験 ラット 強制経口 20 mg/kg 体重/日 100 0.01 mg/kg 体重/日 慢性毒性/発がん性併合試験 ラット 2 年間 混餌 1.1 mg/kg 体重/日 100 0.01 mg/kg 体重

2015/10/22 第 128 回農薬専門調査会幹事会 プロチオコナゾール評価書(案)

1 mg/kg 体重/日 (最小毒性量) (安全係数) 100 <米国(2010年)> 1 cRfD0.01 mg/kg 体重/日 (cRfD 設定根拠資料) 代謝物 M17 の慢性毒性/発が ん性併合試験 (動物種) ラット (期間) 2 年間 (投与方法) 混餌 (無毒性量) 1.1 mg/kg 体重/日 (不確定係数) 100 2 ARfD 0.02 mg/kg 体重 (ARfD 設定根拠資料) 代謝物 M17 の発生毒性試験 (動物種) ウサギ (投与方法) 強制経口 (無毒性量) 2 mg/kg 体重/日 (不確定係数) 100 3 (参照 99、100、101)

表 61 各試験における無毒性量及び最小毒性量(原体)

	表	61 各試験におり	ナる無毒性量及で	び最小毒性量(原	原体)
動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考 1)
ラット	90 日間亜急性毒性試験	0, 20, 100, 500	雄:100 雌:100	雄:500 雌:500	雄:肝細胞細胞質好酸性化、小葉中心性肝細胞肥大等 ・雌:肝絶対及び比重量増加等
	90 日間亜急性神経毒性試験	0、100、500、 1,000	雄:100 雌:100	雄:500 雌:500	雌雄:尿による被毛の 汚れ等 (亜急性神経毒性は認 められない)
	1年間慢性 毒性試験	0, 5, 50, 750	雄:50 雌:50	雄:750 雌:750	雌雄:体重增加抑制、 肝細胞細胞質好酸性化 等
	2年間発がん性試験	0、5、50、750	雄:5 雌:5	雄:50 雌:50	雄:小葉中心性肝細胞 肥大等 雌:ALP増加等 (発がん性は認められ ない)
	2世代繁殖試験	0、10、100、750	親動物 P雄:10 P雌:100 F ₁ 雄:10 F ₁ 雌:100 児動物 P雄:100 P雌:100 F ₁ 雄:100	親動物 P雄:100 P雌:750 F1雄:100 F1雌:750 児動物 P雄:750 P雌:750 F1雄:750	親動物 雄:肝絶対及び比重 量増加又は体重増加抑 制 雌:着床数減少、体 重増加抑制等 児動物: 雌雄:体重増加抑制 等
	験(i)	0, 80, 500, 1,000 0, 20, 80, 750	母動物:80 胎児:500 母動物:80 胎児:80	母動物:500 胎児:1,000 母動物:750 胎児:750	母動物:体重増加抑制等 胎児:低体重等 母動物:体重増加抑制 摂餌量減少等
	発生毒性試験(iii)	0、62.5、250、 1,000	母動物: 1,000 胎児: 1,000	母動物:- 胎児:-	胎児:第14肋骨発生態度増加 毒性所見なし (催奇形性は認められない)
マウス	90 日間 亜急性毒性 試験	0、25、100、400	雄:25 雌:25	雄:100 雌:100	雌雄:小葉中心性肝細胞肥大、肝細胞細胞質 好酸性化等
	18 か月間 発がん性試 験	0、10、70、500	雄:10 雌:10	雄:70 雌:70	雌雄:体重増加抑制等 (発がん性は認められ ない)

ウサギ	発生毒性試 験	0、10、30、80、 350	母動物:80 胎児:80	母動物:350 胎児:350	母動物:体重減少、体 重増加抑制、摂餌量減
					少等 胎児:低体重等 (催奇形性は認められ
			L!!	111	ない)
イヌ	90 日間	0、25、100、300	雄:25 雌:25	雄:100 雌:100	雌雄:間質性腎炎等
	1 年間 慢性毒性試 験	0, 5, 40, 125	雄:5 雌:5	雄: 40 雌: 40	雄:体重増加抑制、腎 慢性炎症等 雌:腎結晶様物質沈着 等

1):備考に最小毒性量で認められた毒性所見を記した。

-:最小毒性量は設定できなかった。

 $\frac{1}{2}$

3

表 62 各試験における無毒性量及び最小毒性量(代謝物 M17) 事務局修正

到州和王	234 €	投与量	無毒性量	最小毒性量	備考 1)
動物種	試験	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	加与 1/
ラット	90 日間亜急性毒性試験	0、30、125、500、 2,000 ppm 雄:0、2.2、9.7、 37.2、162 雌:0、3.0、12.4、 50.9、212	雄:2.2 雌:12.4	雄:9.7 雌:50.9	雄:肝細胞肥大及び空 胞化等 雌:肝比重量増加、肝 細胞肥大等
	2年間慢性 毒性/発がん 性併合試験	が、212 0、20、140、980 ppm 雄:0、1.1、8.0、 57.6 雌:0、1.6、11.2、 77.4	雄:1.1 雌:1.6	雄:8.0 雌:11.2	雌雄:肝細胞空胞化及び 脂肪肝等 (発がん性は認められ ない)
	2 世代繁殖 試験	0、40、160、640 ppm P雄:0、2.7、10.4、 42.6 P雌:0、3.0、12.0、 49.5 F ₁ 雄:0、2.5、 10.0、41.2 F ₁ 雌:0、4.8、 18.6、72.6	親動物 P雄: 2.7 P雌: 12.0 F ₁ 雄: 2.5 F ₁ 雌: 18.6 児動物 P雄: 10.4 P雌: 12.0 F ₁ 雄: 10.0 F ₁ 雌: 18.6	親動物 P雄: 10.4 P雌: 49.5 F1雄: 10.0 F1雌: 72.6 児動物 P雄: 42.6 P雌: 49.5 F1雄: 41.2 F1雌: 72.6	親動物 雄:肝細胞空胞化(小葉 中心性肝細胞脂肪化) 雌:難産、肝細胞空胞化 (小葉中心性脂肪化)等 児動物 雌雄:同腹児数減少、体 重増加抑制等
	発生毒性試 験(i)	0、10、30、100	母動物:30 胎児:-	母動物:100 胎児:10	母動物:体重増加抑制等 胎児:第14肋骨増加
	発生毒性試 験(ii)	0, 1, 3	母動物:3 胎児:3	母動物:- 胎児:-	毒性所見なし

2015/10/22 第 128 回農薬専門調査会幹事会 プロチオコナゾール評価書(案)

	発生毒性試		胎児:3		
	験(i)及び		7471		
	(ii) の総合				
	評価				
		0, 40, 160, 500		母動物: 43.3	母動物:繁殖率の低下
	性試験	ppm	児動物:43.3	児動物:-	等
		妊娠期間:0、3.6、 15.1、43.3			児動物:毒性所見なし
		10.1, 40.0			 (発達神経毒性は認め
					られない)
マウス	90 日間亜急	0, 40, 200, 1,000	雄:11.5	雄:58.9	雄:体重増加抑制、肝
. , , ,	性毒性試験	ppm	雌:一	雌:16.0	細胞肥大等
		雄:0、11.5、58.9、			雌:肝細胞肥大
		294			
		雌:0、16.0、79.5、 392			
	2年間発が	0, 12.5, 50, 200	雄:3.1	雄:12.8	 雌雄:小葉中心性肝細胞
	ん性試験	ppm	雌:5.1	雌: 20.3	脂肪化
		+# 0 0.1 10.0			
		雄:0、3.1、12.8、 51.7			(発がん性は認められ
		雌:0、5.1、20.3、			ない)
		80.0			
ウサギ	発生毒性試	0, 2, 10, 50	母動物及び胎	母動物及び胎	母動物:体重増加抑制、
, , .	験		児:2	児:10	肝細胞肥大等
	00 日間玉色	0 40 000 1 000	## . 7 01	## · 97 9	胎児:骨格異常
イヌ	性毒性試験	0, 40, 200, 1,000 ppm	雌: 7.81	雄:37.8 雌:42.8	雌雄:肝細胞細胞質好酸性化等
	工母工的人	雄:0、1.58、7.81、	単性 : 0.00	M庄 · 任2.0	
		37.8			
		雌:0、1.62、8.53、			
		42.8			
	30週間亜急	*		雄:69.8	雌雄:ALP 増加、肝細胞
	性毒性試験	ppm	雌: 11.1	雌:77.2	細胞質好酸性化等
		雄:0、1.35、10.1、 69.8			
		雌:0、1.54、11.1、			
		77.2			
					NOAEL: 1.1
		<u>ADI</u>			<u>SF: 100</u>
		A TOT MR. ALL THE	Lian Vite viol		ADI : 0.011
		ADI 設定根	<u> </u>		ラット2年間慢性毒性
ДΓ		容量 SF·安全係数	NOAEL: 無毒性	量 一・最小毒性長	<u>発がん性併合試験</u> 遣 は設定できなかった。
410	·・・ - ロ 1シッタン目 :		- 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		E1546 AL CL : A / 2 / Lo

1 表 63 原体、代謝物 M17 及び代謝物 M07 カリウム塩の無毒性量の比較

		無毒性量(mg/kg 体重/日)				
動物種	試験	原体	代謝物 M17	代謝物 M07 カリウム塩		
ラット	90 日亜急性	雄:100				
	神経毒性試験	雌:100				
	1年間	雄:50				
	慢性毒性試験	雌:50				
	2年間慢性毒性/発	雄:5	雄:1.1			
	がん性併合試験	雌:5	雌:1.6			
		(発がん性試験)	(併合試験)			
	2世代繁殖試験	親動物	親動物			
		P雄:10	P雄:2.7			
		P雌:100	P雌:12.0			
		F ₁ 雄:10	F ₁ 雄:2.5			
		F ₁ 雌:100	F ₁ 雌:18.6			
		児動物	児動物			
		P雄:100	P雄:10.4			
		P雌:100	P雌:12.0			
		F ₁ 雄:100	F ₁ 雄:12.0			
		F ₁ 雌:100	F ₁ 雌:18.6			
	発生毒性試験	母動物: 80	母動物:30	親動物:150		
		胎児:80	胎児:3	胎児:150		
	発達神経毒性		親動物:15.1			
	試験		児動物:43.3			
マウス	90 日間	雄:25	雄:11.5			
	亜急性毒性試験	雌:25	雌:16.0 未満			
	18 か月間	雄:10	雄:3.1			
	発がん性試験	雌:10	雌:5.1			
		(18か月間)	(2年間)			
ウサギ	発生毒性試験	親動物:80	親動物:2			
		胎児: 80	胎児:2			
イヌ	90 日間亜急性	雄:25	雄:7.81			
	毒性試験	雌:25	雌:8.53			
	1年慢性毒性	雄:5	雄:10.1			
	試験	雌:5	雌:11.1			
		(1年間)	(30 週間)			

1 表 64-1 単回経口投与等により生ずる可能性のある毒性影響等(一般の集団)

原体/ 代謝物	動物種	試験	投与量 (mg/kg 体重又は mg/kg 体重/日)	無毒性量及び急性参照用量設定に 関連するエンドポイント ¹⁾ (mg/kg 体重又は mg/kg 体重/日)
プロチオコナゾー		急性神経毒性	0, 200, 750, 2,000	雄:200
ル		試験		雌:自発運動量及び移動運動量の減少
	ラット		雄:100、500、	雄:100
		6- 1.1 - 1- 1.1 - 5 m/s	2,000、2,500、	
		急性毒性試験	3,150, 4,000	# · 海動性低下 立毛 双力性呕吸
			雌: 100、1,000、 2,000、3,150、4,000	雄:運動性低下、立毛、努力性呼吸、反射の低下等
			雌雄:100、500、	雌雄:100
M17		急性毒性試験	1,000、2,000、	
	マウス		2,500、3,150、	雌雄:運動性及び呼吸障害、立毛、よ
			4,000、5,000	ろめき歩行等
			雄:0、11.5、58.9、	雄:294
		90 日亜急性	294	
		毒性試験	雌:0、16.0、79.5、 392	 雌雄:死亡(投与3~5日)
			094	
	AD(D(1) (如 o 供 国)			NOAEL: 100
	ARfD(1)(一般の集団)			SF: 100
			ARfD: 1.0	
	AF	RfD 設定根拠資	料	ラット及びマウス急性神経毒性試験 (代謝物 M17)

ARfD: 急性参照用量 SF: 安全係数 NOAEL: 無毒性量¹⁾: 最小毒性量で認められた主な毒性所見を記した。

表 64-2 単回経口投与等により生ずる可能性のある毒性影響等 (妊婦又は妊娠している可能性のある女性)

原体/ 代謝物	動物種	試験	投与量 (mg/kg 体重/日)	無毒性量及び急性参照用量設定に 関連するエンドポイント ¹⁾ (mg/kg 体重/日)
プロチオコナゾー		発生毒性試験 (i)	0, 80, 500, 1,000	胎児:500 胎児:小眼球、第14肋骨等
ル	ラット	発生毒性試験 (ii)	0, 20, 80, 750	胎児: 80 胎児: 第 14 肋骨(痕跡) 増加
M17		発生毒性試験 (i)	0、10、30、1,000	胎児: 一 胎児: 第 14 肋骨増加

5

2015/10/22 第 128 回農薬専門調査会幹事会 プロチオコナゾール評価書(案)

		発生毒性試験 (ii)	0, 1, 3	胎児:3 胎児:毒性所見なし
			(i)及び(ii)の総 合評価	胎児:3
	ウサギ	発生毒性試験	0, 2, 10, 50	胎児:2 胎児:骨格異常等
(妊婦	又は妊娠	ARfD(2) 長している可能性	NOAEL : 2 SF : 100 ARfD : 0.02	
ARfD 設定根拠資料				ウサギ発生毒性試験 (代謝物 M17)

ARfD: 急性参照用量 SF: 安全係数 NOAEL: 無毒性量 一: 無毒性量は得られなかった ¹⁾: 最小毒性量で認められた主な毒性所見を記した。

 $1\\2\\3\\4$ 5

1 <別紙1:代謝物/分解物略称>

記号	名称	化学名
HC 3	HII	(<i>R.S</i>)-2-[2-(1-クロロシクロプロピル)-3-(2-クロロ
M01	プロチオコナゾールのラクトシド	フェニル)・2・ヒドロキシプロピル]・2,4・ジヒドロ
1,101		-1,2,4-トリアゾール-3-チオンのラクトシド
		(R.S)-2-[2-(1-クロロシクロプロピル)-3-(2-クロロ
M02	<i>N</i> -グルクロニド	フェニル)・2・ヒドロキシプロピル]・2,4・ジヒドロ
		-1,2,4-トリアゾール-3-チオンの <i>N</i> -グルクロニド
		(R,S)-2-[2-(1-クロロシクロプロピル)-3-(2-クロロ
M03	S グルクロニド	フェニル)-2-ヒドロキシプロピル]-2,4-ジヒドロ
		-1,2,4-トリアゾール -3 -チオンの S グルクロニド
		(<i>R,S</i>)-2-[-3-(2-クロロフェニル)-2-ヒドロキシプロ
M04	<i>O</i> グルクロニド	ピル]-2,4-ジヒドロ-1,2,4-トリアゾール-3-チオン
		の 0 グルクロニド
		2-(1-クロロシクロプロピル)-1-[5-({1-[2-(1-クロロ
		シクロプロピル)-3-(2-クロロフェニル)-2-ヒドロ
M05	ジスルフィド	キシプロピル]-1 <i>H</i> -1,2,4-トリアゾール-5-イル}ジ
		スルファニル)-1 <i>H</i> -1,2,4-トリアゾール-1-イ
		ル]-3-(2-クロロフェニル)プロパン-2-オール
		2-(1-クロロシクロプロピル)-1-(2-クロロフェニ
M06	Sメチル	ル)-3·[5·(メチルスルファニル)-1 <i>H</i> -1,2,4·トリアゾ
		ール-1-イル]プロパン-2-オール
		1-[2-(1-クロロシクロプロピル)-3-(2-クロロフェニ
M07	スルホン酸	ル)-2-ヒドロキシプロピル]-1 <i>H</i> -1,2,4-トリアゾー
		ル-5-スルホン酸
		2-[2-(1-クロロシクロプロピル)-3-(2-クロロフェニ
M08	トリアゾリノン	ル)-2-ヒドロキシプロピル]-2,4-ジヒドロ
		-3 <i>H</i> -1,2,4-トリアゾール-3-オン
1.500	4 1. 18 - 18 2.	2-[2-(1-クロロシクロプロピル)-3-(2-クロロ-4-ヒ
M09	4-ヒドロキシ	ドロキシフェニル)-2-ヒドロキシプロピル]-2,4-ジ
		ヒドロ-3 <i>H</i> -1,2,4-トリアゾール-3-チオン 2-[2-(1-クロロシクロプロピル)-3-(2-クロロ-4-ヒ
M10	4-ヒドロキシのグルクロニド	2-[2-(1-) ロロン) ロフロヒル)-3-(2-) ロロ-4-ヒ ドロキシフェニル)-2-ヒドロキシプロピル]-2,4-ジ
MIIO	4-6 1 4 2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ヒドロ・3 H・1,2,4・トリアゾール・3・チオン
		- C D 1,2,4 P 7 7 7 3 3 7 7
M11	ヒドロキシのグルクロニド	(ヒドロキシのグルクロニド)
		1-[2-(1-クロロシクロプロピル)-3-(2-クロロ-n-ヒ
		ドロキシフェニル)・2・ヒドロキシプロピ
M12	 ヒドロキシ-スルホン酸のグルコシド	ν]-1 H 1,2,4-トリアゾール-5-スルホン酸のグル
	200 100 100 100 100 100 100 100 100 100	コシド
		(n = 3, 4, 5 又は 6)
7.5	2 10 1.2 28 28 28	_
M13	ヒドロキシ-ジスルホン酸のグルコシド	(ヒドロキシ-ジスルホン酸のグルクロニド)
		_
		(代表として 3,4-ジヒドロキシ-ジエンの化学名
		を以下に示す)
M14	ジヒドロキシ-ジエン	2-[2-(1-クロロシクロプロピル)-3-(2-クロロ-3,4-
		ジヒドロキシシクロヘキサ-1,5-ジエン-1-イル)-2-
		ヒドロキシプロピル]-2,4-ジヒドロ-3 <i>H</i> -1,2,4-トリ
		アゾール-3-チオン
M15	ジヒドロキシ-ジエン-スルホン酸	_

	T	(11, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
		(代表として 3,4-ジヒドロキシ-ジエン-スルホン
		酸の化学名を以下に示す)
		1-[2-(1-クロロシクロプロピル)-3-(2-クロロ-3,4-
		ジヒドロキシシクロヘキサ-1,5-ジエン-1-イル)-2-
		ヒドロキシプロピル]-1 <i>H</i> -1,2,4-トリアゾール-5-
		スルホン酸
		_
		(代表として 3,4-ジヒドロキシ-オレフィン-スル
		ホン酸の化学名を以下に示す)
M16	ジヒドロキシ-オレフィン-スルホン酸	1-[2-(1-クロロシクロプロピル)-3-(2-クロロ-3,4-
		ジヒドロキシシクロヘキサ-1-エン-1-イル)-2-ヒド
		ロキシプロピル]-1 <i>H</i> 1,2,4-トリアゾール-5-スル
		ホン酸
		2-(1-クロロシクロプロピル)-1-(2-クロロフェニ
M17	 脱チオ	ル)-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)-2-プロパノ
IVI I		ール
		2-(1-クロロシクロプロピル)-1-(2-クロロフェニ
3.510	B イムの ゼル ケーー 10	
M18	脱チオのグルクロニド	ル)-3-(1 <i>H</i> 1,2,4-トリアゾール-1-イル)-2-プロパノ
		ールのグルクロニド
		2-(1-クロロシクロプロピル)-1-(2-クロロフェニ
M19	脱チオマロニルグルコシド	ル)-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)-2-プロパノ
		ールのマロニルグルコシド
		2-クロロ-3-[2-(1-クロロシクロプロピル)-2-ヒドロ
M20	脱チオ-3-ヒドロキシ	キシ-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)プロピル]
		フェノール
		3-クロロ-4-[2-(1-クロロシクロプロピル)-2-ヒドロ
M21	脱チオ-4-ヒドロキシ	キシ-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)プロピル]
		フェノール
		3-クロロ-4-[2-(1-クロロシクロプロピル)-2-ヒドロ
M22	脱チオ-4-ヒドロキシのグルクロニド	キシ-3·(1 <i>H</i> -1,2,4·トリアゾール-1·イル)プロピル]
		フェノールのグルクロニド
		3-クロロ-2-[2-(1-クロロシクロプロピル)-2-ヒドロ
M23	脱チオ-6-ヒドロキシ	キシ-3-(1 <i>H</i> 1,2,4-トリアゾール-1-イル)プロピル]
1,120		フェノール
		2-(1-クロロシクロプロピル)-1-(2-クロロフェニ
M24	 脱チオ-α-ヒドロキシ	ル)-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)プロパン
W124		-1,2-ジオール
		1,2 フォール 酢酸 2-(1-クロロシクロプロピル)-1-(2-クロロフ
Mor	 脱チオ-a-アセトキシ	
M25	脱ナオ -α- / セトキン	ェニル)-2-ヒドロキシ-3-(1 <i>H</i> -1,2,4-トリアゾール
		-1-イル)プロピル
		m-クロロ-n-[2-(1-クロロシクロプロピル)-2-ヒド
M26	脱チオ-ヒドロキシ	ロキシ-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)プロピ
1.120		ル]フェノール
		(m, n) = (2, 3), (3, 4), (3, 2)又は(4, 3)
M27	 脱チオ-ヒドロキシのグルクロニド	
14177 1	WE / A C . (V *// / F / F -	([M26]のグルクロニド)
	│ │脱チオ-ヒドロキシの配糖体(グルコシド	_
M28	脱 カオ・ヒトロヤンの配裾体 (クルコント 又はマロニルグルコシド)	([M26]の配糖体(グルコシド又はマロニルグル
	X/4×ロー/Vグ/Vコンド/	コシド))
Moo	脱チオ-ヒドロキシのマロニルグルコシド	_
M29	加ノオ・ロトロヤンのマロニルクルコント	([M26]のマロニルグルコシド)
M30	脱チオ-4,5-ジヒドロキシ	4-クロロ-5-[2-(1-クロロシクロプロピル)-2-ヒドロ
	ı ,	<u> </u>

		キシ-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)プロピル] ベンゼン-1,2-ジオール
M31	脱チオ-ジヒドロキシ	- (脱チオ-ジヒドロキシ(水酸基の位置が特定されず))
M32	脱チオ-ジヒドロキシのグルクロニド	- ([M31] のグルクロニド)
M33	脱チオ-ジヒドロキシの配糖体 (マロニル グルコシド)	_ ([M31]の配糖体(マロニルグルコシド))
M34	脱チオ-ジヒドロキシ-ジエン	- (代表として脱チオ-3,4-ジヒドロキシ-ジエンの 化学名を以下に示す) 3-クロロ-4-[2-(1-クロロシクロプロピル)-2-ヒドロ キシ-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)プロピル] シクロヘキサ-3,5-ジエン-1,2-ジオール
M35	脱チオ-ジヒドロキシ-ジエンのグルクロ ニド	ー ([M34]のグルクロニド)
M36	脱チオ-ヒドロキシジエニルシステイン	- (脱チオ-ヒドロキシジエニルシステイン)
M37	脱チオ-ジヒドロキシオレフィンのグルコ シド	- (脱チオ-ジヒドロキシ-オレフィンのグルコシ ド)
M38	脱チオ-ヒドロキシ-メトキシ のグルクロ ニド	一 (脱チオ-ヒドロキシ-メトキシのグルクロニド)
M39	脱チオ-フェニル-システイン	S {m·クロロ·n·[2·(1·クロロシクロプロピル)·2·ヒ ドロキシ·3·(1 H 1,2,4·トリアゾール·1·イル)プロ ピル]フェニル}システイン (m, n) = (2, 3), (3, 4), (3, 2)又は(4, 3)
M40	1,2,4-トリアゾール	1H-1,2,4-トリアゾール
M41	トリアゾリルアラニン(TA)	3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)アラニン
M42	トリアゾリルヒドロキシプロピオン酸 (THPA)	2-ヒドロキシ-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル) プロパン酸
M43	トリアゾリル酢酸(TAA)	1 <i>H</i> -1,2,4-トリアゾール-1-イル酢酸
M44	トリアゾリルエタノール	1-(1-クロロシクロプロピル)-2-(1 <i>H</i> -1,2,4-トリア ゾール-1-イル)エタノール
M45	トリアゾリルエタノールグルコシド	- ([M44]のグルコシド)
M46	トリアゾリルスルホン酸エタノールのグ ルコシド	1-[2-(1-クロロシクロプロピル)-2-ヒドロキシエチル]-1 H 1,2,4-トリアゾール- 5 -スルホン酸のグルコシド
M47	ベンジルプロピルジオールのグルコシド	2-(1-クロロシクロプロピル)-3-(2-クロロフェニル)プロパン-1,2-ジオールのグルコシド
M48	チオシアネート	チオシアネート
M49	チアゾシン	6-(1- クロロシクロプロピル)-6,7- ジヒドロ-5 H [1,2,4]トリアゾロ[5,1-b][1,3]ベンゾチアゾシン-6-オール
M50	2-クロロ安息香酸	2-クロロ安息香酸
M51	脱チオテトラヒドロキシオレフィン	5-クロロ-6-[2-(1-クロロシクロプロピル)-2-ヒドロキシ-3-(1 <i>H</i> -1,2,4-トリアゾール-1-イル)プロピル] シクロヘキサ-5-エン-1,2,3,4-テトラオール
M52	脱チオテトラヒドロキシオレフィンのグ	

	ルクロニド	([M51]のグルクロニド)
M53	脱チオ-ヒドロキシ-メトキシ	_ (脱チオ-ヒドロキシ-メトキシ)
M54	プロチオコナゾール-ヒドロキシの硫酸抱合体	- (プロチオコナゾール-ヒドロキシの硫酸抱合体)
M55	脱チオ-3,4-ジヒドロキシ-ジエン	3-クロロ- 4 - $[2$ - $(1-$ クロロシクロプロピル)- 2 -ヒドロキシ- 3 - $(1$ H - 1 ,2,4-トリアゾール- 1 - 1 - 1 $)プロピル]シクロヘキサ-3,5-ジエン-1,2-ジオール$
M56	脱チオ-3,4-ジヒドロキシ-ジエンのグル クロニド	- ([M55]のグルクロニド)
M57	脱チオ-3-ヒドロキシのグルクロニド	([M20]のグルクロニド)
M58	脱チオ-4,5-ジヒドロキシのグルクロニド	_ ([M30]のグルクロニド)
M59	脱チオ-ヒドロキシの硫酸抱合体	- ([M26]の硫酸抱合体)
M60	脱チオ-ヒドロキシ-メトキシの硫酸抱合 体	- ([M53]の硫酸抱合体)
M61	脱チオ-ジヒドロキシの硫酸抱合体	- ([M31]の硫酸抱合体)

1 <別紙2:検査値等略称>

刊紙 2 :	
略称	名称
ai	有効成分量
Alb	アルブミン
ALD	アルドリンエポキシダーゼ
ALP	アルカリホスファターゼ
ALT	アラニンアミノトランスフェラーゼ
	[=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)]
AST	アスパラギン酸アミノトランスフェラーゼ
	[=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)]
AUC	薬物濃度曲線下面積
BUN	血液尿素窒素
C_{max}	最高濃度
CMC	カルボキシメチルセルロース
Cre	クレアチニン
ECOD	7-エトキシクマリンデエチラーゼ
EH	エポキシド水酸化酵素
EROD	7-エトキシレゾルフィンデエチラーゼ
FOB	機能観察総合検査
GGT	γ-グルタミルトランスフェラーゼ
	・ (=γ-グルタミルトランスペプチダーゼ)
GLDH	グルタミン酸デヒドロゲナーゼ
Glu	グルコース(血糖)
GST	グルタチオン & トランスフェラーゼ
Hb	ヘモグロビン (血色素量)
Ht	ヘマトクリット値
LC_{50}	半数致死濃度
LD_{50}	半数致死量
MC	メチルセルロース
MCH	平均赤血球血色素量
MCHC	平均赤血球血色素濃度
MCV	平均赤血球容積
N-DEM	アミノピリン・N・脱メチル酵素活性
Neu	好中球
O-DEM	pニトロアニソール- O 脱メチル酵素活性
P450	チトクローム P450
PHI	最終使用から収穫までの日数
RBC	赤血球数
$T_{1/2}$	消失半減期
T ₄	テトラヨードサイロニン
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
TG	トリグリセライド
T _{max}	最高濃度到達時間
TP	総蛋白
TRR	総残留放射能
UDP-GT	ウリジンニリン酸グルクロニルトランスフェラーゼ
	// v v / v 取 / / v / ロー/v 「 / v ハノ エ /

UDS	不定期 DNA 合成試験
WBC	白血球数

1 <別紙 3:作物残留試験(海外)>

< 別紙 3:作物		(海外) /	> T	1	1	1			
作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)		
				1 <	< 0.02				
					36	2	< 0.02		
						平均	< 0.02		
						1	< 0.02		
					40 <u>2 <0.02</u> 平均 <0.02	< 0.02			
小麦	_		0.123-	0.0438-		< 0.02			
[玄麦]	1	2	0.203	0.0720		1	< 0.02		
2000年					46	2	< 0.02		
						平均	< 0.02		
						1	< 0.02		
					50	2	< 0.02		
						平均	<0.02		
							< 0.02		
					35		<0.02		
					35 2 平均 39 2 平均 44 2 平均		<0.02		
						1	<0.02		
					0778- 126	-	<0.02		
小麦			0.127-	0.0778-			<0.02		
[玄麦]	1	2	0.202	0.126			<0.02		
2001年			0.202	0.120		-	<0.02		
					44	-	<0.02		
						1	<0.02		
					49	2	<0.02		
					49	平均	<0.02		
 小麦						1	<0.02		
[玄麦]	1	2	0.135-	0.0614-	42	2	<0.02		
2000年	1	1	1	2	0.211	0.101	42	平均	<0.02
小麦						+	<0.02		
	1	1	2	0.129-	0.0446-	42	$\frac{1}{2}$	<0.02	
2000年	1	Δ	0.206	0.0706	42	平均			
							<0.02		
小麦 [玄麦]	1	0	0.130-	0.0691 -	40	$\begin{array}{c c} 1 \\ \hline 2 \end{array}$	<0.02		
2001年	1	2	0.196	0.116	42	平均	<0.02		
							<0.02		
小麦	1	0	0.128-	0.0647 -	4 4	1	<0.02		
[玄麦]	1	2	0.207	0.103	41	2	<0.02		
2001年						平均	<0.02		
小麦	_	6	0.123-	0.0991-	60	1	<0.02		
[玄麦]	1	2	0.203	0.158	38	2	<0.02		
2001年						平均	<0.02		
小麦		_	0.120-	0.0644-	1.0	1	<0.02		
[玄麦]		2	0.198	0.102	10	2	<0.02		
2001年						平均	< 0.02		
小麦			0.127-	0.0836-		1	< 0.02		
[玄麦]	1	2	0.201	0.135	35	2	< 0.02		
2001年					_		平均	< 0.02	

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)
小麦 [玄麦] 2000 年	1	2	0.128- 0.201	0.0454- 0.0720	33	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2001 年	1	2	0.127- 0.202	0.0670- 0.107	43	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦]	1	2	0.126- 0.202	0.0678- 0.108	39	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2000 年	1	2	0.126- 0.201	0.0710- 0.112	46	1 2 平均	<0.02 0.03 0.02
小麦 [玄麦] 2000 年	1	2	0.144- 0.200	0.0612- 0.101	42	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2001 年	1	2	0.126- 0.196	0.090- 0.138	32	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2001 年	1	2	0.129- 0.202	0.0679- 0.106	42	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2001 年	1	2	0.130- 0.203	0.0933- 0.147	43	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2000 年	1	2	0.126- 0.211	0.0431- 0.0703	57	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2000 年	1	2	0.127- 0.202	0.0315- 0.0514	30	1 2 平均	0.05 0.04 0.05
小麦 [玄麦] 2001 年	1	2	0.123- 0.205	0.0794- 0.120	42	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2001 年	1	2	0.126- 0.199	0.0395- 0.0622	37	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2000 年	1	2	0.133- 0.210	0.0317- 0.0506	47	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2000 年	1	2	0.132- 0.207	0.032- 0.0504	49	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2000 年	1	2	0.129- 0.197	0.118- 0.183	55	1 2 平均	<0.02 <0.02 <0.02
小麦 [玄麦] 2000 年	1	2	0.125- 0.201	0.0317- 0.0508	48	1 2 平均	<0.02 <0.02 <0.02

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)							
.L. ±						1	< 0.02							
小麦 [玄麦]	1	2	0.126- 0.195	0.0317- 0.05044	53	2	<0.02							
2000年						平均	< 0.02							
小麦						1	0.03							
「玄麦」	1	2	0.128- 0.204	0.114- 0.184	43	2	0.04							
2000年						平均	0.04							
小麦						1	< 0.02							
[玄麦]	1	2	0.126- 0.201	0.0424- 0.0674	57	2	< 0.02							
2000年						平均	< 0.02							
小麦					3.8	1	< 0.02							
[玄麦]	1	2	0.127- 0.200	0.0319- 0.0504		2	< 0.02							
2000年						平均	< 0.02							
小麦				0.126- 0.200		1	< 0.02							
[玄麦]	1	2			2	< 0.02								
2000年						平均	< 0.02							
小麦						1	0.03							
[玄麦] 2000 年	1	2	0.124- 0.205	0.0315- 0.0504	31	2	0.04							
2000						平均	0.04							
小麦	_		0.125-	0.0318-		1	< 0.02							
[玄麦] 2000 年	1	2	0.198	0.0498	35	2	0.02							
						平均	0.02							
小麦			0.126-	0.0315-		1	0.03							
[玄麦] 2000 年	1	2	0.200	0.0315- 0.0507	30	2 平均	0.06							
						1	0.04							
I+-				0.0467- 0.0702	32	2	0.04							
大麦 [玄麦]	1	2	0.131-			平均	0.04							
2000年	1		0.198			1	0.04							
												37	2	0.05
						平均	0.04							

作物名 [分析部位]	試験	使用	処理量 (lag ai/ba)	処理濃度 (lag ai/hI)	PHI (目)	反復	残留量			
実施年	圃場数	回数	(kg ai/ha)	(kg ai/hL)	(口)		(ppm)			
						1	0.04			
					44	2	0.05			
大麦			0.131-	0.0467-		平均	0.05			
[玄麦]	1	2	0.198	0.0702		1	< 0.02			
2000年					47	2	0.03			
					- '	平均	0.02			
						1	0.03			
					36	2	0.02			
						平均	0.03			
						1	0.05			
大麦			0.100	0.0001	39	<u>2</u> 平均	0.04			
[玄麦]	1	2	0.128-	0.0621-			0.04			
2000年			0.202	0.0973	45	$\frac{1}{2}$	0.03			
					45	平均	0.03			
						1	0.03			
					40	2	0.04			
					49	平均	0.02			
大麦						1	<0.03			
[玄麦]	1	2	0.124-	0.046-	42	2	<0.02			
2000年	1		0.206	0.070	42	平均	<0.02			
大麦						1	0.02			
[玄麦]	1	2	0.131-	0.0461-	48	2	0.08			
2001年	1	1	1	1		0.206	0.0732	40	平均	0.09
大麦						1	0.06			
[玄麦]	1	2	0.126-	0.0452-	71	2	0.08			
2001年	_	_	0.195	0.0724		平均	0.07			
大麦						1	< 0.02			
[玄麦]	1	2	0.128-	0.0455-	33	2	< 0.02			
2000年			0.203	0.0723		平均	< 0.02			
大麦			0.100	0.0444		1	0.03			
[玄麦]	1	2	0.126-	0.0444-	36	2	0.04			
2000年			0.212	0.0750		平均	0.04			
大麦			0.100	0.0070		1	< 0.02			
[玄麦]	1	2	0.128- 0.202	0.0676- 0.107	43	2	< 0.02			
2000年			0.202	0.107		平均	< 0.02			
大麦			0.126-	0.0459-		1	< 0.02			
[玄麦]	1	2	0.126	0.0452- 0.0727	43	2	< 0.02			
2000年			0,204	0.0121		平均	< 0.02			
大麦			0.126-	0.0450-		1	0.03			
[玄麦]	1	2	0.126	0.0450° 0.0715	44	2	0.04			
2000年			J.201	0.0110		平均	0.03			
大麦			0.131-	0.0384-		1	0.02			
[玄麦]	1	2	0.197	0.0653	57	2	<0.02			
			0.201			平均	0.02			
大麦		_	0.126-	0.0319-		1	0.14			
[玄麦]	1	2	0.206	0.0507	36	2	0.13			
2000年			700			平均	0.14			

作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)
大麦 [玄麦] 2000 年	1	2	0.128- 0.194	0.0321- 0.0508	32	1 2 平均	0.14 0.16 0.15
大麦 [玄麦] 2000 年	1	2	0.131- 0.202	0.115- 0.183	43	1 2 平均	0.05 0.06 0.06
大麦 [玄麦]	1	2	0.127- 0.204	0.116- 0.183	65	1 2 平均	0.02 0.03 0.03
大麦 [玄麦] 2000 年	1	2	0.124- 0.201	0.0316- 0.0509	48	1 2 平均	<0.02 <0.02 <0.02
大麦 [玄麦] 2000 年	1	2	0.127- 0.201	0.0315- 0.0501	43	1 2 平均	<0.02 <0.02 <0.02
大麦 [玄麦] 2000 年	1	2	0.127- 0.200	0.116- 0.184	34	1 2 平均	<0.02 <0.02 <0.02
大麦 [玄麦] 2001 年	1	2	0.139- 0.211	0.138- 0.211	71	1 2 平均	<0.02 n.a. <0.02
大麦 [玄麦] 2001 年	1	2	0.133- 0.212	0.133- 0.211	71	1 2 平均	<0.02 <0.02 <0.02
大麦 [玄麦] 2000 年	1	2	0.124- 0.205	0.115- 0.183	52	1 2 平均	<0.02 <0.02 <0.02
大麦 [玄麦] 2000 年	1	2	0.127- 0.209	0.0633- 0.102	47	1 2 平均	<0.02 <0.02 <0.02
大麦 [玄麦] 2000 年	1	2	0.129- 0.209	0.113- 0.183	33	1 2 平均	<0.02 0.02 0.02
大麦 [玄麦] 2000 年	1	2	0.127- 0.201	0.0320- 0.0511	30	1 2 平均	0.05 0.09 0.07
大麦 [玄麦] 2000 年	1	2	0.139- 0.209	0.281- 0.465	36	1 2 平均	0.10 0.11 0.11
とうもろこし [子実] 2006 年	1	4	0.203- 0.210	0.111- 0.112	14	1 2 平均	<0.02 <0.02 <0.02
とうもろこし [子実] 2006 年	1	4	0.200- 0.201	0.142- 0.161	14	1 2 平均	<0.02 <0.02 <0.02
とうもろこし [子実] 2006 年	1	4	0.195- 0.202	0.149- 0.150	14	1 2 平均	<0.02 <0.02 <0.02

作物名							
[分析部位]	試験	使用	処理量	処理濃度	PHI	反復	残留量
実施年	圃場数	回数	(kg ai/ha)	(kg ai/hL)	(日)	入区	(ppm)
とうもろこし						1	< 0.02
[子実]	1	4	0.193-	0.115-	13	2	< 0.02
2006年			0.209	0.143		平均	< 0.02
とうもろこし						1	< 0.02
[子実]	1	4	0.197-	0.152-	11	2	< 0.02
2006年			0.202	0.154		平均	< 0.02
とうもろこし						1	< 0.02
[子実]	1	4	0.200- 0.202	0.152- 0.155	12	2	< 0.02
2006年			0.202	0.155		平均	< 0.02
とうもろこし			0.000	0.110		1	< 0.02
[子実]	1	4	0.200- 0.205	0.112- 0.118	14	2	< 0.02
2006年			0.205	0.116		平均	< 0.02
とうもろこし			0.107	0.107		1	< 0.02
[子実]	1	4	0.197- 0.205	0.107- 0.131	14	2	< 0.02
2006年			0.200	0.131		平均	< 0.02
とうもろこし			0.100	0.100		1	< 0.02
[子実]	1	4	0.193- 0.200	0.128- 0.142	14	2	< 0.02
2006年			0.200	0.142		平均	< 0.02
とうもろこし			0.204-	0.196-		1	< 0.02
[子実]	1	4	0.204- 0.205	0.126- 0.143	14	2	< 0.02
2006年			0.200	0.140		平均	< 0.02
とうもろこし			0.199-	0.110-		1	< 0.02
[子実]	1	4	0.199	0.110	14	2	< 0.02
2006年			0.200	0.120		平均	< 0.02
とうもろこし			0.196-			1	< 0.02
[子実]	1	4	0.202	0.114	14	2	< 0.02
2006年						平均	< 0.02
とうもろこし			0.200-	0.107-		1	< 0.02
[子実]	1	4	0.202	0.108	14	2	< 0.02
2006年						平均	< 0.02
とうもろこし			0.197-	0.109-		1	<0.02
[子実]	1	4	0.202	0.119	14	2	<0.02
2006年						平均	< 0.02
とうもろこし	_		0.200-	0.109-		1	<0.02
[子実]	1	4	0.204	0.167	13	2	< 0.02
2006年						平均	<0.02
とうもろこし	_		0.201-	0.133-		1	<0.02
[子実]	1	4	0.205	0.136	13	2	<0.02
2006年						平均	<0.02
とうもろこし		,	0.195-	0.123-		1	<0.02
[子実]	1	4	0.203	0.125	14	2	<0.02
2006年						平均	<0.02
とうもろこし	_		0.193-	0.146-		1	<0.02
[子実]	1	4	0.201	0.153	14	2	<0.02
2006年	-					平均	< 0.02

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)
						1	< 0.02
				0	0	2	< 0.02
						平均	< 0.02
						1	< 0.02
					7	2	< 0.02
					平均	< 0.02	
とうもろこし						1	< 0.02
[子実]	1	4	0.192- 0.202	0.160- 0.179	13	2	< 0.02
2006年			0.202	0.173		平均	< 0.02
						1	< 0.02
					20	2	< 0.02
						平均	< 0.02
						1	< 0.02
					27	2	< 0.02
						平均	< 0.02
					0	1	0.053
				7		2	0.040
						平均	0.05
			0.196-		7	1	0.075
						2	0.049
					平均	0.06	
とうもろこし	1				14	1	0.055
[子実] 2006 年		4				2	0.069
2000 +						平均	0.06
					21	$\frac{1}{2}$	0.031
					21	平均	0.038
						1	0.04
					28	2	0.066
					20	平均	0.07
						1	< 0.05
					7	2	< 0.05
						平均	< 0.05
だいざ						1	< 0.05
だいず [種子] 2004 年	1	3	0.145-	0.100-	14	2	< 0.05
	1		0.151	0.103		平均	< 0.05
					21	1	< 0.05
						2	< 0.05
						平均	< 0.05

だいず [種子] 2004年 1 3 0.145- 0.151 0.100- 0.103 1 28 平均 平均 28 平均 平均 28 平均 平均	<0.05 <0.05 <0.05
だいず [種子] 2004年 1 3 0.145- 0.151 0.100- 0.103 28 2 平均 0.100- 0.103 1 35 2	<0.05 <0.05
[種子] 1 3 0.145- 0.100- 0.103 中均 2004年 3 0.151 0.103 1 35 2	< 0.05
1 3 0.151 0.103 1 35 2	
	< 0.05
	< 0.05
	< 0.05
	< 0.05
	< 0.05
平均	< 0.05
	< 0.05
13 2	< 0.05
平均	< 0.05
だいず 1	< 0.05
「	< 0.05
2004年 0.117 平均	< 0.05
	< 0.05
	< 0.05
平均	< 0.05
	< 0.05
34 2	< 0.05
平均	< 0.05
だいず 1	< 0.05
「	< 0.05
2004年 0.150 0.105 平均	< 0.05
だいず 1	< 0.05
「	0.06
2004年 0.157 0.102 平均	0.05
だいず 1	< 0.05
「	< 0.05
2004年 0.157 0.0957 平均	< 0.05
だいず 1	0.06
「新子」	< 0.05
2004年 0.150 0.108 平均	0.05
たいず 1	< 0.05
「	0.07
2004年 0.153 0.109 平均	0.06
たいず 1	< 0.05
「	< 0.05
2004年 0.150 0.111 平均	< 0.05
だいず 1	< 0.05
「	< 0.05
2004年 0.149 0.159 平均	< 0.05
1	< 0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.05
[種子] 0.151 0.0852 21 2 平均	< 0.05

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)		
だいず						1	0.14		
[種子]	1	3	0.151-	0.100-	20	2	0.10		
2004年			0.155	0.105		平均	0.12		
だいず						1	< 0.05		
[種子]	1	3	0.1479- 0.151	0.110- 0.118	19	2	< 0.05		
2004年			0.131	0.116		平均	< 0.05		
だいず						1	< 0.05		
[種子]	1	3	0.149- 0.150	0.0798- 0.0802	19	2	< 0.05		
2004年			0.130	0.0802		平均	< 0.05		
4% (.18					0.1.10	0.0040		1	< 0.05
だいず [種子]	1	3	0.146- 0.148	0.0940- 0.0954	21	2	< 0.05		
「北田 1 」	[]			0.0354		平均	< 0.05		
だいず			0.1500	0.000		1	< 0.05		
[種子]	1	3	0.1500- 0.152	0.0927- 0.118	21	2	< 0.05		
2004年			0.132	0.110		平均	< 0.05		
だいず				0.000		1	< 0.05		
[種子]	1	3	0.150- 0.152	0.0935- 0.0972	20	2	< 0.05		
2004年			0.132	0.0372		平均	< 0.05		
だいず			0.1.10	0.000		1	< 0.05		
[種子]	1	3	0.149- 0.150	0.088- 0.0887	21	2	< 0.05		
2004年			0.190	0.0001		平均	< 0.05		
だいず			0.150	0.155		1	< 0.05		
[種子]	1	3	3	0.150- 0.151	0.155- 0.161	21	2	< 0.05	
2004年			0.101	0.101		平均	< 0.05		
だいず			0.140	0.0930- 0.0988	19	1	< 0.05		
[種子]	1	3	0.148- 0.1500			2	< 0.05		
2004年			0.1000	0.0000		平均	< 0.05		
						1	0.32		
					0	2	0.29		
						平均	0.31		
						1	0.43		
					4	2	0.40		
						平均	0.42		
えんどうまめ			0.201-	0.0928-		1	0.29		
[種子]	1	3	0.201	0.0928 0.105	7	2	0.33		
2002年			3.200	3.200		平均	0.31		
						1	0.28		
					14	2	0.29		
						平均	0.29		
					21	1	0.31		
						2	0.37		
						平均	0.34		

作物名	試験	使用	処理量	加细油中	PHI		残留量		
[分析部位]	圃場数	回数	处理里 (kg ai/ha)	処理濃度 (kg ai/hL)	(日)	反復	发留里 (ppm)		
実施年			_			1	0.12		
					0	$\frac{1}{2}$	0.12		
						平均	0.10		
						1	0.06		
					3	$\frac{1}{2}$	0.06		
					0	平均	0.06		
えんどうまめ						1	< 0.05		
[種子]	1	3	0.202-	0.191-	7	2	0.05		
2002年	1	0	0.205	0.209	•	平均	0.05		
						1	0.06		
					15	2	< 0.05		
						平均	0.06		
						1	< 0.05		
					22	2	0.06		
						平均	0.05		
えんどうまめ						1	0.12		
[種子]	1	3	0.202-	0.0998-	7	2	0.12		
2002年	_		0.205	0.105		平均	0.12		
えんどうまめ						1	0.10		
[種子]	1	3	0.199-0.202	0.105- 0.106	7	2	0.12		
2002年				0.100		平均	0.11		
えんどうまめ			0.100			1	< 0.05		
[種子]	1	3	0.198- 0.210	0.0715- 0.0719	7	2	< 0.05		
2002年			0.210	0.0110		平均	< 0.05		
えんどうまめ		3	3 0.196- 0.201	0.0766- 0.0768		1	< 0.05		
[種子]	1				7	2	< 0.05		
2002年					0.201	0.0700		平均	< 0.05
えんどうまめ			0.201-	0.108-		1	< 0.05		
[種子]	1	3	0.201	0.108	7	2	< 0.05		
2002年			0.202	0.100		平均	< 0.05		
えんどうまめ			0.199-	0.0927-		1	< 0.05		
[種子]		3	0.206	0.0958	7	2	< 0.05		
2002年			0.200			平均	< 0.05		
えんどうまめ			0.203-	0.201-		1	< 0.05		
[種子]	1	3	0.206	0.201	7	2	0.08		
2002年			0.200	• 		平均	0.06		
えんどうまめ			0.197-	0.181-		1	< 0.05		
[種子]	1	3	0.205	0.203	7	2	< 0.05		
2002年			0.200			平均	< 0.05		
えんどうまめ			0.195-	0.0848-		1	< 0.05		
[種子]	1	3	0.201	0.177	7	2	< 0.05		
2002年			3.231	J.2. •		平均	< 0.05		
えんどうまめ			0.199-	0.179-		1	0.66		
[種子]	1	3	0.202	0.183	7	2	0.52		
2002年			J J			平均	0.59		
えんどうまめ			0.201-	0.182-		1	0.64		
[種子]	1	3	0.201- 0.203	0.182- 0.183	8	2	0.68		
2002年						平均	0.66		

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)					
						1	0.16					
					0	2	0.11					
						平均	0.14					
						1	0.10					
小豆類					7	2	0.05					
(乾燥子実)	1	3	0.203-	0.106-		平均	0.08					
[種子]	1	3	0.211	0.108		1	0.09					
2002年					14	2	0.05					
						平均	0.07					
						1	< 0.05					
					21	2	< 0.05					
						平均	< 0.05					
小豆類			0.100	0.000=	8	1	< 0.05					
(乾燥子実) [種子]	1	3	0.196- 0.240	0.0667- 0.0767		2	< 0.05					
2002年			3,2 -3	******		平均	< 0.05					
小豆類			0.000	0.115		1	< 0.05					
(乾燥子実) [種子]	1	3	0.203- 0.206	0.115- 0.214	7	2	< 0.05					
2002年						平均	< 0.05					
小豆類	1		0.105	0.100		1	< 0.05					
(乾燥子実) [種子]		1	1	1	1	1	1 3	3	0.197- 0.210	0.138- 0.142	8	2
2002年						平均	< 0.05					
小豆類			0.100	0.0510		1	< 0.05					
(乾燥子実) [種子]	1	3	0.198- 0.204	0.0719- 0.0720	7	2	< 0.05					
2002年				*****		平均	< 0.05					
小豆類			0.104	0.100		1	0.14					
(乾燥子実) [種子]	1	3	0.194- 0.204	0.199- 0.200	7	2	0.12					
2002年						平均	0.13					
小豆類			0.100	0.100		1	< 0.05					
(乾燥子実) [種子]	1	3	0.196- 0.204	0.102- 0.139	7	2	< 0.05					
2002年			0.201	0.100		平均	< 0.05					
小豆類			0.000	0.05:5		1	0.20					
(乾燥子実) [種子]	1	3	0.202- 0.204	0.0846- 0.200	7	2	0.29					
2002年			0.201	0.200		平均	0.25					
小豆類			0.175			1	< 0.05					
(乾燥子実) [種子]	1	3	0.198- 0.205	0.0796- 0.0873	7	2	< 0.05					
2002年			3.200	3.00.0		平均	< 0.05					

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)		
小豆類 (乾燥子実)				0.0714		1	< 0.05		
[種子]	1	3	0.202	0.0714- 0.0866	7	2	< 0.05		
2002年						平均	< 0.05		
					_	$\frac{1}{2}$	<0.02		
					7	平均	<0.02 <0.02		
						1	<0.02		
らっかせい					14	2	< 0.02		
[子実]	1	4	0.202	0.137-		平均	<0.02		
2000年	_	_	0.202	0.148	21	$\frac{1}{2}$	<0.02 <0.02		
					21	平均	<0.02		
						1	<0.02		
					28	2	< 0.02		
						平均	<0.02		
らっかせい 「子実]	1	4	0.203-	0.0962-	1.4	$\frac{1}{2}$	<0.02		
2000年	1	4	0.208	0.107	14	平均	<0.02		
らっかせい						1	<0.02		
[子実]	1	4	0.202-	0.0702-	13	2	<0.02		
2000年			0.203	0.0776		平均	< 0.02		
らっかせい					0.197-	0.0707-		1	< 0.02
[子実]	1	4	0.197	0.0778	13	2	< 0.02		
2000年			0.120			平均	< 0.02		
らっかせい		1	,	0.197-	0.148-		1	<0.02	
[子実] 2000 年	1	4	0.203	0.161	15	2 平均	<0.02		
·						·	<0.02		
らっかせい		,	0.201-	0.158-		1			
[子実] 2000 年	1	4	0.204	0.165	14	2	< 0.02		
2000 +						平均	< 0.02		
らっかせい			0.201-	0.154-		1	<0.02		
[子実]	1	4	0.201	0.134	15	2	< 0.02		
2000年			0.200	******		平均	< 0.02		
らっかせい						1	< 0.02		
[子実]	1	4	0.201- 0.207	0.0601- 0.0670	15	2	< 0.02		
2000年			0.207	0.0070		平均	< 0.02		
らっかせい						1	< 0.02		
[子実]		4	0.202-	0.133-	14	2	< 0.02		
		'	0.204	0.141	14	平均	<0.02		
8 2.31.5						1	<0.02		
らっかせい [子実]	1	4	0.201- 0.206	0.0576- 0.0645	14	2	<0.02		
2000年	1	4				-			
						平均	< 0.02		

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)
らっかせい						1	< 0.02
[子実]	1	4	0.201- 0.203	0.0575- 0.0643	14	2	< 0.02
2000年			0.205	0.0645		平均	< 0.02
らっかせい						1	< 0.02
[子実]	1	4	0.202- 0.211	0.154- 0.161	15	2	< 0.02
2000年			0.211	0.161		平均	< 0.02
						1	< 0.02
2007					90	2	< 0.02
ばれいしょ	1	1	0.0000	9		平均	< 0.02
[塊茎] 2005 年	1	1	0.0006	3		1	< 0.02
2000 —					122	2	< 0.02
						平均	< 0.02
			0.0006			1	< 0.02
2007					90	2	< 0.02
ばれいしょ [塊茎]	1	1		9		平均	< 0.02
2005 年	1			3		1	< 0.02
2005 +					118	2	< 0.02
						平均	< 0.02
						1	< 0.02
					90	2	< 0.02
ばれいしょ	1	1	0.0000	0		平均	< 0.02
[塊茎] 2005 年	1	1	0.0006	3		1	< 0.02
2000 —					110	2	< 0.02
						平均	< 0.02
					91	1	< 0.02
2007						2	< 0.02
ばれいしょ	1	1	0.0006	9		平均	< 0.02
[塊茎] 2005 年	1	1	0.0006	3		1	< 0.02
2000 —					128	2	< 0.02
						平均	< 0.02
						1	< 0.02
h li la vel					90	2	< 0.02
ばれいしょ [塊茎]	1	1	0.0000	9		平均	< 0.02
2005 年	1	1	0.0006	3		1	< 0.02
2000 —					124	2	< 0.02
						平均	< 0.02
						1	< 0.02
					91	2	< 0.02
ばれいしょ				_		平均	< 0.02
[塊茎]	1	1	0.0006	3	133	1	< 0.02
2005 年						2	< 0.02
						平均	< 0.02

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)	
						1	< 0.02	
					90	2	< 0.02	
ばれいしょ		_	0.0000			平均	< 0.02	
[塊茎] 2005 年	1	1	0.0006	3		1	< 0.02	
2000					136	2	< 0.02	
						平均	< 0.02	
						1	< 0.02	
-0.5					90	2	< 0.02	
ばれいしょ [塊茎]	1	1	0.0006	3		平均	< 0.02	
2005 年	1	1	0.0006	3	148	1	< 0.02	
						2	< 0.02	
						平均	< 0.02	
						1	0.07	
					0	2	0.07	
						平均	0.07	
						1	0.08	
					7	2	0.24	
						平均	0.16	
てんさい			0.901	0.147		1	0.13	
[根部]	1	3	0.201- 0.204	0.147- 0.149	13	2	< 0.05	
2004年						平均	0.08	
					20	1	< 0.05	
						2	0.07	
						平均	0.06	
						1	< 0.05	
						2	0.06	
						平均	0.05	
						1	0.12	
てんさい					6	2	0.22	
[根部]	1	3	0.203-	0.197-		平均	0.17	
2004年	_	9	0.208	0.204		1	0.14	
					14	2	0.08	
						平均	0.11	
						1	< 0.05	
てんさい					6	2	< 0.05	
[根部]	1	3	0.200-	0.210- 0.235		平均	< 0.05	
2004年	1		0.214		14	1	< 0.05	
						2	< 0.05	
							平均	< 0.05

作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (日)	反復	残留量 (ppm)
天 旭十						1	< 0.05
-, ,,					7	2	< 0.05
てんさい	_	0	0.100	0.010		平均	< 0.05
[根部]	1	3	0.199	0.212		1	< 0.05
2004年					14	2	< 0.05
						平均	< 0.05
						1	< 0.05
2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -					6	2	< 0.05
てんさい	1	0	0.001	0.177		平均	< 0.05
[根部]	1	3	0.201	0.177		1	< 0.05
2004年					14	2	< 0.05
						平均	< 0.05
						1	< 0.05
				0.138-	7	2	< 0.05
てんさい			0.196-			平均	< 0.05
[根部]	1	3	0.201	0.143		1	< 0.05
2004年					14	2	< 0.05
						平均	< 0.05
			0.202- 0.208			1	< 0.05
> (->					7	2	0.05
てんさい	_	3		0.136-		平均	0.05
[根部]	1			0.140		1	< 0.05
2004年					14	2	< 0.05
						平均	< 0.05
				0.108- 0.110		1	< 0.05
> (->					7	2	< 0.05
てんさい		3	0.199- 0.203			平均	< 0.05
[根部]	1				14	1	< 0.05
2004年						2	< 0.05
						平均	< 0.05
						1	0.13
7141					7	2	0.07
てんさい [根部]	1	3	0.200-	0.112-		平均	0.10
2004年	1	3	0.202	0.143		1	0.06
2004 +					14	2	0.08
						平均	0.07
						1	< 0.05
てんさい					7	2	< 0.05
[根部]	1	3	0.194-	0.114-		平均	< 0.05
2004年	1	J	0.208	0.118		1	0.07
2004 —					14	2	< 0.05
						平均	0.05
						1	< 0.05
てんさい [根部]				0.192- 0.201	14	2	< 0.05
	1	3	0.199- 0.202			平均	< 0.05
	1					1	< 0.05
						2	0.05

作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)													
2472 1						1	< 0.05													
					7	2	< 0.05													
てんさい			0.198-	0.108-		平均	< 0.05													
[根部]	1	3	0.202	0.115		1	< 0.05													
2004年					14	2	< 0.05													
						平均	< 0.05													
						1	0.055													
					0	2	0.048													
						平均	0.05													
						1	0.045													
					3	2	< 0.040													
						平均	0.04													
きゅうり			0.105	0.000		1	< 0.040													
[果実]	1	3	0.197- 0.200	0.086 -0.138	7	2	< 0.040													
2010年			0.200	0.136		平均	< 0.04													
						1	< 0.040													
					14	2	< 0.040													
						平均	< 0.04													
						1	< 0.040													
					21	2	< 0.040													
						平均	< 0.04													
		2	0.197-			1	0.041													
+ > 10					3	2	0.050													
きゅうり [果実]	1			0.085-		平均	0.05													
2010年	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3	0.204	0.138		1	< 0.040
2010 +					7	2	< 0.040													
						平均	< 0.04													
				0.071		1	< 0.040													
+ , = 10					3	2	< 0.040													
きゅうり [果実]	1	3	0.197-			平均	< 0.04													
2010年	1	J	0.201	0.071		1	< 0.040													
2010					7	2	< 0.040													
						平均	< 0.04													
						1	0.071													
きゅうり					3	2	0.073													
[果実]	1	3	0.198-	0.119		平均	0.07													
2010年	1	3	0.200	0.113		1	0.055													
_010					7	2	0.056													
						平均	0.06													
						1	0.058													
きゅうり [果実] 1 2010年				0.066- 0.070	7	2	0.042													
	1	Q	0.200-			平均	0.05													
	1	3	0.203			1	0.046													
						2	< 0.040													
									平均	0.04										

作物名 [分析部位] 実施年	
実施年)
きゅうり [果実] 2010年 1 3 0.198- 0.203 0.084- 0.088 3 2 0.126 平均 0.14 1 0.062 6 2 0.078	
[果実] 1 3 0.198- 0.203 0.084- 0.088 平均 0.14 6 2 0.078	7
[果実] 1 3 0.198- 0.203 0.084- 0.088 中均 0.14 1 0.062 6 2 0.078	;
2010年 0.203 0.088 1 0.062 2 0.078	
6 2 0.078	2
	3
1 0.048	3
きゅうり 3 2 0.040	
「里宝」 1 2 0.200- 10.62 平均 0.04	
2010年 0.208 1 <0.04	
7 2 <0.046	
平均 <0.04	
1 0.126	
0 2 0.096	
平均 0.11	
1 0.075	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
平均 0.10	
きゅうり 0.199- 0.129- 7 2 0.045	
[未表] $\begin{bmatrix} 1 & 3 & 0.202 & 0.133 & 7 & 2 & 0.056 \end{bmatrix}$	
2010年 平均 0.05	
1 <0.04	
14 2 <0.04	
平均 <0.04	
1 <0.04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
平均 <0.04	
1 <0.04	
かぼちゃ 3 2 <0.04	
「果実」 1 3 0.200- 0.204 0.072 平均 <0.04	
2010 年	
平均 <0.04	
1 0.144	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
平均 0.12	
1 <0.04	
$\frac{1}{3}$ $\frac{1}{2}$ <0.04	
平均 <0.04	
かぼちゃ 1 <0.04	
「里宝」	
2010年 0.201 0.138 7 2 3 0.04	
1 <0.04	
13 2 <0.04	
平均 <0.04	
1 <0.04	
20 2 < 0.04	
	1

作物名 [分析部位] 実施年	試験 圃場数	使用回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (日)	反復	残留量 (ppm)
			0.197-			1	< 0.040
					3	2	< 0.040
かぼちゃ				0.051		平均	< 0.04
[果実]	1	3	0.201	0.071		1	< 0.040
2010年					7	2	< 0.040
						平均	< 0.04
				1	0.089		
					0	2	0.082
						平均	0.09
						1	0.049
					3	2	0.053
						平均	0.05
かぼちゃ			0.000	0.050	6	1	< 0.040
[果実]	1	3	0.200- 0.201	0.059- 0.074		2	< 0.040
2010年			0.201	0.074		平均	< 0.04
						1	< 0.040
					13	2	< 0.040
						平均	< 0.04
						1	< 0.040
					21	2	< 0.040
						平均	< 0.04
						1	< 0.040
かぼちゃ			0.197- 0.201		3	2	0.044
[果実]	1	3		0.080-		平均	0.04
2010年	1			0.084		1	< 0.040
					7	2	< 0.040
						平均	< 0.04
				0.082- 0.084		1	<0.040
かぼちゃ					3	2	<0.040
[果実]	1	3	0.199-			平均	< 0.04
2010年	_		0.200			1	<0.040
					7	2	<0.040
						平均	<0.04
						1	0.083
かぼちゃ					2	2	0.089
[果実]	1	3	0.199-	0.054		平均	0.09
2010年			0.202			1	0.061
					6	2	<0.040
						平均	0.05
						1	0.079
かぼちゃ			0.100	0.100	2	2	0.083
[果実]	1	3	0.199-			平均	0.08
2010年		3	0.201			1	0.061
					5	2	0.064
						平均	0.06

作物名	試験	使用	60 TH E.	加加油柱	PHI		135万里。
[分析部位] 実施年	画場数	回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	(目)	反復	残留量 (ppm)
大 旭十						1	0.076
					3	2	0.096
メロン			0.200-	0.096-		平均	0.09
[果実]	1	3	0.203	0.099		1	<0.040
2010年			0.200	0.000	7	2	<0.040
						平均	<0.04
						1	0.126
				2	2	0.167	
メロン			0.200-	0.072-	_	平均	015
[果実]	1	3	0.203	0.072		1	0.058
2010年			0.200	0.010	7	2	0.078
					•	平均	0.07
						1	0.224
					3	2	0.175
メロン			0.197-			平均	0.20
[果実]	1	3	0.197	0.084		1	0.20
2010年			0.201		7	2	0.037
					1	平均	0.078
						1	0.08
					0	2	0.305
						平均	0.303
						1	0.23
					3	$\frac{1}{2}$	0.038 0.126
					3	平均	0.120
メロン						1	0.055
[果実]	1		1 3 0.198-	0.084-	7	$\frac{1}{2}$	0.033
2010年	1	3	0.200	0.086	1	平均	0.084
2010 +					14		0.064
						$\frac{1}{2}$	0.067
						平均	0.007
						1	0.07
						2	0.055
					13	平均	0.06
						1	0.099
					3	2	0.090
メロン			0.200-	0.133-		平均	0.09
[果実]	1	3	0.200	0.133		1	0.063
2010年			0.202	0.140	7	2	0.076
					•	平均	0.07
メロン						1	<0.040
[果肉]	1	3	0.200-	0.133-	3	2	<0.040
2010年	1	5	0.202	0.140		平均	<0.040
2010 —					<u> </u>	1	0.236
					3	2	0.230 0.162
メロン			0.200-	0.069- 0.071	3	平均	0.102
[果実]	1	3	0.200- 0.202			1	0.20
2010年			0.202	0.011	7	2	0.155
						平均	0.17
		<u> </u>	<u>I</u>	1	<u> </u>	17	0.11

作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)		
メロン			0.200-	0.069-		1	<0.040		
[果肉]	1	3	0.200	0.003	3	2	< 0.040		
2010年						平均	<0.04		
						1	0.102		
メロン			0.100	0.000	3	2 平均	0.126		
[果実]	1	3	0.198- 0.204	0.080- 0.081		1	0.11		
2010年			0.204	0.061	7	$\frac{1}{2}$	0.066 0.065		
					1	平均	0.003		
						1	0.180		
					0	2	0.328		
						平均	0.25		
						1	0.119		
					2	2	0.096		
						平均	0.11		
メロン			0.100	0.080-		1	0.188		
[果実]	1	3	0.198- 0.204	0.080	7	2	0.152		
2010年			0.204	0.001		平均	0.17		
						1	0.112		
					14	2	0.146		
						平均	0.13		
						1	0.060		
					21	2	0.087		
ブルーベリー						平均 1	0.07 0.329		
[果実]	1	2	0.197-	0.044	6	2	0.320		
2010年	1	2	0.201			平均	0.320		
						1	0.818		
ブルーベリー [果実]	1	2	0.204-	0.054	5	2	0.759		
2010年		_	_	-	0.207			平均	0.79
ブルーベリー						1	0.651		
[果実]	1	2	0.197-	0.072	7	2	0.697		
2010年	_	_	0.199	0.012		平均	0.67		
						1	0.858		
					0	2	0.733		
						平均	0.80		
						1	0.570		
					3	2	0.505		
						平均	0.54		
ブルーベリー						1	0.333		
[果実]	1	2	0.203	0.072	7	2	0.370		
2010年						平均	0.35		
					1 , ,	1	0.220		
					14	2	0.229		
						平均	0.22		
					21	$\frac{1}{2}$	0.167 0.146		
					41	平均	0.146		
			1			T-1/1	0.10		

作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)		
ブルーベリー						1	0.111		
[果実]	1	2	0.194-	0.070	7	2	0.214		
2010年			0.200			平均	0.17		
ブルーベリー						1	0.639		
[果実]	1	2	0.201- 0.203	0.047	7	2	0.581		
2010年			0.205			平均	0.61		
						1	0.379		
					0	2	0.542		
						平均	0.46		
						1	0.324		
					3	2	0.263		
						平均	0.29		
ブルーベリー						1	0.234		
[果実]	1	2	0.201	0.047	7	2	0.258		
2010年						平均	0.25		
						1	0.116		
					21	2	0.153		
						平均	0.13		
						1	0.088		
						2	0.079		
						平均	0.08		
ブルーベリー			0.000			1	1.01		
[果実]	1	2	2	0.202- 0.206	0.106- 0.108	7	2	1.07	
2010年			0.200	0.100		平均	1.0		
ブルーベリー						0.040		1	0.582
[果実]	1	2	0.201	0.046- 0.047	7	2	0.745		
2010年				0.047		平均	0.66		
ブルーベリー			0.000			1	0.606		
[果実]	1	2	0.206- 0.213	0.080	7	2	0.829		
2010年			0.210			平均	0.72		
ブルーベリー			0.100	0.050		1	0.528		
[果実]	1	2	0.198- 0.202	0.050- 0.057	7	2	0.381		
2010年			0.202	0.007		平均	0.45		
クランベリー			0.154			1	< 0.040		
[果実]	1	2	0.174- 0.176	0.041	46	2	< 0.040		
2010年			0.170			平均	< 0.04		
クランベリー			0.150	0.030		1	< 0.040		
[果実]	1	2	0.179- 0.180	0.062- 0.063	45	2	< 0.040		
2010年			0.100	0.000		平均	< 0.04		
クランベリー			0.100	0.070		1	< 0.040		
[果実]	1	2	0.169- 0.175	0.070- 0.075	44	2	< 0.040		
2010年			0.170	0.070		平均	< 0.04		

作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (目)	反復	残留量 (ppm)							
JCHE 1						1	< 0.040							
					35	2	<0.040							
					50	-								
						平均	<0.04							
						1	<0.040							
					40	2	< 0.040							
						平均	< 0.04							
クランベリー						1	< 0.040							
[果実]	1	2	0.170-	0.070-	43	2	< 0.040							
2010年			0.173	0.074		平均	< 0.04							
						1	<0.040							
					50	2	<0.040							
					50	-								
						平均	<0.04							
						1								
					55	2	<0.040							
						平均	< 0.04							
クランベリー			0.168-	0.087-		1	0.096							
[果実]	1	2	0.170	0.090	43	2	0.084							
2010年						平均	0.09							
クランベリー [果実]	1	2	0.172-	0.074	46	$\frac{1}{2}$	<0.040 <0.040							
2010年	1	4	0.173	0.074	40	平均	<0.040							
2010						1	<0.02							
												50	2	<0.02
						平均	< 0.02							
						1	< 0.02							
なたね					54	2	<0.02							
[種子]	1	2	0.201-	0.0717-		平均	<0.02							
2000年			0.202	0.0762	59	$\frac{1}{2}$	<0.02 <0.02							
					99	平均	<0.02							
						1	<0.02							
					64	2	<0.02							
						平均	< 0.02							
						1	< 0.02							
						2	<0.02							
						平均	<0.02							
						$\frac{1}{2}$	<0.02 <0.02							
なたね			0.2020-	0.1005-		平均	<0.02							
[種子]	1	2	0.2020	0.1003	41*	1	<0.02							
2000年						2	<0.02							
						平均	< 0.02							
						1	< 0.02							
						2	< 0.02							
						平均	< 0.02							

作物名	試験	使用	処理量	処理濃度	PHI		残留量
[分析部位] 実施年	圃場数	回数	(kg ai/ha)	(kg ai/hL)	(日)	反復	(ppm)
なたね			0.1000	0.1000		1	< 0.02
[種子]	1	2	0.1980-	0.1830-	56	2	< 0.02
2000年			0.2090	0.1841		平均	< 0.02
なたね						1	< 0.02
[種子]	1	2	0.1990-	0.1824-	54	2	< 0.02
2000年			0.2020	0.1826		平均	< 0.02
なたね				0.1828-		1	< 0.02
[種子]	1	2	0.202	0.1831	55	2	< 0.02
2000年				0.1001		平均	< 0.02
なたね			0.2000-	0.1830-		1	< 0.02
[種子]	1	2	0.2040	0.1846	59	2	< 0.02
2000年			0.2010	0.1010		平均	< 0.02
なたね			0.1930-	0.0507-		1	<0.02
[種子]	1	2	0.2010	0.0509	61	2	< 0.02
2000年						平均	< 0.02
なたね			0.1990-	0.1825-		1	<0.02
[種子]	1	2	0.2020	0.1843	63	2	<0.02
2000年						平均	<0.02
なたね	_		0.2020-	0.1839-		1	<0.02
[種子]	1	2	0.2050	0.1840	69	2	<0.02
2000年						平均	<0.02
なたね	1		0.1960-	0.1009-	40	$\frac{1}{2}$	<0.02 <0.02
[種子]		1	2	0.2040	0.1010	48	平均
2000 年 なたね							<0.02
[種子]	1	2	0.2060-	0.1828-	56	$\frac{1}{2}$	<0.02
2000年	1		0.2110	0.1836	90	平均	<0.02
なたね						1	0.03
[種子]	1	2	0.1930-	0.1822-	71	2	<0.02
2000年		_	0.2030	0.1832	'-	平均	0.02
なたね						1	0.02
[種子]	1	2	0.197	0.1003-	36	2	0.05
2000年				0.1004		平均	0.04
なたね			0.0010	0.100		1	< 0.02
[種子]	1	2	0.2010-	0.1835-	83	2	< 0.02
2000年			0.2030	0.1839		平均	< 0.02
なたね			0.1070-	0 1010-		1	< 0.02
[種子]	1	2	0.1970- 0.1990	0.1819- 0.1841	73	2	< 0.02
2000年			0.1000	0.1041		平均	< 0.02
なたね			0.1960-	0.1832-		1	< 0.02
[種子]	1	2	0.1900	0.1832 0.1842	57	2	< 0.02
2000年			0.2000	0.1012		平均	< 0.02
なたね			0.201-	0.0746-		1	<0.02
[種子]	1	2	0.202	0.0809	78	2	<0.02
2001年						平均	<0.02
なたね			0.203-	0.0717-	4.6	1	<0.02
[種子]	1	2	0.214	0.0728	43	2	<0.02
2000年	<u> </u>					平均	< 0.02

10

1
$\frac{1}{2}$
3 4
5
6
7
8 9
9

作物名 [分析部位] 実施年	試験 圃場数	使用 回数	処理量 (kg ai/ha)	処理濃度 (kg ai/hL)	PHI (日)	反復	残留量 (ppm)
なたね [種子] 2000 年	1	2	0.204- 0.210	0.0734- 0.0752	36	1 2 平均	<0.02 <0.02 <0.02
なたね [種子] 2000 年	1	2	0.198- 0.202	0.123- 0.130	55	1 2 平均	<0.02 <0.02 <0.02
なたね [種子] 2000 年	1	2	0.194- 0.205	0.114- 0.117	37	1 2 平均	0.07 0.10 0.09
なたね [種子] 2000 年	1	2	0.2000- 0.2030	0.1813- 0.1829	58	1 2 平均	<0.02 <0.02 <0.02

- ・処理製剤はフロアブル剤を使用
- ・プロチオコナゾールは分析手技上、M07及びM17に変換後測定され、散布後に代謝されたM07 及び M17 と区別できないことから、プロチオコナゾール、M07 及び M17 の合量を残留値として
- ·n.a.:分析されず。
- ・一部に定量限界未満を含むデータの平均値を計算する場合は、定量限界値を測定したものとして 計算した。
- ・全ての残留値が定量限界未満の場合は定量限界値の平均に<を付して記載した。

- 1 <別紙4:畜産物残留試験>
- 2 ①乳牛

3

4

5

6

7

乳汁中残留放射濃度の推移

投与量			残留値	(μg/g)	
(mg/kg飼料)	投与日数	プロチオ コナゾール	M09	M17	合計
	0	< 0.001	< 0.003	< 0.001	< 0.003
	4	0.0052	< 0.003	< 0.001	0.005
	8	0.0038	< 0.003	< 0.001	0.004
	12	0.0047	< 0.003	< 0.001	0.005
98.4	16	0.0046	< 0.003	< 0.001	0.005
(5 倍量)	18	0.0045	< 0.003	< 0.001	0.005
(0 旧里)	20	0.0040	< 0.003	< 0.001	0.004
	22	0.0042	< 0.003	< 0.001	0.004
	24	0.0061	< 0.003	< 0.001	0.006
	26	0.0050	< 0.003	< 0.001	0.005
	28	0.0046	< 0.003	< 0.001	0.005
	0	< 0.001	< 0.003	< 0.001	< 0.003
	4	0.002	< 0.003	< 0.001	< 0.003
	8	0.0019	< 0.003	< 0.001	< 0.003
	12	0.0021	< 0.003	< 0.001	< 0.003
29.5	16	0.0016	< 0.003	< 0.001	< 0.003
(1.5 倍量)	18	0.0015	< 0.003	< 0.001	< 0.003
(1.0 旧里/	20	0.0016	< 0.003	< 0.001	< 0.003
	22	0.0011	< 0.003	< 0.001	< 0.003
	24	0.0026	< 0.003	< 0.001	< 0.003
	26	0.0020	< 0.003	< 0.001	< 0.003
	28	0.0016	< 0.003	< 0.001	< 0.003

注:9.9 ppm (0.5 倍量) 投与群においては、乳汁中の残留量は測定されなかった。

臓器・組織中における残留値 (μg/g)

與語専門委員のコメントに基づき事務局修正

臓器・組織	投与量 (mg/kg 飼料)	プロチオ コナゾール	M09	M17	合計
筋肉	9.9 (0.5 倍量)	_	1	_	1
	<u>29.5<mark>29.8</mark></u> (1.5 倍量)	0.0028	0.0014	0.0010	0.004
	98.4 (5 倍量)	0.0074	0.0027	0.0011	0.009
	9.9 (0.5 倍量)	0.0631	0.0539	0.0070	0.123
肝臓	<u>29.5<mark>29.8</mark></u> (1.5 倍量)	0.120	0.181	0.0113	0.303
	98.4 (5 倍量)	0.467	0.518	0.0297	1.010
腎臓	9.9 (0.5 倍量)	0.0622	0.0168	0.003	0.079
	<u>29.5</u> 29.8	0.176	0.0633	0.0054	0.243

	(1.5 倍量)				
	98.4 (5 倍量)	0.790	0.356	0.0114	1.16
	9.9 (0.5 倍量)	< 0.012	<0.008	< 0.005	< 0.012
脂肪	<u>29.5<mark>29.8</mark></u> (1.5 倍量)	0.0191	<0.008	< 0.005	0.019
	98.4 (5 倍量)	0.0617	0.022	0.0075	0.090

- : 分析されず

 $\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$

4

1 ②乳牛

2

3

4 5

6 7

乳汁中残留放射能濃度の推移

投与量	試験日	北片同米		残留値	(μg/g)	
(mg/kg 飼料)	(日目)	投与回数	M17	M20	M21	合量
	1	0	0.004	< 0.004	< 0.004	0.004
	4	3	0.0056	0.0089	< 0.004	0.017
	6	5	0.0052	0.0086	0.0041	0.017
	8	7	0.0068	0.0104	< 0.004	0.021
	11	10	< 0.004	0.0077	< 0.004	0.013
	13	12	< 0.004	0.0083	< 0.004	0.015
125	15	14	< 0.004	0.0078	< 0.004	0.014
(31 倍量)	18	17	< 0.004	0.0082	< 0.004	0.014
	20	19	< 0.004	0.0098	< 0.004	0.017
	22	21	< 0.004	0.0082	< 0.004	0.013
	25	24	< 0.004	0.0079	< 0.004	0.013
	27	26	< 0.004	0.0081	< 0.004	0.013
	28	27	< 0.004	0.0080	< 0.004	0.013
	29	28	< 0.004	0.0105	0.0043	0.019*

注) 29 mg/kg 飼料投与群の投与 1 日目に M17 が 0.004 µg/g 検出された以外及び 5.1 mg/kg 飼料投与群の乳汁では全て定量限界未満(<0.004 µg/g)であった。

臓器・組織中における残留値(µg/g)

臓器・組織	投与量 (mg/kg 飼料)	M17	M20	M21	合量		
	5.1 (1.3 倍量)	0.0004	0.0002	0.0002	<0.01		
筋肉	29 (7.3 倍量)	0.0011	0.0015	0.0013	<0.01		
	125 (31 倍量)	0.0011 0.0015 0. 0.0065 0.0044 0. 0.0303 0.0132 0. 0.178 0.0548 0. 1.19 0.132 0. 0.0082 0.0090 0. 0.0326 0.0635 0.	0.0072	0.03			
	5.1 (1.3 倍量)	0.0303	0.0132	0.0095	0.05		
肝臓	29 (7.3 倍量)	0.178	0.0548	0.0369	0.26		
	125 (31 倍量)	1.19	0.132	0.171	1.6		
	5.1 (1.3 倍量)	0.0082	0.0090	0.0192	0.04		
腎臓	29 (7.3 倍量)	0.0326	0.0635	0.0853	0.17		
	125 (31 倍量)	0.237	0.477	0.383	1.1		
	5.1 (1.3 倍量)	0.0009	0.0006	0.0008	<0.01		
脂肪	29 (7.3 倍量)	0.0107	0.0032	0.0043	0.02		
	125 (31 倍量)	0.0905	0.0298	0.0236	0.14		

^{*:}午前中採取した乳汁

1 <参照>

- 2 1 プロチオコナゾール (殺菌剤) 農薬等の残留基準設定に係る要請書添付資料概要:バイ
- 3 エルクロップサイエンス株式会社、2008年、一部公表
- 4 2 ラットにおける薬物動態及び代謝研究 (ADME) (GLP 対応): Bayer 社 (ドイツ)、
- 5 2001年、未公表
- 6 3 ラットにおける分布(雌雄ラットにおける定量的全身オートラジオグラフィー(QWBA))
- 7 (GLP 対応) : Bayer 社 (ドイツ) 、2001 年、未公表
- 8 4 脱チオ[M17]のラットにおける薬物動態及び代謝研究(ADME)(GLP 対応): Bayer
- 9 社 (ドイツ)、2001年、未公表
- 10 5 プロチオコナゾールの家畜における代謝と分布-泌乳山羊における吸収、分布、排泄及
- 11 び代謝(ベンゼン環標識)(GLP 対応): Bayer 社(ドイツ)、2001 年、未公表
- 12 6 プロチオコナゾールの家畜における代謝と分布 泌乳山羊における吸収、分布、排泄及
- 13 び代謝(トリアゾール環標識)(GLP 対応): Bayer 社(ドイツ)、2003 年、未公表
- 14 7 脱チオ[M17]の家畜における代謝と分布-泌乳山羊における吸収、分布、排泄及び代謝(フ
- 15 ェニル環標識) (GLP 対応): バイエル社 (ドイツ)、2002 年、未公表
- 16 8 種子処理後のプロチオコナゾールの小麦における代謝(ベンゼン環標識)(GLP対応):
- 17 バイエル社 (ドイツ)、2001年、未公表
- 18 9 散布処理後のプロチオコナゾールの小麦における代謝(ベンゼン環標識)(GLP対応):
- 19 バイエル社 (ドイツ)、2000年、未公表
- 20 10 散布処理後のプロチオコナゾールの小麦における代謝(トリアゾール環標識)(GLP対
- 21 応): バイエルクロップサイエンス社(米国)、2004年、未公表
- 22 11 プロチオコナゾールのらっかせいにおける代謝(ベンゼン環標識)(GLP対応):バイ
- 23 エル社 (ドイツ)、2001年、未公表
- 24 12 プロチオコナゾールのらっかせいにおける代謝 (トリアゾール環標識) (GLP 対応):
- 25 バイエル社 (ドイツ) 、2003 年、未公表
- 26 13 プロチオコナゾールのてんさいにおける代謝 (ベンゼン環標識) (GLP 対応): バイエ
- 27 ルクロップサイエンス社(米国)、2004年、未公表
- 28 14 プロチオコナゾールのてんさいにおける代謝(トリアゾール環標識)(GLP対応):バ
- 29 イエルクロップサイエンス社(米国)、2004年、未公表
- 30 15 プロチオコナゾールの好気土壌中における分解(20 $^{\circ}$)(GLP 対応): バイエル社(ド
- 31 イツ)、2000年、未公表
- 32 16 プロチオコナゾールの好気土壌中における分解 (20℃) (GLP 対応): バイエル社(ド
- 33 イツ)、2001年、未公表
- 34 17 滅菌緩衝液中における加水分解(GLP 対応):バイエル社(ドイツ)、1998 年、未公
- 35 表
- 36 18 滅菌緩衝液中における水中分解(GLP対応):バイエル社(ドイツ)、2001年、未公
- 37 表
- 38 19 作物残留試験成績:米国及びカナダ、2000~2001年、未公表

- 1 20 プロチオコナゾールの乳牛における残留試験 (GLP 対応): Bayer CropScience (米国)、
- 2 2006年、未公表
- 3 21 脱チオ[M17]の乳牛における残留試験(GLP対応): Bayer CropScience (米国)、2001
- 4 年、未公表
- 5 22 ラットにおける急性経口毒性試験(GLP 対応): Bayer AG(ドイツ)、1998 年、未公
- 6 表
- 7 23 ラットにおける急性経皮毒性試験(GLP 対応): Bayer AG(ドイツ)、1999 年、未公
- 8 表
- 9 24 ラットにおける急性吸入毒性試験(GLP対応): Bayer AG(ドイツ)、1999年、未公
- 10 表
- 11 25 ラットを用いた急性神経毒性試験 (GLP 対応): Bayer Corporation (米国)、2000年、
- 12 未公表
- 13 26 ウサギを用いた皮膚刺激性試験 (GLP 対応): Laboratory of Pharmacology and
- 14 Toxicology (ドイツ) 、1999 年、未公表
- 15 27 ウサギを用いた眼刺激性試験 (GLP 対応): Laboratory of Pharmacology and Toxicology
- 16 (ドイツ)、1999年、未公表
- 17 28 モルモットを用いた皮膚感作性試験 (GLP 対応): Bayer AG (ドイツ)、1999 年、未
- 18 公表
- 19 29 ラットに対する 90 日間反復経口投与毒性試験 (GLP 対応): Bayer AG (ドイツ)、1999
- 20 年、未公表
- 21 30 マウスに対する 90 日間反復経口投与毒性試験 (GLP 対応): Bayer AG (ドイツ)、1999
- 22 年、未公表
- 23 31 イヌに対する 90 日間反復経口投与毒性試験 (GLP 対応): Bayer Corporation (米国)、
- 24 2001年、未公表
- 25 32 ラットを用いた 13 週間反復経口投与神経毒性試験 (GLP 対応): Bayer Corporation (ア
- 26 メリカ)、2001年、未公表
- 27 33 ラットを用いた 28 日間反復経皮投与毒性試験 (GLP 対応): Bayer AG (ドイツ)、2000
- 28 年、未公表
- 29 34 ラットに対する慢性 (1年反復経口投与) 毒性試験 (GLP 対応): Bayer AG (ドイツ)、
- 30 2000年、未公表
- 31 35 イヌに対する慢性(1年反復経口投与)毒性試験(GLP対応): Bayer Corporation(米
- 32 国)、2001年、未公表
- 33 36 ラットに対する発がん性試験(2年反復経口投与)(GLP対応): Bayer AG(ドイツ)、
- 34 2001年、未公表
- 35 37 マウスに対する発がん性試験(18ヶ月反復経口投与)(GLP 対応): Bayer AG(ドイ
- 36 ツ)、2001年、未公表
- 37 38 ラットを用いた繁殖毒性試験 (GLP 対応): Bayer Corporation (米国)、2001年、未
- 38 公表

- 1 39 ラットにおける催奇形性試験(経口投与) (GLP対応): Bayer AG (ドイツ)、1997
- 2 年、未公表
- 3 40 ラット (Wistar Hanover strain) における催奇形性試験(経口投与) (GLP 対応):
- 4 Bayer CropScience LP(米国)、2004 年、未公表
- 5 41 ラットにおける催奇形性試験(経皮投与)(GLP対応): Bayer Corporation(米国)、
- 6 2001年、未公表
- 7 42 ウサギにおける催奇形性試験(GLP 対応):RCC(スイス)、1998 年、未公表
- 8 43 細菌を用いた復帰突然変異試験 (Ames 試験) (GLP 対応): Bayer AG (ドイツ)、1996
- 9 年、未公表
- 10 44 チャイニーズハムスター由来 V79 培養細胞を用いた in vitro 染色体異常試験 (GLP 対
- 11 応): Bayer AG (ドイツ) 、1996 年、未公表
- 12 45 哺乳動物細胞を用いた遺伝子突然変異試験(HPRT 前進突然変異試験)(GLP 対応):
- 13 Bayer AG(ドイツ)、1996 年、未公表
- 14 46 ラット肝臓初代培養細胞を用いた in vitro 不定期 DNA 合成 (UDS) 試験 (GLP 対応):
- 15 Bayer AG(ドイツ)、1998 年、未公表
- 16 47 ラット肝細胞を用いた in vivo 不定期 DNA 合成(UDS)試験(GLP 対応): Bayer AG
- 17 (ドイツ)、1999年、未公表
- 18 48 マウスを用いた小核試験 (その1) (GLP 対応): Bayer AG (ドイツ)、1996年、未
- 19 公表
- 20 49 マウスを用いた小核試験(その 2) (GLP 対応): Bayer Health Care (ドイツ)、2003
- 21 年、未公表
- 22 50 代謝物 M17 のラットにおける急性経口毒性試験 (GLP 対応): Bayer AG (ドイツ)、
- 23 1991年、未公表
- 24 51 代謝物 M17 のラットにおける急性経皮毒性試験 (GLP 対応): Bayer AG (ドイツ)、
- 25 1991年、未公表
- 26 52 代謝物 M17 のラットにおける急性吸入毒性試験 (GLP 対応): Bayer AG (ドイツ)、
- 27 1992年、未公表
- 28 53 代謝物 M17 のウサギを用いた皮膚刺激性試験 (GLP 対応): Bayer AG (ドイツ)、1991
- 29 年、未公表
- 30 54 代謝物 M17 のウサギを用いた眼刺激性試験(GLP 対応): Bayer AG (ドイツ)、1991
- 31 年、未公表
- 32 55 代謝物 M17 のモルモットを用いた皮膚感作性試験 (GLP 対応): Bayer AG (ドイツ)、
- 33 1991年、未公表
- 34 56 代謝物 M17 のラットを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP
- 35 対応): Bayer AG(ドイツ)、1999 年、未公表
- 36 57 代謝物 M17 のマウスを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP
- 37 対応): Bayer AG (ドイツ) 、1999 年、未公表
- 38 58 代謝物 M17 のイヌを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP 対

- 1 応): Bayer AG (ドイツ) 、2000 年、未公表
- 2 59 代謝物 M17 のラットを用いた飼料混入投与による1年間反復経口投与毒性試験及び発が
- 3 ん性試験(GLP対応): Bayer AG(ドイツ)、1999年、未公表
- 4 60 代謝物 M17 のイヌを用いた飼料混入投与による 30 週間反復経口投与毒性試験 (GLP 対
- 5 応): Bayer AG(ドイツ)、2001 年、未公表
- 6 61 代謝物 M17 のマウスを用いた飼料混入投与による 2 年間発がん性試験(GLP 対応):
- 7 Bayer AG (ドイツ) 、2000 年、未公表
- 8 62 代謝物 M17 のラットを用いた繁殖毒性試験 (GLP 対応): Bayer Corporation (米国)、
- 9 2001年、未公表
- 10 63 代謝物 M17 のラットにおける催奇形性試験(経口投与)(GLP 対応): RCC (スイス)、
- 11 1991年、未公表
- 12 64 代謝物 M17 のラットにおける催奇形性試験(経口投与) 追加試験 (GLP 対応):
- 13 RCC (スイス) 、1991 年、未公表
- 14 65 代謝物 M17 のラット催奇形性試験でみられた第 14 肋骨の再評価(GLP 対応): Bayer
- 15 CropScience (ドイツ)、2004年、未公表
- 16 66 代謝物 M17 のラット催奇形性試験でみられた第 14 肋骨の出生後の消長(GLP 対応):
- 17 Bayer AG (ドイツ) 、1992 年、未公表
- 18 67 代謝物 M17 ウサギにおける催奇形性試験(GLP 対応): Bayer AG(ドイツ)、1992
- 19 年、未公表
- 20 68 代謝物 M17 のラットを用いた飼料混入投与による発達神経毒性試験 (GLP 対応): Bayer
- 21 CropScience LP (米国) 、2004 年、未公表
- 22 69 代謝物 M17 の細菌を用いた復帰突然変異試験(Ames 試験)(GLP 対応): Bayer AG
- 23 (ドイツ)、1990年、未公表
- 24 70 代謝物 M17 の哺乳動物細胞を用いた遺伝子突然変異試験 (HPRT 前進突然変異試験)
- 25 (GLP 対応): Bayer AG (ドイツ)、1999 年、未公表
- 26 71 代謝物 M17 のチャイニーズハムスター由来卵巣細胞 (CHO) を用いた in vitro 染色体異
- 27 常試験 (GLP 対応) : Bayer AG (ドイツ) 、1995 年、未公表
- 28 72 代謝物 M17 のラット肝臓初代培養細胞を用いた in vitro 不定期 DNA 合成 (UDS) 試験
- 29 (GLP 対応): Bayer AG (ドイツ)、1992 年、未公表
- 30 73 代謝物 M17 のマウスを用いた小核試験(GLP 対応): Bayer AG(ドイツ)、1993 年、
- 31 未公表
- 32 74 代謝物 M07 のラットにおける急性経口毒性試験 (GLP 対応): Bayer AG (ドイツ)、
- 33 2000年、未公表
- 34 75 代謝物 M07 のラットを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP
- 35 対応): Bayer AG (ドイツ) 、2001 年、未公表
- 36 76 代謝物 M07 のラットにおける催奇形性試験(経口投与)(GLP 対応): RCC (スイス)、
- 37 2001年、未公表
- 38 77 代謝物 M07 の細菌を用いた復帰突然変異試験(Ames 試験)(GLP 対応): Bayer AG

- 1 (ドイツ)、2000年、未公表
- 2 78 代謝物 M08 のラットにおける急性経口毒性試験(GLP 対応): Bayer AG(ドイツ)、
- 3 2000年、未公表
- 4 79 代謝物 M24 のラットにおける急性経口毒性試験 (GLP 対応): Bayer AG (ドイツ)、
- 5 2000年、未公表
- 6 80 代謝物 M25 のラットにおける急性経口毒性試験(GLP 対応): Bayer AG(ドイツ)、
- 7 2000年、未公表
- 8 81 代謝物 M47 のアグリコンのラットにおける急性経口毒性試験(GLP 対応): Bayer AG
- 9 (ドイツ)、2000年、未公表
- 10 82 代謝物 M08 の細菌を用いた復帰突然変異試験(Ames 試験)(GLP 対応): Bayer AG
- 11 (ドイツ)、2000年、未公表
- 12 83 代謝物 M24 の細菌を用いた復帰突然変異試験(Ames 試験)(GLP 対応): Bayer AG
- 13 (ドイツ)、2000年、未公表
- 14 84 代謝物 M25 の細菌を用いた復帰突然変異試験(Ames 試験)(GLP 対応): Bayer AG
- 15 (ドイツ)、2000年、未公表
- 16 85 代謝物 M47 のアグリコンの細菌を用いた復帰突然変異試験 (Ames 試験) (GLP 対応):
- 17 Bayer AG (ドイツ) 、2000 年、未公表
- 18 86 食品健康影響評価について (平成20年6月2日厚生労働省発食安第0602004号)
- 19 87 食品健康影響評価の結果の通知について(平成21年7月23日付け府食第700号)
- 20 88 食品、添加物等の規格基準 (昭和34年厚生省告示第370号) の一部を改正する件 (平成
- 21 22 年 11 月 9 日付け平成 22 年厚生労働省告示第 381 号)
- 22 89 食品健康影響評価について (平成 25 年 6 月 11 日付け厚生労働省発食安 0611 第 9 号)
- 23 90 プロチオコナゾール (殺菌剤) 農薬等の残留基準設定に係る要請書添付資料概要:バイ
- 24 エルクロップサイエンス株式会社、2013年、一部公表予定
- 25 91 海外における使用法及び残留試験、バイエルクロップサイエンス株式会社、2013年、未
- 26 公表
- 27 92 食品健康影響評価の結果の通知について(平成25年8月5日付け府食第641号)
- 28 93 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(平成
- 29 26年10月3日付け食安発1003第1号)
- 30 94 食品健康影響評価について (平成 27 年 6 月 11 日付け厚生労働省発食安 0611 第 9 号)
- 31 95 プロチオコナゾール (殺菌剤) 農薬等の残留基準設定に係る要請書添付資料概要 (2015
- 32 年3月31日改訂:バイエルクロップサイエンス株式会社、2015年、一部公表
- 33 96 PROLINE 480 SC Magnitude of the Residue in/on Cucurbit Vegetables (Crop
- 34 Group9): Bayer CropScience(米国)、2012 年、未公表
- 97 PROLINE 480 SC Magnitude of the Residue in/on Bushberry (Crop Subgroup
- 36 13-07B): Bayer CropScience (米国) 、2012 年、未公表
- 37 98 PROLINE 480 SC Magnitude of the Residue in/on Cranberry : Bayer CropScience
- 38 (米国)、2012年、未公表

1 99 JMPR: Prothioconazole and Prothioconazole-desthio, p197-326 JMPR (2008)
2 100 EFSA: Prothioconazole: Conclusion regarding the peer review of the pesticide
3 risk assessment of the active substance (2007) 106, 1-98
4 101 Federal Register/Vol. 75, NO. 103, 29908~29914 (2010)
5 102 食品安全委員会: 農薬評価書 トリアゾール共通代謝物、2012 年、公表