令和5年8月30日

肥料・飼料等専門調査会 座長 森田 健

動物用医薬品に係る食品健康影響評価に関する審議結果について

令和5年7月5日付け5消安第2025号をもって農林水産大臣から食品安全委員会に意見を求められたマルボフロキサシンを有効成分とする豚の注射剤(フォーシルS)に係る食品健康影響評価に伴い実施した、マルボフロキサシンの当専門調査会において審議を行った結果は別添のとおりですので報告します。

(案)

動物用医薬品評価書

マルボフロキサシン (第3版)

令和5年(2023年)8月 食品安全委員会肥料·飼料等専門調査会

目 次

	頁
〇審議の経緯	3
〇食品安全委員会委員名簿	4
〇食品安全委員会動物用医薬品専門調査会専門委員名簿	4
〇食品安全委員会肥料·飼料等専門調査会専門委員名簿	4
〇要 約	6
1. 評価対象動物用医薬品の概要	7
1. 用途	7
2. 有効成分の一般名	7
3.化学名	7
4.分子式	7
5. 分子 <u>量</u>	7
6.構造式	7
7. 開発の経緯及び使用状況	7
Ⅱ. 安全性に係る知見の概要	9
1. 薬物動態試験	9
(1)薬物動態試験(ラット)	9
(2)薬物動態試験(イヌ)	
(3)薬物動態試験(牛)	
(4)薬物動態試験(豚)	
(5)その他の薬物動態試験	
2. 残留試験	
(1)残留試験(牛)	
(2)残留試験(豚)	21
3. 遺伝毒性試験	
4. 急性毒性試験	24
5. 亜急性毒性試験	24
(1)4 週間亜急性毒性試験①(ラット、MBFX、経口投与	į)24
(2)4 週間亜急性毒性試験②(ラット、MBFX、経口投与	į)25
(3)13 週間亜急性毒性試験(ラット、MBFX、混餌投与)25
(4) 13 週間亜急性毒性試験 $\mathbb O$ (イヌ、 MBFX 、経口投与)26
(5)13 週間亜急性毒性試験②(イヌ、MBFX、経口投与)27
6.慢性毒性試験及び発がん性試験	27
7. 生殖発生毒性試験	28
(1)2 世代繁殖毒性試験(ラット、混餌投与)	28
(2) 発生毒性試験(ラット、経口投与)	28

(3) 発生毒性試験(ウサギ、経口投与)	29
8. その他の毒性試験	29
(1)光毒性	
(2) 微生物学的影響に関する試験	
9. 一般薬理試験	32
10. ヒトにおける知見	
Ⅲ. 国際機関等における評価	35
1. 欧州における評価	35
2. 米国における評価	35
Ⅳ. 食品健康影響評価	34
<別紙:検査値等略称>	38
<参照>	40

〈審議の経緯〉

第1版関係

2006年 11月 6日 厚生労働大臣より残留基準設定に係る食品健康影響評価について要請、関係書類の接受

2006年 11月 9日 第167回食品安全委員会(要請事項説明)

2006年 12月 15日 第65回動物用医薬品専門調査会

2007年 2月 23日 第69回動物用医薬品専門調査会

2007年 3月 13日 第71回動物用医薬品専門調査会

2007年 6月 7日 第193回食品安全委員会(報告)

2007年 6月 7日 から7月6日 国民からの意見情報の募集

2007年 8月 7日 動物用医薬品専門調査会座長から食品安全委員会委員長へ報告

2007年 8月 9日第202回食品安全委員会(報告)

(同日付で食品安全委員会委員長から厚生労働大臣に通知)

2007年 12月 18日 残留基準値の設定

第2版関係

2022 年 10 月 5 日 農林水産大臣より動物用医薬品の製造販売承認に係る食品健康影響評価について要請(4 消安第 3453 号)、関係書類の接受

2022 年 12 月 22 日 第 183 回肥料・飼料等専門調査会 マルボフロキサシンを有効成分とする牛の注射剤(フォーシル)に 係る評価要請に伴い、動物用医薬品マルボフロキサシンについて審 議

2023年 3月 28日 第894回食品安全委員会(報告)

2023年 3月29日から4月27日まで国民からの意見・情報の募集

2023年 5月 10日 肥料・飼料等専門調査会座長から食品安全委員会委員長へ報告

2023 年 5月 16日 第898 回食品安全委員会(報告)

5月17日付けで厚生労働大臣に通知

第3版関係

2023 年 7月 5日 農林水産大臣より動物用医薬品の製造販売承認に係る食品健康影響評価について要請(5消安第 2025 号)、関係書類の接受

2023 年 8月 7日 第 190 回肥料・飼料等専門調査会 マルボフロキサシンを有効成分とする豚の注射剤 (フォーシル S) に係る評価要請に伴い、動物用医薬品マルボフロキサシンについて

審議

2023年 8月 30日 肥料・飼料等専門調査会座長から食品安全委員会委員長へ報告

2023年 9月 5日 第911回食品安全委員会(報告)

〈食品安全委員会委員名簿〉

第1版関係

(2006年12月20日まで) (2006年12月21日から)

寺田 雅昭(委員長) 見上 彪 (委員長)

見上 彪 (委員長代理*) 小泉 直子(委員長代理*)

 小泉
 直子
 長尾
 拓

 長尾
 拓
 野村 一正
 畑江 敬子

 畑江
 敬子
 廣瀬 雅雄**

 本間
 清一
 本間
 清一

*:2009年7月9日から *:2007年2月1日から

**: 2007年4月1日から

第2版、第3版関係

(2021年7月1日から)

山本 茂貴(委員長)

浅野 哲(委員長代理 第一順位)

川西 徹(委員長代理 第二順位)

脇 昌子(委員長代理 第三順位)

香西 みどり

松永 和紀

吉田 充

〈食品安全委員会動物用医薬品専門調査会専門委員名簿〉

第1版関係

(2007年2月11日まで) (2007年2月12日から)

三森 国敏(座長) 三森 国敏(座長)

井上 松久(座長代理) 井上 松久(座長代理)

 青木
 宙
 津田
 修治
 青木
 宙
 寺本
 昭二

 明石
 博臣
 寺本
 昭二
 明石
 博臣
 長尾
 美奈子

江馬 眞 長尾 美奈子 江馬 眞 中村 政幸

大野 泰雄 中村 政幸 小川 久美子 林 眞 小川 久美子 林 眞 渋谷 淳 平塚 明

渋谷 淳 藤田 正一 嶋田 甚五郎 藤田 正一

嶋田 甚五郎 吉田 緑 鈴木 勝士 吉田 緑

鈴木 勝士 津田 修治

〈食品安全委員会肥料・飼料等専門調査会専門委員名簿〉

第2版、第3版関係

(2022年4月1日から)

森田 健 (座長*)

川本 恵子 (座長代理*)

吉田 敏則 (座長代理*)

赤沼 三恵 植田 富貴子

新井 鐘蔵 小林 健一

荒川 宜親 佐々木 一昭

井上 薫 高橋 研

今田 千秋 中山 裕之

*:2022年4月25日から

〈第 183 回食品安全委員会肥料·飼料等専門調査会専門参考人〉

今井 俊夫(国立研究開発法人 国立がん研究センター研究所 動物実験施設長)

山田 雅巳 (防衛大学校 応用科学群 応用化学科教授)

山中 典子(国立研究開発法人 農業·食品産業技術総合研究機構 動物衛生研究部門 疾病対策部 病性鑑定室)

〈第 190 回食品安全委員会肥料・飼料等専門調査会専門参考人〉

今井 俊夫 (元国立研究開発法人 国立がん研究センター研究所 動物実験施設長)

山田 雅巳 (防衛大学校 応用科学群 応用化学科教授)

山中 典子(国立研究開発法人 農業・食品産業技術総合研究機構 動物衛生研究部門 疾病対策部 病性鑑定室)

要約

フルオロキノロン系抗菌性物質である「マルボフロキサシン(MBFX)」(CAS No. 115550-35-1)について、動物用医薬品の製造販売承認申請書等を用いて食品健康影響評価を実施した。第3版への改定に当たっては、「マルボフロキサシンを有効成分とする豚の注射剤(フォーシル S)」の製造販売承認申請に伴い、豚を用いた薬物動態試験及び残留試験の成績が新たに提出された。

豚における残留試験では、8 mg/kg 体重/日の MBFX を単回筋肉内投与した結果、組織中濃度は腎臓で最も高値であり、投与 2 日後に最高値を示した。多くの組織では投与 7 日後には著しく減少し、腎臓では投与 12 日後に半数例で LOQ 未満となった。

遺伝毒性試験については、in vitro の細菌、酵母及び哺乳類細胞を用いた試験の一部で陽性であったが、それ以外の in vitro 及び全ての in vivo の試験結果が陰性であったこと並びに MBFX の作用機序を踏まえ、MBFX には生体にとって問題となる遺伝毒性はないと考えた。

MBFX を被験物質とした慢性毒性及び発がん性試験は実施されていないが、一般的にフルオロキノロン系抗菌性物質に発がん性は認められておらず、MBFX には生体にとって問題となる遺伝毒性はないと考えられたことから、ADI の設定は可能であると考えた。

ラット及びイヌを用いた亜急性毒性試験において、一般状態、血液学的及び血液生化学的検査値、関節軟骨の異常等がみられ、最小の NOAEL は 4 mg/kg 体重/日であった。

ラットを用いた 2 世代繁殖毒性試験において、高用量 (500 mg/kg 体重) 投与群の雄に 受精能障害が認められるとともに、雌では受胎率の低下、妊娠動物の着床数及び産児数の 低下並びに子宮内胚死亡率の増加が認められたため、NOAEL は親動物で 70 mg/kg 体重/日、児動物で 10 mg/kg 体重/日と考えた。雄の受精能は休薬により回復した。

ラット及びウサギにおける発生毒性試験では、催奇形性は認められなかった。

フルオロキノロン剤の光毒性について多くの報告がなされているが、MBFX はその構造から光毒性や光遺伝毒性が弱い部類に分類されており、また、適切に管理される限り、通常食品中の MBFX の残留はごく微量であることから、食品を介して生体にとって問題となる光遺伝毒性が生じる可能性は無視できる程度と考えた。

各種毒性試験において毒性影響が認められた試験の最小の NOAEL は 4 mg/kg 体重/日であり、毒性学的 ADI は 0.004 mg/kg 体重/日と設定された。一方、微生物学的 ADI は 0.0072 mg/kg 体重/日であった。双方を比較すると、毒性学的 ADI の値がより小さく、感受性が高いと考えられる。

以上より、MBFXのADIを0.004 mg/kg 体重/日と設定した。

I. 評価対象動物用医薬品の概要

1. 用途

抗菌剤 (動物用医薬品)

(参照 56)

2. 有効成分の一般名

和名:マルボフロキサシン

英名: Marbofloxacin

(参照 56)

3. 化学名

マルボフロキサシン

IUPAC

英名:7-fluoro-2-methyl-6-(4-methylpiperazin-1-yl)-10-oxo-4-oxa-1,2-

diazatricyclo[7.3.1.05,13]trideca-5(13),6,8,11-tetraene-11-carboxylic acid

CAS (115550-35-1)

英名: Marbofloxacin

(参照 56、57)

4. 分子式

 $C_{17}H_{19}FN_4O_4$

(参照 58)

5. 分子量

362.36

(参照 58)

6. 構造式

(参照 58)

7. 開発の経緯及び使用状況

マルボフロキサシン (MBFX) は、広い抗菌スペクトルと強い抗菌活性を有するフルオロキノロン系抗菌性物質であり、作用は殺菌的で、細菌の DNA 複製に必要な酵素である

トポイソメラーゼⅡ¹ (DNA ジャイレース) 又はトポイソメラーゼIVに作用し、DNA 複製を阻害すると考えられている。

我が国を含め世界的に人用医薬品としての使用はないが、動物用医薬品として牛の細菌性肺炎、甚急性及び急性乳房炎、豚の胸膜肺炎並びにイヌ、ネコの細菌性皮膚感染症の治療に使用されている。国内では、2004年にイヌ、ネコを対象とした錠剤(ゼナキル錠25、50、100)が、2010年に牛、豚を対象とした注射剤(マルボシル2%、マルボシル10%)が、それぞれ承認されている。(参照59、60)

MBFX については、ポジティブリスト制度導入に伴う残留基準値2が設定されていたが、2007 年の食品安全委員会の評価を受け、厚生労働省は同年残留基準値の改正を行った。 (参照 61)

また、2023年5月には、マルボフロキサシンを有効成分とする牛の注射剤(フォーシル) に係る評価要請に伴い、評価を行っている。

今般、Meiji Seika ファルマ株式会社(現:明治アニマルヘルス株式会社)から農林水産省へ、マルボフロキサシンを有効成分とする豚の注射剤(フォーシル S)の動物用医薬品製造販売承認申請がなされたことに伴い、同省から本製剤の承認に係る食品健康影響評価が要請された。(参照 77)

-

¹ トポイソメラーゼ: DNA 鎖に一時的な切れ目を導入し、閉環 DNA の超らせんの程度の調節や連環 状二量体の形成・解除に作用する。

² 平成 17 年厚生労働省告示第 499 号によって定められた残留基準値

Ⅱ. 安全性に係る知見の概要

本評価書では、EFSA 及び EMEA (EMA) の評価書並びにマルボシル 2%、マルボシル 10%、フォーシル及びフォーシル S の製造販売承認のための審査用資料等を基に、その科学的知見を第 3 版として整理した。(参照 56、62、63、77)

略称及び検査値等の略称を別紙に示した。

1. 薬物動態試験

(1)薬物動態試験(ラット)

ラット (SD 系、雌雄各 6 匹) に ¹⁴C 標識 MBFX³を 7 日間経口投与 (10 mg/kg 体重) し、血中濃度を測定する試験が実施された。最終投与 2 時間あるいは 48 時間後までの血漿、尿、糞、ケージ洗浄液を採取し、最終投与 48 時間後に各 6 頭から組織を採取した。

初回投与後の C_{max} は $1.8\sim2.3\,\mu g$ -eq/mL、 T_{max} は $1\sim2$ 時間であった。24 時間後の放射活性は $0.01\,\mu g$ -eq/mL まで低下した。主要な排泄経路は尿であり、最終投与 24 時間後までに $54\sim62\%$ が排泄され、糞からは $32\sim40\%$ が排泄された。組織中の分布は、腎臓及び肝臓で高かったが、最終投与 48 時間後までにいずれの組織においても $0.4\,\mu g$ -eq/g 以下まで低下した。(参照 1)

(2)薬物動態試験(イヌ)

① イヌ (経口投与)

イヌ (品種不明、雌雄各 2 頭) に 14 C 標識 MBFX を 7 日間経口投与 (4 mg/kg) 体重 し、最終投与 4 時間あるいは 48 時間後までの血漿、尿、糞、ケージ洗浄液を採取、最終投与 4 時間あるいは 48 時間後に各 2 頭から組織を採取した。

初回投与後の C_{max} は $1.8\sim3.5$ μg -eq/mL、 T_{max} は $1\sim6$ 時間であった。 24 時間後の 血漿中濃度は $0.3\sim0.7$ μg -eq/mL まで低下した。最終投与後の C_{max} は $2.8\sim4.1$ μg -eq/mL、 T_{max} は $0.5\sim4$ 時間であった。主要な排泄経路は尿であり、最終投与後 48 時間 までに $61\sim62\%$ が排泄され、糞からは $32\sim35\%$ が排泄された。組織中の分布は、腎臓及び肝臓で高く、脂肪で低かったが、最終投与 48 時間後までにいずれの組織においても 0.6 μg -eq/g 以下まで低下した。 (参照 2)

② イヌ (静脈内、経口、皮下投与)

イヌ(品種不明、雌雄不明、6 頭)に MBFX を単回静脈内投与(2 mg/kg 体重)し、その後、単回経口投与(1、2、4 mg/kg 体重)を 3 期クロスオーバー試験 4として実施した。経口投与後、単回皮下投与(1、2、4 mg/kg 体重)を 3 期クロスオーバー試験として実施した。

単回静脈内投与において、 $T_{1/2}$ は 12.4 時間、CL は 0.10 L/時間/kg、Vd は 1.9 L/kg であった。単回経口投与において、全投与群で BA は 100%付近であった。2 mg/kg 投与群では、 C_{max} は 1.4 $\mu g/mL$ 、 T_{max} は 2.5 時間であった。平均 AUC 及び C_{max} は用量相関

^{3 3} 位炭素に標識。以下特記しない場合も同様。

⁴ 同一の被験対象に各投与量を順番に投与し、各投与後で評価を行った。

的な直線関係を示した。投与量の 40%が尿中に未変化体として排泄された。単回皮下投与における動態は経口投与と同様であったが、 T_{max} は約1時間と短くなった。

また、イヌ(品種不明、雌雄不明、8 頭)に MBFX を 13 週間経口投与 $(2、4、6 \,\mathrm{mg/kg}$ 体重/日)する試験を実施した。平均皮膚濃度/血漿中濃度は 1.6 であった。 (参照 3)

(3)薬物動態試験(牛)

① 牛(静脈内、筋肉内、皮下投与)

牛(ホルスタイン・フリーシアン種、泌乳牛、2~10歳、6頭)に MBFX を単回静脈内投与(2 mg/kg 体重)し、1 週間後に単回筋肉内投与(1、2、4 mg/kg 体重)する試験を実施した。筋肉内投与は、ラテン方格配置 3 期クロスオーバー試験 5として実施し、各投与期の間に1週間あけ、各期とも2頭に各用量を投与した。さらに最終の筋肉内投与から1週間後6に皮下投与(2 mg/kg 体重)を実施した。静脈内投与では投与後30時間までの血漿中濃度、48時間までの乳汁中濃度、筋肉内及び皮下投与では投与後48時間までの血漿中濃度を測定した。

結果を表1に示した。

静脈内投与において、乳汁中濃度は投与後 10、24 時間でそれぞれ 0.189、0.019 $\mu g/mL$ であり、32 時間で LOQ(0.010 $\mu g/mL$)未満となった。(参照 4)

項目	静脈投与		筋肉投与		
投与量(mg/kg 体重)	2	1	2	4	2
C_{max} (µg/mL)	ND	0.59	1.47	2.56	1.15
T _{max} (h)	ND	0.94	0.79	0.79	0.73
$T_{1/2}$ (h)	5.72	7.26	7.73	8.41	5.49
AUC (μg·h/mL)	6.97	3.51	7.73	14.83	7.59
MRT (h)	3.77	6.33	5.66	6.06	6.10
Vd (L/kg)	2.62	ND	ND	ND	ND
CL _{tot} (L/h/kg)	0.31	ND	ND	ND	ND
BA (%)	ND	100.75	112.85	107.17	110.95

表 1 牛への MBFX 投与時の薬物動態に係る各種パラメーター

ND: データなし

② 牛(静脈内、筋肉内、皮下投与)

牛(モンベリアード種、約3週齢(反芻開始前)、6頭(雄2頭、雌4頭))に MBFX を単回静脈内投与($2\,\mathrm{mg/kg}$ 体重)し、1週間後に単回筋肉内投与($2\,\mathrm{mg/kg}$ 体重)、その2週間後に皮下投与($2\,\mathrm{mg/kg}$ 体重)する試験を実施した。

結果を表2に示した。(参照5)

10

⁵ 同一の被験対象に各投与量の投与順を3 通り設定して投与し、各投与後に評価を行った。

⁶ 乳房炎を呈した乳牛1頭を別の乳牛に置き換えた。

	~ - 1	- 1.122111 1/2 1	1 - /(01/02/03/12/			
項目	静脈區	为投与	筋肉口	为投与	皮下	没与
性別(na)	雄(2)	雌(4)	雄(2)	雌(4)	雄(2)	雌(4)
C _{max}	ND	ND	1.55, 2.10	1.34~1.62	1.20、1.34	1.40~1.51
$(\mu g/mL)$						
T _{max} (h)	ND	ND	0.37, 0.75	0.66~0.90	0.42、1.33	0.42~0.71
T _{1/2} (h)	9.83、12.1	5.23~7.78	8.63、12.5	7.51~9.10	9.23、11.6	5.74~11.1
AUC (μg・	20.3, 26.2	10.5~15.1	15.5、24.8	10.5~14.9	15.5、16.8	9.36~15.2
h/mL)						
MRT (h)	12.7、15.6	6.41~9.30	10.1、15.9	7.71~	11.3、11.9	7.09~9.96
				10.47		
Vd (L/kg)	1.35、1.43	1.53~1.71	ND	ND	ND	ND
$\mathrm{CL}_{\mathrm{tot}}$	0.80, 0.10	0.14~0.20	ND	ND	ND	ND
(L/h/kg)						
BA (%)	ND	ND	60b, 100	100 ^b	59.2、83.1	89.1~
						115.4

表 2 牛への MBFX 投与時の薬物動態に係る各種パラメーター

a:使用動物数、b:概算%(約)、ND:データなし

③ 牛及び子牛(静脈内投与)

牛(ブラウンスイス種、泌乳牛、 $4.5\sim6$ 歳、3 頭)又は子牛(ブラウンスイス種 2 頭、赤白斑牛 1 頭、雌雄不明、約 3 か月齢)に MBFX を静脈内投与(1、2、4 mg/kg 体重)し、血漿中及び乳汁中濃度を測定した。

牛においては、各投与群でそれぞれ $T_{1/2}$ は 5.0、4.0、4.1 時間、AUC は 4.7、10.9、12.8 mg・h/L、 Vd_{ss} は 1.0~1.7 L/kg、 CL_{tot} は 3.1~5.2 mL/min/kg であった 7。

子牛において各投与群でそれぞれ $T_{1/2}$ は 4.4、4.3、4.2 時間、AUC は 5.0、10.9、19.4mg・h/L、 Vd_{ss} は 1.0~1.1L/kg、 CL_{tot} は 3.1~3.4mL/min/kg であった。(参照 6)

④ 牛 (静脈内投与)

牛(ホルスタイン・フリーシアン種、 $2\sim3$ 週齢、雄3 頭)に MBFX を3 日間静脈内投与(2 mg/kg 体重/日)し、血漿、排泄物及び組織中濃度を測定した。

 $T_{1/2}$ は 10.5 時間、Vd は 10.5 L/kg、 CL_{tot} は 0.084 L/kg/h であった。最終投与 4 時間 後の組織中 MBFX 濃度は、腎臓、肝臓、筋肉、肺、脂肪で 5.3、2.7、2.7、2.3、1.2 $\mu g/g$ であった。最終投与 50 時間後の組織中濃度は腎臓で 0.53 $\mu g/g$ であり、それ以外の組織中濃度は 0.3 $\mu g/g$ 未満であった。未変化体の尿及び糞中排泄率はそれぞれ $63\sim65\%$ 、 $6.2\sim9.7\%$ であり、総排泄率は $69.4\sim74.9\%$ であった。(参照 7)

⑤ 牛 (筋肉内投与)

^{7 1} mg 投与群では 24 時間時点で定量下限未満となったため、分布容積、クリアランスは求められなかった。

牛(モンベリアード種、約1か月齢(反芻開始前)、6頭(雄2頭、雌4頭))に MBFX を単回筋肉内投与(2 mg/kg 体重)し、投与2 時間後の血漿及び組織中濃度を測定した。 雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出された。

平均血漿中濃度は $1.34 \,\mu\text{g/mL}$ であった。組織中濃度は、胆汁 $2.52 \,\mu\text{g/mL}$ 、滑液 $0.902 \,\mu\text{g/mL}$ 、筋肉 $1.78 \,\mu\text{g/g}$ 、注射部位の筋肉 $93.99 \,\mu\text{g/g}$ 、心臓 $2.14 \,\mu\text{g/g}$ 、肝臓 $2.79 \,\mu\text{g/g}$ 、腎臓 $5.99 \,\mu\text{g/g}$ 、肺 $1.77 \,\mu\text{g/g}$ 、脳 $0.79 \,\mu\text{g/g}$ 、空腸 $1.69 \,\mu\text{g/g}$ 、第四胃 $1.36 \,\mu\text{g/g}$ 、子宮 $1.27 \,\mu\text{g/g}$ 、精巣 $1.71 \,\mu\text{g/g}$ 、脂肪 $1.59 \,\mu\text{g/g}$ であった。組織中濃度/血漿中濃度は、滑液 0.674、脳 0.59、子宮 0.99、精巣 1.16、第四胃 1.01、脂肪 1.17、空腸 1.25、肺 1.32、筋肉 1.33、心臓 1.59、胆汁 1.90、肝臓 2.09、腎臓 3.49、注射部位の筋肉 $3.81 \,\mu\text{cm}$

⑥ 牛 (皮下投与)

血中濃度は、最終投与終了 0.5 時間後に C_{max} 1.71~2.13 μg -eq/mL、24 時間後には 0.01 μg -eq/mL となった。初回及び最終回投与 24 時間後の AUC は $7.69~7.81^8$ 、7.24~7.45 μg -eq·h/mL であった。最終投与 2、4、8 日後までの尿中排泄率はそれぞれ 46.74、41.16、45.77%、糞中排泄率は 43.57、50.22、50.44%であった。

乳汁中濃度は、投与約 7.5 時間後で約 $0.2\sim0.4~\mu g$ -eq/g、約 16 時間後には約 $0.01\sim0.02~\mu g$ -eq/g となった。乳汁中回収率は 0.13%であった。

最終投与後の組織中濃度を表3に示した。

最終投与 2 日後で筋肉、腎脂肪及び大網脂肪中濃度は LOQ 付近又は LOQ 未満であった。胆汁中濃度は、最終投与 2 日後で $0.04~\mu g$ -eq/g であったが、4、8 日後には LOQ $(0.01~\mu g$ -eq/g) 未満となった。組織中回収率は 0.01%であった。(参照 9、55)

			10-10		
組織		最終投与後日数			
	2	4	8		
肝臓	0.10	0.03	0.03		
腎臓	0.04	0.02	0.01		
肺	0.03	0.01	0.01		
注射部位	0.08	0.08	0.08		
筋肉	LOQ	ND	ND		
腎脂肪	LOQ	ND	ND		
大網脂肪	LOQ	ND	ND		
胆汁	0.04	LOQ	LOQ		

表 3 牛への ¹⁴C 標識 MBFX 皮下投与後の組織中濃度(μg-eq/g)

LOQ(筋肉、胆汁:0.01 μ g-eq/g、腎脂肪、大網脂肪:0.03 μ g-eq/g)

ND: データなし

-

^{8 3} 頭中 1 頭について、投与した MBFX の一部が血管内に注入された可能性があることから、この 1 頭については除外した。

⑦ 牛 (皮下投与)

牛(ヘレフォード/ホルスタイン・フリーシアン交雑種、 $48\sim65\,\mathrm{kg}$ 、雌雄各 $8\,\mathrm{g}$)に $^{14}\mathrm{C}$ 標識 MBFX を 5 日間皮下投与($2\,\mathrm{mg/kg}$ 体重/日)し、雌雄各 $2\,\mathrm{g}$ から血漿、雌 $2\,\mathrm{g}$ 頭、雄 $1\,\mathrm{g}$ から排泄物、投与 4、48、96、192 時間後に雌雄各 $2\,\mathrm{g}$ から組織を採取し、放射活性を測定した。雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出された。

初回投与後の C_{max} は約 $1.4\sim1.6$ μ g-eq/mL、 T_{max} は $0.25\sim1$ 時間、 $T_{1/2}$ は約 12 時間、投与 24 時間後の血漿中濃度は約 $0.1\sim0.3$ μ g-eq/mL となった。最終投与後の C_{max} は約 $1.4\sim1.8$ μ g-eq/mL、 T_{max} は $0.5\sim2$ 時間、投与 24 時間後の血漿中濃度は約 0.3 μ g-eq/mL となり、初回投与後と同様であった。総放射活性濃度の $88\sim96\%$ が回収された。尿及び糞中排泄率はそれぞれ $72\sim81\%$ 、 $5\sim13\%$ で、各投与の 24 時間以内に各投与量の $80\sim90\%$ が消失した。

最終投与後の組織中濃度を表4に示した。

大部分の組織において最終投与96、192時間後にLOQ付近又はLOQ未満となった。 (参照 10)

組織		最終投与後の時間 (h)			
	4	48	96	192	
肝臓	2.42	0.79	0.08	0.02	
腎臓	4.27	0.39	0.08	0.02	
肺	1.54	0.15	0.03	LOQ	
筋肉(最終注射部位)9	3.06	0.17	0.03	LOQ	
筋肉	1.69	0.13	0.02	LOQ	
皮膚(最終注射部位)10	0.65	0.94	0.91	0.26	
腎脂肪	1.11	0.09	LOQ	LOQ	
大網脂肪	0.82	0.06	LOQ	LOQ	
胆汁	43.25	4.00	ND	ND	

表 4 牛への ¹⁴C 標識 MBFX 皮下投与後の組織中濃度(μg-eq/g)

LOQ (肝臓、腎臓、肺、最終投与部位の筋肉、最終投与部位の皮膚、筋肉、胆汁: $0.01\,\mu g$ -eq/g、腎脂肪、大網脂肪: $0.03\,\mu g$ -eq/g)

ND: データなし

⑧ 牛(静脈内、筋肉内投与)

牛(ホルスタイン 7 頭、エアシャー種 1 頭、モンベリアード種 1 頭、交雑種 1 頭、泌乳牛、約 2 歳 11 か月齢~10 歳 6 か月齢、体重 469~ $855 \,\mathrm{kg}$)に MBFX (16%溶液)を

⁹ 雌雄各 6 頭のデータ。

¹⁰ 雌雄各6頭のデータ。

クロスオーバー 11 で単回静脈内又は筋肉内投与(10 mg/kg 体重/日)した 12 。

血液及び乳は投与 96 時間後まで採取し、蛍光検出 HPLC 法で試料中の MBFX を測定した(LOQ: $0.002 \, \mu \text{g/mL}$)。

血漿中及び乳中の測定値から得られた薬物動態に係る各種パラメーターを表5に示した。

いずれの投与方法においても MBFX の血液から乳汁への移行は迅速であり、両投与方法での血漿中及び乳中 AUC_{inf} の値は極めて類似していた。MBFX の対象菌種への効果は、同程度と考えられる。しかしながら、乳中 C_{max} は、静脈内投与後に比べ、筋肉内投与後の方が低かった。(参照 64)

項目 静脈内投与 筋肉内投与 血漿中 乳中 血漿中 乳中 C_0 (µg/mL) 32.48 ± 10.49 ND ND ND C_{max} ND 5.292 ± 1.607 8.201 ± 1.989 4.127 ± 0.7140 $(\mu g/mL)$ T_{max} (h) ND 2.20 ± 1.03 0.73 ± 0.14 2.80 ± 1.03 $T_{1/2K01}$ (h) ND 0.78 ± 0.42 0.22 ± 0.06 1.30 ± 0.61 $T_{1/2K10}$ (h) 1.23 ± 0.35 2.65 ± 0.33 2.98 ± 0.50 2.73 ± 0.31 $T_{1/2\lambda z}$ (h) 11.70 ± 1.59 13.61 ± 2.17 12.02 ± 2.36 11.94 ± 1.05 AUCinf (µg • 34.51 ± 4.148 48.30 ± 4.510 34.92 ± 6.285 43.66 ± 4.256 h/mL) MRT_{inf} (h) 4.03 ± 0.59 5.80 ± 0.96 5.36 ± 0.56 6.84 ± 0.86 Vdss (L/kg) 0.8367 ± 0.09927 ND ND ND CL (L/h/kg) 0.2092 ± 0.02107 ND ND ND BA (%) ND ND 90.74 ± 8.33 ND

表 5 牛における MBFX 投与後の薬物動態に係る各種パラメーター

LOQ: 0.002 μg/mL ND: データなし

(4)薬物動態試験(豚)

① 豚(静脈内、筋肉内投与)

豚(大ヨークシャー×ベルギーランドレース×ピエトレン交雑種、3 か月齢、体重 16 ~22 kg、雌雄各 3 頭)に MBFX を単回静脈内投与(2 mg/kg 体重)し、1 週間後に単回筋肉内投与(2、4、8 mg/kg 体重)を実施した。筋肉内投与は、ラテン方格配置 3 期クロスオーバー試験 13 として実施し、各投与期の間に 1 週間あけ、2 頭に各用量(2、4、8 mg/kg 体重)を投与した。

¹¹ 同一の被験対象に静脈内投与及び筋肉内投与を順番に実施し、各投与後に評価を行った。

¹² 各投与方法での投与の間は、最低6日間あけた。

¹³ 同一の被験対象に各投与量の投与順を3通り設定して投与し、各投与後に評価を行った。

さらに筋肉内投与から 2 週間後に 2 回目の単回静脈内投与(2 mg/kg 体重)を実施した。各投与経路における血漿中濃度を HPLC で測定した。また、4 mg/kg 筋肉内投与群のみバイオアッセイでも測定した。雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出された。

結果を表6に示した。

HPLC とバイオアッセイでの $T_{1/2}$ 、MRT、 C_{max} 、 T_{max} 、AUC の結果を t 検定で比較したところ、 $T_{1/2}$ 、MRT、 T_{max} に有意差は認められなかった。 C_{max} 、AUC は最大 5% レベルまで有意差を示し、HPLC 値の方が高値であった。(参照 11)

文 U MC(O) S MDIA X Y M S M S C M S T 性 / / /							
項目	静脈内投与			筋肉内投与			
	(2 mg/kg 体重)			(mg/kg 体重)			
投与条件	1回目	2回目	2 4 4				
測定条件	HPLC	HPLC	HPLC	HPLC	バイオアッセイ	HPLC	
動物数(頭)	6	6	2	2	2	2	
C_{max} (µg/mL)	ND	ND	1.430	2.961	2.615	5.074	
T _{max} (h)	ND	ND	0.80	0.69	0.69	0.75	
T _{1/2} (h)	8.24	7.77	9.48	10.30	10.15	10.60	
AUC (μg ·	11.688	12.302	13.449	29.091	24.940	58.582	
h/mL)							
MRT (h)	9.87	9.15	10.99	11.57	12.05	12.45	
Vd (L/kg)	2.11	1.95	ND	ND	ND	ND	
Vd _{ss} (L/kg)	1.77	1.64	ND	ND	ND	ND	
CLtot (L/h/kg)	0.172	0.164	ND	ND	ND	ND	
BA (%)	ND	ND	115.0	124.8	ND	125.4	

表 6 豚における MBFX 投与後の薬物動態に係る各種パラメーター

ND: データなし

② 豚 (筋肉内投与)

豚(ランドレース種、体重約 20 kg、雌雄各 8 頭)に 14 C 標識 MBFX を 5 日間筋肉 内投与(2 mg/kg 体重/日)し、雌雄各 2 頭から血漿、雌 2 頭、雄 1 頭から排泄物、4、48、96、192 時間後に雌雄各 2 頭から組織を採取し放射活性を測定した。雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出された。血漿、排泄物及び組織中濃度 14 を測定した。初回投与後の 14 C max は 14 C で 14 C に 14 C で 14

¹⁴ 血漿は雌雄各2頭、排泄物は雄1頭、雌2頭、組織中濃度は雌雄各8頭のデータ

泄率はそれぞれ $51\sim60\%$ 、 $27\sim29\%$ で、各投与の 24 時間以内に各投与量の $71\sim79\%$ が消失した。

最終投与後の組織中濃度を表7に示した。

最終投与 96 時間後以降の肝臓、腎臓以外の組織中濃度は LOD 付近又は LOD 未満となった。(参照 12)

表 7 豚への ¹⁴C 標識 MBFX 投与後の組織中濃度(μg-eq/g 又は μg-eq/mL)

	****		10-10-	10 1	
組織	最終投与後の時間(h)				
	4	48	96	192	
肝臓	1.27	0.09	0.05	0.03	
腎臓	2.55	0.07	0.02	0.01	
肺	1.20	0.03	LOD	LOD	
筋肉	1.12	0.02	LOD	LOD	
皮膚	0.65	0.09	LOD	LOD	
大網脂肪	0.48	0.03	LOD	LOD	
腎脂肪	0.73	0.02	LOD	LOD	
胆汁	4.77	0.10	LOD	LOD	
最終注射部位	1.04	0.03	LOD	LOD	
全血	0.69	0.01	LOD	LOD	
血漿	0.67	0.01	LOD	LOD	

LOD (肝臓、腎臓、肺、筋肉、胆汁、最終注射部位、全血: $0.004 \sim 0.005 \, \mu g$ eq/g; 皮膚、大網脂肪、腎脂肪: $0.01 \, \mu g$ eq/g)

③ 豚(筋肉内、静脈内投与)

豚(交雑種、4 か月齢、体重 $50\sim60\,\mathrm{kg}$ 、雌雄各 5 頭)に MBFX(16%溶液)をクロスオーバー15で単回筋肉内投与(4、8、 $16\,\mathrm{mg/kg}$ 体重/日)し、投与後 96 時間まで経時的に採血を実施した。さらに 4 週間の休薬期間の後、全頭に対して単回静脈内投与($8\,\mathrm{mg/kg}$ 体重/日)し、投与後 72 時間まで経時的に採血を実施した。血漿中の MBFX をHPLC 法で測定した。

結果を表8に示した。

筋肉内投与における吸収は速やかで、 $4\sim16$ mg/kg 体重/日の投与量の範囲において、 C_{max} や AUC_{inf} については用量相関性があったが、 T_{max} や $T_{1/2}$ については投与量による変化はなかった。8 mg/kg 体重/日を筋肉内投与した時の BA は 91.53%であった。

(参照 78、79)

¹⁵ 同一の被験対象に各投与量の投与を順番に実施し、各投与後に解析を行った。なお、各投与量での 投与の間は、14 日間休薬した。

表8 豚における MBFX 投与後の薬物動態に係る各種パラメーター

項目	筋肉内投与(mg/	静脈内投与		
投与条件等	4	8 16		(8 mg/kg 体重/日)
C ₀ (µg/mL)	ND	ND	ND	10.51 ± 1.475
C_{max} (µg/mL)	3.379 ± 0.8659	6.295 ± 1.805	15.49 ± 8.445	ND
T_{max} (h)	1.18 ± 0.46	0.95 ± 0.83	1.06 ± 0.91	ND
$T_{1/2}$ (h)	15.36 ± 5.32	15.14 ± 4.16	15.20 ± 2.01	19.26 ± 4.53
AUC _{inf} (μg・	56.85 ± 20.81	114.7 ± 18.69	228.1 ± 32.93	126.9 ± 22.11
h/mL)				
CL (L/h/kg)	ND	ND	ND	0.06480 ± 0.01117
MRT _{inf} (h)	21.71 ± 9.13	$20.67\!\pm\!4.51$	21.20 ± 2.46	24.94 ± 5.74

LOQ: $0.005 \,\mu \text{g/mL}$ ND: データなし

④ 豚 (筋肉内、静脈内投与)

豚(交雑種、3 か月齢、体重 $20\sim30\,\mathrm{kg}$ 、雌雄各 5 頭)に MBFX(16%溶液)をクロスオーバー 16 で単回筋肉内又は静脈投与($8\,\mathrm{mg/kg}$ 体重/日)し、投与後 $96\,$ 時間まで経時的に採血を実施した。血漿中の MBFX 濃度を HPLC 法で測定した。

結果を表9に示した。

筋肉内投与した時のBAは89.57%であった。(参照78、80)

表 9 豚における MBFX 投与後の薬物動態に係る各種パラメーター

項目	筋肉内投与	静脈内投与
C_0 (µg/mL)	ND	7.035 ± 1.508
C_{max} (µg/mL)	5.550 ± 2.879	ND
T_{max} (h)	0.93 ± 0.86	ND
$T_{1/2K01}$ (h)	11.28 ± 1.12	6.74 ± 3.52
$T_{1/2}$ (h)	13.23 ± 1.20	13.47 ± 1.37
AUC_{last} (µg • h/mL)	79.39 ± 4.333	88.05 ± 4.629
AUC _{inf} (μg·h/mL)	$79.89 \!\pm\! 4.476$	88.63 ± 4.541
CL (L/h/kg)	ND	0.09155 ± 0.003987
Vd _{ss} (L/kg)	ND	1.580 ± 0.2375
Vd (L/kg)	ND	1.784 ± 0.2457
BA (%)	89.57±7.88	

值:平均值±SD (n=10;静脈内投与、n=6)

 $LOQ: 0.005 \,\mu g/mL$

_

¹⁶ 同一の被験対象に筋肉内投与及び静脈内投与を順番に実施し、各投与後に解析を行った。なお、各投与量での投与の間は、14 日間休薬した。

(5) その他の薬物動態試験

① 各種動物における薬物動態試験(ラット、イヌ、子牛、牛、豚)

ラット、イヌ、反芻開始前の子牛、牛及び豚に ¹⁴C 標識 MBFX を投与(ラット:経口、イヌ:経口、子牛:経口、皮下、牛:皮下、豚:筋肉内)し、排泄物中あるいは組織中の未変化体、代謝物の存在比が検討された。雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出された。

ラット(経口投与、雌雄各 3 匹)では、尿中に未変化体が $70\sim81\%$ 、極性物質(主要なものは抱合体)が $16\sim25\%$ 、糞中には、未変化体が $80\sim96\%$ 、極性物質が $1\sim3\%$ 、脱メチル化体が 11%認められた。

イヌ(経口投与、雌雄各 1 頭)では、尿中に未変化体が $76\sim83\%$ 、N-オキシドが $11\sim14\%$ 、極性物質が $4\sim6\%$ 、糞中には未変化体が $85\sim97\%$ 、N-オキシドが 5%、極性物質が 5%認められた。

子牛の経口投与(雌 2 頭、雄 1 頭)においては、排泄物中の未変化体の割合は 89~96%であり、尿中に $2\sim3$ %のマルボフロキサシン N-オキシド(以下「N-オキシド」という。)及び $2\sim4$ %の極性物質、糞中に 3%の脱メチル化体が認められた。胆汁には、未変化体が $13\sim17$ %、極性物質(主要なものは抱合体)が $73\sim78$ %、N-オキシドが $3\sim4$ %認められた。肝臓及び腎臓には、未変化体が $86\sim93$ %及び極性物質が 5%認められた。皮下投与については、排泄物中の未変化体の割合は $90\sim95$ %であり、尿中に 3%の N-オキシド及び $2\sim4$ %の極性物質、糞中に 2%の脱メチル化体が認められた。胆汁には、未変化体が $17\sim18$ %、極性物質(主要なものは抱合体)が $68\sim74$ %、N-オキシドが $5\sim8$ %認められた。肝臓及び腎臓には、未変化体が $71\sim96$ %、極性物質が $4\sim9$ %17、非極性物質が $4\sim5$ %認められた。

牛(皮下投与、泌乳牛3頭)においては、排泄物中の未変化体の割合は97~99%、乳汁中に投与1日後に未変化体が80~93%認められた。

豚 (筋肉内、雌 2 頭、雄 1 頭) においては、尿中に未変化体が $83\sim88\%$ 、N-オキシドが $2\sim5\%$ 、極性物質が $5\sim10\%$ 、糞中には未変化体が $93\sim98\%$ 、N-オキシドが 4%認められた。胆汁には、未変化体が $21\sim38\%$ 認められた。肝臓及び腎臓には、未変化体が $54\sim97\%$ 、最終投与部位、腎脂肪、大網脂肪における未変化体の割合はそれぞれ $95\sim99\%$ 、 $95\sim96\%$ 、 $85\sim90\%$ 認められた。 (参照 14)

② 血漿たん白質結合試験(ヒト、牛、子牛、馬、豚、イヌ、ネコ)

in vitro でのヒト、牛、反芻開始前の子牛、馬、豚、イヌ、ネコの血漿における MBFX のたん白質結合試験が実施された。

ヒトは $0.06\sim5.1\,\mu\text{g/mL}$ 、牛、反芻開始前の子牛、馬、豚、ネコは $0.05\sim6.0\,\mu\text{g/mL}$ 、イヌは $0.008\sim12.7\,\mu\text{g/mL}$ の濃度範囲で測定された。MBFX のたん白質結合率は全濃度範囲で一定であり、ヒト5.7%、牛32.5%、反芻開始前の子牛26.2%、馬3.5%、豚3.7%、

¹⁶ プロテアーゼ分解した肝では4~11%

イヌ 9.1%、ネコ 7.3%であった。イヌにおいてたん白質結合率に対する pH の影響について試験したところ、pH7.0 から pH7.6 に増加することにより遊離型の割合が 94.8% から 83.3%に低下した。(参照 13)

2. 残留試験

(1) 残留試験(牛)

① 牛 (筋肉内投与)

牛(ホルスタイン種、雄、 $15\sim24$ 日齢、4 頭/時点)に MBFX を 5 日間筋肉内投与(2 mg/kg 体重/日)し、投与 12 時間、1、2、3 日後に組織を採取し、MBFX 濃度を測定した。

最終投与12時間後の組織中濃度は、腎臓、注射部位筋肉(半膜様筋)、肝臓、注射部位周辺筋肉、筋肉(背最長筋)、小腸、脂肪の順に高い値であった。投与3日後の腎臓の濃度は0.05 μg/g であった。脂肪は投与2日後、腎臓以外の組織では投与3日後でLOQ(0.02 μg/g)付近又は未満となった。(参照15)

② 牛 (筋肉内投与)

牛(ホルスタイン種、3週齢、雄10頭、雌2頭)に MBFX を5日間筋肉内投与(2mg/kg 体重/日)し、投与2日後に雄2頭、雌2頭から、4及び8日後にそれぞれ雄4頭から組織を採取し、MBFX 濃度を HPLC 法により測定した。

投与 2 日後の組織中濃度において雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出した。最終投与 2 日後の組織中濃度は、腎臓、肝臓、筋肉(後四分体)、注射部位(頚部筋肉)、脂肪の順で、脂肪では LOQ($0.025 \mu g/g$)未満であった。最終投与 4 日後では全組織中濃度は低下しており、脂肪では LOQ 未満であった。 8 日後には腎臓($0.028 \mu g/g$)以外の組織で LOQ 未満となった。(参照 16)

③ 牛(単回静脈内投与)

牛(ホルスタイン種、雌雄各 2 頭/時点、 対照群: 雌 1 頭)に MBFX を単回静脈内投与(10 mg/kg 体重/日)し、投与 1、2、3、4 及び 5 日後に各組織(筋肉(背最長筋)、脂肪、腎臓、肝臓及び小腸)を採取し、MBFX 濃度を HPLC/MS 法又は LC/MS 法により測定した。

MBFX 投与群のいずれの臓器・組織においても投与 1 日後に最高濃度 (腎臓では 0.21 $\mu g/g$) を示し、投与後日数の経過に伴い低下した。脂肪では投与 2 日後、筋肉では投与 3 日後、肝臓と小腸では投与 4 日後以降、全例が LOQ (0.005 $\mu g/g$) 未満となり、最も高濃度の残留がみられた腎臓では投与 5 日後で 4 例中 1 例が LOQ 相当、他は LOQ 未満となり、消失は速やかであった。対照群では、全試料が LOQ 未満であった。(参照 65)

④ 牛(単回静脈内投与)

牛(ホルスタイン種、雌雄各 2 頭/時点、 対照群: 雌 1 頭)に MBFX を単回静脈内投与(10 mg/kg 体重/日)し、投与 1、2、3、4 及び 5 日後に各種組織(筋肉(右側背最長筋)、脂肪、腎臓、肝臓及び小腸)を採取し、MBFX 濃度を HPLC/MS 法又は LC/MS

法により測定した。

MBFX 投与群では、いずれの臓器・組織においても投与 1 日後に最高濃度(腎臓では $0.68~\mu g/g$)を示し、経時的に低下した。脂肪では、投与 2 日後で全例が LOQ ($0.005~\mu g/g$) 未満となり、筋肉、肝臓及び小腸では、投与 4 日後から LOQ 未満の個体が確認 され、投与 5 日後には全例が LOQ 未満となった。最も高い残留濃度がみられた腎臓では、投与 5 日後には 4 例中 1 例が LOQ 未満、他の 3 例はほぼ LOQ 値(0.006 又は $0.007~\mu g/g$)であった。なお、対照群は、全試料が LOQ 未満であった。(参照 66)

⑤ 乳(筋肉内投与)

牛(ホルスタイン種、泌乳牛、4 頭)に MBFX を 5 日間筋肉内投与(2 mg/kg 体重/日)し、最終投与 72 時間後までの乳汁を採取し、MBFX 濃度を HPLC 法により測定した。

最終投与後 12 時間では全頭から検出されたが、24 時間には全例が LOQ $(0.02\,\mu\mathrm{g}/\mathrm{g})$ 未満となった。 (参照 17)

⑥ 乳 (筋肉内投与)

牛(モンベリアード種、泌乳牛、年齢 $2.5\sim6$ 歳、8 頭)に MBFX を 5 日間筋肉内投与(2 mg/kg 体重/日)した。最終投与日の夕方を 1 回目とし、以降朝夕 1 日 2 回のペースで 5 回まで乳汁を採取し、MBFX 濃度を HPLC 法により測定した。

初回の乳汁中濃度は $0.378\,\mu g/m L$ であり、2 回目には $0.033\,\mu g/m L$ 、5 回目には $0.003\,\mu g/m L$ となり、LOQ($0.001\,\mu g/m L$)付近となった。(参照 18)

⑦ 乳(単回静脈内投与)

牛(ホルスタイン種、4 頭)に MBFX(16%溶液)を単回静脈内投与(10 mg/kg 体重 /日)し、投与前並びに投与 12、24、36、48、60、72、84 及び 96 時間後に乳汁(4 頭 /時点)を採取し、MBFX 濃度を LC/MS 法により測定した。

MBFX は投与 12 時間後に最も高い濃度 $(0.49\pm0.19\,\mu\text{g/g})$ が検出され、その後減衰しながら投与 48 時間後まで全例で検出され、投与 72 時間後では全例が LOQ $(0.005\,\mu\text{g/g})$ 未満となった。なお、投与前試料は、全例が LOQ 未満であった。(参照 67)

⑧ 乳(単回静脈内投与)

牛(プリム・ホルスタイン種 14 頭、モンベリアード種 4 頭、交雑種 2 頭)に MBFX (16%溶液)を単回静脈内投与 (10 mg/kg 体重/日) し、投与前並びに投与 12、24、36、48、60、72、84、96 及び 108 時間後に乳汁(20 頭/時点)を採取し、MBFX 濃度をHPLC/蛍光検出法により測定した。

投与 12 時間後に最も高い濃度 $(1.293\pm0.3098\,\mu g/mL)$ が全例で確認され、その後低下しながら投与 60 時間後まで推移し、投与 96 時間後には全例で LOQ 未満 $(0.002\,\mu g/mL)$ となった。なお、投与前試料は、全例が LOQ 未満であった。(参照 68)

(2) 残留試験(豚)

① 豚 (筋肉内投与)

豚(大ヨークシャー系、 $2\sim3$ か月齢、雌雄各 8 頭)に MBFX を 5 日間筋肉内投与(2 mg/kg 体重/日)し、最終投与 12 時間、1、2、3 日後にそれぞれ雌雄各 2 頭から組織を採取し、MBFX 濃度を測定した。

雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出した。最終投与 12 時間後の組織中濃度は、腎臓、肝臓、注射部位筋肉、筋肉、注射部位周辺筋肉、小腸、脂肪の順であった。最終投与 2 日後では、腎臓 $0.05\,\mu\text{g/g}$ 、脂肪で LOQ $(0.02\,\mu\text{g/g})$ 未満となり、その他の組織では LOQ 付近又は未満であった。最終投与 3 日後では腎臓で LOQ 付近又は未満となった。(参照 19)

② 豚 (筋肉内投与)

豚(大ヨークシャー種×ピエトレン種×ランドレース種交雑種、5 週齢、雌雄各 8 頭)に MBFX を 5 日間筋肉内投与(2 mg/kg 体重/日)し、最終投与 2、3、4、6 日後にそれぞれ雌雄各 2 頭から組織を採取し、MBFX 濃度を HPLC 法により測定した。雌雄による差はほとんど認められず、各パラメーターは雌雄を混合して算出した。

最終投与 2 日後の組織中濃度は、腎臓で $0.070~\mu g/g$ であり、以下、注射部位の筋肉、肝臓、筋肉、脂肪の順であった。腎臓中濃度は、最終投与 6 日後で $0.011~\mu g/g$ であった。その他の組織では、最終投与 3 日後以降に $LOQ~(0.005~\mu g/g)$ 付近又は未満となり、筋肉では 4 日後以降、肝臓、脂肪では 6 日後に LOQ~未満となった。(参照 20)

③ 豚 (筋肉内投与)

豚(ランドレース種×大ヨークシャー種×デュロック種交雑種、体重 $58\sim64.6~kg$ 、雌雄各 10~頭、対照群:雌 1~頭)に MBFX(16%溶液)を単回筋肉内投与(8~mg/kg 体重/日)し、投与 2、5、7、9 及び 12~日後にそれぞれ雌雄各 2~頭から組織(筋肉、肝臓、腎臓、小腸、皮膚及び注射部位筋肉)を採取して、MBFX 濃度を HPLC 又は LC/MS 法により測定した。

皮膚以外の組織では投与 2 日後に全例で MBFX が検出され、その濃度は腎臓が最も高く $(0.15\pm0.07\,\mu\text{g/g})$ 、肝臓、筋肉、注射部位筋肉、小腸の順であった。皮膚では 4 例中 2 例で MBFX が検出された他は LOQ($0.005\,\mu\text{g/g}$)未満であった。また、投与 5 日後以降ではいずれの組織においても、全例で LOQ 未満となった。(参照 78、81)

④ 豚 (筋肉内投与)

豚(ランドレース種×大ヨークシャー種×デュロック種交雑種、体重 $66\sim75.3~{\rm kg}$ 、雌雄各 10 頭、対照群:雌 1 頭)に MBFX(16%溶液)を単回筋肉内投与($8~{\rm mg/kg}$ 体重/日)し、投与 2、5、7、9 及び 12 日後にそれぞれ雌雄各 2 頭から組織(筋肉、肝臓、腎臓、小腸、皮膚及び注射部位筋肉)を採取して、MBFX 濃度を HPLC 又は LC/MS 法により測定した。

いずれの組織も投与 2 日後において最高濃度を示し、その濃度は腎臓が最も高く $(0.55\pm 0.14\,\mu\text{g/g})$ 、肝臓、筋肉、注射部位筋肉、小腸、皮膚の順であった。投与 5 日後には大

きく減衰し、筋肉及び小腸の 4 例中 1 例で、注射部位筋肉の 4 例中 2 例で、皮膚の全例で LOQ (0.005 $\mu g/g$) 未満となった。肝臓では投与 7 日後から LOQ 未満の個体がみられた。投与 12 日後において、筋肉、肝臓、小腸及び注射部位筋肉の全例が LOQ 未満となり、腎臓においては 4 例中 2 例が LOQ 未満で、残りの 2 例も LOQ 付近となった。 (参照 78、82)

3. 遺伝毒性試験

MBFX の遺伝毒性試験結果を表 10 に示した。

表 10 MBFX の遺伝毒性試験結果

試験		対象	用量	結果	参照
in	復帰突然変異	Salmonella	プレート法:	陽性	参照
vitro	試験	typhimurium	3.16~500 ng/plate (±S9) ^a	(TA102)	33
		TA97 、 TA98 、	プレインキュベーション法:		
		TA100 、TA102 、	$1\sim$ 100 ng/plate (±S9) b		
		TA1535、TA1537、	プレート法(TA102 のみ):		
		TA1538	12.5~1,000 ng/plate (-S9) °		
	変異原性試験	Saccharomyces	$3.33\sim333~\mu g/mL~(\pm S9)~^d$	陽性	参照
	(遺伝子変換 試験・復帰突	cerevisiae D7			34
	然変異試験・				
	体細胞組換え				
	試験)	2. 1	* 00 000 / T / (0 0) 0 E	rA Lil.	→ m
	染色体異常試 験	ヒト末梢血リンパ 球	500~2,000 μg/mL (±S9); 2 時間 処理、処理後 22 時間培養。	陰性	参 照 37
	3/	~~	600~1,800 µg/mL (±S9);3 時間		0.
			処理、処理後 22 時間培養 e		
			125~500 μg/mL (-S9); 48 時間処理、処理後 24 時間培養		
	遺伝子突然変	チャイニーズハム	100~1,000 µg/mL (-S9); 16 時間	不明瞭 (-S9)	参照
	異試験	スター肺由来細胞	処理	g	35
		(V79)(<i>HPRT</i> 遺	500~1,500 μg/mL(-S9); 3 時間又	陽性 (+S9)	
		伝子)	は5時間処理 f	i	
			200~2,400 μg/mL (+S9);5 時間処		
			理h		
	不定期 DNA	ラット初代培養肝	100~1,200 μg/mL;18 時間処理 ^j	陰性	参照
	合成試験	細胞			36
in	不定期 DNA	雄ラット	800、2,000 mg/kg 体重	陰性	参照
vivo	合成試験		単回強制経口投与 ; 投与 2~4 時間		38
			後又は12~14 時間後に肝細胞採取		

小核試験	雌雄マウス(骨髄細	500、1,000 mg/kg 体重	陰性	参照
	胞)	単回強制経口投与;500 mg/kg 体重		39
		は投与 24 時間後に、1,000 mg/kg 体		
		重は投与 24、48、72 時間後に骨髄		
		標本作製		

±S9:活性代謝系存在下及び非存在下

a:菌株により異なるが、100 ng/plate 以上で菌株に対する生育阻害

b: 100 ng/plate で菌株に対する生育阻害

c: 異なる 3 ロットの試験、100 又は 400 ng/plate 以上で菌株に対する生育阻害

d:333 μg/mL で毒性影響

e:-S9で1,800 µg/mL 以上、+S9で250 µg/mL 以上で細胞毒性

f: 1,000 μg/mL(16 時間処理)で細胞生存率 41~64%、1,500 μg/mL(3 時間処理)では 85%、 1,500 μg/mL(5 時間処理)では 59%

g: HPRT 突然変異の増加が認められるものの、用量相関性、再現性なし

h: 1,600 µg/mL (5 時間処理) で細胞生存率 70~97%、2,400 µg/mL (5 時間処理) で 33%

i: 1,600 μg/mL で陽性

j: 500 μg/mL 以上で細胞の形態変化。1,200 μg/mL は形態が正常な細胞を十分に得るための 最高濃度。

上記のように MBFX について、in vitro では細菌を用いる復帰突然変異試験、酵母を用いる変異原性試験及び培養細胞を用いる遺伝子突然変異試験で陽性であった。一方で、in vitro の染色体異常試験及び不定期 DNA 合成試験並びに in vivo の最大耐量まで投与した肝不定期 DNA 合成試験及び骨髄小核試験において陰性であった。復帰突然変異試験では TA102 株でのみ陽性結果が認められた。同株は他のキノロン系抗菌薬においても陽性結果を示すことが報告されている。TA102 株は活性酸素種に感受性を示すとされ、MBFX 等の強い抗菌活性によって細菌がストレスを受け、産生誘導された活性酸素種により陽性を示したと考えられる(参照 69)。また、MBFX はトポイソメラーゼ II に作用し、DNA 複製を阻害すると考えられている。キノロン系抗菌薬はその作用機序から高濃度で哺乳動物細胞のトポイソメラーゼ II を阻害することから、MBFX による酵母や哺乳類培養細胞を用いた遺伝子突然変異試験での陽性結果は、直接的な DNA との反応ではなく酵素の阻害に起因するもので、活性酸素種の産生も含め、閾値を有すると考えられる。したがって、MBFX の作用機序及びトポイソメラーゼ II に対する感受性が哺乳類細胞では細菌よりも極めて低いことを考慮すると、MBFX が生体にとって問題となる遺伝毒性を示す可能性は低いと考えられる。

以上の結果から、食品安全委員会は、MBFX には生体にとって問題となる遺伝毒性はないと考えた。

4. 急性毒性試験

各動物種における急性毒性試験の結果を表 11 に示した。(参照 21~24)

動物種	投与物質	性別(系統)	投与経路	LD ₅₀ (mg/kg 体重)
		雄 (ICR)	% ∀ □	1,781
マウス		雌 (ICR)	経口	1,822
1 497		雄 (ICR)	皮下	1,121
		雌 (ICR)	及下	972
	MBFX	雄 (SD)	経口	3,772
		雌 (SD)		2,720
		雄 (SD)		2,094
ラット		雌 (SD)	皮下	1,837
		雌 (SD)	筋肉内	1,000~2,000
		雌 (SD)	腹腔内	500~1,000

表 11 各動物種における MBFX の LD₅₀

5. 亜急性毒性試験

(1) 4週間亜急性毒性試験①(ラット、MBFX、経口投与)

ラット (SD 系、5 週齢、雄 5 匹/群) に MBFX を 4 週間経口投与 (0、100、500、1,000 mg/kg 体重/日) し、亜急性毒性試験が実施された。

一般状態、体重及び摂餌量の検査、血液学的及び血液生化学的検査、尿検査、解剖及び病理組織学的検査並びに眼検査が実施された。

毒性所見を表12に示した。

試験期間を通し死亡例はみられなかった。また、眼検査 ¹⁸、血液学的検査及び血液生化学的検査では、異常は認められなかった。(参考 25、55)

食品安全委員会は、500 mg/kg 体重/日以上でみられた一般状態及び腎の相対重量への影響から、本試験における NOAEL を 100 mg/kg 体重/日と判断した。なお、全ての投与群で盲腸重量の増加及び盲腸の拡張が認められたが、この盲腸の所見は抗菌活性に由来する腸内細菌叢の変動の二次的影響と考えた。

投与量(mg/kg 体重)	主要な毒性所見(雌雄とも)				
1,000	体重増加量の低値、摂餌量の低値、尿量の減少、尿 pH の低値、尿比重				
	の高値、臓器相対重量の高値(左甲状腺、副腎、精巣)、大腿骨遠位端の				
	膝関節軟骨表面に水疱、陥凹部窩又は白色化(2/5 例)、				
	関節軟骨の嚢胞状病変(2/5 例)及び剥離(1/5 例)、前立腺上皮の萎縮				
	(1/5 例)				
≥500	一過性の流涎、腎相対重量の高値				
100	毒性所見なし				

表 12 ラットの 4 週間亜急性毒性試験における毒性所見

-

¹⁸ 眼球、眼表面、眼底網膜電(位)図

(2) 4週間亜急性毒性試験②(ラット、MBFX、経口投与)

ラット (SD 系、5 週齢、雌雄各 5 匹/群) に MBFX を 4 週間経口投与 (0、8、40、200、1,000 mg/kg 体重/日) し、亜急性毒性試験が実施された。

一般状態、体重及び摂餌量の検査、血液学的及び血液生化学的検査、尿検査、病理解剖学的検査、眼検査並びに神経行動毒性検査 ¹⁹が実施されたが、病理組織学的検査は実施されなかった。

毒性所見を表13に示した。

試験期間を通し、いずれの投与群においても死亡例は認められず、眼検査及び神経行動毒性検査では異常はみられなかった。(参考26、55)

食品安全委員会は、1,000 mg/kg 体重/日でみられた一般状態、病理解剖所見並びに血液学的及び血液生化学的検査値から、本試験における NOAEL を 200 mg/kg 体重/日と判断した。なお、40 mg/kg 体重/日以上投与群で盲腸重量の増加及び盲腸の拡張が認められたが、この盲腸の所見は抗菌活性に由来する腸内細菌叢の変動の二次的影響と考えた。

投与量(mg/kg	主要な毒性所見				
体重)	雄	雌			
1,000	一過性の流涎、体重増加の抑制傾向及	一過性の流涎、摂餌量の高値、尿沈査中			
	び投与 10 日目で体重低値、尿沈査中の	の結晶析出(3/5 例)、尿タンパク質高値、			
	結晶析出(5/5 例)、尿タンパク質高値傾	好中球比低値及びリンパ球比高値、			
	向、プロトロンビン時間短縮、	ALT の高値、Tcho の高値傾向、大腿骨			
	ALT、血糖及び Tcho の高値、	遠位端軟骨の片側性・両側性のびらん			
	総ビリルビン、K+及び Cl ⁻ の低値、	(各 1/5 例) 及び片側性水疱様病変 (1/5			
	大腿骨遠位端軟骨の片側性びらん(1/5	例)			
	例)				
≦200	毒性所見なし	毒性所見なし			

表 13 ラットの 4 週間亜急性毒性試験における毒性所見

(3) 13 週間亜急性毒性試験 (ラット、MBFX、混餌投与)

ラット (Wistar 系、日齢不明、体重(雄: 160 g、雌: 130 g)、雌雄各 $26 \ \text{匹/群}$)に MBFX を $13 \ \text{週間混餌投与}$ (0、4、50、 $600 \ \text{mg/kg}$ 体重/日)して亜急性毒性試験を実施し、その後、雌雄各 $6 \ \text{匹/群を用いて}$ $6 \ \text{週間の回復期が設けられた}$ 。

一般状態、体重及び摂餌量の検査、血液学的及び血液生化学的検査、尿検査並びに病理解剖及び病理組織学的検査が実施された。

毒性所見を表 14 に示した。(参考 27、55)

食品安全委員会は、50 mg/kg 体重/日以上でみられた血液生化学検査値、臓器重量への影響及び病理解剖所見から、本試験における NOAEL を 4 mg/kg 体重/日と判断した。なお、50 mg/kg 体重/日以上投与群の雌雄で盲腸の相対重量の増加及び盲腸の拡張が認

¹⁹ 詳細な臨床観察、感覚反射機能検査、握力、着地開脚幅、自発運動量を測定

められたが、この盲腸の所見は抗菌活性に由来する腸内細菌叢の変動の二次的影響と考えた。

投与量	主要な毒性	所見
(mg/kg 体重)	雄	雌
600	死亡率増加 (尿路閉塞)、軽度の外部生殖	体重増加量の低値、尿ケトン体の
	器の汚れ・被毛失、体重増加量の低値、飲	高値、Tcho、ALT 及びクレアチニ
	水量高値、Tcho 及び ALT の高値、膝の	ンの高値、膝の関節軟骨異常(変
	関節軟骨異常(変色、粗面化、びらん)、	色、粗面化、びらん)、関節軟骨剥
	精巣上体の結節(2/20 例)、臓器相対重量	離、増殖した軟骨細胞のクラスタ
	の高値 (腎臓、胸腺、副腎)、精巣上体相	一形成、軟骨融解
	対重量の低値、腎尿細管上皮のヒアリン	
	小滴 20(回復期後には消失)(4/20 例)、	
	軽度の精細管萎縮(5/20 例)、精子減少	
	(8/20 例)、未成熟精子 (11/20 例) 及び	
	精子肉芽腫(2/20 例)、	
	関節軟骨剥離、増殖した軟骨細胞のクラ	
	スター形成、軟骨融解	
≥50	血清グロブリンの低値、臓器相対重量の	血清グロブリンの低値、膝関節軟
	高値(肝臓、下垂体)、副性腺相対重量の	骨粗面化(1/26 例)
	低値、膝関節軟骨粗面化(1/26 例)	
4	毒性所見なし	毒性所見なし

表 14 ラットを用いた 13 週間亜急性毒性試験における毒性所見

(4) 13 週間亜急性毒性試験(1) (イヌ、MBFX、経口投与)

イヌ(ビーグル種、12 か月齢、体重(雌:8 kg、雄:10 kg)、雌雄各 4 頭/群)に MBFX(ゼラチンカプセル入り)を 13 週間経口投与(0、1、4、40 mg/kg 体重/日)する亜急性毒性試験が実施された。

一般状態、体重及び摂餌量の検査、血液学的及び血液生化学的検査、尿検査、病理解 剖及び病理組織学的検査、眼検査、心電図検査²¹並びに臨床神経学的検査²²が実施され た。

毒性所見を表 15 に示した。

試験期間を通し死亡例はなく、摂餌量、眼検査(検眼鏡)、心電図、臨床神経学的検査及び血液学的検査に異常は認められなかった。(参考 28、55)

食品安全委員会は、40 mg/kg 体重/日でみられた一般状態、血液学的及び血液生化学

²⁰ 硝子滴ともいう。

²¹ 試験開始 6 週目に対照群及び高用量群について測定

²² 意識、行動、姿勢、歩行、協調、固有受容(身体の位置、動き等に関する情報をもたらす感覚受容器によって支援される、協調的な神経学的及び生理学的反応)、痛みに対する感受性、脊髄及び脳神経反射を検査

的検査値並びに病理解剖所見への影響から、本試験における NOAEL を 4 mg/kg 体重/日と判断した。なお、尿検査では、40 mg/kg 体重/日投与群の雄及び全投与群の雌で尿沈渣中の無定形塩の高値傾向、全投与群の雄で三リン酸塩の高値傾向、全投与群の雌で円形上皮細胞の高値傾向がみられたが、薬剤の尿中排泄を反映したもので、毒性影響ではないと考えた。

投与量	主要な毒性所見				
(mg/kg 体重)	雄	雌			
40	嘔吐、流涎、運動活性の低下、体重	嘔吐、流涎、運動活性の低下a、体重増			
	増加量の低値、血中アルブミンの軽	加量の低値、血中アルブミンの軽度高			
	度高値、血中グロブリンの低値、A/G	値、血中グロブリン値の低値、A/G 比の			
	比の高値、赤血球増加傾向、臓器相	高値、尿 pH の低値、臓器相対重量の			
	対重量の高値(精巣上体、前立腺、	高値(腎臓、卵巣、脾臓)、膀胱の赤変			
	脾臓)、精細管の軽度萎縮(1/4 例)、	色 (3/4 例)、関節軟骨びらん (3/4 例)、			
	精巣上体の精子肉芽腫(1/4 例)、関	関節軟骨の剥離及び軟骨細胞増殖によ			
	節軟骨のびらん (2/4 例)、関節軟骨	るクラスター形成(1/4 例)			
	の剥離及び軟骨細胞増殖によるクラ				
	スター形成(1/4 例)				
≦4	毒性所見なし	毒性所見なし			

表 15 イヌを用いた 13 週間亜急性毒性試験における毒性所見

(5) 13 週間亜急性毒性試験②(イヌ、MBFX、経口投与)

イヌ(ビーグル種、 $3\sim4$ か月齢、体重(雌: $4.9\,\mathrm{kg}$ 、雄: $5.4\,\mathrm{kg}$)、雌雄各 2 頭/群)に MBFX(錠剤)を 13 週間経口投与(0、2、4、 $6\,\mathrm{mg/kg}$ 体重/日)する亜急性毒性試験が 実施された。

試験期間を通し死亡例はなく、いずれの投与群においても一般的な臨床症状観察、体重変化、摂餌量、飲水量、直腸体温、心電図、眼検査(視覚反射)、血液学的検査、血液生化学的検査、尿検査、臓器重量、剖検及び病理組織学的検査において異常は認められなかった。関節軟骨についても異常は認められなかった。(参考 29)

食品安全委員会は、本試験における NOAEL を 6 mg/kg 体重/日と判断した。

6. 慢性毒性試験及び発がん性試験

MBFX を被験物質とした慢性毒性試験及び発がん性試験は実施されていない。

フルオロキノロン系の抗菌性物質であるエンロフロキサシンやジフロキサシンのげっ歯類を用いた発がん性試験はいずれも陰性である。また、MBFXと構造が極めて類似したレボフロキサシンを雄ラットに投与した発がんプロモーション試験では、プロモーション作用は認められず、比較的長いヒト臨床における使用歴において、腫瘍の発生といった副作用は知られていない。(参照 43)

a: 40 mg/kg 体重/日を投与した雌1頭で、嘔吐、流涎、運動活性の低下の影響から、途中4日間投与を中止

7. 生殖発生毒性試験

(1)2世代繁殖毒性試験(ラット、混餌投与)

ラット (CD 系、6 週齢、雌雄各 28 匹/群) に MBFX を混餌投与 (0、10、70、500 mg/kg 体重/日) する 2 世代繁殖毒性試験が実施された。

被験物質の投与は P 世代では交配 (交配 1) 開始 10 週前から、 F_1 児離乳 (生後 21 日)までの期間 (計 $19\sim21$ 週間)行った。ただし、対照群と 500 mg 投与群の雄についてはその後も試験を継続し、生殖能に対する影響を確認するため新たに設けた無処置雌との再交配 (交配 2)を行った後、投与開始 27 週目からは被験物質の投与を中止して 500 mg 投与群の雄にも基礎飼料のみを 10 週間 (回復期間)与えた後に、別の無処置雌とさらに交配 (交配 3) した。交配 2、3 で得られた F_1 児は生後 6 日まで哺育した。交配 1 で得られた 1 児の中から離乳後雌雄各 1 四月 に、被験物質の投与を交配開始前 1 3週間及び交配後 1 2 児離乳 (生後 1 1 日)までの期間行った。

試験期間中、P、 F_1 親動物に投与に関連した死亡例はみられなかった。一般的な臨床症状観察では、500~mg 投与群の P、 F_1 雌雄で水様便、軟便、尾の汚れ、泌尿生殖器部分の湿潤/汚染がみられた。500~mg 投与群ではその他に P 及び F_1 雌雄で体重増加量の低値、P 雄及び F_1 雌雄での摂餌量の低値並びに P 雌雄及び F_1 雌雄での飲水量の高値が認められた。

親動物の生殖能に関しては、発情周期、交尾率、同居から交尾までの所要日数及び出産率に投与の影響はみられなかったが、500 mg 投与群で P (交配 1) 及び F_1 雌に着床数及び産児数の減少並びに F_1 雌に受胎率の低下及び子宮内胚死亡率の増加が認められた。 F_1 親動物では雌雄の性成熟遅延と雌の妊娠期間延長も認められた。P 世代の交配 2 において、交尾率に影響がみられなかったにもかかわらず、500 mg 投与群の雄と交配した無処置雌に妊娠が全く成立せず、同投与群雄の受精能障害が確認された。この雄の受精能に対する影響は、10 週間の回復期間を設けることにより完全に回復した(交配 3)。

哺育期間中の児動物に対しては、500 mg 投与群で F_1 哺育児死亡率の増加並びに F_1 及び F_2 哺育児体重の低値並びに 70 mg 以上の投与群で腹当たりの F_2 哺育児の総重量の低値がみられた。

臓器重量では、被験物質投与に関連した変化として、500 mg 投与群の F₁ 雄で精巣、 精巣上体及び精嚢/前立腺重量の低値が認められた。剖検では、投与に関連した異常は認 められなかった。(参照 30、55)

以上の結果から、食品安全委員会は、本試験における NOAEL は親動物で 70 mg/kg 体重/日、児動物で 10 mg/kg 体重/日と判断した。

(2) 発生毒性試験 (ラット、経口投与)

ラット (Fu-アルビノ系、雌 36 匹/群) に MBFX を妊娠 $6\sim15$ 日の間、経口投与 (0、 10、85、700 mg/kg 体重/日) する発生毒性試験が実施された。妊娠 20 日に各群 $20\sim26$ 匹を帝王切開、残りは分娩させて児動物が離乳するまで哺育した。

被験物質投与に関連する母動物の死亡例はなかったが、一般的な臨床症状観察では、 85 mg 以上投与群の母動物に膣からの出血性分泌物がみられ、これらの投与群では体重 増加量の低値もみられた。

帝王切開群では、黄体数、着床前胚死亡率及び着床数に投与の影響は認められなかったが、700 mg 投与群で胚吸収率の高値、生存胎児数及び胎児体重の低値が認められた。 胎児の外表、内臓及び骨格奇形の発生頻度に投与の影響は認められなかった。700 mg 投与群では胸椎椎体二分、第 13 肋骨の欠失/痕跡化などの骨格変異増加及び骨化遅延がみられた。

哺育群では、妊娠期間や出産率に投与の影響は認められなかったが、700 mg 投与群で産児数の低下、哺育児死亡率の増加、離乳率の低下及び哺育児体重の低値がみられた。 また催奇形性は認められなかった。(参照 31、55)

以上の結果から、食品安全委員会は、本試験における NOAEL は母動物で 10 mg/kg 体重/日、胎児で 85 mg/kg 体重/日と判断した。また、催奇形性は認められなかった。

(3) 発生毒性試験(ウサギ、経口投与)

ウサギ (Swiss Hare、20 匹/群) の妊娠 $6\sim18$ 日に MBFX を経口投与(0、10、30、80 mg/kg 体重/日)し、発生毒性試験が実施された。妊娠 29 日に帝王切開した。

被験物質投与による母動物の死亡は認められなかった。一般的な臨床症状観察では、30 mg 以上投与群で排糞量減少や排便がない状態がみられ、80 mg 投与群では流産がみられた。妊娠期間中の体重増加量は30 mg 以上投与群で低下した。

黄体数、着床数、同腹児数、胚吸収率、胎児性比、胎児体重、胎児頭殿長及び産児の 24 時間生存率に投与の影響は認められなかった。

胎児の外表、内臓及び骨格異常の発生頻度に投与の影響は認められなかった。80 mg 投与群では胸骨分節の未骨化が増加した。

また催奇形性は認められなかった。 (参照32、55)

以上の結果から、食品安全委員会は、本試験における NOAEL は母動物で 10 mg/kg 体重/日、胎児で 30 mg/kg 体重/日と判断した。また、催奇形性は認められなかった。

8. その他の毒性試験

(1) 光毒性

1990 年代後半からフルオロキノロン剤について光毒性や光遺伝毒性があることが報告されている。そのメカニズムについては、光照射によって活性化された分子の DNA との直接作用、光照射によって生じた活性酸素やフリーラジカルの生成による DNA への二次的傷害が提案されている。フルオロキノロン剤の光毒性や光遺伝毒性の程度については、構造的に 6 位及び 8 位にハロゲン置換基を有するフルオロキノロン剤が明らかに強い光毒性を示すこと、8 位にメトキシ基を有する場合、光毒性は著しく減弱すること(参照 48)、1 位の置換基の種類によっては光毒性が減弱することが報告されている。(参照 49、50)

MBFX は 1 位と 8 位で環構造を有し、構造的に光毒性や光遺伝毒性が弱い部類に分類されるオフロキサシンに類似している。オフロキサシンあるいはその光学異性体であ

るレボフロキサシンについて、*in vivo* 光遺伝毒性については報告がなく、*in vitro* では チャイニーズハムスター肺由来 V79 培養細胞を用いたコメットアッセイ(参照 51)及 び小核試験(参照 52)で UV 照射 ²³による光遺伝毒性の増強が認められたが、他のフルオロキノロン剤との比較では相対的に弱いものであった。また、UV 照射後のマウスの 耳介炎症を指標とした試験(参照 48)においては、光毒性は比較的弱いこと、レボフロキサシンのヒトボランティアの UV 照射後皮膚紅斑を指標とした試験においては、1日3回(100 mg/回)の投与で影響は認められなかったこと(参照 53)、市販後調査において、強い光毒性が認められた例は 1/1,800,000 であったことが報告されている(参照 54)。

(2) 微生物学的影響に関する試験

① 臨床分離菌に対する最小発育阻止濃度 (MIC)

ヒト臨床分離株等に対する MBFX の 10^5 CFU/spot における MIC が報告されている。 調査された菌種のうち、最も低い MIC50 が報告されているのは *Escherichia coli* の $0.03~\mu g/m L$ であった。(参照 41)

菌名	株数	最小阻止濃度(μg/mL)	
图名 	1木致	MIC ₅₀	範囲
偏性嫌気性菌			
Bacteroides fragilis 群	51	2	0.5-≧32
Fusobacterium spp.	10	0.5	0.12-8
Peptostreptococcus spp.	18	0.5	0.06-2
Eubacterium spp.	11	0.25	0.06-4
Clostridium spp.	10	0.5	0.25-4
Bifidobacterium spp.	10	1	0.5-1
通性嫌気性菌			
Escherichia coli	10	0.03	0.03-16
Proteus spp.a	13	0.06	0.01-16
Lactobacillus spp.	13	16	1-≧32
Enterococcus spp.	10	2	1-≧32

表 16 ヒト臨床分離株等に対する MBFX の MIC 値

② 胃腸環境を模した状況下での最小発育阻止濃度 (MIC)

MBFX を肉又は牛乳に加え、胃の環境を模した状況下(pH 約 3+ペプシン)で 1 時間培養後、腸の環境を模した状況下(pH 約 7+パンクレアチン+システイン+胆汁酸)で 3 時間培養した。この溶液にヒト臨床分離株を加え、35℃で 18 時間培養したときのMIC を測定し、従来の寒天法 MIC と比較した。

a: Morganella morganii 属を含む。

²³ フルオロキノロンは、基本的に 290~340 nm の波長の UV を吸収する。 両試験の UV 照射量は 1.25~37.5 kJ/m²

MBFX の MIC は、胃腸環境を模した状況下で試験したとき、従来の寒天法 MIC と比べて高くなった。胃腸環境を模した状況下で最も感受性の高かったのは *Escherichia coli* (幾何学平均 MIC: $0.536~\mu g/mL$) であった。(参照 42)

表 17 in vitro の胃腸環境を模した状況下における臨床分離株等に対する MBFX の MIC 値

菌名		幾何学平均最小阻止濃度(μg/mL)			
图名 图	株数	寒天 MIC	肉 MIC	牛乳 MICa	
偏性嫌気性菌					
Bacteroides fragilis	3	0.630	4.00	_	
Fusobacterium spp.	3	0.794	2.52	_	
Eubacterium spp.	5	0.379	1.74	_	
Peptostreptococcus spp.	4	0.354	1.68	_	
Clostridium spp.	3	1.587	8.00	_	
Bifidobacterium spp.	3	0.397	2.52	_	
通性嫌気性菌					
Escherichia coli	10	0.056	1.0	0.536	
Proteus spp.	7	0.120	0.74	_	
Enterococcus spp.	3	0.122	0.79	_	

a: 牛乳については溶液に Escherichia coli のみ加えて試験を行った。

9. 一般薬理試験

MBFX の中枢神経系への影響を検討するため各試験を実施したが、いずれの試験においても悪影響はみられなかった。

表 18 MBFX の一般薬理試験結果

試験項目	動物種	投与経路	MBFX 用量	試験成績	参照
一般症状	マウス	経口	30, 100, 300,	300 mg/kg 以上:自発運動	参照
(Irwin Ø			500、1,000 mg/kg	の低下	40
多次元観察			(フェンブフェン a	1,000 mg/kg:痙攣	
法 ²⁴)			100 mg/kg を前投与	CD50(50%間代性痙攣誘発	
			後30分後に投与)	量): 674 mg/kg	
自発運動	ラット	経口b	8, 40, 200, 1,000	<u> </u> 異常なし [。]	参照
			mg/kg 体重		26
脳波	ネコ	経口	フェンブフェン 10	異常なし ^d	参照
(EEG)			mg/kg を前投与後		40
			20 分後に、3 mg/kg		
			を 15 分間隔で投与		

a: 非ステロイド性抗炎症薬のビフェニル酢酸のプロドラッグ。フルオロキノロン剤との併用で痙攣を誘発する。

b:28 日間亜急性試験と併用 c:投与開始23 日後に測定

d: 累積投与量は51 mg/kg に到達

10. ヒトにおける知見

MBFX のヒト臨床における使用歴はないが、同系統に属するキノロン類あるいはフルオロキノロン類の抗菌性物質は広くヒト臨床において利用されている。

臨床で認められた副作用で最も一般的なものは消化器系への影響で、悪心、嘔吐等であるが、下痢や抗菌性物質に起因する大腸炎は稀であるとされている。その他、中枢神経系に関連するものとして頭痛やめまい、消炎薬との併用で痙攣、アレルギー反応に関連するものとして発疹があるとされる。この系統の薬剤による副作用に特徴的なものとして、特に未成熟な動物における関節痛や関節膨張等の関節障害、一部では光毒性に由来する光過敏症がある。(参照 43)

_

²⁴ 被験物質をマウスに各用量投与し、発現した行動変化、神経症状、自律神経症状、中毒症状等を多 角的に観察・分析し、定められた手法で系統的に記入、解析する方法

Ⅲ. 国際機関等における評価

1. 欧州における評価

EMEA では、1996 年に牛及び豚の肺炎、乳房炎及び子宮炎の治療薬として、 $2 \, \text{mg/kg}$ 体重/日を $5 \, \text{日間投与するフルオロキノロン剤について評価している。イヌを用いた <math>13 \, \text{週間亜急性毒性試験の NOEL}$ から、毒性学的 ADI($0 \sim 0.04 \, \text{mg/kg}$ 体重)を、ヒト腸内細菌の MIC 値から CVMP の計算式により、微生物学的 ADI($4.5 \, \mu \text{g/kg}$ 体重($270 \, \mu \text{g/kg}$ ヒト))を算出している。ADI として微生物学的 ADI の値を採用している。

また、牛及び豚の同剤の MRL は、脂肪では $50\,\mu\text{g/kg}$ 、牛乳では $75\,\mu\text{g/kg}$ 、筋肉、肝臓及び腎臓では $150\,\mu\text{g/kg}$ としている。(参照 62、63、70)

なお EMA は、2006 年に「家畜に対するフルオロキノロン系抗菌性物質の使用が、動物の病原体及び食品由来人獣共通感染症の病原体の薬剤耐性を選択し、人及び動物におけるこれらの細菌由来の感染症治療に悪影響を及ぼす可能性がある」として、今後ともフルオロキノロン系抗菌性物質の使用状況(量)について、動物種ごとの調査活動を提案している。(参照 71、72)

2. 米国における評価

FDAでは、MBFXの錠剤についてイヌ及びネコへの適用が認められているが、家畜への投与は認められていない。なお、他のフルオロキノロン系抗菌性物質の家きんへの適用が認められていたものの、当該承認は2005年に薬剤耐性菌対策の観点から取り消された。(参照73~75)

IV. 食品健康影響評価

マルボフロキサシン (MBFX) は、フルオロキノロン系抗菌性物質であり、細菌の DNA 複製に必要な酵素であるトポイソメラーゼ II (DNA ジャイレース) 又はトポイソメラーゼIVに作用し、DNA 複製を阻害することから殺菌作用を有すると考えられている。

牛及び牛の乳における残留試験では、 $10\,\mathrm{mg/kg}$ 体重/日の MBFX を投与した結果、時間の経過とともに、組織又は乳汁中濃度は漸減し、最も組織中濃度の高かった腎臓でも、投与 $5\,\mathrm{H}$ 後には LOQ あるいは LOQ 未満となった。

豚における残留試験では、8 mg/kg 体重/日の MBFX を単回筋肉内投与した結果、組織中濃度は腎臓で最も高値であり、投与 2 日後に最高値を示した。多くの組織では投与 7 日後には著しく減少し、腎臓では投与 12 日後に半数例で LOQ 未満となった。

遺伝毒性試験については、in vitro の細菌、酵母及び哺乳類細胞を用いた試験の一部で陽性であったが、それ以外の in vitro 及び全ての in vivo の試験結果が陰性であったこと並びに MBFX の作用機序を踏まえ、MBFX には生体にとって問題となる遺伝毒性はないと考えた。

MBFX を被験物質とした慢性毒性及び発がん性試験は実施されていないが、フルオロキノロン系の抗菌性物質であるエンロフロキサシンやジフロキサシンのげっ歯類を用いた発がん性試験はいずれも陰性であった。また、MBFX と構造が極めて類似したレボフロキサシンを雄ラットに投与した発がんプロモーション試験では、プロモーション作用は認められず、比較的長いヒト臨床使用歴において、腫瘍の発生といった副作用は知られていない。一般的にフルオロキノロン系抗菌性物質に発がん性は認められておらず、MBFX には生体にとって問題となる遺伝毒性はないと考えられることから、ADI の設定は可能であると判断した。

ラット及びイヌを用いた亜急性毒性試験において、一般状態、血液学的及び血液生化学的検査値、関節軟骨の異常等がみられ、最小の NOAEL は 4 mg/kg 体重/日であった。

ラットを用いた 2 世代繁殖毒性試験において、高用量(500 mg/kg 体重)投与群の雄に 受精能障害が認められるとともに、雌では受胎率の低下、妊娠動物の着床数及び産児数の 低下並びに子宮内胚死亡率の増加が認められたため、NOAEL は親動物で 70 mg/kg 体重/日、児動物で 10 mg/kg 体重/日とした。雄の受精能は休薬により回復した。

また、ラット及びウサギにおける発生毒性試験では、催奇形性は認められなかった。

フルオロキノロン剤の光毒性について多くの報告がなされているが、MBFX はその構造から光毒性や光遺伝毒性が弱い部類に分類されており、また、適切に管理される限り、通常食品中の MBFX の残留はごく微量であることから、食品を介して生体にとって問題となる光遺伝毒性が生じる可能性は無視できる程度と考えられる。

1. 毒性学的 ADI について

毒性学的影響について、各種毒性試験において毒性影響が認められた試験の最小のNOAELは、ラット又はイヌを用いた13週間亜急性毒性試験における4 mg/kg 体重/日であった。毒性学的ADIは、当該NOAEL(4 mg/kg 体重/日)に安全係数として、種差10、個体差10に慢性毒性試験及び発がん性データを欠くことに関して追加の10の安全係数

1,000 を考慮し、0.004 mg/kg 体重/日と設定することが適切であると考えられた。

2. 微生物学的 ADI について

微生物学的影響について、現時点で利用可能な知見は *in vitro* の MIC₅₀ のみであった。この結果から、MIC_{calc} に $0.260\,\mu g/mL^{25}$ 、結腸内容物に $500\,mL/$ 日、経口摂取されたうち細菌が暴露される割合に $30\%^{26}$ 、ヒト体重に $60\,kg$ を適用し、VICH の計算式を用いて微生物学的 ADI を算出した 27 。

ADI (mg/kg 体重/日) =
$$\frac{0.000260 \text{ (mg/mL)} \times 500 \text{ (mL/日)}}{0.3 \times 60 \text{ (kg)}}$$

= 0.0072

3. ADI の設定について

MBFX は、遺伝毒性を示さないと考えられることから、ADI を設定することが可能である。

毒性学的 ADI は 0.004 mg/kg 体重/日と設定された。一方、微生物学的 ADI は 0.0072 mg/kg 体重/日であった。

双方を比較すると、毒性学的 ADI の値がより小さく、感受性が高いと考えられる。このため、MBFX の残留基準を設定するに際しての ADI としては、0.004 mg/kg 体重/日と設定することが適当であると考えられる。

以上より、MBFXの食品健康影響評価については、ADIとして次の値を採用することが適当と考えられる。

マルボフロキサシン 0.004 mg/kg 体重/日

²⁵ MBFX が活性を示す代表的な細菌に対する各 MIC50 から算出した平均 MIC50 の 90%信頼限界の下限値

²⁶ ラット、イヌの知見及び構造が MBFX と類似するオフロキサシンのヒトへの投与試験の知見から推測

^{27 2019} 年に VICH の微生物学的 ADI の計算式の係数が変わり、結腸内容物の容量が 220 g/日から 500 mL/日に変更された。(参照 76)

表 各種試験の無毒性量等の比較

衣 合性試験の無母注里寺の比較 ではない 3.5% せんちょう (a 4.5 でまいま / a 4.5 でまいま / a 4.5 でまいま / a 4.5 できょう					
動物種	試験	投与量(mg/kg 体			
		重)	EMA (EMEA) a	食品安全委員会	
ラット	4週間亜急	0、100、500、		100	
	性毒性試験	1,000		相対腎重量高値、流涎	
	4週間亜急	0、8、40、200、		200	
	性毒性試験	1,000		流涎、尿沈査結晶析	
				出、骨端軟骨病変、血	
				液学的及び血液生化学	
				的影響(ALT高値等)	
	13 週間亜急	0, 4, 50, 600	4	4	
	性毒性試験		雄精巣、精巣上体重	血清グロブリンの低	
			量減少、精細管萎	値、膝関節軟骨粗面化	
			縮、精子減少、精子		
			肉芽腫、関節炎		
	2世代繁殖	0, 10, 70, 500	10	親動物:70	
	毒性試験	0, 10, 10, 000	着床率、産児数及び	P及び F ₁ 雌(着床数、	
	131111111111111111111111111111111111111		哺乳児重量減少、哺	産児数減少)、F ₁ 雌雄	
			乳児死亡率増加	(性成熟遅延)、F ₁ 雌	
				(受胎率低下、子宮内	
				胚死亡率増加、妊娠期	
				間延長)、P及び F1 雄	
				(受精能障害)	
				[日垂hbbn - 10	
				児動物:10	
	√ ↓ + ₩ .= ₽	0 10 05 500	如料料。	F ₂ 哺育児重量低値	
	発生毒性試	0、10、85、700	親動物:10	親動物:10	
	験(6~15		毒性影響	膣出血性分泌物、体重	
	日投与)			増加量低値	
			Inchi.	In a late of the l	
			児動物:85	児動物:85	
			一腹生存胎児数、胎	胎児重量低値、骨格変	
			児重量減少	異及び骨化遅延頻度増	
				加	
				催奇形性なし	

動物種	試験	投与量(mg/kg 体	無毒性量(無作用量	量)(mg/kg 体重/日)
		重)	EMA (EMEA) a	食品安全委員会
ウサギ	発生毒性試	0, 10, 30, 80	親動物:10	親動物:10
	験(6~18		毒性影響	排便障害、体重相加量
	日投与)			低下
			児動物:30	児動物:30
			骨化遅延頻度増加	胸骨分節未骨化
			催奇形性なし	催奇形性なし
イヌ	13 週間亜急	0、1、4、40	4	4
	性毒性試験		関節軟骨の影響、精	嘔吐、流涎、運動量低
			細管萎縮、精子肉芽	下、血中アルブミン高
			腫	値、病理所見(軟骨び
				らん、精巣上体重量増
				加等)
	13 週間亜急	0, 2, 4, 6	6 (最高用量)	6 (最高用量)
	性毒性試験			
毒性学的	ADI (mg/kg /	本重/日)	0~0.04	0.004
			NOEL: 4	NOAEL: 4
			安全係数:100	安全係数:1,000
毒性学的	ADI 設定根拠	資料	イヌ 13 週間亜急性毒	ラット及びイヌ 13 週間
			性試験	亜急性毒性試験
微生物学	的 ADI		0.0045	0.0072
			(CVMP の計算式)	(VICH の計算式)
ADI (mg	g/kg 体重/日)		0.0045	0.004

a:EMEAの評価書では、NOELとして記載されている。

<別紙:検査値等略称>

農度−時間曲
集座_時間出
典帝_時間出
声声一叶胆 曲
曲由二中国出
^{長皮一} 时间曲
apolated to 面積
動物用医薬
lucts:欧州
クロマトグ
trometry:
マトグラフ
時間まで外

$T_{1/2}$	Elimination half-life:消失半減期
$T_{1/2K01}$	Absorption half-time:吸収半減期
$T_{1/2K10}$	Elimination half-time from the central compartment:中心コンパ
	ートメントからの消失半減期
$T_{1/2\lambdaz}$	Elimination half-time calculated with linear regression of the last
	time points:線形回帰モデルに基づき算出された消失半減期
T_{max}	Time-to-maximum concentration:最高血中濃度到達時間
UV	Ultraviolet:紫外線
Vd	Volume of Distribution: 見かけ上の分布容積
$ m Vd_{ss}$	Distribution volume under the steady-state 定常状態の分布容積
VICH	International Cooperation on Harmonisation of Technical
	Requirements for Registration of Veterinary Medicinal Products:
	動物用医薬品の承認審査資料の調和に関する国際協力

<参照>

- THE ABSORPTION, DISTRIBUTION, METABOLISM AND EXCRETION OF [14C]-Ro 09-1168 FOLLOWING MULTIPLE ORAL ADMINISTRATION TO RATS IRI Project No.152569 INVERESK RESEARCH INTERNATINAL Report No.9341
- 2. THE ABSORPTION, DISTRIBUTION, METABOLISM AND EXCRETION OF [14C]-Ro 09-1168 FOLLOWING MULTIPLE ORAL ADMINISTRATION TO DOGS IRI Project No.152574 INVERESK RESEARCH INTERNATINAL Report No.9158
- 3. M. Schneider et al(1996) : Pharmacokinetics of marbofloxacin in dogs after oral and parenteral administration
- 4. Pharmacokinetic evaluation of Ro 09-1168 in dairy cows after IV, IM, SC administrations. Vetoquinol Report Q201P2B1/Q, 17.04.1992
- 5. Pharmacokinetic evaluation of Ro 09-1168 in pre-ruminating calves after IV, IM, SC administrations. Vetoquinol Report Q201P2B2/Q, 17.04.1992
- 6. Pharmacokinetic of Ro 09-1168, a new fluoroquinolone carboxylic acid derivative, in dairy cows and in ruminating calves. Preliminary results. Roche report No. B-155'664, 30.03.1990
- 7. Three-day repeated dose trial with Ro 09-1168 in pre-rumnating calves: Plasma disposition, excretion and tissue residues following i.v. administration. Roche report No.B-158'202, 19.09.1991
- 8. Tissue distribution study of RO 09-1168 in preruminating calves following I.M. administration. Vetoquinol Report Q201PαO1/R, 17.09.1992
- 9. Metabolism and residue kinetics of [14C]-Ro 09-1168 following subcutaneous administration to lactating cows.IRI Project No 152595, IRI Report No.9228, 16.07.1993
- 10. Metabolism and residue kinetics of [14C]-Ro 09-1168 following subcutaneous administration to pre-ruminant calves.IRI Project No 152527, IRI Report No. 9090, 15.06.1993
- 11. Pharmacokinetic evaluation of Ro 09-1168 in pigs after IV and IM administrations. Vetoquinol Report 1205P3E1/R, 06.07.1993
- 12. Metabolism and residue kinetics of [14C]- Ro 09-1168 following intramuscular administration to pigs.IRI Project No 153379, IRI Report No. 9716, 03.11.1993
- 13. In vitro protein binding of the veterinary fluoroquinolone Ro 09-1168 in plasma of man, cat,cow, dog, horse, pig andpre-ruminating calf.Roche report No.B-158'750, 30.04.1991
- 14. Radioprofiling of selected tissue and excreta samples following administration of [14C]-Ro 09-1168 to lactating cows, pre-ruminant calves, pigs, dogs and rats.IRI Project No 153337, IRI Report No. 9812, 24.02.1994
- 15. ME4129 の牛における残留試験(財)畜産生物科学安全研究所,試験番号 04-127,

- 2004年12月10日
- 16. Evaluation of tissue residues of marbofloxacin in calves after IM administration. Vetoquinol Report 1205P9O2/R, 06.01.1994
- 17. ME4129 の搾乳牛における乳汁中残留試験(財) 畜産生物科学安全研究所, 試験番号 04-126, 2004 年 12 月 10 日
- 18. Evaluation of milk residues of marbofloxacin in lactating cows after repeated intramuscular administrations of a 10% solution (V1205) at a dose-rate of 2mg/kg/day for 5 days. Vetoquinol Report 1205P8B2, 30.01.1997
- 19. ME4129 の豚における残留試験(財)畜産生物科学安全研究所, 試験番号 04-128, 2004 年 12 月 10 日
- 20. Evaluation of local tolerance and tissue residues of marbofloxacin in pigs after intramuscular administrations of a 2% solution, at a dose rate of 2mg/kg/day for 5 days. Vetoquinol Report 1212P9E1/R, 14.09.1995
- 21. Acute toxicity study of Ro 09-1168/002 in mice and rats.Roche report No.J-145'869, 05.11.1990 Amendment page 18, 09.05.1991
- 22. ME4129 のラットを用いる筋肉内投与による急性毒性試験(財) 畜産生物科学安全研究所, 試験番号 05-148, 2005 年 11 月 30 日
- 23. ME4129 のラットを用いる腹腔内投与による急性毒性試験(財) 畜産生物科学安全研究所, 試験番号 05-149, 2005 年 11 月 30 日
- 24. ME4129 不純物のラットを用いる急性経口毒性試験(財) 畜産生物科学安全研究所, 試験番号 04-091, 2004 年 12 月 28 日
- 25. 4-week comparative oral toxicity study of Ro 09-1168 with ofloxacin in male rats.Roche report No.J-145' 803, 15.06.90 Amendment page 13, 09.05.1991
- 26. ME4129 のラットを用いる 28 日間反復経口投与による亜急性毒性試験(財) 畜産生物科学安全研究所, 試験番号 04-090, 2004 年 9 月 30 日
- 27. 13-week oral tolerance study with the veterinary quinolone Ro 09-1168/604 as a feed admix in rats.Roche report No.B-100'646, 03.01.1994
- 28. Three-month oral tolerance study with the veterinary quinolone Ro 09-1168/604 in dogs.Roche report No.B-100'644, 27.04.1992
- 29. 13-week toxicity study by oral route (tablets) in young beagle dogs.CIT/Study No. 9756 TCC/V1203/Vetoquinol, 06.10.1993
- 30. A dietary two-generation reproduction toxicity study in the rat with the fluoroquinolone Ro 09-1168/604.Roche report No.B-161'853, 17.12.1993
- 31. Embryotoxicity and teratogenicity study in the rat with oral (gavage) administration of the veterinary fluoroquinolone Ro 09-1168/604. Segment II study with postnatal evaluation. Roche report No.B-154' 966, 17.02.1993
- 32. Embryotoxicity and teratogenicity study in the rabbit with oral (gavage) administration of the veterinary fluoroquinolone Ro 09-1168/604. Segment II study.Roche report No.B-154' 964, 08.02.1993
- 33. Mutagenicity evaluation of the fluoro-quinolone Ro 09-1168/000 with the Ames

- test.Roche report No.B-116'838, 30.03.1990
- 34. Mutagenicity evaluation of Ro 09-1168/000 (fluoroquinolone for veterinary madicine use) with Saccharomyces cerevisiae D7.Roche report No.B-153'824, 03.04.1990
- 35. Gene mutation assay in cultured mammalian cells with the fluoroquinolone Ro 09-1168/000 (V79/HPRT Test). Roche report No.B-154'900, 09.01.1991
- 36. Unscheduled DNA sythesis (UDS) assay with the new fluoroquinolone Ro 09-1168/000 using primary cultures of rat hepatocytes.Roche report No.B-154'905, 15.06.1990
- 37. Chromosome analysis in human peripheral blood lymphocytes treated in vitro with the fluoroquinolone Ro 09-1168/000 in absence and in presence of a metabolic activation system. Roche report No.B-154'836, 17.06.1991
- 38. Marbofloxacin: Measurement of unscheduled DNA synthesis in rat liver using an in vivo/in vitro procedure. Corning Hazleton, 1449/1-1052, 14.12.1995
- 39. Micronucleus test in the mouse bone marrow in vivo after oral administration of the antibiotic Ro 09-1168/000.Roche report No.B-154'828, 20.02.1990
- 40. Effects of a new quinolone antibacterial, Ro 09-1168, on behavior and electroencephalogram of mice and cats.Roche report No.J-145'811, 13.06.1990
- 41. Pr.L.Dubreuil(1994): Antibacterial activity of a fluoroquinolone against bacteria isolated from human gut flora:MARUBOFLOXACINE or RO 09-1168 Microbiology Department Faculty of Pharmacy
- 42. Marbofloxacin: MICs against human gastrointestinal bacteria determined under simulated gastrointestinal conditions
- 43. グッドマンギルマン薬理学(第10版)
- 44. E.Gocke(1991) : Mechanism of quinolone mutagenicity in bacteria., Mutation Research, 248,135-143
- 45. S. W. Mamber et al(1993) : Activity of quinolones in the Ames Salmonella TA102 mutsgrnicity test and other bacteria genotoxicity assay, Antimicrobial Agents and Chemotherapy,37(2),213-217
- 46. R. Gupta(1990): Tests for the genotoxicity of m-AMSA,etoposide,teniposide and ellipticine in Neurospora crassa.,Mutation Research,240,47-58
- 47. 前川健郎ら(1993) : キノロン系合成抗菌薬の染色体異常誘発性、変異原性試験, 2, 154-161
- 48. K Marutani et al (1993): Reduced Phototoxicity of a Fluoroquinolone Antibacterial Agent with a Methoxy Group at the 8 Position in Mice Irradiated with Long-Wavelength UV Light ANTIMICROBIAL AGENTS AND CHEMOTHERAPY,Oct.1993,p2217-2223
- 49. N Hayashi et al(2004): New Findings on the Structure-Phototoxicity Relationship and Photostability of Fluoroquinolones with Various Substituents at Position 1 ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, May. 2004, p799-803

- 50. N Hayashi (2005): New Findings on the Structure-Phototoxicity Relationship and Photostability of Fluoroquinolones YAKUGAKUZASSHI 125(3)255-261(2005)
- 51. Zhang T et al (2004): Compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones Acta Pharmacol Sin 2004 Feb;25(2):171-175
- 52. Ronald et al(1999): Photogenotoxicity of Fluoroquinolones in Chinese Hamster V79 Cells: Dependency on Active Topoisomerase II Photochemistry and Photobiology, 1999, 69(3): 288-293
- 53. Scheife RT et al(1993): PHOTSENSITIZING POTENTIAL OF OFLOXACIN PHARMACOLOGY AND THERAPEUTICS vol.32, No.6, june 1993
- 54. Yagawa K (2001): Latest Industry Information on the Safety Profile of Levofloxacin in Japan Chemotherapy 2001;47(suppl 3):38-43
- 55. 明治製菓株式会社:動物用医薬品指定審査用資料 マルボシル 10%概要書
- 56. Meiji Seika ファルマ株式会社:動物用薬品指定審査用資料 申請書
- 57. Pubchem: https://pubchem.ncbi.nlm.nih.gov/compound/Marbofloxacin#section=Names-and-Identifiers
- 58. Merck Index online: https://www.rsc.org/Merck-Index/searchresults?searchterm=115550-35-1
- 59. Meiji Seika ファルマ株式会社:動物用薬品指定審査用資料 概要書
- 60. 動物用医薬品等データベース: https://www.vm.nval.go.jp
- 61. 厚生労働省「食品、添加物等の規格基準の一部を改正する件」(平成 19 年 12 月 28 日付け厚生労働省告示第 433 号)
- 62. EMEA, COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS MARBOFLOXACIN SUMMARY REPORT (1). 1996.
- 63. EMEA. COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS MARBOFLOXACIN SUMMARY REPORT (2), 1999
- 64. Meiji Seika ファルマ株式会社:動物用医薬品指定審査用資料 資料 12-①<非公表>
- 65. Meiji Seika ファルマ株式会社:動物用医薬品指定審査用資料 資料 15-⑥<非公表>
- 66. Meiji Seika ファルマ株式会社:動物用医薬品指定審査用資料 資料 15-⑦<非公表>
- 67. Meiji Seika ファルマ株式会社:動物用医薬品指定審査用資料 資料 15-①<非公表>
- 68. Meiji Seika ファルマ株式会社:動物用医薬品指定審査用資料 資料 15-③<非公表>
- 69. Kohanski, M. A. et al., Mol Cell, 37, 311(2010): Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis.
- 70. EC. REGULATIONS, COMMISSION REGULATION (EU) No 37/2010, 2009. on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.
- 71. EMEA. Public statement on the use of (fluoro) quinolones in food-producing animals in the European Union: Development of resistance and impact on human and

- animal health. 2007
- 72. EFSA, Report for 2020 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. /sp.efsa.2022.EN-7143, 2022
- 73. Federal Register, 66, 172, 2001, 46369, Oral Dosage Form New Animal Drugs; Marbofloxacin Tablets
- 74. Federal Register /Vol. 70, No. 146 /Monday, August 1, 2005 /Notices 44105. Enrofloxacin for Poultry; Final Decision on Withdrawal of New Animal Drug Application Following Formal Evidentiary Public Hearing; Availability.
- 75. FREEDOM OF INFORMATION SUMMARY ORIGINAL ABBREVIATED NEW ANIMAL DRUG APPLICATION, ANADA 200-586. Marboquin™ (marbofloxacin) Tablets. Dogs and Cats, 2020
- 76. 農林水産省「医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律関係 事務の取扱いについて」2019、VICH GL36R2
- 77. Meiji Seika ファルマ株式会社:動物用医薬品製造販売申請書 フォーシル S 申請書 <非公表>
- 78. Meiji Seika ファルマ株式会社:動物用医薬品製造販売申請書 フォーシル S 概要書 <非公表>
- 79. Meiji Seika ファルマ株式会社: 動物用医薬品製造販売申請書 フォーシル S 資料 12-①<非公表>
- 80. Meiji Seika ファルマ株式会社: 動物用医薬品製造販売申請書 フォーシル S 資料 12-②<非公表>
- 81. Meiji Seika ファルマ株式会社: 動物用医薬品製造販売申請書 フォーシル S 資料 15-①<非公表>
- 82. Meiji Seika ファルマ株式会社 : 動物用医薬品製造販売申請書 フォーシル S 資料 15- ②<非公表>