# The Past and Future of Risk Assessment for Food Safety - Perspective from FSCJ's Experience -



July 3, 2013 Susumu Kumagai (Chair, FSCJ)

# The Past

# **Chronology of Events Relating to Risk Assessment for Food Safety**

| Japan                                                                                     | International organizations                                                                                                                   |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1949 Food Sanitation Investigation Council (MHW), Expert panels, Expert Committees, etc   | 1956 JECFA<br>1963 CODEX Alimentarius Commission<br>1965 IARC<br>1967 JMPR                                                                    |
| 1995 Incorporation of HACCP to the Food Sanitation Act 2001 Pharmaceutical Affairs & Food | 1993 FAO/WHO "HACCP System and Guidelines for its Application" 1995 FAO/WHO "Application of Risk Analysis to Food Standard Issues" 1999 JEMRA |
| Sanitation Council (MHLW)                                                                 | 2002 EFSA, FSANZ                                                                                                                              |
| 2003 FSCJ<br>Expert committees                                                            | 2003 "Working Principles for Risk Analysis for Application in the Framework of the Codex Alimentarius"                                        |

# **Background of FSCJ's Foundation**



- Food Safety Basic Act enacted (May 16<sup>th</sup> 2003)
- > Top priority focused on protecting public health
- ➤ Proposed introduction of risk analysis method to food safety administration
- ➤ FSCJ, a risk assessment agency, established in Cabinet Office, separately from the administrative authorities (July 1<sup>st</sup>, 2003)
- ➤ Carry out unbiased, independent and science-based risk assessment for food safety

# Three Elements of the Risk Analysis Method

# Risk Assessment (FSCJ)

Hazardous substances in food

Scientific knowledge

Implements risk assessment of the health effects resulting from intake

# Risk Management

(Ministry of Health, Labour and Welfare (MHLW) & Ministry of Agriculture, Forestry and Fisheries (MAFF), etc)

Based on assessment results

Public opinion

**Cost effectiveness** 

**Jechnical feasibility** 

Determine maximum use levels, residue limits, etc.

**Risk Communication** 

# Roles of FSCJ

## **Risk Assessment**

Based on scientific data, assesses the probability and severity of adverse health effect associated with consumption of food.

## **Emergency Response**

Collects and disseminates relevant information to general public in food related emergency situations such as food poisoning outbreaks.



## **Risk Communication**

Interactively exchanges information and opinion concerning food related risks with stakeholders, including consumer.

# **FSCJ Organization**

### **Food Safety Commission of Japan(FSCJ): 7 Commissioners**

### 12 Expert Committees (Approximately 200 experts)

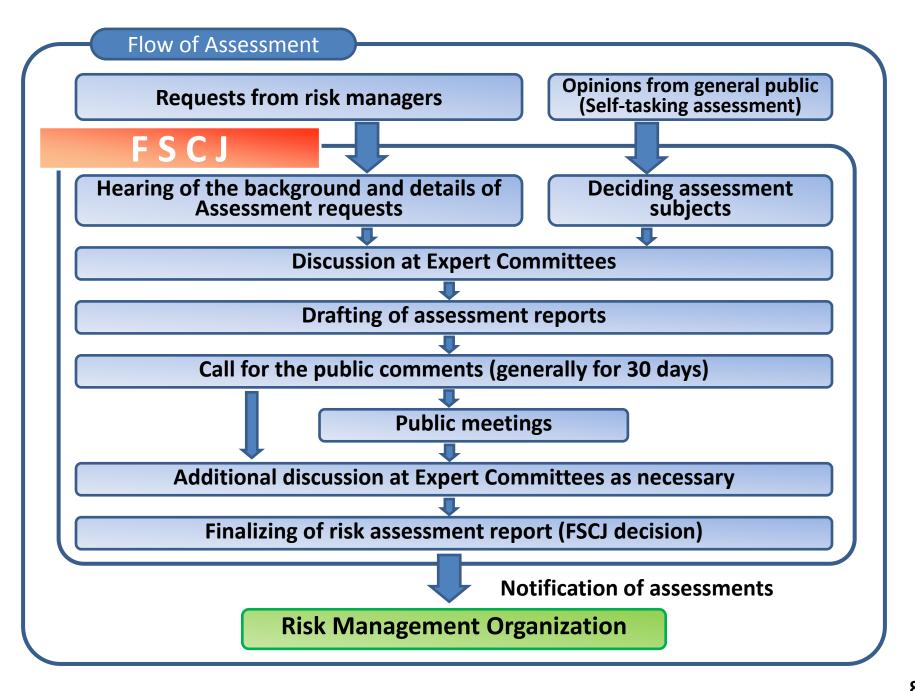
- Planning

### Chemical Substances -----

- Food additives
- Pesticides
- Veterinary Medical Products
- Apparatus and containers/ packages
- Chemical and Contaminants

### Biological Materials -----

- Microorganisms and Viruses
- Prions
- Natural toxins and mycotoxins


### Novel Foods ---

- Genetically modified foods
- Novel foods
- Feed, Fertilizers

### **Secretariat**

- Director-General
- Deputy Director-General
- General affairs Division
- First Risk Assessment Division
- Second Risk Assessment Division
- Information, Recommendation and Public Relations Division
- Director for Information Analysis
- Director for Risk Communication





## **Risk Assessment Achievements**

| Classification                               | Number of requests (The number indicated includes the self-tasking assessments) | Number of completed assessments |
|----------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|
| Food additives                               | 135                                                                             | 124                             |
| Pesticides                                   | 840                                                                             | 539                             |
| (Including positive list-related pesticides) | (421)                                                                           | (198)                           |
| Veterinary medicinal products                | 363                                                                             | 305                             |
| (Including positive list-related v/m)        | (104)                                                                           | (57)                            |
| Chemical substances/contaminants             | 60                                                                              | 54                              |
| Apparatus and containers/packages            | 16                                                                              | 7                               |
| Microorganisms/viruses                       | 9                                                                               | 8                               |
| Prions                                       | 21                                                                              | 28                              |
| Natural toxins/mycotoxins                    | 8                                                                               | 6                               |
| Genetically modified foods, etc.             | 180                                                                             | 159                             |
| Novel foods, etc.                            | 76                                                                              | 71                              |
| Feed, Fertilizers, etc.                      | 153                                                                             | 85                              |
| (Positive list-related feed+etc. included)   | (94)                                                                            | (45)                            |
| Other                                        | 6                                                                               | 4                               |
| Total                                        | 1,867                                                                           | 1,390                           |

(As of May 2013)

# FSCJ Assessments and their results - Pesticides -

### **FSCJ** < Risk Assessment >

Accepted Daily Intake: (mg/kg bw/day)



## MHLW

<Risk Management>

Maximum Residue Limits
in Food
(vegetables, fruits, etc.)
(ppm)
[Food Sanitation Act]



### MAFF

< Risk Management >

Conditions on usage



Approval of agricultural chemicals
[Agricultural Chemicals
Control Act]

## FSCJ Assessments and their results

- Trichloroethylene in drinking water -

### **FSCJ** < Risk Assessment >

Tolerated Daily Intake: 1.46 μg/kg bw/day

Cancer Risk\*: 8.3x10<sup>-3</sup>/mg/kg bw/day



\*Cancer Risk when exposed to 1mg/kg bw/day through a life

## MHLW < Risk Management >

Limit in Drinking Water 0.01 mg/l (←0.03 mg/l) [Waterworks Act]

## FSCJ Assessments and their results

 2,3,5,6-Tetramethylpyrazine (Internationally commonly used food additives "flavourings") -

### **FSCJ** < Risk Assessment >

No safety concern when used for a flavouring agent



# MHLW < Risk Management >

- Condition of use : only for flavourings
- Approval of food additives [Food Sanitation Act]

# FSCJ Assessments and their results

- EHEC and Salmonella in Beef for Raw-Eating -

### MHLW <Request of risk assessment>

- Target bacteria in beef for raw-eating: EHEC and Salmonella
- Indicator microorganisms : Enterobacteriaceae
- Standard for processing



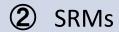
### **FSCJ < Risk Assessment >**

- Food Safety Objective (FSO) for EHEC and Salmonella is <0.04 cfu/g</li>
- Validation for processing condition to give the FSO value is required.



### MHLW < Risk Management >

- Microbiological standard : Enterobacteriaceae negative
- Processing standard :Beef-chunk surface must be heated at 60 °C for >2min.


[Food Sanitation Act]

# FSCJ Assessments and Their Results

- Revision of Control Measures for BSE-

### MHLW <Request of risk assessment>

- Domestic
- ① Age limits for BSE test of slaughtered cattle
- ② Specified risk materials (SRMs)
- Imported from USA, Canada, France, Netherlands
- ① Age restriction on cattle meat & offal import





### **FSCJ < Risk Assessment>**

Differences in risk are negligible between

- Domestic
- >30 mo & >20 mo for BSE test; >30 mo & all ages for SRM
- •Imported from USA, Canada, France, Netherlands 30 mo & 20 (0) mo for upper limit of import; >30 mo & all ages for SRM



### MHLW <Risk Management>

Regulation based on the risk assessments

# Risk Assessments and Their Results

(2003-2011)

### Numbers of Assessments Conducted by FSCJ

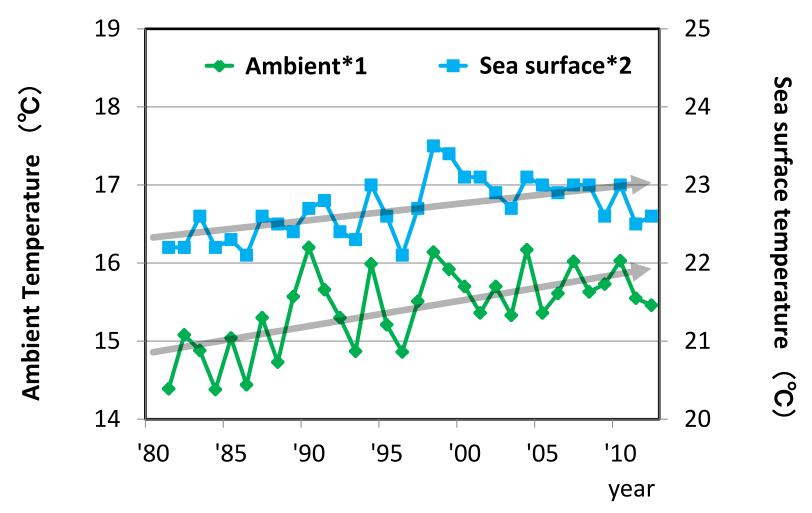
| Food additives | Pesticides | Vet.<br>medicines | Prions |     | Feed,<br>Fertilizers | Others | Total |
|----------------|------------|-------------------|--------|-----|----------------------|--------|-------|
| 101            | 351        | 264               | 19     | 110 | 37                   | 119    | 1001  |



### Numbers of Assessments Led to Regulatory Actions by Risk Management Authorities

| Food additives | Pesticides | Vet.<br>medicines | Prions |     | Feed,<br>Fertilizers | Others | Total |
|----------------|------------|-------------------|--------|-----|----------------------|--------|-------|
| 100            | 274        | 226               | 16     | 127 | 26                   | 88     | 857   |

### **Risk Communication Activities**


- Commission and Expert Committee meetings are in principle open to the public and the meeting minutes and relevant information are available on the website.
- Public meetings: 512
- Calls for information and public opinion regarding risk assessments, etc. : 774
- Food Safety Monitors' meetings: 99
- Opinion exchange meetings between Commission members and consumer groups, food businesses, public entities, etc. : 40
- Lectures given at various locations by FSC commissioners: 163
- Information provided in various formats (website, quarterly journal, brochures, DVDs, etc.)
- E-mail magazine distribution: weekly (General public version: twice a month)
- Food Safety Hotline receive inquiries by telephone and e-mail

Food Safety Hotline TEL +81-3-6234-1177

Mon∼Fri 10:00∼17:00 (except for public and year-end holidays)

# The Future

# Trend on Annual average Ambient and Sea Temperatures around Japan over the last three decades



Source: Japan Meteorological Agency

<sup>\*1:</sup>Choshi City, Chiba Pref., \*2:Southern part of the sea off Kanto

# **Global Warming**

Warming averaged for 2011-2030 compared to 1980-1999 is +0.64-0.69°C (Climate Change 2007: IPCC Fourth Assessment Report)



### **Environmental Change**

- Changes in ecosystems
- Sea level rise
- Increase in bacterial proliferation
- Changes in distribution of pathogens





Impaired yields of crops, livestock & fish





Anticipated increase of health risk by

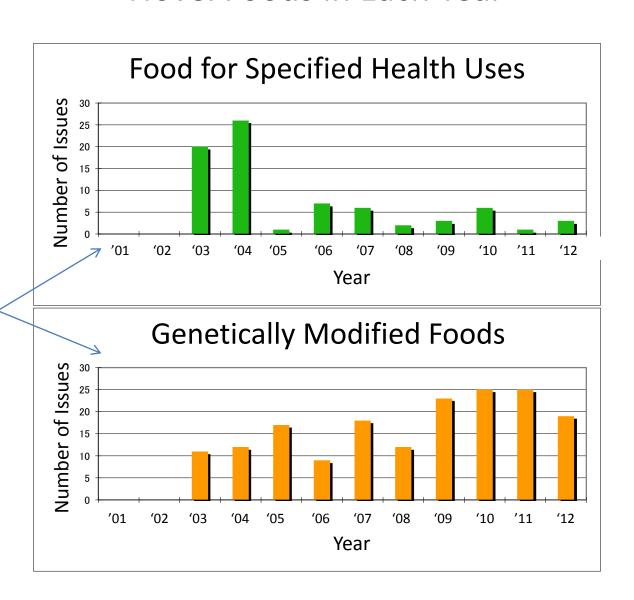
Marine toxins : Ciguatoxin, Palytoxin, etc.

Mycotoxins: Aflatoxin, Fusarium toxins, Zearalenone, etc.

Food-borne pathogens: VTEC, Salmonella, Listeria monocytogenes, HEV, etc.

# Trends of Imported Foods

- Total weight and Number of declarations to quarantine offices -




Source: statistics on inspection of imported foods, 2011, MHLW

# Major Outbreaks of Food-borne Infection and Food Poisoning Caused by Imported Food and Food Materials

| Year | Country     | Agent                            | Implicated food or food material |
|------|-------------|----------------------------------|----------------------------------|
| 2012 | USA         | Salmonella Bareilly, S. Nechanga | frozen tuna fish                 |
| 2011 | Europe      | VTEC O104:H4                     | fenugreek seeds                  |
| 2011 | Switzerland | Listeria<br>monocytogenes        | cooked ham                       |
| 2011 | USA         | Salmonella Agona                 | papaya                           |
| 2009 | Finland     | Salmonella<br>Bovismorbificans   | alfalfa seeds                    |
| 2009 | Japan       | Shigella sonnei                  | oval squid                       |
| 2008 | Europe      | Salmonella Agona                 | ready-to-eat meat                |
| 2008 | Japan       | methamidophos                    | Chinese dumpling                 |
| 2008 | Japan       | histamine                        | tuna fish                        |

# Requested Risk Assessment Issues of Novel Foods in Each Year



Start of
Systems
for Review &
Permission

### **Increased Risk Assessment**

- Climate changes
- Diversification of preference for food
- Expansion of trade
- Increase of novel foods
- Innovation & development of technology for food production & supply
- Hunger & malnutrition
- Increasing life-style related diseases



Increase of items for risk assessment to ensure food safety



The need of more accurate and cost-effective risk assessment

# Future issues of research and mutual understanding

- Toward more accurate and cost effective risk assessment -

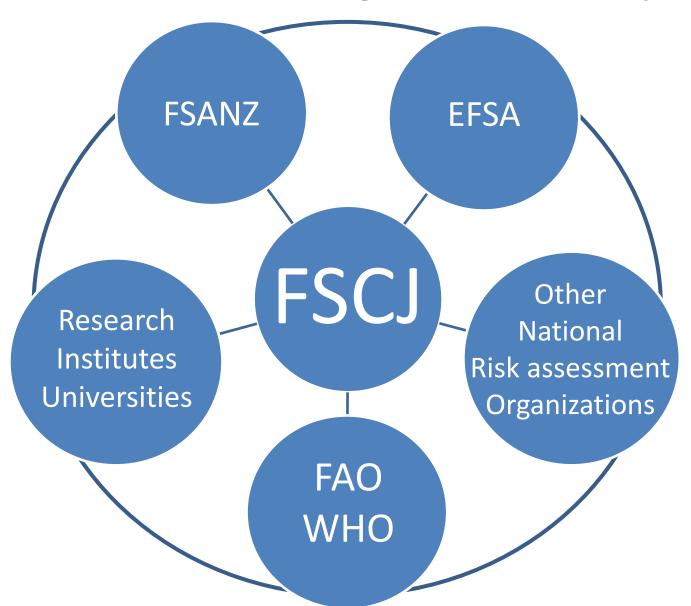
- Metabolism of chemicals in human body
- Threshold of Toxicological Concern
- Benchmark dose
- Margin of exposure
- Risk assessment methods of genotoxic carcinogen pathogens drug-resistant microorganisms chemical related allergy

# Development of Research and Data Collection Systems

- Future Direction of Risk Assessment -



# Future Challenges in FSCJ


- Toward more accurate and cost effective risk assessment
   to be in time for effective management
- 1. Developing an integrated research field specific for risk assessment
- 2. Increase of professionals responsible for risk assessment for food safety
- 3. International collaboration in risk assessment
- 4. Sharing data and collaboration in data collection with other national and international risk assessment organizations
- 5. Collaboration in research required for risk assessment with laboratories of universities and institutes
- 6. Promotion of science and technology for risk assessment through publication of on-line journal and holding meetings for information exchange
- 7. Enhancement of secretariat for risk assessment

# Future Challenges in FSCJ

- Toward more effective risk communication -

- 1. Broad dissemination of scientific information relating to risk assessment for food safety through the mass media
- 2. Frequent exchange of opinion and information with the mass media to facilitate common understanding
- 3. Dissemination of scientific knowledge to consumers and students
- 4. Production of text books and on-line text for education of food safety and distribution of them to interested parties
- 5. Exchange of opinions and information with persons in a leading position on food safety issues
- 6. Development of skills of interpreter to communicate on scientific information

# The need of International Network in Risk Assessment and Research, and Sharing of Data and Experience





Thank you for your attention