IV. Dose-response relationship between cadmium exposure and adverse health effects

PREVALENCE RATES OF 6-MICROGLOBULINURIA IN RELATION TO URINARY CADMIUM CONCENTRATIONS AMONG INHABITANTS OVER 50 YEARS OF AGE

Mes													
Cd (µg/g.cr.) Median Cd (µg/g.cr.)	0.0-0.9 0.8	1.0—L9 1.7	2.0—2.9 2.5	3.0—3.9 3.5	4.0—4.9 4.4	5.0-5.9 5.4	6.0—6.9 6.4	7.0—7.9 7.5	8.08.9 8.5	9.0—9.9 9.4	10.0-14.9	15.9—19.9 18.5	20.0-
N	10	III	240	231	208	153	110	82	61	42	116	39	
Prevalence rates (%)													-
β,-mg ≥ 927 μg/l β,-mg ≥ 1129	0.0	4.5	2.9	3.5	6.3	8.5	14.5	14.6	16.4	23.8	43.1	48.7	
ρg/g.cr.	0.0	3.6	4.6	4.3	7.2	8.5	15.5	14.6	21.3	26.2	42.2	53.8	
Women						-91						-	
Cd (ug/g.cr.)	0.0-0.9	1.0-1.9	2.0-2.9	3.0-3.9	4.0-4.9	5.0-5.9	6.0-6.9	7.0-7.9	8.0-8.9	9.0-9.9	10.0-14.9	15.9-19.9	20.0-
Median Cd (ug/g.cr.)	0.9	1.7	2.6	3.5	4.5	5.3	6.5	7.4	8.4	9.5	11.8	17.0	23.4
N	4	27	99	140	177	176	188	159	142	112	347	83	62
Prevalence rates (%)													
β ₁ -mg ≥ 503 μg/1 β ₁ -mg ≥ 1059	0.0	3.7	3.0	5.0	7.3	8.0	9.0	8.2	22.5	21.4	32.0-	37.3	56.5
µg/g.cr.	0.0	7.4	3.0	5.0	7.3	9.1	8.5	8.8	21.1	18.8	31.4	41.0	59.7

N: Number of persons examined.

TABLE IV

Fig. 1. Probit linear regression line between urinary cadmium concentration and prevalence of β_2 -microglobulinuria.

Fig 2. Probit linear regression line between urinary cadmium concentration and prevalence of β 2-microglobulinuria.

Log Cd (µg/g Creatinine)

Total Cd intake calculated by formula as follows.

([village average Cd concentration in rice] ×
[the average daily intake of rice] + [daily intake of Cd from foods other than rice]) ×
[duration of residence in the Cd-polluted areas] + [average daily intake of Cd in non-polluted areas of Japan] × [duration of residence in non-polluted areas].

DOSE RESPONSE OF Cd AND Cd INTAKE LIMIT

Fig. 2. Correlation between total Cd intake and prevalence of β_2 -m-uria (β_2 -m $\ge 1000 \,\mu\text{g/g}$ cr.) for the Cd-exposed male group. The regression line is Y = 0.0083X - 7.93 (r = 0.81; P < 0.01).

Fig. 4. Correlation between total Cd intake and prevalence of β_2 -m-uria (β_2 -m $\geq 1000 \,\mu\text{g/g}$ cr.) for the Cd-exposed female group. The regression line is Y = 0.012X - 16.16 (r = 0.84; P < 0.001).

Total Cd intake (g)

Fig. 1. Prevalence of β_2 -MG-uria in the Cd-exposed women and their logistic model in the case of β_2 -MG expressed as $\mu g/g \cdot cr$.

Fig. 1. Logistic regression analysis of the prevalence of MT-uria in the Cd-exposed women. Data are for MT values expressed as $\mu g/g$ creatinine. The probability of MT-uria (prevalence, %) and ln odds (logit) MT-uria are plotted. Exponential fit, correlation coefficient = 0.75. Logit MT-uria = -4.6773 + 0.0119 (Age) + 0.000566 (Total Cd intake)

Fig. 7 Prevalence of metallothioneinuria (µg/1) corresponding to each age and total cadmium intake calculated by general linear model

Fig. 10 Ranges of total Cd intakes corresponding to 2.5 % of prevalence of metallothioneinuria in the nonexposed men and women

2g of total Cd intake

```
[Example]
In case of 80 yr is
```

- = 25 mg / yr (2000 mg / 80 yr)
- = $\frac{68 \mu g / day}{(25,000 \mu g / 365 days)}$

```
< 80 μg (0.4 ppm x 200 g) + α</p>
Cut-off value of rice in Japan
Other foods
```

Conclusion(1)

• Prevalence of β_2 -MG-uria (> 1,000 μg/g cr.) was 14.3 % in men and 18.7% in women in Cd-polluted areas of Kakehashi River basin, while it was 6.0 % and 5.0 % in men and women in unpolluted areas, respectively.

Conclusion(2)

- Once Cd-induced renal tubular dysfunction occured, it was irreversible even after cessation of Cd-exposure.
- Bone damage such as osteopenia was also found in Cd-exposed subjects with renal tubular dysfunction.

Conclusion(3)

 Total Cd intake corresponding to maximum allowable Cd concentration in urine was calculated as approximately 2 g for both of men and women using linear regression and multivariate analysis.