ハザード概要シート(案)(ボスカリド)

1. ハザード等の概況

- ・ボスカリドはアニリド系殺菌剤であり、ミトコンドリア内膜のコハク酸脱水素酵素 系複合体の電子伝達を阻害することで灰色かび病、菌核病の生育影響に対し、効果 を示す。我が国では平成17年(2005年)1月になす、きゅうり、りんご、なし等 を対象に初めて登録されている。諸外国では米国、カナダ、韓国、ドイツ、英国等 で登録されている。
- ・平成17年(2005年)1月17日農薬登録、殺菌剤、普通物

2. 人に対する健康影響

(国内外の中毒事例、中毒症状、治療法、予後・後遺症 等) 「国内外の中毒事例]

該当データ無し。

[中毒症状]

該当データ無し。

[治療法]

[応急手当]

- ・飲み込んだ場合:口をすすぐ。
- ・吸入した場合:速やかに新鮮な空気のあるところへつれて行き、深呼吸をさせる。
- ・皮膚、衣類に付着した場合:汚染した衣類をぬがせ、皮膚を多量の水と石けんでよく洗い、付着した農薬を除去する。洗浄時間は最低15分必要。
- ・眼に入った場合:直ちに蛇口の水、やかんの水のような流水(大量の水)で洗浄する。コンタクトレンズをつけている場合、コンタクトレンズをはずし、その後も十分に洗浄を続ける。
- ・いずれも症状がある場合は、直ちに医師の診断を受ける。

[医療機関での治療]

- ・飲み込んだ場合:必要に応じて胃洗浄、活性炭と下剤の投与、等を行う。
- ・その他必要に応じて、支持療法を行う。

[予後・後遺症]

該当データ無し。

3. 汚染防止・リスク低減方法

該当データ無し。

4. リスク評価状況

(1)国内

ハザード概要シート(案)(ボスカリド)

(評価結果、提言等、耐容摂取量等(急性参照用量含む)等)

[評価結果、提言等]

該当データ無し。

[耐容摂取量等]

- ・ADI (一日摂取許容量) は 0.044mg/kg 体重/日(食品安全委員会による評価)
- ・ARfD (急性参照用量): 該当データ無し。

(2)国際機関及び諸外国

(評価結果、提言等、耐容摂取量等(急性参照用量含む)等)

[評価結果、提言等]

該当データ無し。

[耐容摂取量等]

- ・ADI: 0-0.04mg/kg 体重/日(JMPR による評価)
- ・ARfD(急性参照用量):該当データ無し。

5. リスク管理状況

(1)国内

(規格・基準設定状況、その他のリスク管理措置)

[規格・基準設定状況]

- ・公益財団法人日本食品化学研究振興財団によれば、食品により 0.02ppm~40ppm (畜産物にあっては、ボスカリド、代謝物 B [2-クロロ-N-(4' - クロロ-5-ヒドロキシ-ビフェニル-2-イル)ニコチンアミド]及び代謝物 B のグルクロン酸抱合体をボスカリド含量に換算したものの和をいい、その他の食品にあっては、ボスカリドのみをいう)
- ・公益財団法人日本食品化学研究振興財団のボスカリド基準値 http://m5.ws001.squarestart.ne.jp/zaidan/agrdt1.php?a_inq=71600 を参照。

[その他のリスク管理措置]

•最大残留基準:

米国では食品により 0.1ppm~3.5ppm、欧州では大豆について 3ppm。Codex では該当データ無し。(以上、http://www.mrldatabase.com/を参照)

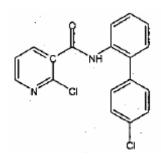
(2)国際機関及び諸外国

(規格・基準設定状況、その他のリスク管理措置)

[規格・基準設定状況]

該当データ無し。

[その他のリスク管理措置]


ハザード概要シート(案)(ボスカリド)

• 該当データ無し。

6. 参考情報

(1)分子式等

分子式/構造式: C₁₈H₁₂Cl₂N₂O

物質名 (IUPAC): 2-クロロ-N-(4'-クロロビフェニル-2-イル)ニコチンアミド

[2-chloro-N-(4'-chlorobiphenyl-2-yl)nicotinamide]

CAS番号: 188425-85-6

(2)その他

(リスク管理機関等における有用情報等)

・該当データ無し。

調査項目					概要	引用文 献		
aハザード	の名称ん	/別名			ボスカリド	1-28-1		
	食品中の物質の名称/別名(ハザードが「食品そのものの状態」を指す場合に記入。 卵:ハザードが「ジャガイモ」の場合に食品中の物質として「ソラニン」を記入。))				該当データ無し			
		①用途(登録・指定を含む使用実態等)や産生実態等(したシガテラ毒の場合は原因となる有毒渦鞭毛藻に関する事柄を含む			殺菌剤 ボスカリドはアニリド系殺菌剤であり、平成4年(1992年)にドイツの BASF 社により開発された。ミトコンドリア内膜のコハク酸脱水素酵素系複合体の電子伝達系を阻害することで灰色かび病、菌核病の生育に影響を与える。我が国では平成17年(2005年)1月になす、きゅうり、りんご、なし等を対象に初めて農薬登録されている。諸外国では米国、カナダ、韓国、ドイツ、英国等で農薬登録されている。	1-28-1		
	用途				平成 17 年(2005 年)1 月 17 日農薬登録、殺菌剤、普通物	1-28-7		
cハザー	等や		製・加工・調理による影響(特に よるリスクの低減や増加等)	二調理等の処	該当データ無し			
ド等の概 況(国内/	污染		ハザード等による汚染経	③生産段 階	ドリフト、栽培前の土壌に残留していた農薬が影響したため	1-28-2		
諸外国)	実態		路、汚染条件等	④加工· 流通段階	該当データ無し			
		污染实		⑤農畜水 産物/食 品の種類	生鮮セロリ	1-28-2		
		態	ハザード等に汚染される 可能性がある農畜水作物 /食品の生産実態	⑥国内外 の生産実 態、海外 からの輸 入実態	アメリカからの輸入	1-28-2		
	_	_ 目される こ記入。	。 ようになった経緯(事故や事()	牛があった	該当データ無し			
	①中	毒事例((国内/諸外国)		該当データ無し			
	②中	毒症状(摂取から発症までの時間・期	間を含む)	該当データ無し			
dヒトに対 する健康 影響	③治療法				[応急手当] 飲み込んだ場合:口をすすぐ。 吸入した場合:速やかに新鮮な空気のあるところへつれて行き、深呼吸をさせる。 皮膚、衣類に付着した場合:汚染した衣類をぬがせ、皮膚を多量の水と石けんでよく洗い、付着した農薬を除去する。洗浄時間は最低15分必要。 眼に入った場合:直ちに蛇口の水、やかんの水のような流水(大量の水)で洗浄する。コンタクトレンズをつけている場合、コンタクトレンズをはずしその後も十分に洗浄を続ける。いずれも症状がある場合は、直ちに医師の診断を受ける。 「医療機関での治療」 飲み込んだ場合:必要に応じて胃洗浄、活性炭、下剤の投与、等を行う。 その他必要に応じて、支持療法を行う。	1-28-3		
	④予	後•後遺			該当データ無し			
二江九叶山		低減方:			該当データ無し			

flスク評		西結果 (最終結果または途中経過を記入。)	試験結果から、ボスカリド投与による影響は、主に甲状腺及び 肝臓に認められた。神経毒性、繁殖能に対する影響、催奇形性 及び遺伝毒性は認められなかった。ラットを用いた発がん性試 験において、甲状腺ろ胞細胞腺腫の増加傾向が認められた が、本所見には統計学的な有意差が認められず、また、遺伝毒 性試験がすべて陰性であったことから、腫瘍の発生機序は遺 伝毒性メカニズムによるものとは考え難く、本剤の評価にあた り閾値を設定することは可能であると考えられた。各試験の無 毒性量の最小値が、ラットを用いた 2 年間慢性毒性試験の 4.4 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.044 mg/kg 体重/日を一日摂取許容量(ADI)と設 定した。			
価状況	②提	言等	該当データ無し			
(国内/国 際機関/	耐容摂	③耐容摂取量、摂取許容量及び急性参照用	ADI(一日摂取許容量)は 0.044mg/kg 体重/日(食品安全委員会による評価)。	1-28-1,		
諸外国)		量	ADI: 0-0.04mg/kg 体重/日(JMPR による評価) ARfD(急性参照用量):該当データ無し	1-28-8		
	取量等	④耐容摂取量、摂取許容量及び急性参照用 量の根拠	各試験の無毒性量の最小値がラットを用いた慢性毒性試験の 4.4mg/kg 体重/日であったことから、これを根拠として、安全係 数 100 で除した 0.044mg/kg 体重/日を一日摂取許容量(ADI) と設定した。	1-28-1		
		⑤安全係数	100	1-28-1		
	ばく	⑥推定一日摂取量	国民の平均的(体重:53.3 kg)な推定一日摂取量 155.12 µ g/人	1-28-1		
	露		申請された使用方法からボスカリドが最大の残留を示す使用			
	評	⑦推定方法	条件で、全ての適用作物に使用された場合で、なおかつ加工・	1-28-1		
	価		調理による残留農薬の増減が全くないとの仮定の下。			
	®MC	DE (Margin of exposure)	該当データ無し			

			⑨経口摂取における吸収及び吸収率	代謝試験は、ボスカリドのジフェニル環を 14C で均一に標識したもの(Bip-14C-ボスカリド)及びピリジン環 3-位を 14C で標識したもの(Pyr-14C-ボスカリド)を用いて実施された。ラットを用いた動物体内運命試験を実施したところ、血漿中濃度は単回投与 8時間後に最高値に達した。1-28-1 の 1. 動物体内運命試験の項目に詳細な記載あり。	1-28-1
			⑩分布	投与 168 時間後の組織内濃度は甲状腺、肝、骨髄、腎及び副腎において高濃度であった。 1-28-1 の 1. 動物体内運命試験の項目に詳細な記載あり。	1-28-1
リスク評 価状況 (国内/国 際機関/	毒性評	体内動	⑪代謝(半減期)	胆汁中ではボスカリドは検出されず、主要代謝物では「4'-クロロー6-[(2-クロロー3-ピリジニル)カルボニル]アミノドフェニルー3-イルグリコピラノシドウロン酸」及び「(3-[(4'-クロロビフェニルー2-イル)アミノ]カルボニルト2-ピリジニル)システイン」が検出された。主要代謝経路は、ビフェニル環の水酸化及びグルタチオン抱合、あるいはピリジン環クロロ基とグルタチオンのチオール基との置換であると考えられた。単回投与における血漿中濃度の半減期は 20.2~41.7 時間であった。反復投与による代謝は単回投与と比較して顕著な差は認められなかった。	1-28-1
諸外国)	価	能	⑫排出(排泄)	主な排泄経路は糞中であった。 投与 48 時間後の尿中ではボスカリドが投与量の 0.16%以下、主要代謝物としては「2-クロロ-N-(4'-クロロ-5-ヒドロキシ-ビフェニル-2-イル)ニコチンアミド」、「4'-クロロ-6-[[(2-クロロ-3-ピリジニル)カルボニル]アミノ)ビフェニル-3-イル グリコピラノシドウロン酸」及び「3-[[(4'-クロロービフェニル-2-イル)-アミノ]カルボニル]-2-ピリジニル-1-チオヘキソピラノシドウロン酸」が検出された。糞中ではボスカリドが投与量の 30.5~41.0%(Bip-14C-ボスカリド低用量群)、68.3~80.4%(Bip-14C-ボスカリド及びPyr-14C-ボスカリド高用量群)が検出され、主要代謝物では「2-クロロ-N-(4'-クロロビフェニル-2-イル)-2-スルファニルニコチンアミド」、「N-(4'-クロロビフェニル-2-イル)-2-スルファニルニコチンアミド」、「2-クロロ-N-(4'-クロロ-?-ヒドロキシ-?-メチルスルファニルピフェニル-2-イル)ニコチンアミド」及び「3-[[(4'-クロロービフェニル-2-イル)-アミノ]カルボニル]-2-ピリジニル-1-チオヘキソピラノシドウロン酸」が検出された。1-28-1 の 1. 動物体内運命試験の項目に詳細な記載あり。	1-28-1
			③毒性学上重要な化合物	該当データ無し	

							性毒性語	、験が実	施された。結	果は	
				表 10 に	こ示されてい	いる。					
						表 10 急性	毒性試験概	要			
				投与経路	動物種		mg/kg 体重)		症状		
						雄	雌	- 85 41	熊の悪化、呼吸困		
				経口	Wistar ラ 雌雄各 5	ット 匹 >5,000	>5,000	SEAF- Astr			
				経口	ICR マウ 雌雄各 5	ス >5,000	>5,000	症状及	び死亡例なし	1	
				経皮	Wistar ラ: 雌雄各 5	ット >2,000	>2,000	症状及	び死亡例なし	1	
				吸入	Wistar ラ	ット LCs	(mg/L)	一般状	態の悪化	1	
				(全身)	雌雄各 5	匹 >6.7	>6.7	死亡例	なし		1-28-1
				ボスカリ	ドの代謝物	勿S(3-[[(4'	-クロロ-	ビフェニ	ルー2ーイル)ーア	アミノフ	
fリスク評			④急性毒性								
価状況	毒			カルボニル]-2-ピリジニル-1-チオヘキソピラノシドウロン酸) を 用いた急性毒性試験が実施された。結果は表 11 に示されてい							
(国内/国	性	毒		う る。	ア 工 ル4 工印か		_10/_0 #	17101	. 11 10/10/10	, , ,	
際機関/	評	性		ಿ ಇ							
小小人 大	価										
諸外国)	ТШ					表 11 急	性毒性試影	概要			
諸外国)	Щ			to /#:	松片红坡		性毒性試験 LDso (mg		44 129		
諸外国)	Щ			検体	投与経路	表 11 急動物種			症状		
諸外国)	Щ			検体 代謝物 S			LDso (mg	/kg 体重)	症状をび死亡例な	£L .	
諸外国)	Щ			代謝物 S	経口 V	動物種	LD50 (mg 維 >2,000	/kg 体重) 雌 >2,000	症状及び死亡例な	ř l	
諸外国)	Щ			代謝物S	急性神経	動物種 Wistar ラット 雌雄各 3 匹 毒性試験に	LDso (mg 維 >2,000	/kg 体重) 雌 >2,000	症状及び死亡例な	î L	
諸外国)	111111			代謝物 S その他、 急性経口	急性神経	動物種 Wistar ラット 雌雌各 3 匹 毒性試験に D50 (mg/kg	LDso (mg 維 >2,000	/kg 体重) 雌 >2,000	症状及び死亡例な	al.	1-28-3
諸外国)	. ш			代謝物S その他、 急性経口 ラット、マ	器□②性神経□毒性値 LIでウス ♂ 5	動物種 Wistar ラット 雌雄各 3 匹 毒性試験に D50 (mg/kg ♀ >5,000	LDso (mg 維 >2,000	/kg 体重) 雌 >2,000 試験報台	症状及び死亡例な		1-28-3
諸外国)	Щ		⑤眼・皮膚に対する刺激性及び皮膚	代謝物S その他、 急性経ロ ラット、マ	経□②性神経□毒性値 LIマウス ♂ 9サギを用し	動物種 Wistar ラット 維維各 3 匹 毒性試験に D50 (mg/kg 2 >5,000	LDso (mg 維 >2,000 ついて、	Akg 体重) 雌 >2,000 試験報台	症状及び死亡例な	実施	. 20 0
諸外国)	Щ		⑤眼・皮膚に対する刺激性及び皮膚 感作性試験	代謝物S その他、 急性経ロラット、マ NZW ウ された。	急性神経には コ毒性値に でウス るい サギを用い 眼刺激性が	動物種 Wistar ラット 維維名 3 匹 毒性試験に D50 (mg/kg > 5,000 いた眼刺激 及び皮膚刺	LDso (mg 維 >2,000 ついて、) 性試験及 激性は認	Akg 体重) 雌 >2,000 試験報台 び皮膚が	症状及び死亡例な 生あり。 刺激性試験が	実施レモッ	1-28-3
諸外国)	Щ			代謝物 S	経口 V	動物種 Wistar ラット 雌雄各 3 匹	LD50 (mg 維 >2,000	/kg 体重) 雌 >2,000	症状及び死亡例	7.	なし

			⑥亜急性毒性	Wistar ラット(一群雌雄各 10 匹)を用いた混餌(原体:0、100、500、2,000、5,000 及び 15,000 ppm: 平均検体摂取量は表 12 参照)投与による 90 日間亜急性毒性試験が実施された。						
			<u> </u>	投与群	1-28-1					
				- FT Manu - FT						
a13.5				5,000 ppm ・肝絶対及び比重量増加、小業中心性肝細胞 ・肝絶対及び比重量増加、小業中心 性肝細胞肥大 ・カルシウム、TP 及び Alb 増加 ・GGT 増加 ・副腎絶対及び比重量減少 ・甲状腺絶対及び比重量増加 2,000 ppm ・GGT 増加 2,000 ppm ・GGT 増加						
刊スク 評価状 況(国	毒性	毒		2,000 ppm 以下 3,000 ppm 以下海往所見なじ 2,000 ppm 以下海往所見なじ 甲状腺ろ胞上皮細胞び漫性過形成 500 ppm 以下 海性所見なし						
内/国際機関	評価	性		他複数の研究報告あり。 ビーグル犬(一群雌雄各 5 頭)を用いた混餌(原体:0、200、800、2,000						
/諸外 国) 				及び 20,000 ppm: 平均検体摂取量は表 19 参照) 投与による 1 年間慢性毒性試験が実施された。						
				表 19 1年間慢性毒性試験 (イヌ) の平均検体摂取量 投与群 200 ppm 800 ppm 2,000 ppm 20,000 ppm						
				平均検体摂取量 雄 5.5 21.8 57.4 544						
				(mg/kg 体重/日) 雌 5.8 22.1 58.3 593						
				各投与群で認められた毒性所見は表 20 に示されている。 本試験において、2,000 ppm 投与群の雄で甲状腺比重量増加等、雌で 体重増加抑制が認められたことから、無毒性量は雌雄で 800 ppm(雄:						
			⑪慢性毒性	21.8 mg/kg 体重/日、雌:22.1 mg/kg 体重/日)であると考えられた。	1-28-1					
				表 20 1年間慢性毒性試験(イヌ)で認められた毒性所見						
				投与群 雄 20,000 ppm ・淡褐色軟便						
				・血中クロール減少 ・血中クロール減少						
				・ALP 増加及び ALT 減少						
				 TP、Glob 及び T. Chol 増加 肝絶対及び比重量増加 						
				・ 肝絶对及び比重量増加 ・ 甲状腺絶対及び比重量増加						
				2,000 ppm ・TG 増加及び ALP 増加 ・体重増加抑制						
				以上 ・甲状腺絶対及び比重量増加						
				800 ppm 以下 毒性所見なし 毒性所見なし						
				他複数の研究報告あり。						

り価(国関)国際(諸)が、大学のでは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学の	毒性評価	毒性	⑱発がん性	び 15,000 所 び 15,000 所 が 15,000 所 平 mg/kg 群 7 投変 雄成 は素 、 が し 考 増た で / k を が で / k を が で / k を が で / k を が で / k を が で / k を が で / k を が で / k を が で / k を が で / k を が で / k を で / k を が で / k を が で / k を が で / k を が で / k を で / k を で / k を で / k を が で / k を で / k を で / k を が で / k を	pp 10 表 5 類 重 認 2 気 以 が 2 別 う 4 フ 用 た 5 無 g ま 2 気 以 2 別 う 4 フ 用 た 5 無 g ま 2 4 一	平た 2 は は れ さ 細 大 心 に 下で は 500 性 重 2 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 市 は 500 生 1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	◆ 間 は これ胞のが蔵女ツ犬にのは) 引 中性腺腺腺性見 表体 発 帯で腺増れで少ク腺にのは 発 心ち服比ら解しな を しんかん しん	取ん100 x 6.6.6.6.1 所るのが験1 たぞ性、群の考し、 性雄細胞の増脂や生態を増加した。 は、 性雄細胞の増脂が増加した。 は、 性間が、 は、	は は 重加 が は 重加 が は 重加 が は 悪加 が に は 悪加 の い し に の い に に の い に に の の に に の の に の の に の の の の の の の の の の の の の	ST	受 平 pp 0 7 状 い P 式 D 按 腺 度 く 投 ひ g を 体 小 び 甲 の 与 与 均 四	こ は ろ、泉こ投合 曽れば干重 れ 加心ろろ 以 変よ 摂 脱50胎けが 加めの細/ た 抑性胞胞 下	2 <u>量 2,500 1:1</u> 1:1 で m 0 m るよ進 T とで m 、	出大、甲状腺で は増加傾向 見なし 背景データ 平均 0.7%	
	他 			投与群		・小葉 びき ・甲サ	中心性 を性ろ服 は腺限原	雄 生肝細胞 包細胞肥 司性ろ胞	2肥大、甲状 2大 2細胞過形成	腺 ・	体重増 小葉中 び漫性	加抑制 心性肝 ころ胞系	雌別 無細胞肥	と大、甲状腺	
											T 1/\////	いっぱれ	P // 25 / 25 / 19	EAR VIOLEN	
					止				殖巣	50	0 ppm	以下	毒性所見	見なし	
				100 ppm					7 05 (m 05 **	n u4 > 1		<u>. </u>			
				性別					つ肥神胞で設	なのられ	いた柄		f É		
r				投与群	0	100	500	2,500		0	100	500	2,500		
				ろ胞細胞腺腫	0/50	0/50	1/50	4/50	平均 1.0% (範囲 0~6%)	0/50	1/50	0/50	3/50	平均 0.7% (範囲 0~10%)	
				ろ胞細胞	1/50	0/50	0/50	0/50	平均 0.6%	0/50	0/50	0/50	0/50	平均 0.8%	
				腺癌	1/50	0/50	0/50	0/50	(範囲 0~12%)	0/50	0/50	0/50	0/50	(範囲 0~10%)	
				び漫性 ろ胞細胞 肥大	2/50	5/50	6/50	† 22/50		2/50	0/50	0/50	4/50		
				限局性ろ胞細胞過形成	1/50	1/50	1/50	↑ 9/50		2/50	2/50	1/50	7/50		
					<0.01	(Fisher	の直接	游 古科質	(社)						
				1 * • 1		(1101101	ON THE PARTY	御エリヨ	124)						

り評況/関国 ス価(国際諸 ク状内機外	 毒性	①生殖発生毒性	10,000 ppm: 平均検体摂取量は表28 参照) 投与による2 世代繁殖試験を実施した。 表28 2 世代繁殖試験(ラット)における平均核体摂取量(mg/kg 体重/日) 投与群	1-28-1
		⑩遺伝毒性	細菌を用いた復帰突然変異試験、ラット肝初代培養細胞を用いた in vitro 不定期 DNA 合成(UDS)試験、チャイニーズハムスター培養細胞を用いた染色体異常試験及び遺伝子突然変異試験、マウスを用いた小核試験が実施された。試験結果は全て陰性であったので、ボスカリドには遺伝毒性はないものと考えられた。	1-28-1
		②微生物学的影響	該当データ無し	
		愛その他	該当データ無し ラットを用いた肝薬物代謝酵素誘導試験、ラットを用いた甲状腺ホルモン 及び肝薬物代謝酵素誘導試験、ラットを用いた免疫毒性試験について、 試験報告あり。	1-28-1

			公益財団法人日本食品化学研究振興財団によれば、食品により 0.02ppm~40ppm (畜産物にあっては、ボスカリド、代謝物B[2-クロロ-N-(4'- ク	
gリスク管 理状況 (国内/国 際機関/ 諸外国)	①規格・基準	設定状況(基準値等)	(留産物にめらては、ホスカウド、代謝物品(2-ウロローN-(4 - ウロロー5-ヒドロキシービフェニルー2-イル)ニコチンアミド)及び代謝物Bのグルクロン酸抱合体をボス カリド含量に換算したものの和をいい、その他の食品にあっては、ボスカリドのみをいうこと)公益財団法人日本食品化学研究振興財団のボスカリド基準値http://m5.ws001.squarestart.ne.jp/zaidan/agrdtl.php?a_inq=71600を参照。	1-28-5
			最大残留基準: 米国では食品により 0.1ppm~3.5ppm、欧州では大豆について 3ppm。Codex では該当データ無し。	1-28-9
	②その他の!	Jスク管理措置	該当データ無し	
	分子式等(複数の関連物質がある場合は代表的なものについて記入のこと)	①分子式/構造式	C ₁₈ H ₁₂ Cl ₂ N ₂ O	1–28–1
		②分子量	343.21	1-28-1
		③物質名(IUPAC)	2-クロロ-N-(4'-クロロビフェニル-2-イル)ニコチンアミド [2-chloro-N-(4'-chlorobiphenyl-2-yl)nicotinamide]	1-28-1
h参考情 報		④CAS名/CAS番号	2-クロロ-N-(4'-クロロ[1,1'-ビフェニル]-2-イル)-3-ピリジンカルボキシアミド 2-chloro-N-(4'-chloro[1,1'-biphenyl]-2-yl)-3-pyridinecarboxamide ✓188425-85-6	1-28-1
	物理化学的	⑤性状	白色で無臭の結晶	1-28-4
	性状(複数の関	⑥融点(℃)	142.8-143.8°C	1-28-4
	連物質がある場	⑦沸点(℃)	該当データ無し	1-28-4
	合は、代表的なも のについて記入	⑧比重	1.381(20°C)	1-28-4
	のこと)	⑨溶解度	(水に対して)4.6mg/l(20°C)	1-28-4
	⑩検査・分析		厚生労働省「食品に残留する農薬、飼料添加物又は動物用医薬品の成分である物質の試験法」 LC/MS による農薬等の一斉試験法 I (農産物)、GC/MS による農薬等の一斉試験法(蓄水産物)、LC/MS による農薬等の一斉試験法(畜水産物)、個別試験法	1-28-6
		⑪出典・参照文献(総説)	該当データ無し	
	備考	②その他(リスク管理機関における情報等) 該当データ無し		

注1)各項目に該当する情報が無い場合は、「該当データ無し」と記載した。

注2)各項目名については、ハザード等の特性に合わせた適切な文言へ変更した。

引用文献

1-28-1. 農薬評価書ボスカリド

http://www.fsc.go.jp/fsciis/attachedFile/download?retrievalId=kya20081209003&fileId=002

1-28-2. 厚生労働科学研究費補助金(食品の安心・安全確保推進研究事業)「食品衛生関連情報の効率的な活用に関する研究」平成 21 年の違反事例一覧

http://www.nihs.go.jp/hse/food-kkportal/ihanjirei/2009ihan1.pdf

農薬工業会「農薬中毒の症状と治療法 第13版」 1-28-3. 1-28-4. BCPC(British Crop Protection Council), The Pesticide Manual Thirteenth Edition, 2003 公益財団法人日本食品化学研究振興財団「農薬等の基準値 ボスカリド」 1-28-5. http://m5.ws001.squarestart.ne.jp/zaidan/agrdtl.php?a_inq=71600 厚生労働省「食品に残留する農薬、飼料添加物又は動物用医薬品の成分である物質の試験法」 1-28-6. http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/zanryu3/index.html 1-28-7. 独立行政法人農林水産消費安全技術センター「農薬登録情報提供システム」 http://acsearch.acis.famic.go.jp/famic/ 1-28-8. Inventory of IPCS and other WHO pesticide evaluations and summary of toxicological evaluations performed by the Joint Meeting on Pesticide Residues (JMPR) through 2009 http://www.who.int/ipcs/publications/jmpr/pesticide_inventory_edition10.pdf 1-28-9. http://www.mrldatabase.com/

(参考)

内閣府食品安全委員会事務局 平成22年度食品安全確保総合調査報告書

> 輸入食品等の摂取等による健康影響に 係る緊急時に対応するために実施する 各種ハザード(微生物・ウイルスを除く。) に関する文献調査 報告書

> > 平成 23 年 3 月

TIP! 株式会社三菱総合研究所

I. 調査の概要

1. 調査目的

現在、食品安全委員会は、緊急事態等(注1)の発生時に把握している科学的知見をハザード概要シート(注2)に取りまとめ、国民に向けて情報提供を行っている。

一方、国民からはより迅速な情報提供を求められているが、現状においては、ハザード 概要シートをゼロから作成しているため、その完成までに多くの時間を要している。

そのため、今後、緊急事態等の発生時の一層迅速な情報提供に資することを目的として、 輸入食品、添加物、器具又は容器包装等(以下「輸入食品等」という。)の摂取等による健 康影響に係る緊急事態等の発生の原因となることが将来的に懸念されるハザード(微生 物・ウイルスを除く。)について、当該ハザードの特徴、人の健康への影響、関連食品等に 関する文献を収集し、データ等を情報整理シート(注3)にまとめるとともに、あらかじ めハザード概要シート(案)を作成した。

(注1) 緊急事態等

食品の摂取を通じて、国民の生命又は健康に重大な被害が生じ、又は生ずるおそれがある場合であって、食品の安全性を確保するために緊急の対応を要するとき(食品安全関係府省緊急時対応基本要綱(平成16年4月15日関係府省申し合せ)の第1項に規定)。

(注2) ハザード概要シート

緊急事態等の発生時に、食品安全委員会が把握している科学的知見を取りまとめ、いち早く国民に向けて分かりやすく情報提供することを目的とするものであり、物質の科学的性質等の情報を日本工業規格A列4番(以下「A4サイズ」という。)1~2枚程度にとりまとめたもの。具体的な記載事項は、用途や使用状況等の概要、毒性の程度、国内外での評価状況、分子式等。

(注3)情報整理シート

各ハザードについて、その概要とハザード概要シートを作成する際に使用した引用文献を整理したもの。

2. 調査項目

2.1 調査対象ハザードの選定

農薬、動物用医薬品、食品添加物の各分野については厚生労働省が毎年公表している「輸入食品監視指導計画に基づく監視指導結果」の過去3か年度(平成19年度、平成20年度、平成21年度)の検査内容別の違反事例から、自然毒(植物性自然毒)については厚

生労働省が毎年公表している「食中毒統計」の過去3か年次(平成19年次、平成20年次、平成21年次)の食中毒発生事件事例から、調査対象ハザードを選定した。選定したハザード数を以下に示す。

分野	対象	選定数
農薬	残留農薬に係る違反事例	3 0
動物用医薬品	残留動物用医薬品に係る違反事例	1 3
食品添加物	指定外食品添加物の含有に係る違反事例	2 0
自然毒	食中毒発生事例のうち原因物質が自然毒	1 6
(植物性自然毒)	- 植物性自然毒できのこに関する事件事例	
	(ツキヨダケ、ドクササコ等)	
	食中毒発生事例のうち原因物質が自然毒	1 0
	- 植物性自然毒で高等植物に関する事件事	
	例(アジサイ、トリカブト等)	
自然毒	下痢性貝毒、麻痺性貝毒、記憶喪失性貝毒、	9
(動物性自然毒)	神経性貝毒、アザスピロ酸、フグ毒、シガテ	
	ラ毒、パリトキシン及び関連毒、テトラミン	
かび毒	オクラトキシンA、ステリグマトシスチ	7
	ン、パツリン、ゼアラレノン、T-2 トキシン、	
	HT-2 トキシン、フモニシン	
汚染物質	水銀(総水銀、メチル水銀)、鉛、有機ス	9
	ズ化合物、ダイオキシン類 (注4)、ヒ素、	
	フタル酸エステル、臭素系難燃剤、カルバミ	
	ン酸エチル	

(注4) ダイオキシン類

ダイオキシン類対策特別措置法(平成11年7月16日法律第105 号、最終改正:平成22年5月19日法律第34号)第2条に規定のダイオキシン類のことで、ポリ塩化ジベンゾフラン、ポリ塩化ジベンゾーパラージオキシン、コプラナーポリ塩化ビフェニルをいう。

2.2 専門家の選定

ハザードの各分野(農薬、動物用医薬品、食品添加物、自然毒、かび毒、汚染物質)に 関する有識者であって調査対象ハザードに係るリスク評価及びリスク管理に関する調査・ 研究等に関わった経験を有する専門家を各分野それぞれ2名以上選定した。

2.3 ハザード概要シート(案)等の作成

ハザード概要シート (案) 等の作成を行った。それに合わせて以下を実施した。

※平成22年度食品安全確保総合調査「輸入食品等の摂取等による健康影響に係る緊急時に対応するために実施する 各種ハザード(微生物・ウイルスを除く。)に関する文献調査報告書」より抜粋 (株式会社三菱総合研究所作成)

(1) 文献の収集

情報整理シートに記載すべきデータが記載されている国内外の文献等の収集を行った。

(2) 関連データの抽出・整理

収集した文献から情報整理シートの項目に関連する記述・データを抽出し、主要な文献 ごとに要約を作成した。

(3) 情報整理シートの作成

要約したデータ等を、情報整理シートの該当項目に簡潔に記載し、各専門家による確認を受けた。

(4) データベースの作成

収集した文献について、データベースにとりまとめた。

(5) 概要の作成

特に①ハザード等の概況とヒトに対する健康影響、②汚染防止・リスク低減方法、③リスク評価状況④リスク管理状況について要約を記載し、各専門家による確認を受けた。

(6) ハザード概要シート(案)の作成

抽出、要約したデータからハザード概要シートの原案を作成し、各専門家による確認を 受けた。

なお、ハザード概要シートは、国民に対する情報提供を目的とするものであるため、原 案作成に当たっては、平易な言葉を用い、また国民が得たいと考える情報を正確に提供で きるよう工夫して作成するよう特に留意した。

調査方法についての詳細は、下記 URL を御参照ください。 http://www.fsc.go.jp/sonota/h22mri_houkoku.pdf