

府 食 第 1325 号 平成 20年 12月 9日

食品安全委員会 委員長 見上 彪 殿

農薬専門調査会 座 長 鈴木 勝士

農薬に係る食品健康影響評価に関する審議結果について

平成19年6月5日付け厚生労働省発食安第0605007号をもって厚生労働大臣から食品安全委員会に意見を求められたジクロスラムに係る食品健康影響評価について、当専門調査会において審議を行った結果は別添のとおりですので報告します。

農薬評価書

ジクロスラム

2008年12月 食品安全委員会農薬専門調査会

目 次

	頁
〇審議の経緯	3
〇食品安全委員会委員名簿	3
〇食品安全委員会農薬専門調査会専門委員名簿	3
〇要約	5
	0
I. 評価対象農薬の概要	
1. 用途	
2. 有効成分の一般名	
3. 化学名	
4. 分子式	
5. 分子量	
6. 構造式	
7. 開発の経緯	6
Ⅱ. 安全性に係る試験の概要	7
1. 動物体内運命試験	
(1)排泄	7
(2)体内分布	8
(3)代謝物同定・定量	8
(4)畜産動物における薬物動態	9
2. 植物体内運命試験	10
(1)らっかせい及びだいず	10
(2)輪作作物	11
3. 土壌中運命試験	11
(1)好気的土壌中運命試験	11
(2)土壌吸着試験	11
4. 水中運命試験	11
(1)加水分解試験	11
(2)水中光分解試験	12
(3)好気的及び嫌気的水中運命試験	12
5. 土壌残留試験	12
6. 作物残留試験	12
7. 一般薬理試験	12
8. 急性毒性試験	12
(1)急性毒性試験	12
(2)急性神経毒性試験	
9. 眼・皮膚に対する刺激性及び皮膚感作性試験	12

	10. 亜急性毒性試験	13
	(1)90 日間亜急性毒性試験(ラット)	13
	(2) 90 日間亜急性毒性試験(イヌ)	13
	(3) 21 日間亜急性経皮毒性試験 (ウサギ)	. 14
	11.慢性毒性試験及び発がん性試験	14
	(1)1年間慢性毒性試験(イヌ)	14
	(2)2年間慢性毒性/発がん性併合試験(ラット)	15
	(3)2年間発がん性試験(マウス)	15
	1 2 . 生殖発生毒性試験	16
	(1)2世代繁殖試験(ラット)	16
	(2)発生毒性試験(ラット)	16
	(3) 発生毒性試験(ウサギ)	16
	1 3 . 遺伝毒性試験	17
Ш	食品健康影響評価	18
	引紙1:代謝物/分解物略称	20
	引紙 2:検査値等略称	21
		22

<審議の経緯>

2005年 11月 29日 残留農薬基準告示(参照 1)

2007年 6月 5日 厚生労働大臣より残留基準設定に係る食品健康影響評

価について要請(厚生労働省発食安第 0605007 号)、

関係書類の接受 (参照 2~6)

2007年 6月 7日 第193回食品安全委員会(要請事項説明)(参照7)

2007年12月19日第10回農薬専門調査会確認評価第三部会(参照8)

2008年 10月 15日 第 44 回農薬専門調査会幹事会 (参照 9)

2008年 11月 6日 第 261 回食品安全委員会(報告)

2008年 11月 6日 より 12月5日 国民からの御意見・情報の募集

2008年12月 9日農薬専門調査会座長より食品安全委員会委員長へ報告

<食品安全委員会委員名簿>

見上 彪(委員長)

小泉直子(委員長代理)

長尾 拓

野村一正

畑江敬子

廣瀬雅雄

本間清一

<食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士 (座長) 三枝順三 西川秋佳 林 真(座長代理) 佐々木有 布柴達男 代田眞理子** 赤池昭紀 根岸友惠 平塚 明 石井康雄 高木篤也 泉 啓介 玉井郁巳 藤本成明 上路雅子 田村廣人 細川正清 臼井健二 津田修治 松本清司 江馬 眞 津田洋幸 柳井徳磨 大澤貫寿 出川雅邦 山崎浩史 長尾哲二 太田敏博 山手丈至 大谷 浩 中澤憲一 與語靖洋 納屋聖人 吉田 緑 小澤正吾

小林裕子

成瀬一郎*

若栗 忍

*: 2007年6月30日まで
**: 2007年7月1日から

(2008年4月1日から)

鈴木勝士 (座長)

林 真(座長代理)

相磯成敏

赤池昭紀

石井康雄

泉啓介

今井田克己

上路雅子

臼井健二

太田敏博

大谷 浩

小澤正吾

川合是彰

小林裕子

佐々木有

代田眞理子

高木篤也

玉井郁巳

m ++ re: 1

田村廣人

津田修治

津田洋幸

長尾哲二 中澤憲一

1 17.65

永田 清

納屋聖人 西川秋佳

布柴達男

根岸友惠

根本信雄

平塚 明

藤本成明

細川正清

堀本政夫

松本清司

本間正充

柳井徳磨

山崎浩史

山手丈至

與語靖洋

吉田 緑

若栗 忍

要約

トリアゾロピリミジン環を有する除草剤である「ジクロスラム」(CAS No.145701-21-9) について、各種資料(米国等)を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット、ヤギ及びニワトリ)、植物体内運命(らっかせい、だいず等)、土壌中運命、水中運命、急性毒性(ラット)、亜急性毒性(ラット及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、ジクロスラム投与による影響は、主に肝臓及び腎臓に認められた。発がん性、繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

各試験で得られた無毒性量の最小値は、ラットを用いた 2 年間慢性毒性/発がん性併合試験の 5 mg/kg 体重/日であったので、これを根拠として、安全係数 100 で除した 0.05 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

I. 評価対象農薬の概要

1. 用途

除草剤

2. 有効成分の一般名

和名:ジクロスラム

英名: diclosulam (ISO 名)

3. 化学名

IUPAC

和名: 2',6'-ジクロロ-5-エトキシ-7-フルオロ[1,2,4]

トリアゾロ [1,5-c]ピリミジン-2-スルホンアニリド

英名: 2',6'-dichloro-5-ethoxy-7-fluoro[1,2,4]

triazolo[1,5-c]pyrimidine-2-sulfonanilide

CAS (No.145701-21-9)

和名:N-(2,6-ジクロロフェニル)-5-エトキシ-7-フルオロ[1,2,4]

トリアゾロ[1,5-c]ピリミジン-2-スルホンアミド

英名: N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro[1,2,4]

triazolo[1,5-c]pyrimidine-2-sulfonamide

4. 分子式

5. 分子量

 $C_{13}H_{10}Cl_2FN_5O_3S$

406

6. 構造式

7. 開発の経緯

ジクロスラムは、ダウ・アグロサイエンス社により開発されたトリアゾロピリミジン環を有する除草剤である。作用機序は、分枝鎖アミノ酸(バリン、ロイシン及びイソロイシン)の植物体内での生合成酵素であるアセトラクテートシンターゼの阻害である。

日本では農薬として登録されておらず、ポジティブリスト制度導入に伴う暫定基準値が設定されている。

Ⅱ. 安全性に係る試験の概要

米国資料 (2000年)等を基に、毒性に関する主な科学的知見を整理した。(参照 2~5)

1. 動物体内運命試験

(1) 排泄

Fischer ラット (一群雌雄各 5 匹) に[phe- 14 C]ジクロスラムを 5 mg/kg 体重 (以下、[1.]において「低用量」という。)または 500 mg/kg 体重 (以下、[1.]において「高用量」という。)で単回経口投与、非標識のジクロスラムを低用量で 14 日間連続投与後、[phe- 14 C]ジクロスラムを低用量で単回経口投与 (反復投与群)、または Fischer ラット (雄 4 匹) に[tri- 14 C]ジクロスラムを低用量で単回経口投を低用量で単回経口投与し、排泄試験が実施された。

すべての投与群において投与後 72 時間に総投与放射能 (TAR) の89.6~95.0%が回収された。

全投与群において、排泄は比較的速やかで、投与後 24 時間以内に 73.7~86.9%TAR が尿及び糞中に排泄された。尿中排泄における放射能の消失半減期は低用量群で 7.6~9.6 時間、高用量群で 10.8~12.1 時間であった。 尿及び糞中排泄率は表 1 に示されている。

低用量群の雄においては、尿中と糞中にほぼ同等量の放射能が排泄されたが、雌においては尿中の放射能濃度は糞中の約3倍であり、性差が認められた。高用量群においては、尿中排泄率が低用量群に比べ減少した。非標識体の前投与及び標識位置による差は認められなかった。低用量群においては、腎排泄から吸収率は雄で40%、雌で65%であった。(参照2)

投与量	試料	雄	雌
『// /大手	尿	39.4~44.4	62.1~68.1
5 mg/kg 体重	糞	42.2~47.6	22.9~26.4
500 m m/ls m / 大重	尿	6.2	11.6
500 mg/kg 体重	糞	81.9~84.9	

表1 尿及び糞中排泄率(%TAR)

(2) 体内分布

排泄試験[1.(1)]で得られた臓器・組織内を用いて、体内分布試験が実施された。

[phe-14C]ジクロスラム投与 72 時間後のカーカス及び組織中に残存する放射能は、1.1%TAR 以下であった(雄:0.3~1.1%TAR、雌:0.2~0.7%TAR)。低用量群、高用量群とも、肝臓以外の組織及び血液中放射能濃度は雌よりも雄の方がわずかに高かった(1~1.8 倍)。肝臓においては、低用量群の雄は雌の4倍、高用量群の雄は雌の2倍高かった。[phe-14C]ジクロスラムを投与した群では雌雄とも、放射能濃度は腎臓、血液、肝臓(雄のみ)で高く、脳、脂肪、脾臓及び筋肉で低かった。非標識体の前投与は組織及び血液中濃度に影響を与えることはなかった。投与量は100倍に増加したにもかかわらず、組織中濃度は20~50倍の増加であった。

[tri-14C]ジクロスラムを投与した雄では、肝臓、筋肉、皮膚及び精巣以外の組織及び血液中濃度が、[phe-14C]ジクロスラムを投与した雄より高かった(2.6~2.8 倍)。組織における分布も異なっていた。[tri-14C]ジクロスラムを投与した雄では、血液、腎臓、骨、肺及び脾臓で高く、筋肉、皮膚、脳及び精巣で低かった。

ジクロスラムの代謝において性差が認められた(高用量投与群の雌における雄より高い尿中排泄率、雄における高代謝率、雄の肝臓における比較的高い放射能濃度)ことは、90 日間亜急性毒性試験で認められた性差(雄では100~1,000 mg/kg 体重/日投与群、雌では1,000 mg/kg 体重/日投与で肝臓に病理組織学的所見が認められた)と関連するものと考えられた。(参照2)

(3)代謝物同定・定量

排泄試験[1.(1)]で得られた尿及び糞を用いて、代謝物同定・定量試験が実施された。

尿及び糞中における代謝物は表 2 に示されている。

低用量群の雄における主要代謝物は F (合計 $34.5\sim43.8\%$ TAR) であり、主に糞中に多く排泄された($24.4\sim34.2\%$ TAR)。親化合物の排泄率は低く(合計 $12.8\sim23.5\%$ TAR)、尿中($9.0\sim11.4\%$ TAR)と糞中($2.8\sim12.1\%$ TAR)とはぼ同等であった。尿中では、その他に G (ジクロスラムのシステイン抱合体)及び H (F の硫酸/グルクロン酸抱合体)が主要代謝物として検出され、I (G の硫黄が酸化された化合物)が微量代謝物として検出された。

低用量群の雌においては、親化合物が主に尿中から検出された (32.2~33.7%TAR)。代謝物 Fの尿中における排泄率 (10.7~13.6%TAR) は雄 (7.2~10.6%TAR) と同等であったが、糞中排泄率は雄の 1/5~1/4 であった (雄: 24.4~34.2%TAR、雌: 6.7~8.1%TAR)。雌の尿中では、その他に Gと I が雄より多く検出されたが、H は検出されなかった。

高用量群においては、雌雄とも糞中排泄率が高く、そのほとんど

(78.3~78.8%TAR) が親化合物であった。雌雄とも尿中において F がそれぞれ 1.8 及び 4.6%TAR 検出されたが、その他の代謝物は 1.1%TAR 以下であった。(参照 2)

ラット体内におけるジクロスラムの主要代謝経路はフェニル基の水酸化による F の生成であると考えられた。

投与量	性別	試料	ジクロスラム	代謝物
	雄	尿	0.0.11.4	F(7.2~10.6), H(6.3~6.9), G(5.2~5.5),
-		水	9.0~11.4	I(0.4~0.7)
5 mg/lrg 休重		糞	2.8~12.1	F(24.4~34.2)
mg/kg 体重	雌	尿	$32.2 \sim 33.7$	F(10.7~13.6), G(8.5~10.6), I(4.5~6.3)
		糞	$7.5 \sim 14.2$	F(6.7~8.1)
500	雄	尿	9.66.1	F(4.6)、その他(≤1.1)
500 mg/kg 体重	雌	尿	3.6~6.1	F(1.8)、その他(≤1.1)
mg/kg 冲里	雌雄	糞	78.3~78.8	その他(≤1.1)

表 2 尿及び糞中における代謝物 (%TAR)

(4) 畜産動物における動物体内運命試験

①ヤギ

泌乳期ヤギ(品種、匹数不明)に $[phe^{-14}C]$ ジクロスラムまたは $[tri^{-14}C]$ ジクロスラムを投与して、動物体内運命試験が実施された。

乳汁中の残存率は極めて低く、蓄積を示すデータはなかった。腎臓と肝臓のみにおいて、代謝物同定可能な量の放射能が認められた。肝臓において親化合物が総残留放射能(TRR)の 17.9~19.0%及び E が 13.1~18.2%TRR 検出された。腎臓においては親化合物が主要成分として検出され、 $[tri^{-14}C]$ ジクロスラム投与においてのみ、B が微量代謝物として検出された。(参照 2)

標識体	肝臓		腎臓	
宗政件	ジクロスラム	代謝物	ジクロスラム	代謝物
[phe-14C]ジクロスラム	19 (0.014)	E: 18.2 (0.014)	48 (0.052)	_
[tri-14C]ジクロスラム	17.9 (0.008)	E: 13.1 (0.007)	37.6 (0.058)	B: 4.6 (0.007)

表 3 肝臓及び腎臓における代謝物(%TRR、()内はμg/g)

②ニワトリ

産卵期ニワトリ(品種、匹数不明)に $[phe^{-14}C]$ ジクロスラムまたは $[tri^{-14}C]$ ジクロスラムを投与して、動物体内運命試験が実施された。

放射能濃度は皮膚($0.224\sim0.225~\mu g/g$)及び肝臓($0.179\sim0.193~\mu g/g$)で高く、脂肪($0.011\sim0.014~\mu g/g$)及び筋肉($0.026\sim0.035~\mu g/g$)では低かった。卵において最も高かったのは、両標識体とも投与5~日後の $0.023~\mu g/g$ で

あった。

最終的に組織中放射能の 73%TRR 以上及び卵中の放射能の $50\sim60\%$ TRR について同定が可能であった。組織中における主要化合物は親化合物であり、残留量は表 4 に示されている。B が $[tri^{-14}C]$ ジクロスラム投与した群の肝臓、筋肉及び卵から $8.3\sim17.6\%$ TRR $(0.002\sim0.023~\mu g/g)$ 検出された。F (推定)がすべての試料から痕跡程度 $(\le3\%$ TRR、 $\le0.007~\mu g/g)$ 検出された。(参照 2)

部位	残留放射能		
由的小小	%TRR	μg/g	
肝臓	23~27	$0.042 \sim 0.053$	
筋肉	50~66	0.017	
皮膚	79~88	0.178~0.199	
脂肪	62~94	0.006~0.013	
印	35~37	0.008	

表 4 ジクロスラムの各部位における残留量

ヤギとニワトリの代謝試験の結果から、ジクロスラムは主にエトキシ基の O 脱エチル化及びスルホンアミド結合の加水分解により代謝されると考えられた。

2. 植物体内運命試験

(1) らっかせい及びだいず

[phe-14C]ジクロスラムまたは [tri-14C]ジクロスラムを用いて、らっかせいは雑草の発生前に 78 g ai/ha を散布した後、種を植えた直後に 52 g ai/ha を土壌混和し、だいずには 158 g ai/ha(圃場)または 350 g ai/ha(温室)を土壌混和して植物体内運命試験が実施された。

親化合物は、だいず茎葉(forage)及び成熟した子実からは検出されなかった。だいず茎葉では、圃場においては 33 日後に 0.071 mg/kg の検出があり、その約 43%TRR が代謝物 D 等を含み、温室においては 21 日後に 0.410 mg/kg の検出があり、その約 51%TRR が代謝物 C 及び D であった。このようにだいず茎葉からは主要代謝物として D が、微量代謝物として C が検出された。

らっかせいにおいては、[phe-14C]ジクロスラム処理試料より[tri-14C]ジクロスラム処理試料において放射能が高かった。このことから、親化合物のトリアゾロピリミジン環を有する土壌分解物が、アニリン部位を有する分解物よりもらっかせいの植物体に選択的に吸収されたと考えられた。らっかせい茎葉(forage)及び成熟した子実中に種々の代謝物が 0.01 mg/kg 未満検出されたが、親化合物は検出されなかった。(参照 2)

(2)輪作作物

[phe-14C]ジクロスラムまたは [tri-14C]ジクロスラムを土壌処理後、輪作作物(小麦、ばれいしょ、レタス、ふだんそう)を栽培し、各作物における植物体内運命試験が実施された。いずれの後作物においても前作収穫後(期間) (PBI) 120 日で、親化合物の 0.01~mg/kg を超える残留は見られなかった。 [phe-14C]ジクロスラムまたは [tri-14C]ジクロスラムを 9.2~g ai/ha の用量で土壌処理、PBI 120 日後の小麦及びばれいしょにおける残留放射能濃度は低かった(0.05~mg/kg 未満)が、[tri-14C]ジクロスラムを処理後のわらでは 0.07~mg/kg であった。[phe-14C]ジクロスラムを処理後の小麦及びばれいしょの残留放射能濃度($0.008\sim0.07~\text{mg/kg}$ 以下)は、[tri-14C]ジクロスラム処理後の残留放射能濃度($0.008\sim0.07~\text{mg/kg}$ より低かった。[tri-14C]ジクロスラム処理、PBI 120 日後の残留放射能濃度は、ばれいしょの塊茎で 0.008~mg/kg、小麦の茎葉(forage)、穀粒及びわらでそれぞれ 0.02、0.025~及び 0.07~mg/kg であった。PBI 120、161 及び 225 日後のレタスについては薬害のため調査できなかった。PBI 225 日後のふだんそうにおける残留放射能濃度は $0.012\sim0.024~\text{mg/kg}$ であったが、薬害による矮化が認められた。

小麦及びばれいしょの試料について代謝物の同定を行った。その結果、親化合物は検出されなかった。小麦茎葉及びわらから未同定の代謝物(0.009 mg/kg 以下)が水相及び有機溶媒相に認められ、穀粒の水相からは極性成分が 0.01 mg/kg 認められた。穀粒及びわらの抽出残渣(それぞれ 43.3%TRR、0.02 mg/kg 未満)の分析の結果、残留放射能は植物体成分(デンプン、リグニン及びセルロース)に取り込まれていた。(参照 2)

3. 土壌中運命試験

(1) 好気的土壌中運命試験

ジクロスラムの土壌(様々な種類の土壌)における推定半減期は 33~65 日であった。ジクロスラムの土壌中での消失は、主に微生物による分解であった。土壌の pH にはほとんど影響を受けなかった。(参照 2、3)

(2)土壤吸着試験

ジクロスラムの有機炭素含有率により補正した吸着係数 Koc は $55\sim90$ であり、移動性が高いと考えられた。(参照 2、3)

4. 水中運命試験

(1)加水分解試験

ジクロスラムの pH 5、7 及び 9 の各緩衝液中における加水分解試験が実施された。ジクロスラムは pH 5 及び 7 の緩衝液中では安定であり、pH 9 の緩衝液中における推定半減期は 2 日であった。 (参照 4)

(2) 水中光分解試験

ジクロスラムの pH 5 の緩衝液中における、水中光分解試験が実施された。 ジクロスラムの推定半減期は 119 日であった。(参照 4)

(3) 好気的及び嫌気的水中運命試験

ジクロスラムの好気的及び嫌気的条件下で水中運命試験が実施された。ジクロスラムの推定半減期は好気的条件下では 107 日、嫌気的条件下では 61日であった。(参照 2、4)

5. 土壤残留試験

土壌残留試験については、参照した資料には記載がなかった。

6. 作物残留試験

国内における作物残留試験成績は提出されていない。

7. 一般薬理試験

一般薬理試験については、参照した資料には記載がなかった。

8. 急性毒性試験

(1)急性毒性試験

Fischer ラット及び NZW ウサギ (ともに匹数不明) を用いた急性毒性試験が実施された。ラットの急性経口 LD_{50} は 5,000 mg/kg 体重超、ウサギの急性経皮 LD_{50} は 2,000 mg/kg 体重超、ラットの急性吸入 LC_{50} は 5.04 mg/L 超であった。(参照 2)

(2) 急性神経毒性試験

ラット(一群雌雄各 10 匹)を用いた単回強制経口(原体:0、200、1,000 及び 2,000 mg/kg 体重、溶媒:MC) 投与による急性神経毒性試験が実施された。観察期間は投与後 2 週間とした。

いずれの投与群においても、神経毒性は認められず、また、検体投与に関連した死亡、臨床症状、体重変化、FOB及び自発運動の変化、神経病理学的所見は認められなかった。

本試験において、無毒性量は雌雄とも 2,000 mg/kg 体重であると考えられた。(参照 2、5)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

ウサギを用いた眼及び皮膚刺激性試験が実施された。その結果、眼粘膜に対しわずかな刺激性が認められたが、皮膚に対する刺激性は認められなかった。 (参照 2) モルモットを用いた皮膚感作性試験が実施された結果、皮膚感作性は陰性であった。(参照 2)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

Fischer ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、100、500 及び1,000 mg/kg 体重/日) 投与による 90 日間亜急性毒性試験が実施された。対照群及び最高用量群の雌雄各 10 匹は、投与終了後 4 週間の回復期間を設けた。

各投与群で認められた毒性所見は表 5 に示されている。

1,000 mg/kg 体重/日投与群の雌雄において、体重増加抑制が認められ、投与終了時の体重値は対照群と比べ、雄で 19%、雌で 12%減少していたが、回復期間の後は、雌は対照群と同等となり、雄は対照群より 6%の減少に止まった。

本試験において、100 mg/kg 体重/日以上投与群の雄で肝細胞肥大等、500 mg/kg 体重/日以上投与群の雌で体重増加抑制等が認められたので、無毒性量は雄で 50 mg/kg 体重/日、雌で 100 mg/kg 体重/日であると考えられた。(参照 2、5)

投与群	雄	雌
1,000	・摂餌量減少	・摂餌量減少
mg/kg 体重/日		・肝細胞肥大
500	体重増加抑制	• 体重增加抑制
mg/kg 体重/日		・肝及び脳比重量増加
以上		
100	・肝比重量1増加	100 mg/kg 体重/日以下毒性所見な
mg/kg 体重/日	・肝細胞肥大、多発性肝細胞壊死	L
以上		
50 mg/kg 体重/日	毒性所見なし	

表 5 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

(2)90日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、5、25 及び 100/50 mg/kg 体重/日) 投与による 90 日間亜急性毒性試験が実施された。最高用量群の 100 mg/kg 体重/日投与群は、動物の健康上の理由及び餌の嗜好性の問題から投与開始 50 日後に 50 mg/kg 体重/日に変更した。

各投与群に認められた毒性所見は表 6 に示されている。

100/50 mg/kg 体重/日投与群の雌では、血液学的検査項目 (RBC、Hb 及び Ht の減少) 及び血液生化学的検査項目に変化が認められたが、これは同群の

¹ 体重比重量を比重量という(以下同じ)。

動物の一般状態の悪化(削痩及び体重減少)による二次的変化と考えられた。

100/50 mg/kg 体重/日投与群の雄では腎の比重量の増加が認められたが、 絶対重量に変化はなく、他の検査において関連する所見が認められなかった ため、毒性学的意義はないと考えられた。

本試験において、25 mg/kg 体重/日以上投与群の雌雄で小葉中心性肝細胞肥大等が認められたので、無毒性量は雌雄とも5 mg/kg 体重/日であると考えられた。(参照2、5)

投与群	雄	雌
100/50	・体重増加抑制	・死亡(1匹)
mg/kg 体重/日	• 摂餌量減少	・活動性減少、 重度筋肉萎縮(2)
	骨髄顆粒球系細胞及び巨核球増生	匹)、粘膜蒼白(1匹)
	・脾顆粒球系細胞及び巨核球増生	・体重増加抑制、体重減少(2匹)
		・摂餌量減少
		・ALP、AST、ALT 増加
		・肝比重量増加
		・肝門脈周囲性単核細胞集簇、小葉
		中心性肝細胞壊死、肝単細胞壊死
		・骨髄顆粒球系細胞及び巨核球増生
		・脾顆粒球系細胞及び巨核球増生
		・クッパー細胞内へモジデリン沈着
25 mg/kg 体重/日	・小葉中心性肝細胞肥大、クッパー	・小葉中心性肝細胞肥大
以上	細胞内へモジデリン沈着	・腎皮質血管周囲性単核細胞集簇、
		腎盂炎(リンパ球・形質細胞性)
5 mg/kg 体重/日	毒性所見なし	毒性所見なし

表 6 90日間亜急性毒性試験(イヌ)で認められた毒性所見

(3)21日間亜急性経皮毒性試験(ウサギ)

NZW ウサギ (一群雌雄各 5 匹) を用いた経皮 (原体:0、100、500 及び 1,000 mg/kg 体重/日、6 時間/日、5 日間/週)投与による 21 日間亜急性経皮毒性試験が実施された。検体は蒸留水に湿らせ投与した。

投与期間中死亡動物も認められず、臨床症状、体重変化、摂餌量、血液学及び血液生化学的検査、眼検査、臓器重量、肉眼的及び病理組織学的検査において検体投与の影響は認められなかった。

本試験において、無毒性量は雌雄とも 1,000 mg/kg 体重/日であると考えられた。(参照 2)

11. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、2、10 及び 25 mg/kg 体重/日) 投与による 1 年間慢性毒性試験が実施された。

投与期間中死亡例は認められず、臨床症状、体重、体重増加量、摂餌量、

食餌効率、血液学及び血液生化学的検査成績、臓器の絶対及び比重量、肉眼 的所見及び病理組織学的所見に検体投与の影響は認められなかった。

本試験において、無毒性量は雌雄とも 25 mg/kg 体重/日であると考えられた。(参照 2)

(2) 2年間慢性毒性/発がん性併合試験(ラット)

Fischer ラット(一群雌雄各 60 匹)を用いた混餌(原体:0、5、100、400 mg/kg 体重/日)投与による2年間慢性毒性/発がん性併合試験が実施された。 各投与群に認められた毒性所見は表7に示されている。

血液学的検査において、400 mg/kg 体重/日投与群の雌雄及び 100 mg/kg 体重/日投与群の雌で RBC、Hb 及び Ht のわずかながら有意な減少(<5%)が認められた。

腫瘍性病変において、検体投与に関連して発生頻度が増加した病変はなかった。

本試験において、100 mg/kg 体重/日以上投与群の雌雄で体重増加抑制、尿 比重減少、尿量増加、腎尿細管変性等が認められたので、無毒性量は雌雄と も 5 mg/kg 体重/日であると考えられた。発がん性は認められなかった。(参 照 2、5)

投与群	雄	雌
400	・摂餌量減少	・Cre 増加
mg/kg 体重/日		
100	体重増加抑制	• 体重增加抑制
mg/kg 体重/日	・Cre 増加	・尿比重減少、尿量増加
以上	・尿比重減少、尿量増加	• 腎皮髄境界部尿細管変性
	• 腎皮髄境界部尿細管変性、	
	腎盂上皮過形成	
5 mg/kg 体重/日	毒性所見なし	毒性所見なし

表 7 2年間慢性毒性/発がん性併合試験 (ラット) で認められた毒性所見

(3) 2年間発がん性試験(マウス)

B6C3F1 マウス (一群雌雄各 60 匹) を用いた混餌 (原体: 0、50、100、250 及び 500 mg/kg 体重/日) 投与による 2 年間発がん性試験が実施された。 各投与群に認められた毒性所見は表 8 に示されている。

本試験において、50 mg/kg 体重/日以上投与群の雄で白内障及び腎尿細管上皮細胞空胞減少、100 mg/kg 体重/日以上投与群の雌で腎尿細管上皮細胞過形成を伴う限局性尿細管拡張が認められたので、無毒性量は雄で 50 mg/kg 体重/日未満、雌で 50 mg/kg 体重/日であると考えられた。発がん性は認められなかった。(参照 2、5)

表8 2年間発がん性試験(マウス)で認められた毒性所見

投与群	雄	雌
100	・腎絶対及び比重量減少	・腎皮質尿細管上皮細胞過形成を伴
mg/kg 体重/日		う限局性尿細管拡張
以上		
50 mg/kg 体重/日	・白内障	50 mg/kg 体重/日において毒性所見
以上	腎尿細管上皮細胞空胞減少	なし

12. 生殖発生毒性試験

(1) 2世代繁殖試験(ラット)

SD ラット(一群雌雄各 30 匹)を用いた混餌(原体:0、50、500、750 及び1,000 mg/kg 体重/日) 投与による 2 世代繁殖試験が実施された。

いずれの世代の親動物及び児動物においても、検体投与の影響は認められなかった。

本試験において、親動物及び児動物の無毒性量は 1,000 mg/kg 体重/日であると考えられた。繁殖能に対する影響は認められなかった。(参照 2)

(2)発生毒性試験(ラット)

SD ラット (一群雌 30 匹) の妊娠 $6\sim15$ 日に強制経口 (原体:0、100、500 及び 1,000 mg/kg 体重/日、溶媒:0.5%METHOCELTMA4M) 投与して発生毒性試験が実施された。

母動物において、死亡例はなく、臨床症状、体重、体重増加量及び摂餌量にも検体投与によると思われる影響は認められなかった。また、剖検時の肉眼所見ならびに肝臓及び腎臓重量にも検体投与によると思われる影響は認められなかった。各投与群において、飲水量の有意な増加が認められたが、他に関連する変化が認められなかったことから、その毒性学的意義は乏しいと考えられた。

各投与群における胎児には、検体投与によると思われる影響は認められなかった。

本試験の無毒性量は、母動物及び胎児で 1,000 mg/kg 体重/日と考えられた。 催奇形性は認められなかった。(参照 2、5)

(3)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 20 匹) の妊娠 $7\sim19$ 日に強制経口(原体:0、65、325 及び 650 mg/kg 体重/日、溶媒:0.5%METHOCELTMA4M)投与して発生毒性試験が実施された。さらに、この試験で認められた結果の再現性の確認ならびに無毒性量設定のために、NZW ウサギ (一群雌 20 匹) の妊娠 $7\sim19$ 日に強制経口(原体:0、10、65、325、650 mg/kg 体重/日)投与する試験が実施された。

1回目の試験において、母動物では、各投与群の動物で流産が認められた。

追加試験においても 325 mg/kg 体重/日以上の投与群で流産が増加した。両試験を合わせると、65 mg/kg 体重/日以上の投与群で流産の頻度が有意に増加したことから、検体投与の影響と考えられた。また、650 mg/kg 体重/日投与群において、統計学的有意差は認められなかったが、投与期間中の体重増加が低下し、摂餌量にも同様の傾向が認められた(統計解析なし)。両試験ともに、胎児には検体投与によると思われる影響は認められなかった。流産に先立ち、動物には顕著な摂餌量の減少、排糞減少及び体重増加量減少が認められ、流産はこれらの母動物に認められた毒性の影響と考えられた。

本試験において、65 mg/kg 体重/日以上投与群の母動物で用量に依存した流産の増加が認められたため、無毒性量は、母動物で 10 mg/kg 体重/日、胎児で 650 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 2、5)

13. 遺伝毒性試験

ジクロスラムの細菌を用いる復帰突然変異試験、チャイニーズハムスター 卵巣由来細胞(CHO)を用いる遺伝子突然変異試験及び染色体異常試験、マウスを用いた小核試験が実施された。試験結果は表9に示されている。

細菌を用いる復帰突然変異試験については、十分に高い濃度での試験が実施されていないため評価には不十分であると考えられた。しかし、CHOを用いる遺伝子突然変異試験をはじめ、すべての試験結果が陰性であり、ジクロスラムには生体にとって問題となるような遺伝毒性はないものと考えられた。(参照 2)

試験 対象 処理濃度・投与量 結果 Salmonella $0.05 \sim 5 \, \mu g/7^{\circ} \, V - (-/+S9)$ 用量不足 復帰突然変異試 typhimurium のため (TA98, TA100, 判定不能 TA1535、TA1537 株) in vitro チャイニーズハムスター 遺伝子突然変異 15.6~500 µg/mL(-S9) $7.81 \sim 500 \ \mu g/m L(+S9)$ 試験(HGPRT 卵巢由来細胞 (CHO) 陰性 遺伝子) 染色体異常試験 ラット (リンパ球) 陰性 17~500 μg/mL (-/+S9) 小核試験 マウス (骨髄細胞) 1,250, 2,500, 5,000 mg/kg 体重 陰性 in vivo (処理時間: 24、48、72 時間) (単回強制経口投与)

表 9 遺伝毒性試験概要

注) -/+S9: 代謝活性化系非存在下及び存在下

皿. 食品健康影響評価

参照に挙げた資料を用いて、農薬「ジクロスラム」の食品健康影響評価を実施した。

動物体内運命試験の結果、経口投与されたジクロスラムは速やかに吸収、排泄された。ジクロスラムを低用量で単回投与した時、雄では尿中と糞中にほぼ同等量排泄されたが、雌では主に尿中に排泄され、雌雄差が認められた。高用量で投与した時は主に糞中に排泄された。組織内濃度においては、血液、腎臓及び肝臓(雄のみ)で高かった。主要代謝物は、低用量群の雄では F が糞中に、雌では親化合物が尿中に認められ、高用量群では雌雄とも親化合物が糞中に認められた。

らっかせい及びだいずにおける植物体内運命試験の結果、親化合物は検出されず、だいずの茎葉から主要代謝物として D が検出された。

各種毒性試験結果から、ジクロスラム投与による影響は、主に肝臓及び腎臓に認められた。発がん性、繁殖能への影響、催奇形性及び生体にとって問題となる遺伝毒性は認められなかった。

各種試験結果から、農産物中の暴露評価対象物質をジクロスラム(親化合物のみ)と設定した。

各試験の無毒性量は表 10 に示されている。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量の最小値がラットを用いた 2 年間慢性毒性/発がん性併合試験の 5 mg/kg 体重/日であったことから、これを根拠として安全係数 100 で除した 0.05 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

ADI 0.05 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 5 mg/kg 体重/日

(安全係数) 100

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際に確認することとする。

表 10 各試験における無毒性量等

	1	1 10	古武殿における無毎任里寺	
投戶量 投戶量			無毒性量(mg/kg 体重/日) ¹⁾	
動物種	試験	(mg/kg 体重/日)	米国	食品安全委員会 農薬専門調査会
ラット	90 日間 亜急性	0、50、100、500、 1,000	雄:50 雌:100	雄:50 雌:100
	毒性試験		雄:肝比重量増加等 雌:体重増加抑制	雄:肝細胞肥大等 雌:体重増加抑制等
	2 年間	0, 5, 100, 400	雄:5 雌:5	雄:5 雌:5
	慢性毒性	0, 5, 100, 400		
	/発がん		雌雄:体重增加抑制、尿比重	
	性併合		減少、尿量増加、腎尿細	
	試験		管変性等	管変性等
	- III 15			(発がん性は認められない)
	2世代繁殖試験	0、50、500、750、 1,000		親及び児動物:1,000
			毒性所見なし	毒性所見なし
			(繁殖能に対する影響は認	(繁殖能に対する影響は認
	水中丰州	0 100 700 1 000	められない)	められない)
	発生毒性 試験	0, 100, 500, 1,000		母動物及び胎児:1,000
			毒性所見なし	毒性所見なし
,				(催奇形性は認められない)
マウス	2年間発がん性	0, 50, 100, 250, 500	雄:一 雌:50	雄: 一 雌: 50
	試験			
			胞過形成 144 野早 柳 笠 「 中 柳 昀 ン R 罫 - A	胞過形成
			雌:腎尿細管上皮細胞過形成	
			を伴う限局性尿細管拡張	
ウサギ	発生毒性	0, 10, 65, 325,	母動物:10 胎児:650	(発がん性は認められない) 母動物:10 胎児:650
094	試験	650		
			母動物:流産	母動物:流産
			胎児:毒性所見なし (腐な形性は認められない)	胎児:毒性所見なし (腐な形性は認められない)
イヌ	00 日 目	0, 5, 25, 100/50	(催奇形性は認められない) 雄:5 雌:5	(催奇形性は認められない) 雄:5 雌:5
	90 日間 亜急性	0, 5, 25, 100/50	KE : O KE : O	
	毒性試験		 雌雄:肝小葉中心性肝細胞肥	 雌雄:肝小葉中心性肝細胞肥
	HA IT HAND		大等	大等
	1年間	0, 2, 10, 25	雄:25 雌:25	雄:25 雌:25
	慢性毒性 試験		雌雄:毒性所見なし	雌雄:毒性所見なし
			NOAEL: 5	NOAEL: 5
ADI (cRfD)			UF: 100	SF: 100
			cRfD: 0.05	ADI: 0.05
ADI (cRfD) 設定根拠資料			ラット 2 年間慢性毒性/発が	ラット 2 年間慢性毒性/発が
NOADI,無害州县 III. 不確定核粉			ん性併合試験 SE:安全係数 ADI:一日摂取割	ん性併合試験

NOAEL:無毒性量 UF:不確実係数 SF:安全係数 ADI:一日摂取許容量 cRfD:慢性参照量

-:無毒性量を設定できず。

^{1):}無毒性量欄には、最小毒性量で認められた主な毒性所見等を記した。

<別紙1:代謝物/分解物略称>

略称	化学名または一般名	
В	5-ethoxy-7-fluoro-(1,2,4)triazolo[1,5-c]pyrimidine-2-sulfonamide	
С	$7S\hbox{-}[3\hbox{-}aminosulfonyl\hbox{-}5\hbox{-}ethoxy\hbox{-}[1,2,4]triazolo[1,5\hbox{-}c]pyrimidinyl]\hbox{-}cysteine$	
D	$7S\hbox{-}[3\hbox{-}aminosulfonyl\hbox{-}5\hbox{-}methoxy\hbox{-}[1,2,4]triazolo[1,5\hbox{-}c]purimidinyl]\hbox{-}cysteine$	
E	N-(2,6-dichlorophenyl)-5-hydroxy-7-fluoro-(1,2,4)triazolo	
	[1,5-c]-pyrimidine-2-sulfonamide	
F	hydoxyphenyl-diclosulam	
G	N-acetyl cystein conjugate of diclosulam	
Н	sulfate/glucuronide conjugate(s) of F	
I	S-oxide of G	

<別紙2:検査値等略称>

略称	名称		
ai	有効成分量		
ALP	アルカリホスファターゼ		
ALT	アラニンアミノトランスフェラーゼ		
	(=グルタミン酸ピルビン酸トランスアミナーゼ (GPT))		
AST	アスパラギン酸アミノトランスフェラーゼ		
	(=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT))		
Cre	クレアチニン		
FOB	機能観察総合評価		
Hb	ヘモグロビン (血色素量)		
Ht	ヘマトクリット値		
LC_{50}	半数致死濃度		
LD_{50}	半数致死量		
MC	メチルセルロース		
PBI	前作収穫後(期間)(Plantback Interval)		
RBC	赤血球数		
TAR	総投与(処理)放射能		
TRR	総残留放射能		

<参照>

- 1. 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 17 年 11 月 29 日付、平成 17 年厚生労働省告示第 499 号)
- 2. US EPA: DICLOSULAM on PEANUTS and SOYBEANS. Human Health Risk Assessment for New Reduced-Risk Insecticide. (2000)
- 3. The e-Pesticide Manual (14 edn) ver. 4.0 (2006)
- 4. US EPA: Pesticide Fact Sheet: Diclosulam (2000)
- 5. US EPA: Federal Register Vol.65, No.46. 12129-12134 (2000)
- 6. 食品健康影響評価について
 - (URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-diclosulam_190605.pdf)
- 7. 第193回食品安全委員会
 - (URL: http://www.fsc.go.jp/iinkai/i-dai193/index.html)
- 8. 第10回食品安全委員会農薬専門調査会確認評価第三部会
 - (URL: http://www.fsc.go.jp/senmon/nouyaku/kakunin3_dai10/index.html)
- 9. 第 44 回食品安全委員会農薬専門調査会幹事会
 - (URL: http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai44/index.html)

ジクロスラムに係る食品健康影響評価に関する審議結果(案) についての御意見・情報の募集結果について

- 1. 実施期間 平成20年11月6日~平成20年12月5日
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 ジクロスラムに係る食品健康影響評価に関する審議結果(案)について、上記 のとおり、御意見・情報の募集を行ったところ、期間中に御意見・情報はありませんでした。

農薬「ジクロスラム」評価書の変更点

修正箇所	食品安全委員会第 261 回会合資料 (変更前)	食品安全委員会第 266 回会合資料 (変更後)
6ページ、10~14 行目	IUPAC	IUPAC
	和名:2',6'-ジクロロ <u>フェニル</u> -5-	和名:2',6'-ジクロロ-5-エトキシ-
	エトキシ・・・・	•••
	英名:2',6'-dichloro <u>phenyl</u> -5-	英名:2',6'-dichloro-5-ethoxy-
	ethoxy- ···	•••
17ページ、8~9 行目	···流産は <u>、</u> これらの母動物に認められ	・・・流産はこれらの母動物に認められた
	た毒性の影響と考えられた本試験にお	毒性の影響と考えられた <u>。</u>
	いて、65 mg/kg 体重/日以上投与群の母	本試験において、65 mg/kg 体重/日以
	動物で・・・	上投与群の母動物で・・・

[※] 修正箇所は、第266回会合資料におけるページ数、行数等