「カフェインは危ない?

~コーヒーを科学する~」

コーヒーと疫学

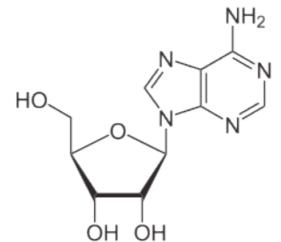
平成26年5月29日 食品安全モニター会議

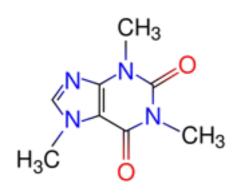
コーヒーの主要成分

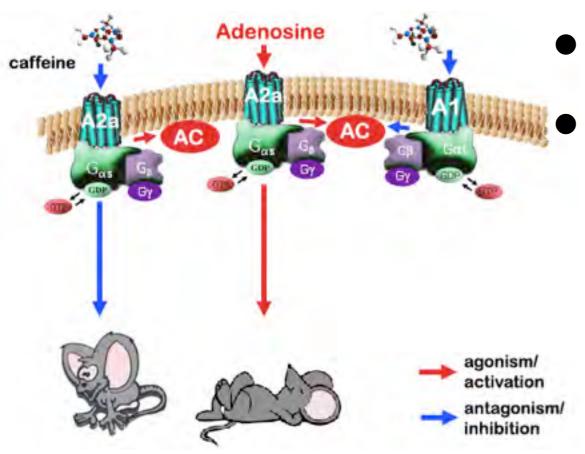
$$H_3C$$
 CH_3
 N
 N
 N
 N
 CH_3

カフェイン (Caffeine)

クロロゲン酸(Chlorogenic acid)


カフェストール (Cafestol)


$$H_3C$$
 H
 OH
 OH


カーウェオール(Kahweol)

カフェインの作用

- アデノシン受容体のアンタゴニスト*
- 薬理作用
 - 覚醒作用
 - 心拍数の増加等



● 生物学的半減期:4-6時間

血漿中濃度: 2-3杯で20-40µmol/L

*拮抗物質、ブロッカーとも呼ぶ。 受容体に結合するが、本来の受容体 に作用する物質(アゴニスト)のよ うな作用はない。

コーヒー中のポリフェノール類(Polyphenols)

クロロゲン酸類(Chlorogenic acids)

ジテルペン類 (Diterpenes)

コーヒーオイル中にある

- ・主なコレステロール上昇作用物質
- ・抽出法によって含量が異なる

コーヒー一杯のカフェストール、 カーウェオール の量と血清コレステロールや中性脂肪の上昇

抽出法	Cafestol (mg/cup)	Kahweol (mg/cup)	Cholesterol (mg/dL)	Triglycerides (mg/dL)
Scandinavian	0.64-9.68	0.8-11.68	7.0	7.16
Turkish/Greek	0.4-8.0	0.08-8.56	8.89	9.12
French press	1.84-4.4	2.08-6.4	8.12	8.46
Espresso	0.16-2.32	0.16-3.12	3.48	3.26
Singapore (Filtered sock)	0.02-0.23	0.01-0.06	0.39	<0.65

I杯I20mlのコーヒーを 一日5杯飲用した時の血清脂質の上昇

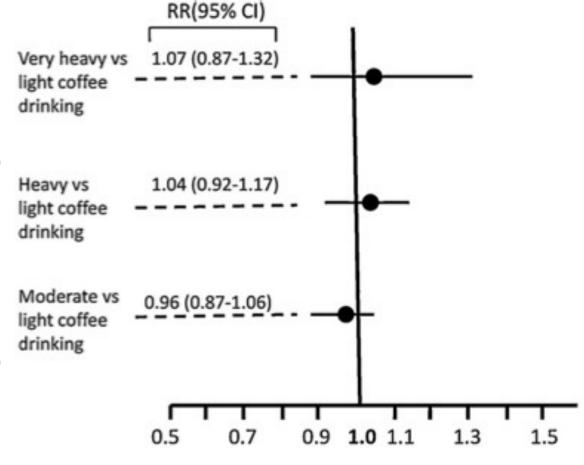
Cano-Marquina et al. 2013(元データは、Naido et al. 2011)

いろいろな飲料中のカフェイン量

	カフェインの量 (液体100g中)	抽出条件
レギュラーコーヒー	0.06g	コーヒー粉末10gを熱湯 150mlで抽出
インスタントコーヒー	0.06g	インスタントコーヒー2gを 熱湯に溶解して140gに調整
紅茶	0.03g	紅茶5gを熱湯360mlで1.5 ~4分抽出
煎茶	0.02g	茶10gを湯(90°C)430ml で1分抽出
ウーロン茶	0.02g	茶15gを湯(90°C)650ml で0.5分抽出

- カフェインの作用、心血管系への影響?
 - 冠動脈疾患
 - 脳卒中
 - 不整脈
 - 心不全
- 近年のレビューでは、全般的には影響無し
 Cano-Marquina et al.2013

• 冠動脈疾患


Cano-Marquina et al.2013

症例対象研究では、影響有り

オッズ比 1.4-1.6程度(5杯/日)

コホート研究では影響 無し

新しい研究では、影響無し。

- 冠動脈疾患*や 脳卒中**において
 - ・コーヒーの習慣的飲用者でない場合、
 - コーヒー飲用後短期間(時間)で
 - 発作の増加
 - *心筋梗塞および**急性虚血性脳卒中

Cano-Marquina et al.2013

- 2型糖尿病
 - RR*の低下: 0.65 (日に6-7杯以上)
 - RR* 相対危険度 (Relative Risk)
- 肝疾患
 - AST, ALT, GGTのレベル減少
 - 肝硬変のリスク低下

Cano-Marquina et al.2013

- パーキンソン病
 - 防御的な作用
- アルツハイマー病
 - カフェイン、クロロゲン酸、その組み合わせが、認知の悪化に防御的に作用
 - 防御的な作用を認めていない研究も
- 骨粗しょう症 ?

コーヒー消費量と前立腺がん

Takahashi, E. 1964

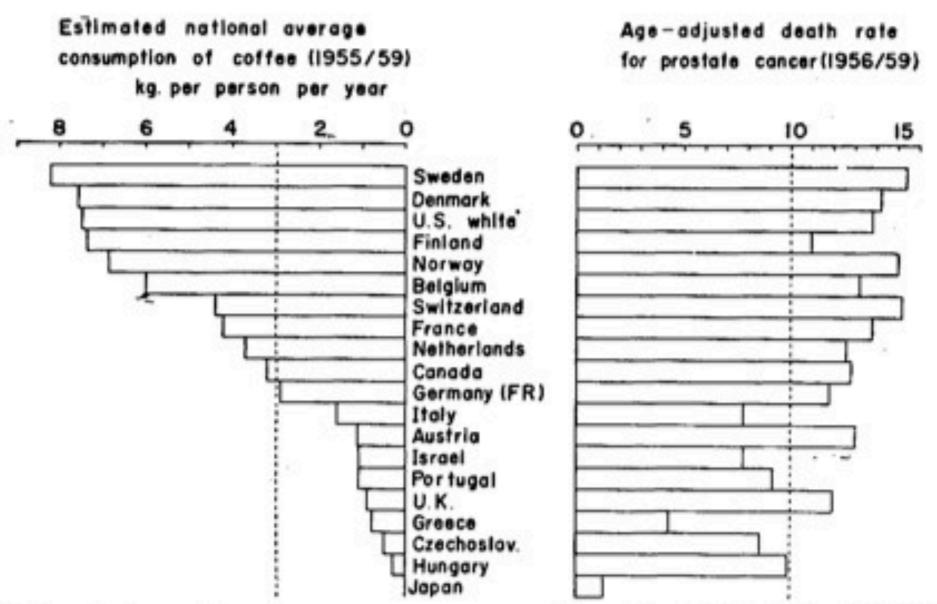


Fig. 1. Estimated national average consumption of coffee and age-adjusted death rate for prostate cancer in 20 countries.

コーヒー消費量と前立腺がん

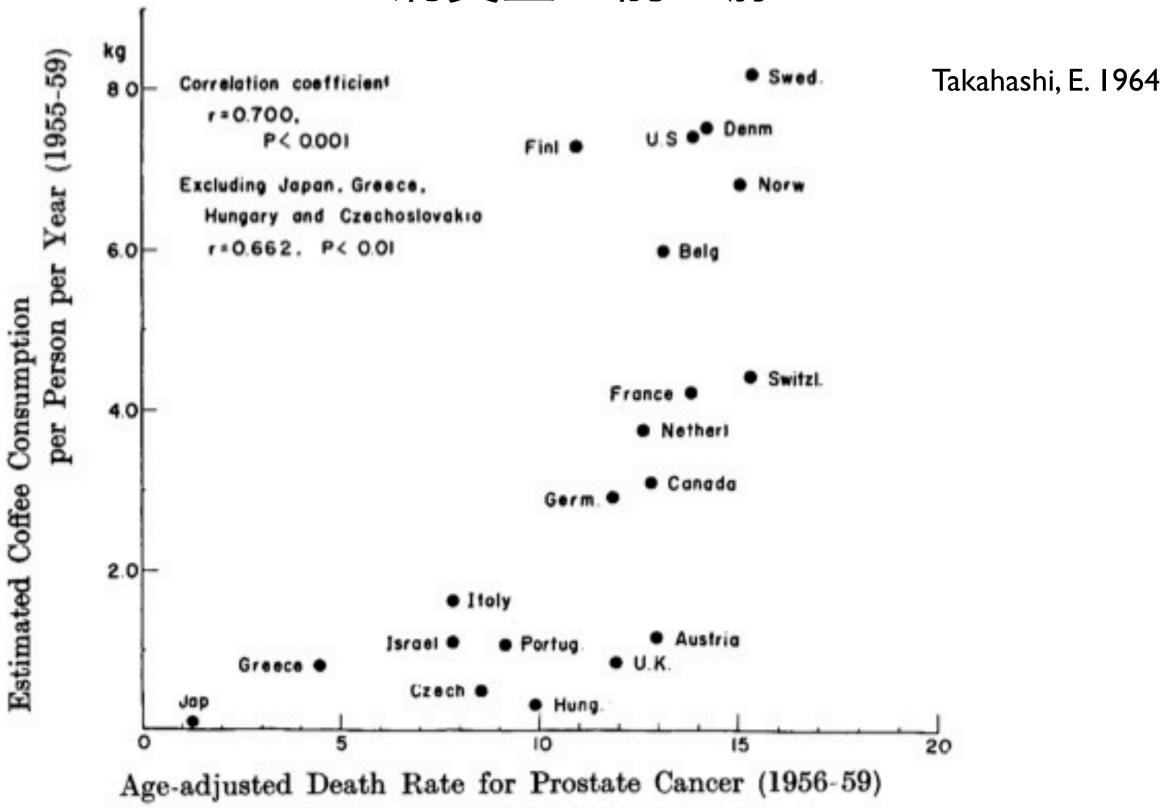


Fig. 2. Correlation diagram between estimated national average consumption of coffee and age-adjusted death rate for prostate cancer by 20 countries.

メタ分析によるがんの相対危険度(Relative Risk)

がんの部位	RRの増減	備考
卵巣	\leftrightarrow	
膵臓	\leftrightarrow , \downarrow	男性では低下
膀胱	↔,↑	症例対照研究では1.49
前立腺	↑	症例対照研究で上昇1.13
結腸直腸	\downarrow , \leftrightarrow	症例対照、コホートで差異
肺	↑	喫煙の影響を完全に排除出来ずI.27
門	\leftrightarrow	
乳房	\leftrightarrow	
肝臓	1	
全部位	—	

疫学の基礎:疫学とは?

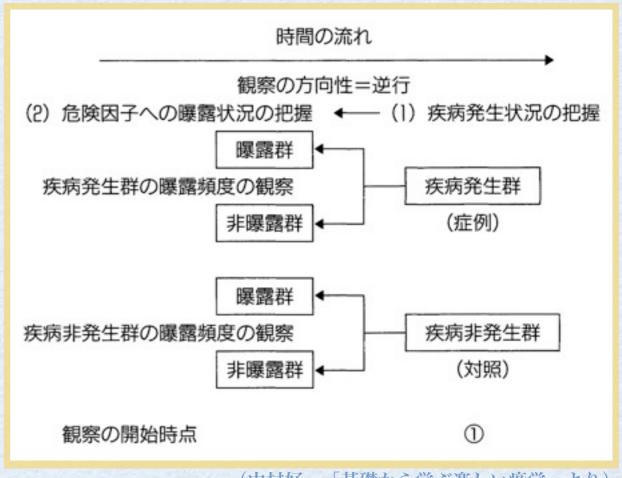
疫学とは

- ・疫=はやり病(感染症、伝染病)
- ・疫学=感染症の流行形式を明らかにする学問
- Epidemiology
 - epi=upon
 - demi=demos (民衆)
 - ology
- ・ 民衆の上(中)で何がおこっているのかを明 らかにする学問

・疫学研究デザインの分類

- I. 観察疫学研究 observational epidemiology
 - a. 記述疫学研究 descriptive studies
 - b. 生態学的研究 ecologic studies
 - c. 横断研究 cross-sectional studies
 - d. コホート研究 cohort studies
 - e. 症例対照研究 case-control studies
- II. 介入疫学研究 interventional epidemiology
- III. メタアナリシス(システマティックレビュー)

- ・コホート研究
 - コホート(一定の人集団)を追跡し、ばく露→疾病発生 (と疾病の自然史)を観察研究
 - ・ばく露情報の妥当性が高い
 - ・疾病情報の妥当性が低い
 - 疾病発生まで時間がかかり 追跡出来ない例がある
 - ・時間、労力、経費がかかる
 - ・頻度が稀な疾患の研究は 不可能
- 時間の流れ 観察の方向性 1) 危険因子への曝露状況の把握 2)疾病発生状況の把握 疾病発生群 曝露群の疾病頻度の観察 疾病非発生群 疾病発牛群 非曝露群の疾病頻度の観察 非曝露群 疾病非発生群 2 1 3 観察の開始時点


(中村好一「基礎から学ぶ楽しい疫学」より)

罹患率0.5-1(対100万)のCJD
 →20万人10年の観察で1-2人の患者

- ·症例対象研究
 - ・疾病発生の有無別に(過去の)ばく露状況を把握
 - コホート研究に比較して時間(経費)がかからずに

実施できる

- ・稀な疾患も研究として成立
- ・ばく露情報の妥当性が低い
- ・罹患率が計算出来ない (寄与危険も計算出来ない)

(中村好一「基礎から学ぶ楽しい疫学」より)

・コホート研究:相対危険度(Relative Risk)

- 曝露群が疾病となるリスクは a/(a+b) で、一方、非曝露群のリスクは c/(c+d)
- RR = $\{a/(a+b)\}/\{c/(c+d)\}$
- もし疾患が稀なものであれば、 (a+b)≒b, (c+d)≒d
- $RR = \{a/b\}/\{c/d\} = ad/bc$

	疾病あり	疾病なし	合 計
曝露あり	a	b	a+b
曝露なし	c	d	c+d

・症例対照研究:オッズ比 (Odds Ratio)

- ・症例の曝露オッズ=a/c
- ・対照の曝露オッズ=b/d
- オッズ比 odds ratio (OR)

$$(a/c) \div (b/d) = ad/bc$$

	症例	対 照	
曝露あり	a	b	
曝露なし	c	d	
合 計	a+c	b+d	

カフェインの毒性(?)

- エネルギードリンク
 - カフェインの含量:60-150mg/缶
 - コーヒー 数杯分
 - ・飲み方に特徴
 - 徹夜、アルコールと一緒に、騒ぎながら
 - 興奮→疲労感の減少・抑制
 - アルコールの作用を覆い隠す
 - 利尿作用→脱水、アルコールとともに飲用で危険
 - アイソトニック飲料やスポーツ飲料とは異なる
- カフェインガム:一個でコーヒー4杯(FDA注意喚起)
- ガラナ豆はコーヒー豆より高カフェイン含量

カフェインは危ない?

- コーヒーの日常的な飲用では、明らかな健康影響は見いだ されない。
- カフェインは、アデノシン受容体のアンタゴニスト
 - 神経系、循環器系の興奮作用
 - 覚醒、心拍数增加、利尿等
- 過剰のカフェインの摂取(エネルギードリンクによる)
 - アルコールとともに、興奮するようなシチュエーション
 - 危険性について注意喚起が行われている
 - スポーツ飲料やアイソトニック飲料とは異なる!

☐ THE MAXIM OF PARACELSUS ☐

すべての物質は毒 である。毒でない ものはない。

"All substances are poisons: there is none which is not poison. The dose differentiates a poison from a remedy."

Paracelsus

量が毒か薬かを 決める。