



# 食品中の放射性物質による健康影響について



平成25年1月 食品安全委員会

放射線、放射性物質について

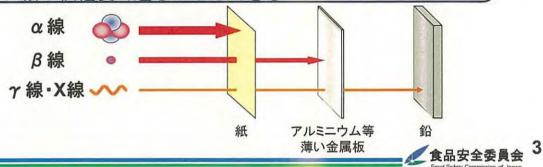
#### 放射線とは

#### 物質を通過する高速の粒子、高いエネルギーの電磁波

#### ガンマ(r)線/エックス(X)線

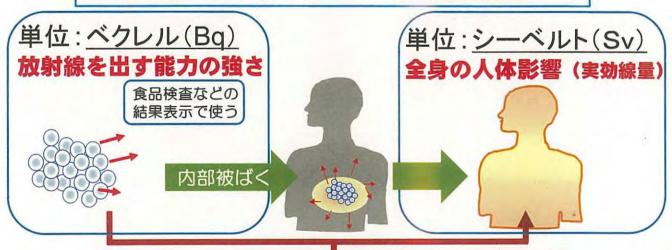
ガンマ線はエックス線と同様の電磁波物質を透過する力がアルファ線やベータ線に比べて強い

#### ベータ(B)線


■ 電子の流れ

薄いアルミニウム板で遮ることができる

#### アルファ (α)線


■ ヘリウムと同じ原子核の流れ

薄い紙1枚程度で遮ることができる



#### 放射能と人体影響の単位

- ■「放射能の強さ」の単位は「ベクレル」
- ■「人体影響レベル」の単位は「シーベルト」
- ■ベクレルとシーベルトをつなぐ「実効線量係数」



#### 実効線量係数

放射性物質の摂取後50年間(子供は70歳まで)に受ける線量を計算するための換算係数

# 放射性物質を摂った時の人体影響(計算方法)

例:1kgあたり100ベクレルのセシウム137を含む食品を1kg食べた場合の放射線による人体影響の程度(シーベルト)

(成人の場合) 食べた量 実効線量 = ミリシーヘ・ルト(mSv) ベクレル/kg × (kg) × 係数 = ミリシーヘ・ルト(mSv) 100~・クレル/kg×1kg×0.000013=0.0013ミリシーへ・ルト(mSv)

実効線量係数は

放射性物質の種類(セシウム137など)ごと、 摂取経路(経口、吸入など)ごと、

年齢区分ごとに、国際放射線防護委員会(ICRP)等で設定

参考: 実効線量係数の例(経口摂取) (出典) 国際放射線防護委員会(ICRP)「Publication 72」(1996)

|         | 0歳       | ~2歳      | ~7歳       | ~12歳     | ~17歳      | 18歳~      |
|---------|----------|----------|-----------|----------|-----------|-----------|
| ヨウ素131  | 0.00018  | 0.00018  | 0.00010   | 0.000052 | 0.000034  | 0.000022  |
| セシウム137 | 0.000021 | 0.000012 | 0.0000096 | 0.000010 | 0.000013  | 0.000013  |
| カリウム40  | 0.000062 | 0.000042 | 0.000021  | 0.000013 | 0.0000076 | 0.0000062 |

食品安全委員会 Food Safety Commission of Japan

5

#### 放射性物質が減る仕組み

体内に入った放射性物質は、放射性物質の性質と 排泄などの体の仕組みによって減少する



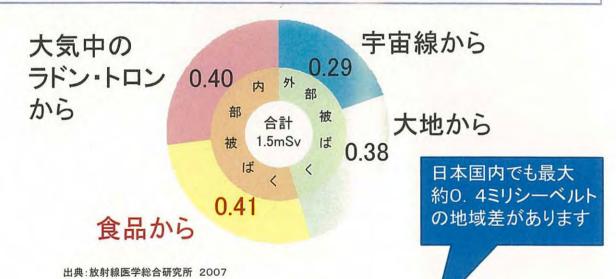
物理学的半減期の例
・セシウム134は2.1年
・セシウム137は30年

・ヨウ素131は8日



放射性セシウムの生物学的半減期 ~1歳 9日 ~9歳 38日 ~30歳 70日 ~50歳 90日

#### 内部被ばくと外部被ばく


- ・内部被ばくも外部被ばくも、人体影響は同じ単位の「シーベルト」
- ・内部被ばくでは、体内での存在状況に応じた放射性物質からの 被ばくが続くことを考慮して線量が計算される





#### もともとある自然放射線から受ける線量

1人あたりの年間線量(日本人平均)は、約1.5ミリシーベルト



- 〇自然放射線の量は地質により異なるため、地域差がある
- 〇食品にはカリウム40などが含まれている

### 通常の食品に含まれる放射性物質(カリウム40)

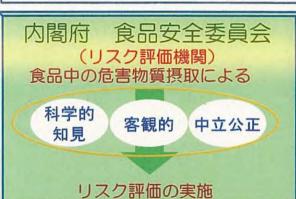
| 食品名    | 放射能        | 食品名 | 放射能      |  |
|--------|------------|-----|----------|--|
| 干し昆布   | 2,000Bq/kg | 魚   | 100Bq/kg |  |
| 干し椎茸   | 700Bq/kg   | 牛乳  | 50Bq/kg  |  |
| お茶     | 600Bq/kg   | *   | 30Bq/kg  |  |
| ドライミルク | 200Bq/kg   | 食パン | 30Bq/kg  |  |
| 生わかめ   | 200Bq/kg   | ワイン | 30Bq/kg  |  |
| ほうれん草  | 200Bq/kg   | ビール | 10Bq/kg  |  |
| 牛肉     | 100Bq/kg   | 清酒  | 1Bq/kg   |  |

(ATOMICA(財)高度情報科学技術研究機構から転載(出典:(独)放射線医学総合研究所資料))

※カリウムは、ナトリウムの排泄を促し血圧の上昇を制御するなど、健康を保つのに 必要なミネラル

カリウムは自然界に存在し、動植物にとって必要な元素であり、その0.012%程度が放射性物質であるカリウム40

#### 放射線による健康影響の種類


# ● 比較的高い放射線量で出る影響 ● 高線量による脱毛、不妊など 急性被ばくによる永久不妊のしきい値は 男性3500mSv、女性2500mSv 出典:国際放射線防護委員会(ICRP) 「妊娠と医療放射線(Publication 84)」 「無量とともに 影響なし 影響あり しきい値 線量



#### 食品中の放射性物質に関する 食品健康影響評価 (食品安全委員会のリスク評価)



#### 放射性物質に関するリスク評価とリスク管理の取組





緊急とりまとめ(H23年3月29日) ICRPの実効線量10mSv/年 緊急時の対応として、不適切とまで 言える根拠は見いだせず

放射性セシウム 5mSv/年はかなり安全側に立ったもの

継続してリスク評価を実施

評価結果をとりまとめ(H23年10月27日)

評価を要請

緊急を要するため、暫定規 制値を設定(H23年3月17日)

結果を通知

暫定規制値の維持を決定 (H23年4月4日)



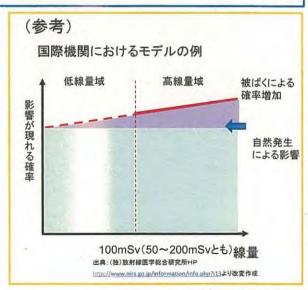
新たな基準値の設定 H24年4月施行

結果を通知

食品安全委員会 12

#### 食品健康影響評価にあたって①

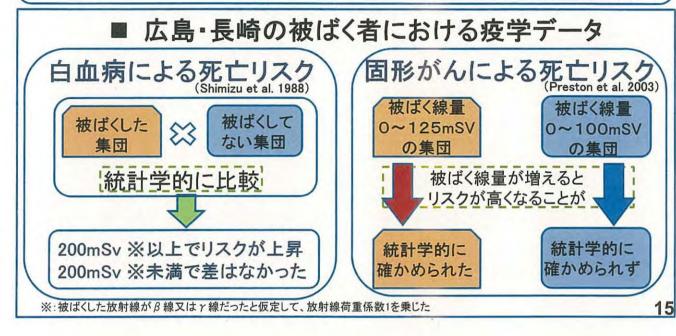
- ■国内外の放射線の健康影響に関する文献を検討 (約3300文献)
- UNSCEAR(原子放射線に関する国連科学委員会)等の報告書とその引用文献
- ICRP(国際放射線防護委員会)、WHO(世界保健機関)の公表資料等
- 次の観点から文献を精査
- 被ばく線量の推定が信頼に足るか
- 調査研究手法が適切か、等
- ■外部被ばくを含む疫学データの援用
- 食品由来の内部被ばくに限定した疫学データは極めて少なく、外部被ばくを含んだ疫学データも用いて検討




#### 食品健康影響評価にあたって②

国際機関においては、リスク管理のために 高線量域で得られたデータを低線量域にあてはめた いくつかのモデルが示されている

モデルの 検証は困難


被ばくした人々の 実際の疫学データ に基づいて判断



#### 食品健康影響評価の基礎となった 疫学データ

■ インドの自然放射線量が高い(累積線量500 mSv強※) 地域で発がんリスクの増加がみられなかった報告

(Nair et al. 2009)



## 食品健康影響評価の参考とした小児、胎児に関する疫学データ

- チェルノブイリ原子力発電所事故に関連した報告
- 5歳未満であった小児に白血病のリスクの増加 (Noshchenko et al. 2010)
- 被ばく時の年齢が低いほど甲状腺がんの リスクが高い (Zablotska et al. 2011)

《ただし、どちらも線量の推定等に不明確な点があった》

- 胎児への影響
- 1 Sv※以上の被ばくにより精神遅滞がみられたが、0.5 Sv※以下の線量で健康影響が認められなかった (UNSCEAR 1993)

※:被ばくした放射線が<math>β線又はγ線だったと仮定して、放射線荷重係数1を乗じた



#### 食品健康影響評価の結果の概要 (平成23年10月27日 食品安全委員会)


- 放射線による影響が見いだされているのは、 生涯における追加の累積線量が、おおよそ100 mSv以上 (通常の一般生活で受ける放射線量(自然放射線や 医療被ばくなど)を除く)
- そのうち、小児の期間については、感受性が成人より 高い可能性(甲状腺がんや白血病)がある
- 100mSv未満の健康影響について言及することは 困難と判断
- ■曝露量の推定の不正確さ
- ■放射線以外の様々な影響と明確に区別できない可能性
- ■根拠となる疫学データの対象集団の規模が小さい



17

#### 「おおよそ100mSv」とは

- ■安全と危険の境界ではなく、食品についてリスク 管理機関が適切な管理を行うために考慮すべき値
- ■これを超えると健康上の影響が出る可能性が 高まることが統計的に確認されている値



食品からの追加的な 実際の被ばく量に適用 されるもの

# 消聴あのがとう ございました

