(案)

農薬評価書

イプロベンホス

2009年3月 食品安全委員会農薬専門調査会

目 次

																									良
0	審	議の)経	緯																 	 	 	 	 	 . 3
0	食	品安	全	委員	会	委	員名	名簿												 	 	 	 	 	 . 3
0	食	品安	全	委員	会	農	薬	專門	門訂	司星	<u></u>	手	專戶	門才	長員	名	簿			 	 	 	 	 	 . 3
0	要	約.																		 	 	 	 	 	 . 5
Ι.	評	価対	象	農連	薬の	概	要													 	 	 	 	 	 . 6
1		用途	<u> </u>																	 	 	 	 	 	 . 6
2	2.	有效	成	分の	D —	般	名													 	 	 	 	 	 . 6
3	3.	化学	名																	 	 	 	 	 	 . 6
4	٠.	分子	式																	 	 	 	 	 	 . 6
5	5.	分子	- 量																	 	 	 	 	 	 . 6
6) .	構造	式																	 	 	 	 	 	 . 6
7	' .	開発	きの	経絲	韋 .															 	 	 	 	 	 . 6
Ⅱ.	安	全性	EIC	係る	る試	験	のホ	既ヲ	更											 	 	 	 	 	 . 7
1		動物	小体	内设	重命	試	験													 	 	 	 	 	 . 7
		(1)	ラ:	ット	٠.														 	 	 	 	 	 . 7
		(2	2)	マヮ	^{ウス}															 	 	 	 	 	 . 9
2	2 .	植物	体	内设	重命	試	験													 	 	 	 	 	 10
3	3.	土壌	中	運台	活命	験														 	 	 	 	 	 11
		(1)	好急	瓦的	湛	水:	土均	襄中	Þΰ	重台	命言	式具	験						 	 	 	 	 	 11
		(2	2)	土均	襄吸	着	試具	験												 	 	 	 	 	 12
4	١.	水中	運	命記	式験	Ì.,														 	 	 	 	 	 12
		(1)	加力	水分	解	試具	験												 	 	 	 	 	 12
		(2	2)	水口	中光	;分	解詞	式馬	倹											 	 	 	 	 	 12
5	5.	土壌	€残	留記	式験	į														 	 	 	 	 	 13
6	.	作物	等	残冒	記試	験														 	 	 	 	 	 13
		(1)	作物	勿残	留	試具	験												 	 	 	 	 	 13
				魚が																					
7	٠.	乳汁	- 移	行訓	式験	į														 	 	 	 	 	 13
8	3.	一般	薬	理訓	式験															 	 	 	 	 	 14
9		急性	毒	性診	式験	į														 	 	 	 	 	 15
		(1)	急怕	生毒	性	試具	験												 	 	 	 	 	 15
		(2	2)	急怕	生遅	発	性右	神糸	圣者	集化	生言	式馬	倹							 	 	 	 	 	 17
1	0	. 眼	₹•	皮膚	事に	対	する	るす	訓湧) 化	<u></u> ይ	支て	<u>ا</u> ال	支膚	与 尼	炸作	性	試	験	 	 	 	 	 	 17
1	1	. 丑	急	性看	集性	試	験													 	 	 	 	 	 18

	(1)90日間亜急性毒性試験(ラット)	18
	(2)90日間亜急性毒性試験/回復試験(ラット)	18
	(3)90日間亜急性毒性試験(マウス)①	18
	(4) 90 日間亜急性毒性試験(マウス)②	19
	(5) 28日間亜急性毒性試験(イヌ)	19
	(6) 90 日間亜急性神経毒性試験(ラット)	19
	1 2.慢性毒性試験及び発がん性試験	20
	(1)1 年間慢性毒性試験(イヌ)	20
	(2)2年間慢性毒性/発がん性併合試験(ラット)	20
	(3)2年間発がん性試験(マウス)	21
	1 3 . 生殖発生毒性試験	21
	(1)2世代繁殖/発生毒性併合試験(ラット)	21
	(2)2世代繁殖試験(ラット)	22
	(3)発生毒性試験(ラット)	22
	(4)発生毒性試験(ウサギ)	23
	1 4 . 遺伝毒性試験	23
	1 5 . その他の試験	25
	(1) <i>in vitro</i> における ChE 活性阻害試験	25
	(2) ChE 活性測定試験 (ヒト)	26
Ш	[食品健康影響評価	27
	別紙 1:代謝物/分解物略称	30
	別紙 2:検査値等略称	31
	別紙 3:作物残留試験成績	32
	参昭	34

<審議の経緯>

1967年 3月 7日 初回農薬登録

2005年 11月 29日 残留農薬基準告示 (参照 1)

2007年 8月 2日 農林水産省より厚生労働省へ基準設定依頼(魚介類)

2007年 12月 18日 厚生労働大臣より残留基準設定に係る食品健康影響評

価について要請(厚生労働省発食安第 1218001 号)、

関係書類の接受 (参照 2~3)

2007年 12月 20日 第 220 回食品安全委員会 (要請事項説明) (参照 5)

2008年 1月28日第11回農薬専門調査会確認評価第三部会(参照6)

2009 年 2月24日第48回農薬専門調査会幹事会(参照7)

2009 年 3月 12日 第 277 回食品安全委員会(報告)

く食品安全委員会委員名簿>

見上 彪(委員長)

小泉直子 (委員長代理)

長尾 拓

野村一正

畑江敬子

廣瀬雅雄

本間清一

く食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士 (座長) 三枝順三 西川秋佳 林 真(座長代理) 佐々木有 布柴達男 代田眞理子 赤池昭紀 根岸友惠 石井康雄 高木篤也 平塚 明 泉 啓介 藤本成明 玉井郁巳 上路雅子 田村廣人 細川正清 津田修治 臼井健二 松本清司 江馬 眞 津田洋幸 柳井徳磨 大澤貫寿 出川雅邦 山崎浩史 長尾哲二 太田敏博 山手丈至 大谷 浩 中澤憲一 與語靖洋 納屋聖人 小澤正吾 吉田 緑 小林裕子 成瀬一郎 若栗 忍

(2008年4月1日から)

鈴木勝士 (座長) 佐々木有 根本信雄 林 真(座長代理) 代田眞理子 平塚 明 高木篤也 相磯成敏 藤本成明 玉井郁巳 赤池昭紀 細川正清 石井康雄 田村廣人 堀本政夫 泉 啓介 松本清司 津田修治 今井田克己 津田洋幸 本間正充 長尾哲二 上路雅子 柳井徳磨 臼井健二 中澤憲一* 山崎浩史 太田敏博 永田 清 山手丈至 大谷 浩 納屋聖人 與語靖洋 小澤正吾 西川秋佳 吉田 緑 若栗 忍 布柴達男 川合是彰 小林裕子 根岸友惠

*: 2009年1月19日まで

要約

有機リン系殺菌剤である「イプロベンホス」(CAS No. 26087-47-8) について、農薬抄録を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット及びマウス)、植物体内運命(水稲)、土壌中運命、水中運命、土壌残留、作物等残留、急性毒性(ラット、マウス、イヌ及びヒヒ)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、イプロベンホス投与による影響は主に ChE 活性阻害及び肝臓に認められた。発がん性、繁殖能に対する影響、催奇形性及び生体において問題となる遺伝毒性は認められなかった。

各試験で得られた無毒性量の最小値は、ラットを用いた 2 年間慢性毒性/発がん性併合試験の $3.54~\rm mg/kg$ 体重/日であったことから、これを根拠として、安全係数 $100~\rm c$ にた $0.035~\rm mg/kg$ 体重/日を一日摂取許容量 (ADI) と設定した。

I. 評価対象農薬の概要

1. 用途

殺菌剤

2. 有効成分の一般名

和名:イプロベンホス

英名: iprobenfos (ISO 名)

3. 化学名

IUPAC

和名:SベンジルO,Oジイソプロピルホスホロチオエート

英名: S-benzyl O, O-diisopropyl phosphorothioate

CAS (No. 26087-47-8)

和名:O,O-ビス(1-メチルエチル)-S-(フェニルメチル)ホスホロチオエー

1

英名: *O,O*-bis(1-methylethyl)-*S*-(phenylmethyl)phosphorothioate

4. 分子式

5. 分子量

 $C_{13}H_{21}O_{3}PS$

288.34

6. 構造式

$$\begin{array}{c}
O\\
CH_2-S
\end{array}
P[OCH(CH_3)_2]_2$$

7. 開発の経緯

イプロベンホスは、クミアイ化学工業株式会社により開発された浸透移行性の有機リン系殺菌剤であり、イネのいもち病等に効果を示す。作用機構はリン脂質生合成阻害と考えられている。2007年までにインド等8カ国で登録が取得されている。

日本では1967年3月7日に初回農薬登録された。今回、魚介類への残留 基準値の設定が申請されている。また、ポジティブリスト制度導入に伴う暫 定基準値が設定されている。

Ⅱ. 安全性に係る試験の概要

農薬抄録(2007年)を基に、毒性に関する主な科学的知見を整理した。 (参照 2)

各種運命試験(Ⅱ.1~4)は、イプロベンホスの硫黄を 35S で標識したも の (35S-イプロベンホス)、ベンゼン環の炭素を均一に 14C で標識したもの ([ben-14C]イプロベンホス) 及び片方のイソプロピル基の 2 位の炭素を 14Cで標識したもの([iso-14C]イプロベンホス)を用いて実施された。放射能濃 度及び代謝物濃度は特に断りがない場合はイプロベンホスに換算した。代謝 物/分解物略称及び検査値等略称は別紙1及び2に示されている。

1. 動物体内運命試験

(1) ラット

① 吸収

a. 吸収率

排泄試験[1.(1)4]より得られた投与後24時間の尿中排泄率が総投 与放射能(TAR)の85%であったことから、吸収率は85%以上である と考えられた。(参照2)

b. 血中濃度推移

Wistar ラット (- 群雄 3 匹) に ^{35}S -イプロベンホス及び非標識イプ ロベンホスを混合して 50 mg/kg 体重1で単回経口投与し、血中濃度推 移について検討された。

血漿中放射能濃度推移は表1に示されている。

イプロベンホスの吸収は速やかであり、血漿中放射能は投与6時間 後に最高濃度 (C_{max}) に達し、消失半減期 $(T_{1/2})$ は 12 時間以内であ った。(参照2)

表 1 血漿中放射能濃度推移 投与量(mg/kg 体重) 50 Tmax (時間) 6

 C_{max} ($\mu g/mL$) 48.8* T_{1/2} (時間) 12 以内

*:計算值

1 [1. (1)]において 50 mg/kg 体重は、 35 S-イプロベンホス 78 mg 及び非標識イプロベン ホス 222 mg をオリーブ油 30 mL に混合し、その 1 mL (50 mg/kg 体重相当) がラット に投与された。

② 分布

Wistar ラット (一群雄 3 匹) に 35 S-イプロベンホス及び非標識イプロベンホスを混合して 50 mg/kg 体重で単回経口投与し、体内分布試験が実施された。

投与3時間後において放射能は、肝臓(1.0%TAR)、血漿(0.5%TAR)、腎臓(0.3%TAR)、精巣(0.07%TAR)、肺(0.06%TAR)、脳(0.05%TAR)等に多く分布した。残留放射能濃度は投与3または6時間後に最大値を示し、血漿中濃度の減少とともに経時的に減少した。(参照2)

③ 代謝物同定・定量

Wistar ラット (一群雄 3 匹) 35 S-イプロベンホス及び非標識イプロベンホスを混合して 50 mg/kg 体重で単回経口投与し、代謝物同定・定量試験が実施された。

投与放射能の大部分は尿中に排泄されるので、尿を試料として試験が 実施された。尿中に排泄された放射能のうち、水溶性画分からは総残留 放射能(TRR)の 99%、トルエン可溶性画分中からは 1%TRR 認められ た。水溶性画分中残留放射能の 54.0%が B、21.1%が D、14.3%が E で あった。また、トルエン可溶性画分中残留放射能の 31.7%が親化合物、 その他に数種類の未同定代謝物が認められた。

イプロベンホスの主要代謝経路は、ベンジル基の脱離による B、イソプロピル基の脱離による D及びリン酸の分解による Eの生成であると推定された。(参照 2)

4 排泄

Wistar ラット (一群雄 3 匹) に 35 S-イプロベンホス及び非標識イプロベンホスを混合して 50 mg/kg 体重で単回経口投与し、排泄試験が実施された。

尿及び糞中排泄率は表 2 に示されている。

排泄は投与後 24 時間でほぼ完了し、放射能の大部分は尿中に排泄された。(参照 2)

投与量	50 mg/kg 体重								
投与後6時間	尿	40							
投予後 0 时间	糞	2							
投与後 24 時間	尿	85							
1文子後 24 时间	糞	9							

表 2 尿及び糞中排泄率 (%TAR)

(2) マウス

① 吸収

a. 吸収率

排泄試験[1.(2)③]より得られた投与後24時間の尿中排泄率が67% TARであったことから、吸収率は67%以上であると考えられた。(参照2)

b. 血中濃度推移

ddY マウス (一群雄 3 匹) に ^{35}S -イプロベンホス及び非標識イプロベンホスを混合して 200 mg/kg 体重 2 で単回経口投与し、血中濃度推移について検討された。

マウスにおける血漿中放射能濃度推移は表 3 に示されている。

イプロベンホスの吸収は速やかであり、血漿中放射能は投与3時間後に最高濃度に達し、 $T_{1/2}$ は8時間以内と推定された。(参照2)

 投与量 (mg/kg 体重)
 200

 T_{max} (時間)
 3

 C_{max} (μg/mL)
 1.2*

 T_{1/2} (時間)
 8 以内

表 3 血漿中放射能濃度推移

2 分布

ddY マウス (一群雄 3 匹) に ^{35}S -イプロベンホス及び非標識イプロベンホスを混合して 200 mg/kg 体重で単回経口投与し、体内分布試験が実施された。

投与 3 時間後において放射能は、腎臓(0.4%TAR)、肝臓(0.39%TAR)、肺(0.04%TAR)、血漿(0.03%TAR)、精巣(0.02%TAR) に分布し、その他の臓器では低かった。(参照 2)

③ 排泄

ddY マウス (一群雄 3 匹) に ^{35}S -イプロベンホス及び非標識イプロベンホスを混合して 200 mg/kg 体重で単回経口投与し、排泄試験が実施された。

尿及び糞中排泄率は表4に示されている。

^{*:} 計算值

 $^{^2}$ [1. (2)] において 200 mg/kg 体重は、 ^{35}S -イプロベンホス 78 mg 及び非標識イプロベンホス 42 mg をオリーブ油 15 mL に混合し、その 0.5 mL (200 mg/kg 体重相当) がマウスに投与された。

排泄は 24 時間でほぼ完了し、放射能の大部分は尿中に排泄され、糞中への排泄はわずかであった。(参照 2)

ス →								
投与量		200 mg/kg 体重						
投与後6時間	尿	40						
仅子饭 0 时间	糞	12						
投与後 24 時間	尿	67						
汉子饭 24 时间	糞	12						

表 4 尿及び糞中排泄率(%TAR)

2. 植物体内運命試験

[ben-14C]イプロベンホスまたは[iso-14C]イプロベンホスを粒剤として混合調製し、8.6 kg ai/ha となるように水稲(系統: Japonica)の出穂 7 日前に水面施用、もしくは[ben-14C]イプロベンホスを DL 粉剤として混合調製し、1.2 kg ai/ha となるように慣行収穫期 21 日前に水稲体に散布し、イプロベンホスの水稲における植物体内運命試験が実施された。

水稲試料中の放射能濃度は表 5、水稲試料中の代謝物は表 6 に示されている3。

[ben- 14 C]イプロベンホス及び[iso- 14 C]イプロベンホス粒剤処理区では、処理 21 日後の全放射能濃度は茎葉部と根部で類似していたが、登熟期の稲わら以外の試料中残留放射能は、[ben- 14 C]イプロベンホス粒剤処理区の方が低かった。DL 粉剤処理区における放射能濃度は、いずれの試料も粒剤処理区試料から得られた値よりもはるかに低かった。残留放射能は主に稲わらで多く検出された。

可食部となる玄米中からは、 $[ben^{-14}C]$ イプロベンホス粒剤処理区ではG、 $[ben^{-14}C]$ イプロベンホス DL 粉剤処理区では親化合物、 $[iso^{-14}C]$ イプロベンホス DL 粉剤処理区ではC が最も多く認められた。茎葉部及び根部からは親化合物が最も多く認められ、稲わら及びもみ殼からは親化合物、分子量が182 の未同定代謝物 MW182、C 等が多く認められた。

イプロベンホスの水稲中における主要代謝経路は、S-ベンジル基メチレンの酸化により不安定な中間体が生成され、中間体が B 及び F に開裂後、Bの酸化により C が生成、F の水酸化により G が生成される経路であると推定された。 (参照 2)

10

 $^{^3}$ 表 5 及び 6 共通:玄米、稲わら及びもみ殼は、 $[ben^{-14}C]$ イプロベンホス粒剤及び $[iso^{-14}C]$ イプロベンホス粒剤処理区では処理 69 日後、 $[ben^{-14}C]$ イプロベンホス 12 DL 粉剤処理区では処理 12 21 日後に収穫された。茎葉部及び根部はいずれの処理区においても処理 12 日後に収穫された。

表 5 水稲試料中の放射能濃度 (mg/kg)

標識体	[ben-14C]イフ	プロベンホス	[iso-14C]イプロベンホス
処理量	8.6 kg ai/ha (粒剤)	1.2 kg ai/ha (DL 粉剤)	8.6 kg ai/ha (粒剤)
茎葉部	39.3		33.9
根部	9.77		7.54
玄米	2.67	0.09	14.0
稲わら	54.5	5.55	61.7
もみ殻	17.1	1.14	51.0

表 6 水稲試料中の代謝物 (%TRR)

標識体	[ben-14C]イフ	プロベンホス	[iso-14C]イプロベンホス
処理量	8.6 kg ai/ha (粒剤)	1.2 kg ai/ha (DL 粉剤)	8.6 kg ai/ha (粒剤)
茎葉部	親化合物(30.8)、F(13.9)、 MW182(6.6)、D(6.5)、 E(6.0)、G(3.9)		親化合物 (35.7)、C (29.7)、 B (9.8)、D (1.7)
根部	親化合物 (34.4)、F(12.4)、 MW182 (3.9)、D (6.1)、 E (1.0)		親化合物 (73.2)、C (3.8)、 B (3.4)、D (0.7)
玄米	G (25.1)、D (6.4)、親化 合物 (0.7)	親化合物(33.3)、G(22.2)、 F(11.1)、E(7.8)	C (79.4)、B (9.4)、親化 合物 (2.2)
稲わら	親化合物 (16.3)、MW182 (21.8)、F(8.0)、D(7.2)、	親化合物 (27.4)、D (6.1)、 G (5.2)、F (4.1)	C(19.3)、親化合物(13.2)、 D(2.5)、B(2.1)
もみ殻	MW182 (10.5)、親化合物 (7.3)、G (5.8)、D (5.6)、 F (4.0)	親化合物 (39.4)、F (5.3)、 G (3.5)、D (2.6)、E (2.6)	C (73.7)、親化合物 (1.4)、 B (0.7)、D (0.5)

3. 土壌中運命試験

(1) 好気的湛水土壤中運命試験

[ben-14C]イプロベンホスまたは[iso-14C]イプロベンホスをシルト質埴土 (静岡) に乾土あたり 8.5 mg/kg (8.5 kg ai/ha 相当量) となるようにそれぞれ添加し、約 25 の暗条件下で 6 カ月間インキュベートする好気的湛水土壌中運命試験が実施された。

イプロベンホスは好気的湛水条件下で比較的緩やかに分解され、2 種類の速度式で算出された推定半減期は 165~201 日 (一次速度式)及び 160~189 日 (Gustafson 式)であった。主要分解物はJであり、処理90

日後で総処理放射能(TAR)の 17.2%、184 日後で 18.2%検出された。その他に処理 184 日後で C が 2.9%TAR、D 及び I が 1%TAR 未満検出された。結合性残留物が比較的多く、処理 184 日後の $[ben^{-14}C]$ イプロベンホス処理区で 26.8%TAR、 $[iso^{-14}C]$ イプロベンホス処理区で 11.5%TAR 検出された。その大部分はフミン画分に分布していた。

好気的湛水土壌中におけるイプロベンホスの主要分解経路は、ベンジルエステルの加水分解により生じたイソプロピルチオリン酸からJの生成、また、ベンジルラジカルの開裂及びアルキル基の分解により最終的にはCO₂にまで分解される経路であると推定された。(参照2)

(2)土壤吸着試験

4種類の国内土壌 [砂壌土 (群馬)、埴壌土 (茨城及び静岡)、壌質砂土 (静岡)] を用いて、土壌吸着試験が実施された。

Freundlich の吸着係数 Kads は 1.18~10.6、有機炭素含有率により補正した吸着係数 Koc は 247~580 であった。(参照 2)

4. 水中運命試験

(1)加水分解試験

[ben-14C]イプロベンホスを pH 4 (クエン酸緩衝液)、pH 7 (リン酸緩衝液) 及び pH 9 (ホウ酸緩衝液) の各緩衝液に 5 mg/L となるように添加し、25℃で 32 日間インキュベートし、加水分解試験が実施された。各緩衝液中におけるイプロベンホスの残存率は、処理 32 日後で $90.1\sim91.3\%$ TAR であり、推定半減期は $207\sim209$ 日であった。分解物として D が $8.9\sim9.7\%$ TAR 生成し、pH による差はほとんど認められなかった。

イプロベンホスの加水分解経路は、リン酸部分のエステル基が水分子 (あるいは水酸化物イオン)で求核的に置換されて D を生成するが、本 条件下では大部分が安定と考えられた。(参照 2)

(2)水中光分解試験

[ben-¹⁴C]イプロベンホスを滅菌蒸留水(pH 5.7)及び滅菌自然水(河川水、静岡、pH 7.8)に 5 mg/L の用量で添加し、25℃でキセノンアークランプ光(光強度:51.5 W/m²、測定波長:300~400 nm)を 120 時間照射し、水中光分解試験が実施された。

イプロベンホスの推定半減期は、滅菌蒸留水で 770 時間、滅菌自然水では 154 時間、東京における春の太陽光下での推定半減期に換算すると、それぞれ 213 日及び 42.4 日であった。分解物として、120 時間後に K が 4.6~7.8%TAR、その他 L、M、N 及び O がいずれも 2.3%TAR 未満検出

された。

イプロベンホスの水中光分解経路は、C-S 結合の開裂により K が生成した後、ベンゼン環の水酸化またはアルコール部位の酸化を受けると推定された。(参照 2)

5. 土壤残留試験

沖積土・埴壌土①及び②(静岡)、沖積土・壌土(兵庫)、火山灰土・軽埴土 (茨城)及び沖積土・砂質埴土(高知)を用いた土壌残留試験が実施された。 結果は表7に示されている。(参照2)

試験 (水田状態)	濃度	土壌	推定半減期(日)
		沖積土・埴壌土①	15
圃場試験	8.5 kg ai/ha	沖積土・壌土	15
四 勿 时 次	2回散布	火山灰土・軽埴土	<7
		沖積土・砂質埴土	<7
	51 mg/kg	沖積土・埴壌土②	28
容器内試験	10.0 //	沖積土・砂質埴土	≥90
	10.0 mg/kg	火山灰土・軽埴土	14~30

表 7 土壤残留試験成績(推定半減期)

6. 作物等残留試験

(1)作物残留試験

水稲を用いてイプロベンホスを分析対象化合物とした作物残留試験が 実施された。結果は別紙 3 に示されている。イプロベンホスの玄米にお ける最高値は、粒剤施用区の最終散布 27 日後に収穫した試料の 0.165 mg/kg、稲わらにおける最高値は、最終処理 30 日後(箱施用 1 回及び田 面水施用 2 回処理後)に収穫した試料の 32.0 mg/kg であった。(参照 2)

(2) 魚介類における最大推定残留値

イプロベンホスの公共用水域における予測濃度である水産動植物被害 予測濃度(水産 PEC)及び生物濃縮係数 (BCF) を基に、魚介類の最大 推定残留値が算出された。

イプロベンホスの水産 PEC は $4.2~\mu g/L$ 、BCF は 14 (試験魚種: コイ)、 魚介類における最大推定残留値は 0.29~m g/k g であった。(参照 4)

7. 乳汁移行試験

ホルスタイン種乳牛 (1 群 2 頭) にイプロベンホスを 14 日間混餌 (0、52.5 及び 525 mg/頭/日) 投与し、乳汁移行試験が実施された。投与開始 0、

[※]容器内試験で純品、圃場試験では粒剤(17.0%)を使用

1、3、7及び14日、投与終了3及び7日後の乳汁が分析された。 投与開始日から投与終了7日後まで、搾乳した試料中イプロベンホスは すべて定量限界未満(0.0025 mg/kg 未満)であった。(参照2)

8. 一般薬理試験

マウス、ウサギ、モルモット及びラットを用いた一般薬理試験が実施された。結果は表8に示されている。(参照2)

表 8 一般薬理試験概要

痯	は験の種類	動物種	動物数 /群	投 与 量 (mg/kg 体 重) (投与経路)	最大 無作用量 (mg/kg 体重)	最小 作用量 (mg/kg 体重)	結果の概要			
中枢	一般状態 (Irwin 法)	ICR マウス	雄 10	100、300、1,000 (経口)	300	1,000	よろめき歩行、流涎(投与 後30分には回復)			
神経系	自発運動量	ICR マウス	雄 10	100、300、1,000 (経口)	300	1,000	10 分後に有意な低下、140 分後に有意な上昇がみら れた。			
呼吸器系	呼呼 呼吸血拍電 車な Adrの 上対及 影響	日本白サギ	雄 5	0.2、1、5、25 (静脈内注射)	0.2	1	呼吸数:1 mg/kg 体重投与群で型性増加、5 mg/kg 体重投与群で増加。 呼吸振幅:5 mg/kg 体重以上投与群で増加。 呼吸振幅:5 mg/kg 体重以上投与群で一過性減少。 血圧:5 mg/kg 体重投与群で一過性下降、25 mg/kg 体重投与群で復。 心拍数:5 mg/kg 体重以上投与群で一過性減少。 心電図:25 mg/kg 体重以上投与群で一過性減少。 心電図:25 mg/kg 体重がな R-R間の延長。 ACh 及び Adr 反応への影響なし。			
平滑	摘出回腸	Hartley モルモッ ト	雄 5~6	$1 \times 10^{-6} \sim$ $3 \times 10^{-4} \text{ g/mL}$ (in vitro)	1×10 ⁻⁶ g/mL	1×10^{-5} g/mL	ACh 及び His による収縮 へ抑制的に作用。			
筋	摘出子宮	Wistar ラット	雌 5~6	$1 \times 10^{-6} \sim$ $3 \times 10^{-4} \text{ g/mL}$ (in vitro)	1×10^{-6} g/mL	1×10 ⁻⁵ g/mL	ACh 及び His による収縮 へ抑制的に作用。			
肝機能	BSP 排泄能	Wistar ラット	雄 10	30、100、300 (経口)	100	300	300 mg/kg 体重投与群で BSP 排泄抑制がみられた。			

[※]投与溶媒は 0.5%CMC 生理食塩水液を用いた。

9. 急性毒性試験

(1)急性毒性試験

イプロベンホス (原体) を用いた急性毒性試験が実施された。結果は表9に示されている。(参照2)

表 9 急性毒性試験概要 (原体)

投与	#1 #J **	LD ₅₀ (mg	/kg 体重)	حال ملی
経路	動物種	雄	雌	症状
経口	SD ラット 雌雄各 10 匹	790	640	動作緩慢、腹臥、呼吸促迫、挙尾、痙攣、 流涙を伴う眼瞼閉鎖、立毛(症状はすべ て投与後 4 日には回復) 518 mg/kg 体重以上投与群の雄及び 622 mg/kg 体重/日以上投与群の雌で死亡例
	ddY マウス 雌雄各 10 匹	1,280	1,140	振戦、沈静、脱水様症状(症状はすべて 投与後2日には回復) 1,000 mg/kg 体重以上投与群の雄及び 900 mg/kg 体重以上投与群の雌で死亡例
	ddY マウス 雌雄各 10 匹	2,780	3,200	動作緩慢、腹臥、呼吸促迫、挙尾、痙攣、 眼球周囲出血、流涙を伴う眼瞼閉鎖、立 毛(症状はすべて投与後4日には回復) 雌雄とも2,200 mg/kg 体重以上投与群で 死亡例
	ddY マウス 雌雄各 10 匹	2,860	2,600	動作緩慢、腹臥、呼吸促迫、挙尾、痙攣、 眼球周囲出血、流涙を伴う眼瞼閉鎖、立 毛(症状はすべて投与後 6 日には回復) 1,690 mg/kg 体重以上投与群の雄及び 2,200 mg/kg 体重/日以上投与群の雌で死 亡例
	ICR マウス 雌雄各 10 匹	2,800	3,450	動作緩慢、腹臥、呼吸促迫、挙尾、痙攣、 眼球周囲出血、流涙を伴う眼瞼閉鎖、立 毛(症状はすべて投与後6日には回復) 1,690 mg/kg 体重以上投与群の雄及び 2,200 mg/kg 体重/日以上投与群の雌で死 亡例
	C3H/He マウス 雌雄各 10 匹	1,710	1,950	動作緩慢、腹臥、呼吸促迫、挙尾、痙攣、 眼球周囲出血、流涙を伴う眼瞼閉鎖、立 毛(症状はすべて投与後3日には回復) 769 mg/kg 体重以上投与群の雄及び 1,000 mg/kg 体重/日以上投与群の雌で死 亡例

	ビーグル犬 雌雄各 1 匹	>800	>800	800 mg/kg 体重投与群の雄及び 200 mg/kg 体重以上投与群の雌で低体重全投与群の雌雄で血清及び血漿 ChE活性が投与 1 時間後に大きく阻害された。 24 時間後以降回復傾向がみられたが、96 時間でも全快はしなかった。
	ヒヒ 雌雄各 1 匹	>200	>200	血清及び血漿 ChE活性が投与後に大きく阻害されたが 7日以内に正常値まで回復した。 200 mg/kg 体重投与群の雌雄で嘔吐(投与後 18 時間には回復) 死亡例なし
経皮	Wistar ラット 雌雄各 10 匹	>1,000	>1,000	立毛、眼脂、眼瞼出血(症状はすべて投 与後4日には回復) 死亡例なし
	SD ラット 雌雄各 5 匹	>4,000	>4,000	症状及び死亡例なし
取台 P 亦	Wistarラット 雌雄各 10 匹	594	220	痙攣、立毛、牙関緊急様相(症状はすべて投与後3日には回復) 220 mg/kg 体重以上投与群の雌雄で死亡例
腹腔	ddY-S マウス 雌雄各 10 匹	390	335	痙攣、チェーンストーク呼吸、立毛(症状はすべて投与後1日には回復) 286 mg/kg 体重以上投与群の雌雄で死亡例
皮下	Wistar ラット 雌雄各 10 匹	769	525	脱力、自発運動低下、沈鬱、間欠的痙攣 (症状はすべて投与後2日には回復) 769 mg/kg 体重以上投与群の雄及び591 mg/kg 体重以上投与群の雌で死亡例
	ddY-S マウス 雌雄各 10 匹	1,760	1,590	立毛、流涙、呼吸促迫(症状はすべて投 与後 2 日には回復) 1,300 mg/kg 体重以上投与群の雌雄で死 亡例
吸入 (全身)	SD ラット 雌雄各 5 匹	LC ₅₀ ()	0.34	呼吸抑制、睡眠/昏睡、運動低下、立毛、 行動抑制、弓なり姿勢、被毛のみだれ、 うずくまり、振戦、衰弱、あえぎ(症状 はすべて投与後 13 日には回復) 0.51 mg/L 以上暴露群の雄で死亡例、雌 では死亡例なし
吸入 (鼻部)	SD ラット 雌雄各 5 匹	LC ₅₀ ()	mg/L) >5.15	自発運動低下、鼻汁、流涎、ラッセル音 (症状はすべて投与後 6 日には回復) 死亡例なし

イプロベンホスの代謝物 B、D、E 及び J を用いた急性毒性試験が実施された。結果は表 10 に示されている。(参照 2)

検体	投与経路	動物種	LD ₅₀ (mg	/kg 体重)	症状	
1974	仅分胜的	野月707年	雄	雌		
В		Wistar ラット 雌雄各 10 匹	>1,000	>2,000	うずくまり、自発運動低下、 立毛、呼吸促迫、下痢、鼻出 血、削痩(症状の消失時間不 明)	
					1,000 mg/kg 体重以上投与群 の雌雄で死亡例	
D		Wistar ラット 雌雄各 10 匹	>1,000	>1,000	自発運動低下(投与後 1 時間 には回復)	
					死亡例なし	
E	経口	Wistar ラット 雌雄各 10 匹	>1,000	>1,000	うずくまり(投与後1時間に は回復)	
					死亡例なし	
J		SD ラット 雌 3 匹		>300	立毛、不規則呼吸、浅速呼吸、 自発運動低下、振戦、痙攣、 瞳孔反射消失、鼻汁、横臥位、 流涙、口周囲の汚れ、体温下 降	
					2,000 mg/kg 体重投与群で死 亡例	

表 10 急性毒性試験概要 (代謝物)

(2) 急性遅発性神経毒性試験

ニワトリ (一群雌 10 匹) を用いた単回強制経口 (原体:0、80、160 及び320 mg/kg 体重、投与21日後の生存動物には、再度同じ用量で投与を実施) 投与による急性遅発性神経毒性試験が実施された。

本試験において、320 mg/kg 体重投与群で嗜眠、意気消沈、流涎及び汚褥、160 mg/kg 体重以上投与群で体重増加抑制が認められたが、急性遅発性神経毒性に関連した毒性所見は認められなかった。(参照 2)

10. 眼・皮膚に対する刺激性及び皮膚感作性試験

日本白色種ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。眼粘膜に対し、極軽度の刺激性が認められたが、皮膚に対する刺激性は認められなかった。(参照 2)

Hartley モルモットを用いた皮膚感作性試験 (Maximization 法) が実施され、中程度の皮膚感作性が認められた。(参照 2)

11. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

Wistar ラット (一群雌雄各 25 匹)を用いた混餌 (原体:0、50、100 及び 500 ppm) 投与による 90 日間亜急性毒性試験が実施された。

100 ppm 以上投与群の雌雄で血漿 ChE 活性阻害が認められたが、明らかな毒性を示すものではなかった。

本試験において、投与に関連した毒性所見が認められなかったことから、 無毒性量は雌雄とも本試験の最高用量 500 ppm (雄: 47.5 mg/kg 体重/ 日、雌: 54.6 mg/kg 体重/日) であると考えられた。(参照 2)

(2)90日間亜急性毒性試験/回復試験(ラット)

SD ラット(一群雌雄各 20 匹)を用いた混餌(原体:0、5、10、50、200 及び 1,000 ppm) 投与による 90 日間亜急性毒性試験が実施された。また投与期間終了後、各群の雌雄 10 匹について 4 週間休薬させ、回復試験も併せて実施された。

200 ppm 以上投与群の雌で血漿 ChE 活性阻害が認められたが、回復試験終了後には、対照群と同等の値にまで回復した。

本試験において、200 ppm 以上投与群の雄で ALT 増加、1,000 ppm 投与群の雌で体重増加抑制が認められたことから、無毒性量は雄で 50 ppm (4.4 mg/kg 体重/日)、雌で 200 ppm (17.2 mg/kg 体重/日) であると考えられた。(参照 2)

(3)90日間亜急性毒性試験(マウス)①

ddY-S マウス (一群雌雄各 40 匹) を用いた混餌 (原体:0、5、10、50、200 及び1,000 ppm) 投与による 90 日間亜急性毒性試験が実施された。 各投与群で認められた毒性所見は表 11 に示されている。

50 ppm 以上投与群の雌雄で血漿 ChE 活性阻害が認められたが、明らかな毒性を示すものではなかった。

本試験において、1,000 ppm 投与群の雌雄で脳 ChE 活性阻害(20%以上)等が認められたことから、無毒性量は雌雄とも 200 ppm(雄:38.7 mg/kg 体重/日、雌:37.0 mg/kg 体重/日)であると考えられた。(参照 2)

投与群雄雌1,000 ppm・脳 ChE 活性阻害 (20%以上)
・肝細胞空胞化
・腎蛋白円柱
・脾ヘモジデリン沈着
・副腎髄質周辺細胞空胞化
・副腎髄質周辺細胞空胞化・脳 ChE 活性阻害 (20%以上)
・肝細胞空胞化
・腎蛋白円柱
・脾ヘモジデリン沈着
・副腎髄質周辺細胞空胞化200 ppm 以下毒性所見なし毒性所見なし

表 11 90日間亜急性毒性試験(マウス)①で認められた毒性所見

(4)90日間亜急性毒性試験(マウス)②

ICR マウス (一群雌雄各 20 匹) を用いた混餌 (原体:0、5、10、50、200 及び1,000 ppm) 投与による 90 日間亜急性毒性試験が実施された。 各投与群で認められた毒性所見は表 12 に示されている。

200 ppm 以上投与群の雌雄で血漿 ChE 活性阻害が認められたが、明らかな毒性を示すものではなかった。

本試験において、1,000 ppm 投与群の雌雄で Hb 減少等が認められたことから、無毒性量は雌雄とも 200 ppm (雄: 33.7 mg/kg 体重/日、雌: 29.4 mg/kg 体重/日)であると考えられた。(参照 2)

表 12 90 日間亜急性毒性試験(マウス)②で認められた毒性所見

投与群	雄	雌
1,000 ppm	・Hb 減少、RBC 減少傾向 ・AST 増加 ・尿 pH 増加	・Hb 減少 ・AST 増加
200 ppm 以下	毒性所見なし	毒性所見なし

(5) 28 日間亜急性毒性試験 (イヌ)

ビーグル犬 (一群雌雄各 3 匹) を用いたカプセル経口 (原体:0、0.05、0.1、1.0 及び 10 mg/kg 体重/日) 投与による 28 日間亜急性毒性試験が実施された。

1.0 mg/kg 体重/日以上投与群の雌雄で血漿 ChE 活性阻害が認められたが、明らかな毒性を示すものではなかった。

本試験において、投与に関連した毒性所見が認められなかったことから、 無毒性量は雌雄とも本試験の最高用量 10~mg/kg 体重/日であると考えられた。(参照 2)

(6)90日間亜急性神経毒性試験(ラット)

SD ラット(一群雌雄各 10 匹)を用いた混餌(原体:0、50、200 及び1,000 ppm) 投与による 90 日間亜急性神経毒性試験が実施された。

各投与群で認められた毒性所見は表 13 に示されている。

本試験において、1,000 ppm 投与群の雌雄で体重増加抑制等が認められたことから、無毒性量は雌雄とも 200 ppm (雄:15 mg/kg 体重/日、雌:17 mg/kg 体重/日)であると考えられた。(参照 2)

表 13 90 日間亜急性神経毒性試験 (ラット) で認められた毒性所見

投与群	雄	此隹
1,000 ppm	・体重増加抑制 ・摂餌量及び食餌効率低下 ・総運動量、漸近的総運動量 及び歩行運動量減少 ・驚愕反射亢進	・体重増加抑制 ・摂餌量及び食餌効率低下 ・驚愕反射亢進傾向
200 ppm 以下	毒性所見なし	毒性所見なし

12. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、0.1、1.0 及び 10 mg/kg 体重/日)投与による 1 年間慢性毒性試験が実施された。

1.0 mg/kg 体重/日以上投与群の雌雄で血漿 ChE 活性阻害が認められたが、明らかな毒性を示すものではなかった。

本試験において、投与に関連した毒性所見が認められなかったことから、 無毒性量は雌雄とも本試験の最高用量 10 mg/kg 体重/日であると考えら れた。(参照 2)

(2)2年間慢性毒性/発がん性併合試験(ラット)

SD ラット(一群雌雄各 56 匹)を用いた混餌(原体:0、1、10、100 及び1,000 ppm) 投与による2年間慢性毒性/発がん性併合試験が実施された。

各投与群で認められた毒性所見は表 14 に示されている。

10 ppm 以上投与群の雄及び 100 ppm 以上投与群の雌雄で血漿 ChE 活性阻害が認められたが、明らかな毒性を示すものではなかった。

本試験において、1,000 ppm 投与群の雌雄で赤血球及び脳 ChE 活性阻害(20%以上)等が認められたことから、無毒性量は雌雄とも 100 ppm (雄:3.54 mg/kg 体重/日、雌:4.35 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 2)

表 14 2年間慢性毒性/発がん性併合試験 (ラット) で認められた毒性所見

投与群	雄	雌
1,000 ppm	・体重増加抑制・摂餌量減少・BUN 増加・赤血球及び脳 ChE 活性阻害 (20%以上)	・体重増加抑制 ・摂餌量減少 ・赤血球及び脳 ChE 活性阻害 (20%以上)
100 ppm以下	毒性所見なし	毒性所見なし

(3)2年間発がん性試験(マウス)

ICR マウス (一群雌雄各 56 匹) を用いた混餌 (原体:0、1、10、100 及び 3,000 ppm) 投与による 2 年間発がん性試験が実施された。

各投与群で認められた毒性所見は表 15 に示されている。

10 ppm 以上投与群の雄及び 100 ppm 以上投与群の雌雄で血漿 ChE 活性阻害が認められたが、明らかな毒性を示すものではなかった。

本試験において、3,000 ppm 投与群の雌雄で赤血球及び脳 ChE 活性阻害(20%以上)等が認められたことから、無毒性量は雌雄とも 100 ppm(雄: 10.9 mg/kg 体重/日、雌: 9.6 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 2)

~	1 1113 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	C MO-11 D 11-12-13 (III-17) 30
投与群	雄	雌
3,000 ppm	体重増加抑制	· 体重增加抑制
	・Ht、Hb 減少	・TP 減少
	・ALT、AST 増加	・赤血球及び脳 ChE 活性阻害
	・TP 減少	(20%以上)
	・赤血球及び脳 ChE 活性阻害	・脳絶対及び比重量増加、肝及
	(20%以上)	び腎比重量増加
	・肝、脳及び脳下垂体絶対及び	・小葉周辺性肝細胞肥大及び核
	比重量 ⁴ 増加	肥大、間質リポフスチン沈着
	・小葉周辺性肝細胞肥大及び核	増加
	肥大、間質リポフスチン沈着	
	増加	
100 ppm 以下	毒性所見なし	毒性所見なし

表 15 2年間発がん性試験(マウス)で認められた毒性所見

13. 生殖発生毒性試験

(1)2世代繁殖/発生毒性併合試験(ラット)

Wistar ラット (一群雌雄各 48 匹) を用いた混餌 (原体:0、5 及び 300 ppm) 投与による 2 世代繁殖試験が実施された。本試験では、両世代の一部雌動物 (各世代一群 8~10 匹) を妊娠 20 日に帝王切開し、胎児に及ぼす影響も検討された。

本試験において、親動物では 300 ppm 投与群 P 世代の雌雄及び F_1 世代の雌で赤血球 ChE 活性阻害(20%以上)が認められた。また、児動物では投与に関連した毒性所見が認められなかったことから、無毒性量は親動物で 5 ppm(P 雄: 6.2 mg/kg 体重/日、P 雌: 4.3 mg/kg 体重/日、 F_1 雄: 7.8 mg/kg 体重/日、 F_1 雌: 5.3 mg/kg 体重/日)、児動物で本試験の最高用量 300 ppm(P 雄: 359 mg/kg 体重/日、P雌: 256 mg/kg 体重/日、 F_1 雄: 461 mg/kg 体重/日、 F_1 雌: 315 mg/kg 体重/日)であると考

⁴ 体重比重量のことを比重量という(以下同じ)。

えられた。繁殖能に対する影響は認められなかった。

発生毒性試験では、母動物及び胎児とも投与に関連した毒性所見が認められなかったことから、無毒性量は母動物及び胎児で本試験の最高用量300 ppm (256 mg/kg 体重/日) であると考えられた。催奇形性は認められなかった。(参照2)

(2)2世代繁殖試験(ラット)

SD ラット (一群雄雌各 25 匹) を用いた混餌 (原体:0、15、150 及び 1,500 ppm) 投与による 2 世代繁殖試験が実施された。

各投与群で認められた毒性所見は表 16 に示されている。

本試験において、親動物及び児動物の 1,500 ppm 投与群の雌雄で体重増加抑制等が認められたことから、無毒性量は親動物及び児動物の雌雄とも 150 ppm (P雄: 10.2 mg/kg 体重/H、P雌: 11.5 mg/kg 体重/H、H、H に H に

	投与群	親 : P、	児: F 1	親:F ₁ 、	ı、児:F2	
	汉子叶	雄	雌	雄	雌	
親動	1,500 ppm	・体重増加抑制 ・摂餌量減少 ・肝比重量増加	・体重増加抑制 ・摂餌量減少 ・肝比重量増加	・体重増加抑制 ・摂餌量減少 ・肝比重量増加 ・肝門脈静脈硬化、 線維化、肝細胞空胞	・体重増加抑制 ・摂餌量減少 ・肝絶対及び比重量 増加	
物				化、明細胞変異巣、肝細胞肥大		
	150 ppm以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし	
児動	1,500 ppm	・体重増加抑制 ・陰茎包皮分離遅延	・体重増加抑制 ・膣開口遅延	・体重増加抑制	・体重増加抑制	
物	150 ppm以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし	

表 16 2世代繁殖試験(ラット)で認められた毒性所見

(3)発生毒性試験(ラット)

SD ラット (一群雌 25 匹) の妊娠 7~19 日に強制経口 (原体:0、1、10 及び 100 mg/kg 体重/日、溶媒:0.5%CMC Na 溶液) 投与して発生毒性試験が実施された。

本試験において、100 mg/kg 体重/日投与群母動物で流涎ならびに肝絶対及び比重量増加が認められ、胎児では投与に関連した毒性所見が認められなかったことから、無毒性量は母動物で 10 mg/kg 体重/日、胎児で本試験の最高用量 100 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 2)

(4)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 $14\sim17$ 匹) の妊娠 $6\sim18$ 日に強制経口 (原体:0、5、20 及び 80 mg/kg 体重/日、溶媒:蒸留水) 投与して発生毒性試験が実施された。

本試験において、80 mg/kg 体重/日投与群の母動物で体重増加抑制、摂 餌量減少が認められ、胎児では着床後胚死亡が増加したことから、無毒 性量は母動物及び胎児で 20 mg/kg 体重/日であると考えられた。催奇形 性は認められなかった。(参照 2)

14. 遺伝毒性試験

イプロベンホス(原体)について、細菌を用いた復帰突然変異試験、チャイニーズハムスター卵巣細胞及び肺線維芽細胞を用いた染色体異常試験、マウス骨髄細胞を用いた小核試験がGLP下で実施されている。

結果は表 17 に示されているとおり、染色体異常試験において代謝活性化系存在下でのみ陽性が認められたが、同じ指標となる in vivo の小核試験において、最大耐量付近まで試験が実施されており、結果は陰性であった。また、復帰突然変異試験で陰性であり、非 GLP 下であるが、細菌を用いた DNA 修復試験、復帰突然変異試験、マウスまたはラットを用いた宿主経由試験が行われており、すべて陰性であった点を総合的に評価すると、イプロベンホスには生体において問題となるような遺伝毒性はないものと考えられた。(参照 2)

表 17 遺伝毒性試験概要 (原体)

Ī	試験	対象	処理濃度・投与量	結果
in vitro	DNA 修復試験	Bacillus subtilis (H-17、M-45 株)	1~100% v/v、0.02 mL/ディスク	陰性
	DNA 修復試験	B. subtilis (H-17、M-45 株)	10~10,000 μg/ディスク	陰性
	DNA 修復試験	B. subtilis (H-17、M-45 株)	10~10,000 μg/ディスク	陰性
	復帰突然変異試験	Salmonella typhimurium (TA98、TA100、 TA1535、TA1537、 TA1538 株) Escherichia coli (WP2hcr-株)	①20~1,000 μg/7° ν-ト (-S9) ②20~500 μg/7° ν-ト (+/-S9)	陰性

	復帰突然 変異試験	S. typhimurium (TA1535、 TA1536、TA1537、 TA1538 株)	10、1,000 μg/7° ν-ト (-S9)	陰性
	復帰突然	E. coli (WP2hcr ⁺ 、 WP2hcr-株) S. typhimurium	10~3,000 μg/7° ν-ト (-S9)	
	変異試験	(TA98、TA100 株)	10~1,000 μg/7° ν-\ (+S9)	陰性
	復帰突然 変異試験	S. typhimurium (TA98、TA100、 TA1535、TA1537、 TA1538 株)	5~500 μg/7° ν-ト (+/-S9)	陰性
		<i>E. coli</i> (WP2 <i>hcr-</i> 株)		
	復帰突然 変異試験	S. typhimurium (TA100、TA1535、 TA1537 株)	12.5~400 μg/ブ° ν-ト (-S9) 12.5~800 μg/ブ° ν-ト (+S9)	陰性
		S. typhimurium (TA98 株)	12.5~800 μg/プ レート (+/-S9)	
		E. coli (WP2uvrA 株)		陰性
	染色体異常 試験	チャイニーズ、ハムスター 卵巣細胞 (CHO-K ₁ B ₄)	12.5~100 μg/ml (-S9) 6.25~50 μg/ml (+S9)	-S9:陰性 +S9:陽性
	染色体異常 試験	チャイニーズハムスター 肺線維芽細胞(CHL)	直接法:50~200 µg/mL (24 時間)、25~200 µg/mL (48 時間)	直接法: 陰性 -S9:陰性
			-S9: 12.5~400 μg/mL +S9: 62.5~250 μg/mL	+S9:陽性
			[確認試験] +S9:150~350 µg/mL	
	宿主経由 試験	ICR マウス S. typhimurium (G46 株)	100、300 mg/kg 体重/日 2 日間強制経口投与	
in vitro/ in vivo		(U40 /K)	2 日目投与後 G46 株を腹腔内 投与	陰性
			3 時間後に復帰変異菌数及び 生存菌数を測定	
	宿主経由 試験	ICR マウス S. typhimurium (G46 株)	経口:500 mg/kg 体重、 筋肉内:750 mg/kg 体重、 各経路 1 時間間隔で 3 回投与	
			1 回目投与後 G46 株を腹腔内 投与	陰性
			30 分後に復帰変異菌数及び総菌数を測定	
			試験は2連制で実施	

	宿主経由試験	ICR マウス S. typhimurium (G46 株)	100、500 mg/kg 体重/日 2 日間強制経口投与 2 日目投与後 G46 株を腹腔内 投与 3 時間後に復帰変異菌数及び	陰性
	宿主経由試験	SD ラット S. typhimurium (G46 株)	生存菌数を測定 経口:200 mg/kg 体重 筋肉内:600 mg/kg 体重 1時間間隔で各経路 3 回投与 1 回目投与後 G46 株を腹腔内 投与 30 分後に復帰変異菌数及び生 存菌数を測定	陰性
in vivo	小核試験	BDF1 マウス (骨髄細胞)	試験は2連制で実施 250、500、1,000 mg/kg 体重/ 日(2日間強制経口投与)	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

代謝物 J について、細菌を用いた復帰突然変異試験が実施された。 結果は表 18 に示されており、陰性であったので、J に遺伝毒性はない ものと考えられた。(参照 2)

表 18 遺伝毒性試験結果概要 (代謝物 J)

請	式験	対象	処理濃度・投与量	結果
in vitro	復帰突然変異試験	S. typhimurium (TA98、TA100、 TA1535、TA1537 株) E. coli (WP2 uvrA 株)	39.1~2,500 μg/7° ν-\ (+/-S9)	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

15. その他の試験

(1) in vitroにおける ChE 活性阻害試験

イプロベンホス、代謝物 B、D 及び E による各種 ChE (ウシ由来の赤血球ならびに雌ラット由来の赤血球、血漿、脳及び肝)活性阻害試験が実施された。

イプロベンホス及び各種代謝物による ChE 活性阻害試験結果は表 19 に示されている。

各代謝物の ChE 阻害活性は、イプロベンホスと比較して弱いか、ほとんど阻害活性を持たないことが明らかとなり、動物体内での代謝により

毒性が低下する方向に進むことが確認された。(参照2)

表 19 イプロベンホス及び各種代謝物による ChE 活性阻害試験結果

酵素	50%阻害濃度(IC50: M)				
	イプロベンホス	В	D	E	
ウシ赤血球	3.80×10^{-5}	5.58×10^{-4}	1.30×10^{-2}	0%	
ラット赤血球	6.03×10^{-5}	2.63×10^{-3}	0%	0%	
ラット血漿	1.86×10 ⁻⁵	2.95×10^{-3}	5.20×10 ⁻³	0%	
ラット脳	3.92×10^{-5}	7.00×10 ⁻⁴	18%	0%	
ラット肝	1.82×10 ⁻⁵	4.09×10 ⁻³	2.12×10 ⁻³	2%	

(2) ChE 活性測定試験(ヒト)

ヒト(各群 6人: 男性 25人、女性 5人)を用いた単回経口(0、0.01、0.03、0.1 及び 0.3 mg/kg 体重)投与による ChE 活性測定試験が実施された。血漿、血清、全血及び赤血球の ChE を投与前、投与 1、2、4、7、10、14 及び 21 日後に測定し、血液学的検査、血液生化学的検査及び尿検査を投与 0、7 及び 21 日後に実施した。

0.3 mg/kg 体重/日投与群では、全血及び赤血球 ChE 活性に異常はみられなかった。0.1 mg/kg 体重/日以上投与群で血漿 ChE 活性阻害傾向、0.3 mg/kg 体重/日投与群で血清 ChE 活性阻害傾向が認められたが、阻害程度は軽度であり、毒性所見とは考えられなかった。また、血液学的検査、血液生化学的検査及び尿検査に異常はみられなかった。(参照 2)

皿. 食品健康影響評価

参照に挙げた資料を用いて農薬「イプロベンホス」の食品健康影響評価を 実施した。

ラット及びマウスに投与されたイプロベンホスは投与 $3\sim6$ 時間後に C_{max} に達した。血漿中 T_{max} 付近での残留放射能は、肝臓、腎臓、肺等で比較的 高濃度に認められ、主要排泄経路は尿であった。

イプロベンホスの水稲における残留性は低く、玄米における最高値は、最終散布 27 日後に収穫した試料の 0.165 mg/kg であった。また、魚介類における最大推定残留値は 0.29 mg/kg であった。

各種毒性試験結果から、イプロベンホス投与による影響は主に ChE 活性阻害及び肝臓に認められた。発がん性、繁殖能に対する影響、催奇形性、生体において問題となる遺伝毒性は認められなかった。

各種試験結果から、食品中の暴露評価対象物質をイプロベンホス(親化合物のみ)と設定した。

各試験における無毒性量等の比較は表 20 に示されている。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量の最小値がラットを用いた 2 年間慢性毒性/発がん性併合試験の 3.54 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.035 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

ADI 0.035 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 3.54 mg/kg 体重/日

(安全係数) 100

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際に 確認することとする。

表 20 各試験における無毒性量等の比較

		衣 20 合試験にあり	7る無毎性重寺の比較
動物種	試験	投与量(mg/kg 体重/日)	無毒性量(mg/kg 体重/日) ¹⁾ 農薬抄録
ラット	90 日間 亜急性	0、50、100、500 ppm 雄: 0、4.9、8.8、47.5	雄:47.5 雌:54.6
	毒性試験	雌: 0、5.5、10.8、54.6	毒性所見なし
	90 日間 亜急性	0, 5, 10, 50, 200, 1,000 ppm	雄:4.4 雌:17.2
	毒性試験/	雄:0、0.4、0.8、4.4、	雄:ALT 増加
	回復試験	16.7、88.6 雌:0、0.4、0.8、4.2、	雌:体重増加抑制
		17.2、82.0	
	90 日間 亜急性	0、50、200、1,000 ppm 雄:0、4、15、70	雄:15 雌:17
	神経	雌: 0、4、17、80	雌雄:体重増加抑制等
			(神経毒性は認められない)
	2年間 慢性毒性/発	0、1、10、100、1,000 ppm 雄:0、0.036、0.36、3.54、	雄:3.54 雌:4.35
	がん性	36.8	雌雄:赤血球及び脳 ChE 活性阻害(20%以上)
	併合試験	雌: 0、0.041、0.45、4.35、 45.5	等
	2 111 115		(発がん性は認められない)
	2 世代 繁殖試験/	0、5、300 ppm P雄: 0、6.2、359	2 世代繁殖試験 親動物
	発生毒性	P雌:0、4.3、256	P雄: 6.2 P雌: 4.3
	併合試験	F ₁ 雄:0、7.8、461 F ₁ 雌:0、5.3、315	F ₁ 雄:7.8 F ₁ 雌:5.3
			児動物及び繁殖能 P雄:359 P雌:256
			F_1 雄:461 F_1 雌:315
			親動物
			雌雄:赤血球 ChE 活性阻害(20%以上)
			児動物:毒性所見なし (繁殖能に対する影響は認められない)
			発生毒性試験
			母動物: 256
			胎児:256
			毒性所見なし (催奇形性は認められない)
	2世代	0、15、150、1,500 ppm	親動物及び児動物
	繁殖試験	P雄: 0、1.10、10.2、101 P雌: 0、1.20、11.5、112	P雄:10.2 F ₁ 雄:15.1 P雌:11.5 F ₁ 雌:16.0
		F ₁ 雄: 0、1.50、15.1、154 F ₁ 雌: 0、1.60、16.0、167	親動物及び児動物:体重増加抑制等
			(繁殖能に対する影響は認められない)

	発生毒性	0, 1, 10, 100	母動物:10
	試験	0, 1, 10, 100	胎児: 100
	H 100		74171
			母動物:流涎、肝絶対及び比重量増加
			胎児:毒性所見なし
			(催奇形性は認められない)
マウス	90 日間	0, 5, 10, 50, 200, 1,000	雄:38.7 雌:37.0
	亜急性	ppm	
	毒性試験①	雄:0、1.0、3.2、9.7、	雌雄:脳 ChE 活性阻害(20%以上)等
		38.7、200	
		雌:0、1.1、3.7、11.1、	
	00 11 111	37.0, 185	批 . 22 7
	90 日間 亜急性	0, 5, 10, 50, 200, 1,000	雄:33.7 雌:29.4
	型芯性 毒性試験②	ppm 雄:0、0.8、1.6、8.5、	雌雄 : Hb 減少等
	一一一	33.7, 163	MEAE . 110 / 例 夕 寸
		雌:0、0.9、1.6、9.2、	
		29.4、183	
	2 年間	0, 1, 10, 100, 3,000 ppm	雄:10.9 雌:9.6
	発がん性	雄:0、0.106、1.09、10.9、	
	試験	380	雌雄:赤血球及び脳 ChE 活性阻害(20%以上)
		雌:0、0.097、0.92、9.6、	等
		339	
			(発がん性は認められない)
ウサギ	発生毒性	0, 5, 20, 80	母動物:20
	試験		胎児:20
			以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以
			日動物:体重増加抑制、摂餌量減少 胎児:着床後胚死亡増加
			加光,有外後胜死亡增加
			(催奇形性は認められない)
イヌ	28 日間	0, 0.05, 0.1, 1.0, 10	雌雄:10
	亜急性	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	毒性試験		毒性所見なし
	1 年間	0, 0.1, 1.0, 10	雌雄:10
	慢性毒性	0, 0.1, 1.0, 10	Реф. 10
	試験		毒性所見なし
	- 1		NOAEL: 3.54
ADI			SF: 100
1111			ADI : 0.035
ADI 設定	根圳 资料		ラット2年間慢性毒性/発がん性併合試験
ADI 权足	似观貝竹		ノフト4 中国受任母王/光が心王/万百 武衆

NOAEL:無毒性量 SF:安全係数 ADI:一日摂取許容量

1):無毒性量欄には、最小毒性量で認められた主な毒性所見等を記した。

<別紙1:代謝物/分解物略称>

記号	化学名	
В	O,O diisopropyl hydrogen phosphorothioate	
C	O,O diisopropyl hydrogen phosphate	
D	S-benzyl O -isopropylphosphorothioate	
Е	benzyl sulfonic acid (toluene-α-sulfonic acid)	
F	benzoic acid	
G	2,4-dihydroxy benzoic acid	
I	S-benzyl O-isopropyl O-(2-hydroxymethyl)ethyl phosphorothioate	
J	O, O diisopropyl O methyl phosphorothioate	
K	benzyl alcohol	
L	Benzaldehyde	
M	2-hydroxybenzyl alcohol	
N	3-hydroxybenzyl alcohol	
О	4-hydroxybenzyl alcohol	
MW182	未同定代謝物	

<別紙2:検査値等略称>

略称	名称						
ACh	アセチルコリン						
Adr	アドレナリン						
ai	有効成分量						
ALT	アラニンアミノトランスフェラーゼ (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT))						
AST	アスパラギン酸アミノトランスフェラーゼ (=グルタミン酸オキサロ酢酸トランスアミナーゼ(GOT))						
BCF	生物濃縮係数						
BSP	ブロモサルファレイン						
BUN	血液尿素窒素						
ChE	コリンエステラーゼ						
C_{max}	最高濃度						
CMC	カルボキシメチルセルロース						
Epi	エピネフリン						
GSH	還元型グルタチオン						
Hb	ヘモグロビン						
His	ヒスタミン						
Ht	ヘマトクリット値						
IC_{50}	50%阻害濃度						
LC_{50}	半数致死濃度						
LD_{50}	半数致死量						
PAM	プラリドキシム						
PEC	環境中予測濃度						
PHI	最終使用から収穫までの日数						
RBC	赤血球数						
$T_{1/2}$	消失半減期						
TAR	総投与(処理)放射能						
T_{max}	最高濃度到達時間						
TP	総蛋白質						
TRR	総残留放射能						

<別紙3:作物残留試験成績>

(分析部位) 画場	作物名	試験	使用量 (g ai/ha)	回数	PHI	残留値(mg/kg)		
実施年度 数 処理方法 (日) 最高値 平均値 水稲 (玄宋) 1969 年度 1 8.500 ⁶ (散布) 2 68 0.002 0.003 4 4 61 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.009 0.009 0.011 0.010 0.020 水稲 (玄米) 1970 年度 1 8.500 ⁶ (散布) 2 53 0.013 0.013 0.011 0.020 0.011 0.020 水稲 (玄米) 1976 年度 1 8.500 ⁶ (散布) 3 0.003 0.0						イプロベンホス		
本稿 (支米) 1969 年度 1		数				最高値	平均值	
本稿 (玄米) 1969 年度 1				2	68	0.002	0.002	
本稿 (玄米) 1969 年度 1				4	68	0.008	0.007	
				2	69	0.003	0.003	
(玄米) 1969 年度 1 (散布) 2 50 0.003 0.003 0.009 1969 年度 1 (散布) 4 50 0.010 0.009 1 0.011 0.010 0.009 1 4 78 0.021 0.020 1 0.020 1 4 78 0.021 0.020 1 0.020 1 4 57 0.042 0.042 0.042 0.042 0.042 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.020 1 0.035 1	北松			4	61	0.003	0.003	
1969 年度		1		2	50	0.003	0.003	
大稲 (玄米) 1976 年度 1 8,500 ⁶ (散布) 1976 1 8,500		1		4	50	0.010	0.009	
本稿 (玄米) 1970 年度 1				2	53	0.013	0.011	
大稲 (女米) 1970 年度 1				4	53	0.028	0.024	
水稲 (玄米) 1970 年度 1 8.500 ^G (散布) 2 57 0.008 0.007 0.042 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000 0.010 0.010 0.010 0.010 0.010 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.0002 0.009 0.008 0.003 0.000 0.009 0.008 0.003 0.000 0.009 0.008 0.003 0.000 0.				2	78	0.019	0.019	
水稲 (玄米) 1970 年度 1				4	78	0.021	0.020	
水稲 (玄米) 1970 年度 1				2	57	0.008	0.007	
(
(玄米) 1970 年度 1 (散布) 3 40 0.138 0.130 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.005 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.063 0.0163 0.010 0.010 0.010 0.010 0.010 0.003 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.008 0.008 0.009 0.008 0.	水稻							
1970 年度		1						
水稲 (稲から) 1981 年度 本稿 (稲から) 1981 年度		1	(散布)					
本稿 (電和から) 1981 年度 *** 株職 (福わら) 1981 年度 ** 大橋 (福から) 1981 年度 ** 大橋 (南から) 1981 年度 ** 大橋 (南がら) 1981 年度 ** 大橋 (10.10 1 %							
水稲 (玄米) 1 8,500 ^G (散布) 2 48 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.008 0.002 0.008 0.002 0.008 0.009 0.008 0.008 0.009 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.009 0.008 0.009 0								
水稲 (玄米) 1976 年度 1 8,500 ^G (散布) 2 43 0.011 0.010 2 53 0.009 0.008 2 63 0.010 0.010 2 73 0.010 0.009 2 47 0.013 0.012 2 58 0.011 0.010 2 77 0.008 0.008 2 68 0.010 0.010 2 77 0.008 0.008 2 62 0.017 0.016 2 72 0.018 0.018 2 62 0.017 0.018 2 72 0.018 0.018 2 82 0.023 0.022 4 8 0.69 0.65 (散布) 2 47 0.33 0.28 (散布) 2 88 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 43 1.56 1.27 2 53 0.93 0.79 2 43 1.56 1.27 2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 58 4.12 3.40								
水稲 (玄米) 1976 年度 本稿 (玄米) 1976 年度 1 8,500 ^G (散布) 1 8,500 ^G (散布) 1 8,500 ^G (散布) 1 8,500 ^G (散布) 2 47 0.013 0.010 0.009 2 47 0.013 0.012 2 58 0.011 0.010 2 68 0.010 0.010 2 77 0.008 0.008 2 52 0.038 0.034 2 62 0.017 0.016 2 72 0.018 0.018 2 82 0.023 0.022								
水稲 (玄米) 1 1 8,500 ^G (散布) 2 88 0.003 0.002 0.008 (改米) 1976 年度 1 8,500 ^G (散布) 2 47 0.013 0.012 0.010								
水稲 (玄米) 1976 年度 1 8,500 ^G (散布) 2 43 0.011 0.010 0.008 (改米) 1976 年度 1 8,500 ^G (散布) 2 73 0.010 0.009 (1数布) 0.010 0.009 (1数布) 0.010 0.009 (1数布) 0.010 0.009 (1数布) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.016 0.018 0.008								
水稲 (玄米) 1976 年度 1 8,500 ^G (散布) 2 53 0.009 0.008 0.009 (改米) 1976 年度 1 8,500 ^G (散布) 2 47 0.013 0.012 0.009 (改米) 2 58 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.016 0.018 0.008 0								
水稲 (玄米) 1976 年度 1 8,500 ^G (散布) 2 47 0.013 0.012 2 58 0.011 0.010 2 68 0.010 0.010 2 77 0.008 0.008 2 77 0.008 0.008 2 52 0.038 0.034 2 62 0.017 0.016 2 72 0.018 0.018 2 82 0.023 0.022 0.025 0.05 0.05 0.05 0.00 1981 年度 1 8,500 ^G (散布) 2 48 0.69 0.65 2 67 0.33 0.28 (散布) 2 67 0.33 0.28 (散布) 2 68 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 43 1.56 1.27 2 53 0.93 0.79 2 47 3.60 3.15 2 79 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65								
大橋 (玄米) 1976 年度 1 8,500 ^G (散布) 2 47 0.013 0.012 2 58 0.011 0.010 2 68 0.010 0.010 2 77 0.008 0.008 2 52 0.038 0.034 2 62 0.017 0.016 2 72 0.018 0.018 2 82 0.023 0.022 2 48 0.69 0.65 (散布) 2 48 0.69 0.65 (散布) 2 67 0.33 0.28 (散布) 2 76 0.75 0.70 2 88 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 63 1.58 1.14 2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65								
(女米) 1976 年度 1 (散布) 2 47 0.013 0.012 1976 年度 2 58 0.011 0.010 0.010 2 58 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.016 0.008 0.0	水稲		0.7000					
1976 年度		1		_				
A	1976 年度		(取利1)					
大稲 (稲わら) 1981 年度 1								
大稲 (稲から) 1 8,500 ^G (散布) 1 8,500 ^G (散布) 2 48 0.69 0.65 0.75 0.70 0.92 0.02 0.02 0.02 0.02 0.02 0.02 0.0								
大稲 (稲から) 1 8,500 ^G (散布) 2 48 0.69 0.65 (散布) 2 76 0.75 0.70 2 88 0.02 0.02 0.02 0.02 0.02 0.02 0.0				_				
水稲 (稲から) 1981 年度 1 8,500 ^G (散布) 2 48 0.69 0.65 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7								
水稲 (稲から) 1981 年度 1 8,500 ^G (散布) 2 48 0.69 0.65 2 67 0.33 0.28 (散布) 2 76 0.75 0.70 2 88 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 63 1.58 1.14 2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65								
水稲 (稲わら) 1981 年度 1 8,500 ^G (散布) 2 67 0.33 0.28 2 76 0.75 0.70 2 88 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 63 1.58 1.14 2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65								
不信 (稲から) 1981 年度 1 8,500 ^G (散布) 2 67 0.33 0.28 0.70 0.70 0.70 0.02 2 88 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 63 1.58 1.14 2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65				_				
1 (散布) 2 76 0.75 0.70 0.02 0.02 2 88 0.02 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 63 1.58 1.14 2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65	(稲わら)	1						
1981年度 2 88 0.02 0.02 2 43 1.56 1.27 2 53 0.93 0.79 2 63 1.58 1.14 2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1981 牛度		(14.7.11.7					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
2 73 0.98 0.79 2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65								
2 47 3.60 3.15 2 58 4.12 3.40 2 68 3.56 2.65								
2 58 4.12 3.40 2 68 3.56 2.65								
2 68 3.56 2.65								
				2	77	1.42	0.82	

作物名	試験	使用量 (g ai/ha)	回数 (回)	PHI (目)	残留値(mg/kg) イプロベンホス	
(分析部位) 実施年度	圃場 数				• •	
天 地 十 及	刻	処理方法		T 0	最高値	平均値
			2	52	5.58	3.81
			2	62	2.92	2.39
			2	72	2.80	2.26
		9 同典太区 C	2	82	3.48	2.75
	-	3 回散布区 ^G ①10,200	3	35	0.010	0.010
	1	②8,500	4	35	0.011	0.011
		28,500				
水稲		20,000	3	41	0.007	0.006
(玄米)	1	4回散布区 G	4	41	0.014	0.014
1977 年		$\bigcirc 10,200$	-		0.011	0.011
		210,200	3	49	< 0.005	< 0.005
	1	310,200	4	49	<0.005	<0.005
		48,500	4	40	~0.00 0	\0.00 0
	1	3回散布区 G	3	35	9.00	2.24
		$\bigcirc 10,200$		35	2.60	
		28,500	4	59	3.75	2.95
水稲	1	28,500	0	4.7	0. •0	0.10
(稲わら)		4 5 # * 5 C	3	41	3.58	3.16
1977年		4 回散布区 ^G ①10,200	4	41	10.4	9.01
		210,200	_			
	1 (310,200	3	49	0.29	0.25
		48,500	4	49	0.24	0.18
	1	0 1/1 11	4	14	0.056	0.054
水稲		1,200 ^D (散布)	4	21	0.030 0.042	0.034 0.042
(玄米)						
1977年	1		4	14	0.025	0.024
			4	22	0.018	0.018
水稲 (稲わら) 1977 年	1	107	4	14	3.0	2.66
		1,200 ^D (散布)	4	21	0.38	0.28
	1		4	14	0.83	0.80
			4	22	0.73	0.63
水稲 (玄米) 1973 年	1	①13.6 g ai/ m^2	2	30	0.088	0.087
		(箱) D	3	30	0.120	0.120
	1	②または ③	2	34	0.040	0.039
		8,500 D	3	34	0.037	0.034
水稲 (稲わら) 1973 年	1	①13.6 g ai/m²	2	30	17.3	15.0
		(箱) D	3	30	32.0	24.2
	1	②または③	2	34	9.30	8.13
		8,500 D	3	34	24.4	17.6

[·] G: 粒剤、D:粉剤

[・]定量限界未満のデータは定量限界値に<を付した。

<参照>

- 1 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する 件(平成 17 年 11 月 29 日付、厚生労働省告示第 499 号)
- 2 農薬抄録イプロベンホス (IBP) (殺菌剤) (平成 19 年 11 月 1 日改訂): クミアイ 化学工業株式会社
- 3 食品健康影響評価について
 - (URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-iprobenfos-191218.pdf)
- 4 イプロベンホスの魚介類における最大推定残留値に係る資料
- 5 第 220 回食品安全委員会
 - (URL: http://www.fsc.go.jp/iinkai/i-dai220/index.html)
- 6 第 11 回農薬専門調査会確認評価第三部会
 - (URL: http://www.fsc.go.jp/senmon/nouyaku/kakunin3_dai11/index.html)
- 7 第 48 回農薬専門調査会幹事会
 - (URL: http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai48/index.html)