(案)

添加物評価書

亜塩素酸水

(第2版)

2012年6月

食品安全委員会添加物専門調査会

目次

	貝
<審議の経緯>	3
<食品安全委員会委員名簿>	3
<食品安全委員会添加物専門調査会専門委員名簿>	4
要 約	5
I. 評価対象品目の概要	6
1. 用途	6
2. 化学名	6
3. 化学式	6
4. 分子量	6
5. 存在状態	6
6.性状	6
7. 製造方法等	7
8. 開発の経緯	8
9. 添加物指定の概要	9
Ⅱ. 安全性に係る知見の概要	9
1. 体内動態(吸収、分布、代謝、排泄)	10
2. 毒性	
(1)急性毒性	10
(2) 反復投与毒性	11
(3)発がん性	15
(4)生殖発生毒性	15
(5)遺伝毒性	19
(6)細胞毒性	20
(7)抗原性	21
(8)ヒトにおける知見	21
(9)その他	21
Ⅲ. 一日摂取量の推計等	22
Ⅳ. 国際機関等における評価	22
1. JECFA における評価	22
2. 米国環境保護庁(EPA)における評価	22
3. FDA における評価	23
4. WHO 飲料水水質ガイドラインにおける評価	
5. EU における評価	23
6. 国際がん研究機関(IARC)における評価	
7. わが国における評価	24

٧.	食品	健	康影響評価		24
				安全性試験結果>	
< 5	別紙2	:	塩素系化合物	の関係図>	37

```
<審議の経緯>
1
2
   第1版関係(添加物の指定及び規格基準の設定に係る食品健康影響評価)
3
   2006年 8月14日
                 厚生労働大臣から添加物の指定に係る食品健康影響評価に
                 ついて要請(厚生労働省発食安第 0814001 号)、関係書類
4
5
                 の接受
                 第156回食品安全委員会(要請事項説明)
6
   2006年 8月24日
7
                 第52回添加物専門調査会
   2007年12月25日
8
   2008年 1月15日
                 第53回添加物専門調査会
   2008年 2月25日
                 第55回添加物専門調査会
9
10
   2008年 3月13日
                 第230回食品安全委員会(報告)
   2008年 3月13日から 2008年4月11日まで 国民からの御意見・情報の募集
11
12
   2008年 5月26日
                 第58回添加物専門調査会
13
   2008年 6月17日
                 添加物専門調査会座長より食品安全委員会委員長へ報告
               第243回食品安全委員会(報告)
14
   2008年 6月19日
                  (同日付け厚生労働大臣に通知)
15
16
   第2版関係(規格基準の改正に係る食品健康影響評価に伴う改訂)
17
   2012年 4月 2日 厚生労働大臣から添加物の規格基準の改正に係る食品健康
18
                 影響評価について要請(厚生労働省発食安 0330 第 4 号)、
19
20
                 関係書類の接受
21
   2012年 4月 5日
                 第 426 回食品安全委員会(要請事項説明)

      2012 年 5月30日
      第106回添加物専門調査会

      2012 年 6月25日
      第107回添加物専門調査会

22
23
24
25
   く食品安全委員会委員名簿>
   (2006年12月20日まで)
                       (2009年6月30日まで)
                       見上 彪(委員長)
   寺田 雅昭(委員長)
   見上 彪 (委員長代理)
                       小泉 直子(委員長代理)
   小泉 直子
                        長尾 拓
   長尾 拓
                        野村 一正
   野村 一正
                        畑江 敬子
   畑江 敬子
                        廣瀬 雅雄
   本間 清一
                        本間 清一
   (2011年1月13日から)
    小泉 直子
            (委員長)
    熊谷 進
            (委員長代理*)
    長尾 拓
```

野村 一正 畑江 敬子 廣瀬 雅雄 村田 容常

2 <食品安全委員会添加物専門調査会専門委員名簿>

(2007年9月30日まで) 福島 昭治(座 長)

山添 康 (座長代理)

石塚 真由美 井上 和秀 今井田 克己 江馬 眞 大野 泰雄

久保田 紀久枝

中島 恵美西川 秋佳

林真三森国敏

吉池 信男

<専門参考人>

若栗 忍

(2011年10月25日から)

今井田 克己 (座長)

梅村 隆志 (座長代理)

石塚 真由美

伊藤 清美

江馬 眞

久保田 紀久枝

塚本 徹哉

頭金 正博

中江 大

三森 国敏

森田 明美

山添 康

山田 雅巳

<専門参考人>

青木 康展 長谷川 隆一 広瀬 明彦

3

4

(2009年9月30日まで)

福島 昭治 (座 長)

山添 康 (座長代理)

石塚 真由美

井上 和秀

今井田 克己

梅村 隆志

江馬 眞

久保田 紀久枝

頭金 正博

中江大

中島 恵美

林 真

三森 国敏

吉池 信男

要約

1 2

3 殺菌料として使用される添加物「亜塩素酸水」(CAS 登録番号:13898-47-0)に 4 ついて、各種試験成績等を用いて食品健康影響評価を実施した。

5 評価に供した試験成績は、亜塩素酸水に関するものはなく、類縁の亜塩素酸ナト 6 リウム等を被験物質とした反復投与毒性、発がん性、生殖発生毒性、遺伝毒性等で 7 ある。

8

9 申請物質の毒性に関する試験報告はないが、既にわが国で使用の認められている 10 亜塩素酸ナトリウム (NaClO₂) の試験成績のほか、二酸化塩素 (ClO₂)、次亜塩素 11 酸水又は次亜塩素酸ナトリウム (NaClO) の試験成績も参考に、総合的に評価する 12 ことは可能と判断した。

13 14

15

16

17

18

亜塩素酸ナトリウム等の安全性試験成績(別紙2)を評価した結果、亜塩素酸イオンの摂取による主要な影響は、赤血球の損傷と考えられた。発がん性は認められなかった。遺伝毒性については、細菌を用いた復帰突然変異試験でみられた陽性反応は弱いものであり、また、ほ乳類培養細胞を用いた染色体異常試験では陽性の結果が得られているものの、高用量まで試験された小核試験において陰性であったことから、生体にとって特段問題になる遺伝毒性はないと考えられた。

1920

21

22

なお、亜塩素酸水に遺伝毒性発がん物質と疑われている臭素酸が混入する可能性 があるが、提案された製造基準が遵守されれば、臭素酸の生成量を水道水質基準以 下に抑えることが可能であると考えられる。

232425

以上から、亜塩素酸水の主たる有効成分である亜塩素酸は、添加物として適切に 使用され、最終食品の完成前に除去する旨の使用基準が遵守される限り、安全性に 特段の懸念はないと考えられた。

2829

30 31

26

27

以上より、亜塩素酸水の無毒性量(NOAEL)の最小値は、ラット生殖毒性試験で認められた聴覚驚愕反応の低下に基づき、亜塩素酸イオンとして 2.9 mg/kg 体重/日と考えられることから、安全係数を 100 とし、亜塩素酸水の一日摂取許容量(ADI)を 0.029 mg/kg 体重/日と設定した。

32 33

I. 評価対象品目の概要

1. 用途

殺菌料(参照1、2、3)

3 4 5

6 7

1 2

2. 主成分の名称

和名: 亜塩素酸水

英名: Chlorous acid aqueous solution

CAS 登録番号:13898-47-0 (亜塩素酸として) (参照1、2、3)

8 9 10

3. 分子式

HClO₂(亜塩素酸、主たる有効成分として)(参照1、2、3)

111213

4. 分子量

68.45 (参照1、2)

1516

17

18

19

20

21

14

5. 存在状態

Ni&Yin (1998)、Warf ら (2001) の報告によれば、 $HClO_2$ のほか、亜塩素酸イオン (ClO_2 -)、二酸化塩素 (ClO_2 ・in water phase) 等が混在しうるとされている。(参照 4 、 5)

 $HClO_2$ は、解離状態の $H^+ \cdot ClO_2^-$ と非解離状態の $HClO_2$ とが平衡状態になった状態を指し(参照 6)、pH 2.3~6.9 の範囲内で安定的に存在するとされている。

2223

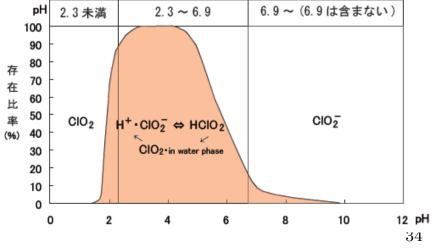


図 1 添加物「亜塩素酸水」に含有する塩素酸化物のpHによる存在比の変化(参照2)

35 36

37

38

6. 性状

今般、厚生労働省に本品目の添加物としての指定及びそれに関連した規格基準の設定を要請した者(以下「指定等要請者」という。)による添加物「亜塩素酸水」の成分規格案では、黄色~茶褐色の透明な液体で、塩素のにおいを有す

3

4

5

6 7

8

9

7. 製造方法等(参照7、8、9、10、11、12)

種類	製造方法	含量	pН	特徴
添加物「亜塩素酸	塩酸を加えて酸性条件下にした飽和食	HClO_2	2.3~6.9	・用時調製が
水」	塩水※を、無隔膜方式で電気分解するこ	1~6%		不要。
	とで得られた塩素酸ナトリウム	※使用時に必要な		・ClO ₂ の発生
	(NaClO ₃)水溶液に硫酸を添加するこ	濃度にまで希釈し		が少なく、
	とで塩素酸(HClO3)を得、さらに低	て使用。		HClO ₂ 含量を
	濃度の過酸化水素水を加えることで得			長期に渡り保
	られる亜塩素酸(HClO2)を主たる有			持できる。
	効成分とする酸性~微酸性の水溶液。			
	(反応式)			
	$2\mathrm{NaClO}_3\!+\!\mathrm{H}_2\mathrm{SO}_4$			
	\rightarrow 2HClO ₃ +Na ₂ SO ₄ \downarrow			
	$\mathrm{HClO_3}\!+\!\mathrm{H_2O_2}$			
	\rightarrow HClO ₂ +H ₂ O+O ₂ \uparrow			
(参考)	亜塩素酸ナトリウム (NaClO ₂) 水溶液		2.3~3.2	・用時調製が
添加物「酸性化亜	***に GRAS の酸類を反応させること			必要。
塩素酸塩」(ナトリ	により生成される酸性の水溶液。			・急激に ClO ₂
ウム)水溶液		_		が発生し、
(ASC ^(1) ;		_ _		HClO ₂ 含量を
Acidified Sodium				長期に渡り保
Chlorite				持できない。
solutions)				

[※]評価要請者より提案された製造基準(案)によれば、「亜塩素酸水を製造する場合に原料として用いる塩化ナトリウムは、 日本薬局方塩化ナトリウムでなければならない。」とされている。(参照3、12)

8. 臭素酸の混入可能性について

評価要請者の報告によれば、亜塩素酸水の原料である塩化ナトリウムは微量の臭化物 (Br) を含むため、飽和塩化ナトリウム溶液にも微量の臭化物が含まれ、製造工程において塩素酸を生成する際に、より反応性の高い臭化物が塩化物より先に反応するために臭素酸が生成すると考えられるとされている。そこ

^{***}FDA では、亜塩素酸ナトリウムの調製時の使用濃度を $50\sim1,200$ ppm と規定している。なお、事業者からの提供資料によると、pH2.3 \sim 3.0 の範囲では理論上、HClO2 は $5\sim20$ %生成するとされている。(参照 10 、 11 、 13 、 16)

¹ 本文中で用いられた略称については、別紙1に名称等を示す。

で、塩化ナトリウムに含まれる臭化物(Br)と亜塩素酸水中の臭素酸(BrO_3)の関係についての調査が行われている。その結果、塩化ナトリウムに含まれる臭化物量と、それを原料として製造した亜塩素酸水(亜塩素酸濃度: 0.4~g/kg)の臭素酸濃度及び推定最大濃度に相関性が認められたとされている。併せて、塩化ナトリウムに含まれる臭化物濃度が $100~\mu g/g$ であれば、実際に使用する濃度に希釈された添加物「亜塩素酸水」中の臭素酸推定濃度が、水道水質基準に定められる臭素酸濃度(0.01~mg/L($\leftrightarrows 10~ng/g$)以下になるとされている。以上より、評価要請者は、亜塩素酸水を製造する場合には、日本薬局方に収載されている「塩化ナトリウム」(臭化物濃度: $100~\mu g/g$ 以下)を原料として用いることにより、臭素酸の生成量を水道水質基準以下に抑えることが可能であるとしている。(参照 1~2~,~1~4)

9. 評価要請の経緯

わが国では、殺菌、漂白等の目的で用いられる塩素化合物の食品添加物として、1948年に「亜塩素酸ナトリウム」、1950年に「次亜塩素酸ナトリウム」、1953年に「二酸化塩素」、1959年に「高度サラシ粉」、2002年に「次亜塩素酸水」が指定されている。

FDA において間接食品添加物として許可されている ASC は、亜塩素酸ナトリウムの希釈液に GRAS (一般に安全とみなされる物質; Generally Recognized as Safe Substances) の酸類を用いて pH $2.3\sim3.2$ の酸性領域下に調製することにより生成する亜塩素酸 (HClO₂) を含有するものであるとされている(参照 1 3 、 1 5)。指定等要請者によれば、ASC について①使用時に調製が必要であること、②塩類の含有が多いために HClO₂、ClO₂・in water phase 及び ClO₂⁻間のサイクル反応(図 2)が持続せず、HClO₂量を長期に持続させることは困難であり、かつ急激に ClO₂が発生して毒性が増長する可能性が高まることなどから、新たに、用時調製が不要でかつ HClO₂含量の持続性を改善させた亜塩素酸水が開発されたとされている(参照 2)。

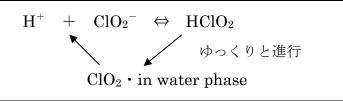


図 2. 弱酸性領域での酸性 ClO_2^- 、 $HClO_2$ 及び ClO_2 ・in water phase 間サイクル反応の持続 (参照 6)

亜塩素酸水の添加物指定等について、厚生労働省に指定要請がなされたことから、2006 年 8 月に厚生労働省から食品安全委員会に、食品安全基本法(平

成15年法第48号)第24条第1項第1号に基づく食品健康影響評価の要請が なされた。(参照1)

2008 年 6 月、食品安全委員会は「亜塩素酸水の一日摂取許容量を亜塩素酸イオンとして 0.029mg/kg 体重/日と設定する」との食品健康影響評価をとりまとめ、付帯事項において、遺伝毒性発がん物質と疑われている臭素酸が混入する可能性があることから、厚生労働省が臭素酸の混入の実態を調査した上で、規格基準の設定の必要性について検討し、同調査結果及び検討結果を添加物の新規指定の前に食品安全委員会に報告することとした。

今般、厚生労働省より、付帯事項に係る調査結果及び検討結果について報告がなされた。それとともに、添加物の規格基準を改正し、本添加物の製造基準案を「亜塩素酸水を製造する場合に原料として用いる塩化ナトリウムは、日本薬局方塩化ナトリウムでなければならない」とすることについて、食品安全基本法第24条第1項第1号の規定に基づき、食品安全委員会に対して、食品健康影響評価の要請がなされた。(参照3)

10. 添加物指定の概要

厚生労働省は、食品安全委員会の食品健康影響評価の通知を受けた後に、添加物としての指定の可否及び規格基準の設定について検討するとしている。なお、使用基準案は、「亜塩素酸水は、穀類(精白米に限る。)、豆類、野菜類、果実類、藻類、魚介類、肉類以外の食品に使用してはならない。亜塩素酸水の使用量は、亜塩素酸水として、穀類(精白米に限る。)、豆類、野菜類、果実類、藻類、魚介類、肉類にあっては、浸漬液又は噴霧液 1 kg につき(精白米にあっては、加し水 1 kg につき)0.4 g 以下でなければならない。また、使用した亜塩素酸水は、最終食品の完成前に分解し、又は除去しなければならない」としている。(参照3)

Ⅱ.安全性に係る知見の概要

上述の Ni&Yin(1998)の報告によれば、亜塩素酸水は、 $HClO_2$ を主たる有効成分としているが、pHの変動により ClO_2 、 ClO_2 等を発生しうるとされている。また、 $NaClO_2$ 溶液は経口投与すると、胃液中で $HClO_2$ になると推定され、生体中では代謝等により $HClO_2$ のほか、Cl 、 ClO_2 、 ClO_2 等の生成も考え得るものであるとされている。(参照 4)

当専門調査会としては、申請物質の毒性に関する試験報告は認められないが、 種々の動物及びヒトでの実験データから得られた亜塩素酸ナトリウム($NaClO_2$)、 二酸化塩素(ClO_2)に関する安全性データを基に、亜塩素酸水の毒性を検討する こととした。

なお、指定等要請者により提出された資料において、亜塩素酸水による食品処理時の食品への塩素の残留、トリハロメタンの生成は認められないことを確認した。また、酸素ラジカルの生成に伴って生じると考えられる還元型アスコルビン酸レベルの低下は認められなかった。(参照17)

1. 体内動態(吸収、分布、代謝、排泄)

Abdel-Rahman ら (1980) の報告によれば、SD ラット (各群雄 4 匹) に 36 ClO $_{2}$ 水 (100 mg/L を 3 mL または 15 日間 100 mg/L を飲水投与した後に 300 mg/L を 3 mL) を経口投与する試験が実施されている。その結果、 36 Cl の半減期は順に 43.9 時間、31.0 時間であったとされている。 36 ClO $_{2}$ (100 mg/L) の単回投与後 72 時間までに、肝臓において、標識した 36 Cl 化合物の約 25%がタンパク質と結合した。各 2 匹で 2 回実験を行ったところ、投与後 72 時間までに約30%が尿中に、約10%が糞中に排泄され、臓器、皮膚、屠体及び排泄物からの総回収率は 95%であったとされている。呼気中には標識塩素は検出されなかった。また、投与後 72 時間までの代謝を標識同位元素測定で追跡すると、ClO $_{2}$ は Cl $_{2}$ 、ClO $_{2}$ 、ClO $_{3}$ でに代謝されるとされている。(参照 18、19、20)

Abdel-Rahman ら(1984)の報告によれば、SD ラット(各群雄 4 匹)における 36 ClO $_2$ ⁻(10 mg/L を 3 mL)及び 36 ClO $_3$ ⁻(5 mg/L を 3 mL)を経口投与する試験が実施されている。その結果、血漿中濃度はそれぞれ 2 時間後、30分後にピーク値に達し、半減期はそれぞれ 35 時間、36.7 時間であったとされている。投与から 72 時間後、放射活性は血液、胃、精巣、皮膚、肺、腎臓、小腸、屠体、膵臓、回腸、脳、骨髄及び肝臓に高い濃度で認められたとされている。排泄については、尿中排泄が主要な経路であり、各 2 匹で 2 回実験を行ったところ、投与後 72 時間までに約 35%(36 ClO $_2$ ⁻)、約 40%(36 ClO $_3$ ⁻)が尿中に、約 5%(36 ClO $_2$ ⁻)、約 3%(36 ClO $_3$ ⁻)が糞中に排泄されたとされている。呼気中には標識塩素は検出されなかったとされている。また、48~72 時間後には両イオンのほとんどが Cl⁻に変化し、一部は ClO $_2$ ⁻として、わずかに ClO $_3$ ことして排泄されたとされている。(参照 1 9、2 0、2 1)

2. 毒性

(1)急性毒性

Musil ら(1964)、Fletcher(1973)の報告によれば、ラット及びウズラの経口投与試験による LD_{50} は、亜塩素酸イオンとしてそれぞれ 105 mg/kg 体重、493 mg/kg 体重と報告されている。(参照 $2\ 2\ 2\ 3\ 2\ 4$)

Heffernanら(1979)の報告によれば、雄のネコに亜塩素酸ナトリウム(亜

塩素酸イオンとして 20、64 mg/kg 体重)をタブレットとして単回経口投与したところ、64 mg/kg 体重の投与で $40\sim90$ 分後にメトヘモグロビン化のピーク(約 40%)が、20 mg/kg 体重の投与でそれより遅い時点でピーク(10 $\sim30\%$)がみられ、両投与群でメトヘモグロビン血症がみられたとされている。(参照 25)

(微酸性次亜塩素酸水)

添加物評価書「次亜塩素酸水」(2007)に記載のとおり、雌雄の ICR マウス (各群 5 匹) に微酸性次亜塩素酸水 ($pH 5.0 \sim 5.5$ 、有効塩素濃度 $50 \sim 80$ mg/kg、50 mL/kg 体重)を単回経口投与した結果、雌雄ともに死亡例は認められず、中毒症状を示す動物も認められなかったとされている。(参照 2 6)

(2) 反復投与毒性

① マウス 30 日間反復投与毒性試験

Moore & Calabrese (1982) の報告によれば、性別不詳の A/J (G6PD 活性が正常な系統) マウス及び C57L/J (G6PD 活性が低下している系統) マウス (各群 $11\sim23$ 匹) に亜塩素酸ナトリウム (0、1、10、100 mg/L) を 30 日間飲水投与する試験が実施されている。その結果、何れの系統のマウスにおいても 100 mg/L 投与群で赤血球のグルコース-6-リン酸デヒドロゲナーゼ (G6PD) 活性、浸透圧脆弱性及び平均容積の有意な上昇が認められたとされている。EPA は、NOAEL を 10 mg/L (亜塩素酸イオンとして 1.9 mg/kg 体重/日) としている。(参照 1 9、2 7)

本専門調査会としては、当該試験の最小毒性量(LOAEL)と NOAEL の間の用量差が 10 倍と大きく、当該試験の NOAEL をそのまま ADI 設定の根拠として用いることが適切でないと考える。

② マウス 30、90、180 日間反復投与毒性試験

上述の Moore & Calabrese (1982) の報告によれば、雄の C57L/J マウス (各群 55~60 匹) に亜塩素酸ナトリウム (0、4、20、100 mg/L; 亜塩素酸イオンとして 0、3、15、75 mg/L) を 30、90 又は 180 日間飲水投与する試験が実施されている。その結果、腎病理組織学的検査、腎重量及びその比重量、体重並びに飲水量に有意な影響は認められなかったとされている。(参照 19、27)

③ ラット 30~90 日間反復投与毒性試験

上述の Heffernan ら(1979)の報告によれば、雄の CD ラット(各群 6 匹)に亜塩素酸イオン(0、10、50、100、250、500 mg/L; 0、1、5、10、

25、50 mg/kg 体重/日相当)を含む蒸留水を 30~90 日間投与する試験が実施されている。その結果、血液学的検査の結果、100 mg/L 以上の投与群で一時的な貧血が認められたとされている。30 日後には 50 及び 100 mg/L 投与群で赤血球グルタチオン濃度が対照群よりもそれぞれ 15 及び 31%減少し、90 日後には 50 及び 100 mg/L 投与群で 30 及び 40%減少したとされている。亜塩素酸イオンの摂取による主要な影響は、赤血球の損傷と考えられたとされている。WHO は、NOAEL を亜塩素酸イオンとして 10 mg/L (1 mg/kg 体重/日)としている。(参照 2 4、 2 5)本専門調査会としては、供試動物数が少なく、また、当該試験の用量設定は公比にばらつきがみられ、LOAEL と NOAEL の間の用量差が 5 倍と大きく、当該試験の NOAEL をそのまま ADI 設定の根拠として用いることが適切でないと考える。なお、特に溶血性貧血に対し感受性の高い G6PD 欠損のヒトにおける試験(後述)では、亜塩素酸ナトリウムとして 42 μg/kg 体重/日相当の投与量レベルにおいて赤血球への影響が認められていない。

④ ラット 13 週間反復投与毒性試験

Harrington ら(1995)の報告によれば、雌雄の Crl: CD(SD)BR ラット(各群 15 匹)に亜塩素酸ナトリウム(0、10、25、80 mg/kg 体重/日;亜塩素酸イオンとして 0、7.4、18.6、59.7 mg/kg 体重/日相当)を 13 週間強制経口投与する試験が実施されている。その結果、80 mg/kg 体重/日投与群で被験物質によると考えられる 4 例の死亡例が認められたとされている。

血液学的検査では、10 mg/kg 体重/日以上の投与群の雄及び 25 mg/kg 体重/日以上の投与群の雌で、赤血球数の有意な減少が認められたとされている。また、25 mg/kg 体重/日以上の投与群の雄で、ヘマトクリット及びヘモグロビン濃度の有意な減少と、メトヘモグロビン濃度及び好中球数の有意な上昇が認められたとされている。一方、80 mg/kg 体重/日投与群の雌では、メトヘモグロビン濃度の有意な減少がみられたほか、3 匹に赤血球の形態変化を観察したとされている。

80 mg/kg 体重/日投与群の雄及び 25 mg/kg 体重/日以上の投与群の雌で、 脾臓比重量の有意な増加が、80 mg/kg 体重/日の投与群の雄及び 25 mg/kg 体重/日以上の投与群の雌で、副腎比重量の有意な増加が認められたとされ ている。

病理組織学的検査では、80 mg/kg 体重/日投与群の雄 7 匹及び雌 8 匹に、前胃の扁平上皮過形成、角化、潰瘍形成、慢性炎症及び浮腫が認められたとされている。潰瘍形成、慢性炎症及び浮腫は、25 mg/kg 体重/日投与群の雄 2 匹にも認められた。Harrington ら及び WHO は、NOAEL を 10 mg/kg 体重/日(亜塩素酸イオンとして 7.4 mg/kg 体重/日)としている。(参照 19、24、28、29)

⑤ ラット 1 年間反復投与毒性試験 Couri & Abdol-Robmon (1980)

Couri&Abdel-Rahman (1980) の報告によれば、雄の SD ラット (各群 4 匹) に亜塩素酸ナトリウム (0、10、100 mg/L) を 1 年間飲水投与 (20 時間/日、7 日/週) する試験が実施されている。その結果、10 mg/L 投与群で投与開始後 10、11 ヶ月目に有意な体重増加抑制が認められ、100 mg/L 投与群では 2 ヶ月目以降から認められたとされている。赤血球数、へマトクリット値、へモグロビン値には変化は認められなかったとされている。その他にも種々の変化を認めたが、EPA は、一貫した用量反応関係がみられず、また供試動物数が少なく、影響自体が軽微であることから、結果の解釈は複雑であるとしている。(参照 <math>1 9 、2 9 、3 0)本専門調査会としては、EPA の評価が妥当と考える。

⑥ ラット2年間反復投与毒性試験

本専門調査会としては、EPAの評価が妥当であり、当該試験のNOAELをそのままADI設定の根拠として用いることが適切でないと考える。

⑦ サル 30~60 日間反復投与毒性試験

Bercz ら(1982)の報告によれば、雄 5 匹、雌 7 匹のアフリカミドリザルへの rising dose 法(用量漸増法)により亜塩素酸ナトリウムを 30~ 60 日間飲水投与(亜塩素酸イオンとして 0、25、50、100、400 mg/L; 0、3、6、13、50 mg/kg 体重/日相当(WHO による換算)、400 mg/L が 58.4 mg/kg 体重/日に相当(EPA による換算))する試験が実施されている。その結果、メトヘモグロビン血症と貧血が用量依存的に認められたとされている。(参照 1 9、2 4、3 1)本専門調査会としては、当該試験は同一個体を用いた用量漸増法による実験であり、NOAEL の設定に使用できるものでないと考える。

(二酸化塩素)

WHO 飲料水水質ガイドラインにおける評価における二酸化塩素の飲水投与試験のうち、亜塩素酸イオンの安全性評価に関与すると考えられるものは、「(3)生殖発生毒性」に記載の報告以外は以下のとおりである。

① ラット 90 日間反復投与毒性試験

EPA (2000) 及び WHO (2005) の評価にも記載があるとおり、ラット (雌雄各群 10 匹) に二酸化塩素水溶液 (0、25、50、100、200 mg/L; 雄: 0、2、4、6、12 mg/kg 体重/日相当、雌:0、2、5、8、15 mg/kg 体重/日相当)を 90 日間飲水投与する試験が実施されている。その結果、200 mg/L 投与群において摂餌量の減少が認められ、100 mg/L 以上の投与群の雌で鼻甲介の杯細胞の過形成が認められたとされている。また、50 mg/L 以上の投与群で水の味の変化に起因すると考えられる飲水量の減少、25 mg/L 以上の投与群の雌雄で鼻腔の炎症、雄で鼻甲介の杯細胞の過形成が認められたとされている。本論文の著者は、LOAELを 25 mg/L (2 mg/kg 体重/日相当)としている。EPA は、本試験で認められた鼻腔の炎症等の病変は、他の同様の試験では観察されないことから、経口によるものではなく、本物質の鼻からの吸入による直接的な作用によるものとしている。(参照 19、24、29)

本専門調査会としては、EPA の評価が妥当と考える。

② ラット2年間反復投与毒性試験

EPA (2000) 及び WHO (2005) の評価にも記載があるとおり、ラット (各群 7 匹) に二酸化塩素水溶液 (0、0.5、1、5、10、100 mg/L; 0、0.07、0.13、0.7、1.3、13 mg/kg 体重/日相当) を 2 年間飲水投与する試験が実施されている。その結果、100 mg/L 投与群の雌雄で生存率の大きな低下がみられ、対照群に比べ平均生存期間が減少したとされている。しかしながら、病理組織学的な所見との明らかな相関関係は認められなかったとされている。本論文の著者は、NOAEL を 10 mg/L (1.3 mg/kg 体重/日相当)としている。WHO は、1949 年に行われた試験であるため現在の評価に用いる価値が限定的である(1949 study has serious limitations)としている。EPA は、供試動物数が少なく、感受性の高いエンドポイントが限られていることから、本試験の解釈が困難であるとしている。(参照 19、24、29)

本専門調査会としては、WHO 及び EPA の評価が妥当と考える。

これらの試験結果は、非常に酸性度の強い水溶液を用いていることか

ら、二酸化塩素でなく、酸による影響を検出している可能性がある。このことも踏まえ、本専門調査会としては、これらの報告を ADI 設定において考慮すべきでないと考える。

(3) 発がん性

8 36、7 9 その約

 Kurokawa ら (1986) の報告によれば、雌雄の B6C3F1 マウス (各群 50 匹) に亜塩素酸ナトリウム (0、250、500 mg/L; 亜塩素酸イオンとして 0、36、71 mg/kg 体重/日相当) を 85 週間飲水投与する試験が実施されている。その結果、腫瘍発生率の有意な増加は認められなかったとされている。。(参照 19、24、32)

上述の Kurokawa ら (1986) の報告によれば、雌雄の F344 ラット (各群 50 匹) に亜塩素酸ナトリウム (0、300、600 mg/L; 亜塩素酸イオンとして、雄: 0、18、32 mg/kg 体重/日、雌: 0、28、41 mg/kg 体重/日相当) を 85 週間飲水投与する試験が実施されている。その結果、腫瘍発生率の有意な増加は認められなかったとされている。 (参照 19、24、32)

亜塩素酸ナトリウムのラット2年間飲水投与試験(「(2)⑥ラット2年間 反復投与毒性試験」)においても腫瘍はみられていない。(参照19、24)

(次亜塩素酸ナトリウム)

添加物評価書「次亜塩素酸水」(2007)でも記載しているとおり、マウスに次亜塩素酸ナトリウム(500、1,000 mg/kg 体重/日)を 103 週間、ラットに次亜塩素酸ナトリウム($500\sim2,000$ mg/kg 体重/日)を 104 週間投与し、発がん性について研究した結果が報告されている。それによると、生存率及び腫瘍発生率については次亜塩素酸ナトリウム濃度に関わらず、対照群と有意差がなかったとされている。(参照 26)

(4) 生殖発生毒性

① マウス生殖毒性試験

上述の Moore & Calabrese (1982) の報告によれば、妊娠 A/J マウス (F0: 各群 10 匹) に亜塩素酸ナトリウム (亜塩素酸イオンとして 0、100 mg/L; 0、22 mg/kg 体重/日相当) を、妊娠期から授乳期にかけて飲水投与する試験が実施されている。その結果、受胎率は対照群で 56%、投与群で 39%であり、児動物の離乳時の体重は対照群と比べて 14%減少したとされている。LOAEL は亜塩素酸イオンとして 100 mg/L (22 mg/kg 体重/日相当)と推定されている。(参照 19、24、27)

② ラット生殖毒性試験

Carlton ら(1987)の報告によれば、Long-Evans ラット(各群雄 12 匹)に亜塩素酸ナトリウム(0、1、10、100、500 mg/L; 亜塩素酸イオンとして 0、0.075、0.75、7.5、27 mg 体重/日相当)を 72~76 日間飲水投与する試験が実施されている。その結果、投与に関連する一般状態の変化、生殖能及び生殖器官の病理組織学的変化は認められなかったが、異常精子数の増加及び精子の直進運動性の低下が 100 mg/L 以上の投与群で認められたとされている。 Carlton らはこれらの変化は毒性学的に比較的小さいものであるとしている。 WHO 及び EPA は、精子への影響に基づいて、NOAEL を 10 mg/L (亜塩素酸イオンとして 0.75 mg/kg 体重/日)としている。 (参照 1 9、 2 4、 2 9、 3 3)

本専門調査会としては、精子への影響が認められているが軽微であり、設定された用量の公比が大きく、また、他の報告(参照34、35)において、より高用量まで同様の影響がみられていないことから、当該試験のNOAELをそのままADI設定の根拠として用いることが適切でないと考える。

上述の Carlton ら(1987)の報告によれば、Long-Evans ラット(各群雄 12 匹、雌 24 匹)に亜塩素酸ナトリウム(0、1、10、100 mg/L;亜塩素酸イオンとして 0、0.075、0.75、7.5 mg/kg 体重/日)を雄の交配前 56日間及び交配中 10日間飲水投与した。雌では交配前 14日から分娩後 21日の離乳時まで、交配、妊娠及び授乳期間中を通じて飲水投与する試験が実施されているその結果、母動物の生殖及び児動物の生存及び成長に投与の影響はみられなかったとされている。100 mg/L 投与群において 21日齢の雌児、40日齢の雄児のトリョードチロニン(T_3)の低下及び 40日齢の雌雄児のチロキシン(T_4)濃度の低下が認められたとされている。WHOは、生殖毒性が認められなかったことから、NOAEL を 100 mg/L(亜塩素酸イオンとして 7.5 mg/kg 体重/日)としている。(参照 19、24、29、33)

Gill ら (2000) の報告によれば、EPA 試験ガイドラインに従い、GLP 下にて実施された SD ラット (F0: 各群雌雄各 30 匹) を用いて亜塩素酸ナトリウム (0、35、70、300 mg/L) を投与した生殖毒性試験において、雄の交配前 10 週間及び交配期間中、雌の交配前 10 週間、交配、妊娠及び授乳期間中を通じて飲水投与が行われている。F0 及び F1 における各群の25 母体から初産の雌雄の離乳児各 1 匹を次世代を得るための親動物として選抜し、親動物と同濃度の飲水を加え、生後 14 週齢で同群内の雌雄を

交配させている。70 mg/L 投与群で、F2a 児数が減少したため、F2a の離 乳後に F1 を再交配して得られた児を F2b としている。その結果、亜塩素 酸イオン摂取量は、F0の雄で 0、3.0、5.6、20.0 mg/kg 体重/日、雌で 0、 3.8、7.5、28.6 mg/kg 体重/日、F1 の雄で 0、2.9、5.9、22.7 mg/kg 体重/ 日、雌で 0、3.8、7.9、28.6 mg/kg 体重/日であったとされている。生殖、 生殖器官の病理組織学的所見、精子数及び精子の形態に投与の影響は認め られなかったとされている。主に 70 及び 300 mg/L 投与群の全世代の雌雄 で嗜好性の低下による飲水量、摂餌量、体重増加の減少が認められたとさ れている。300 mg/L 投与群の F1、F2 の生存率低下、出生時及び授乳期 間中の体重減少、正向反射達成率の低下及び雌雄の性成熟の遅延、F1 の生 後11日雄の脳重量の低下、F1の赤血球指標の低下が認められたとされて いる。また、70 及び 300 mg/L 投与群で F2b の生後 24 日に聴覚驚愕反応 の低下が認められた。35 及び 70 mg/L 投与群の F1 では赤血球指標の軽微 であるが有意な変化がみられたが、背景データの範囲内の変化であったと されている。Gill らは、血液毒性に対する NOAEL を 70 mg/L、神経毒性 に対する NOAEL を 300 mg/L 投与群としているが、WHO は、70 mg/L 投与群における聴覚驚愕反応の低下、F1 及び F2 における脳重量の低下、 F0 及び F1 における肝重量の低下を根拠に、また EPA は、70 mg/L 投与 群における聴覚驚愕反応の低下、F0及びF1における肝重量の低下を根拠 に、NOAEL を 35 mg/L (亜塩素酸イオンとして 2.9 mg/kg 体重/日) とし ている 2 。(参照19、24、29、34)

本専門調査会としては、F2b の 70 mg/L 投与群で認められた聴覚驚愕反応の低下に基づいて、NOAEL を 35 mg/L (亜塩素酸イオンとして 2.9 mg/kg 体重/日) と評価した。

③ ラット発生毒性試験

1 2

3

4

5 6

7

8

9

10

1112

13

14

15

1617

18

1920

2122

23

242526

27

2829

30

3132

33

34

35 36 Couri ら(1982)の報告によれば、SD ラット(各群 4~13 匹)の妊娠8~15 日に亜塩素酸ナトリウム(0、0.1、0.5、2%; 亜塩素酸イオンとして 0、70、440、610 mg/kg 体重/日)を飲水投与、または 200 mg/kg 体重を強制経口投与し、胎児及び新生児に対する影響の検査が行われている。その結果、200 mg/kg 体重強制経口投与群では全てのラットが死亡したが、飲水投与では死亡はみられなかったとされている。0.5 及び 2%投与群では体重、摂餌量及び飲水量の低下がみられ、0.1%投与群で摂水量の低下がみられたとされている。2%投与群で吸収胚の増加がみられたとされている。0.1%以上投与群で分娩児の頭臀長の短縮がみられたが、体重には差は認められなかったとされている。奇形の発現頻度及び児の生後発育には投与の

WHOにおいて亜塩素酸イオンとしての耐容一日摂取量(TDI)の設定根拠とされた試験 成績である。

影響はみられなかったとされている。EPA は影響レベルを亜塩素酸イオンとして 0.1%としている。しかし、Couri らは、0.1 及び 0.5%投与群では 発生毒性はみられなかったとしている。(参照 1.9 、 3.6)

本専門調査会としては、0.1%以上投与群でみられた分娩児の頭臀長の短縮を毒性とはみなさず、2%投与群でみられた吸収胚の増加に基づいて、NOAELを亜塩素酸イオンとして 0.5% (亜塩素酸イオンとして 440 mg/kg 体重/日) と評価した。

Mobley ら(1990)の報告によれば、雌ラット(各群 12 匹)への亜塩素酸ナトリウム(0、20、40 mg/L; 亜塩素酸イオンとして 0、3、6 mg/kg体重/日相当)の 9 週間(交配 10 日前〜受胎後 35〜42 日後)飲水投与し、無処置雄ラットと交配させて児を得る試験が実施されている。その結果、40 mg/L 投与群の受胎後 36〜39 日の児に一貫した探索行動の低下が認められたが、40 日では変化は認められなかったとされている。WHO 及びEPA は、行動影響から、NOAEL を 20 mg/L(亜塩素酸イオンとして 3 mg/kg 体重/日)としている 3 。(参照 1 9、 2 4、 3 7)

Suh ら (1983) の報告によれば、SD ラット (各群 $6\sim9$ 匹) に亜塩素酸イオン (0、1、10 mg/L; 0、0.1、1 mg/kg 体重/日) を含む蒸留水を、交配前と妊娠期間中の 2.5 ヶ月間投与したところ、投与群で異常発生率が増加したが、投与群の匹数が少ないため、統計学的に有意とはみなされなかった。(参照 19、24、29、38)

④ ウサギ発生毒性試験

Harrington ら(1996)の報告によれば、ニュージーランドホワイトウサギ(各群 16 匹)に亜塩素酸ナトリウム(0、200、600、1,200 mg/L; 亜塩素酸イオンとして 0、10、26、40 mg/kg 体重/日)を妊娠 7 日から 19日まで飲水投与する試験が実施されている。その結果、600 mg/L 以上の投与群で、妊娠ウサギの飲水量及び摂餌量の減少がみられ、胎児重量のわずかな低下及び骨化遅延胎児のわずかな増加がみられたとされている。催 奇形性は認められなかったとされている。 Harrington らは、NOAEL を 200 mg/L (亜塩素酸イオンとして 10 mg/kg 体重/日)と推定している。(参照 1 9、 2 4、 3 9)

(二酸化塩素)

WHO 飲料水質ガイドラインにおける評価における二酸化塩素の飲水投与試験のうち、亜塩素酸イオンの安全性評価に関与すると考えられるもの

³ EPA において亜塩素酸イオンとしての参照用量(RfD)の設定根拠とされた試験成績である。

は、「(2) 反復投与毒性」に記載の報告以外は以下のとおりである。

上述の Suh ら (1983) の報告によれば、SD ラット (各群雌 6~8 匹) に二酸化塩素水溶液 (0、1、10、100 mg/L; 0、0.1、1、10 mg/kg 体重/日相当) を交配前と妊娠期間中の 2.5 ヶ月間飲水投与する試験が実施されている。その結果、100 mg/L 投与群で着床数及び出生児数の減少が認められた。WHO は、NOAEL を 10 mg/L (1 mg/kg 体重/日) としている。しかし、本実験では使用動物数が少なく、用量の公比が大きく設定されている。 (参照 1 9、2 4、3 8)

その他、以下の強制経口投与試験の報告がある。

Toth (1990) の報告によれば、Long-Evans ラットに二酸化塩素水溶液 (14 mg/kg 体重/日) を生後 $1\sim20$ 日に強制経口投与する試験が実施されてる。その結果、生後 11、21 及び 35 日に体重の低値、投与後 21 及び 35 日に前脳の重量及びタンパク質量の低下がみられ、生後 11 及び 21 日に前脳の DNA 量の低下がみられたとされている。小脳、嗅球の細胞増殖には対照群との間に有意な差はなく、前脳、小脳、脳幹の病理組織学的変化も認められなかったとされている。WHO は、LOAEL を 14 mg/kg 体重/日としている。(参照 2 4、2 9、4 0)本専門調査会としては、認められた影響は、ラットの低体重に起因するものであり、毒性学的に重要な所見ではないと考える。

これらの試験結果は、非常に酸性度の強い水溶液を用いていることから、二酸化塩素でなく、酸による影響を検出している可能性がある。このことも踏まえ、本専門調査会は、これらの報告を ADI 設定において考慮すべきでないと考える。

(5)遺伝毒性

Ishidate ら (1984) の報告によれば、細菌 (Salmonella typhimurium TA92、TA94、TA98、TA100、TA1535、TA1537) を用いた亜塩素酸ナトリウムによる復帰突然変異試験(最高用量 0.3 mg/plate)が実施されており、S9mix存在下において TA100 の最高用量のみで弱い陽性(対照群の 2 倍程度)の結果が得られたとされている。(参照 1 9 、 2 4 、 4 1)

上述の Ishidate ら(1984)の報告によれば、チャイニーズハムスター肺由来培養細胞 (CHL) を用いた亜塩素酸ナトリウムによる染色体異常試験 (最高用量 0.02~mg/L) が実施されており、最高用量のみで陽性の結果が得られた。(参照 1~9~、4~1)

2 3 4

5 6

> 7 8

9

10

11 12

13

14

15

16 17

18

19 20

21

22 23

2425

26

27 28

29

30

31

32 33

34

35 36

37 38

Havashi ら (1988) 及び上述の Meier (1985) の報告によれば、ddY マ ウス (各群 6 匹) への亜塩素酸ナトリウムの単回強制経口投与 (37.5~300 mg/kg 体重)による小核試験及び Swiss CD-1 マウス(各群雌雄各 5 匹)へ の 5 回強制経口投与(0、8、20、40 mg/kg 体重/日)による小核試験が実施 され、陰性の結果が得られたとされている(参照19、35、42)。ただ し、参考データではあるが、ddYマウスへの亜塩素酸ナトリウムの腹腔内投 与 $(7.5\sim60 \text{ mg/kg}$ 体重)による小核試験においては陽性の結果が得られた との報告がある(参照19、24、42)。

上述の Meier (1985) の報告によれば、Swiss CD-1 マウスを用いた亜塩 素酸ナトリウムによる骨髄染色体異常試験及び B6C3F1 マウスを用いた精 子形態異常試験では、陰性の結果であった。 (参照19、24、35)

(微酸性次亜塩素酸水)

添加物評価書「次亜塩素酸水」(2007) に記載のとおり、細菌 (S.typhimurium TA98, TA100, TA1535, TA1537, Escherichia coli WP2uvrA) を用いた微酸性次亜塩素酸水 (pH $5.0\sim5.5$ 、有効塩素濃度 $50\sim80$ mg/kg) の復帰突然変異試験 (3.91~1,000 mL/plate) が実施されており、S9mix の 有無にかかわらず、陰性であったとされている。 (参照26)

以上を総合的に判断すると、細菌を用いた復帰突然変異試験でみられた 陽性反応は弱いものであり、また、ほ乳類培養細胞を用いた染色体異常試 験では陽性の結果が得られているものの、高用量まで試験された小核試験 において陰性であったことから、これらの遺伝毒性が生体内で発現すると は考えがたい。従って、亜塩素酸ナトリウム及び微酸性次亜塩素酸水のデ ータを基に亜塩素酸水の遺伝毒性を評価すると、生体にとって特段問題と なる遺伝毒性はないと考えられた。

(6)細胞毒性

微酸性次亜塩素酸水に関し、以下の報告がある。

添加物評価書「次亜塩素酸水」(2007) に記載のとおり、チャイニーズ・ ハムスター培養細胞 (V79 細胞) を用いた微酸性次亜塩素酸水 (pH $5.0 \sim 5.5$ 、 有効塩素濃度 50~80 mg/kg) のコロニー形成阻害試験を行った結果、次亜 塩素酸水の含有率 12.5%以上で明確な細胞毒性作用が認められた。50.0%以 上ではコロニーの出現が観察されず、試験から試算した IC_{50} 値は 20.0%以下 であった。(参照26)

(7) 抗原性

微酸性次亜塩素酸水に関し、以下の報告がある。

添加物評価書「次亜塩素酸水」(2007) に記載のとおり、雌ニュージーランドホワイトウサギを用いた微酸性次亜塩素酸水の皮膚一次刺激性試験、皮膚累積刺激性試験及び眼刺激試験、並びにハートレイモルモットを用いた感作性試験において、いずれの動物にも異常は認められなかった。(参照 2 6)

1 2

(8) ヒトにおける知見

Lubbers ら (1981) の報告によれば、 $21\sim35$ 歳の男性(各群 10 名)に亜塩素酸イオン 0.01、0.1、0.5、1.0、1.8、2.4 mg/L、1 L/日を含む飲料水を用量漸増法で投与する試験が実施されている。その結果、血清中の尿素窒素、クレアチニン及びその両者の比(群平均値)の変化が認められたが、Lubbers らはこの変化の臨床病理学的意義はないと結論付けている。WHO は、NOAELは 2.4 mg/L (0.034 mg/kg 体重/日)とすることが可能であると判断している。(参照 24、43)

同じ男性に、亜塩素酸ナトリウム(亜塩素酸イオンとして飲水中 5 mg/L、0.5 L/日)を約 12 週間摂取させ、その後 8 週間観察する試験が実施されている。その結果、平均赤血球へモグロビン量(群平均値)の変化が認められたが、時間経過との関連が無く、数値は正常範囲内にあることから、本論文の著者はこの変化の臨床病理学的意義を否定している。WHO は、NOAEL は 亜塩素酸イオンとして 5 mg/L (36 μ g/kg 体重/日相当)としている。(参照 2 4 、4 3)

Lubbers ら (1984) の報告によれば、G6PD 欠損の健康な成人男性 (3名) に亜塩素酸ナトリウム (5 mg/L、500 mL/日 (体重を60 kg と仮定すると、42 μg/kg 体重/日相当)) を 12 週間摂取させ、その後 8 週間観察する試験が実施されている。その結果、生化学的及び生理学的指標について、亜塩素酸イオンの摂取による臨床病理学的意義のある変化は認められなかったとされている。(参照44)

(9) その他

添加物評価書「次亜塩素酸水」(2007)において、次亜塩素酸水の安全性については、強酸性 (pH 2.5、有効塩素濃度 50~60 mg/kg)及び微酸性 (pH 5.5、有効塩素濃度 70 mg/kg)次亜塩素酸水について多くの報告があり、その中で急性経口毒性試験、皮膚刺激性試験、急性眼刺激性試験、皮膚感作性試験、口腔粘膜刺激性試験、復帰突然変異試験及び染色体異常試験において、変化は認められなかったとされている。また、細胞毒性に関しては、高濃度においてやや細胞の増殖が抑制されたが、他の市販の消毒薬と比較して毒性

の少ないことを認めている。弱酸性次亜塩素酸水 $(pH 2.7 \sim 5.0)$ 、有効塩素濃度 $10 \sim 60$ mg/kg)については、「弱酸性次亜塩素酸水 $(pH 2.7 \sim 5.0)$ の主要な化学種は、現在、食品添加物として使用されている強酸性次亜塩素酸水、次亜塩素酸ナトリウム、高度サラシ粉等に含まれるものとほぼ同じであり、また、使用後の残留性も無いことから、申請者は安全性に問題はないと考えている」とされている。 (参照 2 6)

Ⅲ. 一日摂取量の推計等

「平成 16 年国民健康・栄養調査報告」(参照 4 5)における「野菜類」、「穀類(米・加工品)」、「果実類」、「魚介類」、「肉類」、「豆類」、「藻類」の推定摂取量の平均値(一人一日当たり(g))をもとに、最終食品の完成前に除去するとの使用基準案に基づき、亜塩素酸水の一日摂取量を推定した。なお、指定等要請者は、対象食品群を限定していないが、「平成 17 年度食中毒発生状況の概要について」(厚生労働省食品安全部平成 18 年 7 月)を踏まえ、今後わが国の食中毒事件の発生件数の削減にとって重点的に微生物管理が必要と考えられる食品群を選定したとしている。(参照 4 6 、 4 7)

摂取量は、「野菜類」は $253.9\,\mathrm{g}$ 、「精白米」は $161.2\,\mathrm{g}$ (「穀類(米・加工品)」 $343.0\,\mathrm{g}$ に換算係数 0.47(参照 $4\,8$)を掛けたもの)、「果実類」は $119.2\,\mathrm{g}$ 、「魚介類」は $82.6\,\mathrm{g}$ 、「豆類」は $61.5\,\mathrm{g}$ 、「藻類」は $12.9\,\mathrm{g}$ であった。これらの食品群の摂取量には、現公定法における検出限界($1\,\mathrm{mg/kg}$)程度の $HClO_2$ が含まれていると仮定し、さらに日本人の平均体重を $50\,\mathrm{kg}$ と仮定した場合、 $1\,\mathrm{HC}$ 摂取される $HClO_2$ の量は、 $0.014\,\mathrm{mg/kg}$ 体重/日と推定される。同様に、「肉類」の摂取量は $77.9\,\mathrm{g}$ であり、この食品群の摂取量に対し、検出限界($5\,\mathrm{mg/kg}$)程度の $HClO_2$ が含まれていると仮定した場合、 $1\,\mathrm{HClO_2}$ の量は、 $0.008\,\mathrm{mg/kg}$ 体重/日と推定される。「果実類」に関しては、果皮の殺菌が一般的な用途であると仮定すると、果実類の摂取時には、通常、果皮は除去されるものと考えられるので、 $1\,\mathrm{HClO_2}$ の量は、過剰な見積もりとなることを前提に、計 $0.022\,\mathrm{mg/kg}$ 体重/日と推定される。

Ⅳ. 国際機関等における評価

1. JECFA における評価

2007年の第 68 回 JECFA 会合において、ASC の ADI は、ラット二世代生殖毒性試験結果(参照 3 4)に基づき、亜塩素酸イオンとして 0.03 mg/kg 体重/日、塩素酸イオン(ClO_3)として 0.01 mg/kg 体重/日と設定することとされた。(参照 4 9)

2. 米国環境保護庁 (EPA) における評価

亜塩素酸及び二酸化塩素について、EPAは、二酸化塩素は亜塩素酸として毒性を発現すると考え、両化合物の神経行動学的影響や発達毒性の知見から、二酸化塩素について NOAEL は設定せず、亜塩素酸イオンの NOAEL を設定することで十分に安全を確保できるとしている。

亜塩素酸ナトリウムを用いたラットの発生毒性試験の結果(参照 3.7)に基づき、児に認められた探索行動の低下を根拠に、NOAEL は 3 mg/kg 体重/日とされている。この NOAEL に不確実係数として 100 を用い、参照用量 (RfD) は亜塩素酸イオンとして 0.03 mg/kg 体重/日とされている。(参照 1.9)

3. 米国における評価

ASC について、亜塩素酸ナトリウム及び二酸化塩素の安全性評価は EPA の評価を引用して行われている。FDA、米国農務省 (USDA) は、全家禽胴体肉、未処理の家禽胴体の部分、肉及び挽肉形成肉、果実、野菜、香辛料、水産物への使用並びに食品の加工工程での使用を認めている。(参照11、13、16、50、51)

また、二酸化塩素についても、亜塩素酸イオンとして評価され、殺菌料として鶏肉加工や生食用以外の果物や野菜への使用が認められている。(参照52)

4. WHO 飲料水水質ガイドラインにおける評価

亜塩素酸の暴露による最も重要な影響は、その酸化ストレスに基づく赤血球の変化であるとしている。また、慢性毒性試験及び二世代生殖試験を含め、亜塩素酸のヒトの耐容一日摂取量(TDI)を評価するための十分なデータが存在するとしている。

亜塩素酸ナトリウムを用いたラットの二世代生殖毒性試験 (参照 19、34) に基づき、驚愕反応の低下、F1 と F2 における脳重量の減少及び F0 と F1 における肝重量の低下を根拠に、NOAEL は 2.9 mg/kg 体重/日とされている。この NOAEL に不確実係数として 100 (個体差及び種差に各 10) を用い、TDI は亜塩素酸イオンとして 30 μg/kg 体重/日とされている。

なお、亜塩素酸の暫定ガイドライン値が二酸化塩素の安全性を十分確保できると考えられることから、二酸化塩素のガイドライン値は設定されていない。 (参照24)

5. 欧州における評価

EU において加工助剤は規制の対象とされていないが、二酸化塩素、ASC、 過酸 (peroxyacids)、リン酸三ナトリウムにより殺菌された家禽肉について、 毒性学的なリスクは無視しうるとされている。しかしながら、二酸化塩素、ASC、 過酸等の反応性の高い物質は、家禽肉中で化学変化を起こす可能性があるが、 反応生成物は同定されておらず、結果として毒性学的評価はできないとされて いる。(参照20)

6. 国際がん研究機関(IARC)における評価

1991 年、亜塩素酸ナトリウムの発がん性について Group 3 (ヒトへの発がん性について分類できない) と評価されている。(参照 2 4 、5 3)

7. わが国における評価

塩素化合物に関し、次の評価がなされている。

亜塩素酸ナトリウムについては、カズノコ(調理加工品に限る)に使用するための使用基準改正に係る食品健康影響評価の結果、「亜塩素酸ナトリウムのADIを亜塩素酸イオンとして 0.029 mg/kg 体重/日と設定する。」と評価されている。(参照 5 4)

次亜塩素酸水については、成分規格改正に係る食品健康影響評価の結果、「今回、食品健康影響評価を求められた 2 種類の次亜塩素酸水は、使用後、最終食品の完成前に除去される場合、安全性に懸念がないと考えられる。」と評価されている。(参照 2 6)

V. 食品健康影響評価

亜塩素酸水は、亜塩素酸($HClO_2$)を主たる有効成分としているが、pHの変動により二酸化塩素(ClO_2)、亜塩素酸イオン(ClO_2 ⁻)等も発生しうるものであり、また、生体中では代謝等により亜塩素酸のほか、塩化物イオン(Cl-)、二酸化塩素、亜塩素酸イオン等の生成も考えられる。

よって、申請物質の毒性に関する試験報告はないが、既にわが国で使用の認められている亜塩素酸ナトリウム($NaClO_2$)の試験成績のほか、二酸化塩素、次亜塩素酸水又は次亜塩素酸ナトリウム(NaClO)の試験成績も参考に、総合的に評価することは可能と判断した。

亜塩素酸ナトリウム等の安全性試験成績(別紙)を評価した結果、亜塩素酸イオンの摂取による主要な影響は、赤血球の損傷と考えられた。発がん性は認められなかった。遺伝毒性については、細菌を用いた復帰突然変異試験でみられた陽性反応は弱いものであり、また、ほ乳類培養細胞を用いた染色体異常試験では陽性の結果が得られているものの、高用量まで試験された小核試験において陰性であったことから、生体にとって特段問題になる遺伝毒性はないと考えられた。

なお、亜塩素酸水に遺伝毒性発がん物質と疑われている臭素酸が混入する可能性があるが、提案された製造基準が遵守されれば、臭素酸の生成量を水道水質基準以下に抑えることが可能であると考えられる。

1 2 以上から、亜塩素酸水の主たる有効成分である亜塩素酸は、添加物として適切 に使用され、最終食品の完成前に除去する旨の使用基準が遵守される限り、安全 3 性に特段の懸念はないと考えられた。 4 5 6 上記を踏まえ、亜塩素酸水の ADI は、亜塩素酸イオンとして 0.029 mg/kg 体 7 重/日と評価した。 8 9 ADI 0.029 mg/kg 体重/日 (亜塩素酸イオンとして) 10 (ADI 設定根拠資料) 生殖毒性試験 11 (動物種) ラット 12 (投与方法) 飲水投与 13 (NOAEL 設定根拠所見) F2b:聴覚驚愕反応の低下 14 (NOAEL) 2.9 mg/kg 体重/日 (亜塩素酸イオンとして) 100 15 (安全係数) なお、既に使用の認められている次亜塩素酸ナトリウム等、臭素酸の混入する可 16 能性のある食品添加物についても、混入の実態を調査した上で、規格基準の設定の 17 18 必要性について検討すべきと考える。 19

1 < 別紙1:略称>

略称	名称等
ASC	Acidified Sodium Chlorite solutions
CHL	チャイニーズ・ハムスター肺由来培養細胞株
EPA	Environmental Protection Agency
EU	European Union: 欧州連合
FASEB	Federation of American Societies for Experimental Biology: 生物
	実験科学連合
GLP	Good Laboratory Practice
GMP	Good manufacturing practice:適正使用規範
GRAS	Generally Recognized as Safe: 一般的に安全とみなされる
JECFA	Joint FAO/WHO Expert Committee on Food Additives :
	FAO/WHO:合同食品添加物専門家会議
LOAEL	Lowest Observed Adversed Eeffect Level
SCF	Scientific Committee for Food:欧州食品科学委員会
WHO	World Health Organization:世界保健機関

1 <別紙2:亜塩素酸水 安全性試験結果>

			7K 1X/1K	1			T	
試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
	ラット	単回	経口		亜塩素酸ナトリ		LD ₅₀ : ClO ₂ ⁻ として 105 mg/kg 体重	2 2
					ウム			2 4
	ウズラ	単回	経口				LD ₅₀ : ClO ₂ ⁻ として 493 mg/kg 体重	2 3
								2 4
-	ネコ	単回	経口	雄		ClO ₂ -として	64 mg/kg 体重の投与で 40~90 分後にメト	2 5
急性毒性						20, 64 mg/kg	ヘモグロビン化のピーク(約 40%)が、20	ı
毒性						体重	mg/kg 体重の投与でそれより遅い時点でピ	
							ーク (10~30%) がみられ、両投与群でメ	
							トヘモグロビン血症がみられた。	
	マウス	単回	経口	雌雄各5	微酸性次亜塩素	50 mL/kg 体	雌雄ともに死亡例は認められず、中毒症状	2 6
					酸水 (pH 5.0~	重	を示す動物も認められなかった。	
					5.5、有効塩素濃			
					度 50 ~ 80			
					mg/kg)			
	マウス	30 日間	飲水	*A/J マ	亜塩素酸ナトリ	0、1、10、100	何れの系統のマウスにおいても 100 mg/L	1 9
				ウス及	ウム	mg/L	投与群で赤血球の G6PD 活性、浸透圧脆弱	2 7
				び			性及び平均容積の有意な上昇が認められ	
				C57L/J			た。	
反復				マウス			〈NOAEL: ClO2 ⁻ として 10 mg/L	
投与				(各			(1.9 mg/kg 体重/日) (EPA によ	
反復投与毒性				11-23)			る)〉	
	マウス	30, 90,	飲水	雄 55~	亜塩素酸ナトリ	0, 4, 20, 100	腎病理組織学的検査、腎重量及びその比重	1 9
		180		60	ウム	mg/L (ClO_2^-	量、体重並びに飲水量に有意な影響は認め	2 7
		日間				として0、3、	られなかった。	
						15、75 mg/L)		

試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
	ラット	30~90 日	飲水	雄 6	亜塩素酸イオン	0, 10, 50, 100,	血液学的検査の結果、100 mg/L 以上の投与	2 4
		間				250、500 mg/L	群で一時的な貧血が認められた。30日後に	2 5
						(0, 1, 5, 10,	は50及び100 mg/L投与群で赤血球グルタ	
						25 、 50 mg/kg	チオン濃度が対照群よりもそれぞれ 15 及	
						体重/日相当)	び 31%減少し、90 日後には 50 及び 100	
							mg/L 投与群で 30 及び 40%減少した。	
							〈NOAEL:ClO2 ⁻ として 10 mg/L	
							(1 mg/kg 体重/日)(WHO によ	
							る)〉	

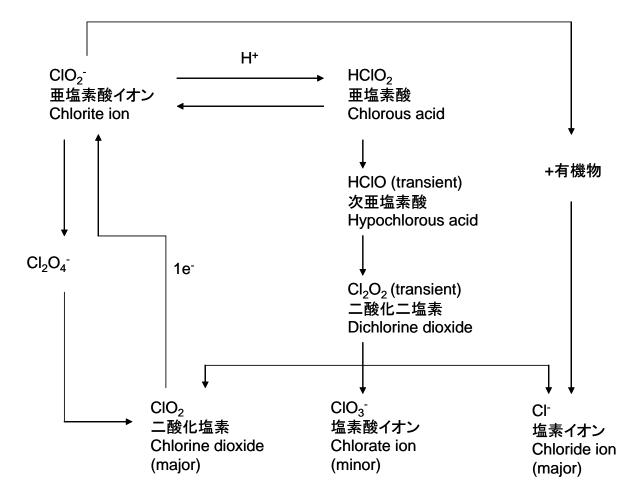
試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
	ラット	13 週間	経口	雌雄各	亜塩素酸ナトリ	0、10、25、80	80 mg/kg 体重/日投与群で被験物質によ	1 9
				15	ウム	mg/kg 体重/日	ると考えられる 4 例の死亡例が認められ	2 4
						(ClO ₂ -とし	た。	2 8
						て 0、7.4、18.6、	血液学的検査では、10 mg/kg 体重/日以	2 9
						59.7 mg/kg 体	上の投与群の雄及び 25 mg/kg 体重/日以上	
						重/日相当)	の投与群の雌で、赤血球数の有意な減少が	
							認められた。また、25 mg/kg 体重/日以上	
							の投与群の雄で、ヘマトクリット及びヘモ	
							グロビン濃度の有意な減少と、メトヘモグ	
							ロビン濃度及び好中球数の有意な上昇が認	
							められた。一方、80 mg/kg 体重/日投与群	
							の雌では、メトヘモグロビン濃度の有意な	
							減少がみられたほか、3 匹に赤血球の形態	
							変化を観察した。	
反							80 mg/kg 体重/日投与群の雄及び 25	
反復投与毒性							mg/kg 体重/日以上の投与群の雌で、脾臓比	
与毒							重量の有意な増加が、80 mg/kg 体重/日の	
							投与群の雄及び 25 mg/kg 体重/日以上の投	
(つづき)							与群の雌で、副腎比重量の有意な増加が認	
2)							められた。	
							病理組織学的検査では、80 mg/kg 体重/	
							日投与群の雄7匹及び雌8匹に、前胃の扁	
							平上皮過形成、角化、潰瘍形成、慢性炎症	
							及び浮腫が認められた。潰瘍形成、慢性炎	
							症及び浮腫は、25 mg/kg 体重/日投与群の	
							雄2匹にも認められた。	
							〈NOAEL:10 mg/kg 体重/日	
							(ClO2 ⁻ として 7.4 mg/kg 体重/	
							日)〉	
	ラット	1年間	飲水	雄 4	亜塩素酸ナトリ	0 、 10 、 100	10 mg/L 投与群で投与開始後 10、11 ヶ月	1 9
					ウム	mg/L	目に有意な体重増加抑制が認められ、100	2 9
						(20 時間/日、	mg/L 投与群では 2 ヶ月目以降から認めら	3 0
						7日/週)	れた。赤血球数、ヘマトクリット値、ヘモ	
							グロビン値には変化は認められなかった。	

試験種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
	ラット	2年間	飲水	雌雄 7	亜塩素酸ナトリ	0, 1, 2, 4, 8,	全ての投与群でラットの生存期間に変化は	1 9
					ウム	100 , 1,000	認められなかった。 100 及び 1,000 mg/L 投	2 4
						mg/L	与群では、投与に起因すると考えられる腎	2 9
						(ClO ₂ -とし	病変が認められた。	
						て 0、0.09、	〈NOAEL: 8 mg/L	
						0.18、0.35、	(ClO ₂ -として0.7 mg/kg体重	
						0.7、9.3、81	/日) (著者	
						mg/kg 体重/日	による)〉	
						相当)		
	サル	30~60 日	飲水	雄5、雌	亜塩素酸ナトリ	亜塩素酸ナト	メトヘモグロビン血症と貧血が用量依存的	1 9
		間 (rising		7	ウム	リウム	に認められた。	2 4
		dose 法)				(ClO ₂ -とし		3 1
						て 0、25、50、		
						100 , 400		
						mg/L; 0, 3,		
						6 、 13 、 50		
						mg/kg 体重/日		
						相当(WHO		
						による)、400		
						mg/L が 58.4		
						mg/kg 体重/日		
						に相当(EPA		
						による))		
	ラット	90 日間	飲水	雌雄各	二酸化塩素	0、25、50、	200 mg/L 投与群において摂餌量の減少が	1 9
				10		100 , 200	認められ、100 mg/L 以上の投与群の雌で鼻	2 4
反						mg/L(雄:0、	甲介の杯細胞の過形成が認められた。また、	2 9
反復投与毒性						2, 4, 6, 12	50 mg/L以上の投与群で水の味の変化に起	
与毒						mg/kg 体重/日	因すると考えられる飲水量の減少、25	
性(相当、雌:0、	mg/L 以上の投与群の雌雄で鼻腔の炎症、雄	
(つづき)						2, 5, 8, 15	で鼻甲介の杯細胞の過形成が認められた。	
2)						mg/kg 体重/日	〈LOAEL:ClO2として 25 mg/L	
						相当)	(2 mg/kg 体重/日相当)(著者によ	
							る))	

試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
	ラット	2年間	飲水	7		0, 0.5, 1, 5,	100 mg/L 投与群の雌雄で生存率の大きな	1 9
						10、100 mg/L	低下がみられ、対照群に比べ平均生存期間	2 4
						(0, 0.07,	が減少した。しかしながら、病理組織学的	2 9
						0.13 、 0.7 、	な所見との明らかな相関関係は認められな	
						1.3, 13 mg/kg	かった。	
						体重/日相当)	〈NOAEL: ClO ₂ として 10 mg/L	
							(1.3 mg/kg 体重/日相当) (著者によ	
							る)〉	
	マウス	85 週間	飲水	雌雄各	亜塩素酸ナトリ	0、250、500	腫瘍発生率の有意な増加は認められなかっ	1 9
				50	ウム	mg/L (ClO ₂ -	た。	2 4
						として0、36、		3 2
						71 mg/kg 体重/		
						日)		
	ラット	85 週間	飲水	雌雄各		0、300、600	腫瘍発生率の有意な増加は認められなかっ	1 9
				50		mg/L	た。	2 4
						(ClO ₂ -とし		3 2
						て雄:0、18、		
発						32、雌:0、28、		
発がん性						41 mg/kg 体重/		
性						日)		
	ラット	2年間	飲水	雌雄各7		0, 1, 2, 4, 8,	腫瘍はみられなかった。	1 9
						100 , 1,000		2 4
						mg/L		
	マウス	103 週				500 、 1,000	生存率及び腫瘍発生率については次亜塩素	2 6
	ラット	104 週				mg/kg 体重/日	酸ナトリウム濃度に関わらず、対照群と有	
						(マウス)	意差がなかった。	
						$500 \sim 2,000$		
						mg/kg 体重/日		
						(ラット)		
	マウス	妊娠期~	飲水	雌 10	亜塩素酸ナトリ	ClO ₂ -として	受胎率は対照群で56%、投与群で39%であ	1 9
生殖		授乳期			ウム	0 、 100 mg/L	り、児動物の離乳時の体重は対照群より	2 4
発生						(0、22 mg/kg	14%減少した。	2 7
生殖発生毒性						体重/日)	〈LOAEL: ClO2 ⁻ として 100 mg/L (22 mg/kg	
,							体重/日)〉	
•	•			•				

試験種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与	量	試 験 結 果	参照 No.
	ラット	72~76 日	飲水	雄 12	亜塩素酸ナトリ	0, 1, 10	, 100,	投与に関連する一般状態の変化、生殖能及	1 9
		間			ウム	500	mg/L	び生殖器官の病理組織学的変化は認められ	2 4
						(ClO ₂	とし	なかったが、異常精子数の増加及び精子の	2 9
						て 0、0	.075、	直進運動性の低下が 100 mg/L 以上の投与	3 3
						0.75 、 7.	5、27	群で認められた。	
						mg/kg 🕏	重/目	〈NOAEL: 10 mg/L	
						相当)		(ClO ₂ -として 0.75 mg/kg 体重	
								/日)(WHO 及び EPA	
								による)〉	
	ラット	雄:交配	飲水	雄 12、	亜塩素酸ナトリ	0, 1, 10	, 100	母動物の生殖及び児動物の生存及び成長に	1 9
		前56日間		雌 24	ウム	mg/L(ClO_2^-	投与の影響はみられなかった。 100 mg/L 投	2 4
		及び交配		(F0)		として	0,	与群において 21 日齢の雌児、40 日齢の雄	2 9
		中10日間				0.075、	0.75、	児の T_3 の低下及び 40 日齢の雌雄児の T_4	3 3
		雌:交配				7.5 mg/	kg 体	濃度の低下が認められた。	
		前14日か				重/日)		$\langle NOAEL : 100 \text{ mg/L } (ClO_2^- として 7.5)$	
		ら分娩後						mg/kg 体重/日)〉	
		21 日の離							
		乳時まで							
	ラット	雄:交配	飲水	雌雄各	亜塩素酸ナトリ	0、35、7	0, 300	生殖、生殖器官の病理組織学的所見、精子	19
		前 10 日		30 (F0)	ウム	mg/L		数及び精子の形態に投与の影響は認められ	2 4
		間、交配				(ClO ₂	- とし	なかった。主に 70 及び 300 mg/L 投与群の	2 9
		期間中				て		全世代の雌雄で嗜好性の低下による飲水	3 4
		雌:交配				F0:		量、摂餌量、体重増加の減少が認められた。	
		前 10 目				雄:0、3.0), 5.6,	300 mg/L 投与群の F1、F2 の生存率低下、	
生		間、交配、				20.0、雌	: 0,	出生時及び授乳期間中の体重減少、正向反	
生殖発生毒性		妊娠、授				3.8、7.5	28.6	射達成率の低下及び雌雄の性成熟の遅延、	
土毒		乳期間				F1:		F1 の生後 11 日雄の脳重量の低下、F1 の赤	
						雄:0、2.	9、5.9、	血球指標の低下が認められた。また、70及	
(つづき)						22.7、雌	: 0,	び 300 mg/L 投与群で F2b の生後 24 日に	
<u> </u>						3.8、7.9	28.6	聴覚驚愕反応の低下が認められた。35及び	
						mg/kg	本重/	70 mg/L 投与群の F1 では赤血球指標の軽	
						日)		微であるが有意な変化がみられたが、背景	
								データの範囲内の変化であった。	
								(NOAEL: 70 mg/L	
								(ClO ₂ ⁻ として 2.9 mg/kg 体重/	
								日)〉	

試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
	ラット	妊娠 8~	飲水	雌 4~	亜塩素酸ナトリ	0, 0.1, 0.5,	200 mg/kg 体重強制経口投与群では全ての	1 9
		15 日目		13	ウム	2%; ClO ₂ -と	ラットが死亡したが、飲水投与では死亡は	3 6
						して 0、70、	みられなかった。0.5 及び 2%投与群では体	
						440 , 610	重、摂餌量及び飲水量の低下がみられ、	
						mg/kg	0.1%投与群で摂水量の低下がみられた。2%	
						体重/日)	投与群で吸収胚の増加がみられた。0.1%以	
			強制経口			200 mg/kg 体	上投与群の分娩児の頭臀長の短縮がみられ	
						重	たが、体重には差は認められなかった。奇	
							形の発現頻度及び児の生後発育には投与の	
							影響はみられなかった。	
							(NOAEL: ClO ₂ -として 0.5%	
							(440 mg/kg 体重/	
							日)〉	
	ラット	9 週間 (交	飲水	雌 12	亜塩素酸ナトリ	0、20、40 mg/L	40 mg/L 投与群の受胎後 36~39 日の児に一	1 9
		配10日前			ウム	(ClO ₂ -とし	貫した探索行動の低下が認められたが、40	2 4
		~受胎後				て 0、3、6	日では変化は認められなかった。	3 7
		35~42 日				mg/kg 体重/	〈NOAEL: 20 mg/L	
		後)				日)	(ClO ₂ -として 3 mg/kg 体重/	
							日)〉	
	ラット	2.5 ヶ月	飲水	各 6-9	亜塩素酸イオン	0、1、10 mg/L	投与群で異常発生率が増加したが、投与群	1 9
		間				(0, 0.1, 1	の匹数が少ないため、統計学的に有意とは	2 4
		(交配前				mg/kg 体重/	みなされなかった。	2 9
		と妊娠期				目)		3 8
		間中)						
	ウサギ	妊娠 7~	飲水	16	亜塩素酸ナトリ	0、200、600、	600 mg/L 以上の投与群で、妊娠ウサギの飲	
		19 日			ウム	1,200 mg/L	水量及び摂餌量の減少がみられ、胎児重量	
						(ClO ₂ -とし	のわずかな低下及び化骨遅延胎児のわずか	
						て 0、10、26、	な増加がみられた。催奇形性は認められな	
						40 mg/kg 体重/	かった。	
						日)	〈NOAEL: 200 mg/L	
							(ClO ₂ -として 10 mg/kg 体	
							重/日)(著	
							者 に よ	
							る))	


試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
	ラット	2.5 ヶ月	飲水	雄 6~8	二酸化塩素	0, 1, 10, 100	100 mg/L 投与群で着床数及び出生児数に	2 4
		間				mg/L (0, 0.1,	減少が認められた。	2 9
		(交配前				1、10 mg/kg	〈NOAEL: ClO ₂ として10 mg/L(1 mg/kg	3 8
		と妊娠期				体重/日相当)	体重/日(WHO による)〉	
		間中)						
	ラット	生後 1~	強制経口			14 mg/kg 体	生後 11、21 及び 35 日に体重の低値、投与	2 4
		20 日				重/日	後 21 及び 35 日に前脳の重量及びタンパク	2 9
							質量の低下がみられ、生後 11 及び 21 日に	4 0
							前脳の DNA 量の低下がみられた。小脳、	
							嗅球の細胞増殖には対照群との間に有意な	
							差はなく、前脳、小脳、脳幹の病理組織学	
							的変化も認められなかった。	
							〈LOAEL:14 mg/kg 体重/日〉	
	In vitro		S. typhimu rium TA92 TA94 TA98 TA100 TA1535		亜塩素酸ナトリウム	最高用量 0.3 mg/plate (+/ - S9mix)	S9mix の存在下において TA100 の最高用量のみで弱い陽性 (対照群の 2 倍程度)。	1 9 2 4 4 1
		染色体異	CHL		亜塩素酸ナトリ	最高用量 0.02	最高用量のみ陽性。	1 9
		常試験			ウム	mg/L		4 1
遺	マウス	小核試験	強制経口	6	亜塩素酸ナトリ	37.5 ~ 300	陰性。	1 9
伝毒性					ウム	mg/kg 体重		4 2
江		小核試験	強制経口	雌雄 5	亜塩素酸ナトリ	0, 8, 20, 40	陰性。	1 9
			5 回			mg/kg 体重/日		3 5
						0 0 1		
		小核試験	腹腔内		亜塩素酸ナトリ	$7.5 \sim 60$	陽性。	1 9
						mg/kg 体重		2 4
								4 2
	マウス	骨髄染色	経口		亜塩素酸ナトリ		<u></u>	1 9
		体異常試 験			ウム			2 4

試験 種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
		精子形態					陰性。	1 9
		異常試験						2 4
								3 5
		//- I						
	In vitro	復帰突然 変異試験	S.		微酸性次亜塩素	$3.91 \sim 1,000$	S9mix の有無にかかわらず、陰性であった	2 6
			typhimu		酸水(pH 5.0~	ml/plate		
			rium:		5.5、有効塩素濃			
			TA98		度 50 ~ 80			
			TA100		mg/kg)			
			TA1535					
			TA1537					
			Escheric					
			hia Coli:					
			$WP2\mathit{uvr}$					
			A					
			チャイニ		微酸性次亜塩素		コロニー形成阻害試験を行った結果、次亜	2 6
ν́ш			ーズ・ハ		酸水(pH 5.0~		塩素酸水の含有率 12.5%以上で明確な細胞	
細 胞			ムスター		5.5、有効塩素濃		毒性作用が認められた。50.0%以上ではコロ	
毒性			培養細胞		度 50 ~ 80		ニーの出現が観察されず、試験から試算し	
1-1-			(V79 細		mg/kg)		た IC ₅₀ 値は 20.0%以下であった。	
			胞)					
	ウサギ			雌	微酸性次亜塩素		ウサギを用いた皮膚一次刺激性試験、皮膚	2 6
抗原	モルモッ				酸水		累積刺激性試験及び眼刺激試験、並びにモ	
原 性	٢						ルモットを用いた感作性試験において、い	
							ずれの動物にも異常は認められなかった。	
ヒトにおける知見	ヒト	rising	飲水	男性 10	亜塩素酸イオン	0.01, 0.1, 0.5,	血清中の尿素窒素、クレアチニン及びその	2 4
		dose 法		名		1.0、1.8、2.4	 両者の比(群平均値)の変化が認められた。	4 3
						mg/L、1 L/日	$\langle { m NOAEL}: { m ClO_2}^-$ として 2.4 mg/L(0.034	
							mg/kg 体重/日)〉	
	ヒト	約12週間	飲水	男性 10	亜塩素酸ナトリ	5 mg/L , 0.5 L/	平均赤血球ヘモグロビン量(群平均値)の	2 4
				名	ウム	日	 変化が認められたが、時間経過との関連が	4 3
							無く、数値は正常範囲内にあった。	
							 〈NOAEL: ClO₂¯として 5 mg/L (36 µg/kg	
							体重/日相当)〉	

試験種類	動物種	試験期間	投与 方法	動物数 /群	被験物質	投 与 量	試 験 結 果	参照 No.
き) き) とトにおける知見(続		12 週間	飲水	G6PD* 欠損健 康男性3 名	ウム			4 4

			16 = 7		
1				*G6PD: Glucose-6-phosphate dehydrog	enase
2				A/J マウス:G6PD 活性が正常	な系統
3				C57L/J マウス: G6PD 活性が低下してい	いる系統
4					

<別紙2:塩素系化合物の関係図>

参考資料: U.S.FDA Environmental Assessment (1999): 64 Federal Register (1999) Sep.15 p.49982

1 <参照>

1 厚生労働省,「亜塩素酸水」の食品添加物としての指定及び規格基準の設定に係る食品健康影響評価の依頼について(平成18年8月14日付けで食品健康影響評価を依頼した事項),平成18年8月24日第156回食品安全委員会資料1-2

- 2 本部三慶(株), 亜塩素酸水 指定申請書, 平成18年8月3日
- ³ 厚生労働省,「亜塩素酸水」の規格基準の設定に関する食品健康影響評価について(付帯事項への対応),平成24年4月5日第426回食品安全委員会資料3-5
- ⁴ Ni Y, Yin G. Disproportionation of chlorous acid at a strong acidity. Ind. & Engin. Chem. Res. (1998) 37: 2367-2372.
- Warf CC, et. Al, The chemistry & mode of action of acidified sodium chlorite, Alcide Corp., Session 91, 2001-06-27, IFT Annual Meeting, New Orleans, Louisiana.
- ⁶ International Dioxide Inc. chlorine dioxide. sodium chlorite. disinfectant, sanitizer.

http://www.idiclo2.com/clo2chem/onsite.html

- Yin G.. Ni Y. Mechanism of the ClO₂ generation from the H₂O₂-HClO₃ reaction. Canad. J. Chem. Engin. (2000)78: 827-833.
- 8 Colman JE, Tilak BV. Sodium Chlorate, In: McKetta, JJ. et al., eds. Encyclopedia of Chemical Processing and Design., Vol. 51, Marcel Dekkaer, Publisher. (1994): 126-188.
- Cayce Worf C, Kere Kemp G.. Acidified sodium chlorite(ASC)-Chemistry and mode of action. Alcide Corporation.
- 10 カズノコに係わる亜塩素酸ナトリウムの使用認可申請に関する資料(追補版)の概要. (2004 年 9 月 8 日第 12 回添加物専門調査会資料 1-2).

http://www.fsc.go.jp/senmon/tenkabutu/t-dai12/tenkabutu12-siryou1-2.pdf

- ¹ Kemp G.K. Alcide Corp. Food Additive Petition 0A4724-Acidified solutions of sodium chlorite for processing water applied to processed, comminuted or formed meat roducts. (2001).
- 12 厚生労働省,添加物評価書「亜塩素酸水」付帯事項(臭素酸)に関する報告書, 平成24年3月30日
- ¹³ FDA 21 CFR § 173.325. (1998).

- 14 水質基準に関する省令 (平成 15 年 5 月 30 日厚生労働省令第 101 号)
- ^{1 5} Cayce Worf C, Kere Kemp G. Acidified sodium chloride solutions in food processing: A reviw.
- ¹⁶ FDA 21CFR § 172. 325
- 17. 亜塩素酸水 トリハロメタン等の生成について (2007年12月25日第52回 添加物専門調査会資料2-4).
 - http://www.fsc.go.jp/senmon/tenkabutu/t-dai52/tenkabutu52-siryou2-4.pdf-siryou1-1.pdf
- ¹⁸ Abdel-Rahman M.S, Couri D, Bull RJ. Kinetics of ClO₂ and effects of ClO₂,ClO₂ and ClO₃ in drinking water on blood glutathione and hemolysis in rat and chicken. J. Environ. Path. & Toxicol. (1980) 3: 531-449.
- ¹⁹ U.S. EPA, Toxicological review of chlorine dioxide and chlorite, in support of summary information on the integrated risk information system (IRIS), September 2000, EPA/635/R-00/007.
- ^{2 0} European Commission, Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health on the Evaluation of Antimicrobial Treatments for Poultry Carcasses (Adopted on 14-15 April 2003).
- ² Abdel-Rahman M.S, Couri D, Bull RJ. The kinetics of chlorite and chlorate in the rat. J. Am. Coll. Toxicol .(1984) 3: 261-267.
- ² Musil J, Knotek Z, Chalupa J, Schmidt P. Toxicologic aspects of chlorine dioxideapplication for the treatment of water containing phenols. Technol. Water (1964) 8:327-346.
- ^{2 3} Fletcher D. Acute oral toxicity study with sodium chlorite in bobwhite quail. IndustrialBio-Test Laboratory's report to Olin Corporation (1973) (IBT No. J2119). (Cited in 10)).
- ^{2 4} WHO. Chlorite and Chlorate in Drinking Water. Background document for development of WHO Guidelines for Drinking-water Quality. (2005).
- ^{2 5} Heffernan WP, Guion C, Bull RJ. Oxidative damage to the erythrocyte induced by sodium chlorite in vivo. Journal of Environmental Pathology & Toxicology. (1979)2: 1487-1499.
- ²⁶添加物 次亜塩素酸水の成分規格改正に係る食品健康影響評価に関する審議結果(平成 19 年 1 月 25 日府食第 94 号).

http://www.fsc.go.jp/hyouka/hy/hy-tuuchi -hypochlorite190125.pdf

- ^{2 7} Moore GS, Calabrese EJ. Toxocological effects of chlorite in the mouse. Environ. Health Perspect. (1982) 46: 31-37.
- ²⁸ Harrington RM, Romano RR, Gates D, Ridgway P. Subchronic toxicity of sodium chlorite in the rat. J. Am. Coll. Toxicol. (1995)14: 21-33.
- ²⁹ TERA Toxicology excellence for risk assessment Health risk assessment/ characterization of the drinking water disinfection by-products chlorine dioxide and chlorite (8W-0766-NTLX). Cincinnati, Ohio (1998).
- ^{3 0} Couri D, Abdel-Rahman MS. Effect of chlorine dioxide and metabolites on glutathione dependent system in rat, mouse and chicken blood. Journal of Environmental Pathology & Toxicology. (1980)3: 451-460.
- ³ ¹ Bercz JP, Jones L, Garner L, Murray D, Ludwig A, Boston J. Subchronic toxicity of chlorine dioxide and related compounds in drinking water in nonhuman primate. Environ. Hlt. Perspect .(1982)46: 47-55.
- ^{3 2} Kurokawa Y,Takayama S, Konishi Y, Hiasa Y, Asahina S, Takahashi M et al. Long-term in Vivo Carcinogenicity Tests of Potassium Bromate. Sodium Hypochlorite and Sodium Chlorite Conducted in Japan. Environmental Health Perspectives. (1986)69: 221-235.
- ^{3 3} Carlton BD, Habash DL, Basaran AH, George EL, Smith MK. Sodium chlorite administration in Long-Evans rats: reproductive and endocrine effects. Environ. Res. (1987) 42: 238-245.
- ^{3 4} Gill MW, Swanson MS, Murphy SR, Bailey GP. Two-generation reproduction and developmental neurotoxicity study with sodium chlorite in the rat. J. Appl. Toxicol. (2000) 20: 291-303.
- ^{3 5} Meier JR, Bull RJ, Stober JA, Cimino MC. Evaluation of chemicals used for drinking water disinfection for production of chromosomal damage and sperm-head abnormalities in mice. Environ. Mutagen. (1985) 7: 201-211.
- ^{3 6} Couri D, Miller CH, Bull RJ, Delphia JM, Ammer EM. Assessment of maternal toxicity, embrotoxicity and teratogenic potential of sodium chlorite in Sprague-Dawley rats. Environ. Hlt. Perspect. (1982) 46: 25-29.
- ^{3 7} Mobley SA, Taylor DH, Laurie RD, Pfohl RJ. Chlorine dioxide depresses T3 uptake and delays development of locomotine activity in young rats. The Toxicology. (1990):347-524.

- ^{3 8} Suh DH, Abdel-Rahman MS, Bull RJ. Effect of chlorine dioxide and its metabolites in drinking water on fetal development in rats. J. Appl. Toxicol. (1983) 3: 75-79.
- ^{3 9} Harrington RM, Romano RR, Irvine L. Developmental toxicity of sodium chlorite in the rabbit. J. Am. Coll. Toxicol. (1996) 14: 108-118.
- ⁴⁰ Toth GP. Effects of chlorine dioxide on the developing rat brain. J. Toxicol. Environ. Health. (1990) 31: 29-44.
- ⁴ I Ishidate M, Sofuni T, Yoshikawa K, Hayashi M, Nohmi T, Sawada M, Matsuoka A. Primary mutagenecity screening of food additives currently used in Japan. Food. Chem. Toxicol. (1984) 22: 623-636.
- ^{4 2} Hayashi M, Kishi M, Sofuni T, Ishidate M. Micronucleus test in mice on 39 food additives and eight miscellaneous chemicals. Food. Chem. Toxicol. (1988) 26: 487-500.
- ^{4 3} Lubbers JR, Chauhan S, Bianchine JR. Controlled clinical evaluation of chlorine dioxide, chlorite, and chlorate in man. Fund. Appl. Toxicol . (1981) 1: 334-338.
- ^{4 4} Lubbers JR, Chauhan S, Miller JL, Bianchine JR. The effects of chronic administration of chlorite to glucose-6-phosphate dehydrogenase deficient healthy adult, and chlorate to normal healthy adult male volunteers. J. Environ. Pathol. Toxicol. & Oncol. (1984) 5: 239-242.
- 45厚生労働省/健康・栄養情報研究会編. 平成 16 年 国民健康・栄養調査報告/ 栄養素等摂取量. 平成 16 年国民健康・栄養調査報告(第一出版). (2006) 72-80.
- 46厚生労働省食品安全部、「平成17年食中毒発生状況の概要について」、(2006).
- 47食品衛生調査会食中毒部会、「食中毒サーベイランス分科会の検討概要」、(2007).
- 48科学技術庁資源調査会報告第 124 号(平成 12 年 11 月 22 日)、日本食品標準成分表の改訂に関する調査報告-五訂日本食品標準成分表-(2000).
- ⁴⁹ JECFA, Sixty-eight meeting Geneva, 19-28 June 2007.
- ⁵⁰ FDA 2006 CFR Title 21 Volume 3 Part 173 322, 173 325,173 340.
- ⁵ Food Safety and Inspection Service, USDA, Safe and Suitable Ingredients Used in the Production of Meat and Poultry Products 7120.1_Amend_6, June 1 (2006).

- ^{5 2} FDA 21CFR § 173. 300.
- ^{5 3} International Agency for Reseach on Cancer. Chlorinated drinking-water; chlorination byproducts; some othe halogenated compounds; cobalt and cobalt compounds. Lyon (1991) 145-139 (IARC Monographs on the evaluation of carcinogenic risks to human, Volume 52).
- 54添加物 亜塩素酸ナトリウムの使用基準改正に係る食品健康影響評価に関する 審議結果(平成 16 年 11 月 18 日府食第 1166 号).

http://www.fsc.go.jp/hyouka/hy/hy-chlorousna-151020-hyouka.pdf