評価書 (案)

食品中に含まれる放射性物質

2011年7月

食品安全委員会

放射性物質の食品健康影響評価に関する

ワーキンググループ

1	1. 元素名、原子記号等	72
2	2.物理化学的性状	72
3	3. 放射性崩壊	72
4	4. 用途	72
5	5. 自然界での分布・移動	72
6	6. 体内動態	73
7	7. 実験動物等への影響	76
8	8. ヒトへの影響	79
9	9. まとめ	
10	<参照>	
11	VI. ウラン	
12	1. 元素名、原子記号等	
13	2. 物理化学的性状	
14	3.放射性崩壊	
15	4. 用途	
16	5. 自然界での分布・移動	
17	6. ヒトへの曝露経路と曝露量	
18	7. 体内動態	101
19	8. 実験動物等への影響	
20	9. ヒトへの影響	
21	10.国際機関等の評価	
22	<参照>	126
23	VII. プルトニウム	
24	1. 元素名、原子記号等	135
25	2.物理化学的性状	
26	3.放射性崩壊	
27	4. 用途	
28	5. 自然界での分布・移動	
29	6. 体内動態	136
30	7. 実験動物等への影響	140
31	8. ヒトへの影響	143
32	9. 国際機関等の評価	146
33	10.まとめ	146
34	<参照>	147
35	VIII. アメリシウム	155
36	1. 元素名、原子記号等	155
37	2.物理化学的性状	155
38	3. 放射性崩壊	155
39	4. 用途	155

1	5. 自然界での分布・移動	
2	6. 体内動態	
3	7. 実験動物等への影響	
4	8. ヒトへの影響	
5	9. 国際機関等の評価	
6	<参照>	
7	IX. キュリウム	
8	1. 元素名、原子記号等	
9	2. 物理化学的性状	
10	3. 放射性崩壊及び体内動態	
11	4. 起源・用途	
12	<参照>	
13	X. 放射性ストロンチウム	
14	1. 元素名、原子記号等	
15	2. 物理化学的性状	
16	3.放射性崩壊	
17	4. 用途	
18	5. 自然界での分布・移動	
19	6. 体内動態	
20	7. 実験動物等への影響	
21	8. ヒトへの影響	
22	9. 国際機関等の評価	
23	10.まとめ	
24	<参照>	
25	XI. 低線量及び乳幼児・胎児への影響	
26	1. 自然界からの高曝露	
27	2. 医療曝露	
28	3.職業曝露	
29	4. チェルノブイリ原子力発電所事故	
30	5.広島・長崎	
31	6. テチャ川流域	
32	7.その他のヒトにおけるがん研究	
33	8. その他	
34	9. 国際機関等の見解	
35	<参照>	214
36	XII. 国際機関の評価等	217
37	1. ICRP	217
38	2 . WHO	217
39	3 . IAEA	

1	4.	CODEX	218
2	XIII.	食品健康影響評価	220
3	1.	個別核種に関する検討	220
4	2.	低線量放射線による健康影響について	220
5	З.	ウランによる健康影響について	222
6	XIV.	その他の考慮すべき事項	225
7	<略号	⋽>	226
8			

<審議の経緯>

2	2011年	3月20日	厚生労働	大臣よりす	有毒な、	若しくは有害	な物質	「が含ま	れ、若し	くは付
3			着し、又	はこれらの)疑いが	あるものとし	て、放	射性物的	質につい	て指標
4			値を定め	ることに~	ついて要	請、関係書類	夏の接受	え		
5	2011年	3月22日	第 371 🛙	可食品安全	委員会	(要請事項説	明)			
6	2011年	3月23日	第 372 🛙	可食品安全	委員会					
7	2011年	3月25日	第 373 🛙	可食品安全	委員会					
8	2011年	3月28日	第 374 🛙	可食品安全	委員会					
9	2011年	3月29日	第 375 🛙	可食品安全	委員会					
10			(同日付	で「放射性	も物質に	関する緊急と	りまと	め」を	享生労働	大臣に
11			通知)							
12	2011年	4月6日	厚生労働	省医薬食品	品局食品	安全部長より	有毒な	、若し	くは有害	な物質
13			が含まれ	、若しくに	は付着し	、又はこれら	の疑い	いがある	ものとし	て、魚
14			介類中の	放射性ヨ	ウ素につ	いて暫定規制	制値を	定めたこ	ことにつ	いて要
15			請、関係	書類の接受	立 文					
16	2011年	4月21日	第1回放	射性物質(り食品健	康影響評価に	関する	6ワーキ	ンググル	~~プ
17	2011年	4月28日	第2回放	射性物質(り食品健	康影響評価に	関する	6ワーキ	ンググル	~~プ
18	2011年	5月12日	第3回放	射性物質(り食品健	康影響評価に	関する	6ワーキ	ンググル	~~プ
19	2011年	5月25日	第4回放	射性物質(り食品健	康影響評価に	関する	6ワーキ	ンググル	~~プ
20	2011年	6月16日	第5回放	射性物質(り食品健	康影響評価に	関する	6ワーキ	ンググル	~~プ
21	2011年	6月30日	第6回放	射性物質(り食品健	康影響評価に	関する	6ワーキ	ンググル	~~プ
22	2011年	7月13日	第7回放	射性物質(り食品健	康影響評価に	関する	るワーキ	ンググル	~ープ
23	2011年	7月21日	第8回放	射性物質(り食品健	康影響評価に	関する	6ワーキ	ンググル	~~プ
24	2011年	7月26日	第9回放	射性物質(り食品健	康影響評価に	関する	るワーキ	ンググル	~ープ
25	2011年	7月26日	放射性物	質の食品	建康影響	評価に関す	るワー	キング	グループ	座長よ
26			り食品安	全委員会委	委員長へ	報告				
27										
28										
29	く食品安	全委員会名	簿>							
30	小泉	直子(委員	長) 33	野村	一正	36	村	田容	常	
31	熊谷	進(委員長	代理) 34	畑江	敬子	37				
32	長尾	拓	35	廣瀬	雅雄					
38										
39	<第37	~2 回食品安	全委員会事	퇃門委員及	び専門者	参考人名簿>				
40	圓藤	吟史	4	5 手島	; 玲子		50	山添	康	
41	川村	孝	4	6 寺尾	1 允男		51	吉田	緑	
42	杉山	英男	4	7 遠山	千春		52	吉永	淳	
43	滝澤	行雄	4	8 中川	恵一		53	鰐渕	英機	
44	津金	昌一郎	4	9 花岡	研一					

 $\mathbf{5}$

1	<第37	'3回食品罗	安全委員会専門教	委員及て	「専門参考人	名簿>		
2	圓藤	吟史	8	寺尾	允男	14	山中	健三
3	杉山	英男	9	遠山	千春	15	吉田	緑
4	菅谷	昭	10	中川	恵一	16	吉永	淳
5	滝澤	行雄	11	花岡	研一	17	鰐渕	英機
6	津金	昌一郎	12	林勇				
7	手島	玲子	13	山添	康			
18								
19	<第37	′4回食品3	安全委員会専門委	委員及て	「専門参考人	.名簿>		
20	圓藤	吟史	26	手島	玲子	32	山添	康
21	川村	孝	27	寺尾	允男	33	山中	健三
22	杉山	英男	28	遠山	千春	34	吉田	緑
23	菅谷	昭	29	花岡	研一	35	吉永	淳
24	滝澤	行雄	30	林勇		36	鰐渕	英機
25	津金	昌一郎	31	村田	勝敬			
37								
38	<第37	~5回食品多	安全委員会専門委	委員及て	「専門参考人	.名簿>		
39	圓藤	吟史	44	津金	昌一郎	49	花岡	研一
40	川村	孝	45	手島	玲子	50	山中	健三
41	杉山	英男	46	寺尾	允男	51	吉田	緑
42	菅谷	昭	47	遠山	千春	52	鰐渕	英機
43	滝澤	行雄	48	中川	恵一			
53								
54	く放射性	と物質の食 品	品健康影響評価(こ関する	るワーキング	゙グループ専	門委員名	簿>
55	圓藤	吟史	60	遠山	千春	65	吉田	緑
56	川村	孝	61	花岡	研一	66	吉永	淳
57	佐藤	洋	62	林勇	E.	67	鰐渕	英機
58	津金	昌一郎	63	村田	勝敬			
59	手島	玲子	64	山添	康			
68								
69	<第1回]放射性物質	旬の食品健康影響	響評価に	こ関するワー	・キンググル-	- プ専門	参考人名簿>
70	佐々オ	卞 康人	72	滝澤	行雄	74	中川	恵一
71	祖父江	L 友孝	73	寺尾	允男	75	松原	純子
76								
77	<第2回]放射性物質	旬の食品健康影響	響評価に	こ関するワー	・キンググル-	- プ専門	参考人名簿>
78	岩崎	智彦	81	祖父江	□ 友孝	84	寺尾	允男
79	佐々オ	ト 康人	82	祖父卮	己 俊雄	85	中川	恵一
80	杉山	英男	83	滝澤	行雄			

1									
2	<第3回放	対性物質の食品	瞐健康影 響	響評価に	こ関するワー	キング	グルー	プ専門者	参考人名簿>
3	佐々木	康人	5	祖父卮	己 俊雄		7	寺尾	允男
4	祖父江	友孝	6	滝澤	行雄				
8									
9	<第4回放	対性物質の食品	l健康影 響	響評価に	こ関するワー	キング	グルー	プ専門者	参考人名簿>
10	杉山 芛	英男	12	祖父卮	己 俊雄		14	寺尾	允男
11	祖父江	友孝	13	滝澤	行雄				
15									
16	<第5回放	対性物質の食品	l健康影 響	響評価に	こ関するワー	キング	グルー	プ専門者	参考人名簿>
17	佐々木	康人	19	滝澤	行雄		21	中川	恵一
18	祖父尼	俊雄	20	寺尾	允男				
22									
23	<第6回放	対性物質の食品	l健康影 響	響評価に	こ関するワー	キング	グルー	プ専門者	参考人名簿>
24	佐々木	康人	25	滝澤	行雄		26	寺尾	允男
27									
28	<第7回放	対性物質の食品	l健康影 響	響評価に	こ関するワー	キング	グルー	プ専門者	参考人名簿>
29	祖父江	友孝	30	滝澤	行雄				
31									
32	<第8回放	対性物質の食品	l健康影 響	響評価に	こ関するワー	・キング・	グルー	プ専門者	参考人名簿>
33	祖父江	友孝	35	寺尾	允男	37		中川	恵一
34	滝澤 彳	亍雄	36						
38									
39	<第9回放	対性物質の食品	l健康影 響	響評価に	こ関するワー	キング	グルー	プ専門者	参考人名簿>
40	佐々木	康人	42	滝澤	行雄	44		中川	恵一
41	祖父江	友孝	43						
45									
46									
47									

要約

2011年3月11日に、東日本大震災に伴い東京電力福島第一原子力発電所において事故
が発生し、周辺環境から通常よりも高い程度の放射能が検出されたことを受けて、厚生労
働省は、当面の間、原子力安全委員会により示された「飲食物摂取制限に関する指標」を
暫定規制値とした。この暫定規制値は、緊急を要するために食品健康影響評価を受けずに
定めたものであることから、厚生労働大臣は、2011年3月20日、食品安全基本法第24
条第3項に基づき、食品安全委員会に食品健康影響評価を要請した。

9

 $\frac{1}{2}$

10 今回、食品健康影響評価を行うに当たっては、原子放射線に関する国連科学委員会及び
米国毒性物質疾病登録機関の放射性物質に関する報告書に引用されている文献、国際放射
線防護委員会、世界保健機関が公表している資料に加え、その他放射性物質に関連する文
13 献等を幅広く検討の対象とした。なお、経口摂取による放射性物質の健康影響に関する文
14 献は限られていることから、経口摂取による内部被ばくの報告に限らず、また、化学物質
15 としての毒性に関する報告も含め、広く知見を収集した。

16 個別の核種としては、厚生労働省により暫定規制値が定められている放射性ヨウ素、放
17 射性セシウム、ウラン、並びにプルトニウム及び超ウラン元素のアルファ核種(アメリシ
18 ウム、キュリウム)、さらに放射性ストロンチウムについて検討を行ったが、検討を行っ
19 た各核種について、経口摂取による健康影響に関するデータは乏しかった。

20 放射線による影響よりも化学物質としての毒性がより鋭敏に出ると判断されたウランに
 21 ついては、耐容一日摂取量(TDI)を設定することとした。

22 ウラン以外の核種については、甲状腺への影響が大きく、甲状腺がんが懸念される放射
23 性ヨウ素、及び食品中からの放射性物質の検出状況等を勘案すると、現状では、食品から
24 の放射性物質の摂取に関して最も重要な核種と考えられた放射性セシウムも含め、個別に
25 評価結果を示すに足る情報は得られなかった。

26

27 以上のことを踏まえ、低線量放射線の健康影響に関する検討を行い、その結果をとりま28 とめた。ただし、ウランについては TDI を設定した。

29

30 疫学データには種々の制約が存在するが、そうした制約を十分認識した上で、本ワーキ
 ンググループにおいては、入手し得た文献について検討を重ね、研究デザインや対象集団
 32 の妥当性、統計学的有意差の有無、推定曝露量の適切性、交絡因子の影響、著者による不
 33 確実性の言及等の様々な観点から、本評価において参考にし得る文献か否かについて整理
 34 した。

35 その結果、成人に関して、低線量での健康への影響がみられた、あるいは高線量での健
 36 康への影響がみられなかったと報告している大規模な疫学データに基づく次のような文献
 37 があった。

- 38
- 39 ① インドの高線量地域での累積吸収線量 500 mGy 強において発がんリスクの増加がみら
 40 れなかったことを報告している文献(Nair et al. 2009)

- ② 広島・長崎の被爆者における固形がんによる死亡の過剰相対リスクについて、被ばく線
 量 0~125 mSv の群で線量反応関係においての有意な直線性が認められたが、被ばく線
 量 0~100 mSv の群では有意な相関が認められなかったことを報告している文献
 4 (Preston et al. 2003)
- 5 ③ 広島・長崎の被爆者における白血病による死亡の推定相対リスクについて、対照(0 Gy)
 6 群と比較した場合、臓器吸収線量 0.2 Gy 以上で統計学的に有意に上昇したが、0.2 Gy
 7 未満では有意差はなかったことを報告している文献(Shimizu et al. 1988)
- 8

9 以上から、本ワーキンググループが検討した範囲においては、放射線による影響が見い
 10 だされているのは、通常の一般生活において受ける放射線量を除いた生涯における累積の
 11 実効線量として、おおよそ 100 mSv 以上と判断した。

12

15

13 小児に関しては、より影響を受けやすい可能性(甲状腺がんや白血病)があると考えら14 れた。

100 mSv 未満の線量における放射線の健康影響については、疫学研究で健康影響がみら
 れたとの報告はあるが、信頼のおけるデータと判断することは困難であった。種々の要因
 により、低線量の放射線による健康影響を疫学調査で検証し得ていない可能性を否定する
 こともできず、追加の累積線量として 100 mSv 未満の健康影響について言及することは現
 在得られている知見からは困難であった。

21

ウランについては、ラットの91日間飲水投与試験における全投与群で認められた腎尿細 22管の変化(雌雄に尿細管上皮核の小嚢状の変形、雄では、近位尿細管の拡張、尿細管基底 23部の核の管腔側への変位、及び細胞質の空胞変性)より、LOAEL はウランとして 0.06 24mg/kg 体重/日であった。この試験では離乳期のラット(雌雄、各投与群 15 匹)が用いら 25れ、病理組織学的検査を含め幅広い検査が行われており、この試験における LOAEL に不 26確実係数を適用して TDI を算出することが適切であると考えられた。この試験における腎 27臓に対する影響及び体内動態においては、排泄が速く、定常状態にあると判断されること 28から、91日間の亜慢性試験による追加の不確実係数は不要と考えられた。ウランは腎臓か 29ら速やかに排泄されることを考慮して、不確実係数は300(種差10、個体差10、LOAEL 30 から NOAEL への外挿 3) を適用することが適当と判断した。したがってウランの LOAEL 31を 0.06 mg/kg 体重/日とし、不確実係数 300 を適用したところ、ウランの TDI は 0.2 µg/kg 32体重/日となった。 33

- 34
- 35
- 36

1 I. 要請の経緯

2 **1. 背景**

2011年3月11日に、東日本大震災に伴い東京電力福島第一原子力発電所において事故
が発生し、周辺環境から通常よりも高い程度の放射能が検出されたことを受けて、厚生労
働省は、2011年3月17日に飲食に起因する衛生上の危害の発生を防止し、もって国民の
健康の保護を図ることを目的とする食品衛生法の観点から、当面の間、原子力安全委員会
により示された「飲食物摂取制限に関する指標」を暫定規制値とし、これを上回る食品に
ついては食品衛生法第6条第2号に当たるものとして食用に供されることがないよう各自
治体に通知した。

この暫定規制値は、緊急を要するために食品健康影響評価を受けずに定めたものである
 ことから、厚生労働大臣は、2011年3月20日、食品安全基本法第24条第3項に基づき、
 食品安全委員会に食品健康影響評価を要請し、その結果を踏まえ、必要な管理措置につい
 て検討することとしている。

14

15 **2. 評価依頼の内容**

16 食品衛生法(昭和 22 年法律第 233 号)第 6 条第 2 号の規定に基づき、有毒な、若
17 しくは有害な物質が含まれ、若しくは付着し、又はこれらの疑いがあるものとして、放射
18 性物質について指標値を定めること。

19

20 3.環境中に放出された放射性物質の核種

21 (1) 自然放射線被ばく

全ての生物は自然に存在している電離放射線に絶えず被ばくしている。その線源は、宇
 宙由来のもの、太陽の表面からの宇宙線、地球の地殻、建材、空気、水、食品、人体自身
 に含まれる地球起源の放射性核種である。(原子放射線に関する国連科学委員会
 (UNSCEAR) 2000)。自然放射線源による一人当たりの年実効線量は、世界平均で 2.4
 mSv であり(UNSCEAR 2008)、日本では平均約 1.5 mSv である(放射線医学総合研究
 所 2007)。また、自然放射線による被ばく以外に、医療被ばく、職業被ばくなどがある
 (UNSCEAR 2000)。

- 29
- 30

表 I-1 自然線源からの平均被ばく線量(日本人平均)

線源	平均年実効線量(mSv)
食品による被ばく	0.41
大気中等のラドン・トロンによる被ばく	0.40
大地放射線による被ばく	0.38
宇宙線による被ばく	0.29
合計	1.5

(放射線医学総合研究所 2007)

32

1 (2) チェルノブイリ発電所事故に伴う放射能汚染

1986年4月26日のチェルノブイリ原子力発電所事故後、事故に由来するとみられた¹³¹I
 等が我が国においても地表浮遊じんや雨水、あるいは各地の牛乳や野菜から検出された。
 各種環境試料について、¹³¹Iの最高値を整理して表 I -2 に示した。チェルノブイリ原発事
 故では¹³¹I が主体で、そのほか¹³⁷Cs、¹⁰³Ru等も比較的高濃度であった(滝澤 1987)。

6

7 表 I-2 我が国の環境試料中¹³¹Iの最高値

	浮遊じん	雨水	水道水	原乳	市販乳	ほうれん草
		(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/kg)
測定値	22.5	13,300	44	678	89	10,300

8 (滝澤 1987)

9

10 (3)福島第一原子力発電所

11 原子力安全に関する国際原子力機関(IAEA) 閣僚会議に対する日本国政府の報告書-東

12 京電力福島原子力発電所の事故について-(平成23年6月 原子力災害対策本部)によれば、

13 福島第一原子力発電所の原子炉からの空気中への総放出量は、¹³¹Iについて約1.6×10¹⁷ Bq、

14 ¹³⁷Cs について約1.5×10¹⁶ Bq と推定されており、また、海水中に推定総量として4.7×10¹⁵

15 Bq強の放射性物質が流出したと推定されている。

16

17 (4) 食品中の放射性物質の検査結果

18 厚生労働省によると、平成 23 年 6 月 30 日現在、暫定規制値が通知された後に、検査に
19 より暫定規制値を超える放射能が検出された食品は 6,371 件中 404 件(ヨウ素 133 件、セ
20 シウム 345 件)であった。

- 21
- 22

23

24 4. 海水と生物中の蓄積状態について

25 (1) 海水中に生息する生物の元素の蓄積

26 放射性物質は種々の経路から体内に取り込まれ、その後体内臓器・組織に移行する。生
27 体内に存在する放射性物質は、高濃度曝露あるいは連続して変動する異常曝露がない限り、
28 吸収・代謝・排泄により、海水と生体の間では平衡状態で存在している。平衡状態での環
29 境中濃度とその環境に生息する動物の体内濃度の比を濃縮係数という用語で伝統的に呼ば
30 れている(山県 1978)。

31

海水中から生物への核種や元素の取込み及び排出の速度は、生物体の大きさの変動や性
 差、年齢、海水の温度、塩分、さらには光度(海藻類の場合)などのパラメーターにより
 影響される。加えて、個体差などによるランダムな変動にも影響される。そして、取り込
 まれた核種や元素の一部は排出されずに、長く体内に残留し蓄積される。また、濃縮係数
 を求める場合、フィールド調査法の方が放射性同位体トレーサー法より高い値を示す。理

1 由として、フィールド調査法の場合、海水からの取込みの他に、放射性物質を濃縮した餌

2 からの吸収も加わっていること等が考えられる(本多 2001)。

3 濃縮係数の考え方からすると、海水中放射性物質が定常状態において、鰓や口から魚に
 4 取り込まれ、移行が生体内で平衡状態になった時、海水中の濃度に対する魚中の濃度の比
 5 が1以上であれば当該元素が魚に濃縮されたとされている。

メチル水銀の場合、大型の肉食魚等はメチル水銀を高い濃度で含有しており、生物濃縮 6 の典型的な例と考えられる。海水中の無機水銀が海水又は海底の微生物によりメチル化さ $\overline{7}$ れ、さらに植物性プランクトン、動物性プランクトン、小型魚類、大型魚類へと食物連鎖 8 を介して生物濃縮される。その結果、大型魚類の生体内メチル水銀濃度は、数万倍から数 9 十万倍の濃度に達する(喜田村 1976)。このような例を考えると、放射性物質の濃度が海 10 水中よりも魚中の方が高い状態であっても、その比が小さい場合は、生物濃縮と呼ぶこと 11 が妥当かどうか疑問である。山県(1977)も元素の複雑な移行過程があって、濃縮という 12メカニズムが明解でない場合は、むしろ存在比又は濃度比と呼ぶ方が誤解を招かないとし 1314ている。

15 したがって、本評価書では、Concentration Factor(以下「CF」と略記)を生物濃縮の
 16 指標という概念とせず、単なる海水と海水に生息する生物体内の放射性物質の濃度の差と
 17 してとらえ、以下において、CFは濃度係数として記載することとする。

18 また、本評価書では、魚介類についても放射性物質の食品健康影響評価が追加要請され
 19 たことから、CFに関しては摂取量の多い魚類を主な対象として、海水と魚の濃度差につい
 20 て検討することとする。

21

22 海水中の放射性物質が海産生物へ取り込まれる場合、海水の環境、生物の食性などによ
23 り変動することから、コンパートメントモデルを用いて、実験的に CF や生物学的半減期
24 を求めることも研究されている(仲原 1993)。しかし、ここでは疫学を主とする実際の測
25 定値から得られた CF について検討することとする。

26

27 (2) 放射性物質の CF

CF を算出するには幾つかの方法があるが、山県(1978)は CF の算出法として、安定 28元素の定量値を用いる方法が広く行われているという。その利点は自然条件下であるとい 29うこと、水と生物との間に完全に平衡関係が成り立っていることなどが長所であるが、極 30 めて微量の元素の場合、精度のよい定量値を得ることは困難であるとしている。安定元素 31から求めた CF を放射性核種に適用するには、両者が同じ物理化学的性状で存在するか、 32又は相違した性状であっても、生物への取込みに大きな差異がないという条件が必要であ 33 る。¹³⁷Csの測定値から求めた CF が 43±12、その安定元素である Cs の魚体内定量値から 34求めた CF は 42±6 であり、Cs に関しては非常によく一致したことを報告している。 3536

37 Tateda ら(1996)は1984~1990年の間の日本の沿岸の18種32サンプルの魚につい
 38 て、魚の筋肉中及び海水中の¹³⁷Cs を測定し CF を示している。大気中フォールアウトの
 39 ¹³⁷Csは1963年にピークを示し、以後漸減しており、それに伴って表面海水中¹³⁷Cs 濃度

1 も減少しているが、大気中の減少より遅い。

2 魚の筋肉中¹³⁷Cs 濃度は 0.08 ~0.44Bq/kg wet weight であったが、種類による大差は
 3 ない。また、採取された魚と同じ地域の表面海水中¹³⁷Cs 濃度は 3.5~5.1 mBq/L であり、
 4 地域差も少なく調査年間の変動においても、ほぼ一定であったとされている。魚の筋肉及
 5 び海水濃度から算出された CF の幾何平均値±SE(標準誤差)は、52±4(範囲 14~133)
 6 と報告している。

7 笠松(1999)は、1984~1997年の日本の沿岸の海産生物中の¹³⁷Cs 濃度及び平均 CF を
8 示しており、Tateda ら(1996)の報告に類似した¹³⁷Cs 濃度を示し、平均 CF は 12~122
9 の範囲であったことを報告している。

10 飯淵ら(2001)は、海産魚における¹³⁷Cs 濃度を左右する要因について調べた結果、体
 11 重の重い種で相対的に高い CF を持つが、種によっては体重増と濃度増が比例しない、栄
 12 養段階の高い魚種で CF の高い傾向を示す、塩分濃度は¹³⁷Cs の排出速度に影響すること
 13 等を指摘している。

14木村(1996)は、海産生物による超ウラン元素(主として Pu 及び Am)の取込み、排 泄及び体内分布の様相について国内外のデータを総括している。その結果、海産生物によ 15る超ウラン元素の環境水からの取込みでは、プランクトン、海藻、無脊椎動物で大きく、 16魚類では小さいことを認めた。また、さらに次の4点を指摘している。1. プランクトン、 17海藻及び無背椎動物における比較的大きな CF は、主として細胞、藻体表面、貝殻及び外 18骨格への物理化学的な表面吸着によりもたらされる。すなわち、代謝過程を通しての体内 19 への蓄積は小さい。2. 海底堆積物からの海産生物への超ウラン元素の移行は環境水から 20の場合に比べて極めて小さい。しかし、海底堆積物における超ウラン元素の分配係数が大 21きいことから、環境水及び堆積物を通しての底棲生物への超ウラン元素蓄積は、環境水か 22らのみに比べてかなり大きくなると示唆される。3.汚染餌料の摂取実験を行った結果、 23食物連鎖系を介しての超ウラン元素の生物への移行は小さかった。4.フィールド調査研 24究においても、海産生物への超ウラン元素の蓄積は、プランクトン、海藻及び無背椎動物 25で大きく、魚類では小さかった。 26

27

海外の報告 (Andersen 2006) では、スヴァールバル諸島 (Svalbard)、バレンツ海 (the 28Barents Sea)、北グリーンランド海(the North Greenland Sea) で 2000~2003 年の間 29に捕獲された海洋のアザラシ、ホッキョクグマなどの哺乳類について、¹³⁷Csの測定及び 30 CF が算出されている。¹³⁷Cs の平均±標準偏差(SD)はホッキョクグマ 0.72±0.62 Bq/kg 31wet weight、 \mathcal{D} モンアザラシ 0.49±0.07 Bq/kg wet weight、ズキンアザラシ 0.25±0.10 32Bq/kg wet weight、アゴヒゲアザラシ 0.22 ± 0.11 Bq/kg wet weight、ハープアザラシ 0.3633 ±0.13 Bq/kg wet weight、シロイルカ 0.67 Bq/kg wet weight、シロナガスクジラ 0.42 34Bq/kg wet weight を示した。これらの海洋哺乳類の CF は、アゴヒゲアザラシの 79±32 35からワモンアザラシの244±36の範囲であったと報告している。 36

37

38 (3) IAEA の海棲生物の CF

39 IAEA は、2004 年の Technical Reports Series No.422 において、魚に含まれる 60 元素

について安定元素の CF を文献から得られた値及び推奨値(Recommended value)として
 まとめている。この CF は、生体中の元素又は核種の濃度と環境海水の関係は非常に動的
 であり、塩分濃度、生体サイズ、温度、塩分濃度などによって影響を受けると記載されて
 いる。また、IAEA が提示した元素の CF は、元素が水からの直接蓄積によって濃縮する
 ことを意味していないことも記している。

6 ストロンチウム (Sr)、ヨウ素 (I)、セシウム (Cs)、ウラン (U)、プルトニウム (Pu)、
7 アメリシウム (Am)、キュリウム (Cm) の CF を、IAEA のレポートから抜粋して表 I -3
8 に示す。

9

10 これらの報告等から推測すると、¹³⁷CsのCFは、高次の海洋哺乳類では小型魚類に比較
11 して数倍~10倍程度の差異がみられるものの、食物連鎖を介して高次の動物に数十万倍以
12 上の生物濃縮を来たすメチル水銀とは、明らかにそのメカニズムを異にしている。したが
13 って、今回の食品健康影響評価に当たっては、生物体内での物理学的半減期及び生物学的
14 半減期の観点から考えても、事故等による汚染のある場合を除き、海水と海棲生物からの
15 CFは、健康影響の観点から特に重視しなければならない理由は考えにくい。

16

Element	IAEA-TECDOC-211 value(※a)	Recommended value	note
ストロンチウム (Sr)	1	3	1
ヨウ素 (I)	10	9	2
セシウム(Cs)	50	100	3
ウラン(U)	0.1	1	4
プルトニウム (Pu)	10	100	5
アメリシウム(Am)	10	100	6
キュリウム (Cm)	(10)	100	6

表 I-3 CONCENTRATION FACTORS FOR FISH

() 最適推測値

4 ① 文献中に報告されているストロンチウムの肉に対する CF s は1 未満である。この推奨
 5 値は骨を含めた魚全体を消費する場合である。

6 ② 推奨 CF は、Pentreath(※ b)から得られた魚の乾燥重量当たり 0.5mg ヨウ素濃度を用
 7 いて計算された。

8 ③ 推奨CFは、主として魚と海水中のサンプル中のセシウム137の測定に基づいている。
 9 CFは同じ環境中で得られた魚種で異なり、またサイズで濃度が変化することは明らかである。

11 ④ 魚肉中のウランの標準濃度は約 0.2µg/kg 湿重量と文献(※b)に報告されている。

12 この濃度を用いて導出された CF は 0.1 未満である。しかし、可食部の骨部分が含有
 13 する可能性のある量を考慮にいれると1にまで増加した。

14 ⑤ 魚類組織に含まれるプルトニウムに関して数多くのデータを入手することができる。
 15 その多くについて概要が示されている(※ c)。CF 平均 3.5×10 の 2 乗(※d) 及び英国

16 海峡(English Channel)1×10の2乗(※e)。勧告値1×10の2乗。

17 ⑥ これらの推奨された CF は IPSN の English Channel のデータを用いて決定された。

18

1

 $\mathbf{2}$

3

19 (%a) INTERNATIONAL ATOMIC ENERGY AGENCY, The Radiological Basis of
 20 the IAEA Revised Definition and Recommendations Concerning High-level
 21 Radioactive Waste Unsuitable for Dumping at Sea, IAEA-TECDOC-211, IAEA,
 22 Vienna (1978)

- 23 (%b) PENTREATH, R.J., Radionuclides in fish, Oceanogr. Mar. Biol. Ann. Rev.15
 24 (1977) 365.
- (%c) JACKSON, D.W., GOMEZ, L.S., MARIETTA, M.G., Compilation of Selected
 Marine Radioecological Data for the U.S. Subseabed Program, Rep. SAND-73-1725,

- 1 Sandia Natl Laboratories, Albuquerque, NM (1983) 237.
- 2 (%d) HARVEY, B.R., KERSHAW, P.J., "Physico-chemical interactions of long-lived
- 3 radionuclides in coastal marine sediments and some comparison with the deep sea
- 4 environment", The Behaviour of Long-lived Radionuclides in the Marine
- 5 Environment(CIGNA,A.,MYTTENAERE,C.,Eds),Rep.EUR 9214,European
- 6 Commission,Luxembourg(1984)131.
- 7 (%e) INSTITUT DE PROTECTION ET DE SÛRETÉ NUCLÉAIRE, The Report of the
- 8 Nord-Contentin Radioecology Group, IPSN, Fontenay-aux-Roses (1999)

く参照> 1 М., $\mathbf{2}$ Andersen М., JP., Dowdall Kovacs KM.. & Lydersen Gwynn C: .:Radiocaesium(137Cs) in mammals from Svalbard, the Barents Sea and the North 3 Greenland Sea. Sci Total Environ 15, 363, 87-94, 2006 4 $\mathbf{5}$ IAEA(International Atomic Energy Agency) : Technical Reports Series No.422; 6 Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine 7Environment. 2004. 8 9 Tateda Y. & Koyanagi T. : Concentration Factors for ¹³⁷Cs in Japanese Coastal Fish 10(1984-1990). J Radiat Res 37, 71-79, 1996. 11 12UNSCEAR. Sources, effect and risks of ionizing radiation. Report to the general 1314assembly, United Nations, 2000 1516 UNSCEAR, Sources and Effects of Ionizing Radiation, United Nation, 2008. 17飯淵敏夫、他:海生研ニュース, 72, Page5-7、2001 1819 笠松不二男:海産生物と放射能一特に海産魚中の ¹³⁷Cs 濃度に影響を与える要因について 20-, RADIOISOTOPES, 48, 266-282, 1999. 2122喜田村、近藤、滝澤、藤木 共著:水銀 講談社 1976 2324木村健一:海洋生物への放射性物質の移行、(財)原子力環境整備センター、pp.334-354、 251996 2627原子力災害対策本部、原子力安全に関するIAEA閣僚会議に対する日本国政府の報告書 2829- 東京電力福島原子力発電所の事故について-、2011 30 清水 誠:環境における放射性物質の生物濃縮について、RADIOISOTOPES, 22, 662-673, 311973. 3233 34滝澤行雄、チェルノブイリ原子力発電所事故に伴う放射能汚染とその被ばく線量評価、日 本公衛誌, 34(1), 3-9, 1987 3536 独立行政法人 放射性医学総合研究所:低線量放射線と健康影響、医療科学社、2007 3738仲原元和:海洋生物の放射性元素濃縮と食物連鎖、放医研環境セミナーシリーズ No20、 39

1	放射線医学総合研究所、1993.					
2						
3	本多照	译章:	日本海水学	全 志 5, 11-20 、 20	01	
4						
5	山県	登:	生物濃縮	pp24-29, pp32-33.	産業図書出版社	1978
6						
7						
8						
9						

1 II. 食品健康影響評価の基本的考え方

2 今回、食品健康影響評価を行うに当たっては、以下の点に留意した。

3 UNSCEAR 及び米国毒性物質疾病登録機関(ATSDR)の放射性物質に関する報告書に
 4 引用されている文献、国際放射線防護委員会(ICRP)、世界保健機関(WHO)が公表し
 5 ている資料に加え、その他放射性物質に関連する文献等を幅広く検討の対象とした。なお、

6 経口摂取による放射性物質の健康影響に関する文献は限られていることから、経口摂取に
7 よる内部被ばくの報告に限らず、また、化学物質としての毒性に関する報告も含め、広く
8 知見を収集した。

9 検討対象の核種は、厚生労働省からの評価要請を踏まえ、放射性ヨウ素、放射性セシウ
 ム、ウラン、プルトニウム及び超ウラン元素(アメリシウム及びキュリウム)のアルファ
 11 核種並びに放射性ストロンチウムとし、α 核種又はβ 核種について各々の専門委員が分担
 12 して検討を行うこととした。

13 食品健康影響評価は、食品の摂取に伴うヒトの健康に及ぼす影響についての評価を行う
14 ものであって、本来は、緊急時であるか、平時であるかによって、評価の基準などが変わ
15 る性格のものではないことにかんがみ、また、評価と管理の分離の観点から、管理措置に
16 評価が影響されるようなことがないよう留意して評価を行った。なお、科学的知見の制約
17 から内部被ばくのみの報告で検討することが困難であったため、食品からの放射性物質の
18 摂取と外部被ばくとの関係については、当面は、外部被ばくは著しく増大してないことを
19 前提として検討することとした。

20

21

22 III. 知見の整理について

23 核種ごとの食品健康影響評価については、収集された知見からは、経口摂取に関するデ
 24 ータは乏しく、ウランを除いて個別の核種別には評価結果を示せなかったため、IV~X に
 25 ついては、核種ごとの知見の整理を行った。

26 また、XIについては、入手し得た放射性物質に関する文献のうち、疫学データにおいて
27 比較的低線量で健康への影響に係る記載のある文献を選択し、更にそれらの文献について、
28 研究デザインや対象集団の妥当性、統計学的有意差の有無、推定曝露量の適切性、交絡因
29 子の影響、著者による不確実性の言及等の様々な観点から、本評価において参考にし得る
30 か否かの検討を行った結果、評価の参考になるもの又は参考のサポートになるものと判断
31 した文献に基づき知見の整理を行った(別添論文リスト参照)。

- 32
- 33
- 34
- 35

1 Ⅳ. 放射性ヨウ素

2 ここにおいて単にヨウ素(ヨウ化物)と記載したものは、それが放射性物質か否かにつ
 3 いて区別せずに記載したものである。

4

5 **1. 元素名、原子記号等**

- 6 IUPAC : iodine
- 7 CAS No. : 7553-56-2
- 8 原子記号:I
- 9 原子量:126.9 (ヨウ素として)
- 10 天然の存在比: ¹²⁷I 100%
- 11 (The Merck Index 2006、米国原子力規制委員会(NRC) 1977)
- 12

13 **2. 物理化学的性状**

- 14 融点 (℃) :113.6
- 15 沸点 (℃) :185.2
- 16 密度(g/cm3): 4.93(固体: 25℃)、3.96(液体: 120℃)
- 17 蒸気圧 (mm) : 0.3 (25℃) 、26.8 (90℃)
- 18 (The Merck Index 2006、岩波理化学辞典 1998)
- 19

20 3. 放射性崩壊

21 ヨウ素には 108 から 143 の質量をもつ 36 種類の同位体が存在する (Chu et al. 1999)。
 22 このうち 14 種類は大量の放射線を放出する。

¹²⁹I(半減期 1.6 x 10⁷年)とは異なり、¹²⁵Iの半減期は 60 日、¹³¹Iの半減期は 8.0 日で、
 半減期が短いため環境中には長く滞留しないことから、環境への蓄積に起因するリスクを
 もたらさない。

26 ウラン核分裂生成物の 72%及びプルトニウム核分裂生成物の 75%が、直接又は核分裂生
27 成物のβ崩壊によってヨウ素同位体となる。例えば、²³⁵U核分裂生成物の 2.89%及び ²³⁹Pu
28 では 3.86%が、¹³¹In、¹³¹Sn、¹³¹Sb、¹³¹Te、¹³¹I及び ¹³¹Xe といった質量 131の一連の同
29 重体系列の生成に至る。ヨウ素の各同位元素は一次核分裂生成物(initial fission product)
30 として生成され、いったん生成されると、各同位元素はβ線放出によって壊変し、¹³¹Iを
31 経て安定な元素である ¹³¹Xe となる。

32 同様の過程は¹²⁹I でも起こる。¹²⁹Cd で始まり¹²⁹Xe で終わる一連の質量 129 の同重体
 33 系列の生成に至る。¹²⁷I より重いヨウ素同位体はβ線及びγ線放出によって壊変し、放出
 34 されるエネルギー量(β線及びγ線を合わせた量)はヨウ素の同位体ごとに固有である。

35 例えば、¹³¹Iはβ粒子放出によって崩壊し、0.96 MeV のエネルギーがβ粒子とγ線の間で

- 36 共有される。少なくとも7通りのβとγの組み合わせがあり、崩壊の90.4%において、0.61
 37 MeVのβ粒子が放出される。残りの過剰エネルギーは85.3%の確率で0.364 MeVのγ線
- 38 として、あるいは 5.1%の確率で 0.284 MeV と 0.080 MeV の y 線の組み合わせとして放出
- 39 される(Argonne National Laboratory 2005a、岩波理化学辞典 1996)。

2 **4. 用途**

1

7

¹²⁷I は、有機及び無機化合物、薬剤、X 線造影剤、飼料添加物、消毒剤、安定剤、イン
 ク、着色料、写真薬剤、合成ゴム製品等に用いられる。その他、飲料水及びプールの殺菌
 剤としても用いられる。¹³¹I は医療用のトレーサーとして用いられる(The Merck Index
 2006、岩波理化学辞典 1998)。

8 5. 自然界での分布・移動

9 ヨウ素は周期表のグループ VIIA のハロゲン族に属する非金属元素である。ヨウ素は地
 10 殻中に自然に存在する構成物質の一つで、ハロゲン元素の中で存在量が最も低い (Straub
 11 et al. 1966)。自然界に存在するヨウ素の安定同位体は¹²⁷I であり、地球上の至る所に存
 12 在する。地殻中¹²⁷I 濃度は約 0.5 ppm、海洋では 45~60 μg/L、そして大気中濃度は 10~
 13 20 ng/m³ である(岩波理化学辞典 1998)。

14 ヨウ素は多くの化学形態で存在し(分子状ヨウ素、ヨウ化物、ヨウ素酸塩、過ヨウ素酸
 15 塩等)、海洋表面から主にヨウ化メチルとして大気中に移行するが、分子状ヨウ素は少な
 16 い。酸化 - 還元と微生物によるアルキル化(大部分はヨウ化メチル)を受ける。

17 ¹²⁹I は放射性ヨウ素としては唯一自然界に存在する。¹²⁹I は土壌及び海洋中のウラン及び
 18 トリウムの核分裂生成物として生成される。また、上層大気中で高エネルギー粒子と¹²⁹Xe
 19 との核反応及び中性子と¹²⁸Te、¹³⁰Te との反応で生成される(Soldat 1976)。

¹²⁵Iと¹³¹Iは原子炉内での中性子照射、又は加速器重粒子によるウランとプルトニウム
 の核分裂中に生成する。

22 天然生成¹²⁹I についての¹²⁹I/¹²⁷I 比は自然環境中では3x10⁻¹⁴であったが、核兵器実験
 23 と核エネルギー活動に伴う¹²⁹I の生成により、その比は10⁻⁸となっている(Ballad et al.
 24 1978)。

25

26 環境中へのヨウ素の放出は自然起源と人的活動の両方から発生する。自然起源としては、
海洋からのヨウ素の揮発、岩石の風化、火山活動などがある(Cohen 1985、Whitehead
1984)。人的活動によるヨウ素の発生源としては、核兵器実験及び核燃料再処理、都市部
の工場からの排水、廃棄物や化石燃料の燃焼等からの放出があり、特に¹³¹I は核兵器製造・
利用、核燃料再処理を通じて放出される(米国 原子力委員会(AEC) 1974、Likhtarev
et al. 1993、Marter 1993、Moran et al. 1999、米国科学アカデミー(NAS) 1974、米国
29 放射線防護審議会(NCRP) 1983、Robkin and Sheien 1995、Stetar et al. 1993)。

33

34 大気中では、ヨウ素は多くの光化学変化を起こし、気体状無機、気体状有機又は粒子状
 35 で存在する。大気中でのこれら化学形態の滞留時間はそれぞれ 10 日、18 日及び 14 日であ
 36 る(Whitehead 1984)。

37 気体状無機及び粒子状ヨウ素は大気中から湿性(雨、みぞれ、雪)及び乾性(重力沈降、
 38 風乱流)沈着作用を通じて沈降する(Whitehead 1984)。ヨウ化メチルのようなヨウ化ア
 39 ルキルは湿性沈着も乾性沈着も起こりにくい。ヨウ素の沈着はヨウ素の粒径と濃度、風乱

流、化学形態に依存している。もし、降水が陸上で起これば、大気中のヨウ素は植物表面、 1 土壌表面に沈着したり、表面水に溶解する。ヨウ素の植物表面での保持時間は風化により $\mathbf{2}$ 7.5~14 日程度である(AEC 1974、Heinemann and Vogt 1980、Kirchner 1994)。土壌 3 中のヨウ素の保持は、土壌 pH、土壌湿分、土壌空隙率、有機及び無機(アルミニウム及び 4 鉄の酸化物)成分組成のような多くの要因に影響を受ける(Sheppard et al. 1995、 $\mathbf{5}$ Whitehead 1984)。大気から土壌へ沈着した量の約1%は、分子状ヨウ素及びヨウ化メチ 6 ルの揮発により大気へ戻り、残ったヨウ素は最終的には表面水や地下水を通して海洋に戻 $\mathbf{7}$ ることになる(NRC 1979、Whitehead 1984)。深さ 0.3 及び 1 m の土壌におけるヨウ素 8 の平均滞留時間はそれぞれ 80年及び 800年であり、1 mの深さまで移動するのは沈着ヨ 9 ウ素の1~3%である(米国 エネルギー省(DOE) 1986)。 10

11

ヨウ素は多くの海水及び淡水の水生植物中に含まれている (Poston 1986)。淡水植物 (例 12えば、藻類)はヨウ素を105重量%含んでいるが、海草(藻)は103重量%含んでいる(NCRP 13141983)。淡水魚では、組織中のヨウ素濃度は 0.003~0.81 ppm の範囲で、この値は濃度比 (魚/水) で 0.9~810 となる。海水魚では、ヨウ素濃度は 0.023~0.11 ppm の範囲で、10 15~20の濃度比となる(Poston 1986)。陸上植物では、ヨウ素は根を通して主にヨウ化物 16として取り込まれるが、ヨウ素酸塩、ヨウ素としての取込みは少ない(Burte et al. 1991、 17Whitehead 1984)。陸上植物での平均ヨウ素濃度は 0.42 µg/g である。その取込みは土壌 18条件と肥料の使用に依存している(Moiseyev et al. 1984)。ヨウ素とヨウ化物の分布は植 19物中では変動する(Voigt et al. 1988)。陸上植物へのヨウ素の取込みは、植物表面へのヨ 20ウ素の沈着と相まって土壌 - 植物 - 牛 - 牛乳の経路を通したヨウ素の移行に重要な役割を 21果たしている(AEC 1974、Soldat 1976、Tubiana 1982、Voigt et al. 1989)。 22

 $\frac{23}{24}$

25 6. 体内動態

26 (1) 吸収

27 **①ヒト**

¹³¹ をトレーサーとして単回経口投与した¹³¹ はほぼ完全に吸収され、甲状腺機能正 28常被験者における糞便中排泄は用量の1%未満である(Fisher et al. 1965)。同じ研究に 29おいて、甲状腺機能の正常な成人 20 名にヨウ化カリウム(0.25、1.0 mg I/日)を 13 週 30 間経口投与したところ、1日当たりの尿中ヨウ素排泄は推定1日摂取量の約80~90%で 31あり、ほぼ完全に吸収されていることが示唆された。同様に、健常人9名を対象とした 32急性経口投与において、甲状腺中の放射性ヨウ素は、トレーサーとして単回経口投与し 33 た¹³¹I 又は¹³²I 用量の 97% (SD: 5%) であり、ほぼ完全に吸収されていることが示唆 34された(Ramsden et al. 1967)。同じ研究において、被験者2名に安定ヨウ素剤(安定 35ヨウ素剤の化学形態は不明であるが、おそらくヨウ化カリウム又はヨウ化ナトリウムの 36 いずれか)5、15 mgをトレーサーと同時投与したところ、甲状腺及び尿中に検出された 37放射性ヨウ素はそれぞれ96及び98%であった。1名においては、絶食後(絶食期間不明) 38又は満腹時にトレーサーを投与したが、甲状腺及び尿中に回収された放射性ヨウ素はそ 39

1 れぞれ 97 及び 98% であった (Ramsden et al. 1967)。

放射性ヨウ素 (123I、125I 及び 131I) を静脈内投与又は経口投与された成人においては、 3 甲状腺に蓄積するヨウ素は同程度(20~35%)であり、摂取された放射性ヨウ素の吸収 4 は、良好であることが示唆された(Bernard et al. 1970、Gaffney et al. 1962、 $\mathbf{5}$ Ghahremani et al. 1971, Oddie and Fisher 1967, Pittman et al. 1969, Robertson et al. 6 1975、Sternthal et al. 1980、Van Dilla and Fulwyler 1963)。経口摂取後 1~2 日後に 7甲状腺に取り込まれる放射性ヨウ素は、男性より女性において若干高い可能性があるが、 8 その違いの由来は不明とされている(Ghahremani et al. 1971、Quimby et al. 1950、 9 Robertson et al. 1975)。例えば、同程度のヨウ素を摂取した男女において、甲状腺への 1024時間ヨウ素取込みは同様であったが、摂取量に対して、女性における取込みは男性よ 11 り 10~30%多いという報告があった(Ghahremani et al. 1971、Oddie et al. 1968a、 121970, Quimby et al. 1950, Robertson et al. 1975). 13

14

 $\mathbf{2}$

経口投与された放射性ヨウ素の24時間甲状腺取込みの測定結果から、ヨウ素の消化管 15吸収は小児、青年及び成人において同様とされている (Cuddihy 1966、Oliner et al. 1957、 16Van Dilla and Fulwyler 1963)。しかし、乳幼児における吸収は小児及び成人よりも低 17い。これはトレーサーとして放射性ヨウ素を経口及び静脈内投与によって投与された新 18生児において、甲状腺取込みを測定した研究に基づく知見である。一般的に、放射性ヨ 19ウ素を筋肉内又は静脈内に投与した場合、経口投与時の場合よりも甲状腺取込み量は多 20く、経口投与では吸収は不完全であるとされている。例えば、トレーサーとして¹³¹I(3.7 21x104 Bq以下)を経口投与された健常新生児8名(生後36時間未満)において、甲状腺 22取込みが最大に達する投与30時間後の甲状腺取込み平均値は約50%であり、一方でト 23レーサーを筋肉内投与された新生児17名における甲状腺取込み最大値となる投与25時 $\mathbf{24}$ 間後の平均値は約70%であった(Morrison et al. 1963)。高日齢の新生児(72~96 時 25間齢)の研究では、新生児 28 名がトレーサーとして ¹³¹I(1.9 x 10⁵ Bq)を経口投与さ 26れた際の甲状腺における放射性ヨウ素の24時間平均取込み量は20%(6~36%)であっ 27た(Ogborn et al. 1960)。一方、健常新生児7名(3 日齢未満)による研究では、トレ 28ーサー131I 筋肉内投与後 24 時間の平均甲状腺取込み量は 70% (46~97%) であった (van 29Middlesworth 1954)。トレーサーとして¹³¹I(3.7 x 10⁴ Bq)を静脈内投与された健常新 30 生児(48 時間齢未満)26名における24時間の平均甲状腺取込み量は62%(35~88%) 31であった (Fisher et al. 1962)。 32

33

34 健常成人女性 12 名において 2 週間にわたり食事中ヨウ素の取込み(170~180 μg/日)
35 と排泄を測定した食事バランス研究では、尿中ヨウ素排泄は 1 日当たりの摂取量の 96~
36 98%であった(Jahreis et al. 2001)。Cuddihy(1966)は放射性ヨウ素含有牛乳を 14
37 日間経口摂取した甲状腺機能正常被験者における放射性ヨウ素の甲状腺取込みを測定し
38 た。牛乳は ¹³¹Iを混餌投与された雌牛から搾乳した。牛乳最終摂取後 24 時間の甲状腺取
39 込みは投与量の約 23%であった。この値は、トレーサーとして ¹³¹I を経口投与又は静脈

内投与した際に観察された甲状腺取込み(20~35%)の範囲内であるため、牛乳中に取 1 り込まれたヨウ素は、高い吸収率を示すことが示唆された。Comarら(1963)は、カプ $\mathbf{2}$ セル(放射性ヨウ素水溶液含有)内の 131I 又は牛乳中に取り込まれた 131I を経口投与さ 3 れた健常な成人11名における放射性ヨウ素の取込みを比較した。どちらの投与条件でも 4 24 時間の甲状腺取込みはほぼ一致しており(平均投与量の 19 及び 20%)、同様の吸収 $\mathbf{5}$ 率が示唆された。Pendleton ら(1963)はネバダ核実験場(NTS)近くの農場でとれた 6 牛乳中及びこの農場在住者の甲状腺及び全身における 131I を測定した(甲状腺及び全身) 7を体外計測)。被験者 24 名における ¹³¹ 平均甲状腺取込み量は 17% (5~47%) であり、 8 これは放射性ヨウ素を経口又は注入で投与した場合の観察結果と同様であった。 9

22 10 11 ②実験動物

I2とI:の吸収の違いが動物実験で示唆されている。ヨウ素はラットにおいてI2として 12摂取された際に取り込み遅延を示す。絶食ラットにトレーサー¹³¹ を I₂ として投与する 1314と、用量の 8~9%が 72 時間で糞便中排泄され、34~35%が尿中排泄され(Thrall and Bull 1990)、不断給餌されていたラットにおいても同様の結果(78時間で糞便中排泄6 15~7%、尿中排泄 I₂22%及び NaI 29%)が得られている。これらの結果から、トレーサ 16ーとして投与された I2及び NaI 由来のヨウ素は両方ともラット消化管からほぼ完全に吸 17収されるが、投与初期の胃内容比率に違いがみられている。雌牛においては、トレーサ 18ーとして混餌投与された¹³¹I はほぼ完全に吸収される(Vandecasteele et al. 2000)。ト 19 レーサーとして放射性ヨウ素(¹³¹I)を経口、静脈内又は経皮投与されたヒツジ4頭にお 20ける甲状腺取込みのピークは類似しており、17~19%(この値は ¹³¹Iの放射性崩壊を修 21正していない) であった(Wood et al. 1963)。 22

23

24 ポビドンヨードは I_2 とポリビニルピロリドンの複合体であり、局所消毒剤として広く 25 使用されている。ポビドンヨード製剤は約 9~12%のヨウ素を含有し、そのうちわずか 26 な部分が溶液中で遊離している(Lawrence 1998、Rodeheaver et al. 1982)。¹²⁵[I]I-ポ 27 ビドン(用量不明)を単回混餌投与されたラットにおける吸収は約 3%であり、この値 28 は投与 24 時間後に消化管に保持された放射性ヨウ素を測定することで得られた。同じ実 29 験で、ポビドンヨードを 10%エタノール溶液として投与した時の吸収は 10%又は 5%、 30 0.2%塩化ベンザルコニウム溶液として投与した時の吸収は 5%であった。

31

32 **(2)分布**

33 ヨウ素は人体に約 10~15 mg 含まれ、そのうち 70~90%が甲状腺に存在するが、甲状 34 腺は血中及び他の組織に分泌される甲状腺ホルモンを生産するためにヨウ素を蓄積する 35 (Cavalieri 1997、Hays 2001、Stather and Greenhalgh 1983)。血清中ヨウ素濃度は正 36 常時、約 50~100 μ g/L である(Fisher et al. 1965)。血清中ヨウ素の約 5%が無機のヨウ 37 化物として存在するが、残りの 95%は有機ヨウ素化合物で構成され、主に甲状腺ホルモン 38 サイロキシン(T₄)及びトリヨードサイロニン(T₃)とタンパク質複合体である(Fisher 39 et al. 1965、Nagataki et al. 1967、Sternthal et al. 1980、Wagner et al. 1961)。 2 ヨウ化物及び有機ヨウ素化合物の組織分布は全く異なり、体内におけるタンパク質のヨ ウ素化と甲状腺ホルモンの脱ヨウ素化に至る代謝経路と相関している。ヨウ素を集積する
4 特殊な輸送メカニズムを持っている組織(甲状腺、唾液腺、胃粘膜、脈絡叢、乳腺、胎盤
5 及び汗腺)を除き、ヨウ素は概して細胞外液画分に局在する(Brown-Grant 1961)。ヨウ
6 化物の血清中濃度は、細胞外液濃度と同等であり、通常 5~15 µg/L の範囲を示す。細胞外
7 液の体積を約17 L と仮定すると、人体におけるヨウ化物の総細胞外含有量は約85~255 µg
8 である(Cavalieri 1997、Saller et al. 1998)。

9

1

ヨウ化物の甲状腺における濃度は、概して血清中濃度(0.2~0.4 mg/dL, 15~30 nM)の 1020~50 倍であるが、甲状腺が甲状腺刺激ホルモン(TSH)で刺激されると血中濃度の100 11 倍を超え、400倍を超えた濃度も観察された(Wolff 1964)。血中又は血清中濃度より高い 12濃度でヨウ化物が集積する組織は、唾液腺、胃粘膜、脈絡叢、乳腺、胎盤及び汗腺である 1314(Brown-Grant 1961)。甲状腺に取り込まれたヨウ化物は、甲状腺に貯蔵される甲状腺ホ ルモンの生産に利用される。甲状腺中のヨウ素のうち有機成分は約90%を占め、甲状腺ホ 15ルモン T₄ 及び T₃を構成するヨウ化チロシン及びチロシン残基、さまざまな合成中間体及 16び分解生成物が含まれる。 17

18

母体がヨウ素へ曝露されると胎児も曝露される(ICRP 2002)。胎児甲状腺への放射性ヨ 19ウ素の蓄積は妊娠70~80日に始まり、およそ妊娠100~120日に検出可能となる甲状腺濾 20胞や甲状腺コロイドの発達に先行する(Book and Goldman 1975、Evans et al. 1967)。 21胎児におけるヨウ素取込み活性は甲状腺が発達するにつれて上昇し、およそ妊娠6か月で 22ピークに達するが、この時点で甲状腺における最高濃度に到達し、母体投与量の約 1%と 23なる(Aboul-Khair et al. 1966、Evans et al. 1967)。母体に放射性ヨウ素を単回投与後1 24~2 日における胎児の放射性ヨウ素濃度はその時点の母体濃度より高く、およそ妊娠6か 25月で最も高い胎児/母体濃度比 2~8 を示す(Book and Goldman 1975、Millard et al. 2001)。 26放射性ヨウ素の経口投与及び放射性降下物による曝露においても、長期曝露期間後の甲状 27腺における放射性ヨウ素濃度の胎児/母体濃度比は約2~3と推定されている(Beierwaltes 28et al. 1963, Book and Goldman 1975, Eisenbud et al. 1963). 29

30 妊娠中は、母体の血液中の甲状腺ホルモンの増加と甲状腺によるヨウ素取込みが増加す
31 ることが示されている(英国放射線防護協会(NRPB) 2001)。新生児における甲状腺取
32 込みは、出生後 10 日間では成人の 3~4 倍であり、およそ日齢 10~14 日で成人レベルま
33 で低下する(Fisher et al. 1962、Kearns and Phillipsborn 1962、Morrison et al. 1963、
34 Ogborn et al. 1960、Van Middlesworth 1954)。

35

36 甲状腺へのヨウ素取込みは、ヨウ化物摂取に対して非常に敏感に反応する。ヨウ素欠乏
 37 症のような低摂取時(例えば 20 μg/日)には、ヨウ化物の甲状腺取込みは増加する(Delange
 38 and Ermans 1996)。健常成人において、ヨウ化物(ヨウ化ナトリウム) 30 mgの単回経
 39 口投与は放射性ヨウ素の 24 時間甲状腺取込み量を約 90%減少させる(Ramsden et al.

1967、Sternthal et al. 1980)。ヨウ化ナトリウム 12 日間反復経口投与によって取込み阻
 害が維持されたが、最終投与後 6 週間以内(Sternthal et al. 1980)又は単回投与 8 日以内
 (Ramsden et al. 1967)に、対照群(ナトリウムヨウ化物投与前)取込みレベルまで完全
 に回復した。ヨウ化物(1.5~2.0 mg/m² of surface area)を反復経口投与された小児にお
 いては甲状腺取込み量が 80%減少した(Saxena et al. 1962)。

6

7 米国研究審議会(NCI)(1997)は、1950~1980年に報告された放射性ヨウ素の24時
8 間甲状腺取込みに関するデータを解析し、米国成人における甲状腺取込みは1950~1960
9 年で投与量の約20~40%、現在は約15~20%と、時間が経つにつれて減少していると結
10 論した(Cuddihy 1966、Dunning and Schwartz 1981、Kearns and Phillipsborn 1962、
11 Kereiakes et al. 1972、Oddie and Fisher 1967、Oliner et al. 1957、Pittman et al. 1969、

12 Van Dilla and Fulwyler 1963)。この減少は、同時期における食事中ヨウ化物の平均摂取
 13 量が約 200 µg/日から約 800 µg/日に増加していることと関連しているようであった(NCI
 14 1997)。

- 15
- 16

17 (3)代謝

18 甲状腺のヨウ化物は、チロシン残基との共有結合複合体として、タンパク質、サイログ
 ロブリン中に取り込まれる。サイログロブリンのヨウ素化は甲状腺ペルオキシダーゼに触
 20 媒されるが、この酵素は主に甲状腺濾胞のコロイド腔側の細胞膜で開口放出時に活性化さ
 21 れる。ヨウ素化反応は濾胞細胞内腔で起こり、ヨウ化物の酸化で反応中間体を形成し、サ
 22 イログロブリン中でモノヨードチロシンとジヨードチロシン残基を形成後、ヨードチロシ
 23 ン残基が重合して T₄ (二つのジョードチロシン残基が重合)又は T₃ (モノヨードチロシン
 24 とジョードチロシン残基が重合)を形成する。

25

サイログロブリンは濾胞腔に貯蔵される。甲状腺が甲状腺ホルモンを生産して放出する 26よう刺激された時、ヨード化したサイログロブリンは濾胞上皮細胞内にコロイド腔側から 27エンドサイトーシスによって取り込まれ、このコロイド小胞がリソソームと融合する。リ 28ソソーム中のタンパク質分解酵素によってヨード化サイログロブリンを構成アミノ酸残基 29(T₄、T₃、モノヨードチロシン及びジョードチロシン)に分解する。T₄及び T₃は血漿中 30 のキャリアタンパク質に結合して、血中へと放出される一方で、モノヨードチロシン及び 31ジョードチロシンは細胞内に貯留されて再利用される。甲状腺過剰刺激状態では、モノヨ 32ードチロシン、ジョードチロシン及びヨウ化物が T₄及び T₃とともに甲状腺から血中に放 33 出される可能性がある。ヨウ化物が豊富な状態下ではサイログロブリン中の T₄: T₃=約 3415:1 であるが、ホルモン分泌比はそれより低く約 10:1 である。しかし、T₄及び T₃生産 35のかなりの量が、一部のヨウ化物の利用可能性に依存する。ヨウ化物量が少ないことが結 36 果的により低い T₄: T₃合成比をもたらす(Taurog 1996)。 37

38

39 甲状腺ホルモン合成及び放出の主要なステップは下垂体からの TSH による刺激、甲状腺

によるヨウ素取込み、サイログロブリンのヨウ素化、濾胞腔からのヨード化したサイログ 1 ロブリンのエンドサイトーシス、甲状腺ホルモンを血中に放出するためのサイログロブリ $\mathbf{2}$ ンのタンパク質分解である。甲状腺ホルモン合成はまた血清ヨウ化物濃度にも対応してい 3 る。1 mg を超えるような高用量のヨウ化物に急性経口曝露されると、甲状腺におけるヨー 4 ドチロニンの生産が阻害される。この影響は血中 TSH レベルに依存せず、Wolff-Chaikoff $\mathbf{5}$ 効果によるものとされている(Wolff and Chaikoff 1948)。この影響は一時的なもので、 6 高用量のヨウ化物に反復曝露された際には、甲状腺は Wolff-Chaikoff 効果を脱出しホルモ $\mathbf{7}$ ン合成は通常レベルまで回復する(Wolff et al. 1949)。Wolff-Chaikoff 効果のメカニズム 8 には、ヨウ化物輸送及びヨウ素化反応両方の阻害が関与し、ヨウ化物とヨウ素化代謝中間 9 物により仲介される sodium/iodine symporter (NIS) 及び甲状腺ペルオキシダーゼの発現 10阻害を介している可能性がある (Eng et al. 1999、Spitzweg et al. 1999、Uyttersprot et al. 11 $1997)_{0}$ 12

13

甲状腺の外で起こるヨウ素代謝の主要経路は T₄ 及び T₃の異化反応が含まれ、脱ヨード 14化反応、チロニンの結合開裂、チロニン側鎖の酸化的脱アミノ反応及び脱カルボキシル化 15及びグルクロン酸及び硫酸塩とチロニンのフェノール性ヒドロキシル基の抱合が含まれる。 16T₄からT₃へのヨウ素脱離反応は末梢T₃の主要な生成経路であるが、T₃はホルモンとして 17の効力が T₄より高く、同時に 3,3',5-triiodo-L-thyronine (リバース T₃ (rT₃))を産生し、 18ヒトにおける総 T₄代謝回転の約 80%を占める (Engler and Burger 1984, Visser 1990)。 19末梢での T₃産生は主に肝臓と腎臓で行われる。しかし、作用部位組織における T₄からの 20T₃産生が下垂体及び脳における T₃の重要な源と考えられている。また、ヨードチロニン 21脱ヨウ素酵素は T₄ 及び T₃の不活化を触媒する。脱ヨウ素酵素の活性は、T₃、T₄ 及び T₄ 22の不活性脱ヨウ素化生成物である rT₃ を介して行われるフィードバックの調節下にある 23(Darras et al. 1999、Peeters et al. 2001)。T₄及びT₃の脱ヨウ素化は、また、甲状腺ホ 24ルモンを不活性化する働きも示す。脱ヨウ素化反応で放出されたヨウ化物は、甲状腺に取 25り込まれるか尿中に排泄される。脱ヨウ素化はセレン含有性脱ヨウ素化酵素によって触媒 26される。 27

28

29ヨードチロニンのアラニン側鎖における酸化的脱アミノ反応と脱炭酸反応は、T4及びTa 代謝回転のそれぞれ約2及び14%を占める(Braverman et al. 1970、Gavin et al. 1980、 30 Pittman et al. 1980、Visser 1990)。この反応を触媒する酵素はあまり特徴付けられてい 31ない。ラット腎臓及び脳のホモジネートにおいて活性が示されており、代謝産物は、腎臓、 32肝臓及び骨格筋を含むさまざまな組織中で認められている(Engler and Burger 1984)。 33 34側鎖の脱アミノ反応と脱炭酸反応生成物、ヨードチロニンの酢酸類似体は、脱ヨウ素化を 受けてグルクロン酸及び硫酸に抱合される(Engler and Burger 1984、Green and Ingbar 351961, Pittman et al. 1972, Nagata and Yamazoe 2000). 36

37

38 ヨードチロニンのフェノール基の硫酸抱合は主に肝臓で起こる。ヒトでは、肝臓におけ
 39 る反応はフェノール性アリール硫酸転移酵素によって触媒される(Young 2000)。硫酸化

された生成物は脱ヨウ素化される。通常の条件下では甲状腺ホルモンの副次的な代謝物で
 あるが、I型脱ヨウ素酵素が阻害された場合(例;プロピルチオ尿素処理)は、硫酸化経
 路がより重要になる(Visser 1994)。

4

ヨードチロニンのフェノール性ヒドロキシル基のグルクロニド抱合は肝臓で起こり、お $\mathbf{5}$ そらく他の組織でも起こる。ヨードチロニンのグルクロニル抱合に関与するグルクロニル 6 トランスフェラーゼの特性はヒトにおいてはまだ決定されていない。しかし、ラットにお 7いては、ミクロソームビリルビン、*p*ニトロフェノール及びアンドロステロンのウリジン 8 ニリン酸-グルクロニルトランスフェラーゼが活性を持つとされている (Visser et al. 9 1993)。経路の活性は、ベンゾピレン、フェノバルビタール、3-メチルコラントレン、ポリ 10 塩化ビフェニル及び 2,3,7,8-四塩化ジベンゾパラジオキシンを含むさまざまなミクロソー 11 ム誘導物質によって上昇する (Visser 1990)。 12

13

14 結合開裂もまたヨードチロニン代謝の主要でない経路である。しかし、高用量 T₄を投与
15 された患者又は重篤な細菌感染患者の血清におけるジョードチロニンの観察結果が明らか
16 にされている(Meinhold et al. 1981、1987、1991)。細菌感染時に大量に認められる貪
17 食性白血球において結合開裂が起こると報告されている(Klebanoff and Green 1973)。

18

19 (4) 排泄

20 吸収されたヨウ素は主に尿中及び糞便中に排泄されるが、乳汁、呼気、汗及び涙にも排
21 泄される(Cavalieri 1997)。尿中排泄は通常吸収されたヨウ素の 97%超を占め、糞便中排
22 泄は約1~2%である(Hays 2001、Larsen et al. 1998)。吸収されたヨウ素の全身からの
23 生物学的半減期は、健常成人男性においては約31日と考えられている(Hays 2001)。し
24 かし、この半減期はかなり個体差があると思われる(Van Dilla and Fulwyler 1963)。

25

T₄、T₃及び代謝物のグルクロン酸抱合体及び硫酸抱合体は胆汁中に分泌される。胆汁経 26路の大きさは、外科的に胆のうを摘出された患者の胆汁サンプルの分析から推定されてい 27る。T₄及び代謝物の総分泌は、1 日当たりの T₄代謝クリアランスの約 10~15%である 28(Langer et al. 1988、Myant 1956)。実験動物におけるヨードチロニン抱合体の胆汁分泌 29に関してはより多くの定量的な情報が入手できるが、これらのモデルはヒトにおける胆汁 30 分泌のパターンや量を示していない可能性がある。ラットにおいては、T₄クリアランスの 31約30%がグルクロン酸抱合体の胆汁分泌であり、硫酸抱合体はT₄クリアランスの5%を占 32める。一度分泌されると抱合体は小腸におけるヨードチロニンの再吸収とともに大規模な 33 加水分解を受ける(Visser 1990)。 34

35

36 ヨウ化物はヒト乳汁中に分泌される (Dydek and Blue 1988、Hedrick et al. 1986、Lawes

37 1992, Morita et al. 1998, Robinson et al. 1994, Rubow et al. 1994, Spencer et al. 1986) $_{\circ}$

38 吸収されたヨウ化物のうち乳汁に分泌される割合は、甲状腺機能の状態とヨウ素取込みに39 よって変化する。甲状腺機能低下状態の方が、亢進状態に比べて乳汁に分泌される割合が

大きくなる。甲状腺機能低下状態においては臨床症例研究において、吸収されたヨウ化物 1 の甲状腺への取込み及びヨードチロニンへの取込みが低下し、その結果、乳腺及び乳汁中 $\mathbf{2}$ への分布によって吸収されたヨウ化物のアベイラビリティがより上昇するいくつかの例が 3 報告されている。トレーサーとして放射性ヨウ素([123I]NaI)を授乳中に経口投与された 4 甲状腺機能亢進症の女性患者においては、5.5日間採集した乳汁中に投与量の約2.5%が分 $\mathbf{5}$ 泌された(Morita et al. 1998)。分泌のピーク(投与量の 48.5%)は、投与後最初の乳汁 6 採取で認められ、投与後7時間続いた。経口投与量の約2.6%が乳汁中に分泌されるとい 7う同様の結果が、甲状腺機能亢進症患者において Hedrick ら(1986) により報告されてい 8 る。対照的に、甲状腺機能低下症患者においては放射性ヨウ素([123]]NaI)経口投与量の 9 25%が 41 時間で乳汁中に分泌される(Robinson et al. 1994)。山羊及び雌牛が取り込んだ 10ヨウ素の乳汁中分泌率は、取込み率が増加するにつれて減少する(Crout et al. 2000、 11 Vandecasteel et al. 200012

13

14 ヨウ化物はヒト涙液中にも排泄される。成人患者(甲状腺ホルモン補充療法を受けてい
15 る甲状腺機能低下症患者)にトレーサーとして ¹²³I 放射性ヨウ素を投与したところ、4 時
16 間採取した涙液中に投与量の 0.01%が回収された。涙液中ピーク活性は投与後 1 時間で認
17 められ、活性は 24 時間にわたって涙液中に認められた(Bakheet et al. 1998)。

18

ヨウ化物はヒト唾液中に排泄される(Brown-Grant 1961、Mandel and Mandel 2003、
 Wolff 1983)。ヨウ化物の唾液中への分泌はヨウ素再循環の重要な経路である(Mandel and
 Mandel 2003)。ヨウ素排泄において唾液経路がどの程度定量的に寄与しているかは報告さ
 れていないが、おそらく最小限である(Brown-Grant 1961、Wolff 1983)。

23

24 相当量のヨウ化物がヨードチロニン(及びその代謝抱合体)の胆汁分泌以外のメカニズ
25 ムで腸に排泄されると思われる。これを支持する科学的知見は、ヨードチロニンを機能的
26 に産生しない患者に放射性ヨウ素を投与し、大腸における放射性ヨウ素を観察した結果か
27 ら得られた。甲状腺機能正常被験者において放射性ヨウ素の糞便中排泄を動態解析した結
28 果も、ヨウ化物が血液から腸内へ直接排泄される経路を裏付けている(Hays 1993)。ネコ
29 及びラットの動物実験から、ヒト大腸中排泄経路の可能性をさらに支持する結果が得られ
30 ている(Hays et al. 1992、Pastan 1957)。

31

32 7. 実験動物等への影響

33 (1)急性影響及び慢性影響

34 動物への急性及び慢性影響についての報告は見当たらなかった。

35

36 (2) 遺伝毒性

37 ヨウ素化合物の遺伝毒性については、*in vitro*試験成績の報告があるが、*in vivo*動物試験
 38 の報告は見当たらなかった。ヨウ化カリウム、I₂、及びポビドンヨード(0.1~10 mg/mL)
 39 は、マウスリンパ腫細胞株L5178Yにおいて変異原性を示さず、マウスBalb/c 3T3細胞にお

いて形質転換活性を示さなかった(Kessler et al. 1980、Merkle and Zeller 1979)。ヨウ 1 $\mathbf{2}$ 化カリウム及びI2はショウジョウバエ(Drosophila melanogaster)を用いた伴性劣性致死 試験で、0.38 mg/mLのI₂又は0.75 mg/mLのヨウ化カリウム溶液処理において、変異原性 3 を示さなかった(Law 1938)。酵母(Saccharomyces cerevisiae)を用いた復帰突然変異 4 (His⁺) 試験において、I₂は変異原性を示さなかった(Mehta and von Borstel 1982a)。 $\mathbf{5}$

- ヨウ素はフリーラジカル消去剤であり、ネズミチフス菌(Salmonella typhimurium) 6
- TA104株において、過酸化水素で誘発された復帰突然変異を減少させることが報告されて $\mathbf{7}$ いる (Han 1992) 。
- 8
- 9

ヨウ素酸ナトリウム(NaIO₃)は、細菌を用いたAmes試験、マウス骨髄小核試験又はシ 10ョウジョウバエを用いた伴性劣性致死試験において変異原性を示さなかった (Eckhardt et 11 al. 1982)。ヨウ素酸ナトリウムは放射線増感活性をもっており、細菌においてy線誘発単 1213 鎖DNA切断数を増加させることが示されている(Myers and Chetty 1973)。

- 14
- 15

8. ヒトへの影響 16

(1) 急性影響 17

放射線に関連した死亡は、チェルノブイリ原子力発電所事故の際の現場の救急救命士で 18記録されたが、これらの死亡原因は、放射性ヨウ素ではなく、溶融した燃料エリアでの γ 19線への被ばくと関連していた(ATSDR 2004)。 20

21

(2) 慢性影響 22

①医療目的の¹³¹I 放射線被ばく 23

a. 甲状腺機能亢進症に対する投与 $\mathbf{24}$

放射性ヨウ素は甲状腺に対して細胞毒性があり、甲状腺で吸収された実効線量が25 Gy 25を超えると甲状腺機能不全を生じる。約100~300 Gyの甲状腺線量により、完全に甲状 26腺機能を停止することができる(Maxon and Saenger 2000)。甲状腺機能亢進症又は甲 27状腺中毒症の治療には、細胞傷害性の線量の131Iが用いられる。投与される放射活性は370 28~1,110 MBqが典型的な範囲である。185~555 MBqの投与は甲状腺に対して約50~100 29Gyの放射線影響をもたらす(Cooper 2000)。現在の放射性ヨウ素の診断利用ではより 30 少ない被ばく量のものが含まれており、典型的な使用例では4~15 MBqの123I、又は0.2 31~0.4 MBqの¹³¹Iである。これらの曝露は、¹²³I及び¹³¹Iとしてそれぞれ約10~50 mGy及 32び60~130 mGy)の甲状腺線量に相当する(McDougall and Cavalieri 2000)。しかし 33 ながら、歴史的に診断には高い線量が用いられている(Dickman et al. 2003、Hall et al. 341996) 。 35

36

副甲状腺機能不全の症例が 0.15~1.1 GBq の ¹³¹ I 被ばくで報告されている (Better et 37al. 1969, Burch and Posillico 1983, Eipe et al. 1968, Esselstyn et al. 1982, Fjälling 38et al. 1983, Freeman et al. 1969, Glazebrook 1987, Jialal et al. 1980, Rosen et al. 39

1984)。臨床のフォローアップ研究では1951~1960年に甲状腺機能亢進症で¹³¹I治療を 1 受けた患者 125 名(女性 106 名、男性 19 名) について血清中カルシウムの状態が評価 $\mathbf{2}$ された。追跡調査は¹³¹I 曝露後 16~26 年間(平均 21 年)にわたって行われた(Fjälling 3 et al. 1983)。年齢及び性別を一致させた頭部又は頸部に対する被ばく歴のない健康な被 4 験者のグループが対照群とされた。131I被ばくは 75~1,400 MBq の範囲であった。これ $\mathbf{5}$ は副甲状腺が甲状腺表面から0.2 cmにある被験者では2~5 Gyの副甲状腺吸収線量に相 6 当し、副甲状腺が甲状腺の表面にある被験者では3~7.5 Gyに相当する。患者2名と対 7照群の被験者2名で高カルシウム血症が見つかり、副甲状腺機能亢進症と確認された(確 8 認のための正確な根拠は報告されていない)。この患者2名の131 被ばく量は、それぞれ 9 140 及び 450 MBq であった。 10

11

12 ヒトに対する放射性ヨウ素の経口曝露の免疫学的影響に関する知見として、甲状腺自13 己免疫に関連するものがある。

14 甲状腺切除治療のための ¹³¹I 被ばく後、自己免疫性甲状腺機能亢進症の症例が報告さ
 15 れた。3 例について、甲状腺機能亢進症患者で非中毒性甲状腺腫による気管圧迫の低減
 16 のために、¹³¹I (1.5~3.2 GBq)の経口治療を受けたところ、3~6 か月後に TSH 受容体
 17 に対する血清抗体が発現した(Huysmans et al. 1997a)。¹³¹I 治療前には、患者から甲
 18 状腺刺激ホルモン抗体は検出されず、甲状腺機能は正常であった。

19

甲状腺疾患に対する放射性ヨウ素治療と、がん罹患率及び死亡率との関連を精査した 20研究がある。Ron ら(1998)の研究は、特に¹³¹Iのみを投与された患者におけるがんの 21転帰について評価し、他の治療又は¹³¹Iと他の治療の併用療法を受けた患者と区別して 22いる。Ron ら(1998)は、後ろ向きコホート研究で、米国の 25 病院及び英国の 1 病院 23における甲状腺機能亢進症(91%がグレーブス病、8%が中毒性結節性甲状腺腫)の患者 $\mathbf{24}$ 35.593 例(79%女性、平均年齢46歳、20歳以下3%)を対象に、がん死亡率について 25調査した (Ron et al. 1998)。 平均投与放射線量は 385 MBq (5~95% tile : 111~999 MBq) 26であった。グレーブス病治療における平均投与放射線量は370 MBq、中毒性結節性甲状 27腺腫治療における平均投与放射線量は 629 MBq であった。登録時期(1946~1964年) 2829における最初の来院時から、患者死亡又は1990年末までの期間に発生したがんについて 解析した。がん死亡の推定数は 1958~1985 年における米国の死亡率に基づくものであ 30 る。 患者は治療カテゴリーによって分類し、131I 単独療法を受けた患者、抗甲状腺薬又 31は外科的処置単独療法又はそれらと¹³¹Iの併用療法を受けた患者を区別した。標準化死 32亡比(SMR)は治療(¹³¹I、手術、抗甲状腺薬又は併用療法)ごとに算出した。この研 33 究手法により、他の治療の影響と無関係に、131I 被ばくとがん転帰との関連影響を評価す 34ることができる。その結果、2,960例のがん死亡が特定され、そのうちの29例が甲状腺 35がんであった。131I 単独療法を受けた患者においては、甲状腺がんに対する SMR が有意 36 に上昇していた(4.91(信頼区間(CI): 2.45-8.79))が、その他のがん又はすべてのが 37んに対しては変化を認めなかった。131I単独療法又は131I併用療法を受けた患者(131I投 38 与群)においても、甲状腺がんに対する SMR だけが有意に上昇していた(3.94(CI: 39

252-5.86))。¹³¹ I 投与群をがんの潜在期間別(1~4年、5~9年、10年以上)に分類す 1 ると、甲状腺がんに対する SMR は治療後 1~4 年の群で最も高くなる(12.3(CI: $\mathbf{2}$ 6.38-21.61))が、10年以上の群においても依然として有意な上昇が認められる(2.78) 3 (CI: 1.38-4.97))。各患者の特異的な臓器における放射線量は、ICRP(1988)の投与 4 放射能と線量測定の表に基づいて算出した。甲状腺における線量は50~70 Gy であった。 $\mathbf{5}$ ¹³¹ I 投与放射線量(甲状腺線量の代用として)によって分類すると、¹³¹ I 投与群における 6 甲状腺がんの SMR は被ばく線量の増加に伴って上昇し、甲状腺がんの死亡率に線量効 7果の可能性が示唆された。SMRは5.6 x 10⁸以上の群(7.05(CI: 3.05-13.95))及び中 8 9 毒性結節性甲状腺腫治療群(18.88(CI: 7.58-38.98))において最も高くなった。他の 組織のがん SMR も ¹³¹ 損与群において有意に上昇していた(結腸直腸がん:治療後1 10 ~4 年 (1.42 (CI: 1.04-1.90))、肺がん: 治療後 1~4 年 (1.49 (CI: 1.01-2.12))及 11 び 5~9 年 (1.41 (CI: 1.02-1.89))、非慢性リンパ性白血病 (非 CLL): 治療後 5~9 年 12(2.10 (CI: 1.14-3.52))。しかし、¹³¹I 以外の治療群において甲状腺外組織(口腔、肺、 13胸部及び脳を含む)の SMR 上昇が認められたことによって、がん死亡率に対する ¹³¹I 14の潜在的寄与という観点から上記所見を解釈することは難しくなる。この研究の結果か 15ら、甲状腺機能亢進症治療として¹³¹I高線量被ばくすることは、全がん死亡率を上昇さ 16せないことが示唆されたが、甲状腺がんの死亡率は上昇したようであった。治療前の時 17点では診断未確定であった甲状腺がんの潜在的影響がこういった患者に存在することに 18よって、甲状腺がん死亡率に対する影響の解釈が複雑になってしまう。¹³¹I治療後最初の 191~4年で甲状腺がん死亡リスクが明らかに超過していることから、放射線誘発がん死亡 20の潜在期間が著しく短く、また他の要因が転帰に寄与している可能性があることが示唆 21された。この研究における他の不確実性として、甲状腺における吸収線量の代わりに被 22ばくレベル (mCi) を使用していることが挙げられる。甲状腺機能亢進症患者における 23投与放射線量と甲状腺線量との関係は、甲状腺サイズやヨウ化物輸送活性において疾患 24によるばらつきがあることから複雑になることがある。また、投与放射線量は甲状腺機 25能亢進症の最初の重篤度と共に変化する可能性がある。最高用量の放射線量を受けた患 26者においては、疾患も重篤である傾向が認められる。疾患の重篤度もがん死亡率とは無 27関係に変化する可能性がある(ATSDR 2004)。 28

29

スウェーデンにおいて後ろ向きコホート研究が実施され、グレーブス病(51%)又は 30 中毒性結節性甲状腺腫(42%)治療で¹³¹I療法を受けた患者 10,552 例(85%女性、年 31齢 13~74 歳)を対象に、がん発生率が調査された(Holm et al. 1991)。平均投与放射 32線量は 506 MBq であった。しかし、これは治療目的によってばらつきが大きく、グレー 33 ブス病では 360 MBq、中毒性結節性甲状腺腫では 700 MBg であった。被験者における 34投与放射能の分布は、30%が 220 MBq 未満(平均 150 MBq)、38%が 221~480 MBq 35(平均 315 MBq)、32%が 480 MBq(平均 1,063 MBq)であった。治療後1年(又は 36 1958年以降)から患者死亡又は1985年末までに発生したがんについて解析した。がん 37推定数は 1958~1985 年におけるスウェーデンがん登録に基づくものである。標準化罹 38 患比(SIR)は肺がん(1.32(CI: 1.07-1.59))及び腎臓がん(1.39(CI: 1.07~1.76)) 39

で有意に上昇していた。中毒性結節性甲状腺腫患者においても、平均でグレーブス病患 1 者の 2 倍の線量を受けているが、肺がんの SIR が有意に上昇していた(2.14(CI: $\mathbf{2}$ 1.20-3.52))。10 年生存者においては、胃(1.33 (CI: 1.01-1.71))、腎臓(1.51 (CI: 3 1.06-2.08)) 及び脳(1.63(CI: 1.10-2.32))の SIR が有意に上昇していた。各患者の 4 特異的な臓器における放射線量は、ICRP(1988)の投与放射能と線量測定の表に基づい $\mathbf{5}$ て算出した。各組織における推定平均吸収線量は、甲状腺で105 mGy 超、胃で250 mGy、 6 肺で 70 mGy、腎臓で 50 mGy、肝臓で 50 mGy であり、脳は報告がなかった。放射線量 7において有意な傾向は認められなかった。特に、甲状腺がんの SIR で有意な上昇を認め 8 なかった(SIR 1.29 (0.76-2.03))。甲状腺疾患に対し¹³¹I以外の治療(抗甲状腺薬 14%、 9 手術3%及び甲状腺ホルモン補充療法2%)を受けた患者もいた。がん死亡率は同じコホ 10 ートを用いて調査した(Hall et al. 1992a)。SMR は 1958~1985 年におけるスウェー 11 デン死因登録に基づいて算出した。131I被ばく開始日から10年以上追跡した患者におけ 12る SMR は有意に上昇しており、全がん(1.14(CI: 1.04-1.24))、消化管がん(1.28(CI: 13141.16-1.45))及び呼吸器がん(1.31(CI: 1.01-1.66))であった。また、最初の1年間で、 甲状腺がんの SMR も有意に上昇していた(11.45 (CI: 2.8-33.72))。甲状腺がんの SMR 15が 480 MBq 超の曝露群では 221 MBg 未満の曝露群に比べて約 4 倍高かったにもかかわ 16らず、放射線量において有意な傾向は認められなかった。この研究の結果から、甲状腺 17機能亢進症治療で高線量の ¹³¹I 被ばくを受けるとがんリスクが上昇することが示唆され 18たが、がんリスク上昇に対する¹³¹Iの寄与という観点からこの結果を解釈する際に、い 19くつかの不確定要素が解釈を複雑なものにしている。この不確定要素とは、がん発生率 20又は死亡率上昇に線量の傾向が認められないことや、この研究では定量化していない ¹³¹I 21以外の治療法ががん発生率又は死亡率に寄与している可能性等である。外科的治療や抗 22甲状腺薬が甲状腺機能亢進症患者におけるがんリスク要因と思われる(Ron et al. 1998)。 23

英国ウェストミッドランド州において 1950~1991 年に後ろ向きコホート研究が実施 25され、甲状腺機能亢進症治療を受けた患者 7,417 例(83% 女性、平均年齢, 57 歳 ±13, 26SD)を対象に、がん罹患率及び死亡率が調査された。平均投与放射線量は308 MBg で 27あり、220 MB 未満が 49%、481 MBq 超が 17%であった。追跡期間は1年(74%)か 28ら20年間(18%)であった。イングランド及びウェールズにおけるがん死亡推定数は国 29際がん研究機関(IARC)及び WHO のデータに基づいて算出した。SIR は、全がんタイ 30 プで 0.83 (CI: 0.77-0.90)、甲状腺がんで 3.25 (CI: 1.69-6.25) 及び小腸がんで 7.03 31(CI: 3.16-15.66) であった。膀胱がん及び子宮がんにおいて、累積被ばく線量とがん 32発生率上昇に有意な正の相関が認められたが、一方、これらのがんの SIR 及び SMR は 33 有意に1より大きくはならなかった。この研究の結果から、Hall ら(1992a)及びRon 34ら(1998)の研究結果と一致して、甲状腺機能亢進症治療で高線量の¹³¹I被ばくを受け 35るとがんリスクが上昇することが示唆された(Franklyn et al. 1999)。 36

37

 $\mathbf{24}$

1946~1964 年に甲状腺機能亢進症治療として¹³¹I による治療を受けた女性患者
 1,762 例を対象に、がん罹患率及び死亡率が追跡調査された (Goldman et al. 1988)。追

跡期間は 17 年間であった。SMR 及び SIR は、米国及びマサチューセッツの人口におけ 1 る年齢、暦年、性別、人種特異的罹患率及び死亡率に基づいて算出した。コホートは治 $\mathbf{2}$ 療カテゴリー(甲状腺機能亢進症に対する ¹³¹I 単独療法又は ¹³¹I 併用療法)に従って分 3 類した。¹³¹I 単独療法群における SIR は、いずれのがんの種類又はグループにおいても 4 有意な上昇を認めなかった。131I単独療法群における SMR は、すべての原因のがんにお $\mathbf{5}$ いて有意な上昇を認めた(SMR: 1.2 (CI: 1.1-1.4) 10 例)。放射線量に応じた有意な 6 傾向は認められなかった。線量の幅は 4~370 MBq 超であった。Ron ら (1998) の研究 78 と同様に、¹³¹I 単独療法群におけるがん死亡リスクが評価されているが、Goldman ら (1988)の研究においてはかなり規模が小さく、Ron ら(1998)の研究結果と比較する 9 ことは困難である。Ron ら(1998)の研究と同様に、Goldman ら(1988)の試験にお 10 いても、¹³¹I以外の治療を受けた患者におけるがん死亡率の上昇が認められた(ATSDR 11 $2004)_{\circ}$ 12

 $\frac{13}{14}$

15

b. 甲状腺がんに対する投与

16 放射性ヨウ素曝露による主要な全身作用は甲状腺に対するものである。しかしながら、
 17 甲状腺がんの切除治療に用いられるような比較的高線量の放射性ヨウ素に曝露した後、
 18 唾液腺の炎症(唾液腺炎)を含む、その他の全身作用が観察されている。

19

28

甲状腺がんの除去治療における ¹³¹Iの経口曝露に続いて、精巣機能の低下が発生する 20臨床例が報告されてきた(Ahmed and Shalet 1985、Handelsman and Turtle 1983、 21Pacini et al. 1994)。精子数低下、無精子症、卵胞刺激ホルモン(FSH)の血清濃度の増 22加を含む影響が2年間以上継続して追跡調査された。放射性ヨウ素の曝露は1.8~20 GBg 23の範囲であった。甲状腺がん治療で¹³¹I照射を受けた103名の患者の調査で、治療後10 $\mathbf{24}$ ~243 か月(平均 94 か月)検査された数名の患者で精子数の低下と血清 FSH 濃度の上 25昇が認められた(Pacini et al. 1994)。放射性ヨウ素の曝露は 1.1~49.4 GBg の範囲で、 26平均曝露は 6.2 GBg であった。 27

29Wichers ら(2000)は 25 名の甲状腺がん患者について ¹³¹I 照射治療の前後で精巣の 内分泌機能を検査した。平均蓄積曝露は9.8 GBq であった。FSH、黄体形成ホルモン(LH)、 30 インヒビン B 及びテストステロンの血清濃度は曝露前のレベルと有意に異なっていた。 31曝露後3~6か月のピーク応答と曝露後18か月内での曝露前レベルへの回帰について、 32FSH の増加(300%)とLH の増加(100%)及びインヒビン B 濃度の減少(88%)は 33 似た時間的パターンを示した。FSH のピークレベル(21 IU/L)は正常範囲(1.8~9.2 34IU/L)の上限を超え、インヒビン B の最低曝露後レベル(22 pg/mL)は正常範囲(75 35~350 pg/mL)の下限を下回った。LH の血清濃度は正常範囲(1.6~9.2 IU/L)の範囲 36 内であった。テストステロンの血清濃度は曝露後 12 及び 18 か月で、曝露前レベルより 37有意に高かった(50%)。しかしながら、濃度は正常範囲(10.4~34.7 nmol/L)内であ 38った。これらの結果は 131 の高レベルの曝露が精巣の内分泌機能に影響を及ぼす可能性 39

を示唆する。この調査の大きな欠点は、対照群となる甲状腺摘出を行ったが ¹³¹Iの曝露
 を受けていない患者の観察が行われていないことである。

3

4 甲状腺がん治療のために妊娠中に高線量の ¹³¹I に母体を曝露した後、先天性甲状腺機
5 能低下症が生じたという臨床症例が報告されている(Green et al. 1971、Hamill et al.
6 1961、Jafek et al. 1974、Russell et al. 1957)。しかし、妊娠中の母親の複雑な臨床像
7 と薬物療法は、放射性ヨウ素曝露と新生児の臨床成績との直接的関係を、極めて不確か
8 なものとしている。これらの症例における曝露量は 0.4~2.8 GBq であった。もし胎児の
9 甲状腺がヨウ素の取込みを開始する妊娠約 12 週以降に母体が除去線量の ¹³¹I を投与され
5 ると、胎児及び新生児の甲状腺に対する影響が予想される(ATSDR 2004)。

11

妊娠前 2~10 年(平均 5.3 年)の間に甲状腺がん除去治療のために ¹³¹I 照射した患者 12について、70 妊娠例における転帰の臨床調査が行われ、2 例のみ自然流産が示された 1314(Casara et al. 1993)。これらの患者からの 73 名の乳児のうち、1 名はファロー四徴症 (tetrology of Fallot's)(肺動脈狭窄、心室中隔欠損、右心室肥大)と診断され、2名は 15低出生体重で産まれたが、その後いずれの乳児も適正成長率を示した。母親の¹³¹ 曝露 16量は 1.85~16.55 GBq の範囲で、平均曝露量は 4.40 GBq であった。母親の生殖腺照射 17線量は 110~200 mGy であった。同様の調査が受胎前の 1~60 か月(平均 16.5 か月) 18に¹³¹I 照射された 37名の患者で報告されている。曝露量は 1.1~13.1 GBg の範囲で、 19平均曝露量は 3.67 GBg であった(Lin et al. 1998)。58 名の妊娠で、8 例の自然流産と 202 例の切迫流産が報告された。131I 照射を受けた患者の新生児の出生体重は、131I 照射を 21受けておらず甲状腺がんの患者でなく、妊娠年齢をマッチさせた対照群の新生児との間 22に違いはみられなかった。甲状腺がん治療で¹³¹I照射を受けた女性の妊娠転帰に関する 23遡及的再検討では、32名の患者の妊娠67例のうち、3例の自然流産と4例の早期分娩 $\mathbf{24}$ が見つかった(Smith et al. 1994)。また、妊娠を試みた 35 名のうち 2 名に不妊が認め 25られた。2名の乳児は、母親が¹³¹I治療を受けてから1年以内に産まれており、どちら 26も先天性異常で死亡した(1名では重篤な副甲状腺機能低下と甲状腺機能低下がみられ、 27もう1名ではダウン症候群と心奇形がみられた)。131I 曝露範囲は2.8~9.2 GBq、平均曝 28露量は 5.5 GBq であった。Goh(1981)は、妊娠 6 週の期間に 3.7 GBq の ¹³¹I 照射を受 29けた母親から産まれた乳児が、神経性の後遺症として 8 か月目に重度の甲状腺機能低下 30 症を発症した例を報告した。 31

32

最近の研究結果としては、Bhattiら(2010)が、1970~1986年に放射線治療(¹³¹Iに
限らない)を受けた小児がん患者(5年生存者)12,547名のコホートを2005年まで追跡
し、甲状腺がん119件(病理診断による)を確認した。性、がん種、到達年齢、曝露時の
年齢、曝露からの時間、化学療法の有無を調整したところ、20 GyでのRRは14.6(CI:
6.8-31.5)であった。

de Gonzalez ら(2011)は、Surveillance Epidemiology and End Results (SEER)
 がん登録で放射線治療対象がんになった 20歳以上の患者(5年生存者)647,672名を対
象にコホート研究を実施し、追跡期間中央値 12 年(5~34 年)で二度目のがん(固形がん)リスクを検討した。同じ臓器での二度目のがんを除き、60,271(9%)が二度目の固形がんに罹患していた。放射線治療を受けなかった群に対する受けた群のRRは、眼及び眼窩のがんの1.08(CI:0.79-1.46)から精巣がんの1.43(CI:1.13-1.84)までであった。甲状腺がんの放射線治療後の第二のがんの絶対リスク(AR)は7%(CI:1-13)と推定された。

8 1950~1990年に甲状腺がん治療として¹³¹Iによる治療を受けた患者 1,771例(21%) 男性)を対象に、がん罹患率及び死亡率が追跡調査された(de Vathaire et al. 1997)。 9 追跡期間は 10 年間であった。過剰相対リスク(ERR)は、性別、治療時の年齢、投与 10 ¹³¹Iの累積放射線量を変数として、線形モデルを使用することでモデル化した(二次モデ 11 ルも検討された)。平均投与¹³¹I線量は7.2 GBq(3.8~57.6 GBq)であり、骨髄におけ 12る平均放射線量 0.34 Sv (0.13~2.8 Sv) と対応していた。対照群として 1~0.19 GBgの 13¹³¹ を受けた患者のがん転帰を用いると、結腸又は直腸がんの ERR は投与放射線量が増 14加するにつれて上昇した。3.7~7.5 GBq 超群における ERR は 4.0 (90% CI: 1.3-12.2) 15であり、7.5 GBg 超投与群における ERR は 4.9 (90% CI: 1.2-18.5) であった。この研 16究は比較的小さいサイズの研究であるが、より大きなサイズの Ron ら(1998)の研究 17結果において、甲状腺機能亢進症治療で低線量の ¹³¹I(平均 385 MBq)を投与された患 18者において結腸又は直腸がんの SMR が上昇したという結果を支持するものであった。 19

20

7

$\frac{21}{22}$

c. 診断的投与

甲状腺以外の臓器におけるがん発生率が Hall ら(1996b)と同じコホートを用いて調 23査された(Holm et al. 1989)。その当時、コホートは 35.074 例の患者からなり、31% 24が甲状腺腫瘍疑い、42%が甲状腺機能亢進症疑い、16%が甲状腺機能低下症疑い及び8% 25がその他の理由で 131I 診断的投与を受けていた (3%の患者は診断方法の根拠を決定でき 26なかった)。平均総投与放射線量は 1.9 MBq(0.04~36 MBq) であり、甲状腺腫瘍疑い 27患者では 2.6 MBq、甲状腺機能亢進症疑い患者では 1.8 MBq、その他の理由の診断目的 28患者では 1.5 MBg であった。甲状腺以外の内分泌器官における SIR (1.93 (1.62-2.29)) 29が有意に上昇しており、リンパ腫(1.24(1.03-1.48))及び白血病(1.34(1.11-1.60)) 30 も有意に上昇していた。神経系のがんの SIR は 1.19 (1.00-1.41) であった。甲状腺がん 31の SIR は追跡期間 5~9 年でのみ有意に上昇していた。有意な線量相関は認められなか 32った。この研究においては、Hall ら(1996b)の研究とは異なり、診断検査の目的に関 33 係なく全患者で SIR が測定されており、甲状腺がん疑いで 131I 投与を受けた患者も含ま 34れている。 35

36

37 ドイツにおいてコホートサイズがより小さい後ろ向きコホート研究が実施され、甲状
 38 腺疾患診断のために ¹³¹I 投与を受けた 18 歳未満の患者 789 例(74%女性)及び放射性
 39 ヨウ素を含まない甲状腺診断を受けた患者 1,118 例(68%女性)を対象に、甲状腺がん

発生率を比較した (Hahn et al. 2001)。 投与群は診断検査を受けたのは 1958~1978年、 1 対照群は 1959~1978 年であった。投与群における初期診断は、結節性甲状腺腫 385 例 $\mathbf{2}$ (49%)、甲状腺疾患のエビデンスなし327 例(29%)、甲状腺機能低下症、甲状腺機能 3 亢進症及びその他199例(25%)であった。頭部、頸部又は甲状腺がんに外部放射療法 4 を受けた既往歴がある患者は除外した。追跡期間(1989~1997年)は治療群で13~33 $\mathbf{5}$ 年間、対照群で 9~33 年間であった。投与群における総 ¹³¹ I 投与線量の中央値は 0.9 MBq 6 であった。各患者における甲状腺への放射線量は、ICRP(1988)の投与放射能と線量測 7定の表に基づいて算出された。平均吸収線量は1.0 Gy であった。しかし、この値は診断 8 時の年齢によって変動し、0.6~1.2 Gyの幅であった。性別、年齢及び日付で調整したが 9 ん発生率に基づいて SIR を算出したが、そのがん発生率は 1980~1989 年のドイツ民主 10 共和国がん登録に基づいたものである。研究期間中に、投与群で3例及び対照群で2例 11 の甲状腺がんが特定された。SIR は投与群で 5.3 (CI: 0.5-15.1)、対照群で 5.3 (CI: 121.1-15.3) であった。RR(対照群と比較した投与群)は 0.9(CI: 0.1-5.1) であった。 1314甲状腺がんのリスクは診断時に使用されるレベルの¹³¹ | 被ばくとは有意には関連してい なかった。これらの所見で解釈が難しい点は、発生率が非常に低い点である(1,058 例中) 153 例、0.28%; 投与群 795 例中 2 例、0.25%) (ATSDR 2004)。 16

17

1946~1967年に¹³¹I診断的投与を受けた小児及び20歳未満の若年者における甲状腺 18の転帰について前向きコホート研究が実施された(Hamilton et al. 1987)。対象者は、 19¹³¹ の診断的投与を受けた被験者 3,503 例、対照群として ¹³¹ 非投与で年齢、性別、診 20断検査を受けた日付をマッチさせた被験者 2,495 例及び 1,070 組の兄弟であった。追跡 21期間は登録時から1986年までであった。対象者は質問票を用いて研究期間中における甲 22状腺及び頸部の手術歴を特定し、病理学的報告と標本を回収して病理学者により再検討 23した。投与群の各対象者における甲状腺への線量は、報告された投与放射線量、甲状腺 $\mathbf{24}$ 取込み割合及び公表されている甲状腺成長表から推定した甲状腺重量に基づいて算出し 25た。総投与線量の中央値は 0.2~0.4 Gy (95% tile 2~3 Gy) であった。回答率は 63% で 26あった。34 例の手術が報告され、うち 19 例は登録時に甲状腺疾患が全く診断されなか 27った患者であった。うち16例は甲状腺がんと確定診断された。10例は良性でそのうち8 28例が投与群、6例が悪性腫瘍でそのうち5例が投与群であった。この結果は¹³¹I曝露が 29甲状腺がん発生率に影響を与える可能性を示唆するものであるが、投与群と対照群との 30 差は統計学的に有意ではなかった。Shore(1992)は Hamilton ら(1987)の研究結果 31をレビューし、Hamilton ら(1987)の研究における投与群と非投与群を比較に基づい 32て、本研究条件下での甲状腺がんの RR を 2.9 (90% CI: 0.6-15) と算出した。SEER 33 の 1973~1981 年におけるがんのデータ(米国保険社会福祉庁(DHHS) 1985) に基づ 34くと、Hamilton ら(1987)の研究で推定される甲状腺がんは 3.7 例であるが、診断検査 35後5年以上の期間で認められたのは4例であり(Hamiltonら(1987)の試験では、う 36 ち1 例が2 年の潜伏期間で発生したと報告している)、Shore (1992) によれば SIR は 371.1 (95% CI, 0.3~2.6) である。 38

Hall ら(1996b)と同じコホートにおいて次の追跡調査が実施され、追跡期間が Hall 1 ら(1996b)の報告からさらに8年間追加された。これには131I診断的投与後早ければ2 $\mathbf{2}$ 年で診断された甲状腺がんを含まれ、追跡期間は2~47年間であった(Dickman et al. 3 2003)。¹³¹ I 投与前に頸部に X 線照射を受けた患者 1.767 例も含まれ、甲状腺がん発生率 4 に対する外部放射線の影響について調査した。頸部に X 線照射を受けていない患者及び $\mathbf{5}$ 甲状腺がん疑いで131I診断的投与を受けたのではない患者においては、甲状腺がんのSIR 6 は 0.91 (CI: 0.64-1.26) であった。この群における甲状腺の推定線量は 0.94 Gy であっ 7た。しかし、¹³¹I 投与前に頸部に X 線照射を受けた患者における SIR は、9.8(CI:6.3-14.6) 8 であった。この結果から、このコホートにおける前回の所見(Hall et al. 1996b)、すな 9 わち¹³¹I診断的投与による甲状腺への放射線量は、甲状腺がんの超過リスクと関連して 10 いないという結果が支持された。この研究から、X 線照射がコントロールされない場合 11 は、X線照射が131 投与患者のがん転帰研究において複雑な結果を生み出す重要な変数 12であることが示された。 13

Dickman ら(2003)は、スウェーデンで1952~1969年の期間に検査目的で¹³¹Iの 14投与を受け、治療後2年の時点で生存しており甲状腺がんの発症のない患者36.792名を 15対象にコホート研究を行った。1998年までに甲状腺がん129名を確認した。放射線量、 16性別、被ばく時の年齢、被ばくからの年数、放射線治療歴、検査目的により層別化して 17解析を行った。放射線治療による首への外部被ばく歴がなく、甲状腺がん疑い以外で受 18診した 24.010 名 (推定線量 0.94 Gv) では 36 名に甲状腺がんが発生したが、SIR は 0.91 19 (CI: 0.64-1.26) であった。診断目的の¹³¹I 投与による被ばく量と甲状腺がん発症 SIR 20の間に因果関係は認められなかった。ただし、この研究対象者には20歳未満のサンプル 21数は少ない。 22

23

Hall ら(1996a)の研究では、1952~1977年に診断レベルの¹³¹Iに被ばくし、甲状腺 24診断の結果が正常であった女性 1.005 名の甲状腺小結節形成について評価を行った。被 25験者は 1991~1992 年に甲状腺小結節の触診により検討された。対照群は ¹³¹I 被ばく又 26は甲状腺疾患の前病歴のないマンモグラフィー検診クリニックに通院していた女性 248 27名から構成された。投与された ¹³¹I 活性の合計の平均値は 0.95 MBq であった。甲状腺 28で吸収された放射線量は、投与放射能と ICRP(1988)の線量測定の表に基づいて算出 29された。平均線量は 0.54 Gy(10~90% tile 0.02~1.45 Gy)であった。甲状腺小結節が 30 曝露女性 1,005 名中 107 名(10.6%)と非曝露女性 248 名中 29 名(11.7%)で見つか 31った。131Iに曝露した女性に甲状腺結節ができる RR は 0.9 (95% CI, 0.6~1.4) であり、 32統計学的有意差はなかった。線形二次過剰相対リスクモデルは、甲状腺小結節の統計学 33 的に有意な線量傾向を明らかにした(ERR 0.9/Gy)。Hall ら(1996a)は甲状腺結節に 34有意な相対リスクがなかった理由として、曝露群が自己選択(例:被験者は自発的にマ 35ンモグラフィー検診を受けた)であるため、放射性ヨウ素に曝露した女性群と比較する 36 ための適切な対照群ではなかったかもしれないと述べている。 37

38

39 スウェーデンにおいて後ろ向きコホート研究が実施され、1950~1969年に甲状腺疾患

診断のために ¹³¹I 投与を受けた患者 34,104 例(80%女性, 1~75 歳)を対象に、甲状腺 1 がん発生率が調査された。追跡期間は1958~1990年であった(Hall et al. 1996b)。投 $\mathbf{2}$ 与時に 20歳未満であった患者は 2,408 例 (7%)、10歳未満であった患者は 316 例 (1%) 3 であった。甲状腺がん疑いで診断検査を実施されたのは 10,785 例(32%)、甲状腺機能 4 低下症、甲状腺機能亢進症又はその他の理由で実施されたのは23.319例(68%)であっ $\mathbf{5}$ た。追跡期間は治療後5~39年間で、診断検査実施後5年以内に発見された甲状腺がん 6 は診断時に既に存在していた可能性があることから除外した。平均投与総放射線量は甲 7状腺腫瘍疑い患者で2.4 MBg 及び他の患者で1.6 MBg であった。各患者における甲状腺 8 への放射線量は、ICRP(1988)の投与放射能と線量測定の表に基づいて算出した。甲状 9 腺腫瘍疑い患者における平均吸収線量は 1.3 Gy、その他の患者では 0.8 Gy であった。性 10 別、年齢及び暦年で調整したがん発生率に基づいて SIR を算出したが、そのがん発生率 11 はスウェーデンがん登録に基づいたものである。研究期間中に67例の甲状腺腫瘍が特定 12され、そのうち 42 例(63%)が甲状腺腫瘍疑いで¹³¹ [投与を受けた患者で認められた。 13SIR は後者の群で有意に上昇したが(2.86(CI: 2.06-3.86))、その他の甲状腺疾患疑い 14患者においては認められなかった。どの群においても甲状腺がんの有意な線量相関は認 15められず、がんが¹³¹ [投与以前から存在していた可能性がある。 16

17 18

25

19 d. その他

20 大量の放射性ヨウ素の胎児への曝露は、甲状腺機能低下状態が出生後にホルモン補充
 21 療法等により回復しない場合、甲状腺組織切除と同様に脳や神経筋の発達遅延をもたら
 22 す可能性がある。例として、母親が妊娠6週目の時に¹³¹ を 3.7 GBq 受けた乳児の生後
 23 8 か月齢の時に、神経性の後遺症として重度の甲状腺機能低下症を発症した症例がある
 24 (Goh 1981)。

Ronら(1995)の研究では、医療被ばくを含む外部被ばくのコホート研究(131Iに限定 26しない)から子どもの甲状腺がんリスクについてプール解析が試みられている。5コホー 27ト(原爆、白癬治療、2つの扁桃腺肥大治療、胸腺肥大)の15歳未満で外部被ばく(0.10 28~60超 Gv) した子ども(被ばく時平均年齢2.5歳)のプール解析では、約120,000名(被 29ばく群約58.000名、非被ばく群約61.000名)の3.000.000 人年から甲状腺がん700例のデ 30 ータを得た。結果は、ERR/Gy: 7.7 (CI: 2.1-28.7)、過剰絶対リスク(EAR) (10,000 31人年/Gy): 4.4 (CI: 1.9-10.1)、1 GyでのARは 88%であった。被ばく線量が0.10 Gy 32から甲状腺がんリスクとの相関が直線的にみられた。被ばく当時の年齢が低いほどリス 33 クが高く、20歳以降では明らかなリスクは認められない。被ばくから30年以降はERRが 34減るが、40年時点でもまだ幾分かは認められていた。米国 電離放射線の生物影響に関 35する委員会(BEIR) VII (2006)では、この研究を参照し、男性のモデルERR/Gy = 36 0.53exp[-0.083(e-30)]、女性のモデル ERR/Gy=1.05 exp[-0.083(e-30)] (e= 被ばく時の 37年齢)という低線量被ばくによるがんリスクモデルを提案している。 38

1 ②チェルノブイリ原子力発電所事故

チェルノブイリ原子力発電所事故後の甲状腺がん(又は他のがんや原因)に関連した
 死亡についての研究が続けられている。一般に、放射線誘発性甲状腺がんは乳頭がんで
 ある傾向があり、これらのタイプの腫瘍は非致死性の傾向がある(30年死亡率は大人で
 約8%と推定された)(Mazafaferri and Jhiang 1994)。しかし、チェルノブイリ原子
 力発電所事故後に観察された甲状腺がんの主な年齢集団であった若齢の子どもで起こる
 乳頭がんは、大人で起きるものよりも致命的である(Harach and Williams 1995)。

8

1986年のチェルノブイリ原子力発電所からの放射性物質の放出後、ベラルーシの子ど 9 もにおける甲状腺結節の罹患率増加が報告された。1990~1995年に実施されたベラルー 10シにおける20,785名の超音波検査結果の解析は、甲状腺結節の罹患率が1,000名当たり4 11 ~22名であることを明らかにした。甲状腺での吸収線量が1 Gy(1.3~1.6 Gy)を超える 12と推定された地域の住人で、罹患率が最も高かった(16~22/1,000)。超音波検査の結 1314果、更なる検査のために参照された患者から確認された診断は、甲状腺放射線量が1 Gy (1.3~1.6 Gy) を超えると推定された地域の症例では、甲状腺がんの罹患率が1,000名 15当たり2.5~6.2名、あるいは結節症例の約13~50%であることを明らかにした。甲状腺 16結節症例のうち7~12%が腺腫、5~22%が結節性甲状腺腫(nodular goiter)、7~64% 17が良性嚢腫(benign cysts)と診断された。甲状腺線量が0.1 Gy未満であったと推定され 18た地域では、良性嚢腫が優勢で甲状腺がんはみられなかった。約0~25%が腺腫、0~8% 19が結節性甲状腺腫、75~100%が良性嚢腫と診断された(主に甲状腺腫の嚢胞性形成異常 20タイプ(cystic-dystropic types of goiter))。食事由来のヨウ素について、尿中ヨウ素 21の測定値から評価された(Astakhova et al. 1996)。ベラルーシでは尿中ヨウ素レベル 22が地域をまたがって変動していた。子ども及び青年のうち約30~80%(平均61%)では 23一晩の尿のヨウ素濃度が100 µg/L未満であり、10~50%(平均26%)では50 µg/L未満、 $\mathbf{24}$ 0~25%(平均9%)では20 µg/L未満であった。これらの結果は食事由来のヨウ素摂取量 25が50~70 µg/日(子ども及び青年の1日当たりの尿量を1~1.4 Lを仮定)より少ない人が 26かなりいることを示している(ある地域では平均26%、50%)。より最近の測定結果(2000 27年実施)は、ベラルーシの食事事情によるヨウ素欠乏症はチェルノブイリ原子力発電所 28事故以来継続しているように見えることを示している(Ishigaki et al. 2001)。他の甲 29状腺検診プログラムの結果(例: the Chernobyl Sasakawa Health and Medical 30 Cooperation Project) もまた、1976~1986年の間にベラルーシで生まれた人において、 31ヨウ素欠乏症の高い罹患率と一致した、甲状腺腫の高い罹患率を示している(UNSCEAR 322000)。したがって、ヨウ素欠乏症は観察された甲状腺結節形成に寄与した可能性があ 33 34り、甲状腺がんの感受性に関する交絡因子であるかもしれない(Gembicki et al. 1997、 Robbins et al. 2001) 。 35

36 2000年以降の主な報告には、Davis ら(2004)のロシアの住民ベースの症例対照研究
 37 (1991~1997年、症例 26 名、対照 52 名)、Cardis ら(2005)のベラルーシとロシア
 38 の住民ベースの症例対照研究((1992~1998年、症例 276 名、対照 1,300 名、ERR/Gy
 39 4.5(2.1~8.5)~7.4(3.1~16.3))、Jacob ら(2006)のベラルーシとウクライナの

エコロジカル研究(周辺地域1,089名、1620,000名のデータと比較、ERR/Gy 18.9 (95%
 CI: 11.1-26.7))などがある。また、Hatch ら (2009)による子宮内で被ばくした子ど
 もの 20 年後の断面研究が周辺地域1,494名、それ以外1,088名を対象に行われ、有意で
 はないが(P=0.12)、甲状腺がんリスク上昇(ERR/Gy 11.66)がみられたとする報告
 があった。

¹³¹Iが大きく関連したチェルノブイリ原子力発電所から流出した放射能に曝露した女
性の妊娠中の健康状態と生殖影響を検討するために遡及的解析が行われた(Petrova et
al. 1997)。他の放射線の曝露、栄養摂取及び他の化学物質の曝露など、ヨウ素以外の因
子が転帰に影響を与えたが、放射性ヨウ素の転帰に対する寄与に関しては、この調査結
果の解釈では極めて不明確である。しかしながら、生殖影響と発育成績に焦点をあてた
唯一の疫学調査であり、チェルノブイリ原子力発電所事故の後、放射性ヨウ素が放射能
曝露においてかなり寄与したことから、調査の概要を以下に記載する。

14遡及的解析において、1982~1990 年の期間で、ベラルーシにおける 755.297 妊娠例 のカルテが評価された。女性の約半数が放射性ヨウ素と他の放射性核種に比較的強く汚 15染されていた二つの地域である Gomel と Mogilev に居住し、他の約半数の女性は比較的 16軽い汚染地域である Brest と Vitebsk に居住していた。妊娠の転帰の 3 カテゴリー(死 17産、低出生体重及び新生児又は0歳児の死亡率を含む妊娠転帰、母体罹病率並びに子宮 18 内低酸素症・周産期感染症・呼吸器疾患及び先天性奇形を含む乳児の健康状態)が評価 19 された。チェルノブイリ原子力発電所事故事故の年である 1986 年以降、母体の貧血、腎 20機能不全(血液尿素窒素(BUN)とクレアチニンを測定)及び妊娠中毒症の年間発生率 21は強く汚染した地域において、より明らかに増加したように思われる(動向の統計学的 22解析の報告はない)。先天性異常と新生児呼吸器疾患の発生率もまた1986年以降、強く 23汚染した地域において、より明らかに増加したように思われる(動向の統計学的解析の 24報告はない)。より低度の汚染地域と同様に、汚染地域の胎児死亡率は増加している、又 25は減少していないように思われた。 26

遡及的解析の一部としてコホート調査が実施された(Petrova et al. 1997)。ベラルー 28シの放射能汚染された地域、又は比較的汚染されていない地域に居住している 757 名の 29乳児とその母親のカルテが解析された。対照地域に比べて汚染地域に居住する女性にお 30 ける妊娠中毒症の発生率(25~30%)は4~5倍高かった。汚染地域に居住する乳児に 31おけるアトピー性皮膚炎の罹患率は対照地域の乳児と比較して約2倍高かった(約40%)。 32貧血症(低血中ヘモグロビンレベル)の罹患率は汚染地域の乳児は6~7倍高かった(18 33 ~20%)。他の放射線の曝露、栄養摂取及び他の化学物質の曝露など、ヨウ素以外の因子 34が転帰に影響を与えてきたが、放射性ヨウ素の転帰に対する寄与に関しては、この調査 35結果の解釈では極めて不明確である。 36

37

27

6

38 ベラルーシ及びウクライナにおけるチェルノブイリ原子力発電所後の甲状腺がんの人
 39 口統計学データ及び病理学データを、同時期のイタリア及びフランスのものと比較する

と、ベラルーシ及びウクライナの甲状腺がんには固有の原因があることが示唆された 1 $\mathbf{2}$ (Pacini et al. 1997)。ベラルーシ及びウクライナで 1986~1995 年に甲状腺がんと診断 された小児及び21歳未満の若年者472例を対象として評価した。期間中に報告された小 3 児症例の約98%がこれに含まれていた。対照群は、イタリア及びフランスの2施設で連 4 続的に診断された同年齢群の 369 例(イタリア 219 例及びフランス 150 例)であった。 $\mathbf{5}$ ベラルーシーウクライナ症例群では、イタリアーフランス症例群との比較により、いくつか 6 の相違点が認められた。ベラルーシーウクライナ症例群はほとんどが5歳以下であるのに $\overline{7}$ 8 対し、イタリア・フランス症例群は大部分が14歳以降に発症している。イタリア・フラン ス症例群の女性/男性比(2.5)は、ベラルーシーウクライナ症例群の女性/男性比(1.6)よ 9 り有意に高かった。ベラルーシーウクライナ症例群の94%は乳頭がんで5%が濾胞腺がん 10 であるのに対し、イタリア・フランス症例群は82%が乳頭がんで15%が濾胞腺がんであ 11 った。ベラルーシ・ウクライナ症例群の甲状腺がんは、年少の小児甲状腺がんに特有の症 12状である甲状腺外浸潤が、イタリア-フランス症例群より頻回に認められた。 ベラルーシ 1314・ウクライナ症例群は、また、甲状腺自己免疫(抗甲状腺ペルオキシダーゼ及びサイログ) ロブリン抗体の上昇)の発生率がイタリア・フランス症例群よりも高かった。これらの結 15果から、ベラルーシーウクライナ症例群とイタリアーフランス症例群では異なった因子が 16(甲状腺がん発生に)寄与しており、放射線量が少なくとも一つの要因である可能性が 17ある。 18

19 自己免疫に放射性ヨウ素への曝露がどの程度関係しているかは不明である。チェルノ
20 ブイリ原子力発電所事故によって 0.4~3.2 Gyの被ばくをした 7~14歳の 53名の子ども
21 (1993~1994年)の血清抗サイログロブリン抗体価が測定され、抗体価は被ばくした子
22 どもで 80.6%、¹³¹I に曝露されなかった対照群で 16.7%であり、抗体価と推定甲状腺¹³¹I
23 被ばく量の間には、有意な正の相関が示された。この結果は、甲状腺自己免疫疾患に甲
24 状腺の放射性ヨウ素曝露が寄与する可能性を示唆している。

25

ベラルーシ共和国とウクライナにおける病歴及びがん登録記録によると、1986年4月 26にチェルノブイリ原子力発電所から放射性物質が放出されてから4年後に子どもと青年 27に甲状腺がんの発生率が増加を示したが、最近では特に年長のグループでは甲状腺がん 28の増加はみられていない (Cherstvoy et al. 1996、Drobyshevskaya et al. 1996、 29Prisyazhuik et al. 1991、Tronko et al. 1996)。ベラルーシでは、1986年に1年間の甲 30 状腺がん患者の増加が 100,000 名中 2.46 名であり、最も増加したのは Gomel 州で、1986 31年に 100,000 名中 0.24 名であったのが、1991 年に 100,000 名中 12.5 名となった 32(Drobyshevskava 1996)。ウクライナでは、子どもと青年(15歳以下)の1年間の甲 33 34状腺がん発生率は、1986年以前は 100,000 名中 0.05 名程度であったのが 1992年には 100,000 名中 0.43 名となった(Tronko 1996)。1994 年には甲状腺がん発生率はチェル 35ノブイリ近辺で最も高く、Chernihiv で 3.8/100,000 名、Zhytomyr で 1.61/100,000 名、 36 Kiev で 1/100,000 名であった(Tronko et al. 1996)。Jacob ら(1998) は南ウクライナ 37のがん罹患率をコントロールとして、1991~1995 年の Belarus 及び北ウクライナにお 38ける甲状腺がんの EAR を推計した。 39

- 甲状腺がんリスクと甲状腺への推定放射線量の関係は線形となり、傾きは 2.3 (CI: 1 1.4-3.8) /10000 人年 Gy であった。 $\mathbf{2}$
- 利用できるデータは、事故による放射線被ばくが、特に子どもへの直接曝露で甲状腺 3 がんリスクの増大を導くことを強く示しているが、放射線量の推定には多くの不確定さ 4 がある (ATSDR 2004)。 $\mathbf{5}$

甲状腺がん罹患率の増加傾向は、放射性ヨウ素に関連する甲状腺がんリスクの大きさ 6 と同様、疫学研究で得られた知見の解釈を複雑にしている。それには、外部被ばくの寄 7与、甲状腺がん罹患率のベースラインとなる事故に付随して行われた徹底的な甲状腺が 8 んスクリーニング(Astakhova et al. 1998)の影響、ヨウ素欠乏の潜在影響及び集団中 9 の甲状腺腫の風土病という要因などがあり、知見の解釈を非常に不確実にしている 10 (Gembicki et al. 1997, Robbins et al. 2001). 11

12

35

ベラルーシの小児を対象とした症例対照研究において、小児の甲状腺がんと放射線被 13ばくの関連が調査された(Astakhova et al. 1998)。事故発生時 15 歳未満の全小児のう 14ち、1987~1992年に甲状腺がんと病理診断により確定診断された症例が、この研究の対 15象となった(131 例中 107 例が Minsk State Medical Institute records にあてはまる)。 16各症例に対して二つの対照群をマッチした。Type I 対照群は、チェルノブイリ原子力発 17電所事故による被ばくが比較的低い又はないと思われる地域(ベラルーシ北部及び西部 18の Brest、Grodno 及び Vitebsk 自治州)から無作為に抽出し、年齢、性別及び都市/地方 19居住をマッチさせた群である。Type II 対照群は、チェルノブイリ近くの比較的高被ば 20く自治州(Minsk、Mogilev及び Gomel)を含むベラルーシの各地方から抽出し、国勢 21調査に比例した数で、診断経路ごとに症例数をマッチさせ、さらに年齢、性別及び都市/ 22地方居住をマッチさせた群である。診断経路をマッチさせた目的は、発生率上昇に寄与 23する可能性があるので、スクリーニング強度をコントロールするためで、診断経路は以 $\mathbf{24}$ 下の三つに分類された。すなわち、(1)系統的な内分泌スクリーニング:(2)チェルノ 25ブイリ原子力発電所事故に無関係な健康診断による偶然の発見;(3) 頸部の腫脹又は甲 26状腺肥大や結節性甲状腺腫の可能性があるその他の症状により紹介されて実施した検査。 27チェルノブイリ原子力発電所事故後にベラルーシの住民 200,000 名を対象に実施した 28甲状腺¹³¹ 測定結果及び各症例の居住地域における牛乳の汚染及び消費の推定値(野菜 29及び山羊のミルクは被ばく量算出に考慮しない)から、平均甲状腺線量が推測された。 30 牛乳消費が見込まれない場合は、主に吸入により被ばくしたと想定された。年齢層甲状 31腺線量は研究に含まれる居住地域ごとに構成した。症例群及び対照群における甲状腺線 32量の平均は、症例群 535 mGy (SD: 848 mGy)、Type I 対照群 188 mGy (SD: 386 mGy) 33 及び Type II 対照群 207 mGy (SD: 286 mGy) であった。オッズ比 (OR) を算出する 34ために、症例群と対照群を三つの甲状腺線量カテゴリーで層別化した。甲状腺がん患者

における推定線量分布は、線量カテゴリー0.3 Gy 未満群で 64/107 (59.8%)、線量カテ 36 ゴリー0.3~0.99 Gy 群で 26/107(24.3%)及び線量カテゴリー1 Gy 群で 17/107(15.9%) 37であった。Type I 対照群に対応する分布は 0.3 Gy 未満群で 88/107 (82.2%)、0.3~0.99 38 Gy 群で 15/107 (14.0%)、1 Gy 群で 4/107 (3.7%) であった。対応する OR は、0.3 Gy 39

未満群と比較して、0.3 Gy 群で 3.11 (CI: 1.67-5.81)、1 Gy 群で 5.84 (CI: 1.96-17.3) 1 であった。Type II 対照群を比較対照群(診断経路に対する対照)とした場合の OR は、 $\mathbf{2}$ 有意であった。通常の内分泌スクリーニング群においては、0.3 Gy 未満群と比較して、 3 0.3 Gy 群で 2.08 (CI: 1.0-4.3)、1 Gy 群で 5.04 (CI: 1.5-16.7) であった。偶然の発見 4 群においても、0.3 Gy 未満群と比較して、0.3 Gy 群で 8.31(CI: 1.1-58)と有意であっ $\mathbf{5}$ た。これらの結果から、事故後に発生した甲状腺がんに対するスクリーニング強度の影 6 響を調整すると、甲状腺の放射線量がベラルーシの小児においてチェルノブイリ原子力 $\overline{7}$ 8 発電所事故後に診断された甲状腺がんに対する重要な寄与因子であることが示唆された。 また、この寄与は 0.3 Gy を超過する線量で明らかになった。しかし、線量算出において 9 かなり大きな不確実性があるため、OR 算出は非常に不確実である(ATSDR 2004)。 10

11

1986~1993年に甲状腺がんと診断されたベラルーシの14歳未満の小児251例を解析 12した。症例をそれぞれの平均甲状腺線量を反映した地域別に分類したところ、罹患率に 13おいて線量との関連が認められた(Drobyshevskaya et al. 1996)。罹患率は、平均甲状 14腺線量推定値が1Gy(1.2~1.6Gy)以上の地域で81~201人/100,000人、0.1~0.5Gy 15の地域で14~55/100,000であった。最も高い罹患率を認めたのは Bragin で、個々の甲 16状腺吸収線量は 0.8~20 Gy(平均 5.6 Gy)と推定された。測定甲状腺線量で最低値(平 17均 0.005 Gy) が報告された Braslav では、罹患率は 9 人/100,000 人であった。被ばく時 18に3歳未満又は胎児であった小児は甲状腺がん症例の53%を占めていた。この年齢群が 19被ばくした甲状腺線量は、年長の小児(平均約1.4 Gy)に対し約2~3倍と推定された。 20しかし、甲状腺がんの 52%が甲状腺線量推定値 0.3 Gy 未満の小児において診断されて 21おり、84%が1 Gy 未満の小児において診断されている。0.3 Gy 未満の被ばくを受けた 22小児がん患者のうち、3歳未満の小児が38%を占めている。これらの結果から、年少の 23小児は低線量被ばくに対して特に感受性が高いことが示唆された。 24

25

ウクライナの小児及び18歳未満の若年者において1986~1994年に甲状腺がんと診断 26された症例 531 例を対象に解析したところ、そのうち 55%がチェルノブイリ原子力発電 27所の事故時に6歳未満であった(Tronko et al. 1996)。小児及び19歳未満の若年者にお 28ける甲状腺がんの年間発生率は、1986 年以前の約 0.05 人/100,000 人から 1992 年の 290.43/100,000 に上昇した。発生率(/100,000)は、チェルノブイリに最も近い地域で最 30 も高く、Chernihivで3.8、Zhytomyrで1.6及びKievで1であった(Tronko et al. 1996)。 31解析した症例群における甲状腺放射線量は 0.01~1.5 Gy と推定された。症例の約 20% 32が被ばく線量 0.01~0.05 Gy、80%が 0.1~0.3 Gy 未満であった。 33

34

35 ベラルーシでもウクライナでも、他の工業汚染物質に曝露されている地域及び広範な
 36 ヨウ素欠乏症が確かである地域において、小児甲状腺がんの発生率が最も高かった。こ
 37 れらの要因が、甲状腺異常のために積極的な公衆衛生スクリーニングプログラムが開始
 38 された時に、事故後甲状腺がんの早期出現に影響を与えた可能性がある。これらの地域
 39 における事故以前の甲状腺がん発生率に関してはほとんど記録が残っていない

(Nikiforov and Fagin 1998).

3 また、2011年にウクライナとベラルーシの事故当時18歳以下であった男女を対象と
 4 する以下の2つのコホート研究の結果が報告されている。

5 ベラルーシのチェルノブイリ原子力発電所事故被ばく者(当時 18 歳以下の男女)を対
 6 象に、約 10 年後に開始されたスクリーニング参加者 11,970 名(参加率約 3 割)におけ
 7 る甲状腺がんの甲状腺吸収線量(Gy)当たりの ERR を算出した(Zablotska et al. 2011)。

8 初回スクリーニングで甲状腺がんを除外した。リスク要因は牛乳を主とする¹³¹Iによる
 9 内部被ばくであり、曝露評価は測定及び放射生態学的モデルに食事調査などによる補正
 10 を加えている。被ばく量の分布は0.0005~32.80 Gy、平均 0.56 Gy (SD=1.18)、中央
 11 値 0.23 Gy であった。毎年の甲状腺スクリーニングによる甲状腺がん(組織病理検査)

- 12 罹患を追跡した。初回スクリーニングから3年目までに甲状腺がん87例(乳頭がん86
 13 例、濾胞がん1例)が確認された。Gy当たりのERRは2.15(< 5 Gy)及び4.92(
 1 Gy)であった。被ばく時の年齢が低いほどリスクが高かった。
- 15 また、Zablotska ら (2008) は 2001 年までの追跡で、エンドポイントを甲状腺の濾胞
 16 性腺腫として、ERR を 2.07 (CI: 0.28-10.31) と推定している。
- ウクライナのチェルノブイリ原子力発電所事故被ばく者(当時18歳以下の男女)を対 17象に、約10年後に開始されたスクリーニング参加者13,243名(参加率約4割)におけ 18る甲状腺がんの Gv 当たりの ERR 及び EAR を算出した(Brenner et al. 2011)。初回 19スクリーニングで甲状腺がんを除外した。リスク要因はミルクを主とする¹³¹Iによる内 20部被ばくであり、曝露評価は測定及び放射生態学的モデルに食事調査などによる補正を 21加えている。被ばく量の分布はほとんどが 0~5 Gy の範囲であった。2007 年までに 2 22回目から4回目までの甲状腺スクリーニングによる甲状腺がん(組織病理検査)罹患を 23追跡したところ、甲状腺がんは65例(乳頭がん61例、濾胞がん3例、甲状腺髄様がん $\mathbf{24}$ 1例)が確認された。線量とリスクは相関し、ERR は 1.91 (CI: 0.43-6.34)、EAR は 252.21/10000 人年/Gy(CI: 0.04-5.78)であった。 26

27 なお、1998~2000 年に行われた最初のスクリーニングの結果は、甲状腺がんの ERR
 28 を 5.25 (CI: 1.70-27.5) と報告している (Tronko et al. 2006)。即ち、甲状腺がんの
 29 過剰発生リスクは、以前よりは小さいものの 20 年後にも続いていることを示している。

3031

 $\frac{1}{2}$

③ハンフォード核施設

米国 疾病管理予防センター(CDC) (2002)は、1944~1957年にかけてワシントン 32州南東部のハンフォード核施設の近郊に居住していた集団において、甲状腺疾患罹患率 33 のフォローアップ研究を行った。この調査ではハンフォード核施設周辺の国で1940~ 341946年に生まれた被験者3,441名を対象とした。甲状腺疾患は臨床評価から査定され、各 35被験者の超音波又は触診で見つかった甲状腺結節、甲状腺ホルモンの状態、甲状腺自己 36 免疫、及び副甲状腺ホルモンの状態の評価が含まれた。甲状腺疾患の背景情報(病歴) 37及び放射線被ばくの情報は、インタビューと可能な場合は関係者の医療記録のレビュー 38によって得られた。甲状腺放射線量はハンフォード環境線量再構築計画(HEDR)で開 39

発された線量測定モデルを用いて推定された。参加者ごとの居住歴と関連のある食品消 1 費パターン(例:ミルクの消費量、母乳栄養、地元で収穫された生産物の消費量)の情 $\mathbf{2}$ 報はインタビューによって得られた。3,191名の参加者で推定された甲状腺放射線量の平 3 均値は174 mGy (SD: 224) であり、0.0029~2.823 mGyの範囲であった。推定甲状腺 4 線量が1 Gv超であったのは調査集団のうちわずか24名(0.8%)のみ、2 Gy超であった $\mathbf{5}$ のは7名(0.2%)のみであり、調査集団の甲状腺線量が低い線量に分布していたため、 6 この調査の統計的検出力はかなり制限を受けた。線量には地理的な変動があり、当該施 7設の付近とその風下に住む人々が最も高い線量を受けていた。用量反応関係は、交絡因 8 子(性別、初回被ばく年齢、評価時年齢、民族性、喫煙歴及びNTSの放出物からの潜在 9 的被ばく)及び変数を修飾する影響について調整された線形回帰モデルを用いて評価さ 10 れた。甲状腺がん、甲状腺結節、甲状腺機能低下症及び甲状腺機能亢進症(血清中TSH 11 レベルの上昇、グレーブス病、甲状腺自己免疫(血清中抗ミクロソーム抗体、抗甲状腺 12ペルオキシダーゼ)、甲状腺腫及び副甲状腺機能亢進症を含む)を含めた健康上の転帰 1314が調べられた。直線モデルを用いて14症例(罹患率0.4%)から推定された線量係数は 0.000 /Gy (SD: 0.018/Gy) (95% upper CL: 0.013、p=0.61) であり、副甲状腺機能 15亢進症の発生頻度は、甲状腺放射性ヨウ素線量と相関しないことが見いだされた。直線 16モデルに基づいて、甲状腺がん、甲状腺結節(いずれのタイプでも)、甲状腺機能低下 17症、甲状腺機能亢進症、甲状腺自己免疫、甲状腺腫、副甲状腺機能亢進症の線量係数が 18推定された。 19

Boiceら(2006)は、1944から1957年にかけて、米国ハンフォード核燃料処理施設か 20ら放出された核降下物に曝露した周辺住民を対象に、131Iの環境曝露とがんとの関連を検 21討した。1950年から2000年までのがん死亡データを用いてワシントン州内で¹³¹I低曝露 22地区のSMRとの比較が行われた。その結果、全がん及び個別のがんとの関連は認められ 2324なかった。全がんのRRは0.95(CI:0.93-0.97)と低く、その主な理由は肺がんのRRが 0.84 (0.56-1.26) と低かったためである。その他、甲状腺がんの33名RRは0.84 (0.56-1.26)、 25女性の乳がん1,233名のRRは0.99(0.92-1.06)、白血病(慢性リンパ球性白血病を除く) 26492名のRRは0.95(0.85-1.06)、小児白血病71名のRRは1.06(0.78-1.43)であった。 27Hoffman ら(2007)はハンフォードの甲状腺がん研究の方法論的な問題を検討し、放 2829射線量測定などの不確定要素が結果に反映が出来ていないので信頼区間が狭すぎること

29 射線量測定などの不確定要素が結果に反映が出来ていないので信頼区間が狭すぎること
 30 を指摘している。よって、この結果は関連がないことを示すものではなく、結論できな
 31 いと解釈されるべきだとしている。

32

ATSDR (2000a) はハンフォード核施設付近の居住者について、妊娠転帰(早期分娩
 率、胎児死亡) と乳児死亡に関する遡及的解析を行った。この調査では、1940~1952
 年の期間でハンフォード核施設に近いワシントン州で起きた 72,154 分娩例、1,957 乳児
 死亡例、1,045 胎児死亡例に関する転帰の記録が検討された。対象者は分娩時又は乳児死
 亡時の住所(郵便番号)に基づいて4つの曝露カテゴリーのうち一つに分類された。ま
 た、これらのエリアにおける 1945 年の推定 ¹³¹I 曝露は HEDR 計画から情報を得た(CDC
 2002)。曝露カテゴリーは、低度(全調査エリアの 1945 HEDR 推量の 50%未満)、中低

度(50%以上75%未満)、中高度(75%以上90%未満)、高度(90%以上)(これらのパ 1 $\mathbf{2}$ ーセンタイル値に関連する放射性ヨウ素線量は CDC 2002 中で報告されていない) であ った。¹³¹I 曝露と転帰との関連性は多変量ロジスティック回帰モデルで評価された。検討 3 された交絡因子は、乳児の性別、母親の年齢、母親の人種、父親の職業、過去の妊娠歴、 4 死産歴及び乳児死亡率を含んでいた。最も高い曝露と推定される 1945 年に記録された転 $\mathbf{5}$ 帰を評価し、また妊娠初期に最も高いレベルの曝露を伴う1945年5月1日から1946年 6 4月30日の期間も評価した。高度曝露カテゴリーにおいて、乳児死亡の補正OR(参考 $\overline{7}$ として低度曝露を使用)は1945年で1.1(CI: 0.7-1.8)、1945~1946年で1.3(CI: 8 0.8-2.1) であった。高度曝露カテゴリーでの胎児死亡の補正 OR は 1945 年で 0.6 (CI: 9 0.2-1.6)、1945~1946年で 0.7 (CI: 0.3-1.7)であった。これらの結果から、乳児死亡 10 及び胎児死亡はどちらも ¹³¹I 曝露に関連していないことが示唆された。高度曝露カテゴ 11 リーでの早期分娩の補正 OR は 1945 年で 1.6 (CI: 1.0-2.6)、1945~1946 年で 1.9 (CI: 121.2-3.0) であり、早期分娩と¹³¹ [曝露に潜在的関連性が示唆された。 13

14

15

④マーシャル諸島ブラボー核実験

ブラボー核実験直後、マーシャル諸島の3島の住民が避難するまでの2日間にγ線の被ば 16 くを受けていたことが確認された(Conard 1984)。Rongelap 島民64名(1.90 Gy)、 17Ailingnae島民18名 (1.10 Gy) 及びUtrik島民150名 (0.11 Gy) であった。推定された 18甲状腺に対する総吸収線量(外部及び内部被ばく)は、Rongelap島で3.3~20 Gy(子ど 19もで最高線量)、Ailingnae島で1.3~4.5 Gy、Utrik島で0.3~0.95 Gyであった(Conard 201984)。医学的評価プログラムの一環として、いわゆるブラボー・コホートと呼ばれる 21島民たちは定期的に健康状態が調べられた。悪心、嘔吐、血液学的抑制及び皮膚の放射 22線熱傷を含む急性放射線宿酔の徴候が被ばく後早期に広く認められた。被ばくから10年 23経過した1964年に被ばく集団で甲状腺疾患の症例が見つかるようになり、特に子どもで $\mathbf{24}$ 多く見つかった。これらは明らかな発達遅滞、粘液水腫及び甲状腺腫瘍の症例を含んで 25いた(Conard et al. 1970)。1981年、Rongelap島の子ども達に対するスクリーニング 26で、ブラボー実験当時1歳未満であった子どもの83%に甲状腺機能低下症の徴候(例:血 27清中TSH濃度>5 mU/L)があることが発見された。この小児集団は推定で15 Gyを超え 28る甲状腺線量を受けていた。甲状腺機能低下症の罹患率と甲状腺放射線量は被ばく年齢 29とともに減少した。2~10歳で25%(8~15 Gy)、10歳以上で9%(3.35~8.00 Gy)。 30 Ailignae島の被ばく群における罹患率は被ばく年齢が10歳以上で8%(1.35~1.90 Gy) 31であり、Utrik島では1%(0.3~0.6 Gy)であった。非被ばく群(ブラボー実験時、島に 32いなかったRongelap島民)では罹患率が0.3~0.4%であった(Conard 1984)。1964年 33 のほぼ同時期に、集団検診プログラムで触診により検出できる甲状腺結節の症例が見つ 34かるようになった(Conard 1984)。甲状腺結節の罹患率には甲状腺機能低下症(例: 35血清中TSH上昇)と同様な年齢/線量特性がみられた。1981年には、10歳以前に被ばくし 36 たRongelap島民の77%、10歳以降の被ばくでは島民の13%に甲状腺結節が見つかった。 37Ailingnae集団の罹患率は、10歳以前に被ばくした小児集団で29%、10歳以降に被ばく 38 した集団で33%であった。Utrik集団では、甲状腺結節の罹患率は10歳以前に被ばくした 39

小児集団で8%、10歳以降に被ばくした集団で12%であった。非被ばく群(1%)と比べ 1 て被ばくしたRongelap集団(6%)では、甲状腺がん(主に乳頭がん)の罹患率も上昇 $\mathbf{2}$ しているようであった。1994年に甲状腺の超音波検査が以前の研究におけるコホートの 3 被ばく群117名(Rongelapの47名及びUtrikの70名)、及びブラボー実験時にBikini環礁 4 の実験地点の南方約480マイルに位置するMajuro島にいたRongelap島民47名に対して $\mathbf{5}$ 実施された(Howard et al. 1997)。1965~1990年にかけて、被ばく群における甲状腺 6 結節の有病率は1年当たり約3~8%であり、男性より女性で3倍高かった。しかし、1994 $\overline{7}$ 8 年の超音波検査では、有意差はないものの、比較的高い甲状腺結節罹患率が被ばく群(12 ~33%)、非被ばく群(25%)で認められた(Howard et al. 1997)。 9

10

1954年に行われたブラボー核実験の大気降下物によって¹³¹Iに曝露したマーシャル諸 11 島住民において、1980年代に報告された甲状腺結節罹患率が、後ろ向きコホート研究に 12よって再調査された(Hamilton et al. 1987)。この研究は実験場から112~589マイル 13に位置する島の住民を対象とした。コホートは1954年のブラボー核実験当時に島の住民 14であった(あるいは胎内にいた)ことがわかっている7,266名で構成された。各被験者は 151983~1985年に触知可能な甲状腺結節について調べられた。研究者には各被験者が受け 16た推定甲状腺放射線量が伏せられた。甲状腺放射線量は、Rongelap島民が21 Gy(実験 17場から120マイル)、Utrik島民が2.80 Gy(実験場から321マイル)であったと推定され 18た。島の位置(距離及び/又は卓越風(prevailing wind)に関する位置)から放射性ヨウ 19素に曝露していないと歴史的に考えられてきた他の12島の住民も調査対象に含まれた。 20年齢で補正した甲状腺結節の罹患率はRongelap島が37%、Utrik島が10.3%であった。 21他の12島の住民の罹患率は0.8~10.2%の範囲であり、被ばくが少なかった12島の罹患率 22に統計学的有意差はなかった。OR算出のために、被ばくがなかった集団の罹患率は、最 23も南の2島(Ebon、Mili)の罹患率にもとづいて2.45%と仮定された。ロジスティック回 24帰分析モデルによれば甲状腺結節のORに対する性別の影響が統計学的に有意であり、女 25性ではORが3.7倍高かった。このモデルでは実験場所からの距離及び方向に従った減少 26傾向も有意であり、罹患率の減少は実験場所から100マイル離れるごとに3倍(OR、0.3 27/100マイル)、方向が東西に10度違うごとに2倍(OR、0.59/10度)であった。マーシャ 28ル諸島の甲状腺結節のリスクは、100万名被ばくするごとに1,100 増加例数/Gy/年と推定 29された(0.0011/人/Gy/年)。 30

31

1993~1997年にかけてマーシャル諸島では大規模な甲状腺疾患の検診プログラムが 32実施された(Fujimori et al. 1996、Takahashi et al. 1997, 1999, 2003)。Ebeye島 33 34(Kwajalein環礁にあり、Bikini環礁から約190マイルの位置)の住民1,322名の検診結果 がTakahashiら(1997)によって報告されている。評価には頸の触診、甲状腺超音波検 35査及び穿刺吸引細胞診が用いられた。研究者には各被験者が受けた推定甲状腺放射線量 36 が伏せられた。ブラボー核実験時の1954年以前に生まれた被験者815名のうち、266名 37(32.6%)が甲状腺結節と診断され、そのうち132名(16.2%)が触知可能であった。甲 38状腺結節(触知可能及び超音波で検出)の罹患率は男性より女性で高かった。しかし、 39

Hamiltonら(1987)の研究で観察されたように、触知可能な結節のみに対して有意差が 1 あった(触知可能な結節:女性17.7%、男性9.3%;全結節:女性35.9%、男性21.0%)。 $\mathbf{2}$ いずれにしても、実験終了後より核実験期間(1958年以前)に生まれた集団では、結節 3 罹患率が2~3倍高い。結節罹患率データに適用されたロジスティック回帰分析モデルは、 4 結節罹患率に対する性別、年齢、及びBikini環礁からの距離の有意な影響を明らかにし $\mathbf{5}$ た(Takahashi et al. 1997)。検診プログラムのより新しい報告は、甲状腺の触診及び 6 超音波検査(被験者7,721名)、甲状腺ホルモン(T₃、T₄、TSH、抗サイログロブリン抗 7体)研究(被験者1,050名)、ヨウ素の状態(iodine status) (尿中ヨウ素、被験者309 8 名)の結果を記述した(Takahashi et al. 1999)。調査対象にはMajuroの住民5,263人 9 (Bikini環礁から約480マイル)、Ebeye島の住民1,610名(192マイル)及びMejit住民 10 348名が含まれた。この研究(1993~1997年)の被験者7,221名のうち、4,766 名(66%) 11 が核実験の放射性降下物に曝露した可能性のある年齢であった。甲状腺結節の罹患率(触 12知可能及び超音波検出)は男性より女性の方が3倍高かった。女性の中では、1959年の最 1314後の核実験の日付より前に生まれた女性で最も罹患率が高かった(13%、3,151名中407 名)。 15

甲状腺ホルモン研究は甲状腺機能低下を示す証拠がないことを明らかにした。一方、 16尿中ヨウ素レベルの測定は集団内で軽度から重篤なヨウ素欠乏症がみられることを示し 17た。成人被験者の約21%の尿中ヨウ素は22~45 nmol I/mmol creatinine (25~50 µg I/g 18creatinine)の範囲であった。これは尿中排泄率とヨウ素摂取速度約40~80 ug I/日(体 19重60 kgと仮定)に相当する。結節がありヨウ素が欠乏している被験者と、ヨウ素が十分 20にあり結節のない被験者との間で、甲状腺の体積が比較された。ヨウ素欠乏又はヨウ素 21十分のグループのいずれにおいても、甲状腺肥大の極端な罹患率の明らかな徴候はない 22が、甲状腺体積が最も大きかった被験者はヨウ素欠乏ー結節グループに陥る傾向にあっ 23た。甲状腺の結節形成は通常、甲状腺腫と関連があるが、長期のヨウ素欠乏を経験した $\mathbf{24}$ 集団で生じる(Hermus and Huysmans 2000)。 25

1954年のBikini島核実験では、Marshall諸島の爆心地より150 kmから500 kmに位置
 する島までが放射性降下物の影響がみられた。子どもの発達遅滞など予想外の晩発作用
 がみられたことなどから、推定被ばく量については何度か見直しが行われている。1992
 年の甲状腺疾患との関連の報告では、北部で爆心地に近かったRongelap島民の甲状腺線
 量は成人で1.5~40 Gy、子どもで3~200 Gyであったと試算されている(Dobyns et al.
 1992)。島では、10~35年後までに人口の22%が甲状腺結節の手術を受け、16例が甲状
 腺がんになった。

33 Simon ら (2010) は、マーシャル諸島全域でヨウ素を含むさまざまな放射線による外
 34 部被ばく、急性内部被ばく、慢性内部被ばくの合計は成人で平均 29 mGy (6.1~1,600
 35 mGy)、甲状腺線量は平均 124 mGy(17~9,200 mGy)と新たに試算した。Land ら(2010)
 36 は、放射線被ばくにより白血病、甲状腺がん、胃がん、大腸がんなどの増加がみられ、

37 マーシャル諸島の住民 24,783 名の生涯にもともと起こったであろう何らかのがん
 38 10,600 例に対し、放射線被ばくによって 170 例(白血病 7.4、甲状腺 50、胃 6.7、大腸
 39 16.5、その他の固形がん 90)が過剰に発生するものと、それまでのがん罹患及び BEIR VII

モデルにより推計している。

甲状腺自己免疫の大規模影響評価がマーシャル諸島で行われた。1993~1997年で実施 3 された甲状腺スクリーニングプログラムでは、7.721名の対象者が甲状腺の大きさ、小結 4 節形成及び機能について調べられた(Fujimori et al. 1996、Takahashi et al. 1997, 1999)。 $\mathbf{5}$ 血清中の抗サイログロブリン抗体は、対象者 2,700 名中 67 例(2.5%)で検出された 6 (Fujimori et al. 1996)。この有病率は、他の集団(健康成人の 10%)で認められたも 7のと比べて、目立たず(Marcocci and Chiovata 2000、Takahashi et al. 1999)、適切 8 な対象集団との統計学的な比較が行われなかった。さらに、本調査において、抗体レベ 9 ルと放射性ヨウ素曝露との関連の評価は行われなかった(ATSDR 2004)。 10

11

 $\frac{1}{2}$

1982年にマーシャル諸島の被ばく者群 250名及び非被ばく者群 1,303名を対象に結節 12性甲状腺腫と診断されたものを再評価したところ、被ばく者群でがん腫9例(3.6%)及 13び腺腫7例(2.8%)、非被ばく者群でがん腫6例(0.5%)及び腺腫14例(1%)が認め 14られた(Conard 1984)。それに続く甲状腺病理の再評価では、大体は Conard (1984) 15の結論と同じ結果になったが、比較した群の構成の違いによって非被ばく者の罹患率算 16定がわずかに異なっていた。例えば、Howard ら(1997)の報告では、比較した非被ば 17く者群のがん腫4例(1.8%)及び腺腫1例(0.4%)となっている。Takahashiら(1997) 18は、マーシャル諸島住民 1.275 名(主に Ebeve 出身)を対象に行った超音波スクリーニ 19ングプログラムで1993年に発見された結節性甲状腺腫22例の診断について再評価した。 20手術のための甲状腺超音波診断を受けた患者における甲状腺がんの罹患率から、最終的 21な甲状腺がんの罹患率は 1.2%(15/1,275)、触知可能な結節をもつ患者における甲状腺 22がんの罹患率は12%(15/123)と示唆された。この研究の追跡調査には、ブラボーテス 23ト前に出生し核実験期間中にマーシャル諸島に住んでいたマーシャル諸島住民 3,709 名 $\mathbf{24}$ の甲状腺疾患スクリーニングの結果が盛り込まれている。この期間にマーシャル諸島在 25住で現在も生存している人々のおよそ 60%も対象となっている。前の Takahashi ら 26(1997)の研究とこの追跡調査の結果を組み合わせることで、トータルで 57 件の甲状 27腺がんが特定され、そのうち92%が乳頭がんと診断された。放射性ヨウ素に被ばくした 28マーシャル諸島住民における甲状腺がんの関連を考える際にいくつかの要因が結果の解 29釈を複雑化させており、例えば、小さなブラボーコホートの決定的な外部放射線量測定 30 が不足していることが挙げられる。また、小さな結節性甲状腺腫を発見するための超音 31波使用が1994年に開始さるなど、結節性甲状腺腫を発見するための診断技術の進歩があ 32ったため、より一層、結果の解釈に注意を要するようになった(ATSDR 2004)。より最 33 近の研究では、マーシャル諸島においてヨウ素欠乏症の罹患率がかなり高いことが示唆 34されたが、これは背景となる甲状腺がん罹患率に影響を与える可能性がある(Takahashi 35et al. 1999) 36

- 37
- 38

1 **⑤ネバダ州核実験場**

2 いくつかの疫学研究では、¹³¹Iの経口曝露と甲状腺結節形成の関係について調査してい
 3 る。NTSから離れて居住する非曝露コホートと比べて、NTS近郊居住のコホートにおい
 4 て身体検査で見つかった甲状腺結節の罹患率には差がないと報告された(Rallison 1996)。
 5 しかし、地域ごとに各被験者について¹³¹Iからの甲状腺放射線量を算出すると、放射線量
 6 は非腫瘍性結節との間には相関がなかったが、甲状腺腫瘍形成との間には相関があった
 7 (Kerber et al. 1993)。

Gilbertら(2010)では、1950年代に行われたネバダ州の核実験の¹³¹I被ばくによる長 8 期の影響を、1973~2004年までの8地区のSEERデータから検討した。15歳未満でのGv 9 当たりERRをある年齢までの累積甲状腺等価線量別に検討した。1歳までの累積線量では 10 Gy当たりERRは1.8(95%CI 0.5~3.2)、5歳、15歳での累積線量については有意な相 11 関関係はみられなかった。これは1973~1994年での検討と同様の結果であったが、チェ 12ルノブイリからの知見とは矛盾する結果となった。計8地域から1地域ずつ除外してみる 1314と、Iowaを除いた場合のみ、1歳までの累積 ERRは 2.2 (0.4~4.3)、1~4歳は1.1 (0.01 ~2.3)、5~14歳は1.6(0.5~2.8)といずれも有意に上昇した。しかし、本研究はエコ 15ロジカル研究であり、線量推定の困難や転出による追跡不備などによるエラーがあり得 16るため、定量的な評価にデータを用いるには不適当としている。 17

18

1950 年代初めに NTS に近いユタ及びネバダ在住であった若年者(年齢 11~18 歳) 19 2,678 名及び対照群としてアリゾナ在住の若年者 2,132 名を対象としたコホート研究が 20実施され、結節性甲状腺腫の調査及びフォローアップ診断が実施された。調査は1965~ 211970年に実施された(Rallison et al. 1974)。また、1985~1987年に実施された追跡調 22査において、オリジナル研究のユターネバダ群 1,962 名及びアリゾナ群 1,160 名を対象に 23再調査が行われた(Rallison et al. 1990)。放射性ヨウ素線量は各ユタ・ネバダ群の被験者 24に対し、居住歴、地方産の牛乳と葉物野菜の消費量、居住街及び/又は居住国における放 25射性物質の移行と蓄積の記録及びヨウ素摂取と甲状腺へのヨウ素取込みに関連した年齢 26特異的移行係数に基づいて算出した(Kerber et al. 1993、Simon et al. 1990)。平均甲 27状腺吸収線量推定値はユタ群で150 mGy (最大 4.6 Gy)、ネバダ群で50 mGy (最大 0.84 28Gy)、アリゾナ群で13 mGy(最大0.45 Gy)であった(群の名称は研究で使用されたコ 29ホート名を使用し、これは被ばくの可能性がある時期に居住していた場所に基づく。ま 30 た、各対象者が、必ずしもそこですべて被ばくしてはない)。1965~1968年の研究で、 314,819 名中 76 名に触知可能な甲状腺結節があり、そのうち 22 名が腺腫(20 名)及びが 32ん腫(2名)であった。結節の罹患率はユタ・ネバダ群(19.7/1.000)の方がアリゾナ群 33 (10.8/1,000) より高かった。新生物 22 例のうち 15 例がユターネバダ群(5.6/1,000) で 347 例がアリゾナ群 (3.3/1,000) であった (Rallison et al. 1974)。1985~1987 年に甲状 35腺結節 125 例が新たに認められ、そのうち 65 例が新生物、さらに新生物のうち 5 例が 36 がん腫と診断された。5 例のがん腫は二つの試験の合間に報告された。最初の評価及び 37二つ目の評価を考え合わせると、合間に見つかったがん腫5例(計12例のがん腫)を含 38

39 め、両群における結節の罹患率は同様であった(ユタ・ネバダ群 48.6/1,000、アリゾナ群

36.6/1,000)。腫瘍の罹患率はかけ離れたものではなく、ユターネバダ群が 2.8/1,000 及び 1 アリゾナ群が 4.8/1,000 であった(Rallison et al. 1990)。結節性甲状腺腫は 2,473 名の $\mathbf{2}$ 被験者中 56 名に認められた。そのうち 38 名が非腫瘍性と診断され(コロイド腺腫 28 3 名、混合型非腫瘍性病変10名)、良性腺腫11名(濾胞性腺腫8名、乳頭状腺腫、胎児腺 4 腫及びヒュルトレ細胞腺腫各1名)及び乳頭がん8名であった(Rallison 1996)。推定 $\mathbf{5}$ した甲状腺線量から転帰を分類すると、新生物に対し有意な線量傾向が認められたが、 6 全結節及び全がん腫単独では認められなかった。甲状腺新生物の罹患率は、0.25 Gy を $\overline{7}$ 超過する被ばくを受けた群で21~24/1,000、0.25 Gy 未満被ばく群で4~5/1,000 であっ 8 た。Gy 当たりで推定される ERR は、新生物 7.0 (95% CI 0.74、 p=0.019)、結節 1.2 (95% 9 CI<0、p=0.16)、がん腫 7.9(95%CI<0、p=0.096)であった(Kerber et al. 1993)。 1011

- 大規模疫学調査において、米国の 3,053 郡における甲状腺がんの死亡率及び発生率を 12NTS から放出された ¹³¹ I 推定被ばく線量と比較した。甲状腺がん死亡率に関するデータ 13は 1957~1994 年の全米保健医療統計センターから、甲状腺がん発生率に関するデータ 14は 1973~1994 年の SEER から入手した。郡における又は州における累積放射線量は 15NCI (1997) に基づいて計算され、子宮内吸収線量 43 mGy; 0<1 年、126 mGy; 1~ 164 年、10.0 mGy; 5~9 年、6.7 mGy; 10~14 年、4.4 mGy; 15~19 年、3.1 mGy; 1720 年、1.1 mGy となった。研究期間中に甲状腺がん 12,657 例及び甲状腺がん死亡 4,602 18例が認められた。米国における年齢、暦、性別及び郡における死亡率及び発生率を、地 19理的な位置、被ばく時の年齢及び出生コホートを考慮した上で¹³¹ 推定被ばく線量との 20関連で解析した。全被ばく時年齢群を合わせた場合又は被ばく時年齢1~5歳群若しくは 211~15 歳群を分けて考慮した場合において、有意な線量傾向(線形過剰相対リスクモデ 22ル)は認められなかった。しかし、被ばく時年齢1歳未満群として解析すると、線量が 23郡特異的(ERR 10.6 / Gy (CI: -1.1-29、p=0.085))又は州における(16.6 / Gy (CI: $\mathbf{24}$ -0.2-43、p=0.054)) な場合の甲状腺がん死亡率及び線量が郡における(2.4 /Gy (CI: 25-0.5-5.6))な場合の甲状腺がん罹患率に対する高い正の ERR によって、弱い線量相関が 26示唆された。これらの結果には、12か月齢以前に 90 mGy を超過する累積放射線被ばく 27を受けた被験者において2例の死亡及び9例の甲状腺がんが認められたことが強く影響 28している (Gilbert et al, 1998) 29
- 30

31

0

32 ⑥ポリネシアにおけるフランスの核実験

de Vathaire ら (2010) は、ポリネシアで行われたフランスの核実験(1966~1974年)
による被ばくと甲状腺がん(1981~2003年に診断されたほぼ全例に当たる 229 症例)
リスクとの関連を調べる症例対照研究を実施した。被ばく線量は核実験後の外部被ばく
と食事調査による¹³¹I、¹³⁷Cs などの内部被ばくの両方から推定された。15 歳未満の甲
状腺線量は 1.8 mGy 程度(0~39 mGy)であり、症例の 5%、対照の 3%で 10 mGy 以
上であった。教育レベル、身長、Body Mass Index (BMI)、家族歴、妊娠回数で調整
すると、1 mGy 群に比べ 20~39 mGy 群でリスクが 5.7 (CI: 0.8-45)、傾向 P 値: 0.04

であった。微小がんとサイズ不明がんを除くと11.6(1.0-132)となり、より強い関連が
 みられた。

4 9. 国際機関等の評価

5 IARC (2001) では、「¹³¹I を含む半減期の短い放射性ヨウ素」について、グループ1(ヒ
 6 トに対して発がん性がある物質) に分類し、発電所事故や核実験によるフォールアウトに
 7 伴う小児期の曝露により起こる甲状腺がんについて十分な証拠があるとしている。

9 10. まとめ

3

8

チェルノブイリ原子力発電所事故による汚染地域の周辺住民に関する研究では、¹³¹ I 被 10 ばくによる甲状腺がんリスクは被ばく時年齢が低いグループで高く(0~4歳, ERR 7.43)、 11 居住地域による差がみられ、濾胞性甲状腺腫や甲状腺腫、甲状腺肥大があると高いとの報 12告があった。また、男女差についての報告では女性で高いが有意ではない(男女差は研究 13によって違いがみられる)。汚染地域の周辺住民の子どもの131I曝露の多くは汚染されたミ 14ルク経由であり、低線量から甲状腺がんリスクとの用量反応関係がみられ、事故当時年齢 15が低いほど後のリスクが上がっていると報告されている。最新のデータでは、有意にリス 16クが上昇する最低被ばく量(甲状腺線量)は Cardis ら(2005)の 0.2 Gy から Brenner 17ら(2011)の0.49 Gy 程度であった。全体で1 Gy 当たり約2 倍の過剰リスク(3 倍のRR) 18がみられ、層別解析によってはさらに高いリスク増加が報告されている。 19

20 チェルノブイリ周辺地域の子どもで¹³¹I 曝露による甲状腺がんリスクが高いのは、もと
21 もと栄養的にヨウ素欠乏であるからではないかともいわれるが、疫学的には定かではない。
22 一般に、甲状腺がんで確立された危険因子は、放射線被ばくのみであるが、特に小児期
23 の被ばくは感受性が高く、乳頭がんとの関連が大きいとされる。甲状腺組織の発達に関連
24 する、TSH の増加は、甲状腺がんの危険因子であると考えられている。また、TSH 制御
25 に不可欠であるヨウ素は、摂取過剰で乳頭がんの、欠乏で濾胞がんの危険因子となること
26 が報告されている。

27 2001年のIARCによる発がん性評価や 2004年のATSDR の毒性(発がん性)評価に用
28 いられたヒトの疫学研究のデータ、その後に出版されたチェルノブイリ原子力発電所事故
29 などのより定量的な疫学研究のデータからは、放射性ヨウ素と甲状腺がんリスクとの関連
30 は、成人前の小児を対象とした多くの研究において線量反応関係が示されおり、甲状腺線
31 量として1Gy当たりのERRは2倍以上(RRは3倍以上)の値と報告されている。そし
32 て、概ね、100mSvを超えるレベルの線量においては、統計学的に有意と報告されている。
33 一方、100mGy以下の線量においては、一部の例外(Vathaire et al. 2010)を除いて、統

34 計学的に有意とはされていない。

35 評価すべき ERR の大きさに対する調査対象数の少なさ、放射性ヨウ素の被ばく線量推
36 定における不確実性、症例対照研究や非致死的な甲状腺がんのスクリーニングに基づく診
37 断という研究手法における限界などを考慮すると、あるレベル以下の線量において、ERR
38 は、他の要因によるリスクの増加と比較して十分に小さいであろうと言及することは出来
39 ても、発がんリスクを上げない安全な甲状腺線量を推定するには、現状においては、科学

- 1 的根拠が揃っているとはいえない。
- $\mathbf{2}$

2 **<参照>**

- Aboul-Khair SA, Buchanan TJ, Crooks J, Turnbull AC. 1966. Structural and functional development of the human foetal thyroid. Clin Sci 31:415-424.
- AEC. 1974. U.S. Atomic Energy Commission. Environmental behavior and radiation doses from iodine-129. BNWL-SA-4879.
- Ahmed SR, Shalet SM. 1985. Gonadal damage due to radioactive iodine (I131) treatment for thyroid carcinoma. Postgrad Med J 61:361-362.
- Ardito G, Lamberti L, Bigatti P, et al. 1987. Comparison of chromosome aberration frequency before and after administration of 131I in two groups of thyroid cancer patients. Tumori 73:257-262.
- Argonne National Laboratory 2005a
- Astakhova LN, Mityukova TA, Kobzev VF. 1996. Endemic goiter in Belarus following the accident at the Chernobyl nuclear power plant. In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, the Netherlands: Elsevier, 67-95.
- Astakhova LN, Anspaugh LR, Beebe GW, et al. 1998. Chernobyl-related thyroid cancer in children in Belarus: A case-control study. Rad Res 150:349-356.
- ATSDR: TOXICOLOGICAL PROFILE FOR IODINE. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service, Agency for Toxic Substances and Disease Registry. 2004
- Agency for Toxic Substances and Disease Registry. 2000a. Hanford infant mortality and fetal death analysis 1940-1952. Atlanta, GA: U.S. Department of Health and Human Services. PB2000105892.
- Agency for Toxic Substances and Disease Registry. 2000b. Toxicological profile for polychlorinated biphenyls, Atlanta, GA.
- Bakheet SMB, Hammami MM, Hemidan A, et al. 1998. Radioiodine secretion in tears. J Nucl Med 39(8):1452-1454.
- Ballad RV, Tan SH, Johnson JE, et al. 1978. Iodine-129 in man, cow and deer. Health Phys 34:691-696.
- Ballardin M, Gemignani F, Bodei L, et al. 2002. Formation of micronuclei and of clastogenic factor(s) in patients receiving therapeutic doses of iodine-131. Mutat Res 514(1-2):77-85.
- *Baugnet-Mahieu L, Lemaire M, Leonard ED, et al. 1994. Chromosome aberrations after treatment with radioactive iodine for thyroid cancer. Radiat Res 140:429-431.

- Beals DM, Hayes DW. 1995. Technetium-99, iodine-129 and tritium in the waters of the Savannah river site. Sci Total Environ 173/174:101-115.
- Beierwaltes WH, Hilger MTJ, Wegst A. 1963. Radioiodine concentration in fetal human thyroid from fallout. Health Phys 9:1263-1266.
- BEIR VII, Health Risks From Exposure To Low Levels Of IONIZING RADIATION, 2006
- Bernard JD, McDonald RA, Nesmith JA. 1970. New normal ranges for the radioiodine uptake study. J Nucl Med 11:449-451.
- Better OS, Garty J, Brautbar N, et al. 1969. Diminished functional parathyroid reserver following I131 treatment for hyperthyroidism. Isr J Med Sci 5(3):419-422.
- Bhatti P, Veiga LH, Ronckers CM, Sigurdson AJ, Stovall M, Smith SA et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010 Dec;174(6):741-52.
- Boice JD. 2006. Mortality among radiation workers at Rocketdyne (Atomics International), 1948-1999.RADIATION RESEARCH 166(1)
- Book SA, Goldman M. 1975. Thyroidal radioiodine exposure of the fetus. Health Phys 29:874-877.
- Boyd E, Ferguson-Smith MA, McDougall IR, et al. 1974. Chromosome breakage in human peripheral lymphocytes after radioactive iodine (125I) treatment. Radiat Res 57:482-487.
- Braverman LE, Ingbar SH, Sterling K. 1970. Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J Clin Invest 49:855-864.
- Brenner AV, Tronko MD, Hatch M, Bogdanova TI, Oliynik VA, Lubin JH et al. I-131 Dose-Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident. Environ Health Perspect 119(7) 2011
- Brown-Grant K. 1961. Extrathyroidal iodide concentrating mechanisms. Physiol Rev 41:189-213.
- Burch WM, Posillico JT. 1983. Hypoparathyroidism after I-131 therapy with subsequent return of parathyroid function. J Clin Endocrinol Metab 57(2):398-401.
- Burte PP, Nair AGC, Manohar SB, et al. 1991. Iodide and iodine uptake in plants. J Radioanal Nucl Chem 155(6):391-402.
- Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V et al. Risk of Thyroid Cancer After Exposure to 131 I in Childhood. J Natl Cancer Inst. 2005 May 18;97(10):724-32.

- Casara D, Rubello D, Saladini G, et al. 1993. Pregnancy after high therapeutic doses of iodine-131 in differentiated thyroid cancer: Potential risks and recommendations. Eur J Nucl Med 20:192-194.
- Catena C, Villani P, Nastasi R, et al. 1994. Micronuclei and 3AB-index in patients receiving iodine-131 therapy. J Nucl Biol Med 38:586-593.
- Cavalieri RR. 1997. Iodine metabolism and thyroid physiology: Current concepts. Thyroid 7(2):177-181.
- CDC. 2002. Hanford thyroid disease study. Final report. Centers for Disease Control. Fred Hutchinson Cancer Research Center.
- Thyroid carcinomas in children of the Republic of Belarus. In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, The Netherlands: Elsevier, 43-48.
- Chu SYF, Ekstrom LP, Firestone RB. 1999. Isotope explorer: WWW table of radioactive isotopes. http://nucleardata.nuclear.lu.se/nucleardata/toi/listnuc.asp?
- Cohen BI. 1985. The origin of I in soil and the 129I problem. Health Phys 49(2):279-285.
- Absorption of compound solution of iodine from the gastro-intestinal tract. Arch Intern Med 49:950-956.
- Comar CL, Wentworth RA, Georgi JR. 1963. Thyroidal deposition in man, rat and dog of radioiodine from milk and non-milk sources. Health Phys 9:1249-1252.
- Conard RA. 1984. Late radiation effects in Marshall Islanders exposed to fallout 28 years ago. In: Boice KD, Fraument JF, eds. Radiation carcinogenesis: Epidemiology and biological significance. New York, NY: Raven Press, 57-71.
- Conard RA, Dobyns BM, Sutow WW. 1970. Thyroid neoplasia as late effect of exposure to radioactive iodine in fallout. JAMA 214(2):316-324.
- Cooper DS. 2000. Treatment of thyrotoxicosis. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the thyroid: A fundamental and clinical text. 8th ed. Philadelphia, PA: Lippincott-Raven, 691-715.
- Crout NMJ, Beresford NA, Mayes RW, et al. 2000. A model of radioiodine transfer to goat milk incorporating the influence of stable iodine. Radiat Environ Biophys 39(1):59-65.
- Cuddihy RG. 1966. Thyroidal iodine-131 uptake, turnover and blocking in adults and adolescents. Health Phys 12:1021-1025.
- Darras VM, Hume R, Visser TJ. 1999. Regulation of thyroid hormone metabolism during fetal development. Mol Cell Endocrinol 151:37-47.

- Davis S, Stepanenko V, Rivkind N, Kopecky KJ, Voillequé P, Shakhtarin V et al. Risk of thyroid cancer in the Bryansk Oblast of the Russian Federation after the Chernobyl Power Station accident. Radiat Res. 2004 Sep;162(3):241-8.
- de Gonzalez AB, Curtis RE, Kry SF, Gilbert E, Lamart S, Berg CD et al. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol. 2011 Apr;12(4):353-60.
- de Vathaire F, Drozdovitch V, Brindel P, Rachedi F, Boissin JL, Sebbag J et al. Thyroid cancer following nuclear tests in French Polynesia. Br J Cancer. 2010 Sep 28;103(7):1115-21.
- De Vathaire F, Schlumberger M, Delisle MJ, et al. 1997. Leukemia and cancers following iodine-131 administration for thyroid cancer. Br J Cancer 75(5):734-739.
- Delange FM, Ermans A-M. 1996. Iodine deficiency. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the thyroid: A fundamental and clinical text. Philadelphia, PA: Lippincott-Raven, 296-316.
- Dickman PW, Holm LE, Lundell G, et al. 2003. Thyroid cancer risk after thyroid examination with 131I: a population-based study. Int J Cancer 10(106):580-587.
- Dobyns BM, Hyrmer BA. The surgical management of benign and malignant thyroid neoplasms in Marshall Islanders exposed to hydrogen bomb fallout. World J Surg. 1992 Jan-Feb;16(1):126-39
- DOE. 1986. U.S. Department of Energy. A literature review of the concentration ratios of selected radionuclides in freshwater and marine fish. NTIS DE86 015820. 1021, 82-87, 243-272.
- DOE. 1994. U.S. Department of Energy. Iodine-129 in the Snake River plain aquifer at and near the Idaho National Engineering Laboratory, Idaho, 1990-91. NTIS DE95001913.
- Drobyshevskaya IM, Astakhova LN, Nalivko AS, et al. 1996. Thyroid cancer in children of Belarus following the Chernobyl accident. In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, the Netherlands: Elsevier, 49-65.
- Dunning DE, Schwarz G. 1981. Variability of human thyroid characteristics and estimates of dose from ingested 131I. Health Phys 40:661-675.
- Dydek GJ, Blue PW. 1988. Human breast milk excretion of iodine-131 following diagnostic and therapeutic administration to a lactating patient with Graves' disease. J Nucl Med 29:407-410.
- Eipe J, Johnson SA, Kiamko RT, et al. 1968. Hypoparathyroidism following 131I therapy for hyperthyroidism. Arch Intern Med 121:270-272.
- Eisenbud M, Mochizuki Y, Laurer G. 1963. 131 dose to human thyroids in New York City from nuclear tests in 1962. Health Phys 9:1291-1298.

- Eng PHK, Cardona GR, Fang S-L, et al. 1999. Escape from the acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology 140:3404-3410.
- Engler D, Burger AG. 1984. The deiodination of the iodothyronines and of their derivatives in man. Endocrine Rev 5(2):151-184.
- Esselstyn CB, Schumacher OP, Eversman J, et al. 1982. Hyperparathyroidism after radioactive iodine therapy for Graves disease. Surgery 92:811-813.
- Evans TC, Kretzschmar RM, Hodges RE, Song CW. 1967. Radioiodine uptake studies of the human fetal thyroid. J Nucl Med 8:157-165.
- Fisher DA, Oddie TH, Burroughs JC. 1962. Thyroidal radioiodine uptake rate measurement in infants. Am J Dis Child 103:738-749.
- Fisher DA, Oddie TH, Epperson D. 1965. Effect of increased dietary iodide on thyroid accumulation and secretion in eurthyroid Arkansas subjects. J Clin Endocrinol 25:1580-1590.
- Fjälling M, Dackenberg A, Hedman I, et al. 1983. An evaluation of the risk of developing hyperparathyroidim after 131I treatment for thyrotoxicosis. Acta Chir Scand Suppl 149:681-686.
- Franklyn JA, Maisonneuve P, Sheppard M, et al. 1999. Cancer incidence and mortality after radioiodine treatment for hyperthyroidism: A population-based cohort study. Lancet 353:2111-2115.
- Freeman M, Guiliani M, Schwartz E, et al. 1969. Acute thyroiditis, thyroid crisis, and hypocalcemia following radioactive iodine therapy. N Y State J Med 69(14):2036-2041.
- Fujimori K, Takahashi T, Ohtomo H, et al. 1996. Preliminary medical findings of the Marshall Islands nationwide thyroid study. In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, The Netherlands: Elseiver, 167-173.
- Gaffney GW, Gregerman RI, Shock NW. 1962. Relationship to age to the thyroidal accumulation, renal excretion and distribution of radioiodide in euthyroid man. J Clin Endocrinol Metab 22:784-794.
- Gavin LA, Livermore BM, Cavalieri RR, et al. 1980. Serum concentration, metabolic clearance, and production rates of 3,5,3'-triiodothyroacetic acid in normal and athyreotic man. J Clin Endocrinol Metab 51(3):529-534.
- Gembicki M, Stozharov AN, Arinchin AN, et al. 1997. Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect Suppl 105(6):1487-1490.
- Ghahremani GG, Hoffer PB, Oppenheim BE, et al. 1971. New normal values for thyroid uptake of radioactive iodine. JAMA 217(3):337-339.

- Gilbert ES, Huang L, Bouville A, Berg CD, Ron E. Thyroid cancer rates and 1311 doses from Nevada atmospheric nuclear bomb tests: an update.Radiat Res. 2010 May;173(5):659-64.
- Glazebrook GA. 1987. Effect of decicurie doses of radioactive iodine 131 on parathyroid function. Am J Surg 154:368-373.
- Goh K. 1981. Radioiodine treatment during pregnancy: Chromosomal aberrations and cretinism associated with maternal iodine-131 treatment. J Am Med Womens Assoc 36(8):262-265.
- Goldman MB, Maloof F, Monson RR, et al. 1988. Radioactive iodine therapy and breast cancer: A follow-up study of hyperthyroid women. Am J Epidemiol 127(5):969-980.
- Green WL, Ingbar SH. 1961. The peripheral metabolism of tri- and tetraiodothyroacetic acids in man. J Clin Endocrinol Metab 21:1548-1565.
- Green HG, Gareis FJ, Shepard TH, et al. 1971. Cretinism associated with maternal sodium iodide I 131 therapy during pregnancy. Am J Dis Child 122:247-249.
- Gutierrez S, Carbonell E, Galofre P, et al. 1999a. Cytogenic damage after 131-iodine treatment for hypothyroidism and thyroid cancer. Eur J Nucl Med 26(12):1589-1596.
- Hahn K, Schrell-Inderst P, Grosche B, et al. 2001. Thyroid cancer after diagnostic administration of iodine-131 in childhood. Radiat Res 156(1):61-70.
- Hall P, Furst CJ, Mattsson A, et al. 1996a. Thyroid nodularity after diagnostic administration of iodine-131. Radiat Res 146:673-682.
- Hall P, Mattsson A, Boice JDJ. 1996b. Thyroid cancer after diagnostic administration of iodine-131. Radiat Res 145:86-92.
- Hall P, Berg G, Bjelkengren G, et al. 1992a. Cancer mortality after iodine-131 therapy for hyperthyroidism. Int J Cancer 50:886-890.
- Hamill GC, Jarman JA, Wynne MD. 1961. Fetal effects of radioactive iodine therapy in a pregnant woman with thyroid cancer. Am J Obstet Gynecol 81(3):1018-1023.
- Hamilton TE, van Belle G, LoGerfo JP. 1987. Thyroid neoplasia in Marshall Islanders exposed to nuclear fallout. JAMA 258(5):629-636.
- Han JS. 1992. Effects of various chemical compounds on spontaneous and hydrogen peroxide-induced reversion in strain TA104 of salmonella typhimurium. Mutat Res 266(2):77-84.
- Handelsman DJ, Turtle JR. 1983. Testicular damage after radioactive iodine (I-131) therapy for thyroid cancer. Clin Endocrinol 18:465-472.

- Harach HR, Williams ED. 1995. Thyroid cancer and thyroiditis in the goitrous region of Salta, Argentina, before and after iodine prophylaxis. Clin Endocrinol 43:701-706.
- Hatch M, Brenner A, Bogdanova T, Derevyanko A, Kuptsova N, Likhtarev I et al. A screening study of thyroid cancer and other thyroid diseases among individuals exposed in utero to iodine-131 from Chernobyl fallout. J Clin Endocrinol Metab. 2009 Mar;94(3):899-906.
- Hays MT. 1993. Colonic excretion of iodide in normal human subjects. Thyroid 3(1):31-35.
- Hays MT. 2001. Estimation of total body iodine content in normal young men. Thyroid 11(7):671-675.
- Hays MT, Hsu L, Kohatsu S. 1992. Transport of the thyroid hormones across the feline gut wall. Thyroid 2:45-56.
- Hedrick WR, DiSimone RN, Keen RL. 1986. Radiation dosimetry from breast milk excretion of radioiodine and pertechnetate. J Nucl Med 27:1569-1571.
- Heinemann K, Vogt KJ. 1980. Measurements of the deposition of iodine onto vegetation and of the biological half-life of iodine on vegetation. Health Phys 39:463-474.
- Hermus AR, Huysmans DA. 2000. The epidemiology of thyroid diseases. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the thyroid: A fundamental and clinical text. 8th ed. Philadelphia, PA: Lippincott-Raven, 474-482.
- Hoffman FO, Ruttenber AJ, Apostoaei AI, Carroll RJ, Greenland S. The Hanford Thyroid Disease Study: an alternative view of the findings. Health Phys. 2007 Feb;92(2):99-111.
- Holm L-E, Wiklund DE, Lundell GE, et al. 1989. Cancer risk in population examined with diagnostic doses of 131I. J Natl Cancer Inst 81:302-306.
- Holm L-E, Hall P, Wiklund K, et al. 1991. Cancer risk after iodine-131 therapy for hyperthyroidism. J Natl Cancer Inst 83:1072-1077.
- Howard JE, Vaswani A, Heotis P. 1997. Thyroid disease among the Rongelap and Utirik population-an update. Health Phys 73(1):190-198.
- Huysmans DAKC, Hermus ARMM, Edelbroek MAL, et al. 1997a. Autoimmune hyperthyroidis occurring late after radioiodine treatment for volume reduction of large multinodular goiters. Thyroid 7(4):535-539.
- IARC International Agency for Research on Cancer: IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS. VOLUME 78 IONIZING RADIATION, PART 2: SOME INTERNALLY DEPOSITED RADIONUCLIDES. Lyon, 2001.
- ICRP. 1988. Radiation dose to patients from radiopharmaceuticals. International Commission on Radiological Protection. Pergamon Press, Oxford. ICRP publ No. 53, 259-277.

- Ishigaki K, Namba H, Takamura N. 2001. Urinary iodine levels and thyroid diseases in children; comparison between Nagasaki and Chernobyl. Endocr J (Tokyo) 48(5):591-595.
- Jacob P, Bogdanova TI, Buglova E, Chepurniy M, Demidchik Y, Gavrilin Y et al. Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat Res. 2006 Jan;165(1):1-8.
- Jacob P, Goulko G, Heidenreich WF, et al. 1998. Thyroid cancer risk to children calculated. Nature 392(6671):31-32.
- Jafek BW, Small R, Lillian DL. 1974. Congenital radioactive iodine-induced stridor and hypothroidism. Arch Otolaryngol 99:369-371.
- Jafek BW, Small R, Lillian DL. 1974. Congenital radioactive iodine-induced stridor and hypothroidism. Arch Otolaryngol 99:369-371.
- Jahreis G, Hausmann W, Kiessling G, et al. 2001. Bioavailability of iodine from normal diets rich in dairy products-results of balance studies in women. Exp Clin Endocrinol Diabetes 109(3):163-167.
- Jialal I, Pillay NL, Asmal AC. 1980. Radio-iodine-induced hypoparathyroidism. S Afr Med J 58:939-940.
- Kada T. 1970. Radio-sensitization with iodine compounds: II. Studies on mutant strains of Escherichia coli K12 resistant to radiation-induced toxic products from iodoacetic acid, potassium iodide or potassium iodate. Int J Radiat Biol 17(5):419-430.
- Kada T, Noguti T, Namiki M. 1970. Radio-sensitization with iodine compounds: I. Examination of damage in deoxyribonucleic acid with Bacillus subtilis transformation system by irradiation in the presence of potassium iodide. Int J Radiat Biol 17(5):407-418.
- Kearns JE, Philipsborn HF. 1962. Values for thyroid uptake of I131 and protein-bound iodine in normal individuals from birth to twenty years. Q Bull Northwest Univ Med Sch 36:47-50.
- Kerber RA, Till JE, Simon SL, Lyon JL, Thomas DC, Preston-Martin S, Rallison ML, Lloyd RD, Stevens W. A cohort study of thyroid disease in relation to fallout from nuclear weapons testing.JAMA. 1993 Nov 3;270(17):2076-82.
- Kereiakes JG, Wellman HN, Simmons G, et al. 1972. Radiopharmaceutical dosimetry in pediatrics. Semin Nucl Med 2(4):316-327.
- Kessler FK, Laskin DL, Borzelleca JF, et al. 1980. Assessment of somatogenotoxicity of povidoneiodine using two in vitro assays. J Environ Pathol Toxicol 4(2-3):327-335.
- Kirchner G. 1994. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident. Health Phys 66(6):653-665.

- Klebanoff SJ, Green WL. 1973. Degradation of thyroid hormones by phagocytosing human leukocytes. J Clin Invest 52:60-72.
- Lambert V, Thierens H, Monsieurs M. 2001. Translocation frequencies measured in patients one year after radioactive iodine therapy for thyrotoxins. Int J Radiat Biol 77(6):679-685.
- Land CE, Bouville A, Apostoaei I, Simon SL. Projected lifetime cancer risks from exposure to regional radioactive fallout in the Marshall Islands. Health Phys. 2010 Aug;99(2):201-15.
- Larsen PR, Davies TF, Hay ID. 1998. The thyroid gland. In: Wilson JD, Foster DW, Kronenberg HM, et al., eds. Williams textbook of endocrinolgy. Philadelphia, PA: W.B. Saunders Company, 390-515.
- Lawes SC. 1992. 123I excretion in breast milk additional data. Nucl Med Commun 13:570-572.
- Lawrence JC. 1998. The use of iodine as an antiseptic agent. J Wound Care 7(8):421-425.
- Lehmann L, Zitzelsberger H, Kellerer AM. 1996. Chromosome translocations in thyroid tissues from Belarussian children exposed to radioiodine from the Chernobyl accident, measured by FISH-painting. Int J Radiat Biol 70(5):513-516.
- Likhtarev IA, Shandala NK, Gulko GM, et al. 1993. Ukranian thyroid doses after the Chernobyl accident. Health Phys 64(6):594-599.
- Lin JD, Wang HS, Weng HF, et al. 1998. Outcome of pregnancy after radioactive iodine treatment for well differentiated thyroid carcinomas. J Endocrinol Invest 21:662-667.
- Mandel SJ, Mandel L. 2003. Radioactive iodine and the salivary glands. Thyroid 13:265-271.
- Marter WL. 1993. Savannah River site radioiodine atmospheric releases and offsite maximum doses (U). Westinghouse Savannah River Company, Savannah River Laboratory, SRL-ETS-900317 (NTIS/DE93004259), pp. 1-35.
- Maxon HR, Saenger EL. 1996. Biologic effects of radioiodines on the human thyroid gland. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the thyroid: A fundamental and clinical text. Philadelphia, PA: Lippincott-Raven, 342-351.
- Mazzaferri EL, Jhiang SM. 1994. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 97:418.
- McDougall IR, Cavalieri RR. 2000. In vivo radionuclide tests and imaging. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the thyroid: A fundamental and clinical text. Philadelphia, PA: Lippincott- Raven, 355-375.
- Mehta RD, von Borstel RC. 1982a. Effect of growth phase and different solvents on the genetic activity and cell toxicity of diethylstilbesterol in Saccharomyces cerevisiae. Environ

Mutagen 4:417.

- Meinhold H, Beckert A, Wenzel KW. 1981. Circulating diiodotyrosine: Studies of its serum concentration, source, and turnover using radioimmunoassay after immunoextraction. J Clin Endocrinol Metab 53(6):1171-1178.
- Meinhold H, Olbricht T, Schwartz-Porsche D. 1987. Turnover and urinary excretion of circulating diiodotyrosine. J Clin Endocrinol Metab 64(4):794-800.
- Meinhold H, Gramm HJ, Meissner W, et al. 1991. Elevated serum diiodotyrosine (DIT) in severe infections and sepsis: DIT, a possible new marker of leukocyte activity. J Clin Endocrinol Metab 72:945-953.
- Merkle J, Zeller H. 1979. Absence of povidone-iodine induced mutagenicity in mice and hamsters. J Pharm Sci 68:100-102.
- Millard RK, Saunders M, Palmer AM, et al. 2001. Approximate distribution of dose among foetal organs radioiodine uptake via placenta transfer. Phys Med Biol 46(11):2773-2783.
- Moiseyev IT, Tikhomirov FA, Perevezentsev VM, Rerikh LA. 1984. Role of soil properties, interspecific plant differences, and other factors affecting the accumulation of radioactive iodine in crops. Soviet Soil Science 16:60-66.
- Monteiro Gil O, Oliveira NG, Rodrigues AS, et al. 2000. Cytogenic alterations and oxidative stress in thyroid cancer patients after iodine-131 therapy. Mutagenesis 15(1):69-75.
- Moran JE, Oktay S, Santschi PH, et al. 1999. Atmospheric dispersal of 129iodine from nuclear fuel reprocessing facilities. Environ Sci Technol 33:2536-2542.
- Morita S, Umezaki N, Ishibashi M, et al. 1998. Determining the breast-feeding interruption schedule after administration of 123I-iodide. Ann Nucl Med 12(5):303-306.
- Morrison RT, Birkbeck JA, Evans TC, et al. 1963. Radioiodine uptake studies in newborn infants. J Nucl Med 4:162-166.
- Myant NB. 1956. Enterohepatic circulation of thyroxine in humans.

Myant NB, Pochin EE. 1950. The metabolism of radiothyroxine in man. Clin Sci 9:421-440.

- Myers DK, Chetty KG. 1973. Effect of radiosensitizing agents on DNA strand breaks and their rapid repair during irradiation. Radiat Res 53:307-314.
- Nagataki S, Yokoyama N. 1996. Other factors regulating thyroid function: Autoregulation: Effects of iodide. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the thyroid: A fundamental and clinical text. Philadelphia, PA: Lippincott-Raven, 241-247.

- Nagataki S, Shizume K, Nakao K. 1967. Thyroid function in chronic excess iodide ingestion: Comparison of thyroidal absolute iodine uptake and degradation of thyroxine in euthyroid Japanese subjects. J Clin Endocrinol 27:638-647.
- NAS. 1974. Geochemistry and the environment: Volume I: The relation of selected trace elements to health and disease. Washington, DC: National Academy of Sciences. NTIS PB80-135197.
- NCI. 1997. Estimated exposures and thyroid doses received by the American people from iodine-131 in fallout following Nevada atmospheric nuclear bomb tests. National Cancer Institute.

http://rex.nci.nih.gov/massmedia/Fallout.

- NCRP. 1983. Iodine-129: Evaluation of releases from nuclear power generation. Bethesda, MD: National Council on Radiation Protection and Management. NCRP Report No. 75.
- Nikiforov YE, Fagin JA. 1998. Radiation-induced thyroid cancer in children after the Chernobyl accident. Thyroid Today: 21(2):1-10.
- Noguti T, Sadaie H, Kada T. 1971. Radiosentization with iodine compounds: III. Macromolecular synthesis and repair in Bacillus subtilis irradiated in the presence of iodoacetic acid, potassium iodide or potassium iodate. Int J Radiat Biol 19(4):305-322.
- Nuclear Power Plant Operating Experience-1978, USNRC Report NUREG-0618, December 1979.*
- Oddie TH, Fisher DA. 1967. Mean euthyroid 24-hour radioiodine uptake as a characteristic of different patient populations. J Clin Endocrinol Metab 27:11-14.
- Oddie TH, Myhill J, Pirnique FG, Fisher DA. 1968. Effect of age and sex on the radioiodine uptake in euthryoid subjects. J Clin Endocrinol 28:776-782.
- Oddie TH, Fisher DA, McConahey WM, et al. 1970. Iodine intake in the United States: A reassessment. J Clin Endocrinol 30:659-665.
- Ogborn RE, Waggener RE, VanHove E. 1960. Radioactive-iodine concentration in thyroid glands of newborn infants. Pediatrics :771-776.
- Oliner L, Kohlenbrener RM, Fields T, et al. 1957. Thyroid function studies in children: Normal values for thyroidal I131 uptake and PBI131 levels up to the age of 18. J Clin Endocrinol Metab 17:61-75.
- Pacini F, Gasperi M, Fugazzola L, et al. 1994. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med 35(9):1418-1422.
- Pacini F, Vorontsova T, Demidchik EP, et al. 1997. Post-Chernobyl thyroid carcinoma in Belarus children and adolescents: Comparison with naturally occurring thyroid carcinoma in Italy and France. J Clin Endocrinol Metab 82(11):3563-3569.

- Pastan I. 1957. Absorption and secretion of iodide by the intestine of the rat. Endocrinol 61:93-97.
- Peeters R, Fekete C, Goncalves C, et al. 2001. Regional physiological adaptation of the central nervous system deiodinases to iodine deficiency. Am J Physiol Endocrinol Metab 281(1):E54-E61.
- Pendleton RC, Lloyd RD, Mays CW, Lloyd RD. 1963. Iodine-131 in Utah during July and August 1962. Science 141(3581):640-642.
- Petrova A, Gnedko T, Maistrova I, et al. 1997. Morbidity in a large cohort study of children born to mothers exposed to radiation from Chernobyl. Stem Cells 15(Suppl 2):141-150.
- Pittman JA, Dailey GE, Beschi RJ. 1969. Changing normal values for thyroidal radioiodine uptake. N Engl J Med 280(26):1431-1434.
- Pittman CS, Buck ME, Chambers JB. 1972. Urinary metabolites of 14C-labeled thyroxine in man. J Clin Invest 51:1759-1766.
- Pittman CS, Shimizu T, Burger A, et al. 1980. The nondeiodinative pathways of thyroxine metabolism: 3,5,3',5'-tetraiodothyroacetic acid turnover in normal and fasting human subjects. J Clin Endocrinol Metab 50(4):712-716.
- Poston TM. 1986. Literature review of the concentration ratios of selected radioisotopes in freshwater and marine fish. Battelle Pacific Northwest Labs Report No. DE86-015820 (NTIS/DE86015820), 1-21, 82-84, 243-272.
- Prisyazhiuk A, Pjatak OA, Buzanov VA, et al. 1991. Cancer in the Ukraine, post-Chernobyl. Lancet 338(8878):1134-1135.
- Quimby EH, Werner SC, Schmidt C. 1950. Influence of age, sex, and season upon radioiodine uptake by the human thyroid. Proc Soc Exp Biol Med 75:537-543.
- Rallison ML. 1996. Thyroid neoplasia from fallout near the Nevada test site. In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, the Netherlands: Elsevier, 147-154.
- Rallison ML, Dobyns BM, Keating FR, et al. 1974. Thyroid disease in children: A survey of subjects potentially exposed to fallout radiation. Am J Med 56:457-463.
- Rallison ML, Lotz TM, Bishop M, et al. 1990. Cohort study of thyroid disease near the Nevada test site: A preliminary report. Health Phys 59(5):739-746.
- Ramírez MJ, Surralles J, Galofre P, et al. 1997. Radioactive iodine induces clastogenic and agedependent aneugenic effects in lymphocytes of thyroid cancer patients as revealed by interphase FISH. Mutagenesis 12(6):449-455.
- Ramírez MJ, Peurto S, Galofre P, et al. 2000. Multicolour FISH detection of radioactive iodine-induced 17cen-p53 chromosomal breakage in buccal cells from therapeutically

exposed patients. Carcinogenesis 21(8):1581-1586.

- Ramsden D, Passant FH, Peabody CO, et al. 1967. Radioiodine uptakes in the thyroid: Studies of the blocking and subsequent recovery of the gland following the administration of stable iodine. Health Phys 13:633-646.
- Robbins J, Dunn JT, Bouville A, et al. 2001. Iodine nutrition and the risk from radioactive iodine: A workshop report in the Chernobyl long-term follow-up study. Thyroid 11(5):487-491.
- Robertson JS, Nolan NG, Wahner HW, et al. 1975. Thyroid radioiodine uptakes and scans in euthyroid patients. Mayo Clin Proc 50:79-84.
- Robinson PS, Barker P, Campbell A, et al. 1994. Iodine-131 in breast milk following therapy for thyroid carcinoma. J Nucl Med 35:1797-1801.
- Robkin MA, Shleien B. 1995. Estimated maximum thyroid doses from 129I releases from the Hanford site for the years 1944-1995. Health Phys 69(6):917-922.
- Rodeheaver G, Bellamy W, Kody M, Spatafora G, Fitton L, Leyden K et al. 1982. Bactericidal activity and toxicity of iodine-containing solutions in wounds. Arch Surg 117:181-186.
- Ron E, Doody MM, Becker DV, et al. 1998. Cancer mortality following treatment for adult hyperthyroidism. JAMA 280(4):347-355.
- Ron E, Lubin JH, Shore RE, et al. 1995. Thyroid cancer after exposure to external radiation: A pooled analysis of seven studies. Radiat Res 141:259-277.
- Rosen IB, Palmer JA, Rowen J, et al. 1984. Induction of hyperparathyroidism by radioactive iodine. Am J Surg 148:441-445.
- Rubow S, Klopper J, Wasserman H, et al. 1994. The excretion of radiopharmaceuticals in human breast milk: Additional data and dosimetry. Eur J Nucl Med 21:144-153.
- Russell KP, Rose H, Starr P. 1957. The effects of radioactive iodine on maternal and fetal thyroid function during pregnancy. Surg Gynecol Obstet 104:560-564.
- Saller B, Fink H, Mann K. 1998. Kinetics of acute and chronic iodine excess. Exp Clin Endocrinol Diabetes 106(Suppl 3):S34-S38.
- Saxena Km, Chapman EM, Pryles CV. 1962. Minimal dosage of iodide required to suppress uptake of iodine-131 by normal thyroid. Science 138:430-431.
- Sekura RD, Sato K, Cahnmann HJ, et al. 1981. Sulfate transfer to thyroid hormones and their analogs by hepatic aryl sulfotransferases. Endocrinology 108(2):454-456.

- Sheppard MI, Hawkins JL. 1995. Iodine and microbial interactions in an organic soil. J Environ Radioact 29(2):91-109.
- Shore RE. 1992. Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radiat Res 131:98-111.
- Simon SL, Lloyd RD, Till JE, et al. 1990. Development of a method to estimate thyroid dose from fallout radioiodine in a cohort study. Health Phys 59(5):669-691.
- Simon SL, Luckyanov N, Bouville A, et al. 2002. Transfer of 131I into human breast milk and transfer coefficients for radiological dose assessments. Health Phys 82(6):796-806.
- Simon SL, Bouville A, Land CE, Beck HL. Radiation doses and cancer risks in the Marshall Islands associated with exposure to radioactive fallout from Bikini and Enewetak nuclear weapons tests: summary. Health Phys. 2010 Aug;99(2):105-23.
- Smith MB, Xue H, Takahashi H, et al. 1994. Iodine 131 thyroid ablation in female children and adolescents: Long-term risk of infertility and birth defects. Ann Surg Oncol 1(2):128-131.
- Soldat JK. 1976. Radiation doses from iodine-129 in the environment. Health Phys 30:61-70.
- Spencer RP, Spitznagle LA, Karimeddini MK, et al. 1986. Breast milk content of 131I in a hypothyroid patient. Nucl Med Biol 13(5):585.
- Spitzweg C, Joba W, Schriever K, et al. 1999. Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands. Journal of Endocrinology & Metabolism 84(11):4178-4184
- Stather JB, Greenhalgh JR. 1983. The metabolism of iodine in children and adults. National Radiation Protection Board, Chilton, Didcot, Oxfordshire, England. Report No. NRPB-R140.
- Sternthal E, Lipworth L, Stanley B, et al. 1980. Suppression of thyroid radioiodine uptake by various doses of stable iodide. N Engl J Med 303(19):1083-1088.
- Stetar EA, Boston HL, Larsen IL, et al. 1993. The removal of radioactive cobalt, cesium, and iodine in a conventional municipal wastewater treatment plant. Water Environ Res 65(6):630-639.
- Straub CP, Murthy GK, Campbell JE. 1966. Iodine-131 in foods. Residue Rev 13:33-68.
- Takahashi T, Fujimori K, Simon SL, et al. 1999. Thyroid nodules, thyroid function and dietary iodine in the Marshall Islands. Int J Epidemiol 28:742-749.
- Takahashi T, Trott KR, Fujimori K, et al. 1997. An investigation into the prevalence of thyroid disease on Kwajalein Atoll, Marshall Islands. Health Phys 73(1):199-213.

- Takahahi T, Schoemaker MJ, Trott KR, et al. 2003. The relationship of thyroid cancer with radiation exposure from nuclear weapon testing in the Marshall islands. J Epidemiol 13(2):99-107.
- Taurog A. 1996. Hormone synthesis. In: Braverman LE, Utiger RD, eds. Werner and Ingbar's the thyroid: A fundamental and clinical text. Philadelphia, PA: Lippincott-Raven, 47-84.

The Merck Index 14th ed., Merck & Co., Inc., New Jersey., 872, 2006.

- Thrall KD, Bull RJ. 1990. Differences in the distribution of iodine and iodide in the Sprague-Dawley rat. Fundam Appl Toxicol 15:75-81.
- Tronko ND, Bogdanova TI, Epstein EV, et al. 1996. Thyroid cancer in children and adolescents in Ukraine (analysis of the situation in 1994). In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, The Netherlands: Elsevier, 3-13.
- Tronko MD, Howe GR, Bogdanova TI, Bouville AC, Epstein OV, Brill AB et al. 2006. A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst. ,98(13), 897-903.
- Tubiana M. 1982. Metabolism and radiotoxicity of radionuclides: Iodine. In: Radionuclide: Metabolism and toxicity. Proceedings of the symposium. Paris, France: Masson, 49-81.
- UNSCEAR. 2000. Sources, effect and risks of ionizing radiation. Report to the general assembly, New York: United Nations. ANNEX J. Exposures and Effects of the Chernobyl Accident, 451-566.
- NRC. 1979. A dynamic model of the global iodine cycle for the estimation of dose to the world population from releases of iodine-129 to the environment. U.S. Nuclear Regulatory Commission, Division of Safeguards, Fuel Cycle, and Environmental Research. NUREG/CR-0717.
- Uyttersprot N, Pelgrims N, Carrasco N, et al. 1997. Moderate doses of iodide in vivo inhibit cell proliferation and the expression of thyroperoxidase and Na +/I- symporter mRNAs in dog thyroid. Mol Cell Endocrinol 131:195-203.
- Van Dilla MA, Fulwyler MJ. 1963. Thyroid metabolism in children and adults using very small (nanocurie) doses of iodine125 and iodine131. Health Phys 9:1325-1331.
- Van Middlesworth L. 1954. Radioactive iodide uptake of normal newborn infants. Am J Dis Child 88:439-442.
- Vandecasteele CM, Van Hees M, Hardeman F, et al. 2000. The true absorption of 131I, and its transfer to milk in cows given different stable iodine diets. J Environ Radioact 47(3):301-317.

- Visser TJ. 1990. Importance of deiodination and conjugation in the hepatic metabolism of thyroid hormone. In: Greer MA, ed. The thyroid gland. New York, NY: Raven Press, Ltd, 255-283.
- Voigt G, Henrichs K, Prohl G, et al. 1988. Measurements of transfer coefficients fro 137Cs, 60Co, 54Mn, 22Na, 131I and 95mTc from feed into milk and beef. Radiat Environ Biophys 27:143-152.
- Voigt G, Muller H, Prohl G, et al. 1989. Experimental determination of transfer coefficients of 137Cs and 1311 from fodder into milk of cows and sheep after the Chernobyl accident. Health Phys 57(6):967-973.
- Wagner HN, Nelp WB, Dowling JH. 1961. Use of neutron activation analysis for studying stable iodide uptake by the thyroid. J Clin Invest 40:1984-1992.
- Wayne EJ, Koutras DA, Alexander WD. 1964. Clinical aspects of iodine metabolism. Philadelphia, PA: F.A. Davis Company.
- Whitehead DC. 1984. The distribution and transformations of iodine in the environment. Environ Int 10:321-339.
- Wichers M, Benz E, Palmedo H, et al. 2000. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med 27(5):503-507.
- Wolff J. 1964. Transport of iodide and other anions in the thyroid gland. Physiol Rev 44:45-90.
- Wolff J. 1983. Congenital goiter with defective iodide transport. Endocrine Rev 4(3):240-254.
- Wolff J, Chaikoff IL. 1948. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J. Biol Chem 74:555-564.
- Wood DH, Elefson EE, Horstman VG, Bustadb LK. 1963. Thyroid uptake of radioiodine following various routes of administration. Health Phys 9:1217-1220.
- Young WF. 1990. Human liver tyrosylsulfotransferase. Gastroenterology 99:1072-1078.
- Yuita K. 1994a. Overview and dynamics of iodine and bromine in the environment: 1. Dynamics and iodine and bromine in soil-plant system. JARQ 28:90-99.
- Zablotska LB, Ron E, Rozhko AV, Hatch M, Polyanskaya ON, Brenner AV et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Eur J Nucl Med Mol Imaging. 2011 Apr;38(4):651-5.
- Zablotska LB, Bogdanova TI, Ron E, Epstein OV, Robbins J, Likhtarev IA et al. A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: dose-response analysis of thyroid follicular adenomas detected during first screening in Ukraine

(1998-2000). Am J Epidemiol. 2008 Feb 1;167(3):305-12. Epub 2007 Nov 6.

岩波理化学辞典 第5版. 長倉三郎, 井口洋夫, 江沢 洋, 岩村 秀, 佐藤文隆, 久保亮五 編. 岩波書 店; 1998.

- 1
- $\mathbf{2}$
- 3
1 V. 放射性セシウム

2 ここにおいて単にセシウムと記載したものは、それが放射性セシウムか否かについて区
 3 別せずに記載したものである。

4

5 **1. 元素名、原子記号等**

- 6 IUPAC : cesium
- 7 CAS No. : 7440-46-2
- 8 原子記号:Cs
- 9 原子量:132.9
- 10 同位体質量: ¹³⁴Cs 133.9、¹³⁷Cs 136.9
- 11 天然の存在比:¹³³Cs 100%
- 12 (The Merck Index 2006)
- 13

20

14 **2. 物理化学的性状**

- 15 融点(℃):28.5
- 16 沸点 (℃) : 705
- 17 密度 (g/cm³) : 1.90 (20 ℃)
- 18 外観:銀白色で柔らかく、延性のある金属
- 19 (The Merck Index 2006、ATSDR 2004)

21 **3. 放射性崩壊**

¹³⁷Cs はセシウムの人工放射性核種のひとつであり、半減期 30 年の β 放射体で、半減期
 2.55 分の ^{137m}Ba (m は準安定の励起状態を意味する)に崩壊する。^{137m}Ba は 0.662 MeV
 のγ線を放出して安定な ¹³⁷Ba となる。

- 25 ¹³⁴Cs は半減期 2.1 年の β 放射体である。
- 26 セシウムの主な放射性同位体は 11 種類知られている(Argonne National Laboratory
 27 2005、The Merck Index 2006、岩波理化学辞典 1998)。
- 28

29 4. 用途

¹³⁷Csは、核分裂生成物の主成分のひとつで、安価にかつ大量に得られるので、γ線源と
 して工業、医療に広く用いられている。小麦、小麦粉、ジャガイモ、手術機器及びその他
 の医療用品、並びに下水汚泥を滅菌するためのγ線源として利用されており、γ線分光測定
 のキャリブレーション線源としても利用されている(Lewis 1997)。¹³⁷Csは工業用ラジ
 オグラフィー及び国境検問所における輸送コンテナの画像化にも使用されている。

- ¹³⁷Cs は最近、前立腺がん治療に用いられる放射性シードの放射能源として米国食品医薬
 36 品庁に認可された(FDA 2003)。
- 37

38 5. 自然界での分布・移動

39 ¹³⁷Cs 及び¹³⁴Cs のような放射性核種及び他の放射性同位体は、大気圏内核実験(1945

1 ~1980年で実施)、1986年のチェルノブイリのような原子力発電所の事故及び1957年

2 の英国のウィンズケール核施設での事故の結果として、環境中に放出されてきた。

3 放射性セシウムは、湿性及び乾性沈着により空気中から取り除かれ、地面に沈降する前
 4 に数千マイルを移動する。湿性沈着は大気中から放射性セシウムを除去する最も重要な経
 5 路であると考えられている(ATSDR 2004)。

セシウムの土壌中での移動度は非常に低い。一般に、セシウムは通常、およそ 40 cm 以 6 深には移動せず、土壌表層 20 cm 以内に留まっている(Korobova et al. 1998、Takenaka 7et al. 1998)。主にセシウムイオンの水和エネルギーが低いことにより、粘土による選択 8 的吸着と固定化が起こる。これらの要因により草や植物性素材へのセシウムの取込みを制 9 限することが可能である。しかしながら、例外的な地域(ベネズエラ、ブラジル及びロシ 10ア)では土壌中セシウムの固定化が低く、結果として土壌中での移動と植物への取込みが 11 大きくなっている(LaBrecque and Rosales 1996、WHO 1983)。セシウムは、また湿性 12及び乾性沈着によって植物や樹木にも沈着し、葉を通して植物相に吸収される (Sawidis et 13al. 1990) ほか、汚染した葉の分解により土壌へ移行する。 14

15

16 6. 体内動態

17 (**1**) 吸収

可溶性化合物として経口摂取されたセシウムは、ヒト及び動物の消化管でよく吸収され 18る。可溶性のセシウムがヒトで経口摂取後によく吸収されることを示す知見としては(1) 19 糞便排泄率が低い、(2)尿中排泄率は糞便より4~10倍高い、(3)体内での消失半減期 20は 45~147 日 (Henrichs et al. 1989, Iinuma et al. 1965, Richmond et al. 1962, Rosoff et al. 1963) 21等がある。Henrichs ら(1989)は、高濃度の¹³⁴Cs と¹³⁷Cs が混入された鹿肉を経口摂取し 22た成人ボランティア10人(男性5人、女性5人)で、セシウムの平均吸収率を78%と推定 23した。ヒト被験者におけるその他の報告では、可溶性の形態で経口摂取したセシウムの90% 24以上が吸収されることを示している (Rosoff et al. 1963、Rundo 1964、Yamagata and Iwashima 251966) 26

27 放射性フォールアウト粒子の経口摂取による¹³⁷Cs の吸収は 3%までの範囲であり、これ
28 はその粒子が比較的不溶性であることを示している(LeRoy et al. 1966)。チェルノブイリ
29 原子力発電所事故の放射性フォールアウトで汚染された地域に住む女性の母乳に¹³⁷Cs が
30 検出された。母親と乳幼児の全身の放射能測定と母乳サンプルで測定された放射能に基づ
31 き、新生児、1歳児への移行率は、それぞれおよそ 40%、50%であり、汚染された食品に
32 由来する母親の1日当たりの¹³⁷Cs 摂取量の約 15%が乳幼児に移行すると推定された

33 (Johansson et al. 1998) $_{\circ}$

34 可溶性の¹³⁷Cs(塩化セシウムとして)を単回経口投与されたモルモットで、セシウムの
 35 速やかな吸収が報告された(Stara 1965)。¹³⁷Cs及び他の放射性元素を含む極めて不溶性の
 36 使用済燃料粒子(平均直径 0.93 µm)を単回経口投与されたラットでは、¹³⁷Csの吸収は 10%
 37 未満であった(Talbot et al. 1993)。

1 (2)分布

 $\mathbf{2}$ 可溶性のセシウム化合物を経口曝露したヒトで、セシウムの広範な体内分布が観察され た。¹³⁷CsClを経口投与された被験者2人で、投与後1時間以内の¹³⁷Csの全血中レベルは 3 投与量の約2~3%に達し、このことは¹³⁷Csが速やかに吸収され、血液循環を介して運ばれ 4 たことを示していた(Rosoff et al. 1963)。動物実験でも、可溶性セシウム化合物の経口曝 $\mathbf{5}$ 露後、体内で比較的均一に分布することを示していた。モルモットでは¹³⁷Cs(塩化セシウ 6 ムとして)の単回経口投与後、多くの体組織に¹³⁷Cs が分布し、骨格筋で最高濃度が示した $\mathbf{7}$ (Stara 1965)。¹³⁷Cs(塩化セシウムとして)を吸入、経口投与、又は腹腔内投与によって 8 曝露されたモルモットでは、投与後1日の¹³⁷Csの分布パターンには有意な違いが観察され 9 なかった(Stara 1965)。イヌとマウスでは¹³⁷Cs(塩化セシウムとして)の慢性的な経口投 10与後、セシウムが比較的均一に全身に分布した(Furchner et al. 1964)。 11

セシウムは母体から胎盤を通過し胎児へ移行する。ヒトの胎盤と胎児組織で測定可能な 12量の¹³⁷Cs が検出されている(Toader et al. 1996、Yoshioka et al. 1976)。セシウム濃度は未 13熟な胎児より成長した胎児の方が高い(Toader et al. 1996)。妊娠前後又は妊娠していない 14コントロールと比べて妊娠中の消失半減期が短いことが示されており、妊娠は母体からの 15セシウムの除去を増加させる可能性がある(Bengtsson et al. 1964、Rundo and Turner 1966、 16Thornberg and Mattsson 2000、Zundel et al. 1969)。例えば、キノコ料理で被ばくし、7か月 17後に妊娠した女性の妊娠中の消失半減期は、妊娠前の54%になり、産後は元に戻ったとい 18う報告がある。このときの胎児への移行は等価線量5mSvをはるかに下回り、母乳中濃度 19 は母体全身濃度の15%であった(Thornberg and Mattsson 2000)。しかし、動物実験におい 20てセシウムは胎盤を通過するが、胎児では、母動物や胎盤よりも濃縮度合は低い(Mahlum 21and Sikov 1969) 22

23 セシウムは動物の胎盤も通過し、乳汁でも認められる。放射性標識した塩化セシウムを
 24 妊娠動物へ経口投与後、ヒツジの新生児では母動物より組織中¹³⁴Cs レベルが低いことが示
 25 されているが、哺乳中の児動物の¹³⁴Cs 濃度は最終的に母動物を超えていた(Vandecasteele
 26 et al. 1989)。また、ヒト母乳でもセシウムが検出されている(ATSDR 2004)。

27 実験動物における¹³⁷CsClの非経口投与では、吸入又は経口曝露の結果と同様な¹³⁷Csの
28 体内分布パターン及び組織濃度となる(Boecker et al. 1969、Stara 1965)。これらのことか
29 ら、¹³⁷CsClのような可溶性で吸収されやすい化合物に関して、健康への有害影響はその他
30 の曝露経路とも類似しているだろうといわれている(Melo et al. 1996、1997、Nikula et al.
31 1995、1996)。

32

33 (3) カリウムとの競合

34 吸収されたセシウムはカリウムと同様な挙動をとる(Rundo 1964、Rundo et al. 1963)。
 35 カリウムもセシウムも、陽イオンとして全身にくまなく分布するアルカリ金属であり、能
 36 動輸送によって細胞内に取り込まれる。セシウムはカリウムチャネルを介した輸送でカリ
 37 ウムと競合することが示されており、ナトリウムポンプの活性化及びそれに続く細胞内輸
 38 送においてカリウムに代わることもできる(Cecchi et al. 1987、Edwards 1982、Hodgkin 1947、
 39 Latorre and Miller 1983、Sjodin and Beauge 1967)。両タイプの輸送とも、セシウムの移動は

カリウムと比べて緩慢である (Blatz and Magleby 1984、Coronado et al. 1980、Cukierman et al. 1 1985, Edwards 1982, Gay and Stanfield 1978, Gorman et al. 1982, Hille 1973, Reuter and Stevens $\mathbf{2}$ 1980)が、一般的に細胞内への能動輸送(輸送の際の選択比率はK:Cs=1:約0.25)より 3 も細胞外への受動輸送(種々の組織における輸送の選択比率は K: Cs=1:0.02 未満~約 0.2) 4の方がカリウム選択性が高い(Leggett et al. 2003)。平衡状態では体内のカリウム又はセシ $\mathbf{5}$ ウムのほとんどが骨格筋に存在するため、この結果としてカリウムよりセシウムの滞留時 6 間が筋肉細胞で長くなり、したがって、全身の滞留時間も長くなる。しかしながら、赤血 $\mathbf{7}$ 球の細胞外への輸送、上皮細胞を横断した輸送又は上皮細胞の間の輸送では、セシウムは 8 いくらか強くカリウムと競合するようにみえる(Cereijido et al. 1981、Greger 1981、Wright 9 1972) 。 10

11

12 (4) 排泄

ヒトでは尿中排泄がセシウムの主要な排出経路である。¹³⁷CsClを単回経口投与されたが 13ん又は肺疾患の患者7人では、¹³⁷Csの7日間累積排泄量は投与された放射能の7.0~17.3% 14であった。尿と糞便の排泄比率は 2.5:1~10:1 であった(Rosoff et al. 1963)。¹³⁷CsCl を 15単回経口投与された日本人ボランティア4人では、投与4日後に採取された排泄データか 16 ら尿と糞便の排泄比率が 4.57:1~8.75:1と算出された。投与後最初の4日間では、排泄 17率が一貫して高く、尿と糞便の排泄比もいくらか高かった(linuma et al. 1965)。ヒト被験 18者におけるセシウムの尿及び糞便排泄に関する多くの報告結果に基づき、Leggett ら(2003) 19は平均尿中割合を 0.86 と報告した。¹³⁷Cs の排泄比率に関する他の知見は、大気中核実験及 20びチェルノブイリ原子力発電所の事故のフォールアウトを介して曝露した集団に関する多 21くの研究を含んでいる。 22

23 モルモットは、投与後 2.5 日以内に初期の¹³⁷Cs 体内負荷量の約 50%を尿及び糞便に排泄
 24 した(Stara 1965)。曝露後 60 日間の測定を通して尿:糞便の比は 2~3:1 の範囲内であ
 25 り、この時期(60 日)までに実質的に初期の¹³⁷Cs 体内負荷量のすべてが排泄された。

26 ヒトの全身におけるセシウムの消失半減期は、何人かの研究者によって報告されている
27 (Henrichs et al. 1989、Iinuma et al. 1967、Lloyd et al. 1973、Melo et al. 1997、Richmond et al.
28 1962、Rundo 1964)。例えば、¹³⁴Cs 及び¹³⁷Cs で汚染された食品を摂取したボランティア
29 10人では、初期の体内負荷量の約 6%が速やかに排泄(平均消失半減期 0.3 日)され、残り
30 の94%は非常にゆっくりと排泄された(平均消失半減期 90 日)(Henrichs et al. 1989)。成
31 人男性4人によるもう一つの経口試験では、¹³⁴Cs 及び¹³⁷Cs の消失半減期は平均 135 日で
32 あった(Richmond et al. 1962)。

¹³⁷Csの排出速度は年齢と性別に依存する。排出速度は年齢とともに低下し、また、成人
 女性に比べて成人男性の方が低い(ATSDR 2004)。核実験のフォールアウトに由来する
 ¹³⁷Csを含んだ食品を摂取した集団での調査結果は、乳幼児の15±5日から成人の100±50日
 までばらつきのある消失半減期を示していた(McCraw 1965)。チェルノブイリ原子力発
 電所の事故後の同様な調査でも同程度の消失半減期を示し、1歳児の約8日から成人の約
 110日の範囲であった(IAEA 1991)。不特定集団110人の4年間の横断研究では、5~14
 歳の子どもで最も短い消失半減期20日が認められた。男女で有意差はなかった(Boni 1969)。

年齢の高い集団における消失半減期は長かった(青年期及び成人の女性で47日、15歳男
 性で67日、30~50歳男性で93日)。Meloら(1994)も、ブラジルのゴイアニアで¹³⁷CsCl
 に内部汚染された個人間の消失速度に年齢と性別に関連した差異があることを報告した。1
 ~4歳の女児の消失半減期は平均24日であった。7~10歳の女児及び男児では、消失半減
 期は平均37日であった。青年期及び成人の男性の消失半減期はそれぞれ58日及び83日と

6 推定された。これに対して青年期及び成人の女性ではそれぞれ 46 日及び 66 日であった。

7 Meloら(1994)の研究では、成人女性を除くすべての年齢集団及び性別で¹³⁷Csの生物学
 8 的半減期と体重の間に高い相関性がみられた。

9 また、セシウムの消失速度はカリウム摂取によって変化する可能性がある。¹³⁷Cs を腹腔
 10 内投与したラットで、カリウム未添加の標準飼料(カリウム 1%含有)を与えた場合、セシ
 11 ウムのクリアランスが 120 日であったのに対し、カリウムを 8~11%添加した標準飼料では
 12 60 日となった(Richmond and Furchner 1961)。食事制限をして 20 日後、カリウム添加飼
 13 料を与えられたラットにおける¹³⁷Cs の体内負荷量は未添加飼料を与えられたラットの 2
 14 分の 1 であった。

15 16

17 7.実験動物等への影響

18 放射性セシウムを曝露した動物実験報告で公開されている論文は極めて数少なかった。19

20 (1) 経口曝露による実験

21 ①**造血機能・免疫機能への影響**

BALB/C マウスに 20 kBg/L の ¹³⁷Cs (¹³⁷CsCl; 30 nM) を含む飲料水を 2 週間投与し、 22雌雄を交配して生まれた児マウスに、親と同じく 20 kBq/L の ¹³⁷Cs (¹³⁷CsCl; 30 nM) 23を含む飲料水を最長 20週間にわたって投与した。6週目から 20週目までの期間の平均 $\mathbf{24}$ 曝露量は、一日当たり 76.5 kBg/匹であった(仮にマウスの体重を 25 g とすると一日当 25たり 3.06 MBq/kg 体重に相当)。¹³⁷Cs は大腿骨、脾臓、胸腺などのリンパ造血器官を含 26む様々な臓器に分布していた。造血系ではいかなる影響も観察されなかった(Bertho et 27al. 2010)。同じ動物で免疫反応を調べたところ、フィトヘマグルチニンに対する増殖応 28答、混合リンパ球反応のアロ抗原に対する反応、破傷風毒素及びキーホールリンペット 29ヘモシアニンなどの抗原に対する免疫グロブリン反応等の機能テストでは、137Csを摂取 30 した動物とコントロール動物を比較したところ、有意な機能的変化はなかった(Bertho 31et al. 2011) 32

33

34 **②小腸の構造と機能への影響**

35 Sprague-Dawley (SD) 雄ラット(10 週齢)に、¹³⁷Cs を 6,500 Bq/L の用量で含む水
 36 を 3 か月以上にわたり経口投与した。小腸上皮の構造や上皮細胞の生理機能への異常及
 37 び炎症反応は観察されなかった。この用量は、ラット1匹当たり 150 Bq に相当し、チェ
 38 ルノブイリ原子力発電所事故の汚染地域住民の曝露レベルに匹敵する用量と記載されて
 39 いる (Dublineau et al. 2007)。

 $\frac{1}{2}$

③中枢神経系への影響

Wistar の雌雄ラットに、¹³⁷Cs を 38 日間又は 84 日間、飲水投与した。¹³⁷Cs の放射能
 量合計は、それぞれラット 1 匹当たり、288 Bq 及び 460 Bq である。これらの動物に、
 強制水泳、シャトルボックスの能動的回避反応、攻撃的行動スコアを用いた行動試験を
 行ったところ、曝露による影響が観察され、その影響に性差が認められた(Ramboiu et al. 1990)。

¹³⁷Csは、慢性被ばくにより中枢神経系で検出されることがあることから、¹³⁷Cs曝露 8 がラットの中枢神経系に及ぼす影響が、オープンフィールド行動、さらに脳波像の観点 9 から検討されている。SD 雄ラットに、137Cs を含む水を自由摂取させた実験では曝露 30 10 日目と90日目にオープンフィールド試験及び脳波計測を行った。このときの用量は400 11Bq/kgに相当する。その結果、オープンフィールド行動に有意な影響はみられなかった。 12一方、30日後には、¹³⁷Csにより、覚醒状態及び徐波睡眠の出現数が有意に減少し、平 1314均持続期間が有意に増加したが、これらの変化は一過性で90日目には消失していた。 ¹³⁷Cs 被ばくラットについて電気生理学的影響をみたところ、90 日後に対照群に比べて 150.5~4 Hzの周波数バンドの出力が増加していた。これらの電気生理学的変化は、脳幹 16において¹³⁷Cs が局所的に蓄積した結果によると解釈されている。結論として、¹³⁷Csの 17曝露により軽微で一過性の中枢神経系への影響が観察されたことになる。この曝露線量 18は、チェルノブイリ汚染地域住民が摂取する量と同程度であり、被ばく地域の住民の中 19枢神経系障害を考慮しなければならないと著者らは主張している(Lestaevel et al. 20 $2006)_{\circ}$ 21

23 ④脂質代謝への影響

22

32

24放射性核種の内部被ばくによる脂質代謝への影響を調べるため、肝臓と脳のコレステ ロール代謝への¹³⁷Csの慢性的経口曝露の影響が検討されている。SD 雄ラットに9か月 25間、チェルノブイリ原子力発電所事故後の汚染地域住民の曝露線量レベルと同様の¹³⁷Cs 26を含む水(150 Bq/ラット/日)を与えた。血清プロファイル並びに脳及び肝臓コレステロ 27ール濃度は変化がなかった。肝臓と脳において、数種の遺伝子発現の軽微な変化が観察 28されたが、コレステロール代謝への生理学的な影響は観察されていない。チェルノブイ 29リで住民が内部被ばくを受けたのと同レベルでは、コレステロール代謝への影響は観察 30 されていない(Racine et al. 2009)。 31

33 ⑤生殖への影響

34 2か月齢のCBAとC57BLの雑種の雌雄マウスに、¹³⁷Cs(硝酸セシウムとして)を経口
 35 投与して交配し、生殖影響が調べられている(Ramaiya et al. 1994)。

36 この実験は、単回投与後、17週間観察する実験と2週間連日投与後、8週までの交配実
 37 験からなる。単回投与実験では、用量は、0.37 x 10⁴~11.1 x 10⁴ Bq/g 体重の5用量レベ
 38 ルであった。総吸収線量(5週間後)は0.1~3.0 Gyであった。精巣への¹³⁷Csの累積線量
 39 が0.1~1 Gyまでは、受胎能の著しい低下を引き起こさなかった。17週では、投与群と対

照群との間に有意な受胎能の違いは認められなくなった。2週間連日投与後、8週まで交
 配した実験では、総投与量が1.85 x 10⁴、7.40 x 10⁴、18.5 x 10⁴ Bq/g 体重の3用量レベ
 ルである。精巣の累積線量が1.40及び3.50 Gyの投与群(7.40 x 10⁴、18.5 x 10⁴ Bq/g 体
 重相当)では、胎芽の有意な死亡率の上昇が2週目以降、観察された(Ramaiya et al. 1994)。

⑥その他

 $\mathbf{5}$

6

7 公開されている¹³⁷Csに関する動物実験のうち、生体影響を広範にわたって調べた論文
 8 は、ビーグル犬を用いた実験である(Nikula et al. 1995、1996)。

9 この1995年の報告では、12~14か月齢の雌雄各33匹のビーグル犬を使用し、各投与群
当たり、雌雄各6匹に0、36、52、72、104、141 MBq¹³⁷Cs/kg体重(それぞれ、0、7.4.
11.2、14.0、16.4、11.8 Gyの累積線量に相当)の¹³⁷CsClを単回静脈注射した。最高用量
12 群では81日までに造血機能障害により死亡した。¹³⁷Csを投与された雄犬すべては、精細
13 管上皮の造精細胞の顕著な異常と無精子症を示した。雌雄ともに、肝臓、鼻腔をはじめ、

14 様々な組織で良性及び悪性腫瘍が観察され、¹³⁷Csの累積用量と悪性腫瘍の発生頻度との
 15 間に有意な関係が認められた(Nikula et al. 1995)。累積骨髄線量が7~24 Gyで、重篤
 16 な骨髄抑制が観察された(Nikula et al. 1995)。

17 1996年の報告は、1995年報告、及び類似の条件での追試実験をとりまとめたものであ
 り、両者から得られた結論は、基本的に同様であった(Nikula et al. 1996)。

19

20 (2) 遺伝毒性

セシウム安定同位体の遺伝毒性の報告は限られているが、塩化セシウムはヒト培養リンパ球で染色体異常頻度を有意に増加させており(Ghosh et al. 1993)、マウスの骨髄細胞では染色体異常及び小核の出現頻度が共に有意に増加している(Ghosh et al. 1990, 1991、Santos-Mello et al. 2001)。硫酸セシウムは、大腸菌(*E. coli*)試験株PQ37及びPQ35を用いたSOSクロモテストにおいて、著しい毒性を示すほど高い用量でも、代謝活性化の有無にかかわらずDNA損傷性を示さなかった(Olivier and Marzin 1987)。

27 セシウム放射性同位体の *in vivo* 試験成績について以下の報告がある。マウスにおいて、
¹³⁷Cs (硝酸セシウムとして)の反復経口投与 (2 週間の連日投与)による遺伝毒性と、¹³⁷Cs
29 線源を用いた外部全身照射 (23 時間/日での 19.5 日間)によるものとが比較されている
30 (Ramaiya et al. 1994)。比較可能な累積放射線量(約 3~4 Gy)では、両方の曝露方法で
31 優性致死の増加は同程度であった。¹³⁷Cs (塩化セシウムとして)の単回経口投与で、全
32 身照射線量が約 3 Gy のマウス精原細胞において、相互転座頻度の有意な増加が報告され
33 ている (Ramaiya et al. 1994)。

34 密封された¹³⁷Cs線源からγ線を総線量0.5~4 Gy 照射された妊娠14日の雌ラットから
 35 の胎児の血液細胞で小核頻度の有意な(線量に相関した)増加が認められた(Koshimoto
 36 et al. 1994)。外部¹³⁷Cs線源からγ線を照射されたカニクイザルでは、精原細胞における
 37 相互転座が総吸収線量0.3~1.5 Gy の範囲で線量に相関して増加していた。急性高線量率
 38 (0.25 Gy/分)照射後の転座誘発率は、長期低線量率(1.8x10⁻⁷ Gy/分)照射より約10倍
 39 高いことも示された(Tobari et al. 1988)。これらの影響は放射線によるものであり、セ

1 シウム自体によるものではなかった。

 $\mathbf{2}$ セシウムの放射性同位体はin vitro試験でも遺伝毒性があることが示されている。密封 された¹³⁷Cs線源のγ線を照射したヒト末梢血リンパ球において、0.05~6.00 Gyの線量範囲 3 で線量に相関した小核頻度の上昇が観察された(Balasem and Ali 1991)。また、ヒト培養 4 リンパ球で染色体異常(Doggett and McKenzie 1983、Hintenlang 1993、Iijima and Morimoto $\mathbf{5}$ 1991)、チャイニーズハムスターCHO細胞株で染色体異常と姉妹染色分体交換(Arslan et 6 al. 1986) が誘発されている。さらに、ヒトの精子での染色体異常及び小核の誘発(Kamiguchi $\overline{7}$ 8 et al. 1991、Mikamo et al. 1990, 1991) やマウス培養細胞でのDNA鎖切断(Biedermann et al. 1991)の誘発も報告されている。 9

10

11 8. ヒトへの影響

12 ヒトにおける¹³⁷Csへの曝露に伴う健康影響に関する原著論文等の報告は極めて少なかっ
13 た。¹³⁷Csへの経口曝露のみによる、全身影響(呼吸器系、消化器系、心血管系、筋骨格系、
14 腎臓、内分泌、体重及び代謝)、死亡、中枢神経系・生殖・発生・免疫の各機能及び発が
15 ん性に関する報告は急性・慢性に関わらず、見つからなかった。

16

17 最も詳細な報告として、1987年ブラジルのゴイアニアにおいて、廃棄・破壊された¹³⁷CsCl
 18 を含む医療用放射線源による被ばく事故による事例がある(Brandão-Mello et al. 1991)。

約 112,000 人が被ばくのモニタリングを受け、249 人が外部又は内部被ばくがあったこと
が確認された。そのうち、129 人が中等度以上の内部被ばく(経皮・経口)があると判断
された。50 人は入院による詳細な医学的観察が必要で、曝露程度が比較的低い79 人は外
来患者として処置された。曝露を受けた50 人は、吐き気、嘔吐、下痢など急性症状を示し
た。

24 特に症状が重篤な 20 人の男女比は 16:4、平均年齢は 26.9 歳(年齢幅:6~57 歳)であ
 25 った。ほとんど全員が問題の廃棄物処理場周辺に居住していた。

IAEA技術情報に従った細胞遺伝学的曝露量測定法による測定で、20人の被ばく線量は、
 0.6~7.0 Gy と推定された。

28 被ばく線量が 0.6~1.1 Gy の 4 人は、臨床症状、血液学的検査では異状は認められていな
29 い。しかし、1.0~7.0 Gy の被ばくを受けたと推定される 17 人には、食欲不振、悪心、放
30 射性皮膚炎という軽度の症状から、体重低下、発熱、出血、黄疸、骨髄機能不全、免疫機
31 能不全が認められ、さらに、特に被ばく量が高かった 4 人が数週間以内に死亡した。

32 (Brandão-Mello et al. 1991)。また、曝露開始1か月の間に9人に無精子症が観察された
33 (Brandão-Mello et al. 1991)。

34同曝露事例で、口腔を中心に調査解析した研究グループの報告(Gomes et al. 1990)によ35れば、曝露者では口腔内出血・潰瘍が観察されている(Brandão-Mello et al. 1991)。

36

37 1948 年、南ウラル地方にある Mayak Production Association はソ連の核兵器計画のた
 38 めのプルトニウムの製造を開始し、1949~1956 年まで放射性物質をテチャ川に流した。

39 流出は 1950~1952 年が最大であったといわれる。その流域の 41 の村の住民、約3万人を

対象に、テチャ川コホートが設けられた。対象集団では、川の水や土壌からγ線による外
 部被ばくを受け、汚染された水や牛乳を使うことにより、¹³⁷Cs や⁹⁰Sr などの放射性物質
 の内部被ばくが広がった。健康調査は 1950 年代に始まった。

テチャ川コホートには、1950年以前に生まれた約25,000人のオリジナルコホート 4 (OTRC)、これに 1950~60 年に転入した約 5.000 人を加えた拡大コホート(ETRC)、 $\mathbf{5}$ また胎内被ばくした子どものコホートがある。被ばく線量の推定には外部被ばくと内部被 6 ばくを合わせた Techa River Dosimetory System (TRDS) が採用されているが、下記の $\mathbf{7}$ 最近の分析に用いられた 2000 年バージョンが現在見直されているとのことである。固形 8 がんでは胃組織の線量が参照され、最高 0.47 Gy, 平均 0.04 Gy, 中央値 0.01 Gy と推定さ 9 れている。そのうち内部被ばくが55%を占めるという。また、赤色骨髄(RBM)線量を 10最高2Gy, 平均0.3Gy, 中央値0.2Gyと推定している。 11

約 50 年の追跡により、Krestinina ら (2007) では固形がんの胃線量(診断前 5 年間の 被ばくを除く)による Gy 当たりの ERR を 1.0 (95%CI: 0.3-1.9, p=0.04)、Ostroumova ら (2008) では女性の乳がんの Gy 当たりの ERR を 4.99 (95%CI: 0.8-12.76 p=0.01)及 び Krestinina ら (2010) では RBM 線量による白血病の Gy 当たりの ERR を 4.9 (95%CI: 1.6-14) と推定している。これは、Ostroumova ら (2006)の TRDS2000 以前のテチャ 川コホート内の白血病の症例対照研究で得られた Gy 当たりの推定 OR 4.6 (95%CI: 1.7-12.3) と類似している。

19

また、Tondelら(2006)により、チェルノブイリ原子力発電所事故2日後の大雨による、 20スウェーデン内8州の放射性降下物(¹³⁷Cs)曝露と発がんの増加との関連を推定する研究 21が行われた。1986年にスウェーデンの中でも大雨によるセシウム汚染の激しかった8州に 22在住する 0~60 歳の住民 113 万 7,106 人が対象とされ、居住地点により、地理情報システ 23ム技術と¹³⁷Csのデジタルマップから、各個人に曝露量が割り当てられた。国の定点観測 24システムのデータベースによる γ線の分光分析により、カリウム、トリウム及びウランの 25測定が可能であり、時間当たりの線量(nGy/h)に置き換えられて¹³⁷Cs 情報が得られた。 26また、地質学調査によって地面放射γ線量の情報が得られた。 27

スウェーデンのがん登録データから 1988~1999 年の間に確認されたがん罹患 33,851 例
を年齢、地面放射γ線量、人口密度、1988~1999 年の肺がん罹患、1986~1987 年のがん
躍患により層別して、放射性セシウムによる Mantel-Haenzel 罹患率比(MH-IRR)を検
討した。0~8 nGy/hの群に比べ、全がんリスクは、9~23 nGy/hの群で 0.997、24~43 nGy/h
の群で 1.072、44~66 nGy/h の群で 1.114、67~84 nGy/h の群で 1.068、85 nGy/h 以上
の群で 1.125 であった。100 nGy/h の ERR は 0.042(95%CI: 0.001-0.084) であった。

34

35 ヒトに対する遺伝毒性については、ブラジルのゴイアニアで、調査前、開封された¹³⁷CsCl
 36 線源に約 2.5 年にわたって曝露されていた人々に、Tリンパ球の点突然変異頻度の上昇が
 37 観察された。外部被ばくの推定線量は 1.7 Gy であった。著者らは全身での計測と糞尿での
 38 測定活性に基づいて内部被ばく線量を推定したが、実際的な推定値は報告されなかった
 39 (Skandalis et al. 1997)。同じ事故で被ばくした人々において、染色体異常の頻度が外

1 部被ばく線量の推定に用いられた(Natarajan et al. 1998)。

2 ヒトにおいて遺伝毒性が現れ始める放射線線量レベルを特定した報告は見当たらなかっ
3 た。放射性セシウム曝露と関連のある遺伝毒性影響について、曝露経路による違いに関す
4 る情報もなかった。

1986年のチェルノブイリ原子力発電所事故の放射性降下物への最初の被ばくから5年後
 に、¹³⁷Cs 降下物で汚染された土壌の地域に住むベラルーシの子ども3 群(合計 41 人)の
 末梢血リンパ球を調べたところ、イタリアの子ども10人の対照群に比べて、染色体異常頻
 度のわずかな上昇が観察された(Padovani et al. 1993)。

- ¹³⁷Cs による汚染が 550~1,500 GBq/km² である地域(チェルノブイリから 70 km)の 9 Navrovl'a の子どもでは、全身での計測から体内に蓄積された¹³⁷Cs 放射能が 0.46~2.8 10 kBq であることがわかった。原子力発電所事故後すぐにチェルノブイリ地域からチェルノ 11 ブイリより 200~300 km の地域 (¹³⁷Cs の土壌汚染 40~400 GBq/km²) へ避難した子ども 12と、Stolin 地域(チェルノブイリから 250 km、¹³⁷Cs の土壌汚染 40~550 GBq/km²)に 1314居住する子どもでは、体内に蓄積された¹³⁷Cs放射能はそれぞれ0.044~0.4kBg、7.7~32.3 kBq であったと報告されている。体内における放射能は ¹³⁷Cs で汚染された食品の摂取に 15よるものであった。リンパ球の染色体異常頻度にわずかな上昇が観察されたが、明確な症 16状はなかった。これらの遺伝毒性影響は放射線によるものであり、セシウム自体によるも 17のではなかった(Padovani et al. 1993)。 18
- 19

放射性セシウムの発がん標的性は確定されていないが、放射性セシウムと膀胱がんとの 20関連について、チェルノブイリ原子力発電所事故で ¹³⁷Cs に汚染された地域の住民を対象 21とした報告がなされている(Romanenko et al. 2009)。対象は 1994~2006 年の間に採取 22した、汚染地域の前立腺肥大症患者及び慢性膀胱炎患者の膀胱組織131例、対照群として 23の非汚染地域の前立腺肥大症患者の膀胱組織33例であった。汚染地域患者に上皮異形成及 24び上皮内がんを伴う特異的な慢性増殖性膀胱炎(チェルノブイリ膀胱炎)が認められた。 25上皮異形成の発生頻度は、土壌汚染が 1.9 x 10¹¹~1.1 x 10¹² Bq/km² 群で 97%、1.9 x 10¹⁰ 26~1.9 x 10¹¹ Bq/km² 群で 83%、非汚染地域群では 27%であった。また、上皮内がんの発 27生頻度は1.9 x 10¹¹~1.1 x 10¹² Bq/km² 群で67%、1.9 x 10¹⁰~1.9 x 10¹¹ Bq /km² 群で59%、 28非汚染地域群では0%であった。非汚染地域群に比較して1.9 x 10¹¹~1.1 x 10¹² Bq /km² 29群及び 1.9 x 10¹⁰~1.9 x 10¹¹ Bq /km² 群では上皮異形成及び上皮内がんの発生頻度とも有 30 意に増加していた。24時間尿における ¹³⁷Cs の排泄量は、1.9 x 10¹¹~1.1 x 10¹² Bq /km² 31群、1.9 x 10¹⁰~1.9 x 10¹¹ Bq/km² 群及び非汚染地域群でそれぞれ 6.47±14.3 Bq/L、1.23 32±1.01 Bq/L、0.29±0.03 Bq/L であり、非汚染地域群に比較して 1.9 x 10¹¹~1.1 x 10¹²/km² 33 34群及び 1.9 x 10¹⁰~1.9 x 10¹¹ Bq /km² 群では有意な高値を示した(Raes et al. 1991)。

35 36

37 9. **まとめ**

38 放射性セシウムの経口曝露による動物実験及び疫学研究は極めて少ない。動物実験につ39 いては、用量設定も不十分で方法論の面で論文の信頼度も低い。吸収率、経口曝露に伴う

- 1 生体影響(死亡、免疫、リンパ球、神経系、生殖及び発生への影響、発がん性)はほとん
 2 ど解明されていない。チェルノブイリ原子力発電所事故によるセシウムの放射性降下物に
 3 より、スウェーデン人において全がんリスクのわずかな上昇が観察されたという報告があ
 4 るが、線量推定における不確実性及び個人レベルの曝露や交絡要因を把握していないとい
 5 う限界があった。
- 6
- $\overline{7}$

1	く参照>
2	ATSDR, TOXICOLOGICAL PROFILE FOR CESIUM. U.S. Department of Health and
3	Human Services Public Health Service, Agency for Toxic Substances and Disease
4	Registry 2004
5	
6	Argonne National Laboratory, US Department of energy, Human Health Fact Sheet,
7	Cesium, 2005
8	
9	Arslan NC, Geard CR, Hall EJ. Low dose-rate effects of cesium-137 and iodine-125 on
10	cell survival, cell progression, and chromosomal alterations. Am J Clin Oncol 1986;
11	9(2): 114-115
12	
13	Balasem AN, Ali ASK. Establishment of dose-response relationships between doses of
14	Cs-137 y-rays and frequencies of micronuclei in human peripheral blood
15	lymphocytes. Mutat Res 1991; 259: 133-138
16	
17	Bengtsson LG, Haversten Y, Svvensson KG. Maternal and infantile metabolism of
18	cesium. In: Assessment of radioactivity in man. Vol. II, Vienna: International
19	Atomic Energy Agency 1964; 21-32
20	
21	Bertho JM, Louiba S, Faure MC, Tourlonias E, Stefani J, Siffert B, et al.
22	Biodistribution of (137)Cs in a mouse model of chronic contamination by ingestion
23	and effects on the hematopoietic system. Radiat Environ Biophys 2010; 49(2):
24	239-48
25	
26	Bertho JM, Faure MC, Louiba S, Tourlonias E, Stefani J, Siffert B, et al. Influence on
27	the mouse immune system of chronic ingestion of 137Cs. J Radiol Prot 2011; 31(1):
28	25-39
29	
30	Biedermann KA, Sun J, Giaccia AJ, et al. Acid mutatio n in mice confers
31	hypersensitivity to ionizing radiation and deficiency DNA double-strand break
32	repair. Proc Natl Acad Sci USA 1991; 88: 1394-1397
33	
34	Blatz AL, Magleby KL. Ion conductance and selectivity of single calcium-activated
35	potassium in cultured rat muscles. J Gen Physiol 1984; 84: 1-23
36	
37	BOECKER BB, McClellan KO, Scott JK. Retention and distribution of 137/Cs in the beagle
38	dog tollowing inhalation of 137Us in fused montmorillonite clay particles. In:
39	Fission Product Inhalation Program, ed. Fission product inhalation program

1	annual report 1968-69. Albuquerque, NM: Lovelace Foundation for Medical
2	Research and Education 1969; 105-110
3	
4	Boni AL. Variations in the retention and excretion of 137Cs with age and sex. Nature
5	1969; 222:1188-1189
6	
7	Brandão-Mello CE, Oliveira AR, Valverde NJ, et al. Clinical and hematological aspects
8	of 137Cs: The Goiania radiation accident. Health Phys 1991; 60(1): 31-39
9	
10	Burt RO. Cesium and cesium compounds. In Kroschwitz JI, Howe-Grant M, (eds.),
11	Kirk-Othmer encyclopedia of chemical technology. 4th ed. Vol 5. New York: John
12	Wiley & Sons 1993, 749-764
13	Caschi V. Walff D. Alwanar O. et al. Machaniama of Cathlackada in a Ca2t castivated
14	K channel from amosth muscle. Pienbus I 1987: 52: 707-716
10	R+channel from smooth muscle. Biophys J 1987, 52: 707-716
10	Correijide M. Mezz I. Martinez-Palme A. Oseluding junctions in gultured enitboliel
10	monologore Am I Physiol 1981: 240: C96-C102
10	monorayers. Am 9 1 hysior 1381, 240. 030 0102
20	Coronado R. Rosenberg RI. Miller C. Jonic selectivity, saturation, and block in a K+-
20 91	selective channel from sarconlasmic reticulum J Gen Physiol 1980; 76: 425-44
22	
23	Cukierman S. Yellen G. Miller C. The K+ channel of sarcoplasmic reticulum. A new
24	look at Cs+block. Biophys J 1985; 48: 477-484
25	
26	Doggett NA, McKenzie WH. An analysis of the distribution and dose response of
27	chromosome aberrations in human lymphocytes after in vitro exposure to
28	137cesium gamma radiation. Radiat Environ Biophys 1983; 22:33-51.
29	
30	Dublineau I, Grison S, Grandcolas L, Baudelin C, Paquet F, Voisin P, Aigueperse J,
31	Gourmelon P. Effects of chronic 137Cs ingestion on barrier properties of jejunal
32	epithelium in rats. J Toxicol Environ Health A 2007; 15;70(10): 810-9
33	-
34	Edwards C. The selectivity of ion channels in nerve and muscle. Neuroscience 1982;
35	7:1335-1366.
36	
37	FDA. 2003. Rockville, MD: U.S. Department of Health and Human Services. Food and Drug
38	Administration. Center for Devices and Radiological Health.
39	http://www.FDA.gov/cdrh/pdf31k030162,pdf.

1	
2	Fernandez MA, Martinez L, Segarra M, et al. Behavior of heavy metals in the
3	combustion gasesof urban waste incinerators. Environ Sci Technol 1992; 26(5):
4	1040-1047
5	
6	Furchner JE, Trafton GA, Richmond CR. Distribution of cesium137 after chronic
7	exposure in dogs and mice. Proc Soc Exp Biol Med 1964; 116: 375-378
8	
9	Gay LA, Stanfield PR. The selectivity of the delayed potassium conductance of frog
10	skeletal muscle fibers. Pflugers Arch 1978; 378:177-179
11	
12	Ghosh A, Sharma A, Talukder G. Clastogenic effects of cesium chloride on mouse
13	marrow cells in vivo. Mutat Res 1990; 244: 295-298
14	
15	Ghosh A, Sharma A, Talukder G. Cytogenetic damage induced in vivo to mice by single
16	exposure to cesium chloride. Environ Mol Mutagen 1991; 18:87-91
17	
18	Ghosh A, Sharma A, Talukder G. Clastogenic effects of caesium chloride on human
19	peripheral blood lymphocytes in vitro. Toxicol in Vitro 1993; 7(2): 137-140
20	
21	Gomes MA, Wascheck CC, Scully C, et al. Orofacial manifestations from accidental
22	exposure to caesium 137 in Goiania, Brazil. J Oral Pathol Med 1990; 19(7):
23	322-325
24	
25	Gorman ALF, Woolum JC, Cornwall MC. Selectivity of the Ca2+- activated and
26	light-dependentK+ channels for monovalent cations. Biophys J 1982; 38: 319-322
27	
28	Greger R. Cation selectivity of the isolated perfused cortical thick ascending limb of
29	Henle's loopof rabbit kidney. Pflugers Arch 1981; 390:30-37
30	
31	Henrichs K, Paretzke HG, Voigt G, et al. Measurements of Cs absorption and retention
32	in man. Health Phys 1989; 57(4): 571-578
33	
34	Hille B. Potassium channels in myelinated nerve. Selected permeability to small
35	cations. J Gen Physiol 1973; 61: 669-686
36	
37	Hintenlang DE. Synergistic effects of ionizing radiation and 60 Hz magnetic fields.
38	Bioelectromagnetics 1993; 14: 545-551
39	

1	Hodgkin AL. The effect of potassium on the surface membrane of an isolated axon. J
2	Physiol 1947; 106: 319-340
3	
4	IAEA. The international Chernobyl project technical report, International Atomic
5	Energy Agency, Vienna 1991; Publication No. STI/PUB/885 page 2 of 7.
6	
7	lijima K, Morimoto K. Quantitative analysis of the induction of chromosome
8	aberrations and sister-chromatid exchanges in human lymphocytes exposed to
9	γ -rays and mitomycin-C in combination. Mutat Res 1991, 263: 263-268
10	
11	inuma 1, Nagai 1, Isninara 1. Cesium turnover in man following single
12	administration of 132Us- 1. Whole body retention and excretion pattern. J Radiat
15	Res 1905, 0. 75 61
14	Ijnuma T. Watari K. Nagi T. et al. Comparative studies of Cs-132 and Rh-86 turnover
16	in man using a double-tracer method J Radiat Res 1967; 8: 11-115
17	
18	Johansson L, Bjoreland A, Agren G. Transfer of 137Cs to infants via human breast
19	milk. Radiat Prot Dosim 1998; 79: 165-167
20	
21	Kamiguchi Y, Tateno H, Mikamo K. Micronucleus test in 2-cell embryos as a simple
22	assay for human sperm chromosome aberrations. Mutat Res 1991; 252: 297-303
23	
24	Korobova E, Ermakov A, Linnik V. 137Cs and 90Sr mobility in soils and transfer in
25	soil-plant systems in the Novozybkov district affected by the Chernobyl accident.
26	Appl Geochem 1998; 13(7): 803-814
27	
28	Koshimoto C, Takahashi S, Kubota Y, et al. Evaluation of the effect of
29	gamma-irradiation on fetal erythropoiesis in rats using blood cell volume as the
30	index. J Radiat Res 1994; 35: 74-82
31	
32	Krestinina LY et al 2007 Krestinina LY, Davis F, Ostroumova E, Epifanova S, Degteva
33	M, Preston D, et al. Solid cancer incidence and low-dose-rate radiation exposures
34	in the Techa River cohort: $1956\ 2002.1$ nt J Epidemiol. $2007;\ 36(5):1038-46$
35	
36	Krestinina LY, Davis FG, Epitanova SB, Degteva MO, Preston DL, et al.2010.
37	Leukemia incluence among people exposed to enronic radiation from the
ചെ ചെ	contaminated Techa Kiver, 1955–2005.Kadiat Environ Biophys 2010, 49-195–201
39	

1	LaBrecque JL, Rosales PA. The migration of 137Cs in Venezuelan soils. J Trace
2	Microprobe Tech 1996; 14(1): 213-221
3	
4	Latorre R, Miller C. Conduction and selectivity in potassium channels. J Membr Biol
5	1983; 71: 11-30
6	
7	LeRoy GV, Rust JH, Hasterlik RJ. The consequences of ingestion by man of real and
8	simulated fallout. Health Phys 1966; 12: 449-473
9	
10	Leggett RA, Williams LR, Melo DR, et al. A physiologically based biokinetic model for
11	cesium in the human body. Sci Total Environ 2003; 317: 235-255
12	
13	Lestaevel P, Dhieux B, Tourlonias E, Houpert P, Paquet F, Voisin P, et al. Evaluation
14	of the effect of chronic exposure to 137Cesium on sleep-wake cycle in rats.
15	Toxicology. 2006; 226(2-3): 118-25
16	
17	Lewis RJ. Hawley's condensed chemical dictionary. 13th ed. New York, NY: John Wiley
18	& Sons 1997; 234-236
19	
20	Lloyd RD, Mays CW, McFarland SS, et al. Metabolism of 83Rb and 137Cs in persons
21	with muscle disease. Radiat Res 1973; 54: 463-478
22	
23	Mahlum DD, Sikov MR. Comparative metabolism of 137Cs by adult, suckling and
24	prenatal rats. Comp Biochem Physiol 1969; 30: 169-175
25	
26	McCraw TF. The half-time of cesium-137 in man. Radiol Health Data Rep 1965;
27	6(12): 711-718
28	
29	Melo DR, Lipsztein JL, Oliveira CAN, et al. A 137Cs age-dependent biokinetic study.
30	Health Phys 1994; 66(6): S25-S26
31	
32	Melo DR, Lundgren DL, Muggenburg BA, et al. Prussian blue decorporation of 137Cs
33	in beagles of different ages. Health Phys 1996; 71(2): 190-197
34	
35	Melo DR, Lipsztein JL, Oliveira CAN, et al. A biokinetic model for 137Cs. Health Phys
36	1997; 73(2): 320-332
37	
38	Mikamo K, Kamiguchi Y, Tateno H. Spontaneous and in vitro radiation-induced
39	chromosome aberrations in human spermatozoa: Application of a new method. In:

1	Mendelsohn ML, Albertini RJ, eds. Mutation and the environment: Part B:
2	Metabolism, testing methods, and chromosomes. New York, NY: Wiley-Liss 1990;
3	447-456
4	
5	Mikamo K, Kamiguchi Y, Tateno H. The interspecific in vitro fertilization system to
6	measure human sperm chromosomal damage. In: Gledhill BL, Mauro F, ed. New
7	horizons in biological dosimetry. New York, NY: Wiley-Liss 1991; 531-542
8	
9	Mumma RO, Raupach DC, Sahadewan K, et al. National survey of elements and
10	radioactivity in municipal incinerator ashes. Arch Environ Contam Toxicol 1990;
11	19: 399-404
12	
13	Natarajan AT, Santos SJ, Darroudi F, et al. Cesium-induced chromosome aberrations
14	analyzed by flourescence in situ hybridization: Eight years follow up of the Goiania
15	radiation accident victims. Mutat Res 1998; 400: 299-312
16	
17	Nikula KJ, Muggenburg BA, Chang I-Y, et al. Biological effects of 137CsCl injected in
18	beagle dogs. Radiat Res 1995; 142: 347-361.
19	
20	Nikula KJ, Muggenburg BA, Griffith WC, et al. Biological effects of 137CsCl injected in
21	beagle dogs of different ages. Radiat Res 1996; 146: 536-547
22	
23	Olivier P, Marzin D. Study of the genotoxic potential of 48 inorganic derivatives with
24	the SOS chromotest. Mutat Res 1987; 189: 263-269
25	
26	Ostroumova E et al. 2006 Ostroumova E, Gagnière B, Laurier D, Gudkova N,
27	Krestinina L, Verger P, et al. Risk analysis of leukaemia incidence among people
28	living along the Techa River: a nested case-control study.J Radiol Prot 2006; 26(1):
29	17-32
30	
31	Ostroumova E et al. 2008 Ostroumova E, Preston DL, Ron E, Krestinina L, Davis FG,
32	Kossenko M, et al. Breast cancer incidence following low-dose rate environmental
33	exposure: Techa River Cohort, 1956-2004.Br J Cancer 2008; 99(11): 1940-5.
34	
35	Padovani L, Caprossi D, Tedeschi B, et al. Cytogenetic study in lymphocytes from
36	children exposed to ionizing radiation after the Chernobyl accident. Mutat Res
37	1993; 319: 55-60.
38	
39	Racine R, Grandcolas L, Grison S, Gourmelon P, Gueguen Y, Veyssiere G, et al.

1	Molecular modifications of cholesterol metabolism in the liver and the brain after
2	chronic contamination with cesium 137. Food Chem Toxicol 2009 ; 47(7): 1642-7
3	
4	Raes et al. 1991 Raes F, De Cort M, Graziani G. Multi-fractal nature of radioactivity
5	deposition on soil after the Chernobyl accident. Health Phys. 1991 ; 61(2): 271-4.
6	
7	Ramaiya LK, Pomerantseva MD, Chekhovich AV, et al. Genetic effects of testicular
8	incorporation of 137Cs in mice. Mutat Res 1994; 324: 139-145.
9	
10	Ramboiu S, Derevenco P, Bordas E, et al. Effects of ingestion of radioactive cesium on
11	behavioral indices in rats. Rev Roum Physiol 1990; 27(1): 29-37.
12	
13	Redman HC, McClellan RO, Jones RK, et al. Toxicity of 137CsCl in the beagle. Early
14	biological effects. Radiat Res 1972; 50: 620-648.
15	
16	Reuter H, Stevens CF. Ion conductance and ion selectivity of potassium channels in
17	snail neurones. J Membr Biol 1980; 57: 103-118.
18	
19	Richmond CR, Furchner JE. Enhancement of cesium137 excretion by rats fed
20	potassiumsupplemented diets. Proc Soc Exp Biol Med 1961; 108: 797-798.
21	
22	Richmond CR, Furchner JE, Langham WH. Long-term retention of radiocesium by
23	man. Health Phys 1962; 8: 201-205.
24	
25	Romanenko et al. 2009 Romanenko A, Kakehashi A, Morimura K, Wanibuchi H, Wei M,
26	Vozianov A, et al. Urinary bladder carcinogenesis induced by chronic exposure to
27	persistent low-dose ionizing radiation after Chernobyl accident. Carcinogenesis.
28	2009; 30(11): 1821-31.
29	
30	Rosoff B, Cohn SH, Spencer H. Cesium-137 in man. Radiat Res 1963; 19:643-654
31	
32	Rundo J. A survey of the metabolism of caesium in man. Br J Radiol 1964; 37: 108-114
33	
34	Rundo J, Turner FM. Metabolism of caesium-137 during pregnancy. British Atomic
35	Energy Research Establishment Progress Report 1966; AEKE-PR/HPM 11, 32
36	
37	Rundo J, Mason JI, Newton D, et al. Biological half-life of caesium in man in acute
38	chronic exposure. Nature 1963; 200: 188-189
39	

1	Santos-Mello R, Deimling LI, Almeida A. Induction of micronuclei in mouse
2	polychromatic erythrocytes by the administration of nonradioactive CsCl by the
3	oral and intraperitoneal route. Mutat Res 2001; 497(1-2): 147-151
4	
5	Sawidis T, Drossos E, Heinrich G, et al. Cesium-137 accumulation in higher plants
6	before and after Chernobyl. Environ Int 1990; 16: 163-169
7	
8	Sjodin RA, Beauge LA. The ion selectivity and concentration dependence of cation
9	active sodium transport in squid axons. Curr Mod Biol 1967; 1: 105-115
10	
11	Skandalis A, da Cruz AD, Curry J, et al. Molecular analysis of T-lymphocyte HPRT
12	mutations inindividuals exposed to ionizing radiation in Goiania, Brazil. Environ
13	Mol Mutagen 1997; 29: 107-116
14	
15	Stara JF. Tissue distribution and excretion of cesium-137 in the guinea pig after
16	administration by three different routes. Health Phys 1965; 11: 1195-1202
17	
18	Takenaka C, Onda Y, Hamajima Y. Distribution of cesium-137 in Japanese forest soils:
19	Correlation with the contents of organic carbon. Sci Total Environ 1998; 222:
20	193-199
21	
22	Talbot RJ, Newton D, Segal MG. Gastrointestinal absorption by rats of 137Cs and 90Sr
23	from U3O8 fuel particles: Implications for radiation doses to man after a nuclear
24	accident. Radiat Prot Dosim 1993; 50(1): 39-43
25	
26	The Merck Index 14th ed., Merck & Co., Inc., New Jersey 2006
27	Themphong C. Metterson C. Increased 197Cs metabolism during measurements. Health Dhus
28	2000: 78(5): 502-506
29	2000, 78(5): 502 500
3U 91	Toodor M. Vasilasha BA. Toodor ML at al. Ca127 transfor from mother to embryon in
20 20	the first three years after the Chernobyl agaident In International Congress ad
อ⊿ วว	International congress on rediction protection. Ninth international congress of the
20 24	International Radiation Protection Association April 14-19 Congress Center
94 95	Hofburg Vianna Austria: proceedings Vol 2 Saibarsdorf Austria: International
36	Radiation Protoction Association 1996: 473-475
37	Mananon 1 10000001 Association 1550, 415 415
38	Tobari I. Matsuda Y. Xiaohung G. et al. Dose-response relationship for translocation
39	induction in snermatogonia of the crab-eating monkey (Macaca fascicularis) by
50	machine in operative Source of the erab eating monikey (macada fabeleularis) by

1	chronic y-ray-irradiation. Mutat Res 1988; 201: 81-87
2	
3	Tondel M, Carlsson G, Hardell L, et al. Incidence of neoplasms in ages 0-19 Y in parts
4	of Sweden with high 137Cs fallout after the Chernobyl accident. Health Phys
5	1996; 71(6): 947-950
6	
7	Vandecasteele CM, Van Hees M, Culot JP, et al. Radiocaesium metabolism in pregnant
8	ewes and their progeny. Sci Total Environ 1989; 85: 213-223
9	
10	WHO. Selected radionuclides: Tritium, carbon-14, krypton-85, strontium-90, iodine,
11	caesium-137, radon, plutonium. Environmental Health Criteria 25. Geneva: World
12	Health Organization 1983
13	
14	Wright EM. Mechanisms of ion transport across the choroid plexus. J Physiol 1972;
15	226: 545-571
16	
17	Yamagata N, Iwashima K. Distribution of cesium and rubidium in human blood.
18	Nature 1966; 211: 528-529
19	
20	Yoshioka M, Kitahar K, Keida Y, et al. Strontium-90 and cesium-137 in human
21	placenta. Acta Med Univ Kagoshima 1976, 18. 113-117
22	
23	Zundel WS, Tyler FH, Mays CW, et al. Short half-times of caesium-137 in pregnant
24	women. Nature 1969, 221. 89-90
25 90	<u> </u>
26	石板哇化子叶典 弟 3 版, 文眉二郎, 开口什大, 仁朳什, 石竹方, 佐藤又陲, 八床元山襦, 石 油書店 声言 1009
21	似音 店,朱永 1996
40 20	
29 20	
3U 31	
91	

1 VI. ウラン

2 **1**. 元素名、原子記号等

- 3 IUPAC : uranium
- 4 CAS No. : 7440-61-1
- 5 原子記号:U
- 6 原子量:238.03 (ウランとして)
- 7 (The Merck Index 2006、岩波理化学辞典 1998、欧州食品安全機関(EFSA) 2009)
- 8

9 **2. 物理化学的性状**

- 10 融点 (℃):1,132.8±0.8
- 11 沸点 (℃):3,800
- 12 密度 (g/cm³): 18.95 (20 ℃)
- 13 外観:銀白色金属
- 14

15 精製されたウランには、可鍛性、延性及びわずかな常磁性がある。ウラン金属には外気
 16 温で自然発火性があり、微粉末にすると自然に発火する。

17ウランは+2、+3、+4、+5、+6 の酸化状態で存在する。4 価ウランはかなり安定で、水18酸化物、水和したフッ化物、低溶解性のリン酸塩などを形成する。6 価ウランは最も一般19的で安定な化学種である。最も多く存在するのは八酸化三ウラン (U_3O_8) であるが、人為20的に生成した六フッ化ウラン (UF_6) はウラン濃縮工程で用いられる。紫外線下で蛍光を21発するのが、ウラニルイオン (UO_2^{2+}) の一つの特徴である (The Merck Index 2006、岩22波理化学辞典 1998、EFSA 2009、ATSDR 1999)。

23

24 3. 放射性崩壊

25 天然のウラン同位体及びいくつかの娘核種は、α 崩壊をする放射性核種である。ウラン
 26 系列の親核種は ²³⁸U であり、アクチノイド系列の親核種は ²³⁵U である。各系列は長い半
 27 減期を持つ親核種 ²³⁵U 及び ²³⁸U から始まり、希ガスのラドン同位体を経て、最終的には
 28 ²⁰⁷Pb 及び ²⁰⁶Pb の安定な鉛同位体に変換される。

29 ²³⁸U、²³⁵U及び²³⁴U(²³⁴Uは²³⁸Uの崩壊生成物)の半減期は、それぞれ 4.47×10⁹年、

30 7.04×10⁸ 年及び 2.45×10⁵ 年である。また、天然には存在せず、核変換(nuclear
 31 transformation)により生成される同位体としては ²³²U、²³³U 及び ²³⁶U があり、これら
 32 の半減期はそれぞれ 72 年、1.6×10⁵年及び 2.3×10⁷年である。

1gの天然ウランは 2.5 x 10⁴ Bqの比放射能を持つ。この 2.5 x 10⁴ Bqのうち、48.9%は
 ²³⁴U、2.2%は ²³⁵U、48.9%は ²³⁸U によるものである。この存在比は地殻中におけるウラン
 のみに当てはまる。天然のウランは劣化ウランより放射活性が高く、天然のウランは濃縮
 ウランよりも放射活性が低い(The Merck Index 2006、岩波理化学辞典 1998、Argonne
 National Laboratory 2005)。

1 **4. 用途**

2 ²³⁸U に対する ²³⁵U の比率が 2~4%の低濃縮ウランは、電力生成のための核燃料として
3 使われる。一方、同比率が 90%以上の高濃縮ウランは、特別な核燃料として原子力潜水艦
4 や核兵器に用いられる。²³⁵U の割合が 0.2%程度の劣化ウランは放射線の防護、ミサイル、
5 プルトニウム生産炉のターゲット元素、ジャイロスコープの部品及び航空機の水平維持の
6 ための重りや安定器などに用いられる。

7 ウランは、医療又は工業用の同位体産生のための核反応に用いられる。また、ウラン化
 8 合物は、写真の色調補正、皮革工業及び木工業の染色並びに製糸業及び木工業の媒染剤と
 9 して用いられる。二酸化ウランは、写真及び動画のプロジェクターに使われる大型白熱灯
 10 のフィラメントの耐用期間を伸ばす目的で用いられている。重ウラン酸アンモニウムは陶
 11 磁器の色釉を作る目的で用いられる。炭化ウランは、合成アンモニア生成の優れた触媒で
 12 ある(岩波理化学辞典 1998、The Merck Index 2006、Argonne National Laboratory 2005、
 13 EFSA 2009、ATSDR 1999)。

14

15 5. 自然界での分布・移動

16 ウランは、天然に存在する元素で、地球の至る所にある岩石や鉱石で認められ地殻中に
 17 約 2~4ppm 含まれている。ウランは、銀よりも多く存在し、モリブデンやヒ素と同程度の
 18 量だけ存在する。ウランは、アクチノイド元素で、天然に存在する元素で最も大きな原子
 19 量を持つ。

20 ウランには 22 の同位体が知られており、そのうちの 3 つ (²³⁴U、²³⁵U、²³⁸U)が自然界
 21 に存在する。²³⁴U、²³⁵U、²³⁸U の地殻中の存在比は、それぞれ 0.005%、0.72%、99.275%
 22 である (ATSDR 1999)。

23

24 6. ヒトへの曝露経路と曝露量

25 (1) 大気

26 我が国の大気中ウランについて報告されているものは、Hirose & Sugimura (1981)によ
27 る東京都内で 1979 年に毎月測定したもの(年間平均濃度 24±15 pg/m³ (10.7~68 pg/m³))
28 と 1980~81 年につくば市内で同様の測定をしたもの(平均濃度 14±10 pg/m³の (3.7~36
29 pg/m³))である。大気粉塵単位質量当たりのウラン濃度に換算すると、東京都内での濃度
30 は 0.14 mg/kg、つくば市内での濃度は 0.20 mg/kg であった。

31

32 (2) 飲料水

33 表V-1に我が国の水道水質モニタリング結果(平成 20 年度)を示している。検査対象と
 34 なった全国の給水栓水等の浄水 1873 試料のうち、定量下限とした 0.0002 mg/L のウラン
 35 濃度を超えた試料は 34 試料(1.8%)、水道水質管理目標値(0.002 mg/L)を超過したもの
 36 はなかった。このことから、我が国の国民が飲用している水道水中ウラン濃度はおおむね
 37 0.0002 mg/L 未満と考えられる。

38 国内で販売されている容器入り飲料水 170 試料については、ウランは不検出(検出下限 39 不明)~0.021 mg/L であったが、170 試料中6 試料で水道水質管理目標値を超過した(鈴 木ら 2000)。同じく国内で販売されている容器入り飲料水 66 試料のウランを測定したとこ
 ろ(佐々木ら 2011)、国産品は 58 試料中 26 試料でウランが検出されたが、濃度は不検出
 (検出下限不明)~0.988 mg/L であった。輸入品 8 試料うち 2 試料(0.001, 1.241 mg/L)
 でウランが検出された。
 Shiraishi ら(2004)は、より感度の高い分析の結果を報告している。日本各地の水道水

6 24 試料のウラン (²³⁸U) 濃度の中央値は 0.0071 μg/L (範囲: 0.00066~0.104 μg/L)、国 産の容器入り飲料水 22 試料のウラン濃度の中央値は 0.0252 μg/L (範囲: 0.00107~0.344 μg/L) であった。外国産の容器入り飲料水 14 試料のウラン濃度の中央値は 0.602 μg/L (範 9 囲: <0.00019~7.48 μg/L) と、国産のものに比べて高い濃度のものが見つかっている。同 じ傾向は小藤・山本 (1999) によっても見いだされている (国産: 0.0004~8 μg/L、外国 主 : 0.015~16 μg/L)。

12

13 表 V-1 平成 20 年度 水質分布表(浄水(給水栓水等))平均值(mg/L)

水源種別	試料数	< 0.0002	< 0.0004	< 0.0006	< 0.0008	< 0.0010	< 0.0012	< 0.0014	< 0.0016	< 0.0018	< 0.0020	>0.0021
全体	1873	1839	16	11	2	3	1	0	0	0	1	0
表流水	443	442	0	0	1	0	0	0	0	0	0	0
ダム湖沼	144	141	1	1	0	0	0	0	0	0	1	0
地下水	904	878	12	10	1	3	0	0	0	0	0	0
その他	380	376	3	0	0	0	1	0	0	0	0	0

14

15 (3) 岩石·土壤

16 表V-2に産業技術総合研究所が岩石標準試料として頒布している日本産の岩石を材料に
17 作製された標準物質中の濃度を示している。その中には、花崗岩や流紋岩のようにウラン
18 濃度の高い岩石がある。

日本の畑、水田、森林等の表層土壌 77 試料のウラン濃度中央値は 2.28 mg/kg であった
 (範囲: 0.17~4.60 mg/kg, Yoshida et al. 1998)。土壌タイプによる差はないが、農用地
 土壌がやや高く、その理由は、リン酸肥料の施肥によるものと考えられる。別の報告では、

22 日本 78 地点の表層土壌 514 試料のウラン濃度中央値は 1.7 mg/kg (範囲: 0.080~14
23 mg/kg) であり (Takeda et al. 2004)、土壌タイプによる差はあまりない。どちらの報
24 告でも土壌試料は HNO₃/HF/HClO₄による完全分解を行った後に測定したもので、総含有
25 量である。

26 ヒトの消化液による土壌粒子からのウランの溶出について、2 種類の溶出法を用いた天
27 然土壌の検討が行われている。ウランの溶出率(bioaccessibility)は、溶出法によって、
28 胃条件では 4.1% (pH2)及び 10.1% (pH1.4)、小腸条件では 10.3及び 13.8% (pH どち
29 らも 7.5)であった(Höllriegl et al. 2010)。小腸条件では微アルカリ条件下で炭酸塩錯体
30 となったウランがより溶出しやすいものと考察されている。ただし、ある海岸の砂の場合、
31 類似の方法で検討したウランの bioaccessibility は 1%未満であった (Frelon et al. 2007)。

- 1
- 土壌中ウランの bioaccessibility は土壌によって大きく異なると考えられる。
- $\frac{2}{3}$

表V-2	日本産各種岩石のウラン含有量	₹*
------	----------------	----

岩石 (産地)	ウラン濃度 mg/kg	岩石 (産地)	ウラン濃度 mg/kg
安山岩(神奈川県)	0.34	花崗閃緑岩(島根県)	2.21
安山岩(香川県)	2.21	花崗岩(岐阜県)	11.3
安山岩 (群馬県)	1.18	角閃岩(茨城県)	0.58
玄武岩(長崎県)	1.67	流紋岩 (長野県)	8.88
玄武岩 (東京都)	0.18	流紋岩 (長野県)	10.9
玄武岩(山梨県)	0.48	流紋岩 (高知県)	21.1
長石 (長野県)	0.33	ダナイト(北海道)	0.036
長石 (茨城県)	0.078	石灰岩 (北海道)	1.75
はんれい岩(福島県)	0.13	ドロマイト(栃木県)	0.858
はんれい岩(茨城県)	0.041	スレート(宮城県)	2.63
花崗閃緑岩(群馬県)	3.47	スレート(宮城県)	2.92
花崗閃緑岩(群馬県)	4.69	チャート(栃木県)	0.736

4 5

6

*産業技術総合研究所 岩石標準試料中のウラン濃度

(http://riodb02.ibase.aist.go.jp/geostand/gsj1mainj.html)

7 (**4**) ハウスダスト

k 峡戸ら(2007)による首都圏 27 軒の掃除機ごみから調製した 250 µm 未満のハウス
 ダストのウラン濃度中央値は 0.422 mg/kg (範囲: 0.215~1.53 mg/kg)。これは、土
 壌と同様、HNO₃/HF/HClO₄による完全分解を行った後に測定した総含有量である。イ
 ギリスのハウスダスト中ウランの bioaccessibility は、小腸条件で 20.7~45% (n=4)
 と土壌に比べると大きかった (Turner and Ip 2007) が、これもハウスダスト試料によ
 って大きなばらつきを持つものと推定される。

15 **(5) 食物**

14

16 **①食品のウラン含有量**

 Kuwahara ら (1997) は横浜市で 1985~1993 年に購入した 125 種の食品の ²³⁸U 及 び ²³⁴U 濃度 (Bq/kg) を報告した。その一覧を表V・3 に示している。ここに示してい
 3濃度は食品そのままの状態での濃度である。この表には報告された ²³⁸U 及び ²³⁴U 濃 度を基に合計線量 (²³⁴U+²³⁸U、Bq/kg)、ウラン濃度 (µg/kg) を計算して併記してあ
 3。海藻類及び貝類に高い濃度のウランが検出されている。

- 22
- 23
- 24
- 25

1 表V-3 食品のウラン濃度

		²³⁸ U mBq/kg	²³⁴ U mBq/kg	U 合計 mBq/kg	U 濃度 µg/kg
*	精白米	1.6	1.7	3.3	0.13
	精白米	2.9	3.2	6.1	0.23
	せんべい	1.7	1.9	3.6	0.14
	せんべい	1.7	2.6	4.3	0.14
他の穀物	強力粉	2.0	3.0	5.0	0.16
	パン	2.0	2.1	4.1	0.16
	うどん(ゆで)	5.6	12.0	17.6	0.45
	スパゲッティ	1.2	1.3	2.5	0.10
	即席ラーメン	37.0	48.0	85.0	2.98
種実類	栗	0.3	0.8	1.2	0.03
	ごま	45.0	52.0	97.0	3.63
	落花生	5.4	7.1	12.5	0.44
いも類	さつまいも	0.6	0.9	1.5	0.05
	じゃがいも	1.1	0.8	1.9	0.09
	さといも	1.7	1.7	3.4	0.14
	ポテトチップ	2.1	4.3	6.4	0.17
砂糖·甘味	白砂糖	0.2	0.5	0.7	0.02
	イチゴジャム	1.1	1.6	2.7	0.09
	スポンジケーキ	19.0	15.0	34.0	1.53
	スポンジケーキ	15.0	16.0	31.0	1.21
	ビスケット	0.8	0.7	1.5	0.07
油脂類	バター	0.5	1.6	2.1	0.04
	無塩バター	0.2	0.1	0.3	0.01
	マーガリン	1.8	2.9	4.7	0.15
	ごま油	1.1	1.2	2.3	0.09
	マヨネーズ	1.8	1.9	3.7	0.15
豆類	味噌	9.7	12.0	21.7	0.78
	木綿豆腐	96.0	93.0	189.0	7.74
	大豆(乾燥)	5.0	5.9	10.9	0.40
	大豆(乾燥)	6.5	7.2	13.7	0.52
	小豆(乾燥)	2.6	2.8	5.4	0.21
果物	みかん	0.2	0.4	0.6	0.02
	りんご	0.3	0.3	0.6	0.03
	バナナ	1.9	2.1	4.0	0.15
	いちご	0.3	0.3	0.5	0.02
	すいか	0.3	0.4	0.7	0.03

	梅干し	33.0	36.0	69.0	2.66
緑黄色野菜	にんじん	1.2	1.3	2.5	0.10
	にんじん	1.3	1.2	2.5	0.10
	ほうれんそう	3.6	5.4	9.0	0.29
	ほうれんそう	6.6	7.6	14.2	0.53
	ピーマン	0.5	0.8	1.3	0.04
	トマト	0.5	0.7	1.2	0.04
その他の野菜	大根	0.3	0.5	0.7	0.02
	たまねぎ	0.5	0.5	1.0	0.04
	キャベツ	0.6	0.9	1.5	0.05
	キャベツ	0.8	0.9	1.7	0.06
	きゅうり	0.3	0.3	0.6	0.02
	白菜	0.4	0.4	0.8	0.04
	なす	0.2	0.3	0.5	0.02
	白菜(漬物)	1.1	1.6	2.7	0.09
	白菜(キムチ)	5.4	8.5	13.9	0.44
	きゅうり(漬物)	28.0	38.0	66.0	2.26
	たくあん	4.8	5.8	10.6	0.39
きのこ類	しいたけ	0.7	1.0	1.6	0.05
	干ししいたけ	11.0	18.0	29.0	0.89
	えのきだけ	0.3	0.7	1.0	0.03
	ぶなしめじ	0.6	1.0	1.6	0.05
海藻類	わかめ(生)	210.0	210.0	420.0	16.94
	わかめ(生)	380.0	420.0	800.0	30.65
	わかめ(塩蔵)	150.0	160.0	310.0	12.10
	ひじき(生)	790.0	1000.0	1790.0	63.71
	ひじき(生)	820.0	1000.0	1820.0	66.13
	ひじき(乾物)	4300~5900	5300~6800 9600~12700		476.00
	こんぶ(乾物)	1400~1800	$1700 \sim 2000$	3100~3800	145.00
	のり	1900~2100	2100~2400	$4000 \sim 4500$	169.00
	おごのり	480.0	530.0	1010.0	38.71
	てんぐさ	320.0	370.0	690.0	25.81
	きりんさい	72.0	88.0	160.0	5.81
	とさかのり	150~590	170~620	320~1210	47.60
	かじめ	89.0	140.0	229.0	7.18
	のりつくだに	42.0	52.0	94.0	3.39
	塩昆布	470.0	490.0	960.0	37.91
				0.0	0.00

調味料·飲料	しょうゆ	12.0	14.0	26.0	0.97
	ソース	15.0	19.0	34.0	1.21
	トマトケチャップ	2.3	3.8	6.1	0.19
	塩	27~88	59~88	86~176	7.10
	ビール	1.0	1.0	2.0	0.08
	インスタントコーヒー	4.1	3.0	7.1	0.33
魚介類	銀鮭	1.0	1.8	2.8	0.08
	ニジマス	0.7	1.0	1.7	0.05
	まぐろ	4.7	4.6	9.3	0.38
	さば	7.8	10.0	17.8	0.63
	さば	57.0	59.0	116.0	4.60
	いわし	41.0	51.0	92.0	3.31
	あゆ	6.4	8.3	14.7	0.52
	うなぎのかば焼き	3.2	2.9	6.1	0.26
	いか	8.2	9.0	17.2	0.66
	たこ	15.0	15.0	30.0	1.21
	えび	30.0	38.0	68.0	2.42
	あさり	410.0	450.0	860.0	33.07
	あさり	1100.0	1200.0	2300.0	88.71
	ほたて	34.0	31.0	65.0	2.74
	かき	220.0	240.0	460.0	17.74
	塩鮭	8.2	10.0	18.2	0.66
	たら(塩)	17.0	24.0	41.0	1.37
	さば(干物)	8.5	7.7	16.2	0.69
	かまぼこ	100.0	100.0	200.0	8.06
肉類	牛肉	0.7	0.8	1.5	0.05
	ランチョンミート	3.2	5.0	8.2	0.26
	豚肉	0.4	0.6	1.0	0.03
	豚肉	3.3	3.4	6.7	0.27
	鶏肉	1.8	3.3	5.1	0.15
	ウインナー	1.8	3.3	5.1	0.15
印	鶏卵	0.7	1.3	2.0	0.05
	鶏卵	1.8	3.3	5.1	0.15
乳類	全乳	0.4	0.8	1.2	0.03
	プロセスチーズ	2.6	4.3	6.9	0.21
	プロセスチーズ	12.0	13.0	25.0	0.97
その他	酉乍	0.1	0.1	0.2	0.01
	カレールー	22.0	27.0	49.0	1.77

②日本人のウラン摂取量の内訳

Shiraishi ら (2000) が 1994~95 年に水戸周辺で購入した 336 食品のウラン分析を
 基に報告した、食品群別 ²³⁸U 摂取量 (mBq/日) を表V-4 に示している。この表には報
 告された ²³⁸U 摂取量を基に、ウラン質量ベース濃度 (µg/日) を計算、さらに天然ウラン
 の同位体組成を仮定して、²³⁴U 及び ²³⁵U を推計並びに年間線量 (mSv/年) を算出して
 併記してある。

8 表V-3に示した食品ごとのウラン濃度から見てウランの一日摂取量の約1/2が海藻類、

9 1/4 が魚介類から摂取されている。以下、豆類、野菜類、いも類等の植物性食品の寄与が
 やや大きい(それぞれ 2~4%)。

	一日摂取量	²³⁸ U 摂取量	U 摂取量	寄与率 %	Uからの放射	Uからの年間
	g/日	mBq/日	ug/日		線摂取量	線量 mSv/年
					mBq/日	
*	198.3	0.194	0.02	1.4	0.399	6.69E-06
他の穀物	88.3	0.340	0.03	2.5	0.699	1.17E-05
種実類	1.5	0.016	0.00	0.1	0.033	5.52E-07
いも類	66.5	0.325	0.03	2.4	0.668	1.12E-05
砂糖·甘味	31.9	0.120	0.01	0.9	0.247	4.14E-06
油脂類	17.9	0.008	0.00	0.1	0.017	2.79E-07
豆類	68.4	0.591	0.05	4.3	1.215	2.04E-05
果物	121.7	0.053	0.00	0.4	0.109	1.83E-06
緑黄色野菜	77.2	0.473	0.04	3.4	0.972	1.63E-05
その他の野菜	167	0.414	0.03	3.0	0.851	1.43E-05
きのこ類	10.2	0.029	0.00	0.2	0.060	1.00E-06
海藻類	5.9	6.870	0.55	49.9	14.124	2.37E-04
飲料	134	0.366	0.03	2.7	0.752	1.26E-05
魚介類	96.1	3.570	0.29	25.9	7.340	1.23E-04
肉類	74.3	0.185	0.01	1.3	0.380	6.38E-06
聊	42.9	0.025	0.00	0.2	0.051	8.62E-07
乳類	129.1	0.081	0.01	0.6	0.167	2.79E-06
調理済	14.9	0.109	0.01	0.8	0.224	3.76E-06
合計	1346.1	13.8	1.11	100.0	28.3	4.75E-04

12 表V-4 食品群ごとのウラン一日摂取量(Shiraishi et al. 2000)

1 ③日本人のウラン一日摂取量

これまでに報告されている日本人のウラン一日当たり摂取量を表 V-5 に示している。 $\mathbf{2}$ ²³⁸U(Bq/日)で報告されているものを質量に変換した。とくに汚染のない場合、0.59~ 3 2.38 ug/日の範囲であった。報告値はマーケットバスケット法(MB)、陰膳法(DP)の 4 どちらかで行われたものであるが、MB の報告値の方が DP のそれよりも高い傾向が読 5 み取れる。ただし、この傾向は調査方法によるものである可能性がある。表に挙げた一 6 般公衆の成人を対象とした 10 の報告値の幾何平均値は、0.967 µg/日であった。岡山県内 7にあったウラン鉱山周辺の集落で1969~70年に行われた調査では1.5~5.9 μg/日とやや 8 高いウラン摂取量(Yamamoto et al. 1974)が得られている。 9

10

著者	年	調査法	²³⁸ U mBq/日	U µg/日	備考
Ohno et al	2010	MB		2.38	水道水含・6都市
Aung et al.	2006	DP		0.587	水道水含・成人 33名
Aung et al.	2006	DP		0.593	水道水含・小児 33 名
Shiraishi et al.	2000	MB	13.8	1.11	水戸
Kuwahara et al.	1997	MB	14	1.13	横浜
Yamamoto et al.	1994	DP	9.6	0.77	石川県・20人×2地域×2時 期、水道水含まず、GM、1992 年
Shiraishi & Yamamoto	1995	MB	16	1.29	水戸
Shiraishi et al.	1992	DP	8.8	0.71	水道水含・31都市・1981年
Shiraishi et al.	1990	MB	8.18	0.66	水戸、1984-87年
Yamamoto et al.	1974	DP		1.02	岡山 1969 年、15 人、対照地 域。人形峠付近:1.55~5.92 (n=39)
Yamamoto et al.	1974	DP		0.86	岡山1970年、18人、対照地 域。人形峠付近:2.05~5.71 (n=46)

11 表 V-5 日本人の食品からのウラン一日摂取量

12

13 (6) ヒトー日曝露量(成人)

14 (1)~(5)の情報を基にして、日本人のウラン一日総摂取量を試算した。試算にあ

たっては、日本人成人の換気率を15 m³/日、土壌摂食量を50 mg/日、ハウスダスト摂食量
 を 50 mg/日、飲水量を2 L/日と仮定した。

3 大気中ウラン濃度は(1)より 0.02 ng/m³、飲料水は(2)に挙げた Shiraishi ら(2004)
4 の水道水及び容器入り飲料水の平均値より 0.02 µg/L 、土壌は(3)の2つの報告の平均
5 値の平均をとり 2.0 µg/g、室内塵は(4)より 0.422 µg/g、食物は(5)の 10 の報告の幾
6 何平均値 0.967 µg/日を用いると、一日総摂取量は 1.13 µg/日と推定された。

7 推定した日本人のウランー日総摂取量 86%が食物からの摂取であり、次に寄与が大きい
8 のは土壌からの摂取で 9%、飲料水からの摂取は 4%であった(図 1)。また、Ohno ら(2011)
9 の MB 法による 6 都市での調査結果において食物+飲料水の一日ウラン摂取量 2.38μg/日
10 中飲料水は 0.04 μg/日で、1.7%の寄与と推定されている。

11

 $\frac{12}{13}$

図1 日本人のウラン一日総摂取量の内訳

- 14
 15 1.13 μg/日のウラン摂取は 28.9 mBq/日に相当し、これから推定される年間実効線量は
 0.00048 mSv/年である(成人の経口摂取の換算係数 ²³⁴U、4.9 x 10⁻⁸;²³⁵U、4.7 x 10⁻⁸;²³⁸U、
 4.5 x 10⁻⁸ mSv/Bq 使用、ICRP 1996)。
- 18

WHO 飲料水水質ガイドライン、米国環境保護庁 (EPA) /統合リスク情報システム (IRIS)
 のリスト、ATSDR の毒性学的プロファイル、EFSA の意見書等を基に、体内動態及び化
 学物質としての毒性に関する科学的知見を主に整理した。

22 なお、本文においては、ウラン化合物の重量から換算したウラン元素としての質量を μg
 23 U 又は mg U と表記した。

24

25 **7.体内動態**

26 **(1) 吸収**

27 ヒト及び動物における消化管からのウランの吸収は、ウラン化合物の溶解度に大きく
 28 依存する(Berlin and Rudell 1986)。経口摂取されたウランで最大の吸収率を示すもの

は、硝酸ウラニル六水和物、六フッ化ウラン及びフッ化ウラニルで、これらと比較する
 と四酸化ウラン及び三酸化ウランは約 1/2、四塩化ウラン、八酸化三ウラン及び四フッ化
 ウランは 1~2 桁低い(ICRP 1995)。

4 SD ラット及び New Zealand White (NZW) ウサギに自由に飼料を摂取させ、最高濃
5 度 600 ppm の硝酸ウラニル六水和物を最長 91 日間飲水投与した試験では、吸収率は
6 0.06%であった (Tracy et al. 1992)。0.05~0.5%の可溶性ウラン化合物 (フッ化ウラニ
7 ル又は 0.5~2%の硝酸ウラニル) 含有混餌の投与によるラット 2 年間試験では、消化管
8 吸収率は 0.038~0.078%であった。

ウラン化合物の吸収率に影響を与える要因として、年齢、絶食、鉄栄養等がある。絶 9 食させ、Fe(III)イオン又はキンヒドロンのような弱い酸化剤とウランの同時投与によ 10って SD 雌ラットのウラン (VI) 消化管吸収率は増加した (Sullivan et al. 1986)。絶食 11 Wistar ラットの雄に飲水投与した場合の硝酸ウラニルの消化管吸収率は、投与量に伴っ 12て増加し、0.03 mg U/kg 体重の硝酸ウラニル投与量では吸収率 0.06%、45 mg U/kg 体 13重の場合では吸収率 2.8%であった(La Touche et al. 1987)。²³³U-硝酸ウラニル六水和 14物を胃管によって投与した SD 雌ラットにおける消化管吸収率は、鉄欠乏ラットにおい 15ては 3.4 倍 (Sullivan and Ruemmler, 1988)、絶食ラットにおいては 2 倍 (Sullivan et 16al. 1986) 増加し、新生児においては成獣に比べて 3.6 倍に増加した。ヒヒ成獣(通常餌) 17における吸収率は 0.5%であるが、絶食ヒヒにおいては平均 4.5%であった 18(Bhattacharvya et al. 1989)。雄 B6CF₁/ANL マウスにおいても、通常餌での吸収率は 190.069%、24 時間絶食後の吸収率は 0.80%と、ヒヒの結果と整合性が取れていた 20(Bhattacharyya et al. 1989). 21

22 ラット及び豚の新生児において、消化管吸収率の上昇が認められた(ICRP 1995)。硝
 23 酸ウラニルを投与した2日齢ラットにおける吸収率は1~7%であり、成熟ラットより2
 24 桁高かった(ATSDR 1999、ICRP 1995、EFSA 2009、Sullivan and Gorham 1980)。

- ヒトの研究では、経口摂取したウランの吸収率の報告値は一貫して5~6%以下である。 26硝酸ウラニル六水和物を添加した清涼飲料水(10.8 mgU)を経口摂取した男性4名にお 27ける吸収率は 0.5~5% (Hursh et al. 1969)、ウラン高含有の飲料水を摂取した 12 名に 28おいては 0.25~4%未満 (Wrenn et al. 1989)、その他の飲料水試験においては 0.5~5% 29であった。50名のカナダ人を対象に、3日間の陰膳調査を行い、食物及び飲料水からの 30 ウラン摂取量と尿中排泄量を基に求めた消化管吸収率は、中央値 0.9% (0.1~7.5%) で 31あった (Zamora et al. 2002、2003)。同様な結果が、食事バランス研究においても得 32られている (Leggett and Harrison 1995、Spencer et al. 1990、Wrenn et al. 1989)。 33
- 34 Zamora ら(2002)がまとめた、ヒトを対象としたウランの消化管吸収率に関する報
 35 告のなかで、平均値又は代表値が与えられている八つの報告のデータの幾何平均をとる
 36 と、1.0% (0.4~2.4%)となる。また、ICRP によるヒトデータのレビューでは、ヒト
 37 食事中におけるウラン動態のモデルにおいて、可溶性化合物の吸収率として 0.02(2%)、
 38 不溶性化合物の吸収率として 0.002 (0.2%)を用いるべきであるとされている(ATSDR
 39 1999)。

ヒトにおけるウランの消化管吸収率に影響を与える要因として年齢などが知られてい 1 る。1歳未満の乳児の消化管吸収率は4%という推定結果がある(ICRP 1995)。5歳以 $\mathbf{2}$ 上のヒト被験者を対象としたデータによると、消化管吸収は年齢によって大きく変わる 3 ことはないとされている (Legget and Harrison 1995)。ヒト被験者におけるウラン吸 4 収率は、性別、年齢(13歳以上)、曝露期間、一日当たりの総ウラン摂取量(0.3~570 µg/ $\mathbf{5}$ 日) 又は食物及び水からの摂取の割合に影響されなかった (Zamora et al. 2002、2003)。 6 その他、フィンランド南部の134世帯205名(飲料水を介したウラン摂取量0.03~2.775 $\overline{7}$ ug/日)における研究では、ウランの吸収率に関して、性別による統計学的有意差はなか 8 ったものの、60歳未満の被験者群の吸収率は60歳以上群より高く、100µg/日未満の低 9 曝露群は 100 μg/日以上の高曝露群より高かった(Karpas et al. 2005)。 10

- 11
- 12

動物種	通常/絶食	ウラン化合物	摂取量 mg/kg	消化管吸収率 %
マウス	通常	硝酸塩	0.8-800	~ 0.1
	通常	重炭酸塩	0.003	0.07
	絶食	硝酸	0.003	0.8
ラット	通常	硝酸	0.3	< 0.35
	通常	硝酸、フッ化物	20-1000	0.02-0.08
	通常	硝酸	0.002-5	0.04-0.09
	通常	硝酸	20-110	0.04-0.06
	絶食	硝酸	0.1	0.17
	絶食	硝酸	0.03-45	0.6-2.8
ウサギ	通常	硝酸	0.3-40	0.06
ハムスター	通常	硝酸	0.6	0.8
犬	通常	硝酸	0.007、0.7	0.3-1.2, 0.4-1.5
	通常	フッ化物	0.007、0.7	0.4-1.5, 0.8-2.3
ヒヒ	通常	重炭酸塩	0.003	0.5
	絶食	重炭酸塩	0.001	4.5
ヒト	通常	硝酸塩、天然な	さまざま	1.0
		ど		

13 表 V-6 溶解性ウラン化合物の吸収率

Leggett & Harrison (1995)の原表を加工して作成。

- 14 15
- 16

17 (2)分布

Wistar ラットでは、経口投与した硝酸ウラニルは消化管から迅速に血流に入り、腎臓
 と骨に蓄積し、肝臓からはほとんど検出されない(La Touche et al. 1987)。腎臓と骨へ
 の蓄積は投与後 2~48 時間後にピークに達する。蓄積がピークに達するまでの時間は投
 与量が多いほど早い。その後、腎臓や骨から迅速に消失する(La Touche et al. 1987)。

生後1日目にウランに曝露した豚では、曝露後1週間以内に骨格に、投与量の30%が蓄
 積した(Leggett and Harrison 1995)。腎臓においては近位尿細管中のタンパク質、リ
 ン脂質及び錯体を形成して蓄積するのに対し、骨においてはヒドロキシアパタイトのカ
 ルシウムが UO₂²⁺ によって置換される(Moss 1985、EFSA 2009 に引用)。

- 成獣となってから継続的な飲水を通じて硝酸ウラニル 40 mg/L (2.0~2.9 mg U/kg 体 $\mathbf{5}$ 重/日) に曝露した雄 SD ラット 35 匹を対象に、各種組織中のウラン濃度を様々な時点 6 (32、95、186、312、368 及び 570 日) で測定した (Paquet et al. 2006)。ウランは、 78 ほとんどの臓器に分布し、最高濃度についてのレベル及び時期は臓器によって異なった。 連続曝露 1~3 か月における最高濃度は大腸でみられた約 2,200 ng/g であり、全腸管で 9 は約 1,200 ng/g であった。次いで、歯(約 650 ng/g)、腎臓(1 か月で 220 ng/g 及び 3 10 か月で 97 ng/g)、大腿骨(25~65 ng/g)及び肝臓(0.12~2.1 ng/g)の順で濃度が高か 11 った。10か月目までにウラン濃度は大腸で3,900 ng/g、肝臓で27 ng/gにまで上昇し、 12一方で、歯と腎臓においてはそれぞれ 450 と 60 ng/g まで減少した。19 か月間の曝露 1314後、ウラン濃度は、大腸で 5,500 ng/g、全腸管で 2,100 ng/g、歯で 750 ng/g、腎臓で 300 ng/g 及び大腿骨で 100 ng/g であった。ウランは脳にも分布が認められ、視床及び海馬 15で濃度が高かった(54 及び 30 ng/g)。なお、ウランは SD ラットの血液・脳関門を通過 16し、脳実質に蓄積するとの報告があり(Pellmar et al. 1999、Lemercier et al. 2003)、 17雄SD ラットの筋肉に劣化ウランペーストを埋め込んだ試験では、3か月後に大脳皮質、 18中脳、小脳、線条体及び脳幹、6 か月後に大脳皮質、中脳及び小脳に蓄積が認められた 19(Fitsanakis et al. 2006). 20
- 21 ヒト血漿中では、非拡散性ウラニル-アルブミン錯体が形成され、拡散性のイオン性炭
 22 酸水素ウラニル錯体 (UO₂HCO₃+)と平衡を保っている。ウラニル化合物は、リン酸基、
 23 カルボキシル基及び水酸基との親和性が高いため、タンパク質及びヌクレオチドと容易
 24 に結合し安定な錯体を形成する (Moss 1985)。ウランのヒトにおける体内負荷量は約
 25 90 µg であり、このうち 66%が骨格、16%が肝臓、8%が腎臓、10%がその他の組織に存
 26 在すると推定される (ICRP、1979、1995、1996)。

27 動物においてウランは、経胎盤投与後に胎盤を通過し胎児組織中に入る(WHO、2001)
28 が、ヒト新生児におけるウラン取込みに関する直接の情報はない。ヒトでも動物でも、
29 母乳中のウラン分布に関する情報はない。妊娠及び授乳中に母体の骨に蓄積されたウラ
30 ンが(カルシウムや鉛のように)動員されるかどうかはわかっていない。

31

32 (3)代謝・排泄

33 体液中では四価ウランは六価に酸化されやすく、酸化後にウラニルイオンを形成する。
 34 ウランは、一般的に、クエン酸、重炭酸及び血漿タンパク質と錯体を形成する(Cooper
 35 et al. 1982、Dounce and Flagg、1949、Stevens et al. 1980)。炭酸錯体の安定性は、
 36 溶液の pH に依存し、その pH は身体の様々な部位によって異なる(BEIR IV 1988)。
 37 低分子の重炭酸錯体は腎糸球体でろ過され、尿の pH に依存した濃度で尿中排泄される。
 38 アルカリ性条件下では炭酸水素ウラニル錯体のほとんどが安定で尿中に排泄されるが、
 39 低 pH では錯体の解離の程度は様々で、ウラニルイオンが尿細管細胞内でタンパク質と

1 結合するため、これが尿細管機能を低下させる可能性がある(WHO 2005)。

タンパク質(主にトランスフェリン)と結合したウランは、腎糸球体でろ過されにく
 く血中に残存しやすい。ウラニルイオンは、血中では循環トランスフェリンと結合し、
 尿細管でタンパク質やリン脂質と結合する(Wedeen 1992)。

ラットでは、吸収されたウランの大部分が数日以内に尿中排泄され、2~6日間で50% $\mathbf{5}$ (Durbin and Wrenn 1975)、7日間以内に 98%が排泄される (Sullivan 1986)。ラット 6 の腎臓中のウランの約95%が、1週間以内に尿中排泄され、その他の臓器にはほとんど 7残らない(LaTouche et al. 1987、Sullivan 1980a、1986)。動物の腎臓におけるウラン 8 の排泄は2コンパートメントの指数曲線で示されることが示唆されている。各コンパー 9 トメントの生物学的半減期は2及び50~60日(Diamond et al. 1989)、2及び13日 10 (Bentley et al. 1985)、3 及び 103 日(Wrenn et al. 1986)と報告されている。骨から 11 のウランの減少はかなりゆっくり進行し、2 コンパートメントモデルに基づく各相の半 12減期は、300及び 5,000日と推定されている(Wrenn et al. 1985)。10 コンパートメン 13トモデルを用いた別の推計では、ラットの腎臓及び骨における半減期はそれぞれ 5~11 14及び93~165 日とされている (Sontag 1986)。 15

ヒト被験者に硝酸ウランとして静脈内投与したウランの3分の2が一般的に最初の24 16時間で尿中排泄され、約10%以上が5日間で排泄される。糞便中排泄は全体の1%未満 17でしかない(ICRP 1995)。一方、経口投与後の尿中排泄は一般的に低く、全排泄の2% 18と見積もられている (Spencer et al. 1990)。3.3 Bg の ²³⁴U 及び 3.3 Bg の ²³⁸U6.6 Bg 19を含む 900 mLの水 を6時間かけて飲水投与した場合、ウランの大部分は2日間以内に 20糞便中排泄された(Singh and Wrenn 1987)。ウラン 10.8 mg 含有清涼飲料水を摂取し 21たボランティア 4 名においては、ウランは糞便中及び尿中に 25 日間かけて排泄された 22(Hursh et al. 1969)。ヒトにおいては半減期は腎臓中ウランの 99%で 1~6 日間、残り 23 $\mathbf{24}$ は1,500日間と推測されている(ICRP 1979)。

25 通常の食事を摂取している状態におけるウランの生物学的半減期は 180~360 日と推
 26 定されている(Berlin and Rudell 1986)。

27

28 8.実験動物等への影響

29 (1) 急性毒性試験

30 酢酸ウラニル二水和物の経口半数致死量(LD₅₀)は、雄 Swiss マウスで 242 mg/kg 体重、
 31 雄 SD ラットで 204 mg/kg 体重であり、皮下投与による LD₅₀ (マウス 20.4 mg/kg、ラッ
 32 ト 8.3 mg/kg)に比較して大きかった。これは消化管での吸収率が小さいことによるもの
 33 である。最も一般的な急性症状は、立毛、低体温、著しい体重減少並びに眼、後肢及び鼻
 34 での出血であった (Domingo et al. 1987)。

35 SD ラット(雄、6匹)を用いた劣化硝酸ウラニル(204 mg/kg 体重)の単回経口投与試
 36 験では、摂取3日後にアスパラギン酸アミノトランスフェラーゼ(AST)の増加が認めら
 37 れた。一方、この投与量では、腸に有害影響は認められなかったが、腸上皮のサイトカイ
 38 ンとケモカインの産生又は発現に変化が認められた(Dublineau et al. 2006)。

39 SD ラット(雄)に酢酸ウラニル二水和物(約 500 mgU /kg 体重)の単回強制経口投与

試験では、肝臓において、微小出血巣(microhemorrhagic foci)が認められた。投与によ
 って血中クレアチニン・尿素濃度、尿中タンパク・クレアチニン排泄が増加し、顕著な腎
 機能障害が起こったと考えられた。腎、肝にはわずかな顕微鏡的病変が認められた
 (Domingo et al. 1987)。

5 ウランの急性影響に対する感受性の種差は、ウサギ>ラット>モルモット>マウスとラ
 6 ンク付けされている(EFSA 2009、Orcutt et al. 1949)。

8 (2) **亜急性・亜慢性毒性試験**

9 ①4 週間亜急性毒性試験(ラット)

10SD ラット(雄、全 40 匹)を用いて酢酸ウラニル二水和物(0、2、4、8、16 mg/kg11体重/日:0、1.1、2.2、4.5、9.0 mg U/kg 体重/日)の4週間飲水投与試験が行われた。

4 mg/kg 体重/日以上の投与群で血中グルコース濃度の上昇、16 mg/kg 体重/日投与群で血液学的指標(ヘマトクリット値、平均赤血球ヘモグロビン濃度等)の上昇が観察された(Ortega et al. 1989)。著者らは、酢酸ウラニル二水和物の無毒性量(NOAEL)を2 mg/kg 体重/日(1.1 mg U/kg 体重/日)としている(Ortega et al. 1989)。

 $\frac{16}{17}$

7

②28 日間亜急性毒性試験(ラット)

- 18 SD ラット(雌雄各 10 匹/群)を用いて硝酸ウラニル(雄:0.05、0.27、1.34、6.65、
 19 35.3 mg U/kg 体重/日;雌:0.07、0.33、1.65、7.82、40.0 mg U/kg 体重/日)の28 日
 20 間飲水投与試験が行われた。
- 21 体重及び血液学的検査において影響は認められなかった。
- 22 唯一認められたのは、雌の 40 mg U/kg 体重/日投与群における血清尿酸は 1.64 mg/dL
 23 で、コントロール群(1.18 mg/dL)と比較して有意な上昇がみられた。
- 24 投与に関連した臓器重量(心臓、肺、肝、精巣上体、精巣、卵巣又は子宮)及び病理
 25 組織病理学的変化は認められなかった(ATSDR 1999、Gilman et al. 1998a)。
- 26 27

③28 日間亜急性毒性試験(ラット)

28SD ラット(雌雄各 15 匹/群)を用いて硝酸ウラニル(雄:最大 36.73 mg U/kg 体重/29日、雌:最大 53.56 mg U/kg 体重/日)の 28 日間飲水投与試験が行われた。

30 雄雌とも、甲状腺濾胞の大きさの多発的な減少(multifocal reduction of follicular
 31 size)、上皮の厚さの増加(increased epithelial height)が認められた(雄 0.31 mg U/kg
 32 体重/日群及び雌 2.01 mg U/kg 体重/日群)。雄のみに、甲状腺におけるコロイドの量及び
 33 密度の減少が認められた(ATSDR 1999、Gilman et al. 1998a)。

34

35 ④30 日間亜急性毒性試験(ウサギ)

36 ウサギ(性別不明、各投与群 6 匹)を用いて硝酸ウラニル六水和物(0、0.02、0.1、
 37 0.5%:0、2.8、14、71 mg U/kg 体重/日; EPA 換算)の 30 日間混餌投与試験が行われ
 38 た。

39 0.5% 投与群で6匹中6匹、0.1% 投与群で6匹中4匹が死亡した。 投与開始1週間後に

- 全投与群において体重減少が認められたが、投与終了後には 0.02%投与群の動物に回復
 が認められた。病理組織学的検査においては、0.02%投与群及び 0.1%投与群では中程度、
 0.5%投与群ではやや重度の腎障害が認められた(Maynard and Hodge 1949)。最小毒性
 量(LOAEL)は 2.8 mg U/kg 体重/日と考えられた。
- 6 Wistar ラットを用いた硝酸ウラニル六水和物 0.07 mg U/kg/day の 16 週間飲水投与試
 7 験では、甲状腺上皮の変性及び甲状腺機能の変化が認められた(ATSDR 1999、
 8 Malenchenko et al. 1978)。
- 9

22

23

 $\mathbf{5}$

10 530 日間混餌投与試験(ラット)

ラットを用いた 30 日間亜急性混餌投与試験では、664 mg U/kg 体重/日混餌投与され
 たラットにおける死亡率は 16%であった。主たる死因は、投与に関連した腎障害の合併
 症であった(ATSDR 1999、Maynard et al. 1953)。

14 四塩化ウラン、過酸化ウラン、フッ化ウラン、二酸化ウラン、三酸化ウラン等の不溶
 15 性ウラン化合物を 10 gU/kg 体重/日以上 30 日間経口投与されたラットにおいて、体重減
 少は散見されたものの、肝臓や腎臓に対する影響は認められなかった(Maynard and
 17 Hodge 1949)。この所見は、おそらく、不溶性塩であることにより消化管吸収が低かっ
 18 たことが原因であった。

ラットを用いた酢酸ウラニル二水和物(7,859 mg U/kg 体重/日)又は硝酸ウラニル六
 水和物(664 mg U/kg 体重/日)の30日間混餌投与(Maynard and Hodge 1949)試験
 において、体重増加率減少が認められたが詳細は不明である(Maynard et al. 1953)。

⑥その他(イヌ)

イヌを用いたフッ化ウラン(7.7、15.4、77.3、386.7 又は 3,864 mg U/kg 体重/日)の
30 日間投与試験(投与経路不明)では、ウラン摂取による肝毒性が認められ、15.4 mg
U/kg 体重/日投与群において、脂肪浸潤が認められた(ATSDR 1999、Maynard and
Hodge 1949)。

イヌを用いた硝酸ウラニル六水和物 9,393 mg U/kg 体重/日又は重ウラン酸アンモニウ
 ム 191 mg U/kg 体重/日の 30 日間経口投与試験では、肝臓に対する影響は認められなか
 った(ATSDR 1999、Maynard and Hodge 1949)。

イヌを用いた二ウラン酸ナトリウム 37.5 又は 187 mg U/kg 体重/日の 30 日間混餌投与
 試験では、非タンパク性窒素(NPN)及び BUN の上昇が認められたが、用量相関性は
 認められなかった。血糖もわずかに上昇した。病理検査において、高用量群では腎臓に
 おける軽度の変性及び壊死が認められたが、37.5 mg U/kg 体重/日投与群ではごくわずか
 な変性及び壊死のみであった(Maynard and Hodge 1949)。

36

37 ⑦3 か月間亜慢性毒性試験(ラット)

38 SD ラット(雄、動物数不明)を用いて酢酸ウラニル二水和物(0、10、20、40 mg/kg
 39 体重/日:0、5.6、11.2、22.4 mg U/kg 体重/日)の3か月間飲水投与試験が行われた。
本試験の各投与群では対照群も含め、1日2時間ずつ拘束によるストレスを与えた亜群
 が設定された。

3 精巣のスーパーオキシドジスムターゼ (SOD) 活性は、すべての投与群で上昇し、ス
 4 トレスの有無にかかわらず 40 mg/kg 体重/日投与群で最高値を示した。精巣のグルタチ
 5 オンレダクターゼ (GR)、カタラーゼ (CAT) 活性はわずかに低下したが、チオバルビ
 6 ツール酸反応物質 (TBARS)、酸化グルタチオン (GSSG) 濃度、グルタチオンペルオキ
 7 シダーゼ (GPx) 活性に差は認められなかった。

8 腎臓の GSSG 及び TBARS 濃度は、全投与群でストレスの有無にかかわらず増加した
 9 が、CAT、GR 及び GPx 活性は増加しなかった。SOD 活性は、すべての投与群で増加し
 10 ていた。腎臓の組織学的検査では、糸球体や尿細管に異常は認められなかったが、対照
 11 群を含むすべての投与群で内皮細胞に明瞭な毛細血管の拡張が認められ、20 mg/kg 群以
 12 上の投与群でその影響が増強した。しかし、いずれの指標においても、ストレスによる
 13 付加的な影響はほとんど認められていない(Linares et al. 2006)。

15 ⑧91 日間亜慢性毒性試験(ラット)

SD ラット(雌雄、各投与群 15 匹)を用いた硝酸ウラニル六水和物(<0.001、0.96、
4.8、24、120、600 mg/L:雄<0.0001、0.06、0.31、1.52、7.54、36.73 mg U/kg 体重
/日、雌
/日、雌
(0.0001、0.09、0.42、2.01、9.98、53.56 mg U/kg 体重/日;WHO 換算)の91
日間飲水投与試験が行われた。

主に腎臓及び肝臓に病理組織学的変化が認められた。雌雄の全投与群に、投与に関連 20した肝臓障害(肝細胞核の大小不同、小空胞化、門脈の密集の上昇並びに中心静脈周囲 21の肝細胞細胞質の空胞化及び均質化)が認められた。腎臓が最も影響を受け、全投与群 22について、雌雄では、尿細管上皮核の小囊状の変形(vesiculation)、雄では、近位尿細 23 $\mathbf{24}$ 管拡張、尿細管基底部の核の管腔側への変位及び細胞質の空胞変性及び拡張(dilation) が認められた。用量相関はみられなかった。その他の所見として、4.8 mg/L以上の投与 25群の雄に、糸球体の癒着、近位尿細管上皮細胞の核の管腔側への変位及び尿細管上皮の 26顆粒状細胞質の消失(cytoplasmic degranulation)が認められた。雌における腎臓障害 27として、全投与群でボーマン嚢被膜肥厚(24 mg/L で有意差なし)及び間質のレチクリ 28ン線維による線維化(reticlin sclerosis)(600 mg/L で有意差なし)が認められ、これら 29の影響は不可逆的変化と考えられた。4.8 mg/L以上の投与群では核大小不同が観察され 30 31た (EFSA 2009)。

32 雌雄で腎臓に対する感受性が異なる理由は不明であるが、全投与群で腎臓へのウラン
 33 蓄積量に雌雄での差は認められなかったため、著者らは、薬物動態学的な差によるもの
 34 ではないとしている(Gilman et al. 1998a)。また、著者らは、腎近位尿細管における変
 35 化の発生頻度に基づき、LOAEL0.96 mg/L(雄:0.06 mg U/kg 体重/日、雌:0.09 mg U/kg
 36 体重/日)としている(Gilman et al. 1998a)。

37

14

38 991 日間亜慢性毒性試験(ウサギ)

39 NZW ウサギ(雌と非 Specific Pathogen-Free (SPF)の雄、各投与群 10 匹)を用い

て硝酸ウラニル六水和物(雄<0.001、0.96、4.8、24、120、600 mg/L:0、0.05、0.2、
 0.88、4.82、28.7 mg U/kg 体重/日、雌<0.001、4.8、24、600 mg/L:0、0.49、1.32、
 43.02 mg U/kg 体重/日; ATSDR 換算)の91日間飲水投与試験が行われた。

4 血液学的影響は認められなかった。

5 雄では、病理組織学的変化は腎尿細管、肝臓、甲状腺、大動脈に認められ、近位尿細
6 管の変性の用量相関性(細胞質空胞化、核大小不同及び核の小空胞化)は 0.96 mg/L 投
7 与群から生じた。尿細管の核濃縮及び濃染は 0.96 mg/L 投与群を除く全投与群で認めら
8 れた。尿細管拡張、尿細管委縮、タンパク円柱及び間質の膠原線維による線維化が 120
9 及び 600 mg/L 投与群で、レチクリン線維による線維化が 24、120 及び 600 mg/L 投与
10 群で認められた。

雌では、用量相関的な尿細管の変化として、核大小不同と核の小空胞化が 4.8 mg/L 以
 上の投与群で認められたが、雄と比較し顕著ではなかった。また、尿細管拡張及び委縮
 も認められた。間質の膠原線維による硬化は 600 mg/L 投与群で認められ、レチクリン
 線維の硬化は 4.8 及び 600mg/L 投与群で認められた。

その他の病理組織学的変化については、甲状腺で泡沫状細胞質及び核の空胞化を伴う
濾胞上皮の厚みの不規則な増加、肝臓で小葉構造の乱れ(irregular accentuation of
zonation)及び核大小不同が認められた。肝臓の変化は雌雄で同程度であり、また、用
量依存的に認められたが軽度だった。甲状腺の変化も軽度であった(Gilman et al.
1998b)。

20 著者らは、尿細管の変化に基づき雄の LOAEL 0.96 mg/L(0.05 mg U/kg 体重/日)、

21 雌の LOAEL 4.8 mg/L(0.49 mg U/kg 体重/日)としている(Gilman et al. 1998b)。

22 本試験で観察された健康影響の症状及び程度の性差は、雌雄による薬物動態の違いを
 23 支持する結果であり、同じ著者らのラット試験の結果(Gilman et al. 1998a)とは異な
 24 っていた(EFSA 2009)。

26 上記試験における雄ウサギは SPF ではなく、試験中に4匹がパスツレラに感染し、う
 27 ち2匹が死亡した。また、これ以外にも雄2匹が死亡したため、合計6匹を統計解析か
 28 ら除外した。

29

25

NZW ウサギ(SPF、雄、各投与群 5~8 匹)を用いた硝酸ウラニル六水和物(<0.001、
 24、600 mg/L:0、1.36、40.98 mg U/kg 体重/日)の 91 日間飲水投与試験が行われた。
 本試験では腎障害の可逆性を検索するため最大 91 日間の回復期間が設定された。

33 血液学的影響は認められなかった。

34 肝臓において、肝細胞核の大きさの増加、核濃縮及び広範囲の細胞質空胞変性を伴う
 35 irregular accentuation of zonation を認めた。これらの変化は、投与との関連性はある
 36 ものの、用量相関性はなかった(Gilman et al. 1998c)。

37 600 mg/L (40.98 mg U/kg 体重/日) 投与群で、腎臓における限局的な近位尿細管拡張、
 38 核変性、細胞質空胞変性及び尿細管拡張が認められた。これらの影響は、91 日間の回復
 39 期間を経ても回復しなかった (Gilman et al. 1998c)。24 mg/L (1.36 mg U/kg 体重/日)

投与群では、尿検査項目において差は認められなかった。40.98 mg U/kg 体重/日投与群 1 において、曝露直後は腎臓相対重量が対照群に比べ有意に上昇していたが、45日後には $\mathbf{2}$ 有意な上昇は認められなかった。40.98 mg U/kg 体重/日投与群において、1 週目の尿量 3 が減少し、グルコース、タンパク質及びロイシンアミノペプチダーゼ活性の尿中排泄が 4 上昇した。同様の結果が投与開始後4週目にも認められた。回復期に入ってから7日間、 $\mathbf{5}$ 尿量は上昇し続け、グルコース排泄も増加し続けたが、タンパク質及びロイシンアミノ 6 ペプチダーゼ活性の尿中排泄は正常に戻った。40.98 mg U/kg 体重/日投与群においては、 $\overline{7}$ 91 日間の回復期の後、リンパ球の割合と総リンパ球数が増加したが、投与終了時にはこ 8 れらの変化は認められなかった。細胞質空胞化を伴った限局性の近位尿細管拡張は、い 9

10 ずれの投与群でも認められた。核の変化としては、核小空胞化、核大小不同及び核濃縮
た伴う管腔側への核の変位及び配列の乱れ(apical displacement and irregular
placement)が認められた。尿細管基底膜は障害初期には正常であったが、回復期に限局
的な肥厚が認められた。600 mg/L 投与群(40.98 mg U/kg 体重/日投与)で誘発された
変化は 45 日間持続し、中には 91 日間持続した例もあった(Gilman et al. 1998c)。また、

15 肝臓において、肝細胞核の大小不同、核濃縮及び細胞質空胞化を伴う肝小葉構造の乱れ
(irregular accentuation of zonation)を認めた。これらの変化は、投与との関連性はあ
るものの、用量相関性はなかった(Gilman et al. 1998c)。本試験で観察された腎毒性が
非 SPF ウサギを用いた試験(Gilman et al. 1998b)より軽度であった理由として、SPF
ウサギにおける腎臓のウラン濃度が非 SPF ウサギのそれより低かったためと著者らは指
20 摘している。

上述の腎臓の病理組織学的変化の発生頻度及び程度の統計学的解析結果では、40.98
 mg U/kg 体重/日投与群のみで有意差が認められたが、著者らはウサギを用いた以前の試
 験 (Gilman et al. 1998b) において、より低い投与量で観察された腎臓の変化と総合し、
 この試験における LOAEL を 24 mg/L と結論している (Gilman et al. 1998c)。

26 **①その他(イヌ)**

イヌを用いて硝酸ウラニル六水和物(最大 95 mg U/kg 体重/日)の138日間経口投与
 試験が実施され、95 mg U/kg 体重/日投与群では NPN、BUN、糖尿及びタンパク尿の上
 昇を認められたが、47 mg U/kg 体重/日投与群では影響が認められなかった (Maynard
 and Hodge 1949)。

31

25

32 (3) 慢性毒性試験及び発がん性試験

33 WHO は、高比放射能ウラン同位体の可溶性化合物又はウラン同位体の混合物の注射又
 34 は吸入による実験動物の骨肉腫誘発の報告はあるものの、可溶性又は不溶性ウラン化合物
 35 を経口摂取した動物における発がん影響は報告されていないとしている(WHO 2005)。

- 36
- 37 ①9 か月飲水投与試験試験(ラット)

38 腎毒性を検索するために実施された SD ラット(雄、動物数不明)を用いた劣化ウラ
 39 ン(化学形態不詳、40 mg U/L)の9か月間飲水投与試験では、赤血球数の20%低下が

観察された。これに対し、①赤血球生産の減少、②赤血球分解の増加、③腎機能障害の
 可能性を試験し、腎機能の低下による二次的な腎性貧血が原因と報告されている
 (Berradi et al. 2008)。

②1 年間慢性毒性試験(ウサギ)

6 ウサギ(雌、各投与群 6~8匹)を用いて硝酸ウラニル(0、0.02、0.2、1 mg U/kg 体
 7 重/日)の1年間経口投与試験が行われた。いずれの投与群においても投与に関連した変
 8 化は認められなかった(Novikov and Yudina 1970)。

9 10

11

4

 $\mathbf{5}$

③その他(イヌ、ラット、マウス、ウサギ)

イヌを用いたフッ化ウラン(8 mg U/kg 体重/日)又は硝酸ウラニル六水和物(95 mg
 U/kg 体重/日)の1年間投試験(投与経路不明)において、体重の変化は認められなか
 った(Maynard and Hodge 1949、Maynard et al. 1953)。

イヌを用いた四塩化ウラン(31 mg U/kg 体重/日)、六塩化ウラン(3,790 mg U/kg 体
 重/日)、フッ化ウラン(8 mg U/kg 体重/日)及び二酸化ウラン(4,407 mg U/kg 体重/日)
 の1年間慢性混餌投与試験では、呼吸器系に対する有害影響が認められた報告はない
 (Maynard and Hodge 1949、Maynard et al. 1953)。

19 各種ウラン化合物を比較的多量(~約 10 gU/kg 体重/日)に 1~2 年間混餌投与したラ
 20 ット、イヌ、マウス及びウサギの呼吸器系、心血管系、骨髄造血系にほとんど影響はみ
 21 られていない。

22 ラットを用いたフッ化ウラニル、硝酸ウラニル六水和物、四フッ化ウラン及び二酸化
 23 ウランの2年間混餌投与試験では、大量のウランを慢性摂取した場合、腎障害により寿
 24 命が短くなった。ラットにおいて寿命に影響を与えない最大用量は、硝酸ウラニルでは
 25 1,130 mg U/kg 体重/日、四フッ化ウランでは 1,390 mg U/kg 体重/日二酸化ウランでは
 26 1,630 mg U/kg 体重/日、フッ化ウラニルでは 18 mg U/kg 体重/日であった (Maynard
 27 and Hodge 1949)。

28 ラットを用いた硝酸ウラニル六水和物(33 mg U/kg 体重/日)の2年間混餌投与試験
29 において、軽度の貧血及び白血球数の上昇が認められた(Maynard and Hodge 1949、
30 Maynard et al. 1953)。

3.7 x 10⁵ Bq/kg 体重/日(3.7×10⁵ Bq/kg 体重/日又は 1.5×10⁴ mg U/kg 体重/日に相当)
 の放射線被ばくに相当するウランを 30 日間摂取したマウス、イヌ及びウサギ(Maynard
 and Hodge、1949、Tannenbaum and Silverstone、1951)、又は 3.0 x 10⁶ Bq/kg 体重/
 日(3×10⁵ Bq/kg 体重/日又は 1.2×10⁴ mg U/kg 体重/日に相当)のウランを 2 年間摂取
 したラット及びイヌにおいて病理組織学検査を行った臓器及組織にがん誘発の証拠は見
 出されなかった(Maynard and Hodge 1949、Maynard et al. 1953)。

1 (4) 神経毒性試験

①単回飲水投与試験(ラット)

3 SD ラット(雄、各投与群 10 匹)を用いて酢酸ウラニル(20、40、80、160、320、
640、1,280 mg/kg 体重:11、22、45、90、179、358、717 mg U/kg 体重;ATSDR 換
5 算)の単回飲水投与試験が行われた(Domingo et al. 1987)。

6 すべての投与量で、立毛、振戦、低体温、瞳孔縮小及び眼球突出が観察され、時間の
 7 経過に伴い重篤化した。したがって、LOAEL は 11 mg U/kg 体重と考えられた。

8 9

 $\mathbf{2}$

②2 週間/6 か月間神経毒性試験(ラット)

Long-Evans (LE) ラット (雌雄、各投与群 24~42匹)を用いた劣化酢酸ウラニル二
 水和物 (0、75、150 mg/L:0、25、50 mg U/kg 体重/日)の2週間又は6か月間飲水投
 与試験が行われた (Briner and Murray 2005)。

両投与期間において、150 mg/L 投与群の雌雄で試験終了時に体重増加抑制が認められ 1314た。2週間投与では、150 mg/L 投与群で、雄にオープンフィールドテストで行動変化(line crossing 及び rearing) が認められ、雌雄に脳の脂質に過酸化が認められた。過酸化脂質 15量の増加は、オープンフィールドにおける line crossing 及び rearing の頻度と相関性を 16示した。6 か月投与では、雄の行動変化として毛繕い、排便及び排尿が認められ、雌に 17も行動変化が認められた。脳脂質の過酸化は依然認められたが、オープンフィールド行 18動の頻度との相関性は認められなかった。著者らは、投与期間が長くなると、機能代償 19機構が作用して脂質過酸化による影響が減じたと推測している。 20

21 22

③1.5 か月間/9 か月間神経毒性試験(ラット)

23 SD ラット(雄、各投与群 20 匹)を用いて硝酸ウラニル六水和物(0、40 mg/L:0、2
 24 mg U/kg 体重/日)の 1.5 か月間又は 9 か月間飲水投与試験が行われた(Bensoussan et al.
 25 2009)が、いずれの投与群においても投与に関連した変化は認められなかった。

26 どちらの投与期間でも、体重、飲水量及び摂餌量に差は認められず、海馬と大脳皮質
27 へのウランの蓄積量は、1.5 か月間投与群では差は認められなかったが、9 か月間投与群
28 では対照群に比べ、海馬と大脳皮質でそれぞれ 20%と 50%増加した。著者らは、海馬と
29 大脳皮質での遺伝子発現、タンパク質レベルの変化を総合すると、コリン作動系がウラ
30 ンの標的となり、行動障害に関与している可能性があるとしている。

3132

④亜急性飲水投与試験(ラット)

33 SD 雄ラット 28 匹を用いた濃縮ウラン(硝酸ウラニル) 40 mgU/L を 90 日間飲水投与
 34 試験において、急速眼球運動(REM)を伴う睡眠時間の増加がみられた(Lestaevel et al.
 35 2005)。同じく SD 雄ラット合計 121 匹に劣化硝酸ウラニル六水和物(40 mgU/L)を 1.5
 36 ~9 か月間飲水投与した試験において、アセチルコリンエステラーゼ活性とモノアミン
 37 代謝への影響を調べた結果、長期曝露によって脳内神経伝達物質作用系に障害を起こす
 38 ことを示した(Bussy et al. 2006)。また、ラット(性別、動物数不明)における劣化硝
 39 酸ウラニル六水和物(40 mg/L)の 9 か月間飲水投与試験で、脳内コレステロール代謝

- 1 に関係する種々の酵素の遺伝子発現レベルに変化が認められており(Racine et al. 2009)、
- 2 ウランによる中枢神経への影響が示唆されている(Houpert et al. 2005)。
- 4 (5) **生殖·発生毒性試験**

5 ①発生毒性試験(マウス)

6 Swiss マウス(雌、各投与群 20匹)に酢酸ウラニル二水和物(0、5、10、25、50 mg/kg
7 体重/日:0、2.8、5.6、14、28 mg U/kg 体重/日)を妊娠 6~15 日の間飲水投与した(Domingo et al. 1989a)。

9 母動物は剖検を行った妊娠 18 日まですべて生存したが、2.8 mg U/kg 体重/日以上の投
5群で、投与期間中の体重増加及び肝臓重量の増加並びに投与後の摂餌量の低下がみら
れた。胎児に関しては、2.8 mg U/kg 体重/日以上の投与群で、体重低下及び外表異常胎
児発現頻度の上昇がみられ、5.6 mg U/kg 体重/日以上で胎児長の短縮、一腹当たりの発
育不良胎児発生頻度上昇及び口蓋裂を有する胎児の頻度上昇が観察され、14 mg U/kg 体
重/日以上の投与群で、骨格変異及び骨化遅延の頻度上昇が認められた。

15 著者らは、母動物及び発生毒性に対する無作用量 (NOEL) を 5 mg/kg 体重/日 (2.8 mg
 16 U/kg 体重/日)未満としていた (Domingo et al. 1989a)。

17 NOAEL は 2.8 mg U/kg 体重/日未満と考えられた。

18

3

19 ②発生毒性試験(マウス)

20 Swiss マウス(雌、各投与群 20匹)に酢酸ウラニル二水和物(0、0.05、0.5、5、50 mg/kg
 21 体重/日:0、0.028、0.28、2.8、28 mg U/kg 体重/日)を妊娠 13 日から分娩後 21 日まで
 22 強制経口投与した (Domingo et al. 1989b)。

母動物の死亡(2.8 mg U/kg 体重/日群で2/20 例、28 mg U/kg 体重/日群で3/20 例) 23は酢酸ウラニル投与に起因するとされたが、母動物では体重や摂餌量に明確な変化は認 $\mathbf{24}$ められなかった。28 mg U/kg 体重/日投与群では、分娩 21 日後の一腹当たり児動物数の 25減少並びに生存率及び授乳率の低下が認められた。投与は出生時又は4日の平均児数に 26有意な影響を与えなかったが、分娩後21日の児数は28mgU/kg体重/日投与群において 27有意に減少した。2.8mg U/kg 体重/日投与群で1 母体、28 mg U/kg 体重/日投与群で2 28母体で児の食殺がみられた。28 mg U/kg 体重/日投与群において、21 日生存率及び哺育 29率が有意に減少した。発達指標(耳介展開、切歯萌出、眼瞼開眼)、児の体重及び体長に 30 有意差は観察されなかった。 31

- 32 著者らは、母体毒性及び生殖影響の NOEL は 5 mg/kg 体重/日(2.8 mg U/kg 体重/日)
 33 より低いとした(Domingo et al. 1989b)。
- 34 NOAEL は 0.28 mg U/kg 体重/日と考えられた。
- 35

36 ③生殖毒性試験(マウス)

37 Swiss マウス(雌雄、各投与群 25 匹)において、酢酸ウラニル二水和物(0、5、10、
 38 25 mg/kg 体重/日:0、2.8、5.6、14 mg U/kg 体重/日)を雄に交配前 60 日間強制経口投
 39 与し、交配前 14 日同様の投与が行われた雌と交配させた。雌には交配、妊娠、出産及び

- 授乳期間を通して投与が続けられた。半数の雌は妊娠13日で屠殺され、剖検が行われた
 (Paternain et al. 1989)。本論文には母体体重への影響等の母体毒性に関する記述はな
 3 い。
- 4 交配又は受胎能にウラン投与に起因した影響は認められなかったが、高用量群(14 mg
 5 U/kg 体重/日)では後期吸収胚数及び死亡胎児数の有意な増加が認められた。低用量投与
 6 群(2.8 mg U/kg 体重/日)のみで平均総着床数が有意に増加した。5.6 及び 14 mg U/kg
 7 体重/日投与群では、生後0日の死亡児数が増加し、14 mg U/kg 体重/日投与群では生後
 8 0及び4日の死亡児数が増加した。児体重の低値が、生後0日の14 mg U/kg 体重/日、
- 9 生後4日の5.6及び14 mg U/kg 体重/日、生後21日の2.8、5.6及び14 mg U/kg 体重/
 10 日で認められた。生後0、4及び21日の胎児長では14 mg U/kg 体重/日は高値であった。
- 11 著者らは、通常ヒトが摂取する濃度では、生殖能、一般的な生殖指標及び児動物の生存12 に有害影響を与えないとしている。
- 13 この結果より、最小投与量においても児体重低下が観察されたことから、NOAEL は
 14 設定できないと考えられる。
- 1516

④生殖・発生毒性試験(マウス)

17 Swiss マウス(雄、各投与群 24 匹、全 120 匹)に酢酸ウラニル二水和物(0、10、20、
40、80 mg/kg 体重/日:0、5.6、11.2、22.4、44.8 mg U/kg 体重/日)を交配前 64 日間
19 飲水投与し、各投与群 8 匹の雄を非投与雌と 4 日間交配させた(雄 1 匹に対して雌 2 匹)。
20 残りの雄(各投与群 16 匹)は病理及び精子検査が行われた(Llobet et al. 1991)。

- 11.2 mg U/kg 体重/日で精巣上体の絶対及び相対重量が低下し、44.8 mg U/kg 体重/日 21投与群で体重が低下し、ライディッヒ細胞の変性及び空胞化が認められた。用量依存的 22ではない精巣の精子細胞数低下が 5.6 及び 11.2 mg U/kg 体重/日投与群で、精巣上体の精 23子数低下が 5.6、11.2 及び 22.4 mg U/kg 体重/日投与群で認められたが、著者らは精巣及 $\mathbf{24}$ び精巣上体の重量が正常であり、また、精子形成も正常であるとし、いずれの用量にお 25いてもウランによる精巣機能及び精子形成への影響は認められなかったと結論づけてい 26る。雌の妊娠率は、用量依存的ではないが全投与群で著しい有意な低下を示した(対照 27群 81%、投与群 25~38%)。総着床数、前期及び後期胚吸収数並びに生存及び死亡胎児 28数については、非投与雄と交配した雌のデータと比較して影響は認められなかった 29(Llobet et al. 1991) 30
- 31 投与雄と交配させた無処置雌の妊娠率が最小投与量からみられていることから、
 32 NOAELは設定できないと考えられる。
- 33

34 ⑤生殖毒性試験(マウス)

35 C57BlxCBA マウス(雌、各投与群 10匹)に酢酸ウラニル(0、5、50、400 mg/L:0、
 36 1.25、12.5、100 mg U/kg 体重/日)を15週間飲水投与し、一部を非投与の雄と交配さ
 37 せる試験が行われた(Arnault et al. 2008)。

38 投与マウスの行動、被毛状態及び体重への影響は認められなかった。各投与群で、ウ
 39 ランの腎臓及び骨への用量依存的な蓄積が認められたが、卵巣への蓄積は認められなか

- った。全卵胞に占める各発達段階の卵胞の割合が調べられ、成熟卵胞(大型胞状卵胞、
 直径>200 μm)の割合は、投与終了直後の母動物では 50 mg/L 以上の投与群で低下し、
 雌の児動物(約9週齢¹)でも5 mg/L 以上の投与群で低下が認められた。逆に、非投与
 の雄と交配後3か月の雌動物では、二次卵胞及び初期前胞状卵胞(直径 70~110 μm)の
 割合が上昇した。しかし、いずれの場合も卵胞閉鎖には影響が認められなかった。
- 6 この結果より、雌の児動物の卵胞形成障害に基づく LOAEL は 1.25 mg U/kg 体重/日
 7 と考えられる。

9 **⑥生殖・発生毒性試験(ラット)**

8

21

26

27

SD ラット(雄、各投与群 8 匹)に酢酸ウラニル二水和物(0、10、20、40 mg/kg 体 10 重/日:0、5.6、11.2、22.4 mg U/kg 体重/日)を3か月間飲水投与し、別の4群には、 11それぞれ酢酸ウラニル二水和物の投与とともに1日2時間ずつ拘束ストレスを与えた 12(Albina et al. 2005)。投与終了後、非投与雌と交配させ、妊娠した雌の半数は母動物及 1314び妊娠指標への影響の観察にあてられ、残り半数は出産後の児動物の観察にあてられた。 40 mg/kg 体重/日投与群において妊娠子宮重量の低下がみられた。一腹当たりの着床数、 15生存着床数及び死亡胎児数には、差は認められなかった。また、出生時に一腹当たりの 16胎児数、生存率、授乳率、耳介展開及び開眼に要する日数には変化は認められなかった。 17さらに、児動物の受動回避試験、水迷路試験でも、際立った影響は認められなかった。 18著者らは、本試験で用いたウラン投与量では、同時にストレスを与えても、ウラン投与 19で受けた影響が増幅されることはないとしている。 20

22 ⑦その他(ラット)

23 ラット(雌、各投与群 16 匹)における酢酸ウラニル二水和物(40、80 mg/kg 体重/
 24 日:22.4、44.9 mg U/kg 体重/日)の交配前 4 週間、妊娠期間及び授乳期間の飲水投与試
 25 験が行われたが、児動物の行動に影響は認められていない(Sánchez et al. 2006)。

⑧その他(マウス)

28 低用量のウランの雌B6C3F1又はC57BL/6マウスの子宮及び卵胞に対する影響が報告
 29 されている(Raymond-Whish et al. 2007)。

30 28日齢雌マウス(9~10匹/群)を用いて硝酸ウラニル六水和物(0.5、2.5、12.5、60
 31 mg/L;1、5、25、120µg/L)を30日間飲水投与試験したところ、用量依存性のない各
 32 種卵胞の減少がみられたが、体重及び各器官の重量に一貫した変化は認められなかった。
 33 雌マウス(5匹/群)の交配前30日間から妊娠期間を通して硝酸ウラニル六水和物(0.5、

- 34 2.5、12.5、60 μg/L; 0.001、0.05、0.025、0.12 μM)を飲水投与し、分娩日に母マウス
 35 及び雌児(7~9 匹/群)の卵巣を採取して調べた。2.5 μg/L 以上の投与群の母動物で用量
 36 依存的な小型一次卵胞数の減少が、雌児マウスでは 0.5 μg/L 以上で用量依存性のない原
- 37 始卵胞(primordial follicule)数の減少がみられた。28 日齢において卵巣摘出した雌マ

¹ 母動物は15週間飲水投与後交配し出産させた。投与終了後3か月で母動物と雌児動物を同時に屠殺して卵 巣を調べている。

ウス又は正常 C57Bl6 マウス (5~6 匹/群) に 0.006、0.12、1.20 µM (60、600、6000 µg/L)
 の硝酸ウラニルを 30 日間飲水投与したところ、子宮内膜の肥厚を伴う用量依存性のない
 子宮重量の増加がみられ、特に 0.12 µM では有意差がみられた。膣開口の促進、恒常的
 な膣上皮細胞の角化等のエストロゲン様作用が認められた。これらの作用は、エストロ
 ゲン受容体拮抗剤 ICI182、780 の投与により抑制された。

6 これらの所見から、本試験の NOAEL は 0.5 μg/L と考えられた。

7 妊娠中の体重を 20 g、一日の飲水摂取量を 5~10 ml と仮定すると、最低用量である
 8 飲水中 0.5 μg/L は 0.125~0.250 μg U/kg 体重/日と換算できる。

9

10 **(6) 遺伝毒性試験**

ウラン化合物の実験動物による *in vivo* 遺伝毒性試験成績については以下の三つの報告
 があった。

フッ化ウラニル(18.9%の ²³⁵U を含有)のマウス精巣内投与による染色体異常試験が行われた(Hu and Zhu 1990)。BALB/c 雄マウス(各投与群 5 匹)の精巣に 0.05~1.0 μg/
精巣の用量で投与し、1、13、36 日及び 60 日後に染色体標本を作製して試験が行われた。
精原細胞では 0.5 及び 1.0 μg/精巣の用量で 1、13 及び 36 日後に染色体切断頻度の有意な
増加がみられ、とくに 13 日後では倍数体頻度の有意な増加がみられている。また、第一精
母細胞では、投与 1 日後の 0.5 及び 1.0 μg/精巣の用量と 13 日後の 0.25、0.5 及び 1.0 μg/
精巣の用量で染色体異常頻度の有意な増加がみられた。

20

トランスジェニックマウス (Big Blue) を用いて劣化ウラン (²³⁸U: 99.75%、²³⁵U: 0.20%、 21²³⁴U:微量) についての *in vivo* 遺伝子突然変異試験が行われている(Miller et al. 2010)。 22劣化ウランペレットを雄 Big Blue マウスの両脚の腓腹筋内に挿入(低用量:2個、中用量: 234個、高用量:6個)し、7か月後に正常雌マウスと交配した。生まれてきた児動物で lac I 24遺伝子を持つものの骨髄 DNA について解析したところ、用量(7か月後の大腿骨ウラン濃 25度はそれぞれ 321、477、559 ng U/g 組織)に依存して突然変異頻度が増加しており、中 26用量及び高用量では統計的に有意な増加となった。ウラン濃度は同じ(50 mg U/L)だが、 27比放射活性の異なる硝酸ウラニル(67.0 kBq/g と 14.7 kBq/g) を雄 Big Blue マウスに飲 28水で投与し、2か月後に正常雌マウスと交配させ、児動物について同様に調べたところ、 29突然変異頻度は比放射活性に依存して増加していた。このことから突然変異の誘発には放 30 射線が関与していると考えられる。以上の結果は劣化ウランに曝露された雄親からゲノム 31不安定性をもたらす因子が次世代に伝播するルートのあることを示している。 32

33

34 雌マウスに硝酸ウラニル六水和物(2.5、5、10 mg U/kg/日)を40日間飲水で投与し、
35 妊娠ロバ血清とヒト繊毛ゴナドトロピンを投与して過排卵を誘導し、24時間後に採取した
36 卵母細胞において小核試験が行われている(Kundt et al. 2009)。小核の出現頻度は、対照
37 群の0.21%に対し、処理群では1.92%、2.98%、3.2%と用量に依存して増加し、いずれの
38 用量においても陰性対照に比べ統計的に有意であった。中期分裂像においても染色体配列
39 の異常を示す頻度が対照群に比べ処理群において統計的に有意に増加していた。雌マウス

1 における本試験での LOAEL は 2.5 mg U/kg 体重/日未満であると推測している。

 $\mathbf{2}$

ウラン化合物についていくつかの in vitro 遺伝毒性試験成績が報告されている。チャイ 3 ニーズハムスターCHO EM9 細胞株を用いた遺伝子突然変異(hprt 座位)試験では、劣化 4 酢酸ウラニル(UA: 200 uM)及び過酸化水素(H₂O₂: 100 uM)処理で得られた変異コロ $\mathbf{5}$ ニーと未処理細胞から得られた自然誘発突然変異コロニーについて突然変異の DNA 解析 6 が行われている(Coryell and Stearns 2006)。自然誘発突然変異及び H₂O₂ 誘発突然変異 7と比べると、UA 誘発突然変異では、1~22 塩基の欠失が有意に少なく、1~2 塩基の挿入 8 が自然誘発突然変異よりも有意に高いが、H₂O₂誘発突然変異よりは有意に少なかった。1 9 エクソン以上にわたる挿入や欠失のような大きな変異の頻度は、自然誘発突然変異に比べ 10 ると UA 誘発突然変異において有意に高く、UA によって DNA 鎖切断又は架橋が生じてい 11 る可能性がある。ただし、酸化的 DNA 損傷に由来すると考えられる塩基置換の割合は、 12UA誘発突然変異、H₂O₂誘発突然変異及び自然誘発突然変異において明らかな差異はみら 1314れていない。

15

16 酢酸ウラニル二水和物(UA: 1.0 mM)で pBluescript SK+プラスミド DNA をアスコル
ビン酸(Asc: 1.0 mM)と共に処理をすると DNA 鎖切断が生じ、UA 又は Asc 単独より6
~8 倍増加している(Yazzie et al. 2003)。もし、DNA 切断に α線が直接関与するなら、
このような差異が生じ難いことから、化学的な反応は α線よりはむしろ DNA 鎖切断に関
20 与している可能性を推測している。

21

チャイニーズハムスターCHO AA8 細胞株由来で、DNA 修復酵素 XRCC1 の活性が低下 22している CHO EM9 株を用いた劣化酢酸ウラニル二水和物についての報告例がある 23(Stearns et al. 2005)。遺伝子突然変異(*hprt*座位)は両細胞株共に 0.1~0.3 mM の用 24量で弱い陽性結果を示し、その頻度は親株 AA9 よりも EM9 株の方が5倍程高かった。コ 25メットアッセイによる DNA 鎖切断は両細胞株共に 0.05~0.3 mM の用量で陽性結果を示 26したが、用量依存性がみられず、両細胞株の反応に差異はみられなかった。同じ用量範囲 2728で DNA 付加体が測定され、用量依存的な DNA 付加体の増加がみられ、24 時間処理より も48時間処理の方が多かった。 29

30

31 硝酸ウラニルのチャイニーズハムスターCHO 細胞株による染色体異常、小核及び姉妹染
22 色分体交換についての報告がある(Lin et al. 1993)。染色体異常試験(処理時間 2 h+回
33 復時間 16 h)では 0.1 mM で染色体異常頻度の有意な増加がみられ、二動原体、環状染色
34 体、切断及び染色分体交換型異常が観察されていた。サイトカラシン B を用いた小核試験
35 (処理時間 2 h+回復時間 16 h)では 0.1 mM と 0.3 mM で小核頻度の有意な増加がみら
36 れていた。姉妹染色分体交換試験(処理時間 2 h+回復時間 22 h)では 0.01~0.1 mM で
37 有意な増加がみられていた。

38

39 劣化硝酸ウラニル(0.3~0.7 mM)についてのラット腎臓近位尿細管由来の培養細胞

(NRK-52^E)を用いたコメットアッセイでは、処理用量及び処理時間に依存して DNA 鎖
 切断が増加していた。一方、サイトカラシン B を用いた小核試験では、劣化硝酸ウラニル
 0.1~0.6 mM の 24 時間処理が行われ、陰性の結果が得られている(Thiebault et al. 2007)。

4

5 劣化硝酸ウラニル (1~1,000 M) でウシ胸腺 DNA を過酸化水素 (H_2O_2 : 0.5 mM) と共 6 に処理すると劣化硝酸ウラニルの用量に依存して酸化的 DNA 損傷を伴う 8-ヒドロキシ-2'-7 デオキシグアノシン (8-OHdG) の増加がみられた (Miller et al. 2002)。ただし、劣化硝 8 酸ウラニル (1 mM) 及び H_2O_2 (0.5 mM) 単独の処理では DNA 損傷はみられていない。 9 活性酸素の種々の阻害剤を添加すると 8-OHdG の生成が抑制されていることから、劣化硝 10 酸ウラニルからの α 線によるものではなく、活性酸素種を介して DNA 損傷が引起されて 11 いると推測している。

12

硝酸ウラニル三酢酸 (uranyl nitrilotriacetate (U-NTA): 0.01~1 mM) について、 13ヒト結腸癌細胞(HT29 clone19A)、結腸腺腫細胞(LT97)及び結腸初代培養細胞を用い 14たコメットアッセイが行われ、HT29 clone19A 細胞と結腸初代培養細胞では1 mM で、 15LT97 細胞では 0.5 及び 1.0 mM で陽性結果が得られている (Knoebel et al. 2006)。U-NTA 16による LT97 細胞での染色体異常を 24 色の蛍光 in situ ハイブリダイゼーション (FISH) 17法を用いて解析したところ、総染色体異常頻度は用量に依存して増加し、相互転座の割合 18も用量に依存して増加していた。U-NTA では転座、欠失及びロバートソン型転座が見いだ 19 され、エタンスルホン酸エチルでは転座の割合が多いのに対し、U-NTA では欠失が多かっ 20た。がんに関連する遺伝子(apc、kras、tp53)を担っている5番、12番及び17番染色 21体における異常割合は、エタンスルホン酸エチルと比較すると U-NTA の方が高いと報告 22している。 23

24

25 9. ヒトへの影響

26 (1) 腎障害

1993年にカナダのサスカチェワン州の3地域の住民100人において、飲料水のウラン 27濃度(<0.1~50 µg/L)から推定した累積ウラン摂取量と血清クレアチニン又は尿中の微量 28アルブミン(クレアチニン補正後)との関連を検討した予備的研究(Mao 1995)によると、 29ウラン摂取の血清クレアチニンに対する影響は確認されなかったが、尿中の微量アルブミ 30 ンに対する影響については有意な回帰係数(年齢補正後)を示した。ただし、対象者のサ 31ンプリングをランダムに行ったか、及び混合した3地域の人口比を反映しているかは確か 32でないなど疫学的問題点があり、また、腎機能の異常まで呈したものはいなかったため、 33 本研究の知見は限定的である。 34

35 井戸からウランが検出されたカナダ・ノバスコシア州の一地域における井戸水を使用す
 36 る住民 30 名(ウラン濃度 2~781 μg U/L)と水道水(ウラン濃度
 37 住民 20 名について、摂取飲料水量などから推定された摂取ウラン量と腎機能指標との関連
 38 を分析した研究(Zamora 1998)では、尿中の糖分、アルカリホスファターゼ(ALP)及
 39 びβ₂-ミクログロブリン(β₂-MG)が群間で差を呈していたが、クレアチニン及び蛋白には

- 1 有意差はなかった。飲食からのウラン摂取は近位尿細管に影響を与えると結論付けている。
- $\mathbf{2}$

3 ウランが検出される井戸から飲料水を得ていたフィンランドの住民 193 人において井戸
 4 水中及び尿中のウラン濃度と腎機能の諸指標を検討した研究(Kurttio 2006)では、尿中
 5 のウラン濃度は井戸水中のウラン濃度を強く反映していたが、N-アセチル-β-D-グルコサミ
 6 ニダーゼ(NAG)その他の多数の腎臓に関する指標と有意な関連を示さなかった。ただし、
 7 尿中のウラン濃度と拡張期血圧との関連は統計学的には有意であったが、回帰直線の傾き
 8 は小さかった。また、統計学的には、決定係数も小さく、多仮説検定の問題もあり、臨床
 9 的意義は乏しいと思われる。

10 同じく井戸水(ウラン濃度 0.2~470 μg U/L)を摂取していた住民 301 人と対照群 152
 11 人の β₂-MG、NAG 等の諸指標を比較した別の研究(Seldén 2009)でも、尿中ウラン濃度
 12 は摂取群が対処群の 8 倍であったが腎機能の指標に有意な差は認められなかった。

アメリカ合衆国コネチカット州の農村部で、高ウラン濃度(866 及び 1,160 μg U/L)の
 井戸水を使用している家族 7 人(大人 2 人、子供 5 人(3~12 歳))に関する症例報告がな
 された(Magdo 2007)。尿中 β₂-MG は 3 歳の子供のみ高値(90 μg/mmol Cre)を示した
 が、その他の家族では正常範囲内の値を示し、この井戸水の使用の停止 3 か月後には、当
 該 3 歳児の尿中 β₂-MG は 52 μg/mmol Cre まで低下した。

18

19 (2)発がん性

20 BEIR は、通常のウラン濃度の食物や飲料水の摂取では、発がん作用や慢性的な影響を
 21 及ぼすことはないとしている(BEIR IV 1988、ATSDR 1999)。

22 自治体が水道供給地域外の住民のコホートから無作為抽出した 4,590 名とがん登録で確
23 認された膀胱がん 884 名及び腎臓がん 644 名とを対比したケース・コホート研究 (Kurttio
24 2006)では、サンプリングした井戸水中の濃度によってウラン、ラドン及びラジウムの発
25 症 10 年前までの摂取量が算定され、喫煙も考慮に入れて修正比例ハザード・モデルでリス
26 クが算定された。その結果、いずれの放射性物質ともがんのリスクにまったく関連してい
27 なかった。

28

29 (3) その他の影響

30 天然ウラン濃度が高いフィンランド南部の掘削井戸水を平均 13 年間飲用している 26~
 31 83 歳の男性 146 人と女性 142 人を被験者として、ウラン摂取量と骨形成及び骨吸収に関
 32 わる生化学指標を調べた。井戸水の平均ウラン濃度は 27 µg U/L (四分位範囲が 6~116 µg
 33 U/L) で、一日当たりの平均ウラン摂取量は 36 µg U/日 (四分位範囲が 7~207 µg U/L)、
 34 累積ウラン摂取量は 120 mg U/日 (四分位範囲が 20~660 mg U/L) だった。

35 男性では、ウラン摂取量に関して、骨吸収指標のI型コラーゲンC末端テロペプチド及 36 び骨形成指標のオステロカルシンの用量依存的な増加が認められた。しかし、女性では、

36 び骨形成指標のオステロカルシンの用量依存的な増加が認められた。しかし、女性では、
 37 相関が認められた指標はなかった。著者らは、ヒトにおいて、骨は天然ウラン摂取による

1 化学的有害性の標的臓器としている(Kurttio et al. 2006)。

酢酸ウラニル15g及びベンゾジアゼピンの不明量を故意に摂取した自殺未遂の男性入院 4 患者1名(年齢・体重不明)が報告されている(Pavlakis 1996)。体重は記載されていな $\mathbf{5}$ いが、標準体重 70 kg に対しては約 131 mg U/kg に相当していた。始めの血液化学的検査 6 は正常であったが、入院16時間後には、血中尿素レベルは2倍、クレアチニンレベルは 73.5 倍に上昇し、腎障害が示唆された。重金属摂取による急性腎障害と診断され、Caエチ 8 レンジアミン四酢酸、重炭酸ナトリウム及びマンニトールによるキレート療法が開始され 9 た。キレート療法及び透析開始後5日目で3.24 μmol/Lから1.18 μmol/Lまで減少した。 10 患者の貧血は8週間続き、持続性腎機能障害を伴った。 11

12 胃粘膜層の損傷でウランの吸収が増加することにより、既存の消化性潰瘍疾患が増悪し
13 た可能性が示唆された。増悪する横紋筋融解症(生化学的にクレアチニンキナーゼ上昇で
14 特徴付けられる)も併発したが、6 か月後に治癒し、その後、筋毒性の残留徴候は認めら
15 れなかった。増悪する肝機能障害(血清アラニンアミノトランスフェラーゼ、AST 及び γ16 グルタミルトランスペプチダーゼ値上昇)も認められたが、6 か月後には、肝毒性の残留
17 徴候は認められなかった。

18

19 **10. 国際機関等の評価**

- 20 (1) IARC (1999)
- 21 グループ3:ヒトに対する発がん性について分類できない。
- IARC は「異物として体内に残留する劣化ウラン(砲弾やミサイルの金属断片に含まれ
 る)」について、ヒトの発がん性の証拠は不十分であるとしている。なお、ウランとその化
 合物についての分類は行われていない。
- 25

28

26 (2) FAO (国際連合食糧農業機関)/WHO 合同食品添加物専門家会議 (JECFA)

27 評価書なし

29 (3) WHO 飲料水水質ガイドライン第3版(WHO 2008) 及び根拠文書(WHO 2005)

30 ヒト及び実験動物に対するウランの発がん性データは不十分なため、ウランのガイドラ
 31 イン値は耐容一日摂取量(TDI)法より算出した。しかし、適切な慢性試験を抽出できな
 32 かったため、最も感受性の高い性及び種に対して実施された飲水投与による亜慢性試験
 33 (Gilman et al. 1998a)の結果からTDIを求めた。このラットの91日間試験における、
 34 雄ラットの腎臓の近位尿細管曲部での変性に基づき、LOAEL 0.06 mg U/kg 体重/日として

- 35 いる。LOAEL 0.06 mg U /kg 体重/日に不確実係数 100 (個体差 10、種差 10) を適用して、
- 36 TDI を 0.6 μg U/kg 体重/日と算出した。なお、報告された影響は軽微なため、NOAEL の
- 37 代わりに LOAEL を用いたことに対する不確実係数を適用する必要はなく、腎臓における
- 38 ウランの推定半減期は15日で、継続曝露しても腎臓障害の悪化は予測されないため、試験39 期間(91日)が短期であることに対する不確実係数も不要としている。

なお、WHO 飲料水水質基準ガイドライン(第4版)では、疫学においてすべての指標
 が影響を示す明らかな証拠が存在しない曝露濃度は 30 μg/L であり、これまでの動物実験
 を基としたガイドライン値を 30 μg/L に置き換えるとしている。

4

5 (4) **EPA/IRIS**

6 EPA/IRISは、可溶性塩(EPA/IRIS 1989)及び天然ウラン(EPA/IRIS 1993)に分類
 7 している。

8

9 ①**可溶性塩(EPA/IRIS 1989**)

10 a. 経口参照用量(RfD)

臨界影響	用量*	不確実係数	修正係	RfD
		(\mathbf{UF})	欬(MF)	
開始時体重減	NOAEL: なし	1,000	1	$3 \mu g$
少、	LOAEL: 200 ppm	(個体差 10)×		U/kg
中程度の腎毒	(硝酸ウラニル六水和	(種差 10) ×		体重/日
性:	物)	(LOAEL 使用 10)		
30 日間ウサギ	ウラン換算: 2.8 mg	**		
混餌投与試験	U/kg 体重/日			
(Maynard	0			
and Hodge、				
1949)				

- 11* 換算係数:試験物質のウラン含有量 47 wt% (分子量比 238/502)、1 ppm = 0.03 mg/kg 体重/日 (ウサギ12の摂餌量から推定)
- 13 ** ウサギはウランに対して感受性が高いことが他の試験結果からも示されており、本試験においても急性又
 14 は亜急性試験結果から慢性の腎毒性を生じる用量を決めるに十分な感受性を示しているため、試験期間が
 15 生涯より短いことについての係数 10 は付加していない。
- 16

17 b. 天然ウラン(EPA/IRIS 1993)

- 18 データなし
- 19

20 **②発がん性**

- 21 a. 可溶性塩(EPA/IRIS 1989)
- 22 評価されていない。
- 23 b. 天然ウラン(EPA/IRIS 1993)
- 24 評価されていない
- 25

26 (5) EFSA (2009)

- 27 雄ラットの亜慢性試験(Gilman et al. 1998a)における腎毒性に基づき、LOAEL 0.06
 28 mg U/kg 体重/日としている。LOAEL 0.06 mg U /kg 体重/日に不確実係数 100 (個体
 29 差 10、種差 10)を適用している WHO を支持し、TDI を 0.6 µg U /kg 体重/日と算出
 30 した。基礎的な体内動態の考慮及び観察された腎毒性が軽微だったことから、LOAEL
 31 から NOAEL への外挿、亜慢性から慢性の曝露への外挿について、更なる不確実係数
 32 の適用は必要ないとしている。
 - 121

1 (6)我が国における水質基準の見直しの際の評価(厚生労働省 2003)

1998年の生活環境審議会水道部会水質専門委員会においては、ヒトと実験動物にお $\mathbf{2}$ けるウランの発がん性に関するデータは不十分であり、適切な慢性研究は報告されて 3 いないため、最も感受性の高い性と種に対して飲料水中に投与されたウランのデータ 4 に関する最も広範な亜慢性研究の結果(Gilman et al. 1998a)を基に、LOAELは硝酸 $\mathbf{5}$ ウラニル六水和物で0.96 mg/L(雌0.09 mg U/kg 体重/日、雄0.06 mg U/kg 体重/日) 6 とされた。得られたLOAELに不確実係数100(種差10、個人差10)を適用し、TDIは 70.6 ug U/kg 体重/日とされた。LOAELでの影響が最小の変化であるため、NOAELの 8 代わりにLOAELを使用したことによる追加の不確実係数は適用しなかった。また、腎 9 臓におけるウランの推定半減期は15日であり、腎臓疾患の重症度はこの日数以上の曝 10 露で悪化する徴候は認められないため、短期間試験を用いたことの不確実係数も適用 11しなかった。 12

2002年の専門委員会においては、1998年の評価時より新しい知見は得られていなか
 ったため、1998年の評価法に従いTDI法を用いて評価値を求めることが適切であると
 された。

- 16
- 17

表V-7 WHO 等によるウランの TDI 法によるリスク評価							
根拠	LOAEL	不確実係数	TDI				
	(mg/kg 体重/日)	(µg/kg 体重/日)				
ラット 91 日間飲水投与試験	0.06	100	0.6				
における雄ラットの腎臓の近		10 (種差) ×	,				
位尿細管曲部での変性		10(個体差					
(Gilman et al. 1998a)							
ラット 91 日間飲水投与試験	0.06	100	0.6				
における雄ラットの腎臓の近		10 (種差) ×	,				
位尿細管曲部での変性		10(個体差)					
(Gilman et al. 1998a)							
ウサギ 30 日間混餌投与試験	2.8	1000	3				
における開始時体重減少、中		10 (種差) ×					
程度の腎毒性(Maynard and		10(個体差)					
Hodge 1949)		× 10)				
		(LOAEL 使	Ĩ				
		用)					
ラット 91 日間飲水投与試験	0.06	100	0.6				
における雄ラットの腎臓の近		10 (種差) ×	,				
位尿細管曲部での変性		10(個体差)					
(Gilman et al. 1998a)							
	 等によるウランの TDI 法によう 根拠 ラット 91 日間飲水投与試験 における雄ラットの腎臓の近 位 尿 細 管 曲 部 で の 変 性 (Gilman et al. 1998a) ラット 91 日間飲水投与試験 における雄ラットの腎臓の近 位 尿 細 管 曲 部 で の 変 性 (Gilman et al. 1998a) ウサギ 30 日間混餌投与試験 における開始時体重減少、中 程度の腎毒性 (Maynard and Hodge 1949) ラット 91 日間飲水投与試験 における雄ラットの腎臓の近 位 尿 細 管 曲 部 で の 変 性 (Gilman et al. 1998a) 	等によるウランの TDI 法によるリスク評価根拠LOAEL (mg/kg 体重/日)ラット 91 日間飲水投与試験0.06における雄ラットの腎臓の近位尿 細 管 曲 部 で の 変 性 (Gilman et al. 1998a)ラット 91 日間飲水投与試験0.06における雄ラットの腎臓の近 位尿 細 管 曲 部 で の 変 性 (Gilman et al. 1998a)0.06ウサギ 30 日間混餌投与試験 といわる開始時体重減少、中 程度の腎毒性 (Maynard and Hodge 1949)2.8ラット 91 日間飲水投与試験 (Maynard and 日間飲水投与試験0.06における雄ラットの腎臓の近 位 尿 細 管 曲 部 で の 変 性 (Gilman et al. 1998a)0.06	等によるウランの TDI 法によるリスク評価 根拠 LOAEL 不確実係数 (mg/kg 体重/日) ラット 91 日間飲水投与試験 0.06 100 における雄ラットの腎臓の近 10 (種差) × 位 尿 細 管 曲 部 で の 変 性 100 (Gilman et al. 1998a) 100 レス 細 管 曲 部 で の 変 性 100 における雄ラットの腎臓の近 10 (種差) × 位 尿 細 管 曲 部 で の 変 性 10 (個体差) (Gilman et al. 1998a) 10 (個体差) ウサギ 30 日間混餌投与試験 2.8 1000 における開始時体重減少、中 10 (個体差) 程度の腎毒性 (Maynard and 10 (個体差) Hodge 1949) × 10 デット 91 日間飲水投与試験 0.06 100 における雄ラットの腎臓の近 10 (個体差) (LOAEL 使 月) アット 91 日間飲水投与試験 0.06 100 における雄ラットの腎臓の近 10 (個体差) (LOAEL 使 月) アット 91 日間飲水投与試験 10 (個体差) グット 91 日間飲水投与試験 10 (個体差) (Gilman et al. 1998a)				

1

- $\mathbf{2}$
- 3

4 表 V-8 ウランの各試験における NOAEL 等

番号	動物種 系統 性 動物数	試験種	エンドポイント (mg U/kg 体重/日)	NOAEL (mg U/kg 体重日)	LOAEL (mg U/kg 体重/日)	投与 化合物	著者・ 発表年
亜 急 ①	ラット SD 雄 全 40	4週間 飲水投与	血中グルコース濃度の上 昇(2.2)	1.1 [A、W]		酢酸ウラニ ル二水和物	Ortega et al. 1989
亜 急 ④	ウサギ 6/群	30 日間混餌 投与	中程度の腎障害、体重減少 (投与終了後に回復)(2.8)		2.8 [E、T、食]	硝酸ウラニ ル六水和物	Maynard and Hodge 1949
亜 慢 ⑧	ラット SD 雌雄 15/群	91 日間 飲水投与	雄:尿細管上皮核の小嚢状 の変形、近位尿細管拡張、 尿細管基底部の核の管腔 側への変位及び小空胞 化、尿細管細胞質の空胞 化(0.06) 雌:尿細管上皮核の小嚢状 の変形、ボーマン嚢被膜 肥厚及び間質細網線維増 加(0.09)		0.06 [A、E、T、 W]	硝酸ウラニ ル六水和物	Gilman et al. 1998a
亜 慢 ⑨	ウサギ NZW 雌雄 10/群	91 日間 飲水投与	雄:尿細管の用量依存的な 変性(細胞質空胞化、核 大小不同、核の小空胞化) (0.05) 雌:尿細管の用量依存的な 変性(核大小不同、核の 小嚢状の変形)、尿細管拡 張、委縮(0.49)		雄:0.05 [A、E、T] 雌:0.49 [A、E、T]	硝酸ウラニ ル六水和物	Gilman et al. 1998b
	ウサギ NZW 雄 5-8/群	91 日間 飲水投与	限局的な近位尿細管拡張 (1.36) 有意な核の変化(核大小不 同、核濃縮を伴う核の管腔 側への変位、配列の乱れ)、 尿細管拡張(40.98)		1.36 [A、T] 1.36-40.98 [W]	硝酸ウラニ ル六水和物	Gilman et al. 1998c
神 ①	ラット SD 雄 10/群	単回飲水投 与	立毛、振戦、低体温、瞳孔 サイズ縮小、眼球突出(11)		11 [T]	酢酸ウラニ ル	Domingo et al. 1987

神 ④	ラット SD 雄 28	90 日間飲水 投与	急速眼球運動(REM)を伴 う睡眠時間の増加 〈飲水: 40 mgU/mL〉(劣化硝酸ウ ラニルより濃縮ウランの方 が REM 睡眠時間が長い)			濃縮ウラン (硝酸ウラ ニル). (劣化硝酸 ウラニル)	Lestaevel et al. 2005 (Houpert et al. 2005)
	ラット SD 雄 121	1.5-9 か月飲 水投与	長期曝露による脳内神経伝 達物質作用系の障害〈飲 水:40 mgU/mL〉			劣化硝酸ウ ラニル六水 和物	Bussy et al. 2006
	ラット SD 雄 14	9か月間飲水 投与	脳内コレステロール代謝に 関係する種々の酵素の遺伝 子発現レベルに変化〈飲 水:40 mg/mL〉			劣化硝酸ウ ラニル六水 和物	Racine et al. 2009
生 ①	マウス Swiss 雌 20/群	妊娠 6~15 日後まで強 制経口投与	母動物:用量依存的な体重 増加抑制、1日当たり摂 餌量の減少、肝重量の増 加(2.8) 胎児:体重低下、外表異常 胎児発現頻度の上昇 (2.8)	NOEL<2.8 [A]	2.8 [W、E]	酢酸ウラニ ル二水和物	Domingo et al. 1989a
生 ②	マウス Swiss 雌 20/群	妊娠 13 日後 ~分娩後 21 日まで強制 経口投与	母による児動物食殺(2.8) 平均同腹児動物数の減少、 児動物の生存率、哺育率の 低下(28)	0.28 NOEL<2.8 [A] 2.8[W、E]	2.8 28[T、E]	酢酸ウラニ ル二水和物	Domingo et al. 1989b
生 ③	マウス Swiss 雌雄 25/群	雄:交配前 60日間 雌:交配前 14日~授乳 期制経口投 与	平均総着床率の増加、児動 物の低体重(2.8)		2.8 [T、E]	酢酸ウラニ ル二水和物	Paternain et al. 1989
生 ④	マウス Swiss 雄 24/群	交配前 64 日間飲水投 与(雄 8/群 を非投与雌 と交配)	用量依存的でない、交配さ せた無処置雌の妊娠率の 低下精巣の精子細胞数低 下、精巣上体の精子数の減 少(5.6)		精子数の 減少 11.2 [T] 5.6 [放]	酢酸ウラニ ル二水和物	Llobet et al. 1991
生 ⑤	マウス C57Blx CBA 雌 10/群	交配前 15 週 間飲水投与 (一部を非 投与雄と交 配)	母動物:交配3か月後の二 次卵胞及び初期前胞状 卵胞数の全卵胞数に対 する割合の上昇(1.25) 雌児:9週齢時の成熟卵胞 数の全卵胞数に対する割 合の低下(1.25)		1.25 [A、E]	硝酸ウラニ ル	Arnault et al. 2008

生	マウス	交配前 30	母動物:用量依存性のある	母動物	雌児	硝酸ウラニ	Raymond
8	B6C3F1	日~妊娠期	小型一次卵胞数の減少	$0.125 \sim$	$0.125 \sim$	ル六水和物	-Whish
0	雌	間飲水投与	〈飲水: $2.5~\mu g/L angle$	$0.250~\mu \mathrm{g}/$	0.250 µg/		et al.
	5/群		雌児:用量依存性のない原	kg体重/日	kg体重/日		2007
			始卵胞数の減少〈飲		母動物		
			水: $0.5~\mu m g/L angle$		$0.625 \sim$		
					1.250 μg/		
					kg体重/日		

1 亜: 亜急性毒性試験、慢: 慢性毒性試験、亜急: 亜急性毒性試験、亜慢: 亜慢性毒性試験、慢: 慢性毒性試験、神: 神経
 2 毒性試験、免: 免疫毒性試験、生: 生殖・発生毒性試験

3 [A]:著者、[E]: EFSA、[T]: ATSDR、[W]: WHO、[放]: 放射性物質の食品健康影響評価に関するワーキンググループ

- 4
- $\mathbf{5}$

- 1 **<参照>**
- ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological profile for
 uranium. U.S. Department of health and human services. Public Health Service
 1999
- Albina ML, Bellés M, Linares V, Sánchez DJ, Domingo JL. Restraint stress does not
 enhance the uranium-induced developmental and behavioral effects in the
 offspring of uranium-exposed male rats. Toxicology 2005; 215 (1-2): 69-79
- 8 Argonne National Laboratory, US Department of energy, Human Health Fact Sheet,
 9 Uranium 2005
- Arnault E, Doussau M, Pesty A, Gouget B, Van der Meeren A, Fouchet P, et al. Natural
 uranium disturbs mouse folliculogenesis in vivo and oocyte meiosis in vitro.
 Toxicology 2008; 247(2-3): 80-7
- Aung NN, Yoshinaga J, Takahashi J. Dietary intake of toxic and essential trace
 elements by the children and parents living in Tokyo Metropolitan Area, Japan.
 Food Addit. Contam. 2006; 23: 883-894
- BEIR IV. Health risks of radon and other internally deposited alpha-emitters.
 Committee on the Biological Effects of Ionizing Radiations, National Research
 Council. Washington, DC: National Academy Press 1988
- Bensoussan H, Grancolas L, Dhieux-Lestaevel B, Delissen O, Vacher CM, Dublineau I,
 et al. Heavy metal uranium affects the brain cholinergic system in rat following
 sub-chronic and chronic exposure.Toxicology 2009; 261(1-2): 59-67
- Bentley KW, Stockwell DR, Britt KA, et al. Transient proteinuria and aminoaciduria in
 rodents following uranium intoxication. Bull Environ Contam Toxicol 1985; 34:
 407-416
- Berlin M, Rudell B. Uranium. In L. Friberg, G. Nordberg, V. Vouk (eds), Handbook on
 the Toxicology of Metals, Vol. II, 2nd ed. New York, NY: Elsevier 1986
- Berradi H, Bertho JM, Dudoignon N, Mazur A, Grandcolas L, Baudelin C. et al. Renal
 anemia induced by chronic ingestion of depleted uranium in rats. Toxicol Sci 2008;
 103(2):397-408
- Bhattacharyya RP, Larsen P, Cohen N, et al. Gastrointestinal absorption of plutonium
 and uranium in fed and fasted adult baboons and mice: Application to humans.
 Radiation Protection Dosimetry 1989; 26:159-165
- Briner W, Murray J. Effects of short-term and long-term depleted uranium exposure on
 open-field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol 2005;
 27(1): 135-4
- Bussy C, Lestaevel P, Dhieux B, Amourette C, Paquet F, Gourmelon P. et al. Chronic
 ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine
 metabolism in male rat brain. Neurotoxicology 2006; 27(2): 245-52
- 39 Cooper JR, Stradling GN, Smith H, et al. The behavior of uranium-233 oxide and

- uranyl-233 nitrate in rats. Int J Radiat Biol Relat Stud Phys, Chem Med 1982;
 41(4): 421-433
- Coryell VH, Stearns DM. Molecular analysis of hprt mutations generated in Chinese
 hamster ovary EM9 cells by uranyl acetate, by hydrogen peroxide, and
 spontaneously. Mol Carcinog 2006; 45(1): 60-72
- Diamond GL, Morrow PE, Panner BJ, et al. Reversible uranyl nephrotoxicity in the
 Long Evans rat. Fundam. Appl. Toxicol. 1989; 13(1): 65-78
- Bomingo JL, Llobet JM, Tomas JM, Corbella J. Acute toxicity of uranium in rats and
 mice. Bulletin of environmental contamination and toxicology 1987; 39:168-174
- Domingo JL, Ortega A, Llobet JM, et al. The effects of repeated parenteral
 administration of chelating agents on the distribution and excretion of uranium.
 Research Communications Chemical Pathology and Pharmacology 1989a; 64(1):
 161
- Domingo JL, Ortega A, Paternain JL, Coebella J. Evaluation of the perinatal and
 postnatal effects of uranium in mice upon oral administration. Archives of
 environmental health 1989b; 44(6): 395-398
- Dounce AL, Flagg JF. The chemistry of uranium compounds. In Voegtlin, Hodge (eds.),
 Pharmacology and toxicology of uranium compounds 1949; 82-84 In Voegtlin IC,
 Hodge HC (eds.) Dublineau I, Grison S, Linard C, Baudelin C, Dudoignon N,
 Souidi M. et al. Short-term effects of depleted uranium on immune status in rat
 intestine. J Toxicol Environ Health A. 2006; 69(17): 1613-28
- Durbin PW, Wrenn ME. Metabolism and effects of uranium in animals. In: Wrenn ME, (eds.).
 Conference: Occupational health experience with uranium. Arlington, VA, April, 1975. U.S.
 EnergyResearch and Development Administration, Washington, DC. ERDA-93, 67-129.
- EFSA(The European Food Safety Authority), Scientific Opinion of the Panel on
 Contaminants in the Food Chain, Uranium in foodstuffs, in particular mineral
 water. The EFSA Journal 2009; 1018, 1-59
 http://www.efsa.europa.eu/en/scdocs/doc/1018.pdf
- US EPA. (Environmental Protection Agency), Integrated Risk Information System
 (IRIS). Uranium, soluble salts (no CASRN), Reference dose for chronic oral
 exposure(RfD), Last revised 10/01/1989.
- 32 http://www.epa.gov/iris/subst/0421.htm
- US EPA. (Environmental Protection Agency), Integrated Risk Information System
 (IRIS). Uranium, natural (CASRN 7440-61-1), Carcinogenicity assessment for
 lifetime exposure, Last revised 07/01/1993.
 http://www.epa.gov/iris/subst/0259.htm
- Fitsanakis VA, Erikson KM, Garcia SJ, Evje L, Syversen T, Aschner M. Brain
 accumulation of depleted uranium in rats following 3- or 6-month treatment with
 implanted depleted uranium pellets. Biol Trace Elem Res. 2006; 111(1-3): 185-97.

- Frelon S., Chazel V., Tourlonias E., Bouisset P., Pourcelot L. and Paquet F. (2007) Risk
 assessment after internal exposure to black sand from Camargue: Uptake and
 prospective dose calculation. Radiat. Protect. Dosimet. 127: 64-67.
- Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM. et al.
 Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague-Dawley rat.
 Toxicological Science 1998a; 41: 117-128.
- Gilman AP, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL, Quinn JM. et al.
 Uranyl nitrate: 91-day toxicity studies in the New Zealand white rabbit.
 Toxicological Science 1998b; 41: 129-137.
- Gilman AP, Moss MA, Villeneuve DC, Secours VE, Yagminas AP, Tracy BL. et al.
 Uranyl nitrate: 91-day exposure and recovery studies in the New Zealand white
 rabbit. Toxicological Science 1998c; 41: 138-151.
- Hirose K. and Sugimura Y. Concentration of uranium and the activity ratio of
 234U/238U in surface air: Effect of atmospheric burn-up of Cosmos-954. 気象研究
 所研究報告 1981; 32: 317-322.
- Houpert P, Lestaevel P, Bussy C, Paquet F, Gourmelon P. Enriched but not depleted
 uranium affects central nervous system in long-term exposed rat. Neurotoxicology
 2005; 26(6): 1015-20.
- Hu Q, Zhu S. Induction of chromosomal aberrations in male mouse germ cells by
 uranyl fluoride containing enriched uranium. Mutation research. 1990;
 244:209-214.
- Hursh JB, Neuman WF, Toribara T, et al. Oral ingestion of uranium by man. Health
 Phys 1969; 17: 619-621.
- Höllriegl V., Lo W.B., Leopold K., Gerstmann U and Oeh U. Solubility of uranium and
 thorium from a healing earth in synthetic gut fluids: A case study for use in dose
 assessments. Sci. Total Environ 2010; 408: 5794-5800.
- IARC. Monographs on the evaluation of carcinogenic risks to humans. Volume 74
 Surgical implants and other foreign bodies. International Agency for Research on
 Cancer 1999
- ICRP. International Commission on Radiological Protection. Limits for Intakes of
 Radionuclides by Workers. Publication 30. Pergamon Press 1979
- ICRP. International Commission for Radiation Protection. Age-dependent doses to
 members of the public from intake of radionuclides: Part 3, Ingestion dose
 coefficients. ICRP Publication 69. Oxford: Pergamon Press 1995
- ICRP. International Commission for Radiation Protection. Age-dependent doses to
 members of the public from intake of radionuclides: Part 4, Inhalation dose
 coefficients. ICRP Publication 71. Oxford: Pergamon Press 1996
- Karpas Z, Paz-Tal O, Lorber A, Salonen L, Komulainen H, Auvinen A, Saha H and
 Kurttio P, 2005. Urine, hair, and nails as indicators for ingestion of uranium in

- 1 drinking water. Health Phys. 88, 229-242.
- Knöbel Y, Glei M, Weise A, Osswald K, Schäferhenrich A, Richter KK, et al. Uranyl
 nitrilotriacetate, a stabilized salt of uranium, is genotoxic in nontransformed
 human colon cells and in the human colon adenoma cell line LT97. Toxicol Sci
 2006; 93(2): 286-97
- Kundt MS, Martinez-Taibo C, Muhlmann MC, Furnari JC. Uranium in drinking water:
 effects on mouse oocyte quality. Health Phys 2009; 96(5): 568-74.
- Kurttio P, Salonen L, Ilus T, Pekkanen J, Pukkala E and Aivinen A, Well radio
 radioactivity and risk of cancers of the urinary organs. Environ. Res. 2006; 102,
 333-338.
- Kuwahara C., Koyama K. and Sugiyama H. Estimation of daily uranium ingestion by
 urban residents in Japan. J. Radioanal. Nucl. Chem. 1997; 220: 161-165
- La Touche YD, Willis DL, Dawydiak OI. Absorption and biokinetics of U in rats
 following an oral administration of uranyl nitrate solution. Health physics 1987;
 53(2): 147-162.
- Leggett RW, Harrison JD. Fractional absorption of ingested uranium in humans.
 Health Phys 1995; 68(4): 484-498.
- Leggett RW. Basis for the ICRP's age-specific biokinetic model for uranium. Health
 Phys 1994 ; 67(6): 589-610.
- Lemercier V, Millot X, Ansoborlo E, Ménétrier F, Flüry-Hérard A, Rousselle Ch. et al.
 Study of uranium transfer across the blood-brain barrier. Radiat Prot Dosimetry
 2003; 105(1-4): 243-5
- Lestaevel P, Bussy C, Paquet F, Dhieux B, Clarençon D, Houpert P. et al. Changes in
 sleep-wake cycle after chronic exposure to uranium in rats. Neurotoxicol Teratol
 2005 ; 27(6): 835-40.
- Lin RH, Wu LJ, Lee CH, et al. Cytogenetic toxicity of uranyl nitrate in Chinese
 hamster ovary cells. Mutation Research 1993; 319:197-203.
- Linares V, Bellés M, Albina ML, Sirvent JJ, Sánchez DJ, Domingo JL. Assessment of
 the pro-oxidant activity of uranium in kidney and testis of rats. Toxicol Lett 2006 ;
 167(2): 152-61.
- Linares V, Sánchez DJ, Bellés M, Albina L, Gómez M, Domingo JL. Pro-oxidant effects
 in the brain of rats concurrently exposed to uranium and stress. Toxicology 2007;
 236(1-2): 82-91.
- Llobet JM, Sirvent JJ, Ortega A, Domingo JL. Influence of chronic exposure to
 uranium on male reproduction in mice. Fundamental and applied toxicology 1991;
 16: 821-829
- Magdo HS, Forman J, Graber N, Newman B, Klein K, Satlin L, et al. Grand rounds:
 nephrotoxicity in a young child exposed to uranium from contaminated well water.
 Environ Health Perspect 2007; 115(8): 1237-41.

- Malenchenko AF, Barkun NA, Guseva GF. Effect of uranium on the induction and
 course of experimental autoimmune orchitis and thyroiditis. J Hyg Epidemiol,
 Microbiol, Immunol 1978; 22: 268-277.
- 4 Mao Y, Desmeules M, Schaubel D, Berube D, Dyck R, Brule D. et al. Inorganic
 5 components of drinking water and microalbuminuria. Environmental research.
 6 1995; 71:135-140
- Maynard EA, Hodge HC. Studies of the toxicity of various uranium compounds when
 fed to experimental animals. In Voegtlin IC, Hodge HC (eds.) Pharmacology and
 toxicology of uranium compounds, National Nuclear Energy Series (VI). New York,
 NY: McGraw-Hill 1949; 309-376.
- Maynard EA, Down WL, Hodge HC. Oral toxicity of uranium compounds. In Voegtlin C,
 Hodge HC (eds.), Pharmacology and toxicology of uranium compounds. New York,
 NY: McGraw-Hill 1953
- Miller AC, Stewart M, Brooks K, Shi L, Page N. Depleted uranium-catalyzed oxidative
 DNA damage: absence of significant alpha particle decay. J Inorg Biochem 2002;
 91(1): 246-52.
- Miller AC, Stewart M, Rivas R. Preconceptional paternal exposure to depleted
 uranium: transmission of genetic damage to offspring.Health Phys 2010; 99(3):
 371-9
- Moss MA. Chronic low level uranium exposure via drinking water clinical
 investigations in Nova Scotia. Halifax, Nova Scotia, Dalhousie University (M.Sc.
 thesis) 1985
- Novikov YV, Yudina TV. Data on the biological effect of small amounts of natural
 uranium in water. Hyg. Sanit. 1970; 35: 225-261
- Ohno K, Ishikawa K, Kurosawa Y, Matsui Y, Matsushita T, Magara Y. Exposure
 assessment of metal intakes from drinking water relative to those from total diet
 in Japan. Water Sci. Technol 2010; 62: 2694-2701.
- Orcutt JA. The toxicology of compounds of uranium following application to the skin. In
 Voegtlin K ,Hodge HC (eds.), New York: McGraw-Hill 1949; Vol. 1, pp. 376-414.
- Ortega A, Domingo JL, Llobet JM, Tomas JM, Paternain JL. Evaluation of the oral
 toxicity of uranium in a 4-week drinking-water study in rats. Bulletin of
 environmental contamination and toxicology 1989; 42: 935-941.
- Paquet F, Houpert P, Blanchardon E, Delissen O, Maubert C, Dhieux B, et al.
 Accumulation and distribution of uranium in rats after chronic exposure by
 ingestion. Health Phys 2006; 90, 139-147
- Paternain JL, Domingo JL, Ortega A, Llobet JM. The effects of uranium on
 reproduction, gestation, and postnatal survival in mice. Ecotoxicology and
 environmental safety 1989; 17: 291-296
- 39 Pavlakis N, Pollock CA, McLean G, et al. Deliberate overdose of uranium: Toxicity and

- 1 treatment. Nephron 1996; 72(2): 313-7
- Pellmar TC, Fuciarelli AF, Ejnik JW, et al. Distribution of uranium in rats implanted
 with depleted uranium pellets. Toxicol Sci 1999; 49:29-39.
- 4 Racine R, Gueguen Y, Gourmelon P, Veyssiere G, Souidi M. Modifications of the
 5 expression of genes involved in cerebral cholesterol metabolism in the rat following
 6 chronic ingestion of depleted uranium. J Mol Neurosci. 2009 Jun; 38(2):159-65
- Raymond-Whish S, Mayer LP, O"Neal T, Martínez A, Sellers MA, Christian PJ,et al.
 Drinking Water with Uranium below the U.S. EPA Water Standard Causes
 Estrogen Receptor-Dependent Responses in Female Mice. Environ. Health Persp
 2007; 115, 1711-1716
- Seldén AI, Lundholm C, Edlund B, Högdahl C, Ek BM, Bergström BE. et al.
 Nephrotoxicity of uranium in drinking water from private drilled wells. Environ
 Res 2009 ; 109(4): 486-94
- Shiraishi K, Yamamoto M. Dietary 232Th and 238U intakes of Japanese as obtained in
 a market basket study and contributions of imported foods to internal doses. J.
 Radioanal. Nucl. Chem. 1995; 196: 89-96.
- Shiraishi K, McInroy J F, Igarashi Y. Simultaneous multielement analysis of diet
 samples by inductively coupled plasama mass spectrometry and inductively
 coupled plasma atomic emission spectrometry. J. Nutr. Sci. 1990; Vitaminol. 36:
 81-86
- Shiraishi K, Igarashi Y, Takaku Y, Masuda K, Yoshimizu K., Nishimura Y, et al. Daily
 intakes of 232Th and 238U in Japanese males. Health Phys 1992; 63: 187-191
- Shiraishi K., Tagami K., Muramatsu Y. and Yamamoto M. (2000) Contributions of 18
 food categories to intakes of 232Th and 238U in Japan. Health Phys. 78: 28-36
- Shiraishi K., Kimura S., Sahoo S.K. and Arae H. (2004) Dose effect for Japanese due to
 26 232Th and 238U in imported drinking water. Health Phys. 86: 365-373.
- Singh NP, Wrenn ME. 1987. Uptake of uranium from drinking water. In: Hemphill DD,
 ed. Trace substances in environmental health. Columbia, MO: University of
 Missouri, 203-212.
- Sontag W. Multicompartment kinetic models for the metabolism of americium,
 plutonium and uranium in rats. Human toxicology. 1986; 5:163-173.
- Souidi M, Gueguen Y, Linard C, Dudoignon N, Grison S, Baudelin C. et al. In vivo
 effects of chronic contamination with depleted uranium on CYP3A and associated
 nuclear receptors PXR and CAR in the rat. Toxicology. 2005 Oct 15;
 214(1-2):113-22.
- Spencer H, Osis D, Isabel M, et al. Measured intake and excretion patterns of naturally
 occurring 234 U, 238 U, and calcium in humans. Radiation Research 1990; 124:
 90-95.
- 39 Stearns DM, Yazzie M, Bradley AS, Coryell VH, Shelley JT, Ashby A, et al. Uranyl

- acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster
 ovary EM9 cells. Mutagenesis. 2005; 20(6): 417-23
- Stevens W, Bruenger FW, Atherton DR, et al. The distribution and retention of
 hexavalent uranium-233 in the Beagle. Radiat Res 1980; 83: 109-126.
- Sullivan MF, Gorham LS. Absorption of Actinide Elements from the Gastrointestinal
 tract of Neonatal Animals. Health Phys 1980; 38, 173-185.
- Sullivan MF, Ruemmler PS. Absorption of 233U, 237Np, 238Pu, 241Am and 244Cm
 from the gastrointestinal tracts of rats fed an iron-deficient diet. Health Phys
 1988; 54:311-316.
- Sullivan MF, Ruemmler PS, Ryan JL, et al. Influence of oxidizing or reducing agents on
 gastrointestinal absorption of U, Pu, Am, Cm and Pm by rats. Health Phys 1986;
 50:233-232
- Sullivan MF, Ruemmler PS, Ryan JL, Buschbom RL. Influence of oxidizing or reducing
 agents on gastrointestinal absorption of U, Pu, Am, Cm and Pm by rats. Health
 physics. 1986; 50(2): 223-232
- Sullivan MF. . Absorption of actinide elements from the gastrointestinal tract of rats,
 guinea pigs and dogs. Health Phys 1980; 38:159-171.
- Sánchez J, Bellés M, Albina ML, Gómez M, Linares V, Domingo JL. Exposure of
 pregnant rats to uranium and restraint stress: effects on postnatal development
 and behaviour of the offspring. Toxicology 2006; 228, 323-332.
- Takeda A, Kimura K, Yamasaki S. Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma 2004; 119: 291-307
- Tannenbaum A, Silverstone H, Koziol J. The distribution and excretion of uranium in
 mice, rats and dogs. In Tannenbaum A (eds.), Toxicology of uranium compounds.
 New York, NY: McGraw-Hill 1951; 128-181
- Thiébault C, Carrière M, Milgram S, Simon A, Avoscan L, Gouget B. Uranium induces
 apoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells. Toxicol
 Sci 2007; 98(2): 479-87.
- Tracy BL, Quinn JM, Lahey J, Gilman AP, Mancuso K, Yagminas AP, et al. Absorption
 and retention of uranium from drinking water by rats and rabbits. Health physics
 1992; 62(1):65-73
- Turner A. and Ip K-H. Bioaccessibility of metals in dust from the indoor environment:
 Application of a physiologically based extraction test. Environ. Sci. Technol. 2007;
 41: 7851-7856
- WHO Depleted uranium: sources, exposure and health effects. Department of
 Protection of the Human Environment. World Health Organization. Geneva 2001;
 WHO/SDE/PHE/01.1. http://www.who.int/ionizing_radiation/pub_meet/ir_pub/en/
- 38 WHO. Background document for development of WHO Guidelines for Drinking-water
- 39 Quality, Uranium in Drinking-water. 2005; WHO/SDE/WSH/03.04/118.

http://www.who.int/water_sanitation_health/dwg/chemicals/en/uranium.pdf 1 $\mathbf{2}$ WHO. Guidelines for Drinking Water Quality, Second addendum to Third Edition. 2008 http://www.who.int/water_sanitation_health/dwg/secondaddendum20081119.pdf 3 Wedeen RP. Renal diseases of occupational origin. Occupational Medicine 1992; 7(3): 4 $\mathbf{5}$ 4496 Wrenn ME, Durbin PW, Howard B, Lipsztein J, Rundo J, Still ET. et al. Metabolism of ingested U and Ra. Health physics. 1985; 48:601-633. 78 Wrenn ME, Liese G, Torrey J, et al. The elimination rate of uranium from the kidney of the dog. In: Research in radiobiology. Annual report of work in progress in the 9 10 **Internal Irradiation Program 1986** Wrenn ME, Singh NP, Ruth H et al. 1989. Gastrointestinal absorption of soluble 11 uranium from drinking water by man. Radiat Prot Dosim 26:119-122. 12Yamamoto M, Yunoki E, Yamakawa M, Shimizu M, Nukada K. Studies on 1314environmental contamination by uranium. 5. J. Radiat. Res. 1974; 15: 156-162 Yamamoto M, Shiraishi K, Komura K, Ueno K. Measurement of uranium in total diet 15samples: Daily intake for Japanese. J. Radioanal. Nucl. Chem. 1994; 185: 183-192 1617Yazzie M, Gamble SL, Civitello ER, Stearns DM. Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem Res Toxicol 1819 2003; 16(4): 524-30 20Yoshida S, Muramatsu Y, Tagami K, hida S. Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ. Int. 1998; 4: 275-286 21Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA. Chronic ingestion of 2223uranium in drinking water: a study of kidney bioeffects in humans. Toxicological 24Science 1998; 43: 68-77. Zamora ML, Zielinski JM, Meyerhof D, Tracy B. Gastrointestinal absorption of 25uranium in humans. Health Phys 2002; 83, 35-45. 2627Zamora ML, Zielinski JM, Meyerhof D, Moodie G, Falcomer R, Tracy B. Uranium gastrointestinal absorption: the F1 factor in humans. Rad. Prot. Dosim 2003; 105, 2855-60. 29厚生労働省 水質基準の見直しにおける検討概要 平成15年4月,厚生科学審議会,生活環 30 境水道部会,水質管理専門委員会 2003 31http://www.mhlw.go.jp/topics/bukyoku/kenkou/suido/kijun/konkyo0303.html 32岩波理化学辞典 第5版、長倉三郎、井口洋夫、江沢洋、岩村秀、佐藤文隆、久保亮五編、 33岩波書店、東京 1998;116-117 34峡戸孝也,高木麻衣,吉永淳,田中敦,瀬山春彦,柴田康行 ハウスダスト中元素濃度の変 35動要因. 環境化学 2009; 19: 87-94. 36 佐々木弘子, 原千晶, 菅原龍幸 日本の市場にみられるミネラルウォーター類の性状につい 37て (2). 日本食生活学会誌 2011; 21: 286-297. 38 独立行政法人 産業技術総合研究所 地質調査総合センター、岩石標準試料データベース 39 133

- 1 http://riodb02.ibase.aist.go.jp/geostand/welcomej.html
- 小藤久毅,山本正儀 ミネラルウォーター中のウラン濃度. RADIOISOTOPES 1999; 48:
 263-265.
- 4 社団法人 日本水道協会:水道統計 平成 20 年度版. 2010
- 5 鈴木仁,勝木康隆,小川仁志,鈴木敬子,松本ひろ子,安田和男 容器入り飲用水中の微量
 6 元素濃度.食衛誌 2000;41:387-396.

1 VII. プルトニウム

2 **1. 元素名、原子記号等**

- 3 IUPAC : plutonium
- 4 CAS No. : 7440-07-5
- 5 原子記号:Pu
- 6 同位体質量: ²³⁸Pu 238.05、²³⁹Pu 239.05、²⁴²Pu 242.06、²⁴⁴Pu 244.06
- 7 (The Merck Index 2006)
- 9 **2. 物理化学的性状**
- 10 融点 (℃) : 639.5
- 11 沸点 (℃) : 3,235
- 12 密度(g/cm³):19.84(25℃)
- 13 外観:銀白色金属
- 14 (岩波理化学辞典 1998、無機化合物・錯体辞典 1997)
- 15

8

16 3. 放射性崩壊

17 プルトニウムの同位体としては、原子量 232~246 のものが知られており、特に半減期
18 の長いものとして、²³⁹Pu(半減期 2.41 x 10⁴年)、²⁴⁰Pu(半減期 6.56 x 10³年)、²⁴²Pu
19 (半減期 3.76 x 10⁵年)及び²⁴⁴Pu(半減期 8.26 x 10⁷年)があり、これらはすべてα崩壊
20 をする放射線核種である。

21 この他に、²³⁶Pu(半減期 2.85 年、α 放射体)、²³⁸Pu(半減期 87.74 年、α 放射体)、²⁴¹Pu
 22 (半減期 14.4 年、α 及び β 放射体)、²⁴³Pu(半減期 5.0 時間、β 放射体)等が存在する(The
 23 Merck Index 2006、無機化合物・錯体辞典 1997、Argonne National Laboratory 2005)。

24

25 **4. 用途**

26 プルトニウムは、核燃料、原子力電池、小型動力源、放射線源及び各種人工放射性元素27 の原料として用いられている(岩波理化学辞典 1998、無機化合物・錯体辞典 1997)。

28 原子炉の燃料としては、軽水炉で使用される低濃縮ウラン燃料の代替物であるMOX燃料

29 (酸化プルトニウムとウランの混合物)として酸化プルトニウムが用いられている
 30 (Makhijani 1997、ATSDR 2010)。

²³⁹Puは、中性子を吸収して核分裂を起こし、典型的な商業用原子力発電所でつくられる
 エネルギー全体の約3分の1を供給する(DOE 2005a、ATSDR 2010)。

- ²³⁸Puは、無人宇宙船及び惑星間探査機のような装置内の発電用原子力電池の熱源として
 利用されている(DOE 2005a、Koch 2005、ATSDR 2010)。
- ²³⁶Pu及び²⁴²Puは、環境及び生物試料中のプルトニウム測定のトレーサーとして利用さ
 れている(Brouns 1980、DOE 1997、Kressin et al. 1975、ATSDR 2010)。
- 37 ²³⁹Puは、1945年に初めて核兵器に使用された(DOE 2005a、ATSDR 2010)。
- 38

1 5. 自然界での分布・移動

2 プルトニウムは超ウラン元素の一つであり、原子炉の使用済み核燃料の再処理によって
 3 得られる。原子力発電所の原子炉では、²³⁵Uの核分裂により2つまたは3つの中性子を生
 4 じ、この中性子が²³⁸Uに吸収されて²³⁹Puが生成される(ATSDR 2010)。2003 年末に世
 5 界中で約 1,855 トンのプルトニウムが存在すると推定されており、1,370 トンは原子力発
 6 電所の使用済み燃料中にあることが明らかになっている。2003 年末時点におけるプルトニ
 7 ウムの生産量は、世界中の原子炉で 70~75 トン/年と推定されている(Albright and
 8 Kramer 2004、Clark et al. 2006)。

9 大気圏内核実験は、1980年に終了したが、それまでの間、プルトニウムは世界各地で人
 10 工的に環境中に放出され、ほぼ 10,000kg のプルトニウムを放出していた(DOE 2005a)。
 11 世界中で検出されるプルトニウムのほとんどは、1980年に終了した大気圏内核実験から
 12 の放射性降下物によるものであり、²³⁸Pu、²³⁹Pu、²⁴⁰Pu及び²⁴¹Pu等のプルトニウム同位
 13 体が核実験により放出されている。(Clark et al. 2006、DOE 2005a、Eisenbud and Gesell
 14 1977、ATSDR 2010)。

15

²³⁹Pu が天然に存在するウラン鉱石中から検出されるが、その量は抽出が現実的でないぐ
 らいの少量である(Clark et al. 2006、Lide 2005、ATSDR 2010)。また、自然界には、
 少量の²⁴⁴Pu が原始星内元素合成の名残で存在する(Clark et al. 2006)。アフリカのガボ
 ン共和国で約 20 億年前に存在したオクロ天然原子炉のような天然原子炉内で、少量のプル
 トニウムが生成していた(DOE 2005a)。

環境中において最も一般的に検出されるプルトニウム同位体は ²³⁹Pu であり、次いで
 ²⁴⁰Pu である(DOE 1999a)。

23

24 環境中へのプルトニウム発生源としては、過去の大気圏内核実験、兵器輸送に関連した
25 事故、人工衛星の宇宙発射の失敗、原子炉運転及びラジオアイソトープ製造器、核燃料処
26 理及び再処理活動、核燃料輸送に関連した事故等がある(原子力機関/経済協力開発機構
27 (NEA/OECD) 1981)。事故時に放出されたプルトニウムの総量は、大気圏内核実験期
28 間中に放出された量に比べて小さい(ATSDR 2010)。

29

30 大気中に放出されたプルトニウムは、土壌及び表面水への湿性及び乾性沈着により地表
 31 面に到達する。プルトニウムが一度地表面に入ると、土壌及び堆積物粒子に吸着するか又
 32 は陸上及び水中食物連鎖で生物濃縮することになる(ATSDR 2010)。

33

34 ATSDR の毒性学的プロファイルを基に、プルトニウムの体内動態と毒性に関する科学
 35 的知見を整理した。

36

37 6. 体内動態

38 プルトニウムの毒性動態研究は、不溶性な化合物(例: PuO₂)と溶解性化合物(例: Pu

[NO₃] 4、プルトニウムークエン酸錯体²(plutonium citrate complex))の2つの一般 1 的な種類の化合物に焦点を当てて行われている。しかし、生体内では次のような溶解性以 $\mathbf{2}$ 外の要因がプルトニウムの動態に影響を与えうる。(1) 生理的pH下での加水分解反応: 3 溶解性Pu(IV)から極めて不溶性のポリマーを生じる(2)粒子サイズ:呼吸器における 4 沈着特性並びに肺及び消化管からの吸収率に影響を与える(3) PuO2が形成された焼成温 $\mathbf{5}$ 度:粒子表面特性並びに移動及び吸収を増加させる物理的転移反応に対する感受性に影響 6 を与えるかもしれない、並びに(4)同位体の比放射能:組織における粒子の放射線強度と 7放射線分解性断片化(radiolytic fragmentation)の割合に影響を与える。これらの様々な 8 要因は、単に水への溶解性のみでは簡単に区別されない多様なプルトニウム化合物の毒性 9 を生じさせる。吸入された²³⁸PuO₂の毒性動態は、同様な粒子サイズ範囲(>1µm)をもつ 10吸入された²³⁹PuO₂の毒性動態とは明らかに異なっている。吸入され肺に沈着した²³⁸PuO₂ 11 は、239PuO2と比べて極めて迅速に吸収され、主に肝臓と骨格に分布する。結果として、2 12種の同位体の同様な肺への初期沈着は、239PuO2と比べて238PuO2へより多く曝露した後、 1314肝臓と骨格(例:骨、骨髄)への長期にわたる線量(こちらの方が高い)と肺への線量(こ ちらの方が少ない)を生じるであろう。これらの結果、異なる健康影響を生じていること 15が、動物を用いた管理された生涯試験で観察されている(239PuO2曝露後は肺への影響が顕 16著で、²³⁸PuO₂曝露後は骨、骨髄、肝臓への影響が顕著)。吸入された²³⁹Pu(NO₃)₄の動 17態、分布、影響は238PuO2と同様である。 18

- 19
- 20 (1) 吸収

貝(軟体類mollusks)に蓄積されたプルトニウムのヒトにおける吸収について研究され 21ている。成人被験者が、セラフィールドとカンブリアのイギリス核燃料施設付近の海で採 22取された²³⁹ Pu及び²⁴⁰Puを含むタマキビガイ(winkles、食用巻貝の一種)(男性6名及び 23女性2名) 又は ザルガイ (cockles、食用二枚貝の一種) (男性5名及び女性1名) を経口摂 24取した(Hunt 1998、Hunt et al. 1986、1990)。経口摂取された²³⁹ Pu及び²⁴⁰Puの放射能 25の範囲は6~16 Bgであった。軟体類の経口摂取後7日まで各被験者から連続した24時間尿 26サンプルが採取された。吸収された放射活性の割合(吸収率)は、観察された²³⁹ Pu及び²⁴⁰Pu 27の累積尿中排泄量とすべて吸収されたと仮定した場合に予想される排泄量の比として推定 28された。後者は、吸収されたプルトニウムの排泄の動態モデルを用いて予想された (Durbin 291972、Talbot et al. 1987及び1993)。報告された平均吸収率は、タマキビガイを経口摂取 30 した被験者で1.7x10⁻⁴(範囲:0.2 x 10⁻⁴~4.9 x 10⁻⁴)であった。ザルガイを経口摂取した 31被験者の推定平均吸収率は、7日間に排出された体内負荷量を約1.1%と予測するDurbin 32(1972)の動態モデルに基づくと4 x 10⁻⁴(最大7 x 10⁻⁴)であり、7日間に排出された体内 33 負荷量を約2%と予測するTalbotら(1987、1993)の動態モデルに基づくと1.9 x 10⁻⁴(最 34大3.9 x 10⁻⁴) であった。 35

36

37 成人ボランティア3名において、食物とともにクエン酸プルトニウム水溶液を経口摂取し38 た後の消化管における吸収量を測定した結果、経口摂取後8日間又は9日間に測定されたプ

² 不溶性プルトニウムはクエン酸と錯体を形成して溶解性プルトニウム錯体となる。

ルトニウム尿中排泄量と、6か月後にクエン酸プルトニウムを静脈内注射した後の同様の試
 験との間の比較に基づくと、経口摂取されたプルトニウムの算出された吸収率は2 x 10⁻⁴ か
 ら9 x 10⁻⁴ の範囲であった (Popplewell et al. 1994)。

4

吸入及び経口摂取の解析、尿へのプルトニウム排泄量の生物学的モニタリング並びに剖 $\mathbf{5}$ 検時の体内負荷量の測定に基づき、ヒト集団における消化管吸収率が推定されている。こ 6 れらの推定は、吸入されたプルトニウムの呼吸器への沈着と呼吸器に沈着したプルトニウ $\mathbf{7}$ ムの吸収率に関するモデルに基づく仮定に頼っている。マーシャル島の核実験によるプル 8 トニウム・フォールアウトに曝露した Rongelap 島の 34 症例について、プルトニウムの尿 9 中排泄量の測定と吸入したプルトニウムの沈着と吸収に関する仮定に基づいてデータ解析 10すると、消化管吸収率(食事と土壌、両者合わせたものとして)は約4.2 x 10⁻⁴(範囲:1.7 11 x 10⁻⁴~7.1 x 10⁻⁴)と推定された(Sun and Meinhold 1997)。Mussalo-Rauhamaaら(1984) 12は、フィンランドのラップ人(Finnish Lapps)において一定のプルトニウムの吸入量及 13び食事摂取量(主にトナカイの消費に由来)の推定並びにプルトニウム排泄速度を仮定し 14て、プルトニウムの体内負荷量の解析を行い、消化管の吸収率を約8x104から9x104 15と推定した。 16

17

プルトニウムの消化管吸収について、ヒト以外の霊長類、イヌ及び種々のげっ歯類にお 18いて研究されている。これらの研究の多くは、吸収されたプルトニウムを主要な保持組織 19 (例:肝臓、骨格)におけるプルトニウム負荷量の総和にプルトニウム尿中排泄量を加え 20たものとして推定を行っている。ヒト以外の霊長類では消化管の吸収率を推定するために 21二重同位体法(Double isotope techniques)も用いられている(NRC 1992)。この試験 22では、ヒヒに対して²³⁹Pu (VI)の炭酸水素塩の経口投与及び²³⁶Pu (VI)の炭酸水素塩(又 23は²³⁸Pu)の静脈内投与が行われ、組織における二種類の同位体比の保持率(retention ratios 24for the two isotope ratios in tissues) 及び尿中への累積排泄率 (cumulative excretion 25ratio)から消化管吸収率が推定された。吸収量は、絶食ヒヒで経口摂取量の0.22%、摂食 26時のヒヒで0.011%と推定された。239Puクエン酸塩(239Pu citrate)又は粉末ポテトに添加 27された239Puのクエン酸塩を単回強制経口投与された成体マーモセットの主に肝臓、骨格な 28どの組織で測定された放射活性レベルから、プルトニウムの消化管吸収量は、プルトニウ 29ムクエン酸塩として投与された場合は約0.24%、粉末ポテトに添加して投与された場合は 30 0.14%であった(Ham et al. 1994)。 31

32

33 ヒト以外の霊長類で行われた前述の試験に加えて、ブタ、イヌ及び種々のげっ歯類で様々
 34 な同位体と化学形態におけるプルトニウムの消化管吸収量が測定されている。これらの試
 35 験結果は吸収に影響を与える因子に関する以下の一般的結論を支持している:(1)一般的
 36 に、プルトニウムクエン酸塩の吸収量は硝酸塩のそれより多く、硝酸塩の吸収量は酸化物
 37 (PuO₂)のそれより多い傾向がある(Sullivan 1980a)(2)成獣におけるプルトニウムク
 38 エン酸塩及び硝酸塩の吸収量推定の多くは投与量の0.1%未満である(3)絶食は吸収量を
 39 増加させる傾向がある(Bhattacharyya et al. 1986、NRC 1992)(4)新生児における吸

収は、動物種やプルトニウムの化学形態にもよるが、成人(成体)の10~1,000倍多い
 (Sullivan 1980a及び1980b、Sullivan and Gorham 1983、Sullivan et al. 1985)(5) 幼
 若ラットにおいて鉄欠乏症は吸収量を増加させ、鉄欠乏症ラットへの三価鉄(Fe³⁺)投与
 は吸収量を減少させる(Sullivan and Ruemmler 1988)(6)モルモットにおいて、表面粉
 塵(surface dusts)のプルトニウムの吸収量は、投与量の0.001%未満である(Harrison et al. 1994)

8 (2)分布

7

消化管経由のみが曝露したヒトにおけるプルトニウムの体内分布に関する研究は報告さ 9 れていない。ヒト以外の霊長類、イヌ及び種々のげっ歯類において行われた研究は、消化 10管から吸収されたプルトニウムが主に肝臓と骨格に分布(≈90%)することを示している。 11 絶食した成体ヒヒ(n=4)で行われた試験は、²³⁹Pu(VI)の炭酸塩の単回強制経口投与後 1246日後では、総体内負荷量の約90%が骨格と肝臓に存在し、骨格/肝臓のプルトニウム比(総 1314負荷量total burden)は約1.2(範囲:0.7~1.7)であることを示していた(NRC 1992)。 プルトニウム炭酸塩及び硝酸塩を経口投与されたイヌでは骨格:肝臓の比が1~4とされ 15(Sullivan 1980a、Sullivan and Gorham 1983、Toohey et al. 1984)、ラット及びマウ 16

- 17 スでは1~8 とされている (Sullivan et al. 1985)。
- 18

19 (3)代謝

生体内においてプルトニウムは、主に加水分解並びにタンパク質及び非タンパク質リガ 20ンドとの複合体の形成により代謝される。プルトニウムは水溶液中でIII~VI の酸化状態 21で存在するが、大抵の生理的条件下では主な酸化状態はPu(IV)である(Gorden et al. 222003)。中性のpH において、Pu (IV) イオンは速やかに単量体及び不溶性重合体のプル 23トニウム水酸化物(例: nPu [OH] 4) に加水分解される(Taylor 1973)。Pu (IV) は、 24アルブミン、グロブリン(例:トランスフェリン)、種々の低分子量タンパク質といった 25生理機能調節性タンパク質(physiological proteins)と複合体を形成する(Gorden et al. 262003, Lehmann et al. 1983, Stevens et al. 1968, Stover et al. 1968a, Taylor 1973) 。 27Pu (IV) ・トランスフェリン複合体の解離定数は測定されていないが、Fe (III)・トランス 28フェリン複合体 (Kd≈10⁻²²M) より安定性が低いようである (Aisen and Listowsky 1980、 29Turner and Taylor 1968)。結果として、Fe(III)のトランスフェリンへの結合は、Pu 30 (IV) がどの程度(トランスフェリンに)結合するかに影響を与える。過剰の鉄摂取は結 31果としてプルトニウムのトランスフェリンへの結合を減少させる(Turner and Taylor 321968)。プルトニウムは非タンパク質リガンドであるポリカルボキシル酸(例:クエン酸、 33 乳酸)とも複合体を形成する。1価及び2価のクエン酸複合体の安定度定数はそれぞれ約1015 34M、10³⁰ Mである (Taylor 1973)。 35

36

37 (4) 排泄

38 吸収されたプルトニウムの排出に関する動態は、吸収されたプルトニウムの主な蓄積部
 39 位である肝臓(生物学的半減期>9年)と骨格(生物学的半減期>20年) (ICRP 1994a、

1996a、2001)における滞留時間が相対的に長いことを示している(Leggett 1985)。ヒ 1 $\mathbf{2}$ トにおけるプルトニウムの排泄及び組織負荷量に係るデータ解析は、プルトニウム・カイ ネティクスの機序モデル(mechanistic models)の開発に貢献している。これらのモデル 3 は、観察された多相性の排泄動態、動態と主要なプルトニウム蓄積臓器の相対サイズにお 4 けるバリエーション及び50~100年と推定される支配的な動態プロセスの半減期を予測し $\mathbf{5}$ ている (ICRP 1972、1979、1994a、Khokhryakov et al. 2002、Leggett 1985)。緩慢な 6 相を伴う多相性の排泄が起こるということは、曝露経路には関係なく吸収されたプルトニ 7ウムにあてはまると予想される。しかしながら、吸入曝露では、血液や他の組織へのプル 8 トニウムの供給源となる、肺に沈着した粒子の物理的変化や溶解を含め、複雑なプロセス 9 が排泄動態に影響を与える。 10

11

ヒトでは²³⁹⁺²⁴⁰Pu を含んだ軟体動物の摂取後7日間において²³⁹⁺²⁴⁰Pu の尿中排泄促進
 が観察された(Hunt 1998、Hunt et al. 1986及び1990)。²³⁶Pu(VI)炭酸水素塩(又は
 ²³⁹Pu(VI)炭酸水素塩)をヒヒに経口投与した後、プルトニウムの尿中への排泄が最初
 の24時間でも観察された(NRC 1992)。Priestら(1999)は、堆積物に混入したプルト
 ニウムを経口摂取したヒトにおいて、プルトニウムの尿中排泄を観察した。イヌ及び種々
 のげっ歯類で行われた研究は、経口摂取後に吸収されたプルトニウムは尿中に排泄される
 ことを示している(Sullivan 1980a、Sullivan et al. 1985)。

19 20

21 7. 実験動物等への影響

22 動物において、プルトニウムの経口曝露による呼吸器、心血管系、血液、筋骨格、肝臓、
23 腎臓、皮膚/眼球、免疫、リンパ球、神経、生殖及び発生への影響並びに発がんに関する報
24 告はなかった。

25

26 (1) 死亡

新生児ラットでは、プルトニウムクエン酸塩1.2 x 10⁴ kBq ²³⁸Pu /kg の単回強制経口投
 与により、曝露後2週間までに45%が死亡した。3.7 kBq/kgの投与による死亡は報告されて
 いない(Fritsch et al. 1987)。

30

31 (2) 消化管への影響

32 プルトニウムクエン酸塩²³⁸Pu 174 MBq/kgを強制経口投与された新生児ラットで、消化
 33 管への影響が観察された(Fritsch et al. 1987)。5,300 kBq ²³⁸Pu /kgを投与されたラット
 34 では、小腸の分泌物をつくる陰窩に軽度の肥大が観察された。17,400 kBq ²³⁸Pu /kgを投与
 35 されたラットでは、小腸の大量出血と併せて上皮細胞及び陰窩の全体的な消失が観察され
 36 た(Fritsch et al. 1987)。5,740 kBq/kgを投与された成体ラットでは、大腸の表面上皮と
 37 表層の細胞層で好中球増加が認められ、この影響は曝露後3日でも認められた(6日では観
 38 察されず)(Sullivan et al. 1960)。

1 (3) 遺伝毒性

プルトニウムからのa線の遺伝毒性については、*in vivo*動物試験及び*in vitro*試験におい
 て調べられている。

4

実験動物における in vivo遺伝毒性試験成績は、プルトニウムの内部移行後にa線が線量に $\mathbf{5}$ 相関して染色体異常頻度を増加させることを一貫して示している。プルトニウムを吸入曝 6 露したサル及びハムスターで染色体異常が観察されている。初期の肺負荷量が1.9~19kBq $\mathbf{7}$ ²³⁹Pu/kg体重となる線量の²³⁹PuO₂に曝露した未成熟アカゲザル(LaBauve et al. 1980)と 8 初期の肺負荷量が40kBgとなる線量の239Pu(NO₃)₄に曝露したカニクイザル (Brooks et al. 9 1992)において、血中リンパ球の染色体異常の増加が観察されたが、これより低い線量で 10 は観察されなかった。肺組織への沈着が370~9600 kBq 239Pu/gとなる線量のエアロゾルで 11 の曝露後30日のチャイニーズハムスターの血液細胞で、線量依存的な染色体異常頻度の増 12加が観察された (DOE 1976)。13 kBq ²³⁹Pu/kg 体重の²³⁹Puのクエン酸塩を静脈内投与し 13たマウスの骨髄細胞で染色体異常の増加が観察された(Svoboda et al. 1987)。 異常頻度 14が最も高かったのは投与初期であった。肝臓組織への到達量が0.026~0.74 kBq ²³⁹Pu若し 15くは²³⁸Pu/g (DOE 1976) 又は74 kBq ²³⁹Pu/kg 体重 (IAEA 1976b) となるような²³⁹Pu 16又は238Puのクエン酸塩又は二酸化物を静脈内投与されたチャイニーズハムスターの肝臓 17組織では、染色体異常頻度の増加が観察された。239PuO2又は238PuO2 を投与されたハムス 18ターよりも、239Pu又は238Puのクエン酸塩を静脈内投与されたハムスターの方において染 19 色体異常頻度が高かった(IAEA 1976a、1976b)。Stroud (1977)は、初期の²³⁸Pu肺負荷 20量が約5.2 kBqとなるレベルの²³⁸PuO₂-ZrO₂粒子を吸入曝露したシリアンハムスターの肺 21細胞で染色体異常の頻度が著しく増加したことを報告した。 22

23

²³⁸PuO₂又は²³⁹PuO₂のエアロゾルを、初期の肺沈着がそれぞれ平均約550又は580 Bq(約
22又は24 Bq/kg体重)となる条件下で曝露したマウスで、肺胞マクロファージ(PAM:
pulmonary alveolar macrophages)に小核の誘発が認められた(Talbot et al. 1989)。対
照群のマウスのPAMにおける小核頻度は平均0.1%未満であったが、²³⁸PuO₂又は²³⁹PuO₂
に曝露したマウスでは小核頻度のピークは曝露後21日でそれぞれ3及び5%に達した。

29

顕著な寿命短縮と発がん頻度の増加を引起こすことが知られている活性レベルよりも高 30 い活性レベルでプルトニウム化合物を非経口投与されたげっ歯類の精原細胞では、染色体 31異常頻度の増加が観察されている。238Pu活性レベルが231 kBq/kg体重以上である238Pu 32(NO₃)₄を単回腹腔内投与されたマウスの精原細胞で、染色体異常頻度の顕著な増加が観 33 察された(Pomerantseva et al. 1989)。370 kBq²³⁹Pu /kg体重の²³⁹Puのクエン酸塩を静 34脈内投与された雄マウスの精原細胞では、投与後6~18週で相互転座の頻度の増加が観察 35された(Beechey et al. 1975)。370 kBq ²³⁹Pu /kg体重の²³⁹Puのクエン酸塩を静脈内投与 36 された雄マウスの精原細胞では、遺伝性転座の頻度の増加も観察された(Generoso et al. 371985)。転座の頻度は時間と線量に相関して増加した。しかし、150 kBq²³⁹Pu/kg体重で 38静脈内投与された雄マウスでは、相互転座の誘発は有意でなかった(Searle et al. 1976)。 39

顕著な寿命短縮と発がん頻度の増加を引起こすのに十分な活性レベル(22~74 kBq²³⁹Pu
 /kg体重)で²³⁹Puのクエン酸塩を静脈内投与したマウス又はハムスターでは、精原細胞当
 たりの染色体異常頻度に統計学的に有意な増加は観察されなかった(Brooks et al. 1979)。

4

プルトニウムに曝露されたマウスでは優性致死が観察されている。交配前4週間に3.7~ $\mathbf{5}$ 18.5 kBqの239Puのクエン酸塩を曝露した雄マウスと交配した雌マウスで、子宮内胎児死亡 6 が観察された(IAEA 1976k、Lüning et al. 1976)。F1世代の雄マウスと交配した未処理 $\mathbf{7}$ 8 雌でも、優性致死が観察された。高線量の239Pu に曝露された雄マウスは、曝露後12週間 不妊となった(IAEA 1976k、Lüning et al. 1976)。Pomerantsevaら(1989) は、交配 9 前2~22週に0.925 kBq/g体重以上の239Pu (NO3) 4 を単回腹腔内投与された雄マウスにお 10いて優性致死が誘発されたこと、1.85 kBq/g体重を曝露した雄が注射後9週間不妊となった 11 ことを報告した。雌マウスにおいてもプルトニウムへの曝露によって優性致死が誘発され 12ている(Searle et al. 1982)。740 kBq ²³⁹Pu /kg体重の²³⁹Puのクエン酸塩を静脈内投与さ 13れた雌マウスでは卵母細胞の顕著な死滅が引起こされ、対照群と比べて妊娠動物数が減少 14していた。プルトニウムの静脈内投与後に長期間(12週)交配すると、着床前と着床後の 15両方での優性致死が誘発されていた。 16

- プルトニウム化合物からのa線に曝露された様々なin vitro試験系において、遺伝毒性試 17験成績は一貫して陽性と報告されている。染色体異常は、ヒト末梢血リンパ球及びリンパ 18芽球 (DOE 1980h、Purrott et al. 1980)、マウス骨髄、マウス由来10T1/2及び3T3細胞 19株(Kadhim et al. 1992、Nagasawa et al. 1990a)、チャイニーズハムスター由来M3-1、 20V79並びにCHOK-1細胞株 (Griffin et al. 1994、Nagasawa et al. 1990b、Welleweerd et al. 211984) で報告されている。姉妹染色分体交換は、プルトニウムに曝露したヒト末梢血リン 22パ球(Aghamohammadi et al. 1988)、マウス由来10T1/2及び3T3細胞株(Nagasawa et 23al. 1990a) 並びにチャイニーズハムスターCHO細胞株 (Nagasawa and Little 1992、 24Nagasawa et al. 1990b) で認められている。Bilbaoら(1989) は、プルトニウムにより 25ヒト末梢血リンパ球に小核が誘発されることを報告した。その他の陽性の遺伝毒性試験成 26績には、ヒト及びハムスター細胞株での遺伝子突然変異(Barnhart and Cox 1979、Chen 2728et al. 1984、DOE 1980h、Thacker et al. 1982)、チャイニーズハムスターV79-4及び V79-379A細胞株でのDNA二重鎖切断(Fox and McNally 1990、Jenner et al. 1993)、チ 29ャイニーズハムスターV79-379A細胞株でのDNA損傷(Prise et al. 1987)並びにマウスー 30 ラット・ハイブリッド細胞株での放射線抵抗性の低下(Robertson and Raju 1980)が含 31まれている。プルトニウムはネズミチフス菌のいくつかの菌株による遺伝子突然変異試験 32では陰性であった(DOE 1980h)。 33
- 34
- 35 <参考>

36 プルトニウム化合物の非経口の内部被ばくによる発がん性に関する動物実験の報告があ37 る。

²³⁹PuO₂エアロゾルを吸入曝露された雌Wisterラットでは、悪性肺腫瘍の発生は、肺線量
 0.45 Gy以上から急増し、6.6 Gyで約90%に達した。また、多くの腺種又は腺癌は、肺線量

1 1~2 Gyで曝露12か月後から見出された。

2 クエン酸²³⁹Puを単回腹腔内投与された雌C3Hマウスにおいては、生存率の減少は、骨線
 3 量2.93 Gyから始まり、42.4 Gyで約半数が死亡した。また、骨肉種は6.93 Gyで最大値に達
 4 した(Oghiso and Yamada 2006)。

5 6

8. ヒトへの影響

7 (1)発がん性

8 米国コロラド州Rocky Flatsのプルトニウム施設の労働者におけるコホート内症例対照
 9 研究(Brown et al. 2005)では、180症例の肺がん死亡群と死亡リスクを考慮したその4倍
 の対照群とを比較して肺がん死亡に関する検討が行われ、累積肺線量400 mSv超過で10年
 の遅延期間を置いた場合の肺がんリスクのORは2.2 (95%CI:1.1-4.3)と有意に上昇して
 いた。ただし、リスクは被ばく量に対して単調増加しておらず、またフルペーパーではな
 く、研究の詳細に不明な点がある。

14 原子力施設からプルトニウムを含む廃液が放出されたテチャ川流域の住民における白血
 15 病や固形がんによる死亡を検討した3万人規模のコホート研究(Eidemuller et al. 2008)

16 では、曝露放射線量(500 mSv未満)と骨腫瘍を除く固形がん死亡(1854例)の発生に有
17 意な線量反応関係(ERR 0.76/Gy、95%CI: 0.23-1.29)が認められた。ただし、プルトニ
18 ウムを取り扱う施設ではあるが、放射線曝露は主としてセシウムやストロンチウムによる
19 ものであり、プルトニウムによる健康影響であるかどうかは不明である。。

20 同地域における別の研究者の報告(Kossenko et al. 2002)では、固形がんに対するERR
21 は0.65/Sv(95%CI:0.3·1.0)、白血病に対する過剰発生率は1万人年当たり0.85/Gy(95%
22 CI:0.2·1.5)とされている。その後の報告(Krestinina et al. 2005)では、固形がんに対
23 するERRは0.92/Gy(95%CI:0.2·1.7)、白血病に対するそれは4.2/Gy(95%CI:1.2·13)
24 となっている。

25 米国ワシントン州のプルトニウム工場の風下に住む801名の住民を423名の医療機関受
 26 診者対照や外部対照と比較した研究(Grossman et al. 2003)では、当該地域の住民にお
 27 いて甲状腺がんのほか、中枢神経腫瘍及び女性生殖器等のがんが、予期される頻度を大き
 28 く上回って多発していると報告されている。著者らは、放射線が関与しているとしても、
 29 ¹²⁹Iが主因であろうと推論している。

30

31 (2) 染色体異常

32 疫学研究は、プルトニウムがヒトの遺伝的損傷を引起こすという決定的な証拠を提供し
 33 ていないが、プルトニウムによる放射線曝露とリンパ球の染色体異常との関連については
 34 いくつかの研究があり、量反応関係も示されている。

35 米国コロラド州Rocky Flatsのプルトニウム施設の労働者(推定累積骨髄線量0~21 Sv)
 36 を対象とした研究(Livingston et al. 2006)では、引退したプルトニウム作業者のうち、
 37 内部及び外部線量が500 mSv未満と推定される30名、主に外部線量が100 mSv未満と推定
 38 される17名及び職業上の放射線被ばく歴のない対照群21名において、外部線量、内部線量、
 39 末梢血リンパ球の染色体異常及び小核頻度の関係を調べた。染色体異常の頻度は骨髄線量
(体内に取り込まれたプルトニウムからのα線の骨髄線量の中央値は168 mSv)と正の相関
 があった(図VII-1)が、外部線量とは相関がなかった。小核の出現頻度は3つの集団にお
 いて有意差がみられなかった。ただし、対象者が全数調査や無作為抽出標本ではなく、被
 ばく量で分類した連続性のない3群であり、回帰処理をすることが妥当かどうか疑問が残る。

7 図VII-1.Livingston

8

9 Rocky Flatsにあるプルトニウム施設の作業員を対象に行われた研究(Brandom et al.
 1990)では、体内負荷量が740 Bqの人では染色体異常頻度の上昇が観察されている。飛び
 11 抜けて多い曝露(60 kBq超)を受けた1名の高頻度の染色体異常(38/cell)が高曝露群(740
 12 Bq以上)全体のリスクを押し上げた可能性が高い。

ロシアのMavakにあるプルトニウム施設で被ばくし、体内負荷量が15.5 kBgと推定され 13ている作業員の末梢血リンパ球で、プルトニウムの内部線量に相関した染色体異常頻度の 14増加が報告されている(Hande et al. 2003、2005、Mitchell et al. 2004、Okladnikova et 15al. 2005)。同施設でy線にはほとんど曝露しないプルトニウム労働者及び反応炉労働者(推 16定累積骨髄線量0~2.1Gy)のリンパ球染色体異常を検討した研究(Hande et al. 2003、 17Hande et al. 2005) では、11名のプルトニウム高線量曝露者及び11名の低曝露者、4名の 18 反応炉労働者並びに5名の外部対照者において複合染色体間転移の頻度はそれぞれ2.9%、 190.2%、0.2%、0%、染色体内安定異常の頻度はそれぞれ3.7%、0.9%、0.1%、0%と有意 20に異なっていた。前者に関する量反応関係を示す散布図では有意な相関係数0.57が得られ 21ているが、対象者が連続性を持たないため、群間比較を超える処理は正当化されない。 22同施設で被ばくした作業員では被ばくしなくなった後も染色体異常頻度の上昇が何年も 23続いている(Hande et al. 2003、2005、Mitchell et al. 2004)。 24

1

3

4 同じ職場の79名からなるMayakのプルトニウム労働者コホートで行われた研究
5 (Okladnikova et al. 2005)でも、プルトニウムの負荷量(0~15.5 kBq)とリンパ球染
6 色体異常頻度の正の相関(r=0.45~0.50)が認められたが、4.5 kBq当たりでこの関係は頭
7 打ちになっている。

英国セラフィールド(Sellafield)の核燃料工場の労働者54名(推定プルトニウム負荷量 8 296~1480 Bq以上)と対照群(同0 Bq)の検討(Tawn et al. 1985)では、体内に取り込 9 まれたプルトニウムが最大許容体内負荷量を20%超過した人において、対称型及び非対称型 10 染色体異常の頻度が有意に上昇していた。また、その検査後の10年間は明らかな外部被ば 11くを受けなかったが、10年後の再検査における同工場のプルトニウム労働者、外部被ばく 12労働者及び対照群それぞれ24名の検討(Whitehouse et al. 1998)でも、対称型染色体異常 13の頻度が有意に高かった。この知見は、体内に沈着したプルトニウムが造血前駆細胞に放 14射線を照射するという仮説と一致している(Whitehouse et al. 1998)。 15

開放創は、プルトニウム作業員がプルトニウムα粒子に被ばくする可能性のある重要な経 16路である。主に創傷、穿刺又は擦過創を介した経路でプルトニウムに職業被ばくした英国 17の作業員8名(推定体内負荷量0.78~1.5 kBq)のリンパ球では染色体異常が観察されてい 18る。被ばくした各作業員では、二動原体染色体が500細胞当たり平均5個であったが、この 19異常の自然母集団における背景頻度は4,000細胞当たり1個であった(Schofield 1980、 20Schofield et al. 1974)。一方、32年間追跡調査されたマンハッタン計画のプルトニウム作 2122業員では、染色体異常頻度と0.185~15.4 kBqの範囲のプルトニウム体内負荷量との間には 明らかな相関関係が見つからなかった(Hempelmann et al. 1973、Voelz et al. 1979)。 23

24

25 (3) その他の影響

26 ヒトでは、プルトニウムの経口曝露による死亡、特定の臓器への影響、生殖・発生及び27 遺伝に関する研究は見あたらなかった。

 $\frac{1}{2}$

4 9. 国際機関等の評価

5 IARC 2001は²³⁹Pu (²³⁹Puの曝露には、²⁴⁰Puへの曝露も含まれるとされている。)につ
 6 いて、グループ1 (ヒトに対して発がん性がある (carcinogenic to humans))に分類し
 7 ている。また、ヒトにおいて、²³⁹Puエアロゾルの吸入による肺がん、肝臓がん及び骨肉種
 8 の証拠は十分であり、²³⁹Puの曝露には、²⁴⁰Puや他の同位体の曝露も伴うとされている。
 9

10. まとめ

12 プルトニウムについては、内部被ばくと肺がんに有意な関連があるが、プルトニウムの
13 寄与は必ずしも明確ではない。また、リンパ球染色体の異常に対する量反応関係のデータ
14 は存在するが評価に足る情報であるとは言えない。

1 **<参照>**

Agency for Toxic Substances and Disease Registry. 2010. Toxicological profile for plutonium.

Aghamohammadi SZ, Goodhead DT, Savage JRK. 1988. Induction of sister chromatid exchanges (SCE) in G0 lymphocytes by plutonium-238 α-particles. Int J Radiat Biol 53(6):909-915.

- Aisen P, Listowsky I. 1980. Iron transport and storage proteins. Annu Rev Biochem 49:357-393.
- Albright D, Kramer K. 2004. Fissile material. Stockpiles still growing. Bull At Sci 60(6):14-16.

http://www.isis-online.org/global_stocks/bulletin_albright_kramer.pdf. April 23, 2007.

- Argonne National Laboratory, EVS. Human Health Fact Sheet, Plutonium. August 2005.
- Barnhart BJ, Cox SH. 1979. Mutagenicity and cytotoxicity of 4.4-MeV α particles emitted by plutonium-238. Radiat Res 80(3):542-548.
- Beechey CV, Green D, Humphreys ER, et al. 1975. Cytogenetic effects of plutonium-239 in male mice. Nature 256(5518):577-578.
- Bhattacharyya M, Larsen R, Oldham R, et al. 1986. Effects of duration of fast and animal age on the gastrointestinal absorption of plutonium. Radiat Res 107(1):73-82.
- Brouns R. 1980. Analysis. In: Wock O, ed. Plutonium handbook: A guide to the technology. Vol. II. La Grange Park, Illinois: The American Nuclear Society, 709-720, 921-933.
- Brown SC and Ruttenber AJ. 2005. Lung cancer and plutonium exposure in Rocky Flat waters. RADIATION RESEARCH163(6):696-697.
- Chen DJ, Strniste GF, Tokita N. 1984. The genotoxicity of alpha particles in human embryonic skin fibroblasts. Radiat Res 100(2):321-327.
- Clark DL, Hecker SS, Jarvinen GD, et al. 2006. Plutonium and plutonium compounds. In: Kirk-Othmer encyclopedia of chemical toxicology, 667-712. John Wiley & Sons, Inc.

http://www.mrw.interscience.wiley.com/emrw/9780471238966/kirk/article/plutmo rs.a01/current/pdf. May 19, 2007.

DOE. 1976. Chromosome aberration frequency in blood lymphocytes of animals with 239Pu lung burdens. In: Radiation and the lymphatic system. Springfield, VA. U.S. Department of Energy. CONF-740930.

- DOE. 1980h. Short-term assays for risk evaluation of alpha irradiation. In: Sanders C, Cross FT, Dagle GE, et al., eds. Pulmonary toxicology of respirable particles. 19th Hanford Life Sciences Symposium, Richland, WA. Washington, DC: U.S. Department of Energy.
- DOE. 1997. EML procedures manual. 28th ed. U.S. Department of Energy. HASL-300. http://www.eml.st.dhs.gov/publications/procman/. March 10, 2009.
- DOE. 1999a. Natural low-level waste management program radionuclide report series. Vol. 17: Plutonium-239. U.S. Department of Energy. DOE/LLW-251. www.osti.gov/bridge/servlets/purl/14779-bpnxma/webviewable/14779.PDF. May 21, 2007.
- DOE. 2005a. Plutonium. Radiological and chemical fact sheet to support health risk analyses for contaminated areas. U.S. Department of Energy. http://www.evs.anl.gov/pub/doc/ANL_ContaminantFactSheets_All_070418.pdf. May 21, 2007.
- Durbin PW. 1972. Plutonium in man: A new look at the old data. In: Stover BJ, Jee WSS, eds. Radiobiology of plutonium. Salt Lake City, UT: J.W. Press, 469-530.
- Eidemuller M, Ostroumova E, Krestinina L, Akleyev A, Jacob P. 2008. Analysis of solid cancer mortality in the techa river cohort using the two-step clonal expansion model. RADIATION RESEARCH 169(2):138-148.
- Eisenbud M, Gesell T, eds. 1997. Environmental radioactivity. From natural, industrial, and military sources. 4th ed. San Diego, CA: Academic Press, 310-311, 489.
- Fox JC, McNally NJ. 1990. The rejoining of DNA double-strand breaks following irradiation with 238Pu alpha-particles: Evidence for a fast component of repair as measured by neutral filter elution. Int J Radiat Biol 57(3):513-521.
- Fritsch P, Beauvallet M, Moutairou K, et al. 1987. Acute lesions induced by alpha-irradiation of intestine after plutonium gavage of neonatal rats. Int J Radiat Biol Relat Stud Phys Chem Med 52(1):1-6.
- Generoso WM, Cain KT, Cacheiro NL, et al. 1985. 239Plutonium-induced heritable translocations in male mice. Mutat Res 152(1):49-52.
- Gorden AEV, Xu J, Raymond KN. 2003. Rational design of sequestering agents for plutonium and other actinides. Chem Rev 103:4207-4282.
- Griffin CS, Harvey AN, Savage JR. 1994. Chromatid damage induced by 238Pu alpha-particles in G2 and S phase Chinese hamster V79 cells (Comment in: Int J Radiat Biol 78(10):945-948). Int J Radiat Biol 66(1):85-98.

- Grossman Charles M, Nussbaum Rudi H, Nussbaum Fred D. 2003. ARCHIVES OF ENVIRONMENTAL HEALTH 58(5):267-274.
- Ham GJ, Harrison JD, Popplewell DS, et al. 1994. The gastrointestinal absorption of neptunium, plutonium and americium in a primate (C. jacchus). Sci Total Environ 145:1-6.
- Hande MP, Azizova TV, Burak LE, et al. 2005. Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: An mFISH study. Genes Chromosomes Cancer 44(1):1-9.
- Hande MP, Azizova TV, Geard CR, et al. 2003. Past exposure to densely ionizing radiation leaves a unique permanent signature in the genome. Am J Hum Genet 72:1162-1170.
- Harrison JD, Naylor GPL, Stather JW. 1994. The gastrointestinal absorption of plutonium and americium in rats and guinea pigs after ingestion of dusts from the former nuclear weapons site at Maralinga: Implications for human exposure. Sci Total Environ 143(2-3):211-220.
- Hempelmann LH, Langham WH, Richmond CR, et al. 1973. Manhattan project plutonium workers: A twenty-seven year follow-up study of selected cases. Health Phys 25(5):461-479.
- Hunt GJ, Leonard DRP, Lovett MB. 1986. Transfer of environmental plutonium and americium across the human gut. Sci Total Environ 53:89-109.
- Hunt GJ, Leonard DRP, Lovett MB. 1990. Transfer of environmental plutonium and americium across the human gut: A second study. Sci Total Environ 90:273-282.
- Hunt GJ. 1998. Transfer across the human gut of environmental plutonium, americium, cobalt, cesium and technetium: Studies with cockles (Cerastod ermaedule) from the Irish sea. J Radiol Prot 18(2):101-109
- IAEA. 1976a. Biological effect of focal alpha radiation on the hamster lung. In: Biological and environmental effects of low-level radiation. Vol. 2. Vienna: International Atomic Energy Agency, 121-129
- IAEA. 1976b. Biological effectiveness of 239Pu, 144Ce and 90Sr citrate in producing chromosome damage, bone-related tumours, liver tumours and life shortening in the Chinese hamster. In: Biological and environmental effects of low-level radiation. Vienna: International Atomic Energy Agency, 143-152.
- IAEA. 1976k. Dominant lethal tests of male mice given 239Pu salt injections. In: Biological and environmental effects of low-level radiation. Vol. 1. Vienna: International Atomic Energy Agency, 39-49

- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 78 (2001) Ionizing Radiation, Part 2: Some Internally Deposited Radionuclides. http://monographs.iarc.fr/ENG/Monographs/vol78/index.php
- ICRP. 1972. The metabolism of compounds of plutonium and other actinides. ICRP Publication 19. International Commission on Radiological Protection. New York, NY: Pergammon Press, 2-59.
- ICRP. 1979. Limits for intakes of radionuclides by workers. Part 1. Volume 2, No. 3/4. ICRP Publication 30. International Commission on Radiological Protection. Elmsford, NY: Pergammon Press, 23-46.
- ICRP. 1994a. Age-dependent doses to members of the public from intake of radionuclides: Part 2. Ingestion dose coefficients. ICRP Publication 67. The International Commission on Radiological Protection. Tarrytown, NY: Elsevier Science Inc.
- ICRP. 1996a Age-dependent doses to members of the public from intake of radionuclides: Part 4. Inhalation dose coefficients. Publication No. 71. International Commission on Radiological Protection Tarrytown, NY: Elsevier Sciences, Inc., 9-23, 328-343.
- ICRP. 2001. Plutonium. The ICRP database of dose coefficients workers and members of the public. Version 2.01. International Commission on Radiological Protection. Elsevier Science Ltd.
- Jenner TJ, deLara CM, O'Neill P, et al. 1993. Induction and rejoining of DNA double-strand breaks in V79-4 mammalian cells following γ-and α- irradiation. Int J Radiat Biol 64(3):265-273.
- Kadhim MA, Macdonald DA, Goodhead DT, et al. 1992. Transmission of chromosomal instability after plutonium α-particle irradiation. Nature 355(6362):738-740.
- Khokhryakov VF, Suslova KG, Vostrotin VV, et al. 2002. The development of the plutonium lung clearance model for exposure estimation of the Mayak production association, nuclear plant workers. Health Phys 82(4):425-431.
- Koch L. 2005. Plutonium and plutonium compounds. Ullmann's encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. http://www.mrw.interscience.wiley.com/emrw/9783527306732/ueic/article/a21_13 3/current/pdf. May 22, 2007.
- Kossenko MM, Preston DL, Krestinina LY, Degteva MO, Startsev N V, Thomas T,
 Vyushkova VP, Anspaugh LR, Napier BA, Kozheurov VP, Ron E, Akleyev AV.
 2002. Studies on the extended Techa river cohort: cancer risk estimation.
 RADIATION AND ENVIRONMENTAL BIOPHYSICS41(1): 45-48.
- Kressin IK, Moss WD, Campbell EE, et al. 1975. Plutonium-242 vs plutonium-236 as an analytical tracer. Health Phys 28:41-47.

- Krestinina L Yu, Preston DL, Ostroumova EV, Degteva MO, Ron E, Vyushkova OV, Startsev NV, Kossenko MM, Akleyev AV. 2005. Protracted radiation exposure and cancer mortality in the Techa River Cohort. RADIATION RESEARCH 164(5): 602-611.
- LaBauve RJ, Brooks AL, Mauderly JL, et al. 1980. Cytogenetic and other biological effects of 239PuO2 inhaled by the Rhesus monkey. Radiat Res 82(2):310-335.
- Leggett RW. 1985. A model of the retention, translocation and excretion of systemic Pu. Health Phys 49(6):1115-1137.
- Lehmann M, Culig H, Taylor DM. 1983. Identification of transferrin as the principal plutonium-binding protein in the blood serum and liver cytosol of rats: Immunological and chromatographic studies. Int J Radiat Biol 44(1):65-74.
- Lide DR. 2005. CRC handbook of chemistry and physics. 2005-2006. 86th ed. Boca Raton, FL: CRC Press. Taylor & Francis Group, 4-27, 4-79, 11-174, 11-175.
- Livingston GK, Falk RB, Schmid E. 2006. Effect of occupational radiation exposures on chromosome rates in former plutonium workers. Radiat Res 166(1):89-97.
- Lüning KG, Frolen H, Nilsson A. 1976. Genetic effects of 239Pu salt injections in male mice. Mutat Res 34(3):539-542.
- Makhijani A. 1997. Technical aspects of the use of weapons plutonium as reactor fuel. Science for democratic action. An IEER publication. Vol. 5(4). Institute for Energy and Environmental Research.

http://www.ieer.org/sdafiles/vol_5/5-4/moxmain4.html. August 28, 2007.

- Mitchell CR, Azizova TV, Hande MP, et al. 2004. Stable intra-chromosomal biomarkers of past exposure to densely ionizing radiation in several chromosomes of exposed individuals. Radiat Res 162:257-263.
- Mussalo-Rauhamaa H, Jaakkola T, Miettinen JK, et al. 1984. Plutonium in Finnish Lapps -An estimate of the gastrointestinal absorption of plutonium by man based on a comparison of the plutonium content of Lapps and southern Finns. Health Phys 46(3):549-559.
- Nagasawa H, Little JB, Inkret WC, et al. 1990b. Cytogenetic effects of extremely low doses of plutonium-238 alpha-particle irradiation in CHO K-1 cells. Mutat Res 244(3):233-238.
- Nagasawa H, Little JB. 1992. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. (Comment in: Cancer Res 53:2188). Cancer Res 52(22):6294-6396.
- Nagasawa H, Robertson J, Little JB. 1990a. Induction of chromosomal aberrations and sister chromatid exchanges by alpha particles in density-inhibited cultures of mouse 10T1/2 and 3T3 cells. Int J Radiat Biol 57:35-44.

- NEA/OECD. 1981. The environmental and biological behaviour of plutonium and some other transuranium elements. Paris, France: Nuclear Energy Agency, OECD.
- Oghiso Y, Yamada Y. 2000b. Strain differences in carcinogenic and hematopoietic responses of mice after injection of plutonium citrate. Radiat Res 154(4):447-454.
- Okladnikova ND, Scott BR, Tokarskaya ZB, et al. 2005. Chromosomal aberrations in lymphocytes of peripheral blood among Mayak facility workers who inhaled insoluble forms of 239Pu. Radiat Prot Dosimetry 113(1):3-13.
- Pomerantseva MD, Ramaya LK, Shevchenko VA, et al. 1989. Evaluation of the genetic effects of 238Pu incorporated into mice. Mutat Res 226(2):93-98.
- Popplewell DS, Ham GJ, McCarthy W, et al. 1994. Transfer of plutonium across the human gut and its urinary excretion. Radiat Prot Dosimetry 53(1-4):241-244.
- Priest ND, Pich GM, Fifield LK, et al. 1999. Accelerator mass spectrometry for the detection of ultra-low levels of plutonium in urine, including that excreted after the ingestion of Irish Sea sediments. Radiat Res 152:S16-S18.
- Prise KM, Davies S, Michael BD. 1987. The relationship between radiation-induced DNA double-strand breaks and cell kill in hamster V79 fibroblasts irradiated with 250 kVp X-rays, 2.3 MeV neutrons or 238Pu α-particles. Int J Radiat Biol 52(6):893-902.
- Purrott RJ, Edwards AA, Lloyd DC, et al. 1980. The induction of chromosome aberrations in human lymphocytes by in vitro irradiation with alpha-particles from plutonium-239. Int J Radiat Biol 38(3):277-284
- Robertson JB, Raju MR. 1980. Sudden reversion to normal radiosensitivity to the effects of x-irradiation and plutonium-238 alpha particles by a radioresistant rat-mouse hybrid cell line. Radiat Res 83(1):197-204
- Schofield G, Howells H, Ward F, et al. 1974. Assessment and management of a plutonium contaminated wound case. Health Phys 26:541-554.
- Schofield GB. 1980. Biological control in a plutonium production facility. Br J Radiol 53(629):398-409
- Searle A, Beechey C, Green D, et al. 1976. Cytogenetic effects of protracted exposures to alpha-particles from plutonium-239 and to gamma-rays from cobalt-60 compared in male mice. Mutat Res 41:297-310.
- Searle A, Beechey C, Green D, et al. 1982. Dominant lethal and ovarian effects of plutonium-239 in female mice. Int J Radiat Biol 42:235-244.
- Stevens W, Bruenger FW, Stover BJ. 1968. In vivo studies on the interaction of PuIV with blood constituents. Radiat Res 33(3):490-500.

- Stover BJ, Bruenger FW, Stevens W. 1968a. The reaction of Pu(IV) with the iron transport system in human blood serum. Radiat Res 33(2):381-394.
- Stroud AN. 1977. Chromosome aberrations induced in Syrian hamster lung cells by inhaled 238PuO2-ZrO2 particles. Radiat Res 69(3):583-590.
- Sullivan MF, Gorham LS. 1983. Can information on the gastrointestinal absorption of actinide elements by neonatal rats, guine pigs, dogs and swine be extrapolated to man? Health Phys 44:411-417.
- Sullivan MF, Hackett PL, George LA, et al. 1960. Irradiation of the intestine by radioisotopes. Radiat Res 13:343-355.
- Sullivan MF, Miller BM, Ruemmler PS, et al. 1985. Further studies on the influence of chemical form and dose on absorptions of Np, Pu, Am and Cm from the gastrointestinal tracts of adult and neonatal rodents. Health Phys 48(1):61-73.
- Sullivan MF, Ruemmler PS. 1988. Absorption of 233U, 237Np, 238Pu, 241Am and 244Cm from the gastrointestinal tracts of rats fed an iron-deficient diet. Health Phys 54(3):311-316.
- Sullivan MF. 1980a. Absorption of actinide elements from the gastrointestinal tract of rats, guinea pigs and dogs. Health Phys 38:159-171.
- Sullivan MF. 1980b. Absorption of actinide elements from the gastrointestinal tract of neonatal animals. Health Phys 38:173-185.
- Sun LC, Meinhold CB. 1997. Gastrointestinal absorption of plutonium by the Marshall islanders. Health Phys 73(1):167-175.
- Svoboda V, Sedlak A, Kypenova H, et al. 1987. Long-term effects of low-level 239Pu contamination on murine bone-marrow stem cells and their progeny. Int J Radiat Biol 52(4):517-526.
- Talbot RJ, Morgan A, Moores SR, et al. 1987. Preliminary studies of the interaction between 239PuO2 and cigarette smoke in the mouse lung. Int J Radiat Biol 51(6):1101-1110.
- Talbot RJ, Newton D, Warner AJ. 1993. Metabolism of injected plutonium in two healthy men. Health Phys 65(1):41-46.
- Talbot RJ, Nicholls L, Morgan A, et al. 1989. Effect of inhaled alpha-emitting nuclides on mouse alveolar macrophages. Radiat Res 119:271-285.
- Tawn EJ, Hall JW, Schofield GB. 1985. Chromosome studies in plutonium workers. Int J Radiat Biol 47(5):599-610.
- Taylor DM. 1973. Chemical and physical properties of plutonium. In: Hodge H, Stannard JN, Hursh JB, eds. Uranium, plutonium. Transplutonic elements. New York, NY: Springer-Verlag, 323-347.

- Thacker J, Stretch A, Goodhead DT. 1982. The mutagenicity of α particles from plutonium-238. Radiat Res 92(2):343-352.
- The Merck Index 2006
- Toohey RE, Bhattacharyya MH, Oldham RD, et al. 1984. Retention of plutonium in the beagle after gastrointestinal absorption. Radiat Res 97(2):373-379.
- Turner GA, Taylor DM. 1968. The binding of plutonium to serum proteins in vitro. Radiat Res 36(1):22-30.
- NRC. 1992. Gastrointestinal absorption of plutonium, uranium and neptunium in fed and fasted adult baboons: Application to humans. Washington, DC: U.S. Nuclear Regulatory Commission. NUREGCR5842.
- Voelz GL, Hempelmann LH, Lawrence JN, et al. 1979. A 32-year medical follow-up of Manhattan project plutonium workers. Health Phys 37(4):445-485.
- Welleweerd J, Wilder ME, Carpenter SG, et al. 1984. Flow cytometric determination of radiation-induced chromosome damage and its correlation with cell survival. Radiat Res 99(1):44-51.
- Whitehouse CA, Tawn EJ, Riddell AE. 1998. Chromosome aberrations in radiation workers with internal deposits of plutonium. Radiat Res 150(4):459-468.

岩波理化学辞典 1998 岩波書店

無機化合物·錯体辞典 1997 中原勝儼著 講談社

1 VIII. アメリシウム

2 **1. 元素名、原子記号等**

- 3 IUPAC : americium
- 4 CAS No. : 7440-35-9
- 5 原子記号:Am
- 6 同位体質量: 234、237-247(最長半減期の同位体 ²⁴³Am)
- 7 (The Merck Index 2006、岩波理化学辞典 1998)

8

9 **2. 物理化学的性状**

- 10 融点(℃):1,173
- 11 沸点 (°C): 2,067 (calc)
- 12 (岩波理化学辞典 1998)
- 13

14 アメリシウムは人工放射性元素であり、安定核種は存在しない(The Merck Index
 15 2006)。

16

17 **3. 放射性崩壊**

²⁴³Am 及び²⁴¹Am は、半減期がそれぞれ 7.38×10³年及び 432.7 年で、²⁴³Am はα崩壊、
 ²⁴¹Am はα崩壊及びγ崩壊をする放射線核種である(The Merck Index 2006、岩波理化学
 辞典 1998)。

21

22 **4. 用途**

23 ²⁴¹Am 及び ²⁴³Am は有用な放射線源で、²⁴¹Am は煙探知機にも使われる(岩波理化学辞
 24 典 1996)。

25

26 5. 自然界での分布・移動

アメリシウムは超ウラン元素の一つであり、人工元素である。環境中の²⁴¹Am 発生源と
して、核爆発からの放射性降下物、原子炉からの放出、再処理過程での放出並びに生産者
及び消費者による煙感知器の生産及び廃棄等が考えられる。環境中に存在するアメリシウ
ムの大部分は、1950~1960年代に行われた大気圏内核実験によるものであった(EPA
2004c、ATSDR 2004)。さらに、チェルノブイリ原子力発電所事故、航空宇宙原子炉
SNAP9Aを動力源とした衛星の燃焼、核兵器搭載 B-52爆撃機のグリーンランドの thule
墜落等の偶発的な放出がある。現在、放射性降下物から生じる放射線のほとんどが²⁴¹Am、

- 34 ⁹⁰Sr、¹³⁷Cs、²³⁸Pu、²³⁹Pu 及び ²⁴⁰Pu によるものである(DOE 1997a、ATSDR 2004)。
- 35 大気圏内核実験による低濃度の²⁴¹Am は世界中で検出され、この濃度は放射性降下物のバ
 36 ックグランドレベルとされている(ATSDR 2004)。

37 ²⁴¹Am は、原子炉内で、主に冷却材、排気塔のエアロゾル及び廃水で検出されている
 38 (Rosner et al. 1978、ATSDR 2004)。

39 ²⁴¹Amは²⁴¹Pu(半減期:14.4年)の崩壊から生成するため、²⁴¹Puの放出は結果として

²⁴¹Am をもたらしており、²⁴¹Pu の放出については、²⁴¹Am についても考慮しなければなら
 ない。²⁴¹Pu の事故的放出の結果生成される ²⁴¹Am は、70~80 年の間に最大量となる(EPA
 1976、ATSDR 2004)。その結果として、1980 年までに行われた大気圏内核実験による
 ²⁴¹Am の影響はおよそ 2035 年にピークに達し、生成と崩壊とを合わせた速度に従って減
 少すると思われる。²⁴¹Am 濃度のピーク時にも、²⁴¹Pu が依然として存在している(ATSDR
 2004)。

7 大気中に放出されたアメリシウムは粒子状物質と結合し、乾性又は湿性沈着により地表
8 又は表面水に堆積する(Essien et al. 1985、ATSDR 2004)。乾性沈着は重力沈降と表面
9 への固着により生ずる。湿性沈着したアメリシウムは降水により地球上に戻される。撹拌
10 と波の作用により、アメリシウムは水の表面から大気中に入る可能性がある。(McKay et al.
11 1994、Walker et al. 1986、ATSDR 2004)。

12 同様に、²⁴¹Am 汚染土壌から風の作用で空中に放出される可能性がある(ATSDR 2004)。
 13

14 水生生物は水の取込み又は堆積物若しくは食物尺度の低位生物の摂取を経由して、アメ
15 リシウムを生物濃縮する。水中のアメリシウムは、甲殻類動物性プランクトン、甲殻類及
16 び軟体動物の外骨格上に吸着し、蓄積する(Fisher et al 1983、ATSDR 2004)。浮遊珪藻
17 その他の食品から摂取されたアメリシウムの大部分は、腸を通過して排泄される。糞や放
18 置された動物死体といった生物起源の残骸は、²⁴¹Am の深層及び堆積中への垂直輸送を促
19 進している(ATSDR 2004)。

20

もし、陸上沈着が生じた場合、アメリシウムは土壌に吸着して表面下の土壌に到達し、 21風及び水の作用並びに生物的移送により再分配される。放射能汚染又は放射性廃棄物処理 22場のある地域に生息している小哺乳動物は、241Am 汚染土壌をかき乱すことにより、アメ 23リシウムに汚染される。さらに、小哺乳動物は、鷹やコヨーテのような食物連鎖の上位捕 24食者に捕食されて、廃棄物エリアからアメリシウムを分散させる可能性がある。放射性降 25下物の ²⁴¹Am は先行核種の ²⁴¹Pu と同伴して地上に達することから、任意の深さにおける 26²⁴¹Am 量はアメリシウムとプルトニウム両元素の浸出と両核種の崩壊の関数で表される。 27放射性降下物の²⁴¹Amの大部分は土壌(深さ数センチ)に保持され、そこで有機物と結合 28し、マンガンと鉄の酸化物に固着している(Bennett 1976、Bunzl et al. 1995、Vyas and 29Mistry 1980: ATSDR 2004)。しかしながら、アメリシウムを含む超ウラン放射性核種は 30 地下水中に移行することが見出されてきており、米国の数か所の国立研究所では、地下80 31~3,000 m 以上への移動が認められた。地下システムでは、コロイド状物質は地下水系で 32長距離の移動ができるため、アメリシウムを含む放射性汚染物質を結合し、輸送すること 33 34が可能である(McCarthy et al. 1998a、1998b、Penrose et al. 1990: ATSDR 2004)。 35

36 アメリシウムは植物の根を通して土壌から取り込まれ、植物の別の部位に移行する。
 ²⁴¹Am で汚染した塵も、植物の地上部分に沈着する可能性がある。²⁴¹Am の土壌からの吸
 38 収移行性は低い (Bennett 1979、EPA 1979、Nisbet and Shaw 1994、Romney et al. 1981、
 39 Schultz et al. 1976、Zach 1985: ATSDR 2004)。土壌からの吸収量は、化学種、土壌化

学、植物種及び環境条件の関数で表される。植物と土壌の²⁴¹Amの濃度比は、農作物と土
 壌の種類により2桁以上の幅がある。吸収は酸性条件ではより高く、アメリシウムの錯体
 生成及び吸収量を低下させるのに重要な役割を果たす有機物が多く含まれる土壌ではより
 低い。根を通して吸収された超ウラン元素が種子及び果実へ移行するのは、一般的に非常
 に遅い(Bennet 1979、Schreckhise and Cline 1980: ATSDR 2004)。

6 動物は汚染植物、土壌又は他の動物を摂取し、呼吸をすることでアメリシウムを蓄積す7 る(ATSDR 2004)。

8

水生生物による取込みは、温度、取込み後の経過時間、季節、水質といった多くの要因 9 に依存する可能性がある。魚におけるアメリシウムの生物濃度は低く、魚の可食部では特 10に低い(DOE 1996: ATSDR 2004)。241Amの濃度が、バックグランドレベルより3桁ほ 11ど高い核廃棄物処分池で実施された研究では、魚肉の濃度が対照群の濃度の10倍以上を示 12したことがあった(Emery et al. 1981: ATSDR 2004)。ヒトが摂取する海洋生物では、 13一般に、イガイで最も高く、その標的器官は、主に消化腺、鰓及び外骨格である 14(Chassard-Bouchaud 1996, Fisher et al. 1996, Hamilton and Clifton 1980 : ATSDR 152004)。これらの過程の多くについて移行係数が報告されている。入手可能な証拠から、 16ヒトに至る食物連鎖では、アメリシウムは生物濃縮されないということが示唆されている 17(Bulman 1978、Jaakkola et al. 1977: ATSDR 2004)。アメリシウムの生物濃縮に関す 18る最近の報告はない(ATSDR 2004)。 19

20

21 ATSDR の毒性学的プロファイルを基に、アメリシウムの体内動態と毒性に関する科学
 22 的知見を整理した。

23

24 6. 体内動態

25 **(1) 吸収**

26 動物試験に係る多くの知見と同様に、ヒトを対象にした試験においても投与放射能の
 27 0.1%未満が吸収されて血液中に入ることが示唆された。乳幼児では 0.5%近く吸収される
 28 可能性がある(ICRP 1996: ATSDR 2004)。

29

アメリシウム汚染貝(軟体動物)を用いて、ヒトにおけるアメリシウムの吸収について 30 調べられている。成人8名(男性6名、女性2名)に、英国カンブリア(Cumbria)州セ 31ラフィールド (Sellafield) の原子力施設近くの海岸で採取された²⁴¹Am 汚染タマキビガイ 32(winkles、食用巻貝の一種) が経口投与された。投与された²⁴¹Amの放射能は18~76 Bg 33 (0.15~0.63 ng) であった。投与後、24 時間連続的に 10 日間、各々の尿が採取された。 34吸収された放射能の割合は、尿から排泄された 241Am 排泄蓄積量と完全に吸収されると 35仮定した場合の排泄予測量との割合より推計された。241Am の排泄予測量は、Takada ら 36 (1984)の吸収されたアメリシウムが排泄される場合の動態モデルに基づいて算出された。 378名の幾何平均吸収率は、投与放射能の 0.6×10⁻⁴(幾何学的標準偏差[GSD] 0.1、範囲: 380.4×10⁻⁴~2.1×10⁻⁴)又は0.006%であった。 39

2回目の試験では、前試験の8名中7名及び新規の1名(男性6名、女性2名)に同じ
 試験方法で10~25 Bq(0.083~0.21 ng)の²⁴¹Amによる放射能が投与された(Hunt et al.
 1990)。

4 この結果、算術平均吸収率は、投与放射能の 0.8 x 10⁻⁴ (範囲: 0.4 x 10⁻⁴~1.5 x 10⁻⁴)
 5 であった。

6 以上2つの試験結果を総合すると、算術平均吸収率は、投与放射能の0.9×10⁻⁴(範囲:
 7 0.3×10⁻⁴~2.5×10⁻⁴)又は0.009%であり、男女の吸収率は同程度であった。

8 さらに、最初の試験の8名中3名及び新規3名(男性5名、女性1名)に同じ試験法を
 9 用いて3回目の試験が実施された。3回目の試験では、英国カンブリア(Cumbria)州レ
 10 ーブングラス(Ravenglass)で採取されたザルガイ(cockles、食用二枚貝の一種)が用い
 11 られ、投与された放射能は15~17 Bq(0.13~0.14 ng)であった(Hunt 1998)。

12 この試験の結果、算術平均吸収率は、投与放射能の 1.2×10⁻⁴(範囲: 0.3×10⁻⁴~2.6×
13 10⁻⁴)又は 0.012%であった。

14

酸化アメリシウム(AmO₂)については、事故により経口曝露した作業員に関する事例 15が報告されている。約105 kBq(0.88 µg Am)のAmO₂を含有するセラミック粒子を摂取 16した事例では、摂取後8日間で推定放射能の約0.15 Bq 又は0.00014%が尿中に排泄され 17た (Smith et al. 1983)。また、約 156 kBq (1.3 µg)の Am を含有した煙検知器の製造に 18用いる直径 2 mm の銀色ディスク 2 枚を飲用した事例では、摂取後 16 及び 24 時間の糞中 19に銀色ディスクを排泄した。この期間中、尿からの 241Am 排泄量は、摂取放射能の約 0.11 20Bq(0.7 ng Am)又は 0.0007%であった(Rundo et al. 1977)。2枚のディスクの摂取と糞 21中排泄との間の時間経過は、食道滞留時間及び腸での不規則な蠕動運動が関係したものと 22考えられた。 23

24

25 アメリシウムの吸収量は投与量の 0.1%未満という値を支持する結果が、ヒト以外の霊長26 類を用いた試験で得られている。

Ham ら(1994)は、マーモセットに²⁴¹Am(1.6 Bq、0.012 ng Am)を溶解したクエン
酸液を腹腔内投与、又は²⁴¹Am(250 Bq、2.0 ng Am)を混合したじゃがいも粉を胃内投
与し、肝臓及びカーカスにおけるアメリシウム滞留量との比較により、マーモセットの消
化管でのアメリシウム吸収量を概算した。

31 その結果、じゃがいも粉に混合された²⁴¹Am の吸収放射能は、投与放射能の約 6×10⁻⁴
 32 又は 0.06%と推定された。

33

34 アメリシウムの消化管における吸収量は、豚、モルモット、マウス及びラットでも調べ
35 られている。これらの試験では、吸収量の概算に用いられた方法はそれぞれ異なるが、重
36 要な傾向が明らかにされている。一般に、動物試験ではどの種においても摂取されたアメ
37 リシウムの吸収は相対的に低い(成獣で1%未満)ことが示されている。豚、モルモット、
38 ハムスター及びラットにおいて、新生児の吸収率は、成獣と比較すると 30~200 倍高く、
39 出生後、年齢と共に吸収率は急激に減少する(モルモットでは出生 30 日後で吸収率は 4

倍) (Bomford and Harrison 1986、David and Harrison 1984、Sullivan et al. 1985)。 1 アメリシウムは、水溶性の硝酸塩又はクエン酸塩の水溶液として摂取される場合も、軟 $\mathbf{2}$ 体動物、じゃがいも又は肝臓組織のような食品中で取り込まれる場合も、同様の吸収量と 3 なると考えられた (Bulman et al. 1993、Ham et al. 1994、Harrison et al. 1998、 4 Hisamatsu and Takezawa 1987、Stather et al. 1979a)。比較的不溶性が高いアメリシウ $\mathbf{5}$ ム酸化物の吸収量はアメリシウムクエン酸塩の 1/4~1/10 であり、また、アメリシウムク 6 エン酸塩の吸収量はアメリシウム硝酸塩の 1/3~1/6 であった (Stather et al. 1979a、 $\mathbf{7}$ Sullivan 1980a、1980b)。ラットでは、核実験場からの表面粉塵(surface dust from a 8 weapons site)に由来するアメリシウムの吸収量は、アメリシウム酸化物又は硝酸塩の 1/10 9 $\sim 1/50$ であった (Harrison et al. 1994、Sullivan et al. 1980b)。モルモットは、ラットの 105 倍量のアメリシウムを吸収し、種差が認められた。ラットについて、満腹時より空腹時 11及び鉄の充足時より鉄欠損時にアメリシウム吸収率が増加すると考えられた(Sullivan 12and Ruemmler 1988、Sullivan et al. 1986)。Fe³⁺及びアメリシウムを同時に経口曝露す 1314ると、摂取されたアメリシウムの吸収が亢進する結果となる。消化管において Fe+3 により 触媒された酸化還元反応によるものと考えられている(Sullivan et al. 1986)。消化管から 15吸収されるアメリシウムの詳細な吸収場所及び化学形態は明らかではないが、唾液ではク 16エン酸塩及びリン酸塩複合体が多く、消化液ではAm³⁺が多いと考えられた(Webb et al. 17 $1998)_{\circ}$ 18

19

20 (2)分布

アメリシウムは消化管から吸収されることが示されているが、経口曝露後の全身の分布 21については不明な点が多い(ICRP 1986、1994a)。しかしながら、消化管から吸収された 22アメリシウムは、吸入曝露による吸収と同様に体循環によって全身に分布すると推測され 23 $\mathbf{24}$ る。動物実験で、アメリシウムの摂取後にアメリシウムが蓄積する場所は骨格及び肝臓で あった。アメリシウムクエン酸塩を単回投与した豚において、体内蓄積量が最も多かった 25投与8時間後の吸収されたアメリシウムの分布比率は、骨に56%、肝臓に29%及び筋肉に 265%であった(Eisele et al. 1987)。ラットにアメリシウムクエン酸塩又は硝酸塩を単回経 27口投与した7日後、骨格及び肝臓では241Am体内負荷量のそれぞれ40%(範囲:8~67%) 28及び 29%(範囲: 7~30%)であった(Sullivan et al. 1985、1986)。消化管から吸収され 29たアメリシウムは、門脈血流により優先的に肝臓に入るが、肝臓における初回通過効果が 30 実際に吸収したアメリシウムの全体的な組織分布に影響するという証拠はない。マーモセ 31ットにアメリシウムクエン酸塩が静脈内投与された結果、肝臓ではアメリシウムの総体内 32負荷量の27%(消化管を除く)であったが、じゃがいも粉に混合したアメリシウムを単回 33 強制経口投与した結果では、肝臓への分布は総体内負荷量の31%であった(経口投与:静 34脈内投与の比率は 1.14) (Ham et al. 1994)。ハムスターでの同様な比較試験では、肝臓へ 35の負荷率における経口投与対静脈内投与の比率は 0.9 であり (Stather et al. 1979a)、モル 36 モットとラットとの比較では1未満という結果であった(Bomford and Harrison 1986、 37David and Harrison 1984, Harison et al. 1994) 38

1 (3)代謝

アメリシウムの代謝には、タンパク質との結合によるもののほかに、炭酸塩、リン酸塩
 等の各種の無機陰イオン及びクエン酸塩、乳酸塩等のカルボン酸塩との複合体によるもの
 が考えられる(Durbin 1973、Taylor 1973、Webb et al. 1998)。

6 (4) 排泄

 $\mathbf{5}$

7 水中環境でアメリシウムに汚染された軟体動物を摂取したヒトにおいて、摂取アメリシ
8 ウムの尿中排泄が測定された。成人8名(男性6名、女性2名)に、²⁴¹Am で汚染された
9 タマキビガイを経口投与した。投与した²⁴¹Am の放射能は10~25 Bq(0.083~0.21 ng)
10 であった。投与後7日間の平均累積尿中排泄量は約0.0005%であり、尿中に排泄された吸
11 収放射能の割合は0.07%と算出された(Hunt et al. 1990)。

英国カンブリア州レーブングラスで採取されたザルガイ(放射能範囲:15~17 Bg、0.13 12~0.14 ng)を経口摂取した6名(男性5名、女性1名)における同様の研究では、摂取後 137日間の平均累積尿中排泄量は、経口摂取したアメリシウムの約0.0009%であり、尿中に 14排泄された吸収放射能量は 0.08% と算出された(Hunt 1998)。被験者のうち 3 名は、タマ 15キビガイの先行研究(Hunt et al. 1990)にも参加しており、ザルガイを摂取する前3日間 16の尿中排泄量は以前のタマキビガイ摂取による影響として補正された。ザルガイで測定さ 17れた²⁴¹Am 放射能は、摂取後7日間に被験者から集められた便中で測定された蓄積放射能 18と区別できなかった。 19

20

²⁴¹AmO₂ を含有するセラミック粒子を作業員が摂取した事故事例において、摂取された
 アメリニウムの排泄に関する報告がされている(Smith et al. 1983)。事故後5日目に、約
 105 kBq の ²⁴¹Am (0.88 µg Am)を含有するセラミック粒子が便に排泄された。その日以
 前及び以後の便には、²⁴¹Am 放射能は検出されなかった。粒子の摂取後8日間に、約0.15
 Bq (0.00007%)が尿中に排泄された。

26

ラット及びモルモットを用いた試験の結果、これらの動物では、消化管より吸収された 27アメリシウムは、曝露後1週間以内に主に尿中に排泄されることが示された。 ラットにア 28メリシウム硝酸塩又はクエン酸塩が強制経口投与されると、推定吸収放射能の30~80%が 29投与後7日間で尿中に排泄された(Sullivan 1980a、Sullivan et al. 1985)。排泄率の幅が 30 広いのは、アメリシウムの吸収率が相対的に低いため、推測値の不確実性に起因すると考 31えられた。尿中に排泄された吸収放射能の割合は、鉄欠損ラット(35%)では鉄充足ラッ 32ト(78%)よりも低かった(Sillivan et al. 1985)。モルモットでは、アメリシウム硝酸塩 33 の単回強制経口投与後7日間に吸収放射能の35~50%が尿中に排泄された(Sillivan 341980a) 35

36 アメリシウムが、吸収されて循環器系に入ると、曝露経路とは関係なく糞及び尿に排泄
 37 される。これは、ヒトの事故事例及びアメリシウムが静脈内投与又は筋肉内投与された動
 38 物試験の結果から明らかである。

1 7. 実験動物等への影響

2 アメリシウムの経口投与による急性、亜急性及び慢性毒性試験について、動物における
 3 死亡、臓器毒性、免疫学的及びリンパ細網系、神経毒性、生殖・発生毒性、発がん性、遺
 4 伝毒性等の健康影響に関する報告はない(ATSDR 2004)。

 $\mathbf{5}$

6 8. ヒトへの影響

7 (1)急性毒性、亜急性毒性及び慢性毒性試験

8 アメリシウムの経口投与による急性、亜急性及び慢性毒性試験について、ヒトにおける
 9 死亡、臓器毒性、免疫学的及びリンパ細網系、神経毒性、生殖発生毒性等の健康影響に関
 10 する報告はない(ATSDR 2004)。

11

12 (2)発がん性

13 アメリシウムの急性、亜急性及び慢性経口投与試験によるヒト発がん性に関連した報告
 14 はない。大量に曝露した作業員が11年後に死亡しているが、生検による検査においてもが
 15 んの所見は認められず、死因はがんではなかった。EPAは、ヒトに対する発がん性物質と
 16 考えられる放射線核種を検討しており、摂取された²⁴¹Am及び²⁴³Amの発がんリスク因子
 17 を推計している(ATSDR 2004)。

18

19 (参考:症例報告)

アメリシウムの全身影響については、²⁴¹Am を含むイオン交換カラムが目の前で爆発
した 64 歳男性の事例について多くの報告がなされている(Breitenstein and Palmer
1989、Filipy et al. 1995、Jech et al. 1983、McMurray 1983、Palmer et al. 1983、
Robinson et al. 1983、Thompson 1983、Toohey and Kathren 1995)。

24 当該症例の曝露量は 37~185 GBq と推定され、応急処置により 220 MBq 程度に、その後1日で 37 MBg 程度まで低下した(Robinson et al. 1983)。

26 有意だが一時的な貧血及びリンパ球と血小板の持続的減少が観察された。その作業員
27 は曝露 11 年後に関係のない原因で死亡している(Filipy et al. 1995)。剖検では、高度
28 の骨梁周囲の線維化(peritrabecular fibrosis)、骨の細胞成分の減少及び骨代謝の抑制
29 が認められた(Priest et al. 1995)。

30

31 (3) 遺伝毒性試験

32 アメリシウムについては、ヒト及び実験動物において経口又は経皮曝露による急性、亜
 33 急性又は慢性の遺伝毒性影響に関する報告はない。吸入曝露では、ヒトでの急性及び亜急
 34 性並びに実験動物での亜急性及び慢性の遺伝毒性影響に関する報告はない。ヒトにおける
 35 アメリシウムの外部被ばく事例でみられた遺伝毒性影響に関する所見について記載した。

36

37 γ線に 11~22 年間外部被ばくした 7 名の核燃料製造工場作業員(これらのうち 6 名はさ
 38 らに検査前の 5 年間 α線を放射する ²⁴¹Am に内部被ばくしている)のリンパ球では、染色
 39 体異常(対称型である転座、二動原体及び環状染色体)の頻度が上昇していた(Bauchinger

et al. 1997)。γ線の外部被ばく及び²⁴¹Am の内部被ばくによる作業員の総実効線量当量は、
 393、39、207、304、202、237及び 349 mSv(全身)であった。内部被ばくした 6 名中
 5 名において、²⁴¹Am に起因する実効線量等量は総線量の 5~25%となり、染色体異常は主
 に γ線の外部被ばくに起因していた。残りの 1 名の作業員では、総実効線量等量 39 mSv
 (3.9 rem)の 66%が²⁴¹Am の内部被ばくによるものであった。

6

7 放射線作業者、その妻、娘(大学生)及び息子(10歳)の事例では、作業者が私的実験
8 のために用いた線源から、彼らは数年間自宅で高い線量の²⁴¹Amに被ばくし、結果的に体
9 内負荷量は 0.24~3.3 kBq であった。培養白血球の染色体異常は、外部線源による事故被
10 ばく又は治療による被ばくの事例において観察されたものと同程度のものであった(Kelly
11 and Dagle 1974)。観察された細胞遺伝学的な損傷の程度は低く、著者らに利用可能な背
12 景対照値にかなり類似していた。吸入されたアメリシウムによる有意な遺伝毒性影響は示
13 されていない。

14 唯一の実験動物による報告として、アメリシウムの急性吸入曝露による遺伝毒性影響に
 15 関するものがある。肺に対する累積放射線量が 20 Gy である ²⁴¹Am (硝酸アメリシウムと
 16 して)に単回で 30 分間経鼻曝露されたマウスにおいて、PAM 数の減少(21 日に最大減少)、

17 小核数の増加及び多核細胞が認められている(Talbot et al. 1989)。初期の肺胞沈着は 1.2
 18 kBq であったが、21 日で約 300 Bq に急速に低下し、試験終了の 98 日で約 100 Bq となっ
 19 た。²⁴¹Am への曝露後には、実質的にすべての PAM は ²⁴¹Am を含んでおり、曝露後 3 日
 20 から 98 日までの間のと殺時においてもかなりの量の ²⁴¹Am がみられていた。

21

22 9. 国際機関等の評価

23 報告は見当たらなかった。

- 24
- 25

1 **<参照>**

- Agency for Toxic Substances and Disease Registry. TOXICOLOGICAL PROFILE FOR AMERICIUM. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. Public Health Service. April 2004.
- ATSDR. 1999. Toxicological profile for uranium. U.S. Department of Health and Human Services. Public Health Service. Agency for Toxic Substances and Disease Registry. Atlanta, GA.
- Bauchinger M, Schmid E, Braselmann H. 1997. Cytogenetic evaluation of occupational exposure to external gamma-rays and internal 241Am contamination. Mutat Res 395:173-178.
- Bennett BG. 1976. Transuranic element pathways to man. U.S. Energy Research and Development Administration. IAEA-SM-199/40.
- Bennett BG. 1979. Environmental aspects of americium. Doctor of Philosophy Thesis, New York University.
- Bennett BG. 1979. Environmental aspects of americium. Doctor of Philosophy Thesis, New York University.
- Bomford JA, Harrison JD. 1986. The absorption of ingested Pu and Am in newborn guinea pigs. Health Phys 51(6):804-808.
- Bomford JA, Harrison JD. 1986. The absorption of ingested Pu and Am in newborn guinea pigs. Health Phys 51(6):804-808.
- Breitenstein BD, Palmer HE. 1989. Life follow-up of the 1976 americium accident victim. Radiat Prot Dosim 26(1/4):317-322.
- Bulman RA, Johnson TE, Ham GJ, et al. 1993. Speciation of plutonium in potato and the gastrointestinal transfer of plutonium and americium from potato. Sci Total Environ 129:267-289.
- Bulman RA. 1978. The movement of plutonium, americium, and curium through the food chain. Naturwissenschaften 65:137-143.
- Bunzl K, Flessa H, Kracke W, et al. 1995. Association of fallout 239+240Pu and 241Am with various soil components in successive layers of a grassland soil. Environ Sci Technol 29:2513-2518.
- Chassard-Bouchaud C. 1996. Analytical microscopy and environment. Current developments using bioindicators of pollution by stable and radioactive elements. Cell Mol Biol 42(3):361-383.
- David AJ, Harrison JD. 1984. The absorption of ingested neptunium, plutonium and americium in newborn hamsters. Int J Radiat Biol 46(3):279-286.
- Davis A, DeCurnou P, Eary LE. 1997. Discriminating between sources of arsenic in the sediments of a tidal waterway, Tacoma, Washington. Environ Sci Technol 31:185-191.

- DOE. 1996. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site (U). Savannah River Site. U.S. Department of Energy. WSRC-TR-96-0231. DE-AC09-89SR18035.
- DOE. 1997a. Evaluation of the anthropogenic radionuclide concentrations in sediments and fauna collected in the Beaufort Sea and Northern Alaska. Los Alamos National Laboratory. U.S. of Energy. LA-13302-MS. UC-721. Contract W-7405-ENG-36. DE-97007-298.
- Durbin PJ. 1973. Metabolism and biological effects of the transplutonium elements. In: Hodge HC, Stannard JN, Hursh JB, eds. Uranium, plutonium, transplutonic elements. New York: Springer-Verlag, 739-896.
- Eisele GR, Bernard SR, Nestor CW. 1987. Gastrointestinal absorption of americium-241 by orally exposed swine: Comparison of experimental results with predictions of metabolic models. Radiat 112:62-73.
- Emery RM, Klopfer DC, Baker DA, et al. 1981. Potential radiation dose from eating fish exposed to actinide contamination. Health Phys 40:493-510.
- EPA. 1976. Americium Its behavior in soil and plant systems. Las Vegas, NV: Office of Research and Development, U.S. Environmental Protection Agency. EPA600/3-76-005. PB250797.
- EPA. 2004c. Radiation information: Americium. U.S. Environmental Protection Agency. http://www.epa.gov/radiation/radionuclides/americium.htm. March 11, 2004.
- EPRI. 1981. Transuranium and other long-lived radionuclides in the terrestrial environs of nuclear power plants. Battelle Pacific Northwest Laboratories. EA-2045. Research Project 1059. Illinois State Library.
- Essien IO, Sandoval DN, Kuroda PK. 1985. Deposition of excess amount of natural uranium from the atmosphere. Health Phys 48(3):325-331.
- Filipy RE, Toohey RE, Kathren RL, et al. 1995. Deterministic effects of 241Am exposure in the Hanford americium accident case. Health Phys 69(3):338-345.
- Fisher NS, Bjerregaard P, Fowler SW. 1983. Interactions of marine plankton with transuranic 3. Biokinetics of americium in euphausiids. Mar Biol 75:261-268. elements:
- Fisher NS, Teyssié J-L, Fowler SW, et al. 1996. Accumulation and retention of metals in mussels from food and water: A comparison under field and laboratory conditions. Environ Sci Technol 30(11):3232-3242.
- Ham GJ, Harrison JD, Popplewell DS, et al. 1994. The gastrointestinal absorption of neptunium, plutonium and americium in a primate (C. jacchus). Sci Total Environ 145:1-6.

- Hamilton EI, Clifton RJ. 1980. Concentration and distribution of the transuranium radionuclides 239+240Pu, 238Pu and 241Am in Mytilus edulis, Fucus vesiculosus and surface sediment of Esk estuary. Mar Ecol Prog Ser 3:267-277.
- Harrison JD, Naylor GPL, Stather JW. 1994. The gastrointestinal absorption of plutonium and americium in rats and guinea pigs after ingestion of dusts from the former nuclear weapons site at Maralinga: Implications for human exposure. Sci Total Environ 143:211-220.
- Harrison JD, Smith H, David AF. 1988. Plutonium and americium uptake in rats fed with Cumbrian shellfish - implications for estimates of dose to man. Sci Total Environ 68:187-196.
- Hisamatsu S, Takizawa Y. 1987. Effect of gavaged chemical form of 241Am on its retention in mice. Radiat Res 111:334-339.
- Hunt GJ, Leonard DRP, Lovett MB. 1990. Transfer of environmental plutonium and americium across the human gut: A second study. Sci Total Environ 90:273-282.
- Hunt GJ. 1998. Transfer across the human gut of environmental plutonium, americium, cobalt, caesium and technetium: Studies with cockles (Cerastoderma edule) from the Irish Sea. J Radiol Prot 18(2):101-109.
- ICRP. 1986. The metabolism of plutonium and related elements. International Commission of Radiological Protection. ICRP Publication 48. New York: Pergamon Press.
- ICRP. 1994a. Age-dependent doses to members of the public from intake of radionuclides: Part 2, ingestion dose coefficients. The International Commission on Radiological Protection. ICRP 67. New York, NY: Pergamon Press. http://www.elsevier.com/inca/publications/store/. March 12, 2001.
- ICRP. 1996. Age-dependent doses to members of the public from intake of radionuclides: Part 5. Compilation of ingestion and inhalation dose coefficients. The International Commission on Radiological Protection. ICRP Publication 72. New York, NY: Pergamon Press.
- Jaakkola T, Hakanen M, Keinonen M, et al. 1977. Plutonium and americium in the food chain lichenreindeer-man. Springfield, VA: U.S. Department of Commerce.
- Jech JJ, Berry JR, Breitenstein BD. 1983. 1976 Hanford americium exposure incident: External decontamination procedures. Health Phys 45(4):873-881.
- Kelly S, Dagle A. 1974. Cytogenetic damage in americium poisoning. NY State J Med 74(9):1597-1598
- McCarthy JF, Czerwinski KR, Sanford WE, et al. 1998a. Mobilization of transuranic radionuclides from disposal trenches by natural organic matter. J Contam Hydrol 30:49-77.

- McCarthy JF, Sanford WE, Stafford PL. 1998b. Lanthanide field tracers demonstrate enhanced transport of transuranic radionuclides by natural organic matter. Environ Sci Technol 32(24):3901-3906.
- McKay WA, Garland JA, Livesley D, et al. 1994. The characteristics of the shore-line sea spray aerosol and the landward transfer of radionuclides discharged to coastal sea water. Atmos Environ 28(21):3299-3309.
- McMurray BJ. 1983. 1976 Hanford americium exposure incident: Accident description. Health Phys 45(4):847-853.
- Murray CN, Avogadro A. 1979. Effect of a long-term release of plutonium and americium into an estuarine-coastal sea ecosystem. I. Development of an assessment methodology. Health Phys 36:573-585.
- Nisbet AF, Shaw S. 1994. Summary of a 5-year lysimeter study on the time-dependent transfer of 137Cs, 90Sr, 239,240Pu and 241Am to crops from three contrasting soil types: 1. Transfer to the edible portion. J Environ Radioact 23:1-17.
- NRC. 1981. Distribution coefficients for radionuclides in aquatic environments. National Research Council, Washington DC: National Academy Press.
- Palmer HE, Rieksts GA, Icayan EE. 1983. 1976 Hanford americium exposure incident: In vivo measurements. Health Phys 45(4):893-910.
- Pattenden NJ, McKay WA. 1994. Studies of artificial radioactivity in the coastal environment of northern Scotland: A review. J Environ Radioact 24:1-51.
- Priest ND, Freemont A, Humphreys JAH, et al. 1995. Histopathology and 241Am micro distribution in skeletal USTUR case 246. Health Phys 69(3):330-337.
- Robinson B, Heid KR, Aldridge TL, et al. 1983. 1976 Hanford americium exposure incident: Organ burden and radiation dose estimates. Health Phys 45(4):911-921.
- Romney EM, Wallace A, Schulz RK, et al. 1981. Plant uptake of 237Np, 239,240Pu, 241Am, and 244Cm from soils representing major food production areas of the United States. Soil Sci 132(1):40-59.
- Rosner G, Hötzl H, Winkler R. 1978. Measurements of transuranium nuclides in the environment at the Institute for Radiation Protection of the Gesellschaft für Strahlenund Umweltforschung mbH, Munich. Environ Int 1:85-88.
- Rundo J, Fairman WD, Essling M, et al. 1977. Ingestion of 241Am sources intended for domestic smoke detectors: Report of a case. Health Phys 33:561-566.
- Schreckhise RG, Cline JF. 1980. Comparative uptake and distribution of plutonium, americium, curium and neptunium in four plant species. Health Phys 38:817-824.
- Schulz RK, Tompkins GA, Leventhal L, et al. 1976. Uptake of plutonium and americium by barley from two contaminated Nevada test site soils. J Environ Qual 5(4):406-410.

- Smith LR, Sullivan PA, Laferriere J, et al. 1983. Intake and subsequent fate of a ceramic particle containing 2.85 µCi 241Am: A case study. Health Phys 44(4):329-334.
- Stather JW, Harrison JD, Rodwell P, et al. 1979a. The gastrointestinal absorption of plutonium and americium in the hamster. Phys Med Biol 24(2):396-407.
- Sullivan MF, Miller BM, Ruemmler PS, et al. 1985. Further studies on the influence of chemical form and dose on absorptions of Np, Pu, Am and Cm from the gastrointestinal tracts of adult and neonatal rodents. Health Phys 48(1):61-73.
- Sullivan MF, Miller BM, Ruemmler PS, et al. 1985. Further studies on the influence of chemical form and dose on absorptions of Np, Pu, Am and Cm from the gastrointestinal tracts of adult and rodents. Health Phys 48(1):61-73.
- Sullivan MF, Ruemmler PS, Ryan JL, et al. 1986. Influence of oxidizing of reducing agents on gastrointestinal absorption of U, Pu, Am, Cm, and Pm by rats. Health Phys 50(2):223-232.
- Sullivan MF, Ruemmler PS. 1988. Absorption of 233U, 237Np, 238Pu, 241Am and 244Cm from the gastrointestinal tracts of rats fed an iron-deficient diet. Health Phys 54(3):311-316.
- Sullivan MF. 1980a. Absorption of actinide elements from the gastrointestinal tract of neonatal animals. Health Phys 38:173-185.
- Sullivan MF. 1980b. Absorption of actinide elements from the gastrointestinal tract of rats, guinea pigs and dogs. Health Phys 38:159-171.
- Talbot RJ, Nicholls L, Morgan A, et al. 1989. Effect of inhaled α-emitting nuclides on mouse alveolar macrophages. Radiat Res 119:271-285.
- Taylor DM. 1973. Chemical and physical properties of the transplutonium elements. In: Hodge HC, Stannard JN, Hursh JB, eds. Uranium, plutonium, transplutonic elements. New York: Springer-Verlag, 717-738.

The Merck Index 2006

- Thompson RC. 1983. 1976 Hanford americium exposure incident: Overview and perspective. Health Phys 45(4):837-845.
- Toohey RE, Kathren RL. 1995. Overview and dosimetry of the Hanford americium accident case. Health Phys 69(3):310-317.
- UNSCEAR. 2000. Sources and effects of ionizing radiation. UNSCEAR 200 report. Volume 1. United Nations Scientific Committee on the Effects of Atomic Radiation. http://www.unscear.org/reports/2000_1.html. February 17, 2004.
- Vyas BN, Mistry KB. 1980. Studies on the mobility of plutonium-239 and americium-241 in three major Indian soils. J Nucl Agric Biol 9:85-88.

- Walker MI, McKay WA, Pattenden NJ, et al. 1986. Actinide enrichment in marine aerosols. Nature 323:141-143.
- Webb LM, Taylor DM, Williams DR. 1998. Computer modeling of the chemical speciation of lanthanide and actinide elements in the human gastrointestinal tract: Mouth and stomach. Radiat Prot Dosim 79(1/4):219-222.
- Zach R. 1985. Contribution of inhalation by food animals to man's ingestion dose. Health Phys 49(5):737-745.

岩波理化学辞典 1998

1 $\mathbf{2}$ 3

1 IX. キュリウム

- 2 **1. 元素名、原子記号等**
- 3 IUPAC : curium
- 4 CAS No. : 7440-51-9
- 5 原子記号:Cm
- 6 原子量:238~251(最長半減期の同位体²⁴⁷Cm)
- 7 (The Merck Index 2006、岩波理化学辞典 1998)
- 9 **2. 物理化学的性状**
- 10 融点 (℃):1345
- 11 沸点 (℃): 3110 (calc)
- 12 (The Merck Index 2006、岩波理化学辞典 1998)
- 13

8

14 3. 放射性崩壊及び体内動態

²⁴²Cm、²⁴³Cm、²⁴⁴Cm、²⁴⁵Cm、²⁴⁶Cm、²⁴⁷Cm 及び ²⁴⁸Cm は、半減期がそれぞれ 160
 日、29、18、8,500、4,700、16×10⁶及び 34×10⁴年で、いずれも α 崩壊する放射線核種
 である。また、²⁵⁰Cm は半減期が 6,900 年で α 崩壊及び β 崩壊をする放射線核種である。
 α線、β線、γ線のそれぞれの最大エネルギーは、6.1、0.14 及び 0.32 MeV である。

キュリウムは、摂食、飲水又は吸気により体内へ取り込まれる可能性があり、胃腸吸収
が、一般集団において考えられるキュリウムの主要な内部蓄積の原因である。摂取後、ほ
とんどのキュリウムは数日以内に排泄され、摂取された量の0.05%しか血中には入らない。
血中に入ったキュリウムのうち、肝臓及び骨にそれぞれ約45%ずつ蓄積し、その生物学的
半減期はそれぞれ20及び50年である。残りの約10%のほとんどは直接的に排泄される。
骨格中のキュリウムは、主に骨(mineral bone)の骨内膜表面に蓄積し、骨全体にわずか
にゆっくりと再分布する(Argonne National Laboratory 2005)。

26

27 4. 起源·用途

キュリウムは人工放射性元素であり、安定しない核種である(The Merck Index 2006)。
 また、超ウラン元素の一つでもあり、最長半減期の同位体の質量数は247である(岩波理
 化学辞典 1996)。キュリウムには16の同位体の存在が知られている(Argonne National
 Laboratory 2005)。同素体は1277 ℃でα(複六方最密構造)からβへ転移し、1277~
 1345 ℃ではβは面心立方構造で存在する。²⁴²Cm及び²⁴⁴Cmは医療用原子力電池の動力
 源として、²⁴²Cmは放射性熱源として、²⁴⁸Cmは加速器研究における超重元素の形成のた
 めに使われる(The Merck Index 2006)。

35

1 **<参照>**

- 2 1. The Merck Index 14th ed., Merck & Co., Inc., New Jersey, 9851, 2006.
- 3 2. 岩波理化学辞典 第 5 版,長倉三郎、井口洋夫、江沢洋、岩村秀、佐藤文隆、久保亮五編,岩波書店,
 4 東京, 1998, 116-117
- 5 3. Argonne National Laboratory, US Department of energy, Human Health Fact Sheet, 2005

1 X. 放射性ストロンチウム

2 ここにおいて単にストロンチウムと記載したものは、それが放射性ストロンチウムか否3 かについて区別せずに記載したものである。

4

5 **1. 元素名、原子記号等**

- 6 IUPAC : strontium
- 7 CAS No. : 7440-24-6
- 8 原子記号:Sr
- 9 原子量:87.62
- 10 自然界の存在比:⁸⁸Sr 82.58%、⁸⁶Sr 9.86%、⁸⁷Sr 7.00%、⁸⁴Sr 0.56%
- 11 (The Merck Index 2006)
- 12

13 **2. 物理化学的性状**

- 14 融点(℃):757
- 15 沸点(℃):1,366
- 16 密度 (g/cm³) : 2.6
- 17 外観:銀白色金属
- 18 (The Merck Index 2006、岩波理化学辞典 1998)
- 19

20 3. 放射性崩壊

ストロンチウムの同位体のうち、84Sr、86Sr、87Sr 及び88Sr は自然界に存在する安定な 21ストロンチウムである。最も重要な放射性同位体は 89Sr 及び 90Sr であり、これらは原子炉 22の運転や核爆発による²³⁵U、²³⁸U、²³⁹Puの核分裂によって生成する。⁹⁰Srは、半減期が 2329年で、0.20 MeVのβ粒子を放出して⁹⁰Yに崩壊する。⁹⁰Srは、他のβ核種と違い、直 24接高いエネルギーの光子やγ線を放出しない。しかしながら、⁹⁰Srの娘核種である⁹⁰Yは、 25最大 2.28 MeV の β 粒子を放出する β 核種であり、全崩壊の 0.02%では β 粒子及び 2.19 keV 26のγ線の放出もする。90Yは、半減期が64日で、よりエネルギーの高い0.94 MeVのB粒 27子を放出して⁹⁰Zrに崩壊する(Argonne National Laboratory 2006)。 28

⁸⁹Srは、⁹⁰Srと同様に²³⁵U、²³⁸U及び²³⁹Puの崩壊生成物である。⁸⁹Srは、1.495 MeV
 のβ粒子を放出して⁸⁹Yへ崩壊する。⁸⁹Srの半減期は51日である(Lide 1995)。

31

32 **4. 用途**

33 塩化ストロンチウムは、煙火の発色剤として、また、多くのストロンチウム化合物の合34 成材料として用いられる。

35 炭酸ストロンチウムは、花火、虹色ガラス製品及び精糖に用いられる(The Merck Index
 36 2006、岩波理化学辞典 1998)。

37

38 5. 自然界での分布・移動

39 ストロンチウムはアルカリ土類元素で、周期表のグループ IIA に属する。高い反応性を

もつため、金属ストロンチウムは自然界には存在せず、他の元素との化合物としてのみ存
 在する。地殻の 0.025%には主に天青石(SrSO₄)及びストロンチアン石(SrCO₃)の形態
 で存在する。

4 ストロンチウムは地殻及び海洋に広く分布している。自然起源のものとしては、塵埃粒
5 子の取り込み、土壌の再浮遊などの結果として、主に大気中に放出される。放射性ストロ
6 ンチウムは人為活動の直接的な結果として環境中に放出される。

7 大気中に存在するストロンチウムは、湿性又は乾性エアロゾルの形態をとる。空気中の
8 主な化学種は酸化ストロンチウム(SrO)である。酸化ストロンチウムは、湿気の存在で
9 急速に反応し、Sr²⁺、SrOH+イオンになる。ストロンチウムは大気循環により拡散し、そ
の後、地表面に湿性沈着する。地表水及び地下水では、ストロンチウムは主に水和イオン
として存在する。ストロンチウムは他の無機物又は有機物とイオン性錯体を作る。ストロ
シチウムの水中での移動度は比較的高いが、不溶性錯体の生成又は土壌への吸着により、

13 水中での移動度は減少する。

14 ストロンチウムは、水生及び陸上植物に取り込まれ保持される。その後、汚染された植15 物を食した動物の骨組織に濃縮される(ATSDR 2004)。

16

17 **6. 体内動態**

18 **(1) 吸収**

塩化ストロンチウムを経口摂取又は食事によってストロンチウムを摂取した健常人及び 19病院患者について、ストロンチウムの吸収率が評価された。経口摂取したストロンチウム 20と静脈内投与したストロンチウムについて血漿ストロンチウム濃度のタイムプロファイル 21(バイオアベイラビリティ)を測定し、又は摂取総量と便中への排泄量の差を測定(バラ 22ンス)することで吸収が定量化された。その結果、経口摂取されたストロンチウムの20% 23(範囲 11~28%)は消化管から吸収されることがこれらの調査結果から示された。バラン 24ス測定は吸収されたストロンチウムの便中への排泄により、吸収が過小評価されることが 25考えられるにもかかわらず、この二つの方法は似た吸収測定値を示した。 26

27

28 Vezzoli ら (1998) は、年齢をマッチさせた健康な成人男女のグループ(男性 15 名、女
29 性 12 名)及びシュウ酸カルシウム尿路結石を持つ normocalcuric 患者のグループ(男性
30 29 名、女性 18 名)の血漿ストロンチウム-経時曲線下面積を比較し(男性 10.6±0.6
31 mmol/L-minute、女性 9.3±0.6 mmol/L-minute)、有意差がないことを示した。

この調査では、静脈内投与の曲線下面積が測定されなかったため、吸収率は評価されな 32かったが、男女間で実質的な吸収の差がないことが結果から示された。妊娠期や授乳期の 33 ようなカルシウム要求量の増加がみられる生理状態の時期は、この結論は有効ではないの 34かもしれない。カルシウムの吸収はこれらの生理状態の時期でより高く、動物実験でスト 35ロンチウムの吸収も高くなることが示されている(Kostial et al. 1969b)。一般的に、スト 36 ロンチウムとカルシウムの両元素が共通の吸収メカニズムを持つことから、成人において 37ストロンチウムの吸収はカルシウム吸収の良い指標であると考えられている(Bianchi et 38al. 1999; Blumsohn et al. 1994; Milsom et al. 1987; Reid et al. 1986; Sips et al. 1994). 39

幼児と小児を対象とした調査で、食事由来ストロンチウムの約15~30%が吸収されるこ $\mathbf{2}$ とが示され、この値は成人で評価されたものと似ていた(Alexander et al. 1974; Harrison 3 et al. 1965; Kahn et al. 1969a; Sutton et al. 1971a)。加齢に関連したストロンチウム吸 4 収の変化については、ヒトを対象とした調査では判明しなかったものの、ラットで観察さ $\mathbf{5}$ れており、ヒトの新生児時期にストロンチウムの吸収増加の可能性が示唆されている。1.4 6 mgの塩化ストロンチウムを単回経口投与された成熟雄ラットは、投与量の19%(±5,SD) $\mathbf{7}$ を吸収した (Sips et al. 1997)。この値はヒトで報告された値と似ている (Sips et al. 1995、 8 1996)。しかしながら、幅広い日齢層のラットでの吸収が検討され、15日齢で投与量の85% 9 が吸収されていたが、89日齢以上では8%まで減少することがわかった(Forbes and Reina 10 1972)。これら2データの差は方法の違いを反映したものかもしれない。Sipsら(1997) 11 の研究では、経口投与及び静脈内投与されたストロンチウムについて血漿ストロンチウム 12の経時曲線下面積から吸収が検討されている。一方、Forbes と Reina (1972)の研究では、 1314吸収量の検討はストロンチウムの8時間体内負荷量から消化管内ストロンチウム量を差し 引く測定方法に基づき実施されている。 15

16

1

17 ストロンチウムの吸収率は、ラットの授乳期で上昇がみられる。授乳開始後 14~16 日
18 の間に飲水中に塩化ストロンチウムの形状で ⁸⁵Sr をトレーサー投与されたラットは、授乳
19 していない対照ラットより、2 倍量のストロンチウムを吸収した(対照群では 5%であった
20 のに対して、授乳ラットでは投与量の 11%が吸収された)(Kostial et al. 1969b)。

21

28

22 消化管におけるストロンチウム吸収の正確な部位は不明である。しかしながら、ハムス
23 ターを用いた実験で胃及び小腸で吸収される可能性が示された。⁸⁵SrCl₂のトレーサー投与
24 を強制的に飼養されたハムスターでは 37%が吸収され、一方、幽門括約筋が結紮されたハ
25 ムスターに投与した場合は 20%が吸収された (Cuddihy and Ozog 1973)。ラットから単
26 離した小腸を用いた *in vivo*及び *in situ*条件下での実験は、ラットの小腸でストロンチウ
27 ムが吸収されることの直接的な証拠をもたらしている。

29 (**2**)分布

30 ヒトの体内における吸収されたストロンチウムの分布はカルシウムと似ており、総体内
 31 負荷量の約 99%が骨格中に存在する。安定ストロンチウムの骨格負荷量はヒトの剖検骨サ
 32 ンプルの解析から検討されてきた(Herring and Keefer 1971a; O' Connor et al. 1980;
 33 Papworth and Vennart 1984; Tanaka et al. 1981)。日本の成人男子で骨格負荷量はカル
 34 シウム 850 g に対して、ストロンチウムは約 440 mg であるとされた(Tanaka et al. 1981)。
 35

36 Papworth と Vennart (1984) は、ヒトの骨組織における ⁹⁰Sr 濃度及びカルシウム濃度
 37 及び 1955 年から 1970 年までの期間における英国国民の食事に関する公表データを解析し、
 38 食事による ⁹⁰Sr の摂取の約 4.75%が成人骨格に取り込まれていると結論づけた。皮質骨の
 39 ⁹⁰Sr 負荷量の約 7.5%が毎年骨から排出される (排出半減期が約 9.2 年であることに相当す

1 る)。骨梁からの排出率はこの値の約4倍である。年齢によって変化するストロンチウムの
 2 骨格取り込み量について、骨の成長率が他の年齢に比べて高い幼児期及び青年期において
 3 最大であり、約10%という値を同様の解析で得た。

4

5 カルシウムとストロンチウムの骨分布に関して、わずかに違いがあると報告されている
 6 が、ストロンチウムは骨容量に比較的均一に分布し、ストロンチウムとヒドロキシアパタ
 7 イトのカルシウムのやりとりが行われる。骨の Sr:Ca の濃度比は生誕時の約 0.3 mg/g Ca
 8 から成人の 0.5 mg/g Ca まで、年齢と共に増加する (Papworth and Vennart 1984; Tanaka
 9 et al. 1981)。骨の Sr:Ca 比は骨のタイプによって様々な値を示し、皮質骨の比率は骨梁で
 10 の比率より約 10~20%高い (Tanaka et al. 1981)。

11

軟組織のストロンチウム分布に関する報告は限られているが、実験動物について以下の 12ような報告がある。3か月間、塩化ストロンチウム 3.4 mg Sr/L を飲水投与したラットに 13おいて、血清ストロンチウム濃度は8.7 mg/Lであった。また、組織:血清のストロンチウ 14ム濃度比は、肝臓で 0.7、心臓で 1.2、筋肉で 1.1、副腎で 1.3、脳で 1.2、骨で 1,300 だっ 15た (Skoryna 1981b)。これらの組織における Sr/Ca 比は約 0.05~0.1 であった。ストロン 16チウムの静脈内投与1~5時間後のラットにおける組織/血漿のストロンチウム濃度比は、 17脂肪、脾臓、肝臓、卵巣、睾丸、骨格筋及び心臓で比率は1未満であった。肺、小腸、唾 18液腺、腎臓及び皮膚では 1.2~1.7 の値だった(Brues et al. 1969)。マウスの精嚢における 19組織/血漿の濃度比はストロンチウム静脈内投与数日後に 2 を超えた値に増加した(Brues 20et al. 1967) 21

22

23 軟組織におけるストロンチウム細胞内分布の情報もまた極めて限られている。3 か月間、
 24 塩化ストロンチウム 1.9 mg Sr/L の飲水に曝露したラットにおいて、ミトコンドリア、リ
 25 ソソーム、肝臓のミクロソーム画分のストロンチウム濃度(per mg protein)はサイトゾ
 26 ルでの濃度の約 5 倍であった(Skoryna 1981b)。50~80%の組織内ストロンチウムはタ
 27 ンパク質に結合しているとおそらく考えられる(Kshirsagar 1977)。

28

ヒトの血液中のストロンチウムの分布に関する情報も限られている。血液バンクから入 29手したヒト血液の赤血球画分と血漿画分のストロンチウム濃度は赤血球画分で7.2 ug/L、 30 血漿画分で44 µg/L であり、血液中のほとんどのストロンチウムが血漿に存在することを 31示している(Olehy et al. 1966)。100人の被験者(健康状態は不明)の血清ストロンチウ 32ム濃度は 53 µg/L で、血液バンク血清の報告値と近似していた(Skoryna 1981b)。ストロ 33 ンチウムはヒト血清中でタンパク質に結合する。しかしながら、ストロンチウムが結合す 34る特異タンパク質は特定されていない。Aldaと Escanero (1985) は 10 mg/L 濃度のヒト 35血清とストロンチウムをインキュベートした時、45%のストロンチウムが限外ろ過性を有 36 していることを示した。Harrison ら(1955)は、塩化ストロンチウムを 20 及び 100 mg 37静脈内投与した2つの被験者グループにおいて、3.5 mg/Lの血漿濃度で血漿の限外ろ過性 38画分は60%の値と報告した。ここで留意すべきは、この濃度はストロンチウムサプリメン 39

トを摂取していない被験者における血清濃度の 300~1,000 倍である、ということである
 (Olehy et al. 1966、Skoryna 1981b)。40~60%の値でタンパク質に結合することが、モ
 ルモットとウサギの血漿及び血清でそれぞれ報告されている(Lloyd 1968、Twardock et al.
 1971)。

 $\mathbf{5}$

妊婦の骨格に含まれるストロンチウムは妊娠期間に胎児に移行され得る。プルトニウム 6 生産プラントからの放出が原因でストロンチウムに曝露したテチャ川エリアの居住者の調 $\mathbf{7}$ 査では、ストロンチウムの胎児への移行に係る証拠が示された(Tolstvkh et al. 1998、 8 2001)。胎児:母体の移行率(胎児と母体の骨格中の⁹⁰Sr(Bq/g Ca)比)は、妊娠前に曝 9 露した 6 被験者とそれら 6 名の 7 死産児について測定された(Tolstykh et al. 1998)。移 10行率は 0.012 から 0.24 までと幅広く、高い移行率は成人期における母体の曝露に関連し、 11 低い移行率は小児期又は青年期における母体の曝露に関連していた。この差異は、妊娠時 12期の曝露における母体のストロンチウム負荷量を反映しており、活発な骨成長期間で皮質 13骨に沈着したストロンチウムのより利用率が低いことを反映しているのかもしれない。 14

15

動物を用いた実験では、ストロンチウムが胎盤を通して胎児に移行される。胎児はその 16骨格形成時にストロンチウムを蓄積し始める。マウスでは胎児骨格の骨化はおおよそ妊娠 1714 日目に始まり、この時期に胎児のストロンチウム負荷量が増加し始める(Olsen and 18Jonsen 1979)。胎児のストロンチウム負荷量は、妊娠 14 日目で母体にストロンチウムを 19 投与した場合、投与量の 0.7%であるのに対して、妊娠 18 日目では投与量の 4.5%であっ 20た(Rönnbäck 1986)。すなわち、母体への投与が骨格成長時に行われる場合、胎児への移 21行は最も高かった。同様の結果がラットでも得られており、胎児骨格の骨化が始まる 16 22日目又はそれ以降に母体への投与が行われた場合、胎児へのストロンチウムの移行が最も 23高い(投与量の1~2%)(Hartsook and Hershberger 1973、Wykoff 1971)。妊娠末期の 24胎児におけるストロンチウム分布は、大部分のストロンチウム負荷量を骨格中に保有する 25母体における分布と似ている。マウスで、骨格(長骨): 軟組織の濃度比は胎児と母親の両 26方でおおよそ 40 であった (Jacobsen et al. 1978)。 27

28

ヒトでは、ストロンチウムは母乳中に入り、授乳期間に新生児に移行され得る (Harrison 29et al. 1965)。12人の健康な女性の母乳中のストロンチウム濃度は74 µg/L(範囲 39~93 30 µg/L)と測定され、Sr:Ca 濃度比は 0.24 mg Sr/g Ca であった(Harrison et al. 1965)。微 31量元素の輸送に関する実験で、出産3日後までの期間の29人の健康な女性から採取した 32初乳サンプル中のストロンチウム濃度は、出産20分前に採取された静脈血から分離した血 33 清中の濃度と同程度であることが示された(Rossipal et al. 2000)。一方、能動輸送の指標 34となる初乳中のカルシウム濃度は、母体血清のレベルを超えて、顕著に増加していた。ス 35トロンチウムの輸送は主に濃度勾配作用機構によってなされていると Rossipal らは結論付 36 けた。動物を用いた多くの研究は、授乳期間での母乳から新生児へのストロンチウム移行 37に関する更なる証拠を示している(Hopkins 1967; Jacobsen et al. 1978; Kostial et al. 381969b; Rönnbäck et al. 1968)。授乳 14 日目から 16 日目までの期間、飲水にトレーサー 39

濃度の ⁸⁵Sr を経口曝露した母ラットにおいて、2 日曝露終了後の 24 時間で授乳した児動 1 物から摂取量の約5%が回収された(Kostial et al. 1969b)。放射性ストロンチウムの腹腔 $\mathbf{2}$ 内投与を受けた母マウスの実験で、授乳した児動物のストロンチウムレベルは母動物のレ 3 ベルの約 20% であった(Rönnbäck et al. 1968)。経口摂取量の約 25% が母動物に吸収さ 4 れたと仮定すると、これらの結果は経口曝露実験と一致している(Kostial et al. 1969b)。 $\mathbf{5}$ 授乳期間中に母動物に腹腔内投与した場合、投与後の母マウスとその児動物におけるスト 6 ロンチウムの組織分布は似ていることが分かった。骨中の濃度は肝臓や腎臓より約 1,000 7倍高かった(Jacobsen et al. 1978)。授乳開始5日後の児動物の頭蓋冠のストロンチウム 8 濃度は、母動物の約3倍である一方、長骨での濃度は児動物と母動物で同程度であった 9 (Jacobsen et al. 1978)。母動物と児動物の骨濃度の違いは、児動物における相対的に高 10い骨形成率及びそれに関連した新しい骨へのストロンチウムの取込みを反映しているのか 11もしれない。 12

13

14 (3) 排泄

15 ストロンチウムの長期(数十年)の排出が、ロシアのテチャ川地域におけるプルトニウム生産工程において核分裂生成物が流出した後、当該地域でストロンチウム曝露を受けた人々について調査された。男性361人及び女性356人の母集団で、全身の排出半減期は男性で28年、女性で16年とされた(Tolstykh et al. 1997)。また、男女の排出速度の差は、50歳代以降の女性で排出速度が顕著に増加することから概ね説明できるとされた。この増加はおそらく、更年期後の女性に起こりやすい骨吸収の増加を反映している。

Müller ら(1966)は、56人の時計のラジウム塗装工におけるストロンチウムの長期排
出半減期を約25年と推定した。2人のラジウム塗装工では、ストロンチウムの長期排出半
減期は9年と推定された(Wenger and Soucas 1975)。ストロンチウムの長期排出半減期
は、主として骨におけるストロンチウムの蓄積と放出に影響される。他方、曝露後の短期
間にわたって、より速い排出速度が観察された。この排出速度は骨に存在するより急速な
交換性ストロンチウムプールからの排出と同様に、軟組織の排出を反映したものである。

⁸⁵Srのトレーサー投与による全身の排出が9被験者で42日目から108日目までの期間
で測定され、平均排出半減期は91日(SD:32)であった(Likhtarev et al. 1975)。SrCl₂
を単回経口投与された3人の健康被験者で、13日にわたる平均全身排出半減期は2日
(30%)と59日(70%)だった(Uchiyama et al. 1973)。類似した短期排出速度はSrCl₂
の静脈内投与後、数日から数週間で観察されている(MacDonald et al. 1965、Newton et al.
1990)。

33

34 消化管から吸収されたストロンチウムは主に尿と便中に排出される。ラジウム塗布作業
35 の従事者で観察された尿:便の排出比3は、SrCl2の静脈内投与された被験者グループで、
36 投与後数日から数週間までで観察された比率2~6と一致する(Bishop et al. 1960、Blake
37 et al. 1989a、1989b、Likhtarev et al. 1975、Newton et al. 1990、Samachson 1966、Snyder
38 et al. 1964、Uchiyama et al. 1973)。すなわち、尿は吸収されたストロンチウムの主要な
39 排出ルートであると思われる。経口曝露後の数週間から数十年又は静脈内投与後の短期間

- での放射性ストロンチウムの便への排出観察は、吸収されたストロンチウムの胆汁から又
 は直接血漿から消化管へ輸送するメカニズムの存在を示唆している。血漿から腸へのスト
 ロンチウムの直接分泌の証拠が動物実験で示された。入手できる情報を見る限り、ストロ
 ンチウムの便中排出に寄与しうる胆汁の排出の程度を議論されていない。
- $\mathbf{5}$

6 ストロンチウムはヒト唾液と精液で検出されている。SrCl₂の単回静脈内投与を受けた健
 7 康な被験者で、唾液:血漿の濃度比は 0.9 で、精液:血漿の濃度比は 0.6 であった (Harrison
 8 et al. 1967a)。

9

10 7.実験動物等への影響

11 (1) 急性影響

12 ①死亡

放射性ストロンチウムへの経口曝露による死亡率は用量依存的に増加した。一般的に、 1314幼若動物は老齢動物よりも放射性物質の影響を受けやすかった。90Sr を3.7 MBq/日の線 量で 5 又は10日間、強制経口投与されたアカゲザル (Rhesus monkey) において、7 例 15中 6 例の死亡が認められた(Casarett et al. 1962)。0.42 MBq/kg 体重/日のストロン 16チウムを5日間投与されたサル1頭は、投与4年後に白血病で死亡し、総骨格線量は43 Gy 17であった。1.0 MBq/kg 体重/日の線量を10日間投与されたサル 1 頭は、投与後4か月以 18内に汎血球減少症で死亡し、推定骨格線量は45 Gy であった。平均0.67 MBg/kg 体重/日 19のストロンチウムを10日間投与した他の2頭は、投与後36か月以内に、骨に関連した 20がんで死亡し、推定骨格線量は47~95 Gy であった。サンプル数が少ないこと及び異な 21った年齢の動物を用いたことから、この試験は放射性ストロンチウムの用量に関連した 22影響の証明としてではなく、指標として扱われた。 23

LE ラットに ⁹⁰Sr を飲料水として 10 日間与えた成獣と離乳児(30 日齢)で、少なく
 とも 11 MBq/kg 体重/日(総計 17 MBq)を消費した離乳児では、生後 5 か月目の生存率
 が 80%までに低下したが、7.2 MBq/kg 体重/日(総計 24.1 MBq)を消費した成獣では生
 存率に変化はみられなかった(Casarett et al. 1962)。

LE ラット(87 日齢)に最大 3.8 MBq/kg 体重/日を 37 日の間に 30 日投与し、総投与
 量は 29.2 MBq であった(Casarett et al. 1962、Hopkins et al. 1966)。これらのラット
 において、5 か月目の ⁹⁰Sr 骨格活性は 407 kBq で、生存率は約 36%まで低下した。30
 日間投与された若齢ラットでは、骨格での活性はより高く、生存率は 10 日間投与された
 成獣に比べて低下した。しかし、その違いは、投与された ⁹⁰Sr の総量と比例していなか
 った。成獣に投与された総量は、若齢動物よりも 18%低いが、成獣の骨格線量は 82%以
 下で、取込みにおいて年齢に関連した違いがあることを示唆している。

35

36 **②全身への影響**

37 a. 消化管に対する影響

38 1.63 MBq/kg 体重/日で5日間曝露した後、3か月間の放射能障害により死亡したウシ
 39 に腸管出血が認められた(Cragle et al. 1969)。

b. 血液学的影響

10 日間以上 37 MBq の ⁹⁰Sr を曝露したアカゲザルの中で、体重 1 キロベース 1.0 3 MBq/kg 体重/日の線量で最も多く放射線に曝露した個体は、4 か月の曝露期間内に汎血 4 球減少症により死亡した(Casarett et al. 1962)。10日間飲料水から11 MBq/kg 体重/ $\mathbf{5}$ 日以上(合計 17 MBq)を摂取した若齢(30 日齢)のLE ラットにおいては、骨髄の極 6 端な形成不全が認められた。形成不全による影響は、2.4 x 10⁶ 及び 5.0 x 10⁶ Bq/kg 体重 7/日の曝露を受けた雄の成獣又は 3.4 x 10⁶、 7.2 x 10⁶ Bq/kg 体重/日(合計 12.2 及び 24.1 8 MBq)の曝露を受けた雌の成獣ではわずかであった(Casarett et al. 1962)。骨の放射 9 線量は、若齢のラットにおいては約15倍高かった。 10

若齢 LE ラットを用いた亜急性試験では、飲料水として 30 日間、⁹⁰Sr を、2.7 MBq/kg
 体重/日の線量で曝露した雄ラット(87 日齢)と 3.8 MBq/kg 体重/日の線量で曝露した雌
 ラットにおいて、軽度の骨髄の形成不全が認められた(Casarett et al. 1962)。ペレット
 により約 2.2 x 10⁵ Bq⁹⁰Sr/kg 体重/日(218 kBq/kg 体重/日)を 31~280 日間混餌投与さ
 れたた Dutch ウサギにおいて、貧血及び血小板減少症を誘発する骨髄形成不全が認めら
 れた(Downie et al. 1959)。

17

 $\frac{1}{2}$

18 c. 筋骨格への影響

急性投与をした個体における長期間の放射線影響研究において、11 及び 14.4 MBq/kg
 体重/日の線量を 5~10 日間(合計 17 MBq)飲料水により摂取した雌雄の 30 日齢の LE
 ラットにおいて、投与後 10 か月以上経って骨形成異常の兆候が認められた(Casarett et al. 1962)。

23 若齢 LE ラット(87 日齢)を用いて ⁹⁰Sr を亜急性投与をした個体における長期間の放
 24 射線研究において、雄に 2.7 MBq/kg 体重/日、雌に 3.8 MBq/kg 体重/日を 30 日間(合計
 25 289 MBq)飲料水として投与したところ、骨の血管系における有害作用が起こり、軟骨
 26 から骨への通常の変換が妨げられた。長骨の末端において、軟骨円盤が障害され、椎体
 27 海綿骨の剥離や再吸収の阻害が起こった。

別の亜急性投与の試験によると、2.4 x 10⁶ Bq⁹⁰Sr/kg 体重/日の放射線量を 48 日間経
 ロ摂取した Dutch ウサギにおいて、骨細胞数の減少(石灰化したマトリックスによって
 囲まれた骨細胞及び一連の過程において網状の産物として関連する骨細胞)が認められ
 た (Downie et al. 1959)。

32 33

d. 腎臓への影響

10日間飲料水により 2.41 MBq/日(雄雌それぞれ 5、7.2 MBq/kg 体重/日)を摂取し
 た成熟 LE ラットの約 19%において慢性間質性腎炎が認められたが、これは、生存期間
 中に老齢ラットに共通の症状である (Casarett et al. 1962)。放射性ストロンチウムの摂
 取が腎炎の発症と関係しているとは言えそうにはない。

1 e. 生殖への影響

2 急性の研究においては、雌ラットに、受胎の1~10日前までに1回の強制経口により
 1.5 x 10⁷ Bq⁹⁰Sr/kg を投与している(Moskalev et al. 1969)。受胎時期における母体に
 ついては、骨格での線量は0.1 Gy であり、軟組織での線量は8 Gy であった。胎児は、
 5 骨格で0.2 Gy の線量を受けた。これらの条件下では、胎児の22%が死亡した。

7 (2) 慢性影響

8 **①死亡**

6

9 CF-1マウスに⁹⁰Srを連続曝露した場合、日齢110~250日齢マウスの方が、妊娠時から
 10 曝露しているマウスよりも感受性が低い(Finkel et al. 1960)。成獣の生存期間は、1.15
 11 MBq/kg体重/日の線量を曝露したマウスでは17%まで短くなったが、592 kBq/kg体重/日
 12 を投与しても影響を受けなかった。妊娠時から曝露したマウスでは、生存期間は、1.33
 13 MBq ⁹⁰Sr /kg体重/日の投与では40%短く、148~703 kBq/kg体重/日の⁹⁰Srの投与では
 14 26%短くなったが、1.85~14.8 kBq ⁹⁰Sr /kg体重/日の曝露では影響はなかった。

15 18.5及び74 kBq ⁹⁰Sr /kg体重/日を混餌投与されたアルビノラットの離乳後の生存期間
 16 については、対照群と比較して、生存期間がそれぞれ約18又は30%短くなった
 17 (Zapol'skaya et al. 1974)。著者は、生存期間が0.01 Gy当たり0.09日まで短くなると
 18 計算した。吸収線量に対する死亡率のプロットは、40 Gyの骨格吸収線量に対して最大死
 19 亡率(40%)を示した。

8匹の離乳Dutchウサギに31~280日間、1日1回、ペレットで218 kBq/kg体重/日が混

 餌投与された試験では、数例が軽度の骨髄形成不全を伴って、数週間以内に死亡した

 (Downie et al. 1959)。骨肉腫を伴って数か月後に死亡したウサギでは、骨髄が完全に
 萎縮していた。

24

二つの関連した長期経口曝露試験において、ビーグル犬の生存率について⁹⁰SrCl₂の用 25量に相関した影響がみられた。主試験において、妊娠ビーグル犬群は0.074~133.2 kBg 26⁹⁰Sr /kg 体重/日の線量を妊娠21日後から分娩44日後までの泌乳期にわたり混餌投与され、 27児動物は42日の離乳から540日まで同用量で混餌投与された(Raabe et al. 1983、White 28et al. 1993)。児動物の生存率は3高用量(14.8、44.4及び133.2 kBq/kg 体重/日)でそ 29れぞれ18、64及び85%低下した。0.074~4.8 kBq/kg 体重/日の曝露では、生存率につい 30 て、対照群と有意な差はなかった。22.5 Gy 以下の平均吸収骨格吸収線量(mean absorbed 31skeletal absorbed doses) は死亡率に影響しなかったが、50.4 Gy では死亡率の増加がみ 32られた。2番目の試験は、妊娠21日後から生涯にわたり4.81~44.4 kBg/日の用量を投与 33 されたイヌを除き、同様のプロトコールで実施された(Book et al. 1982)。平均生存期 34間吸収骨格線量(the mean lifetime absorbed skeletal doses)は28.4~111.9 Gy であっ 35た。生存期間中央値(The median lifespans)は主試験の結果と同様に11~65%減少し 36 た。これは、540日後の照射は生存率に有意に影響を与えず、若齢時の曝露では生存率が 37短くなることを意味している。これらの試験において、放射線に関連した2つの主な死 38亡原因は、骨髄増殖性症候群及び骨格肉腫であった。 39
Pitman-Moore ミニブタの雌の多世代試験では、SrCl2の形態で ⁹⁰Sr を慢性投与した 1 $\mathbf{2}$ 結果、死亡率について用量に関連した影響がみられた(Clarke et al. 1970、McClellan et al. 1963、Ragan et al. 1973)。9か月齢以降 ⁹⁰Sr を 114.7 MBq/日の線量で投与された 3 雌豚は、骨髄の造血組織の破壊により最初の妊娠を生き残れなかった。雌豚は貧血、白 4 血球減少、血小板減少及び終末出血症候群(terminal hemorrhagic syndrome)を呈し $\mathbf{5}$ た(Clarke et al. 1972)。0.925、4.625 及び 23.13 MBq/日の曝露はそれぞれ、11、5 6 及び1年後の死亡率を有意に増加させたが、37及び185kBq/日の曝露は生存率に影響し $\overline{7}$ なかった。妊娠期間から曝露した F1 雌における影響はより重篤であったが、離乳後、そ 8 れらの投与線量濃度は 6 か月齢まで母体濃度のごくわずかであった。23.13 MBq/日の 9 ⁹⁰Srに曝露した F1 雌は 9 か月齢まで生存しなかった一方で、その線量は、雌豚の親の世 10 代では直接的に致命的ではなかった。さらに、925 kBq/日の曝露を受けた F1 雌は、11 11 年後よりもむしろ7年後の累積死亡率において有意な増加を示した。しかしながら、親 12世代のように、⁹⁰Srの線量 37 及び 185 kBq/日は、生存率に影響を与えなかった。この 1314試験において、平均体内負荷量は、0.037、0.185、0.925、4.625 及び 23.13 MBq/日で あり、それぞれ 0.37、1.85、9.25、46.25 及び 173.9 MBg であった。 15

17 **②全身への影響**

18 a. 呼吸器系への影響

ビーグル犬の慢性試験において、14.8、44.4 kBq/kg 体重/日の ⁹⁰Sr を、妊娠 21 日目
 から授乳の間及び離乳 42 日目から 540 日目まで投与した場合、呼吸への二次的な影響の
 みが認められた(Dungworth et al. 1969)。肺には様々な程度の骨髄性浸潤が認められ
 た。この影響は、肺の組織における放射性ストロンチウムの直接的な作用によるもので
 はなく、骨髄への放射線照射で誘導される骨髄増殖による二次的な影響であった。

24 25

16

b. 心血管系への影響

26 0.074~44.4 kBq/kg 体重/日を、妊娠 21 日目から授乳期の間及び離乳 42 日目から 540
27 日目まで曝露したビーグル犬の慢性試験において、点状出血、斑状出血及び消化管出血
28 が(死後の解剖において)数例認められた(Dungworth et al. 1969)。高用量群の動物
29 (14.8、44.8 kBq/kg 体重/日)では、血小板減少症に関連する出血性障害の発生が示唆
30 された。

31

32 c. 血液学的影響

33 いくつかの動物種における慢性試験において造血抑制が報告されている。離乳後 ⁹⁰Sr
 34 を 18.5 kBq/kg 体重/日の線量で混餌投与した Albino ラットにおいて、骨髄形成抑制が
 35 有意に認められた(Zapol'skaya et al. 1974)。リンパ球、次に好中球及び血小板、そし
 36 て一年後に赤血球が影響を受けた。形態学的異常として二核性の異常が含まれていた。
 37 18.5 kBq/kg 体重/日の線量の曝露により、白血球数は2年目の終わりまで20%減少した
 38 状態が続いていた。著者らの計算では白血球減少症を引き起こす最小線量が1.5~2.0 Gy
 39 とされた。白血球は、4.0~20.0 Gy の吸収線量で約 30~35%の減少で頭打ちとなった。

血液学的影響は、0.074~44.4 kBq/kg 体重/日のストロンチウムを妊娠 21 日目から授 1 乳期間中にかけて、また離乳後 42 日から 540 日にかけて曝露したビーグル犬を用いた慢 $\mathbf{2}$ 性試験でも報告されている (Dungworth et al. 1969)。 曝露開始後 6 年で、 1.48 及び 44.4 3 kBq/kg 体重/日の投与群で、赤血球の形態学的異常(主に奇形赤血球症、赤血球不同症 4 及び血色素減少症並びに数例で大赤血球症)、用量依存性の放射線由来白血球減少症、未 $\mathbf{5}$ 成熟顆粒球数の異常、異常な巨大好中球、血小板数の減少、貧血及び脾腫が認められた。 6 同様に、114.7 MBg/日の塩化ストロンチウムに曝露された Pitman-Moore ミニブタは、 7骨髄における造血組織の破壊及びそれに伴う貧血、白血球減少症、血小板減少症並びに 8 出血症候群により 3~4 か月で死亡した(Clarke et al. 1972)。さらに、このグループ 9 の2例は骨髄化生が認められた。 10

12 d. 筋骨格への影響

11

27

33

骨の障害については、イヌにおける放射性ストロンチウムへの長期間継続経口曝露試 13験において注目すべき影響が認められた(Momeni et al. 1976)。妊娠したビーグル犬に 14妊娠 21 日目から授乳期を経て出生後 44 日目まで、0.074~133.2 kBq/kg の線量の 90Sr 15を経口投与し、児には同じ用量で離乳後42日目から540日目まで経口投与した(Raabe 16et al. 1983、White et al. 1993)。調査開始から 10 年後において、用量相関性のある骨 17への影響として、軽度の小柱骨減少症、骨内膜及び骨膜の皮質の変化(硬化及び肥厚)、 18 斑点形成、限局性の溶骨性障害が含まれていた(Momeni et al. 1976)。これらは、すべ 19ての投与群(133.2、44.4、14.8 kBq/kg 体重/日)に認められた。放射線により誘導され 20た骨形成異常症は、4.4 x 104 Bq90Sr/kg 体重/日で曝露されたビーグル犬 4 匹中 3 匹にお 21いて認められた(Book et al. 1982)。この投与群における平均投与率(累積投与量を生 22存期間で割ったもの)は0.04 Gy/日であった。放射線による骨壊死は、死亡するまで 23⁹⁰SrCl₂を 0.37~114.7 MBq/日の線量で摂取し、造血障害や骨髄形成不全により死亡し $\mathbf{24}$ た雌の Pitman-Moore ミニブタにおいても認められた (Clarke et al. 1972)。それぞれ 25の用量における骨壊死の罹患率については報告されていない。 26

28 e. 肝臓への影響

イヌにおける慢性試験において、妊娠 21 日目から授乳期の間及び離乳後 42 日目から
 540 日までの間、肝臓への二次的な影響のみを観察した。(Dungworth et al. 1969)。深
 刻な貧血を起こしたイヌにおいて、骨髄浸潤、小葉中心性のリピドーシス及び末期の壊
 死により肝臓の肥大がみられた。

34 f. 眼への影響

35 動物における放射性ストロンチウム同位元素の経口曝露による眼への影響に関する報
 36 告はなされていない。ある慢性試験において、⁹⁰Sr に子宮内で妊娠 21 日目から授乳期の
 37 間、また離乳後 42 日目から 540 日までの間曝露したビーグル犬 403 匹中 2 匹の眼に良
 38 性の黒色腫が認められた。しかし、用量については報告されていない (Raabe et al. 1994)。
 39 統計解析によると、これらの腫瘍は(対照群だけでなく、他の経路や他の放射性核種の

1 照射では認められないことから)電離放射線への曝露と有意に相関があると考えられる。
 2 同じイヌの慢性試験によると、1.6 x 10⁴、4.4 x 10⁵ Bq⁹⁰Sr/kg 体重/日(14.8、44.4
 3 kBq/kg 体重/日)を妊娠 21 日目から授乳期において、また離乳 42 日目から 540 日目ま
 4 でに曝露した動物では、眼への間接的な影響のみが認められた(Dungworth et al. 1969)。
 5 骨髄増殖性疾患が認められた個体の眼はわずかな骨髄浸潤が認められた。これは、骨髄
 6 の放射線照射から生じる二次的な影響である。

g. 体重への影響

 $\overline{7}$

8

13

 $\mathbf{24}$

9 ⁹⁰Sr に子宮内(妊娠期)から授乳期を通し出産後最長 414 日目まで最大 1.33 MBq/日
 の線量を曝露した雌の CF-1 マウスにおいて、体重への影響は認められなかった(Finkel
 et al. 1960)。148~444 MBq/kg 体重/日の線量で妊娠中期から 1.5 年齢まで曝露し貧血
 を発症したビーグル犬において、体重減少が認められた(Dungworth et al. 1969)。

14 h. 免疫系への影響

⁹⁰Sr を含む餌を 23.13 MBq/日の線量で 9 か月間曝露した Pitman-Moore ミニブタに
おいて、接種したブルセラ抗原に対する抗体反応が血小板凝集試験により測定され、対
照群と比較して半分以下の結果となった(Howard 1970)。⁹⁰Sr を 114.7 MBq/日の線量
で 3~4 か月齢時点から生涯を通じ、餌として投与した雌 Pitman-Moore ミニブタにおい
ては、骨髄化生(Myeloid metaplasia)も発生した(Howard and Clarke 1970)。死亡
時の累積被ばく量は 0.440~100 Gy の範囲であった。

ビーグル犬の妊娠中期から 1.5 年齢まで ⁹⁰Sr を慢性的に投与した研究の 6 年後状況報
 告においては、14.8、44.4 kBq/kg 体重/日の線量で、脾臓の骨髄様化生が生じた
 (Dungworth et al. 1969)。

25 i. 生殖への影響

26 雌 CF-1 マウスに、⁹⁰Sr を 1.11 及び 1,147 kBq /日で混餌投与した (Finkel et al. 1960)。
 27 雄マウスについては投与期間中に交配し、雌マウスについては妊娠及び授乳期間中に
 28 ⁹⁰Sr が投与された。出産率、出生児数及び出生後 35 日時点における雌の児動物の生存数
 29 には影響しなかった。

30 多世代試験においては、9か月齢の雌Pitman-Mooreミニブタに、0.037及び114.7 MBq
 31 /日の線量の ⁹⁰Sr を混餌投与し、交配の期間のみ ⁹⁰Sr を投与した雄と交配した (Clarke et
 32 al. 1970、1972; McClellan et al. 1963)。 ⁹⁰Sr 投与は出生率や出生数には影響しなかっ
 33 た。

114.7 MBq/日の線量の ⁹⁰Sr を投与した妊娠ブタは、骨髄形成不全のため妊娠まで生存
 しなかったが、胎児は正常であった(McClellan et al. 1963)。0.037 及び 23.13 MBq /
 日での ⁹⁰Sr の投与では、胎児の大きさ、死産の割合、出生体重、発情周期の頻度、長さ
 及び繁殖の回数に影響はなかった。

1 j. 発生への影響

2 CF-1 マウスに対して妊娠期から授乳期にかけて ⁹⁰Sr を含む食餌を 1.11~1,147 kBq / kg 体重/日で与えた(Finkel 1960)。児動物には、生涯同じ食餌を与えた。児の大きさ及
 4 び早期の生存状態には影響せず、催奇形性も確認されなかった。しかしながら、111 kBq
 5 / kg 体重/日以上の線量において、骨に関連するがんの高発生により生存期間が短くなっ
 6 た。

大規模な多世代研究としては、9 か月齢の雌 Pitman-Moore ミニブタを 0.037~114.7 $\overline{7}$ MBg/日の⁹⁰Sr を含有した混餌で飼育し、交尾の間のみ⁹⁰Sr に曝露した雄と交配させた 8 (Clarke et al. 1970、1972; McClellan et al. 1963)。⁹⁰Sr への経口曝露は、出生率や 9 出生数には影響しなかった。これらの母豚の数匹は 114.7 MBg /日 (McClellan et al. 10 1963)の投与による骨髄低形成により死亡したが、胎児は明らかな影響を受けなかった。 11 0.037~23.13 MBq /日の投与については、児動物の大きさ、死産の割合や出生体重には 12影響しなかった。23.13 MBq/日を投与したブタについては、放射線照射による造血への 1314影響により乳量が減少したために、児動物の離乳時体重が減少した(Clarke et al. 1970)。 離乳後、F1には、母動物と同じレベルである 0.037~23.13 MBq/日の食餌を与えた。そ 15のうち、23.13 MBg /日の F1 雌は、生後 9 か月の繁殖時期まで生存しなかったが、生後 169 か月以降同線量を曝露し始めた場合に致死的でなかったため、⁹⁰Sr の作用に対して年 17齢に依存した感受性の違いあることが示唆される。 18

20 k. 発がん性

19

27

21 数多くの動物実験で示されているように、⁹⁰Sr の経口摂取は骨又は骨髄がんの発生を
 22 増加させる可能性がある。強制的に ⁹⁰Sr を投与した若齢のサルにおける研究において、
 23 0.42 MBq/kg 体重/日の線量で5日間投与した個体(投与後4年間の最終的な骨放射線量
 24 が 43 Gy)は、白血病によって死亡した(Casarett et al. 1962)。平均 0.67 MBq/kg 体
 25 重/日の線量を10日間の曝露を受けた他の2匹(推定骨放射線量 47~95 Gy)は、36 か
 26 月の投与期間に骨関連がん(軟骨肉腫、骨肉腫)により死亡した。

LE ラットで、90Sr の骨への吸収率が成体ラットより高い離乳児を使った急性試験が実 28施された(Casarett et al. 1962)。離乳児(30日齢)は1.7 MBq/日、成体には1.2 及び 291.4 MBq/日の線量で10日間にわたり飲水投与した。(体重基準 (body weight basis); 30 離乳児は 11 MBq/kg 体重/日以上、雄成体は 2.4 x 106、5.0 x 106 Bq/kg 体重/日、雌成体 31は 3.4 x 10⁶、 7.2 x 10⁶ Bq/kg 体重/日)。5 か月後、17 MBq を投与した離乳児の骨から 321.2 MBg の放射性同位元素が検出されたが、12.2 及び 24.1 MBg を投与された成体の骨 33 からは、それぞれ、37及び74 MBqが検出された。成体では発生しなかったのに対し、 3417.5%の離乳児で骨肉腫が生じたため、おそらく ⁹⁰Sr の吸収の差は年齢による骨肉腫の 35発生の差の原因となっている。しかしながら、高放射線量の成体における悪性腫瘍(白 36 血病、皮膚の扁平上皮細胞がん、その他種々のがん)の発生全体では、対照群と比べて2 37倍以上であった。低放射線量における悪性腫瘍の発生全体では、対照群と比べて低かっ 38た(16.2%に対し 6.25%)。総じて、処置群における悪性腫瘍の発生率は対照群の 2 倍以 39

- 上であった(その他の悪性腫瘍には皮膚がん(顔) 11.25%と白血病 6.25%を含む)。57
 日目から 87 日目まで投与したラットは約 407 MBq の 5 か月の骨格負荷(5-month skeletal burden)があり、これは、kg体重基準で10日間投与した離乳児の骨格負荷の
 4 分の1より少ない。この違いはラットにおける吸収と骨形成の違いを反映しており、
- 5 これは若齢のラットにおいて高い。高齢のラットにおいては、がんの潜伏期間中も生存6 したことから、骨肉腫の発生率が離乳児よりも高かった。
- 7 他のラットにおける中期継続試験において、37日間の⁹⁰Sr の経口投与(総線量 29.2
 8 MBq)により骨溶解と骨肉腫発生が21%まで増加した(Hopkins et al. 1966)。150日
 9 後の骨の放射線量は40 Gy だった。224~280日にかけて平均218 MBq/kg 体重/日を投
 10 与した若齢ウサギ(~52日齢)は、頭蓋骨及び長骨の成長端に多発性骨肉腫が形成された(Downie et al. 1959)。
- 12

ラット、マウス、イヌ及びブタを使用した比較的大規模な研究においては、⁹⁰Sr の慢 13性摂取の結果、腫瘍の発生率が増加した。この研究において、1.8 x 10³~7.4 x 10⁴ Bq 14⁹⁰Sr/kg 体重/日を離乳期後のアルビノラットに投与し、結果として 3.7 x 10²~1.5 x 10⁴ 15Bq/日曝露した(Zapol'skaya et al. 1974)。7.4 x 10⁴ Bq ⁹⁰Sr/kg 体重/日の ⁹⁰Sr を投与し 16たラットにおける悪性腫瘍の発生率は、対照群が1.3%であったのに比べ、18.7%であっ 17た。1.9 x 10⁴ Bq ⁹⁰Sr/kg 体重/日の場合、腫瘍の発生は 3~6 倍低い(数値的に特定され 18ていない)が、1.9 x 10³ Bg ⁹⁰Sr/kg 体重/日での発生は報告されていない。最も一般的な 19悪性腫瘍は、リンパ肉腫(8%)、骨肉腫(6.7%)及び白血病(4%)である。リンパ肉腫 20の潜伏期間は 300~540 日であり、骨肉腫と白血病は 450~600 日であった。累積吸収線 21量は、リンパ肉腫の発病前には平均13.5 Gy、白血病の発病前には平均22 Gy、そして骨 22肉腫の発病前には平均24 Gyであった。 23

- マウスを使用した研究において、1.9 x 106~1.3 x 106 Bq 90Sr/kg 体重/日を成体(110 24~250 日齢から開始)又は胎児に投与した(Finkel et al. 1960)。すべての成体曝露群に 25おいて、造血組織の網状内皮系腫瘍の発生はより多かったが、骨肉腫に対する証拠には 26ならなかった。明確な線量依存がみられなかったのは、実験的な投与群に対し同時に投 27与されなかったことや、成体では環境的な要因による腫瘍発生の違いがあることが理由 28であると考えられる。しかしながら、がんの発生は胎児期以降、⁹⁰Sr を投与したマウス 29において著しく高まっていた。最も高い線量レベルでは、早期の網状内皮系腫瘍(特に 30 リンパ肉腫)の出現がみられた。なお、網様体組織がんが発生する 525 日までに、対照 31群が 6%だったのに対し、最高投与線量群では 24%のマウスが死亡した。高線量に特異 32的にみられた他の腫瘍は骨肉腫が6例、骨破壊性腫瘍が4例、口腔内の扁平上皮がんが2 33 34例であった。胎児から投与されたマウスの骨に放射性ストロンチウムが普遍的に存在す ることについてラジオグラフィーによって明らかにされた。 35
- 36

37 イヌにおける研究では、妊娠中のビーグル犬の群に、妊娠期間の 21 日目より出産後
 38 42日目までにかけて、0.074及び133.2 MBq/kg体重/日を投与した(White et al. 1993)。
 39 児動物は離乳後 540 日目まで母イヌと同じ ⁹⁰Sr/カルシウムで汚染した餌を給与した。

4.8~133.2 MBq/kg 体重/日を投与され、結果として死亡時の骨線量が 50~107 Gy のイ 1 ヌは、骨腫瘍により死亡したが、一方 0.1~1.6 MBq/kg 体重/日の線量で投与され、死亡 $\mathbf{2}$ 時 1~23 Gy の骨線量のイヌは骨腫瘍により死亡しなかった。⁹⁰Sr を高用量投与するほ 3 ど、肉腫の発生時期は早まり、また骨肉腫になりやすかった。66例の肉腫のうち、75% 4 が骨肉腫であった。その他の影響は軟骨肉腫、血管肉腫若しくは繊維肉腫又は未分化が $\mathbf{5}$ んが認められた。多発性のがんは高線量の上位2群でのみ発生した。高線量の場合では、 6 放射性誘発骨髄性白血病(43例死亡)、口及び鼻のがん(29例死亡)並びに歯周がん(16 7例死亡)により死亡した。白血病の動物(平均 1,156 日齢で死亡)は骨肉腫になるリス 8 クはない。骨肉腫発病の平均日齢は2,864日である。高曝露の4群のイヌにおけるがん 9 発病時における平均累積骨線量は、31~116 Gy であった。筆者らは、この曝露量は最も 10 低曝露群(0.08 mGy/日)は自然曝露量より25倍高く、最高曝露群(1.46 mGy/日)は 11 自然曝露量より 500 倍高かったが、がんの要因にならないと示唆した。このため、自然 12放射能の 500 倍の低線エネルギー付与(LET)β粒子線の生涯にわたる慢性曝露は、イ 1314ヌにおいて明確な発がん性を示さなかった。

15

生涯にわたり、⁹⁰Sr を 0.037~114.7 MBq/日の線量で投与された雌の Pitman-Moore 16ミニブタの多世代試験では、発がん効果の発生段階依存的な違いが報告されている 17(Clarke et al. 1972; Howard1970; Howard and Clarke 1970)。9か月齢で投与を開 18始した親世代において、ほぼすべてのレベルで骨髄様化生が観察され、3.7 x 104~4.6 x 19106 Bq 90Sr/日を吸収した場合、リンパ及び骨髄の腫瘍が観察された。母動物における骨 20の平均線量は0.4~100 Gy であった。平均骨線量が90 Gy より高い、4.6 x 10⁶ 及び2.3 x 21107 Bq 90Sr/日を胎児の時期から投与されている F1及び F2に骨肉腫が発生するのに対し、 22親世代において骨がんは生じていない。骨肉腫は長い潜伏期間を持ち、より高い曝露群 23において発生した。骨髄様化生と骨髄、リンパの腫瘍は親世代よりも F1 及び F2 世代に $\mathbf{24}$ おいて、早期に頻繁に形成された。 25

26

27 (3)遺伝毒性

28 ストロンチウム安定同位体の遺伝毒性に関する報告は極めて限られている。しかし、ス
 29 トロンチウム放射性同位体は電離放射線を放出し、その電離放射線の有効範囲内では DNA
 30 を損傷することが知られている。

31

32 ①ストロンチウム安定同位体による in vivo 試験

33 ストロンチウム安定同位体の急性経口曝露による *in vivo* 遺伝毒性試験成績について
 34 唯一の報告がある。塩化ストロンチウムを雌 Swiss albino マウスに 130 mg Sr/kg 体重
 35 の用量で経口投与したところ、6時間後骨髄細胞における染色体異常(ギャップ、切断、
 36 不分離及び倍数体)の頻度が5倍増加した(Ghosh et al. 1990)。同様の用量(140 mg/kg)
 37 を投与した雄マウスにおいては染色体異常頻度が2倍程度で、雌よりも軽度であった。
 38 より高用量(440 ~1,400 mg/kg)では、6、12及び24時間後における染色体異常頻度
 39 は両性で同様であった。

 $\frac{1}{2}$

14

②ストロンチウム放射性同位体による in vivo 試験

3 ミニブタに 925 kBq/日又はそれ以上の線量の ⁹⁰Sr を 1 年間以上混餌投与した結果、白
 4 血球において染色体切断が認められ、ミニブタは白血病にもなっていた(Clarke et al.
 5 1972; Howard 1970)。

⁹⁰Sr-⁹⁰Y disk applicator (表面線量率 2.28 Gy/分)を 100~300 Gy の線量で外部曝露 6 した雌 ICR マウスでは、数時間後に皮膚で不定期 DNA 合成が認められた(Ootsuyama 7and Tanooka 1986)。DNA 修復に関連するトリチウムチミジンの取込みは、真皮よりも 8 照射された表皮の上皮細胞において著しく増加していた。真皮線維芽細胞と同じ深さに 9 ある毛嚢上皮においてチミジンがより速く取込まれていたことから、この相違は細胞タ 10 イプによるものと思われた。著者らは、真皮における DNA 修復速度が幾分遅いことが、 11電離放射線曝露後のがんリスクが表皮に比較して真皮でより高いことの一因となってい 12ることを示唆している。 13

15 チャイニーズハムスターに ⁹⁰Sr-⁹⁰Y (7.4 x 10⁶~1.9 x 10⁸ Bq/kg)を単回腹腔内投与
したところ、骨格への累積放射線量が上昇するにつれて、経時的(2~224 日間)に細胞
当たりの染色体切断数が増加した(Brooks and McClellan 1969)。骨髄細胞当たりの染
26 色体切断及び染色分体/同位染色分体欠失の数は、線量率及び体重当たりの注入放射線核
19 種の線量に相関して増加した。染色分体交換及び環状と二動原体染色体の相対数は、曝
20 露後の時間に伴って減少したが、染色体交換の数は増加した。

21 雌 ICR/JCL マウスに 3.7 x 10⁷ Bq/kg の ⁹⁰Sr 腹腔内注入後 90 日目という遅くまで染
 22 色体数の異常が、胸腺、リンパ節及び骨髄で観察された(Ito et al. 1976)。

24 ③ストロンチウム安定同位体による *in vitro* 試験

25 枯草菌(*Bacillus subtilis*)の組換え修復機能欠損株を用いた Rec-assay において、塩
26 化ストロンチウムは陰性であった(Kanematsu et al. 1980)。さらに、金属塩としての
27 影響では、*in vitro* DNA 合成についてストロンチウムによる有害影響は認められず、こ
28 の結果は変異原性と発がん性を共に示さないことで一致していると考えられた(Loeb et
29 al. 1977)。

30

23

31 遺伝毒性のある安定ストロンチウム化合物としてクロム酸ストロンチウムが唯一知ら
 32 れている。クロム酸ストロンチウムは、チャイニーズハムスター卵巣由来培養細胞にお
 33 いて姉妹染色分体交換を誘発した(Venier et al. 1985)。ネズミチフス菌(*Salmonella* 34 *typhimurium*) TA100 株を用いた Ames 試験において、クロム酸ストロンチウムは S9
 35 存在下で突然変異を誘発したが、非存在下では誘発しなかった。クロム酸ストロンチウ
 36 ムの遺伝毒性は、細胞内に入った六価クロムイオンが代謝を受けて反応性のある DNA
 37 付加体を形成することに関連している。(Elias et al. 1989, 1991)。

1 ④ストロンチウム放射性同位体による *in vitro* 試験

 $\mathbf{2}$ ストロンチウム放射性同位体はヒト細胞を用いたin vitro試験で遺伝毒性を示してい る。新鮮なヒト血液のリンパ球を0.2~5.0 Gyの線量で照射すると染色体異常の頻度が上 3 昇した(de Oliveira et al. 2001)。無動原体染色体断片(無動原体断片及び微小断片)は 4 0.2 Gy以上で増加し、二動原体染色体は0.5 Gy以上で増加した。また、環状染色体頻度 $\mathbf{5}$ は3.0 Gy以上でわずかに増加していた。同じ試験を単回照射したリンパ球におけるコメ 6 ットアッセイで実施すると0.2 GyでDNA損傷(目視検査とtail momentによる評価)が $\overline{7}$ 認められた。染色体異常の頻度にばらつきがあるのは、異常の生成に必要なDNA切断数 8 及び一本又は複数の染色体が関与しているかどうか(無動原体断片は単一の切断、二動 9 原体染色体は異なる染色体の少なくとも二つ以上の切断が必要)に関連している。小核 10 は主に無動原体断片から生じるが、その小核出現頻度の線量に相関した増加が、0.3~3.0 11 Gyの線量に照射されたヒトリンパ球において報告されている(Hall and Wells 1988; 12Mill et al. 1996) 13

14

15 8. ヒトへの影響

16 **(1)**テチャ川コホート

17 1948年、南ウラル地方にある Mayak Production Association は、ソ連の核兵器計画の
 ためのプルトニウムの製造を始め、1949~1956年まで放射性物質をテチャ川に流した。
 19 放射性物質の流出は1950~1952年が最大であったといわれる。その川辺の41の村の住民
 20 (約3万人)を対象に、テチャ川コホートが設けられた。対象集団では、川の水や土壌か
 21 らγ線による外部被ばくを受け、汚染された水や牛乳を使うことにより、¹³⁷Cs、⁹⁰Sr等の
 22 放射性核種の内部被ばくが広がった。健康調査は1950年代に始まった。

23 テチャ川コホートには、1950 年以前に生まれた約 25,000 人のオリジナルコホート
24 (OTRC)及びこれに 1950~60 年に転入した約 5,000 人を加えた ETRC 並びに胎内被ば
25 くした子どものコホートがある。被ばく線量の推定には外部被ばくと内部被ばくを合わせ
26 た TRDS が採用されている。固形がんでは胃組織の線量が参照され、最高 0.47Gy,平均
27 0.04 Gy,中央値 0.01 Gy と胃組織線量が推定されている。そのうち内部被ばくが 55%を占
28 めるという。また、RBM 線量は最高 2 Gy,平均 0.3 Gy,中央値 0.2 Gy と推定されている。

29

30 Kossenko (1996) は、テチャ川コホートにおいて、白血病及び固形がんによる死亡者数
 31 が増加したと報告している。曝露群では、標準化死亡率が 100,000 人当たり 140 人
 (95%CI:131-150) であったのに比べ、追跡調査期間(1950~1982年)における対照群
 33 では 100,000 人当たり 105 人(95% CI: 101-109) であった。曝露群における赤色骨髄
 34 の吸収線量は 0.176~1.64 Gy であった。がん死亡率の増加は、曝露群の子孫にはみられな
 35 かった(Kossenko 1996)。

 36 血液への影響については、骨髄に対し年間 0.3~0.5 Sv を超える放射線量を受けた一部

 37 の人々で、白血球の減少、血小板の減少及び顆粒球の減少など血液学的指標の変化が認め

 38 られたと報告している(Akleyev et al. 1995)。

39 主に関節及び関節周囲の組織に影響を及ぼす骨格のジストロフィーが認められ、骨格障

害の罹患率は、骨の表面における平均線量が 2 Sv を超えている場合に有意に高かった 1 $\mathbf{2}$ (Aklevev et al. 1995)。免疫系への障害には、分化 T 細胞による抗原提示の減少、 T-lymphoblast 形成の減少及び large granulocytic lymphocytes の減少が含まれ、30年間 3 持続した。年間 0.3~0.5 Sv を超える放射線を骨髄に受けた集団の一部においては、顆粒 4 球減少症が発生した。Akleyevら(1995)は、放射線誘発性免疫不全が集団曝露における $\mathbf{5}$ 白血病の発症率の高さに寄与している可能性を示唆した。免疫不全の臨床的所見としては、 6 放射線に曝露されたがん患者における感染症(慢性肺炎、慢性気管支炎、肺結核の発生率 $\mathbf{7}$ 8 及び骨髄炎)の発症が、非腫瘍性の患者グループに比べて3倍増加していた (Akleyev et al. 9 $1995)_{0}$

神経への影響が、年間 0.4~0.5 Sv 以上の線量を受けた集団で観察され、14~20 年間持
 続した。しかしながら、γ線による外部被ばくによるものに比べて、ストロンチウムによ
 る放射線量が神経への影響にどの程度寄与しているかは明確ではない(Akleyev et al.

 $13 \quad 1995)_{\circ}$

14 また、テチャ川コホートにおいては、生殖への影響について統計学的に有意であるとい
う報告はされていない(Kossenko et al. 1994)。主に外部からのγ線により生殖腺に0.74 Sv
の平均線量を受けた集団においては、出生率、受精率及び自然流産の発生率に影響は認め
られなかった(Akleyev et al. 1995)。子宮外妊娠の発生は線量との関連はなかった。これ
らの結果について、曝露は様々な線源から受けており生殖腺への線量のうち放射性ストロ
ンチウムからの寄与は小さいと思われる(ATSDR 2004)。

テチャ川コホートにおいては、発生への影響についての報告はほとんどされていない 20(Kossenko et al. 1994)。放射性ストロンチウムによる線量割合は特定されていないが、 21生殖腺に対して主にγ線による 0.74 Sv までの外部被ばくした女性のコホート研究からは 22(Akleyev et al. 1995)、おそらく発生への影響は相対的に小さいものとされる。自然流産、 23流産、死産の発生数の増加は確認されなかった。しかしながら、曝露群の後代では、対照 $\mathbf{24}$ 群と比較して、染色体欠損並びに先天性の神経系、循環器系及びその他の特定されない異 25常による乳幼児死亡率のわずかな増加がみられた。これらの異常並びに分娩合併症による 26死亡及び出産前後期の詳細不明の死亡を考慮すると、生殖腺に 0.11 Sv の線量を被ばくし 27た親の子の死亡率は曝露を受けていない対照群に比べ2倍となった。Kossenkoら(1994) 2829は、自然流産、流産、早期新生児死亡及び致死的な発達影響を対照群の2倍引き起こす生 殖腺線量は、別のエンドポイントに対する 0.2~4.8 Sv の範囲よりも高いと試算した 30 (Kossenko et al. 1994). 31

32 発がん性については、推定骨髄放射線量が 0.1 Gy を超えると過度の白血病(10,000人
第 Gy につき 0.85 例増加(95%CI: 0.2-1.5))が確認され、白血病による死亡リスクは放
新線量の増加により増加する(Kossenko 1997、2002)。この研究結果は、テチャ川コホー
トにおける ⁹⁰Sr の体内負荷量が、同時期の放射性降下物関連の曝露より 100 倍以上高いこ
とと関連している(Shagina et al. 2000)。テチャ川コホートの子孫において発がん率の増
37 加は確認されていない(Kossenko 1996)。

38 また、約 50 年の追跡により、Krestinina ら(2007)では固形がんの胃線量(診断前 5
 39 年間の被ばくを除く)による ERR/Gy 1.0 (P=0.04 95%CI: 0.3-1.9)、Ostroumova ら

(2008)では女性の乳がんの ERR/Gy 4.99 (P=0.01 95%CI: 0.8-12.76)、Krestinina ら
 (2010)では RBM 線量による白血病の ERR/Gy を 4.9 (95%CI: 1.6-14) と推定して
 いる。これは、Ostroumova ら (2006)の TRDS2000 以前のテチャ川コホート内の白血
 病の症例対照研究で得られた推定値 OR/Gy 4.6 (95%CI: 1.7-12.3)と類似している。

6 (2)発がん性

 $\mathbf{5}$

Danish がん登録を使った疫学研究によると、1943~1988年の間のデンマークにおける $\overline{7}$ 甲状腺がんと放射性降下物からの⁹⁰Srの骨格への吸収レベルには関連がないという結果が 8 でている (Sala and Olsen 1993)。また、1959~1970 年にスコットランドのグラスゴー 9 における ⁹⁰Sr のモニタリングプログラムで収集されたデータを使用した疫学研究では、白 10 血病、非ホジキンリンパ腫、急性骨髄性白血病、すべての小児がん及び骨腫瘍について3 11 つのコホートが同定された(Hole et al. 1993)。3 つのコホートは、1963~1966 年に生ま 12れたハイリスク群(若齢で⁹⁰Srが高レベルである放射性降下物に曝露)、1959~1962年に 13生まれた中程度リスク群(高齢で高レベルに曝露)、そして1966年以降に生まれた低リス 14ク群である。すべてのがん、白血病、非ホジキンリンパ腫及び急性骨髄性白血病の累積罹 15患率は、1982年以前に生まれた子供において、長期的増加傾向を示している。しかしなが 16ら、当該研究は白血病及び非ホジキンリンパ腫又は急性骨髄性白血病及びすべてのがんに 17ついて、放射性降下物(放射性ストロンチウム)の高曝露時期に生まれたコホートに対し 18て、リスクを増加させたという証拠には至っていない。高リスク期間に生まれた子供に係 19 る骨腫瘍の数が、増加しているが、統計的には有意でなかった。 20

21

22 (3)遺伝毒性

23 a. ストロンチウム安定同位体による遺伝毒性

ヒトにおいてストロンチウム安定同位体の遺伝毒性に関する報告はない。

24 25 26

b. ストロンチウム放射性同位体による遺伝毒性

ヒトで利用できる遺伝毒性データとして、1949~1956年にγ線外部被ばくと⁹⁰Sr及 27び¹³⁷Cs内部被ばくの複合被ばくのテチャ川の集団における研究と放射性医薬品として 28⁸⁹Srを投与した患者における研究とがある。テチャ川の被ばく者 73 例と非汚染地域の非 29被ばく者 39 例の末梢血リンパ球との間で、安定型異常である転座の頻度が比較された 30 (Bauchinger et al. 1998)。被ばく群の転座の細胞当たりの平均頻度(12.8±1.5 x 10⁻³) 31は、非被ばく群(5.7±1.0 x 10⁻³)と比べて有意に上昇していた。さらに、10代で被ば 32くしたサブグループ($22\pm4.3 \times 10^{-3}$)は、成人で被ばくしたサブグループ($9.7\pm2.3 \times 10^{-3}$) 33 に比べて、転座の細胞当たりの頻度が有意に高かった。 34

35

36 10代の若者において放射性ストロンチウムの骨格への取込みが上昇することは、骨髄
 37 での線量が高まることにつながり、おそらく、このサブグループで観察された転座頻度
 38 上昇の一因となっている。テチャ川の集団におけるより最近の研究では、Tリンパ球に
 39 おける染色体異常(二動原体及び環状染色体)の頻度(1994~1996年に調査)は、

Muslyumovo 居留地在住の人々における全身 ⁹⁰Sr 放射活性(1993年に測定)線量に相 1 $\mathbf{2}$ 関していた(Ilvinskikh et al. 1999)。染色体異常の頻度は、非被ばく対照群(全身 ⁹⁰Sr 活性<3.7 x 10³ Bq) では 3.8±0.8%、被ばく群の ⁹⁰Sr 活性 3.7 x 10³~1.9 x 10⁴、1.9 x 10⁴ 3 ~3.7 x 10⁴ 及び 3.7 x 10⁴ 以上 Bg に対し、それぞれ 8.9±0.7、12.9±1.2 及び 18.7±1.9% 4 であった。多発性骨転移の重篤な疼痛に対し111 MBgの89SrCl2を注入したがん患者数 $\mathbf{5}$ 例において、リンパ球中の小核数が、被爆後の1週間で3倍になったが、その後の数週 6 間で減少した。著者らは、染色体の損傷の指標である小核の割合が、別の in vitro 実験で $\overline{7}$ 0.53 GyのX線を照射した細胞中に観察された損傷に匹敵することを見出している。 8

9

10 9. 国際機関等の評価

- 11 IARC (2001)
- 12 グループ1:ヒトに対して発がん性がある物質
- IARCは「ピュアなβ線放射核種(³H、³²P、⁹⁰Sr、⁹⁰Y、⁹¹Y、¹⁴⁷Pm)」について、
 実験動物の発がん性に十分な証拠があるとしている。
- 15

16 **10. まとめ**

17 旧ソ連 Mayak 核兵器製造所よりテチャ川に流出した放射性物質に汚染された流域住民
18 (主に ⁹⁰Sr の内部被ばくと外部被ばく)のコホート研究からは、固形がん及び白血病 (CLL
19 を除く)との間に用量反応的なリスクの増加が示されている。被ばく線量の評価における
20 不確実性やがん把握におけるバイアスなどの可能性は払拭できないが、最近のテチャ川コ
21 ホート研究からは、低線量の被ばくにおいてもリスクの増加が示唆されている。しかし、
22 いずれのデータによっても、個別に評価結果を示すことはできない。

2

く参照>

$\frac{3}{4}$	Akleyev AV, Kossenko MM, Silkina LA, et al. Health effects of radiation incidents in the southern Urals. Stem Cells,1995;13(Suppl. 1):58-68.
5	
6 7	Alda JO, Escanero JF.Transport of calcium, magnesium and strontium by human serum proteins. Rev Esp Fisiol,1985;41:145-150.
8	
9 10	Alexander FW, Clayton BE, Delves HT. 1974. Mineral and trace-metal balances in children receiving normal and synthetic diets. Quart J Med XLIII:89-111.
11	
12	Argonne National Laboratory 2006
15 14	ATSDR 2004
15	
16	Bauchinger M. Salassidis K. Braselmann H. et al. 1998. FISH-based analysis of stable
17	translocations in a Techa river population. Int J Radiat Biol 73:605-612.
18	r r
19	Bauchinger M, Salassidis K, Braselmann H, et al.FISH-based analysis of stable
20	translocations in a Techa river population. Int J Radiat Biol,1998;73:605-612.
21	
22	"Berg D, Oberhausen E, Muth H. 1973. [Interaction of 47Ca, 85Sr, 133Ba and 226Ra
23	with serum proteins]. Biophysik 10:309-319. (German)
24	
25	Bianchi ML, Ardissino GL, Schmitt CP, et al. 1999. No difference in intestinal
26	strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal
27	subjects. J Bone Miner Res 14(10):1789-1795.
28	
29	Bishop M, Harrison GE, Raymond WHA, et al. 1960. Excretion and retention of
30	radioactive strontium in normal men following a single intravenous injection. Int J
31	Radiat Biol $2(2) \cdot 125^{-}142$.
32 99	Blake CM Wood IF Wood PL at al 805r therapy. Streptium plasma elegraped in
34	disseminated prostatic carcinoma, Eur J Nucl Med 1989a:15:49-54
35	disseminated prostatic caremonia. Edi 9 Nucl Med, 1909a, 1949 94.
36	"Blake GM. Zivanovic MA. Lewington VJ. 1989b. Measurements of the strontium
37	plasma clearance rate in patients receiving 89Sr radionuclide therapy. Eur J Nucl
38	Med 15:780-783.
39	

1	"Blumsohn A, Morris B, Eastell R. 1994. Stable strontium absorption as a measure of
2	intestinal calcium absorption: Comparison with the double-radiotracer calcium
3	absorption test. Clin Sci 87:363-368.
4	
5	Book SA, Spangler WL, Swartz LA. 1982. Effects of lifetime ingestion of 90Sr in beagle
6	dogs. Radiat Res 90:244-251.
7	
8	Brooks AL, McClellan RO.Chromosome aberrations and other effects produced by
9	90Sr-90Y in Chinese hamsters. Int J Radiat Biol,1969;16(6):545-561.
10	
11	Brooks AL, McClellan RO.Chromosome aberrations and other effects produced by
12	90Sr-90Y in Chinese hamsters. Int J Radiat Biol,1969;16(6):545-561.
13	
14	Brues AM, Auerbach H, Grube D, et al.Studies on soft-tissue dosage from strontium-90.
15	In:Lenihan JMA, Loutit JF, Martin JH, eds. Strontium metabolism: Proceedings of
16	the international symposium on some aspects of strontium metabolism held at
17	Chapelcross, Glasgow and Strontian, 5-7 May, 1966. New York, NY: Academic
18	Press, 1967;207-212.
19	
20	Brues AM, Auerbach H, Grube DD, et al.Retention of radiostrontium in soft tissues.
21	ANL-7635.1969;119-120.
22	
23	Casarett GW, Tuttle LW, Baxter RC.Pathology of imbibed Sr90 in rats and monkeys.
24	In:Dougherty TF, Jee WSS, Mays CW, et al., eds. Some aspects of internal
25	irradiation: Proceedings of a symposium held at the Homestead, Heber, Utah, 8-11
26	May 1961. New York, NY: Pergamon Press, 1962;329-336.
27	
28	Clarke WJ, Busch RH, Hackett PL, et al.Strontium-90 effects in swine: A summary to
29	date.AEC Symp Ser,1972; 25:242-258.
30	
31	Clarke WJ, Palmer RF, Howard EB, et al. 1970. Strontium-90: Effects of chronic
32	ingestion on farrowing performance of miniature swine. Science 169:598-600.
33	
34	Cragle RG, Stone WH, Bacon JA, et al. 1969. Effects of large doses of orally ingested
35	strontium-90 on young cattle. Radiat Res 37:415-422.
36	
37	Cuddihy RG, Ozog JA.Nasal absorption of CsCl, SrCl2, BaCl2 and CeCl3 in Syrian
38	hamsters.Health Phys,1973;25:219-224.
39	

1	de Oliveira EM, Suzuki MF, do Nascimento A, et al.Evaulation of the effect of 90Sr
2	betaradiation on human blood cells by chromosome aberration and single cell gel
3	electrophoresis (cometassay) analysis. Mutat Res,2001;476:109-121.
4	
5	"Downie ED, Macpherson S, Ramsden EN, et al. 1959. The effect of daily feeding of
6	90Sr to rabbits. Br J Cancer 13:408-423.
7	"Durgementh DL Coldman M Switzen IW et al 1000 Development of a
8	mulanzolifozative dicerden in beerlee continuously expected to 005r. Blood
9	24(5):c10-c22
10	34(3).010 032.
11	Finkel MP Bergstrand PJ Biskis BO 1960 The consequences of the continuous
13	ingestion of Sr90 by mice. Radiology 74:458-467.
14	
15	Forbes GB, Reina JC. 1972. Effect of age on gastrointestinal absorption (Fe, Sr, Pb) in
16	the rat. J Nutr 102:647-652.
17	
18	Hall SC, Wells, J. Micronuclei in human lymphocytes as a biological dosemeter:
19	preliminary data following beta irradiation in vitro. J Radiol
20	Prot,1988;8(2):97-102.
21	
22	Harrison GE, Carr TEF, Sutton A. 1967a. Distribution of radioactive calcium,
23	strontium, barium and radium following intravenous injection into a healthy man.
24	Int J Radiat Biol 13(3):235-247.
25	
26	Harrison GE, Sutton A, Shepherd H, et al. 1965. Strontium balance in breast-fed
27	babies. Brit J Nutr 19:111-117.
28	
29	Harrison GE, Sutton A, Shepherd H, et al. 1965. Strontium balance in breast-fed
30	babies. Brit J Nutr 19:111-117.
31	
32	Hartsook EW, Hershberger TV. 1973. Strontium-calcium discrimination during
33	placental transfer and fetal uptake in rats: Effect of gestation duration. Proc Soc
34	Exp Biol Med 143(2):343-349.
35	
36	Herring LC, Keefer DH. 1971a. II. Comparison of stable and radioactive strontium
37	deposition in urinary calculi and human diet. Arch Environ Health 22:251-258.
38	
39	Hole DJ, Gillis CR, Sumner D.Childhood cancer in birth cohorts with known levels of

$\frac{1}{2}$	strontium-90. Health Rep,1993;5(1):39-43.
- 3	Hopkins BJ, Casarett GW, Baxter RC, et al. 1966. A roentgenographic study of
4	terminal pathological changes in skeletons of strontium-90 treated rats. Radiat
5	Res 29:39-49.
6	
7	Hopkins BJ. 1967. The retention of strontium-90 transferred through milk (and
8	placenta) in rat offspring. Health Phys 13:973-976.
9	
10	Howard EB, Clarke WJ. 1970. Induction of hematopoietic neoplasms in miniature
11	swine by chronic feeding of strontium-90. J Natl Cancer Inst 44(1):21-38.
12	
13	Howard EB.Experimental induction of porcine leukemia. In: Dutcher RM, ed.
14	Comparative leukemia research 1969.New York, NY: Karger,1970; 430-439."
15	
16	ICRP(International Agency for Research on cancer).IARC Monographs on the
17	Evaluation of Carcinogenic Risk to Humans:Ionizing Radiation, Part2:Some
18	internally Deposited Radionuclides Volume78,2001.
19	
20	Iiyinskikh NN, Iiyinskikh IN, Shakirov NN, et al. 1999. Chromosome aberrations in
21	the radiationexposed residents around Mayak nuclear facility in the Chelyabinsk
22	region, Russia. Environ Toxicol,1999;14(4):414-423.
23	
24	Ito T, Nagao K, Kawamura Y, et al.Studies on the leukemogenic and immunologic
25	effects of radiostrontium (90Sr) and x rays in mice. In: Radiation and the
26	lymphatic system: Proceedings of the fourteenth annual Hanford biology
27	symposium at Richland, Washington, September 30-October 2, 1974.Springfield,
28	VA: Energy Research and Development Administration, 1976;209-217.
29	
30	Jacobsen N, Alfheim I, Jonsen J. 1978. Nickel and strontium distribution in some
31	mouse tissues passage through placenta and mammary glands. Res Commun
32	Chem Pathol Pharmacol 20(3):571-584.
33	
34	Jacobsen N, Alfheim I, Jonsen J. 1978. Nickel and strontium distribution in some
35	mouse tissues passage through placenta and mammary glands. Res Commun
36	Chem Pathol Pharmacol 20(3):571-584.
37	
38	Kahn B, Straub CP, Robbins PJ, et al. 1969a. Part 1: Long-term study in the home; Diet
39	and results.Pediatrics 43(4):652-667.

1	
2	Kanematsu N, Hara M, Kada T. 1980. Rec assay and mutagenicity studies on metal
3	compounds. Mutat Res,1980;77:109-116.
4	
5	Kossenko MM, Degteva MO, Vyushkova OV, et al. 1997. Issues in the comparison of
6	risk estimates for the population in the Techa River region and atomic bomb
7	survivors. Radiat Res 148:54-63.
8	
9	Kossenko MM, Izhevsky PV, Degteva MO, et al. 1994. Pregnancy outcome and early
10	heath status of children born to the Techa River population. Sci Total Environ
11	142:91-100.
12	
13	Kossenko MM, Preston DL, Krestinina LY, et al. 2002. Studies on the extended Techna
14	cohort:Cancer risk estimation. Radiat Environ Biophys 41(1):45-48.
15	
16	Kossenko MM.Cancer mortality among Techa River residents and their offspring.
17	Health Phys,1996;71(1):77-82.
18	
19	Kostial K, Gruden N, Durakovic A. 1969b. Intestinal absorption of calcium-47 and
20	strontium-85 in lactating rats. Calcif Tissue Res 4(1):13-19."
21	
22	Krestinina LY, Davis FG, Epifanova SB, Degteva MO, Preston DL, et al. 2010. Leukemia
23	incidence among people exposed to chronic radiation from the contaminated Techa
24	River, 1953–2005.Radiat Environ Biophys ;49:195–201
25	
26	Krestinina LY, Preston DL, Davis FG, Epifanova SB, Ostroumova E, Ron E, et al.
27	2007. Solid cancer incidence and low-dose-rate radiation exposures in the Techa
28	River conort- 1956–2002.International Journal of Epidemiology 36-1038–1046
29	Kahinggoon SC 1077 Radiostroptium distribution massured in vitre between hound
3U 91	and free forms in the soft tissues of not. Int. I Padiat Piel 22(C):561-560
31 20	and free forms in the soft tissues of rat. Int 5 Kadiat Biol 52(6)-561-569.
32 99	Likhteren IA et al A study of cortain characteristics of strentium metabolism in a
33	homogeneous group of human subjects Health Phys. 1075; Jap 28(1):40-60
54 95	nomogeneous group of numan subjects. Teartiff flys, 1975, Jan, 20(1)-45 00.
30 96	Lloyd F 1068 Relative hinding of strentium and calcium in protein and non-protein
30 37	fractions of sorum in the rabbit Nature 217.355-356
38	nations of servin in the fabbit. Nature 217-333-330.
39	Loeb LA, Sirover MA, Weymouth LA, et al.Infidelity of DNA synthesis as related to

1	mutagenesis and carcinogenesis. J Toxicol Environ Health,1977;2:1297-1304.
2	ManDanald NC Eigene WC Origt MD 1005 Chartetown actantics of structive 25 and
3 1	estimation of initial strontium-90 burdens in humans. Health Phys 11:1187-1194 "
4 5	estimation of mitial strontium 50 burdens in numans. Health 1 hys 11-1107 1154.
6	McClellan RO. Kerr ME. Bustard LK. 1963. Reproductive performance of female
7	miniature swine ingesting strontium-90 daily. Nature 197:670-671.
8	
9	Miller DL, Schedl HP.Effects of experimental diabetes on intestinal strontium
10	absorption in the rat. Proc Soc Exp Biol Med,1976;152:589-592.
11	
12	Milsom S, Ibbertson K, Hannan S, et al. 1987. Simple test of intestinal calcium
13	absorption measured by stable strontium. Br Med J 295:231-234.
14	
15	Momeni MH, Williams JR, Jow N, et al. 1976. Dose rates, dose and time effects of 90Sr
16	+ 90Y and 226Ra on beagle skeleton. Health Phys 30:381-390.
17	
18	Moskalev JI, Buldakov LA, Lyaginskaya AM, et al.Experimental study of radionuclide
19	transfer through the placenta and their biological action on the fetus. AEC Symp
20	Ser,1969; 17:153-160.
21	
22	Newton D, Harrison GE, Rundo J, et al. 1990. Metabolism of Ca and Sr in late adult
23	me. Health Phys 59(4)-455-442.
24 95	O'Connor BH, Kerrigan GC, Taylor KB, et al. 1980, Levels and temporal trends of trace
26 26	element concentrations in vertebral bone Arch Environ Health 35(1):21-28
20 27	
28	Olehy DA, Schmitt RA, Bethard WF. 1966. Neutron activation analysis of magnesium,
29	calcium, strontium, barium, manganese, cobalt, copper, zinc, sodium, and
30	potassium in human erythrocytes and plasma. J Nucl Med 7:917-927.
31	
32	Olsen I. 1979. 90Sr in maternal, fetal and embryonic tissues of mice, evaluated by
33	whole-body autoradiography.J Dent Res 58(special issue D):2293.
34	
35	Ootsuyama A, Tanooka H.Unscheduled DNA synthesis after β-irradiation of mouse
36	skin in situ.Mutat Res,1986;166:183-185.
37	
38	Ostroumova1 E,Gagniere B,Laurier D,Gudkova N,Krestinina LY,Verger P, et al.
39	2006.Risk analysis of leukaemia incidence among people living along the Techa

River: a nested case-control study.J. Radiol. Prot 17–32
Ostroumous 1 F Proston DI Pon F Knostining IV Davis FC Kossonko M. et al
2008 Broast concer incidence following low-dose rate environmental exposure:
Tocha River Cohort 1956 2004 British Journal of Cancor 90:1940 1945"
recha River Conort, 1950–2004. Diffish Southar of Cancer 55-1540 – 1545
Panworth DG Vennart J 1984 The untake and turnover of 90Sr in the human
skeleton Phys Med Biol 29(9):1045-1061
Raabe OG, Book SA, Parks NJ. 1983. Lifetime bone cancer dose-response relationships
in beagles and people from skeletal burdens of 226Ra and 90Sr. Health Phys
44(Suppl. 1):33-48.
Raabe OG, Culbertson MR, White RG, et al.Comparative toxicity of strontium-90 and
radium-226 in beagle dogs. U.S. Department of Energy. Davis, CA: University of
California. DOE DE-FG03-89ER60914/92.1994;NTIS/DE94006408.
Ragan HA, Hackett PL, McClanahan BJ, et al.Pathologic effects of chronic 90Sr
ingestion in miniature swine. In: Harrison LT, ed. Research animals in medicine,
[National conference on research animals in medicine], Washington, D.C. Jan.
28-30, 1972. Washington, DC: U.S.Department of Health,Education, and
Welfare,1973;919-929.
Reid IR, Pybus J, Lim TMT, et al. 1986. The assessment of intestinal calcium
absorption using stable strontium. Calcif Tissue Int 38:303-305.
Rönnbäck C, Nelson A, Nilsson A. 1968. Influence of laktation on retention of
radiostrontium in mice. Acta Radiol Ther Phys Biol 7(5):330-336.
Ronnback C. 1986. Strontium retention in mouse foetuses at different intervals after
contamination of the dam. Acta Radiol Oncol 25(2)-155-159."
Provide F. Knochler M. Li F. et al. 2000. Investigation of transport of trace elements
Advise herriers in humans, studies of placental and memmery transfer. Acta
Prodictr Suppl 89.1100-1105
1 aculati Suppi 00-1100 1100.
Sala E. Olsen JH Thyroid cancer in the age group 0-19: Time trends and temporal
changes in radioactive fallout. Eur J Cancer 1443-1445

1	Samachson J. 1966. The gastrointestinal clearance of strontium-85 and calcium-45 in
2	man. Radiat Res 27:64-74.
3	Sharing NR Karbauran VR Dectars MO, at al Study of 00Sr bade burden warishility
4	Snagina NB, Kozneurov VP, Degteva MO, et al. Study of 90Sr body-burden variability
о С	Supposium and Exhibition of Environmental Contamination in Control and
07	Eastern Europe 2000:12-14 September
8	Lastern Europe,2000,12 14 September.
9	Sips AJAM, Barto R. Netelenbos JC, et al. 1997, Preclinical screening of the
10	applicability of strontium as a marker for intestinal calcium absorption. Am J
11	Physiol 272(PE):422-428.
12	
13	Sips AJAM, Netelenbos JC, Barto R, et al. 1994. One-hour test for estimating intestinal
14	absorption of calcium by using stable strontium as a marker. Clin Chem
15	40(2):257-259.
16	
17	Sips AJAM, van der Vijgh WJF, Barto R, et al. 1996. Intestinal absorption of strontium
18	chloride in healthy volunteers: Pharmacokinetics and reproducibility. Br J Clin
19	Pharmacol 41:543-549.
20	
21	Sips AJAM, van der Vijgh WJF, Netelenbos JC. 1995. Intestinal strontium absorption:
22	From bioavailability to validation of a simple test representative for intestinal
23	calcium absorption. Clin Chem 41(10):1446-1450.
24	
25	Skoryna SC. 1981b. Handbook of stable strontium. New York, NY: Plenum Press.
26	Snyder WS, Cook MJ, Ford MR. 1964. Estimates of (MPC)w for occupational
27	exposure to Sr90, Sr89 and Sr85. Health Phys 10:171-182.
28	
29	Sutton A, Harrison GE, Carr TEF. 1971a. Reduction in the absorption of dietary
30	strontium in children by an alginate derivative. Int J Radiat Biol 19(1)-79-80.
31	Tanaka C-I Kamamuna II Namuna E 1081 Defense a lanamasa manali Distribution
32	af strentium in the skeleten and in the mass of minoralized have. Health Dhus
33 94	40:601-614
04 25	40.001 014.
30 30	The Marck Index 2006
37	The meter filles 2000
38	Tolstykh EI, Degteva MO, Kozheurov VP, et al. 1998, Strontium transfer from
39	maternal skeleton to the fetus estimated on the basis of the Techa river data.

$\frac{1}{2}$	Radiat Prot Dosim 79(1-4):307-310.
3	Tolstykh EI, Degteva MO, Kozheurov VP, et al. 1998. Strontium transfer from
4	maternal skeleton to the fetus estimated on the basis of the Techa river data.
5	Radiat Prot Dosim 79(1-4):307-310.
6	
7	Tolstykh EI, Degteva MO, Vorobiova MI, et al. 2001. Fetal dose assessment for the
8	offspring of the Techa riverside residents. Radiat Environ Biophys 40(4):279-286.
9	Tolstykh FI Kozhourov VP Wyyshkova OV et al. 1997 Analysis of strontium
10	motobolism in humans on the basis of the Teche river date. Padiet Environ
11 12	Biophys 36:25-29.
13	
14	Twardock AR, Kuo EY-H, Austin MK, et al. 1971. Protein binding of calcium and
15	strontium in guinea pig maternal and fetal blood plasma. Am J Obstet Gynecol
16	110(7):1008-1014.
17	
18	Uchiyama M, Tanaka G, Yabumoto E. 1973. 85Sr retention in Japanese after a single
19	administration. J Radiat Res 14:169-179.
20	
21	Venier P, Montaldi A, Gava C, et al. 1985. Effects of nitrilotracetic acid on the induction
22	of gene mutations and sister-chromatid exchanges by insoluble chromium
23	compounds. Mutat Res, 1985; 156:219-228.
24	
25	Vezzoli G, Baragetti I, Zerbi S, et al. 1998. Strontium absorption and excretion in
26	normoclaciuric subjects: Relation to calcium metabolism. Clin Chem 44(3):586-590.
27	
28	Wenger P, Soucas K. Retention and excretion curves of persons containing 90Sr and
29	226Ra after a chronic contamination. Health Phys,1975;28:145-152.
30	
31	White RG, Raabe OG, Culbertson MR, et al. 1993. Bone sarcoma characteristics and
32	distribution in beagle fed strontium-90. Radiat Res 136:178-189.
33	
34	Zapol'Skaya NA, Borisova VV, Zhorno LY, et al.Comparison of the biological effect of
35	strontium-90, cesium-137, iodine-131 and external irradiation. In: Third
36	International Congress of the International Radiation Protection Association.
37	Springfield, VA: U.S. Atomic Energy Commission, 1974;147-152.
38	
39	岩波理化学辞典 1998

1 XI. 低線量及び乳幼児・胎児への影響

2 1. 自然界からの高曝露

インド Kerala、Karunagappallyの沿岸地帯は、トリウムを含有するモナズ砂による高 3 バックグラウンド放射線地域(HBR)として知られている。沿岸 panchayats における自 4 然放射能レベルの中央値は4mGy/年以上であり、沿岸には70mGy/年を示す区域もある。 $\mathbf{5}$ HBR における健康影響を評価するために、1990 年代に Karunagappally の全居住者 6 385,103名を対象としたコホート研究が行われた。69,958名を平均10.5年間追跡し、2005 $\mathbf{7}$ 年末までに 736,586 人年を集積して、白血病 30 件を含む 1,379 件のがん症例を特定した。 8 対照集団については、ベースライン調査を行い、個人名簿を整備しており、職業曝露者は 9 除いている。また、がん罹患は Karunagappally 地域がん登録により把握しており、追跡 10不能は0.7%だった。線量の推定については、各家庭の内外の線量を計測し、個人線量を推 11 定した。性別、到達年齢、フォローアップ期間、社会人口学的要因及びビディ喫煙で層別 12化したコホートデータをポアソン回帰分析したところ、地上 γ線被ばくによるがんリスク 13の超過は認められなかった。白血病を除くがんの RR は-0.13 /Gy (95% CI: -0.58-0.46) で 14あった。また、累積吸収線量 500 mGy 強において発がんリスクの増加はみられなかった。 15部位特異的解析では、累積放射線量と有意に関連している発がん部位は認められなかった。 16また、白血病では HBR との有意な関連が認められなかった(Nair et al. 2009)。 17

18

中国 Yangijang (陽江)の高バックグラウンド放射線地域 (HBRA) における年平均実 19効線量は 6.4 mSv(内部被ばくも含む)であり、1979~1995 年の期間で、HBRA におい 20て平均 2.4 mSv/年と比較してがん死亡率の増加は観察されなかった(RR = 0.96, 95%CI, 210.80-1.15)。対象者は125,079人、累積で1,698,316人年にのぼり、死亡者10,415人及び 22がん死亡 1,003 人を観察した。コントロール地域と比較した HBRA 全体の全がん RR は 230.99(95% CI, 0.87-1.14)と推定された。HBRA 全体における胃、結腸、肝臓、肺、骨、 24女性の乳房、及び甲状腺のがんの RR は1より低かったが、白血病、上咽頭、食道、直腸、 25膵臓、皮膚、子宮頸部、脳及び中枢神経系のがん並びに悪性リンパ腫のリスクは1より大 26きかった。いずれも RR=1 との有意差はなかった。HBRA において、高レベル自然放射線 27と関連した発がんリスクのいかなる増加も認められなかったが、反対にすべてのがん死亡 28率は一般的にコントロール地域より低かった(有意差なし)(Tao et al. 2000)。 29

30

中国における継続的な低線量放射線被ばくによる甲状腺結節について、生涯にわたって 31HBRA (330 mR/年)に居住する 50~65 歳の女性 1,001 人、及び通常レベルの放射線 (114 32mR/年)に曝露された比較対象者 1.005 人について調べられた。甲状腺に対する累積線量 33 はそれぞれ 140 mGy 及び 50 mGy であると推定された。すべての結節性疾患に対する罹 34患率は高バックグラウンド地域で 9.5%、コントロール地域で 9.3%であった。単一結節の 35罹患率は高バックグランド地域で 7.4%、コントロール地域で 6.6%であった(罹患率比 36 1.13; 95%CI: 0.82-1.55)。甲状腺ホルモンの血清レベルに差はなかった。しかし、HBRA 37の女性は尿中ヨウ素濃度が有意に低く、安定及び不安定染色体異常の頻度が有意に高かっ 38た。軽度のびまん性甲状腺腫の罹患率が HBRA で高く、おそらくヨウ素の食物摂取量が少 39

ないことと関連する。これらのデータは、生涯を通した継続的な低線量の放射線被ばくが
 甲状腺がんリスクを著しく上昇させることがありそうにないことを示唆している。しかし、
 このような被ばくは染色体損傷を引き起こす可能性がある。本報告では、生涯を通じた甲
 状腺への過剰な 90 mGy の曝露は、臨床的に検出できる甲状腺がんのリスクの増加に関連
 しないと結論付けている(Wang et al. 1990)。

6

7 男性コックピットクルー19,184 人を対象とした高層での自然放射線による影響につい
8 ての報告では、生涯累積被ばく線量は平均 15.3 mSv、最大 78.5 mSv であった。コホート
9 解析における全死亡については、累積ブロック時間や累積線量が増加するほどリスク比が
10 減少し、その傾向は有意であった。全がん死亡やがん種類別死亡については、累積ブロッ
11 ク時間や累積被ばく線量の増加に伴って増大する項目はなく、累積被ばく線量 25 mSv(平
12 均 15.6 年)では影響はみられなかった。なお、本報告では、コクピットクルーの採用時か
13 ら追跡を始めているために、転帰に在職中の死亡が含まれている(Langner et al. 2004)。

14

15 1973年におけるスウェーデンの二つの郡に居住するすべての個人を対象とした調査に
おいて、100 nGy/h 当たりのハザード比は全ての悪性腫瘍に対して有意に増加したが、い
くつかの地点では明確な線量反応が特定できなかった。最も低い曝露グループ(0~60
nGy/h)を参照とした場合、最も高い曝露グループ(96~366 nGy/h)を除いたすべての
19 曝露グループですべての悪性腫瘍に対するハザード比の統計的に有意な増加がみられた。
20 しかし、乳がん、甲状腺がん、白血病に対しては明確な線量反応はみられなかった。五分
21 位に分けて検討した結果、第1五分位に比べて第2~第4五分位で有意に高いハザード比

22 (100 nGy/h 当たり 1.04~1.07)を示したが、第5五分位のハザード比は 0.99 であった。
 23 がんの種類ごとに見ても線量反応関係は一貫していなかった。なお、本報告においては、
 24 コックス回帰を用いているが、調整因子は性別、年齢、人口密度のみであり、他の放射線
 25 曝露は考慮されず、また、喫煙などがん発生に関連する因子は調整されていない (Tondel et
 26 al. 2011)。

27

28 2. 医療曝露

1950~1975年に¹³¹Iを用いた治療(投与量: 220 MBg 未満(平均 150 MBg)、221~480 29MBq (平均 315 MBq)、481 MBq 以上 (平均 1,063 MBq) を受けたスウェーデンの甲状 30 腺機能亢進症患者 10,552 名についてがん死亡率が調査された。スウェーデン死因登録で死 31因を特定し、がん又は白血病で死亡した 977 例について調査された。平均 15 年間(0~35 32年間)追跡したところ、最終的な SMR は 1.09 (95%CI=1.03-1.16) であり、女性の方が 33 高リスクであった。最も死亡率が高かったのは、被ばく後最初の1年間でSMRが1.15で 34あったが、続く 2~9 年間では SMR が 1.04 と減少した。消化管及び呼吸器のがんによる 35死亡リスクは、被ばく後10年間以上にわたって有意に上昇し、消化管がんの最終的なSMR 36 は1.14であった。白血病、膀胱がん及び乳がんにおいては、リスクの上昇を認めなかった。 37より高線量の¹³¹Iを受けた患者はSMR がより高く、221~480 MBg 群ではリスクの上昇 38

39 がみられなかったが、481 MBq 以上群においてリスクが上昇した。結節性甲状腺腫患者は

グレーブス病患者に比べて高リスクであった。経時的及び高放射能の¹³¹ 投与による死亡
 率上昇が認められないことから、¹³¹ の発がん影響には議論があるが、胃がん患者の場合
 には、¹³¹ 被ばくはがんの過剰死亡率に寄与する可能性があった(Hall et al. 1992)。

 $\mathbf{4}$

1952~1977 年に診断レベルの¹³¹ に被ばくし、甲状腺異常の診断が陰性であった女性 $\mathbf{5}$ 1,005 名の甲状腺小結節形成について評価が行われた。被験者は 1991~1992 年に触知で 6 きる甲状腺小結節について評価され、比較群は ¹³¹I 被ばく又は甲状腺疾患の前病歴のない $\overline{7}$ マンモグラフィー検診クリニックに通院していた女性248名から構成された。投与された 8 ¹³¹I 線量の合計の平均値は 0.95 MBq であった。甲状腺で吸収された放射線量は、ICRP 9 (1998)の放射能と線量測定の表に基づいて推定された。平均線量は 0.54 Gy (10~90 パ 10ーセンタイル、0.02~1.45 Gy) であった。甲状腺小結節が曝露女性 1,005 名中 107 名 11 (10.6%)と非曝露女性 248 名中 29 名 (11.7%) で見つかった。131 に曝露した女性に甲 12状腺結節ができる RR は 0.9 (95% CI: 0.6~1.4) であり、統計学的有意差はなかった。 13線形二次過剰相対リスクモデルは、甲状腺小結節の統計学的に有意な線量傾向を明らかに 14した (ERR 0.9/Gy) (Hall et al. 1996)。 15

16

X 線診断により妊娠後期の子宮内胎児が受ける低線量の電離放射線と小児がんリスクと 17の関連は、閾値線量の存在に対する直接的な証拠を示し、医療の変化をもたらした。1956 18年に、様々な国の多くのケースコントロール研究から一貫した関連性が見出されたとの報 19 告があった。これらの研究結果を総合して得た ERR は高い統計学的有意差を示し、この 20ことは過去の妊婦の腹部X線診断が約40%のリスクの比例的増加をもたらしたことを示唆 21する。また、子宮内の胎児が10mGvの放射線に被ばくすると、小児がんのリスクは結果 22として増加すると結論付けられた。このレベルの被ばくにおける超過絶対リスク係数は1 23Gy 当たり 6%であるが、このリスク係数の正確な値には不確実性が残る (Doll and 24Wakeford 1997)。BEIR (2006) はこの推定をレビューし、他の出生前の医療曝露による 25新生児のリスクを推定した研究と比較した。出生前のX線の被ばくによる胎児への影響に 26ついては長い間議論があるが、子宮内への10~20mGyの医療被ばくは、白血病及び小児 27がんリスクの有意な上昇の存在についての重要な情報を提供しているとしている。また、 28小児期の¹³¹ 医療被ばくに関する調査においては、かなり少ない甲状腺がんリスクの上昇 29がみられたが、リスクの推定は行われなかったとしている。 30

- 31
- 32

1897~1979年に放射線学会に登録した英国の放射線科医について、1997年1月まで追
跡調査が行われ、最初に放射線防護勧告が出された 1920年以降に学会登録した放射線科
医の死亡率が調査されている。1920年以降の登録者で観察されたがん死亡数は、全ての医
療従事者を合わせた死亡率から期待されたものと同様であった(SMR=1.04、95% CI:
0.89-1.21)。しかし、40年以上の登録者では、がん死亡率の超過リスクは41%にのぼった
(SMR=1.41、95% CI:1.03-1.90)。これはおそらく最初の登録が1921~1935年及び
1936~1954年であった放射線科医における放射線被ばくの長期影響によるものであると

考えられた。最初の登録が 1955 年以降の放射線科医においては、がん死亡率上昇のエビ
 デンスはないが、彼らの放射線被ばくはそれほど高くないと思われる。がん以外の疾患に
 対する放射線影響については、初期の登録者においてさえも認められなかった(Berrington
 et al. 2001)。

 $\mathbf{5}$

1950~1975年に甲状腺機能亢進症で¹³¹Iの治療を受けた患者10,552人(平均506 MBg) 6 において、がん罹患率が調べられた。この患者らの追跡調査は平均 15 年間続けられた。 $\overline{7}$ 1958~1985年のスウェーデンがん登録の記録では¹³¹I治療後1年以上に1.543例のがん 8 が確認され、SIR は 1.06 (95% CI: 1.01-1.11) であった。SIR の有意な増加が肺 (SIR = 1.32、 9 n=105)及び腎臓がん(SIR=1.39、n=66)で観察された。10年生存した患者では、有 10 意なリスク上昇が胃(SIR = 1.33、n = 58)、腎臓(SIR = 1.51、n = 37)、及び脳(SIR = 1.63、 11 n=30)のがんでみられた。しかし、胃がんリスクのみが時間とともに上昇し(P<0.05)、 12投与量増加とともに上昇した(有意差なし)。悪性リンパ腫のリスクは予想より有意に低か 1314った(SIR = 0.53、n = 11)。がん全体のリスクは投与された¹³¹Iの線量又は被ばく後経過 時間に伴って上昇しなかった。白血病にいかなる増加もみられなかったことは、時間とと 15もに徐々にもたらされた放射線量は短時間で受けた同じ総線量より発がん性が低いという 16見解にさらなる支持を加えている。胃がんのみに放射線による過剰発生の可能性があった 17(Holm et al. 1991) 18

19

20 3. 職業曝露

一般人と比較して、デンマークの2か所の放射線療法科のスタッフにおけるがんのRR 21を、デンマークがん登録と関連させて評価された。これらのスタッフは 1954~1982 年ま 22で勤務し、1968年4月1日に生存していた者を対象とした。実験コホートは4,151人から 23なり、49.533 リスク人年となった。集団の放射線量は 76.54 人 Sv であり、平均線量は 18.4 24mSv であった。がんは、合計 163 症例が確認された。予測値は、152.2 症例であった(RR: 251.07、CI: 0.91-1.25)。放射能ががんの原因だと通常考えられるリスクは高くなかった。 26前立腺がんの有意な過剰発症が観察された(5症例、RR=6.02、95%CI:1.94-14.06)。 27著者らは、これは偶然の結果の可能性があるとしている。放射線量あるいは被ばく年月と、 28がんリスクの間には関係がみられなかった。(Anderson et al. 1991)。 29

30

31 4. チェルノブイリ原子力発電所事故

32 (1)甲状腺がん

チェルノブイリ原子力発電所事故後のベラルーシの15歳未満の甲状腺がん107症例の
研究(対照107例)では、被ばく量が300mGy未満群と、1Gy以上群とのORは5.84
(95%CI:1.96-17.3)で、被ばく量300mGy未満群と300mGy以上群とのORは3.11
(95%CI:1.67-5.81)であった。田舎・都会別に見た比較では、田舎では、被ばく量300mGy未満群と1Gy以上群とのORは10.42(95%CI:3.46-31.25)、都会では、被ばく
量300mGy未満群と1Gy以上群のとのORは5.05(95%CI:1.27-20)であった。以上のORの結果から、被ばくによる有意な影響が確認された(Astakhova et al. 1998)。

チェルノブイリ原子力発電所事故当時に¹³¹Iに被ばくし、15歳未満で甲状腺がんを発 $\mathbf{2}$ 症したベラルーシとロシアの小児276症例の調査結果(コントロールは1,300例)から、 3 1 Gy 当たりの甲状腺がんの OR は、5.5 (95%CI: 3.1-9.5) から 8.4 (95%CI: 4.1-17.3) 4 であった。1.5~2 Gy では、直線的な線量反応関係がみられた。0.2Gy を超えると、線 $\mathbf{5}$ 量の増加に伴う統計学的に有意なリスク増加がみられた。調査対象のうち、ヨウ素欠乏 6 地域では、他地域と比べ3倍の甲状腺がんリスクがみられた(RR=3.2(95%CI:1.9-5.5)。 78 ヨウ化カリウムの投与は、リスクを低減させた(RR=0.34(95%CI:0.1-0.9)(Cardis et al. $2005)_{\circ}$ 9

10

1

ベラルーシのチェルノブイリ原子力発電所事故被ばく者(当時18歳以下の男女)を対 11 象に、約10年後に開始されたスクリーニング参加者11,970名(参加率約3割)におけ 12る甲状腺がんの甲状腺吸収線量(Gy)当たりの過剰オッズ比(EOR)を算出した。初回 13スクリーニングで甲状腺がんを除外した。リスク要因は牛乳を主とする ¹³¹I による内部 14被ばくであり、曝露評価は測定及び放射生態学的モデルに食事調査などによる補正を加 15えている。被ばく量の分布は 0.0005~32.80 Gv、平均 0.56 Gv (SD 1.18)、中央値 0.23 16Gy であった。毎年の甲状腺スクリーニングによる甲状腺がん(組織病理検査)罹患を追 17跡したところ、初回スクリーニングから3年目までに甲状腺がん87例(乳頭がん86例、 18濾胞がん1例)が確認された。Gy 当たりの EOR は 2.15 (5 Gy 未満) 及び 4.92 (1 Gy) 19未満)であった。被ばく時の年齢が低いほどリスクが高かった。また、450 mGy 以上に 20おいて、統計学的に有意な甲状腺がんリスクの増加がみられた(Zablotska et al. 2011)。 2122

- ウクライナのチェルノブイリ原子力発電所事故被ばく者(当時18歳以下の男女)を対 23象に、約10年後に開始されたスクリーニング参加者13.243名(参加率約4割)におけ 24る甲状腺がんの甲状腺吸収線量(Gy)当たりの ERR 及び EAR を算出した。初回スクリ 25ーニングで甲状腺がんを除外した。リスク要因はミルクを主とする ¹³¹ による内部被ば 26くであり、曝露評価は測定及び放射生態学的モデルに食事調査などによる補正を加えて 27いる。被ばく量の分布はほとんどが0~5Gyの範囲であった。2007年までに2回目か 2829ら4回目までの甲状腺スクリーニングによる甲状腺がん(組織病理検査)罹患を追跡し た。甲状腺がん65例(乳頭がん61例、濾胞がん3例、甲状腺髄様がん1例)確認され 30 た。線量とリスクは相関し、ERR は 1.91 (CI: 0.43-6.34)、EAR は 2.21/10000 人年 31/Gy (CI: 0.04-5.78) であった (Brenner et al. 2011)。 32
- 33

34 (2) 小児白血病

35 フィンランドにおける小児白血病発生率に対するチェルノブイリ原子力発電所事故の
 36 フォールアウトの影響についての全国規模のコホート研究が行われた。測定機器をもって
 37 全国 19,000 km を移動し、455 のフィンランド自治体について外部被ばく線量が測定さ
 38 れた。自治体に固有の値は、家屋による遮蔽や核実験のフォールアウトを考慮して補正さ
 39 れた。内部被ばくに関しては、無作為に抽出した 1976~1992 年に 0~14 歳の小児 81 例

の全身が測定された。測定結果から、チェルノブイリ原子力発電所事故後2年間の平均実
 効線量が算出され、小児白血病データはフィンランドがん登録から収集し、小児がんを治

- 3 療している病院を通して確認された。
- 4 事故後最初の2年間の平均実効線量は全国で410μSvであり、最高線量群は970μSv
 5 であった。全フィンランドにおいて、小児白血病発生率は1976~1992年で上昇していな
- 6 かった。1989~1992 年の ERR は、ゼロと有意な相違は認められなかった(7% /mSv、
- 7 95%CI: -27-41%)。フィンランドにおける影響の大きさは、小児 100 万人当たり年間で
 8 例未満の超過であった(Auvien et al. 1994)。
- 9

チェルノブイリ原子力発電所事故後の小児白血病の増加が、スコットランド、ギリシャ、 10 ドイツ、ベラルーシ及びウェールズとスコットランドを合わせた地域の異なる五つの国か 11 ら報告された。胎児の累積吸収線量は、従来法で評価して曝露時期及び非曝露時期を合わ 12せた平均線量がイギリスの0.02 mSvから、ドイツ0.06 mSv、ギリシャ0.2 mSv、ベラル 13ーシで最も高く2mSvであった。ギリシャの研究で定義されたコホートに基づいて選ばれ 14たイギリスの小児白血病データは、イギリス小児がん研究グループによって提供され、イ 15ギリス、ギリシャ及びドイツの1980~1990年生まれを合わせた乳幼児集団15,466,845人 16における白血病の調査が行われた。1980年1月1日~1985年12月31日及び1988年1月1日~ 171990年12月31日生まれと比べて、被ばくがピークであったとされた期間の1986年7月1日 18~1987年12月31日生まれでは、統計学的に有意なERR=1.43(95%CI:1.13-1.80(両側 19 検定); p=0.0025)を示している。国ごとの過剰リスクは従来法で算出された線量に対 20して単調増加せず、二相性の関係で、低線量では急激に増加し、高線量では下降している 2122 $(Busby 2009)_{\circ}$

23

24 ウクライナにおいて、チェルノブイリ原子力発電所事故当時に 0~20 歳であった居住
 25 者を対象とした放射線誘発性急性白血病の症例研究が行われた。骨髄等価線量 2 mSv 以
 26 下の線量を被ばくした症例に比べて、10 mSv かそれ以上の線量を被ばくした症例で、リ
 27 スク上昇が示唆されている(RR=2.5、95% CI: 1.1-5.4)(Noshchenko et al. 2002)。

また、1987~1997年に、ウクライナで最も放射能汚染されている地域(Rivno、 28Zhytomyr、Chernihiv 及び Cherkasy regions)において、チェルノブイリ原子力発電 29所事故当時 0~5 歳であった居住者を対象とした放射線誘発急性白血病リスクを推定す 30 るための症例対照研究が行われた。1987年1月1日~1997年12月31日に白血病と診 31断された246 例を対象とし、コントロール群492 例と比較された。事故から診断日まで 32の累積放射線被ばく量を各症例及び対応するコントロールごとに評価し、統計解析のた 33 めに四つの線量群(0~2.9(平均0.6)、3~9.9(平均5.7)、10~99.9(平均29.5)及び 34100~313.3 (平均 146.2) mGy) に分けられた。二つの主要な曝露源であるガンマ線の 35外部被ばくと放射性同位元素の食品混入のみから線量を算定しているため、被ばく量を 36 若干過小評価している可能性がある。また、聞き取りによって過去の曝露量を算定する 37際に症例対照研究に特有の思い出しバイアス(recall bias)は避けられない。ただし、バ 38 イアスを最小化すべく客観的な方法を用いたと著者らは述べている。また、一部のサン 39

プルでは、他の方法(Thermo-Luminescent dosimeters 及び whole body counter)を併 1 用して妥当性を確認しており、推定式についてもモンテカルロ法で検証したと著者らは $\mathbf{2}$ 述べている。線量に対して線形性を仮定して求めた白血病リスクは、10~99.9 mGy の 3 放射線被ばく線量の被験者で有意に上昇した(RR=2.1 (95%CI: 1.2-3.7, p=0.02)) 4 (Noshchenko et al. 2010)。しかし、この被ばく量カテゴリーのみ範囲が広く、対数値 $\mathbf{5}$ で等間隔に群分けすると100mGy未満のリスクは有意ではなくなると考えられる。また 6 データの統計処理において瑕疵が認められる。以上より、0~5歳児では100 mGy 未満 7の被ばく量でも白血病が増加することが示唆されるが、この論文からその影響をもたら 8 す被ばく線量の範囲を特定することはできない。 9

10

ベラルーシ、ロシア及びウクライナの汚染地域において、チェルノブイリ原子力発電所 11 事故当時に子宮内又は 6 歳未満であった小児と急性白血病との関連についての症例対象 12研究が行われた。推定骨髄線量は、症例群全体(421人)で平均10.8 mGy(中央値0.93 13mGy、範囲 0~390.58 mGy)、対照群全体(835人)で平均 6.3 mGy(中央値 0.65 mGy、 14範囲 0~265.33 mGy) であった。ベースラインカテゴリー(OR 1) として 1.0 mGy 未満 15を用いると、急性白血病の OR は、1.0~4.999 mGy において、ベラルーシで 1.28(95%) 16CI:0.60-2.70)、ロシアで1.00(95%CI:0.28-3.50)、ウクライナで1.49(95%CI:0.92-2.43)、 173か国合わせると 1.46 (95% CI: 0.998-2.12) であった。5.0 mGy 以上において、ベラ 18ルーシで 1.58 (95%CI: 0.74-3.36)、ロシアで 6.00 (95%CI: 0.45-79.75)、ウクライナ 19で 3.50(95%CI : 1.995-6.15)、3 か国合わせると 2.60(95%CI : 1.70-3.96)であった。 20OR の対数線形モデルに基づくと、白血病リスクは線量増加に伴って有意に増加した。こ 21の関連性はウクライナが最も明白で(ERR/Gy 78.8(95%CI:22.1-213、片側p 値=0.005))、 22ベラルーシで明らか(ERR/Gy 4.09 (95%CI: not estimable 37.7、片側 p 値=0.33)) で 23あったが、ロシアではみられなかった(ERR/Gy -4.94(95%CI: not estimable、片側 p $\mathbf{24}$ 値=0.57))。3か国を合わせて推定された ERR/Gy は 32.4 (95%CI: 8.78-84.0、片側 p 25値=0.0030)であった。 26

27 著者らは、これらの知見は極めて低線量の慢性的な被ばくが急性被ばくと同程度かある
28 いはそれ以上に白血病リスクを増加させる可能性を示しているとしているが、統計学的に
29 有意な線量反応関係は、ウクライナにおけるリスクの過剰推定による可能性も示唆してい
30 る。したがって、本研究はチェルノブイリ原子力発電所事故による放射線被ばくの結果と
31 しての小児白血病リスク増加の有力な証拠を提供しないとされている(Davis et al.
32 2006)。

33

34 旧ソ連以外で、チェルノブイリ原子力発電所事故による汚染が最も高いのは、ギリシ
 35 ャ、オーストリア及び北欧諸国である。1980年1月1日以降ギリシャ全土で小児白血病
 36 と診断された症例はすべて記録されている。事故により電離放射線に子宮内被ばくした
 37 小児において、白血病の発生率は、非被ばく小児の2.6倍であり(95%CI:1.4-5.1, p=
 38 0.003)、放射性フォールアウト高汚染地域在住の母親から生まれた小児は、小児白血病
 39 リスクがより高かった。12~47か月の小児において、白血病発生率に有意な差は認めら

れなかった。どの被験者群においても、妊娠以前の放射線被ばくが白血病リスクに影響
 を与えることは実証されなかった(Petridou et al. 1996)。

3

4 (3) その他

6研究所が協同して、3~300 mGy の8段階の線量で急性被ばくしたヒトリンパ球にお
 ける染色体異常の頻度を定量した。20 mGy 以上で線形の線量反応関係がみられ、その勾
 配は 2.9×10⁻⁵ /細胞/mGy であったが、20 mGy 以下では、データが線形モデルを示すか
 閾値モデルを示すかという区別はできなかった(Lloyd and others 1992)。

9

de Vathaire ら(2010)は、ポリネシアで行われたフランスの核実験(1966~1974年) 10 による被ばくと甲状腺がん(1981~2003に診断されたほぼ全例に当たる 229 症例)リス 11 クの関連を調べる症例対照研究を実施した。被ばく線量は核実験後の外部被ばくと食事調 12査による¹³¹I、¹³⁷Csなどの内部被ばくの両方から推定された。15歳未満の甲状腺線量は 131.8 mGy 程度(0~39 mGy)であり、症例の5%、対照の3%で10 mGy 以上であった。 14教育レベル、身長、BMI、家族歴、妊娠回数で調整すると、1 mGy 群に比べ 20~39 mGy 15群でリスクが 5.7 (CI: 0.8-45、傾向 P 値: 0.04) であった。微小がんとサイズ不明がん 16を除くと11.6(1.0-132)とより強い関連がみられた。 17

18

19 5. 広島·長崎

Shimizu ら(1988)は、広島・長崎の原爆被ばく者固定集団の死亡率追跡調査の第 11 20報において、1950~1985年に発生したがん死亡に基づく死亡時年齢別のRR及びARに基 21づくデータを被ばく時年齢コホート別に示している。特定の被ばく時年齢コホート(被ば 22く時年齢10歳未満のコホートを除く)では、白血病以外の全がんの1GyでのRRは死亡 23時年齢間で差異を示さなかった。しかし、被ばく時年齢10歳未満のコホートで死亡時年齢 24が低いほど RR が高くなるという傾向は、統計学的に有意であった。AR は、白血病以外で 25はすべての被ばく時年齢コホートにおいて死亡時年齢とともに増加した。また、対照(0 Gy) 26群と比較した場合の推定 RR は、白血病で臓器吸収線量 0.2 Gy 以上で統計学的に有意に上 27昇したが、0.2 Gy 未満では統計学的有意差はなかった(Shimizu et al. 1988)。 28

29

原爆生存者の死亡データが Pierce ら(1996) によって報告された。追跡期間は 1950~ 30 1990年、解析されたコホートは86,572名の対象者からなり、そのうち60%が少なくとも 310.005 Sv と線量評価されている。1950~1990 年に、0.005 Sv 未満群で 3,086 件、0.005 Sv 32超過群で 4.741 件のがん死亡が認められた。1950~1990 年に約 420 件の超過がん死亡が 33 認められ、うち 85%が白血病によるものだったと推定されている。白血病以外のがん(固 34形がん)では、1950~1990年の超過死亡のうち約25%が最後の5年間に起こったもので 35あり、小児被ばく者ではこの値はほぼ 50%であった。白血病では、1950~1990 年の超過 36 死亡のうち最後の5年間に起こったのは約3%のみであった。白血病の超過死亡の大部分 37が被ばく後最初の15年間で起こっているのに対し、固形がんの過剰リスクパターンは、明 38らかに自然の年齢特異的がんリスクが生涯にわたって上昇しているようにみえた。30歳で 39

被ばくした対象者における固形がんの Sv 当たりの過剰生涯リスクは、男性及び女性でそ 1 れぞれ 0.10 及び 0.14 と推定された。50 歳で被ばくした対象者においてはこれらの約3分 $\mathbf{2}$ の1であった。10歳で被ばくした対象者における生涯リスクの予測はより不確実であった。 3 妥当な仮定条件下では、この群の推定値は 30 歳時被ばく群の値の 1.0~1.8 倍の範囲であ 4 った。10歳又は30歳で被ばくした対象者における1Sv当たりの白血病過剰生涯リスクは、 $\mathbf{5}$ 男性及び女性でそれぞれ約 0.015 及び 0.008 であった。50 歳で被ばくした対象者において 6 はこれらの約3分の2のリスクであった。固形がんの過剰リスクは約3Svまで線形であっ $\overline{7}$ たが、白血病においては、線量における明らかな非線形性により、0.1 Svのリスクは 1.0 Sv 8 の約 20 分の 1 と推定された。(Pierce et al. 1996)。 9

10

また、同じコホートでの1950~1997年の47年間の追跡調査においては、固形がんでは 11 9,335 名死亡し、非がん性疾患では 31,881 名死亡した。これらのうち、最近の7年で、固 12形がん患者の19%、非がん性患者の15%が死亡した。著者らは、固形がん死亡者の約440 13名(5%)及び非がん性死亡者の250名(0.8%)が放射線被ばくと関係していると評価し 14た。固形がんによる死亡の ERR は被ばく線量 0~125 mGy の範囲の線量に対して線量直 15線性があるようにみえた(被ばく線量 0~100 mSv では有意な相関が認められなかった)。 16放射線関連がんに対する過剰割合は本研究期間中増加しているが、新しい知見としては、 17相対リスクは到達年齢の増加とともに減少していること、以前には言及していなかった小 18児に対しては最も高くなることである。有益な代表値は、30歳で被ばくした人に対して、 19固形がんリスクは70歳でSv当たり47%も増加することであった。相対あるいは絶対過剰 20固形がんリスクともに都市間には有意差はなかった。非がん性死亡率への放射線効果の証 21拠は、過去30年の追跡調査期間中のリスクがSv当たり約14%上げられている状態が強い 22ままで残っていた。統計学的に有意な増加は、心臓病、脳卒中、消化器系の病気、呼吸器 23系疾患でみられた。非がん性データは、データにおける相当な不確かさのため、いくつか 24の非線形線量応答と一致していた。約0.5 Svより低い線量に対する放射線影響の直接的な 25データはなく、またこれを挟む領域で直線性を示すことを否定するデータもない。非がん 26性の年齢、被ばく時の年齢、あるいは性別による RR において統計的に有意な変動はない 27が、評価した影響はがんに対してみられたものと同程度であった(Preston et al. 2003)。 28

29

30 広島及び長崎の原爆投下時に子宮内にいた胎児 2,452 例、6 歳未満だった乳幼児 15,388
31 例の調査結果から、子宮内及び 6 歳未満の乳幼児期に原爆被ばくした生存者は、成人発症
32 の固形がんの発症リスクが線量と相関し、男女とも 200 mSv 以上で 50 mSv 未満と比較し
33 有意にリスクが上昇した。また、50 歳時 ERR は、子宮内被ばく群で 1.0 (95%CI: 0.2~
34 0.3)、乳幼児期被ばく群で 1.7 (95%CI: 1.1~2.5) であった (Preston et al. 2008)。

35

36 6. テチャ川流域

Kossenko (1996) は、テチャ川コホートにおいて、白血病及び固形がんで死亡者数が増
 加したと報告している。曝露群では、SMR が 100,000 人当たり 140 (95% CI: 131-150)
 であったのに比べ、追跡調査期間(1950~1982 年)における対照群では 100,000 人当た

り 105 (95% CI: 101-109) であった。曝露群における赤色骨髄への吸収線量は 0.176~
 1.64 Gy であった。がん死亡率の増加は、曝露群の子孫にはみられなかった(Kossenko
 1996)。

チチャ川コホートの約 50 年の追跡により、Krestinina ら (2007) は固形がんの胃線量
(最高 0.47 Gy、平均 0.04 Gy、中央値 0.01 Gy) による ERR/Gy を 1.0 (95%CI: 0.3-1.9、
p=0.04)、Ostroumova ら (2008) は女性の乳がんの ERR/Gy を 4.99 (95%CI: 0.8-12.76、
p=0.01)、Krestinina ら (2010) は RBM 線量(最高 2 Gy、平均 0.3 Gy、中央値 0.2 Gy)
による白血病の ERR/Gy を 4.9 (95%CI: 1.6-14) と推定している。(Krestinina et al. 2007、
2010、Ostroumova et al. 2008)。

10 11

12 7. その他のヒトにおけるがん研究

Sorahan and Roberts (1993) は症例対照研究を実施し、小児がんと小児の父親におけ 13る放射線職業被ばくの関連について調査した。1953~1981 年の Oxford Survey of 14Childhood Cancers のデータを使用した。合計 15,279 例の症例及び性別、誕生日及び居住 15地域をマッチさせた同数の対照例を対象とした。被ばくの推定については、職務記述書に 16基づいて完了させた。線量により not exposed (1 mSv 未満)、1~4 mSv、5~9 mSv 及び 1710 mSv 以上の群に分類した。放射性物質に被ばくしていた父親は、症例群で27 例、対照 18群で10例であった。収集した情報に基づくと、小児がん患者の父親67例と対照群の父親 1950 例が、受胎 6 か月以内に外部被ばくしていた。推定した外部放射線量と全小児がんの 20RR は 1 の近くであり、特定の種類のいずれのがんも統計学的に有意ではなかった。放射 21性物質に被ばくした可能性がある父親において、全小児がんの相対リスクは 2.87 (95% 22CI: 1.15-7.13)と統計学的に有意であったが、この値にはかなりの不確実性がある。平均 23生殖腺線量が 0.43 Sv である親の子どもにおいて、20 歳までにがんが発生したのは小児 2431,150 例中 43 例であり、対照集団においては、小児 41,066 例中 49 例であった。白血病 25は、親が被ばくしていた群の小児 31,150 例中 16 例で認められ、非被ばく対照集団におい 26ては、小児 41,066 例中 21 例で認められた(Yoshimoto et al. 1991)。 27

28

de Vathaire ら(2010)は、ポリネシアで行われたフランスの核実験(1966~1974年) 29による被ばくと甲状腺がん(1981~2003年に診断されたほぼ全例に当たる 229 症例)リ 30 スクとの関連を調べる症例対照研究を実施した。被ばく線量は核実験後の外部被ばくと食 31事調査による ¹³¹I、¹³⁷Cs などの内部被ばくの両方から推定された。15 歳未満の甲状腺吸 32収線量は 1.8 mGy 程度(0~39 mGy)であり、症例の 5%、対照の 3%で 10 mGy 以上で 33 あった。教育レベル、身長、BMI、家族歴、妊娠回数で調整すると、1 mGy 群に比べ 20 34~39 mGy 群でリスクが 5.7 (CI: 0.8-45、傾向 P 値: 0.04) であった。微小がんとサイズ 35不明がんを除くと11.6(1.0-132)とより強い関連がみられた。 36

37 38 8. その他

39 6 研究所が協同して、3~300 mGv の 8 段階の線量で急性被ばくしたヒトリンパ球にお

1 ける染色体異常の頻度を定量した。20 mGy 以上で線形の線量反応関係がみられ、その勾
 2 配は 2.9×10⁻⁵ /細胞/mGy であったが、20 mGy 以下では、データが線形モデルを示すか

3 閾値モデルを示すかという区別はできなかった(Lloyd et al. 1992)。

4 5

9. 国際機関等の見解

低線量及び乳幼児・胎児への放射線の影響に関する国際機関等の見解を表X-1に示す。

7 8

表X-1 低線量及び乳幼児・胎児への影響に関する国際機関等の見解

出典	見解
	<奇形に関するもの>
	○ 奇形は 50mGy 未満ではみられない。
米国産科婦人科学会	<白血病に関するもの>
1995	○ 胎齢 8~15 週での 10~20 mGy の胎児の被ばくは、自然発生率と比べて 1.5
	~2倍白血病のリスクを増加させる。子宮内で電離放射線にさらされると推定1
	人/2,000人の子どもが小児白血病を発症する。通常の比率の1人/3,000人より増
	加している。
	<白血病に関するもの>
DEID V 1000	英国とコネチカット州で、X線により胎内被ばく(5~50 mGyと推定)した双
DEIR V 1990	子と、被ばくなしの双子を比較した相対リスクは 2.0 と 1.6 (ただし 90%CI:
	0.4-6.8) であった。
	<胎児の致死的影響に関するもの>
ICRP Publication 60	○ 動物実験においては、胚の着床前あるいは着床直後は、比較的低線量(100 mGy
	位)の被ばくで致死的影響が誘発され得る。
	<小児固形がんに関するもの>
	○ 出生前のX線と小児がんに関して行われた多くの疫学調査の最近における解
	析は、約10mGyの胎児線量での相対リスクが1.4(自然発生リスクを超える40%
	の増加)という値で一致している。しかし、最良の方法による調査は、リスクが
	これよりもおそらく低いことを示唆している。小児がんの自然発生率は非常に低
	い(約0.2~0.3%)ので、子宮内被ばく後における個人レベルでの小児がんの確
ICRP Publication 84	率はきわめて小さいだろう(約0.3~0.4%)。
2000	○ 子宮内被ばく後、0~15 歳までのがんのリスクに関する最近の AR 推定値は、
	10 mGy 当たり 0.06% (1,700 人当たり 1 例)。
	○ 受胎産物(胎児・胎盤等)の吸収線量(バックグラウンドを超えた分)と子ど
	もががんにならない確率(年齢 0~19 歳)は、以下のとおり。
	受胎産物の吸収線量(mGy):子どもががんにならない確率(%)
	0 mGy: 99.7%, 1.0 mGy: 99.7%, 5 mGy: 99.7%, 10 mGy: 99.6%, 50 mGy:
	99.4%、100 mGy : 99.1%

ICRP Publication 94 2007	<甲状腺がんに関するもの> 米国西部で核兵器実験のフォールアウトにさらされ、甲状腺に推定460 mGy を被ばくした小児の予後調査では、甲状腺がんのERRは全体として0.7%/mGy
	であった。 甲状腺がんと結節の両方に関する線量反応の傾向は有意ではなかった。
ICRP Publication 99	<白血病に関するもの>
2005	 ○ X 線の骨盤計測によって、胎児期に被ばく(数十 mGy)した 15 歳までの子ど もの調査では、相対リスクは 1.4 であった。
	 <h </h に関するもの>
	○ 動物実験のデータから、100 mGy を下回る線量では、致死的影響は非常に稀
	であろう。
	<奇形に関するもの>
	○ 奇形の誘発に関して、胎齢に依存した子宮内の放射線感受性パターンが存在
	し、主要器官形成期に最大の感受性が現れる。奇形の誘発に関しては100 mGy
ICRP Publication 103	前後に真の閾値が存在すると判断される。
2007	<中枢神経系への影響に関するもの>
	 ○ 原爆被ばく者のデータから、出生前の最も敏感な時期(受胎後 8~15 週)に被
	ばくした場合の重篤な精神遅滞の閾値は最低 300mGy。
	○ 1 Gy 当たり約 25 ポイントと推定された知能指数(IQ)の低下は、閾値がな
	い線量反応の可能性を排除できない。しかし、真の閾値が存在しないとしても、
	100m Gyを下回る子宮内線量後のIQのいかなる影響も実際的意義はないであろ
	う。 ノ大形に開ナスチャン
	< 可形に関するもの// ○ 哭官形成期(受精後 2~15 週)の中で 一般的に早期又け主要な誘道期に奇形。
	より低いようにみえる。
NCRP Report No.128	
1998	<染色体異常に関するもの>
	○ 胎児期においては、細胞核の損傷、染色体損傷は、急性の細胞死、染色体異常
	又は異数性の原因となる。そのような細胞遺伝学的作用は 50~250 mGy の範囲
	で直線的に増加する。

	<胎内被ばく一般に関するもの>
	○ 中国の医療機関において X 線の出生前照射を受けた者 1,026 人(調査時 4~7
	歳。推定線量 12~43 mGy) について、照射グループと対照グループとの間には、
	身体的発達の測定においては、有意差はみられなかった。
	<中枢神経系への影響に関するもの>
	○ 原爆被ばく者のデータによると、受胎 8~15 週における被ばくでは、1 Sv
	当たり約 30IQ の低下を招く。1 Sv の線量では、約 40%に重度精神遅滞を招く。
	○ 重度精神遅滞の最大のリスクは排卵後 8~15 週の被ばくで発生する。この時期
	に1 Gy以上被ばくした胎児の 75%が精神遅滞である。
	○ より低い脆弱性を示す期間は、排卵後 16~25 週の間に存在する。しかし、500
	mGy 以下の線量と推定された者には発生率の上昇はみられなかった。
	○8週以前と25週以後では、顕著なリスクの増加はみられなかった。排卵後の
	最初の2か月間に影響がないように見えるのは、実際そうなのか、発生段階で被
	ばくした胚は生存することができないという事実の反映なのかは不明である。
	○ 原爆被ばく者に関する研究では、小頭(平均より標準偏差の2倍以上小さいも
	の※)の発生率は、第1三か月期においては線量増加とともに疑いなく上昇し、
	第2三か月期でも上昇しているがその程度は小さく、第3三か月期においては上
	昇はみられない。
UNSCEAR 1993	○ 小頭の発生について、排卵後 0~15 週に 1 次~ 2 次モデルを当てはめると、直
	線的な線量反応関係が示唆された。閾値の推定値はゼロ又はそれに近い。
	○ 広島・長崎両都市において、排卵後第1三か月期に子宮内被ばくした子ども達
	の小頭の出現数・割合については、子宮吸収線量が 10 mGy 未満の場合 310 人中
	7人(2.3%)、10~99 mGy の場合 66 人中 3人(4.6%)、100~499 mGy の場
	合 67 人中 13 人(19.4%)、500~999 mGy の場合 10 人中 6 人、1,000mGy 以
	上の場合 6 人中 5 人であった。
	※ここでいう「小頭」は、いわゆる「小頭症」(奇形をしばしば伴う臨床的に
	認知できるような頭の小ささで、一般に平均より標準偏差の3倍以上の小ささに
	対して適用されるもの)より範囲が広い概念である。
	○ 排卵後 8~15 週に被ばくしたグループでは、発作(ここでは「発作」、「てん
	かん」又は「けいれん」と臨床記録されているすべてを含む)の発生は100 mGy
	以上の線量を受けた者の間で高く、被ばくレベルとともに増加した。重度精神遅
	滞の 22 例を除くと、発作の増加は、非誘発性発作についてわずかに有意であっ
	た。それ以降の発達段階の被ばくでは、発作に増加はなかった。
	○ 排卵後 8~15 週の最も危険な時期での発作の閾値の中心値は 110~150 mGy
	の間であり、非誘発性の発作に対する閾値は、もっと低く推定されている(40
	~80 mGy)。しかしながら、すべての例において、閾値の 95%CI の下限値は
	0を含んでおり、閾値に関して説得力のある証拠はない。
	○ チェルノブイリ原子力発電所事故後の出生児 (多くとも数 10 mGy の被ばくと

	推定される出生児)で大脳形成の決定期間に照射を受けた者のうち14.5%に、軽
	度の精神運動障害を伴う髄鞘形成における遅延がみられた(1988年前半の出生
	児では 7.5%)。頭蓋内圧の増加と関連した徴候が 18~35%の症例に見出され、
	2~3歳児ではもっと頻度が高かった。
	○ チェルノブイリ原子力発電所事故後の出生児 342 人中 14 人に発作の発症が認
	められた。そのうち7人は、原因が他にあると認められ、他の7人は放射線被ば
	く以外のはっきりした原因がなかった。発作は、16~25週に照射されたグルー
	プ(8.2%)よりも、8~15週に照射されたグループ(13.4%)において、より顕
	著に認められた。対照グループでは、発作の頻度は 3.0~3.2%であった。
	○ チェルノブイリ原子力発電所事故後の出生児に関し、調査対象グループの中
	に、小頭症、ダウン症候群又は重度の中枢神経系障害は、認められなかった。
	<胎内被ばく一般に関するもの>
UNSCEAR 2000	○ チェルノブイリ原子力発電所事故当時、ベラルーシにおいて子宮内で 8~21
	mSvの線量を被ばくした子ども達に、出産時の欠陥と汚染地域での居住の関係
	はみられなかった。
	<白血病に関するもの>
	○ チェルノブイリ原子力発電所事故の被ばく者の中で、放射線に関係した白血病
	のリスクの増加は、事故処理作業者でも、汚染地域の住民でもみられていない。
	○ チェルノブイリ原子力発電所事故による平均被ばく線量は、24万人の事故処
	理作業者で約100mSv、11万6千人の避難者で30mSv、汚染した地域に住み
	続けている人達で事故後最初の10日間に受けた線量として10mSvとなる。線
	量の最大値は一桁高いと予測される。
WHO 2006	<奇形に関するもの>
	○ 催奇形性のリスクは、胎児被ばく量が低 LET 放射線 100 mGy 付近を閾値と
	する。主要器官形成期(受精後 3~7 週)が最重要である。
	<中枢神経系への影響に関するもの>
	○ 最も感受性の高い時期(受精後 8-15 週齢)の被ばく後の IQ 低下のリスクは、
	減少係数を 30 IQ ポイント/Gy(急性被ばく)とすると最もよく説明できる。
	○ 重度の精神発達障害の閾値は約 300 mGy である。
	<生殖機能への影響に関するもの>
	○ チェルノブイリ原子力発電所事故からの成人の吸収線量は、急性放射線障害回
	復者以外では、生殖能力に影響があるとは考えにくい。

2

1 **<参照>**

- Andersson M et al., Cancer risk among staff at two radiotherapy departments in Denmark., Br J Radiol. 1991 May;64(761):455-60.
- Astakhova LN et al., Chernobyl-related thyroid cancer in children of Belarus: a case-control study., Radiat Res. 1998 Sep;150(3):349-56.
- Auvinen A et al., Fallout from Chernobyl and incidence of childhood leukaemia in Finland, 1976-92., BMJ. 1994 July 16; 309(6948): 151–154.
- BEIR VII, Health Risks From Exposure To Low Levels Of IONIZING RADIATION, 2006
- Berrington A et al., 100 years of observation on British radiologists: mortality from cancer and other causes 1897-1997., Br J Radiol. 2001 Jun;74(882):507-19.
- Brenner AV et al., I-131 dose response for incident thyroid cancers in ukraine related to the chornobyl accident., Environ Health Perspect. 2011 Jul;119(7):933-9.
- Busby CC., Very low dose fetal exposure to Chernobyl contamination resulted in increases in infant leukemia in Europe and raises questions about current radiation risk models., Int J Environ Res Public Health. 2009 Dec;6(12):3105-14.
- Cardis E et al., Risk of thyroid cancer after exposure to 1311 in childhood., J Natl Cancer Inst. 2005 May 18;97(10):724-32.
- de Vathaire F et al., Thyroid cancer following nuclear tests in French Polynesia., Br J Cancer. 2010 Sep 28;103(7):1115-21.
- Doll R, Wakeford R., Risk of childhood cancer from fetal irradiation., Br J Radiol. 1997 Feb;70:130-9.
- Hall P et al., Cancer mortality after iodine-131 therapy for hyperthyroidism., Int J Cancer. 1992 Apr 1;50(6):886-90.
- Hall P et al., Thyroid nodularity after diagnostic administration of iodine-131., Radiat Res. 1996 Dec;146(6):673-82.
- Holm LE et al., Cancer Risk After Iodine-131 Therapy for Hyperthyroidism, J Natl Cancer Inst (1991) 83 (15): 1072-1077.

- ICRP 1998, Radiation Dose to Patients from Radiopharmaceuticals (Addendum to ICRP Publication 53), Ann. ICRP 28 (3), 1998
- International Consortium for Research on the Health Effects of Radiation Writing Committee and Study Team, Davis S et al., Childhood leukaemia in Belarus, Russia, and Ukraine following the Chernobyl power station accident: results from an international collaborative population-based case-control study., Int J Epidemiol. 2006 Apr;35(2):386-96.
- Kossenko MM., Cancer mortality among Techa River residents and their offspring., Health Phys. 1996 Jul;71(1):77-82.
- Krestinina L et al., Leukemia incidence among people exposed to chronic radiation from the contaminated Techa River, 1953-2005. Radiat Environ Biophys. 2010 May;49(2):195-201.
- Krestinina LY et al., Solid cancer incidence and low-dose-rate radiation exposures in the Techa River cohort: 1956 2002., Int J Epidemiol. 2007 Oct;36(5):1038-46.
- Krestinina LY,Davis FG,Epifanova SB,Degteva MO, Preston DL,et al. 2010.Leukemia incidence among people exposed to chronic radiation from the contaminated Techa River, 1953–2005.Radiat Environ Biophys ;49:195–201
- Krestinina LY,Preston DL,Davis FG,Epifanova SB,Ostroumova E,Ron E, et al. 2007.Solid cancer incidence and low-dose-rate radiation exposures in the Techa River cohort: 1956–2002.International Journal of Epidemiology 36:1038–1046
- Langner I et al., Cosmic radiation and cancer mortality among airline pilots: results from a European cohort study (ESCAPE)., Radiat Environ Biophys. 2004 Feb;42(4):247-56.
- Lloyd DC et al., Chromosomal aberrations in human lymphocytes induced in vitro by very low doses of X-rays., Int J Radiat Biol. 1992 Mar;61(3):335-43.
- Nair RR et al., Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study., Health Phys. 2009 Jan;96(1):55-66.
- Noshchenko AG et al., Radiation-induced leukemia among children aged 0-5 years at the time of the Chernobyl accident., Int J Cancer. 2010 Jul 15;127(2):412-26.
- Noshchenko AG et al., Radiation-induced leukemia risk among those aged 0-20 at the time of the Chernobyl accident: a case-control study in the Ukraine., Int J Cancer. 2002 Jun 1;99(4):609-18.
- Ostroumova E et al., Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956-2004., Br J Cancer. 2008 Dec 2;99(11):1940-5.
- Petridou E et al., Infant leukaemia after in utero exposure to radiation from Chernobyl., Nature. 1996 Jul 25;382(6589):352-3.
- Pierce DA et al., Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950-1990., Radiat Res. 1996 Jul;146(1):1-27.
- Preston DL et al., Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst. 2008 Mar 19;100(6):428-36.
- Preston DL et al., Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997., Radiat Res. 2003 Oct;160(4):381-407.
- Shimizu Y et al., Life Span Study Report 11 Part 2. Cancer Mortality In The Years 1950-1985 Based on The Recently Revised Doses(DS86)., 1988
- Sorahan T and Roberts PJ., Childhood cancer and paternal exposure to ionizing radiation: preliminary findings from the Oxford Survey of Childhood Cancers., Am J Ind Med. 1993 Feb;23(2):343-54.
- Tao Z et al., Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995., J Radiat Res (Tokyo). 2000 Oct;41 Suppl:31-41.
- Tondel M et al., Risk of malignancies in relation to terrestrial gamma radiation in a Swedish population cohort., Sci Total Environ. 2011 Jan 1;409(3):471-7.
- Wang ZY et al., Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China., J Natl Cancer Inst. 1990 Mar 21;82(6):478-85.
- Yoshimoto Y et al., J Radiat Res (Tokyo). 1991 Dec;32(4):327-51. Mortality among the offspring (F1) of atomic bomb survivors, 1946-85.
- Zablotska LB et al., Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident., Br J Cancer. 2011 Jan 4;104(1):181-7.

1 XII. 国際機関の評価等

2 今回、食品健康影響評価を要請された各核種に関し、国際機関等における体系的なリ
3 スク評価結果は見当たらなかった。放射線緊急時における公衆の防護のための介入(リス
4 ク管理)についての検討はいくつか行われているが、それらは、食品中の放射性物質が健
5 康に悪影響を及ぼすか否かを示す濃度基準ではなく、緊急事態における介入レベルとして
6 飲食物摂取制限措置を導入する際の目安を検討したものであった。

8 1. ICRP

7

9 ICRP は、1984 年に ICRP publication 40 (1984a) において、事故の際にとられる対
 10 策に関する上限値と下限値の考え方を提案した。上限値は、対策が常に必要とされる線量
 11 レベルであり、下限値は、これより低いレベルでは対策が正当とはされない線量レベルで
 12 ある。飲食物摂取の制限に関する介入レベルについては、事故後最初の1年間における想
 13 定線量当量として、上限レベル 50 mSv、下限レベル 5 mSv とされた。

14しかし、1992 年にこれを改訂し、ICRP publication 63 (1992) において、任意の1種 類の食料品に対して、ほとんどいつでも正当化される介入レベルは、1年のうちに回避さ 15れる実効線量で 10 mSv であるとされ、代替食品の供給が容易に得られない状況、あるい 16は住民集団が重大な混乱に陥りそうな状況では、1年につき 10 mSv よりもはるかに高い 17予測線量レベルでのみ介入は正当化されるかもしれないとされた。なお、種々の食品に対 18する最適化された介入レベルは、単位摂取量当たりの線量が小さい放射性核種(例えば大 19部分のβ及びγ放出体)については、1,000~10,000 Bq/kg の範囲に、単位摂取当たりの 20線量値が高い放射性核種(例えばα放出体)に対しては、10~100 Bq/kg の範囲にあると 21予想されるとしている。 22

23 また、ICRP publication 63 (1992) では、コーデックス委員会 (CAC) の指針値との
 24 関係についても言及しており、「国際取引上容認できる食料品について局地的な制限を設け
 25 ることは論理的でないから、これら CAC の指針値は介入レベルではなく、むしろ非介入
 26 レベルである」としている。

28 2. WHO

27

WHO は、1988 年に、ICRP publication 40 (1984a) に基づき、食品の流通の規制に
 関する介入のレベルとして実効線量で 5 mSv が適当としている。この値は、事故が起こ
 った場所に近い地域に適用することを意図しているが、遠く離れた地域でも適用され得る
 としている。

33 また、実効線量 5 mSv を介入レベルとして設定した場合、ヨウ素については、甲状腺
 34 のみが被ばくしたとすると甲状腺等価線量は 167 mSv となるが、この値は高すぎると考
 35 えられたことから、甲状腺等価線量として 50 mSv を用いることとされている。

36 チェルノブイリ原子力発電所の事故後、放射性物質の平均レベルは、彼らが生活してい
 37 た地域における放射性物質の総保管量の測定から予測されたものより大幅に低かった。こ
 38 れは、食物網の複雑さによるものであり、多くの人は広いエリアから食材を入手し、消費
 39 された食物の一部だけが彼らが生活する地域の放射能堆積レベルと一致して汚染されてい

1 たからである。もし 5 mSv線量の介入水準が適用されると、個々の平均線量は 5 mSvよ 2 りかなり低くなる可能性があると結論できるとしている。

3 また、WHO は、健康リスクに関して、さらに考慮しなければならない点として、以下4 のように述べている。

ICRP によると、受精後 8~15 週の期間で胎児が曝露すると、0.4/Sv の危険度で深刻 $\mathbf{5}$ な精神遅滞が起きるとされ(ICRP publication 49 (1986))、もし一定の曝露が1年以上 6 継続すると、5 mSv は胎児の段階で曝露した子供の 3×10⁻⁴の割合で深刻な精神遅滞の危 7険を招きうる。しかしながら、ICRP は、この曝露影響に対する有用な閾値がおそらく存 8 在するとしているとしており(ICRP 1987)、もしその閾値が存在するならばその値は数百 9 mSv より限りなく高いと考えられるため、更なる警戒は必要ではない。 閾値が存在するか 10否かが確認されるまでは、各国内当局は、この精神遅滞を受精後 8~15 週の発育段階の 11 胎児における critical group とし、確率論的な影響の可能性としてみなすことが望まれる。 12

13

14 **3. IAEA**

IAEA では、1994 年に原子力及び放射線緊急時の介入基準(IAEA Safety Series
 No.109)を示しており、一時的に退避することが必要な曝露量として 100 mSv がより現
 実的と考えている国がいくつかあり、ICRP においては、退避のための線量として 500
 mSv(皮膚への線量としては 5,000 mSv)であることが正当であると推奨しているとされ
 ている。

20 また、食品の国際間取引において放射線事故が発生した時の食品基準について、放射性
 21 セシウム (¹³⁴Cs、¹³⁷Cs) は 1,000 Bq/kg、放射性ヨウ素 (¹³¹I) は一般食品で 1,000 Bq/kg、
 22 牛乳、乳児用食品及び飲料水で 100 Bq/kg としている。

23 放射線事故による一時的な転居の開始には 30 mSv/月、元の住居に戻るには 10 mSv/
 24 月が基準となっている。しかし、このレベルを 1~2 年経っても下回らない時には、恒久
 25 的な転居を考えるべきであり、また、生涯曝露量が 1 Sv を超える時も同様であるとして
 26 いる。

27 このような介入行為を行うに当たっては、食品及び飲料水による摂取以外のすべての経28 路からの放射線の曝露量を基に考えるべきであるとしている。

29 また、1996年には、基本安全基準(電離放射線に対する防護及び放射線源の安全に関
 30 する国際安全基準)において、食品不足等がないのであれば、食品の回収等に関して Codex
 31 の基準に準拠したものを示している(IAEA Safety Series No.115)。

32

33 4. CODEX

34 食品及び飼料中の汚染物質及び毒素のコーデックス一般規
35 格(CODEX/STAN 193-1995)において、放射性核種に関するガイドライン値が示されて
36 おり、原子力発電所や放射性物質に関する緊急事態発生後に汚染された食品のうち、食用
37 に供され、かつ国際的に流通するものに含まれる放射性核種に適用される。ガイドライン
38 値は、食品からの曝露量が1 mSv/年(特段の措置をとる必要がないと考えられている曝
39 露レベル: ICRP publication 82 1999)を超えることがないように、乳幼児用とそれ以外で

1 設定されている。

2 また、放射能の量がガイドラインレベルの輸入食品を一年間食べ続けたときに、年間の
 3 食物摂取量や輸入食品の割合等を考慮して一年間の曝露量を推定している。その結果、成
 4 人、乳幼児とも 1 mSv/年を超えることはないとしている。

 $\mathbf{5}$

1 XIII. 食品健康影響評価

 $\mathbf{2}$

6

3 本ワーキンググループは、食品に含まれる放射性物質に関する食品健康影響評価につい
 4 て、参照文献等を用いて調査審議を行った。以下にその結果を取りまとめる。なお、線量
 5 等の単位については、原著論文にある記載を用いて示している。

7 1. 個別核種に関する検討

8 個別の核種としては、厚生労働省により暫定規制値が定められている放射性ヨウ素、放
 9 射性セシウム、ウラン、並びにプルトニウム及び超ウラン元素のアルファ核種(アメリシ
 10 ウム、キュリウム)、さらに放射性ストロンチウムについて検討を行ったが、検討を行っ
 11 た各核種について、経口摂取による健康影響に関するデータは乏しかった。

12 放射性ヨウ素については、甲状腺への影響が大きく、甲状腺がんが懸念される物質であ
り、甲状腺等価線量として 100 mSv を超える線量においては、統計学的に有意な健康への
影響が示された報告があることは確認できたが、放射性ヨウ素として個別に評価結果を示
15 すに足る情報は得られなかった。

- 16 放射性セシウムについては、食品中からの放射性物質の検出状況等を勘案すると、現状
 17 では、食品からの放射性物質の摂取に関して最も重要な核種と考えられた。しかしながら、
 18 個別に評価結果を示すに足る情報は得られなかった。
- 19 放射線による影響よりも化学物質としての毒性がより鋭敏に出ると判断されたウランに20 ついては、耐容一日摂取量(TDI)を設定することとした。
- 21 プルトニウム、アメリシウム及びキュリウムについては、特に情報が少なく、また、放
 22 射性ストロンチウムについても個別に評価結果を示すに足る情報は得られず、これら4種
 23 の核種について個別に評価結果は示せないものと判断した。
- 24
- 25
- 26

27 以上のことを踏まえ、低線量放射線の健康影響に関する検討を行い、その結果をとりま
28 とめた。ただし、ウランについては TDI を設定した。以下に、その評価について示す。

29 30

31 2. 低線量放射線による健康影響について

32 低線量の放射性物質の健康影響に関する検討においては、動物実験あるいは in vitro 実験
 33 の知見よりもヒトにおける知見を優先することとした。低線量における影響は、主に発が
 34 ん性として現れる。そのため、疫学のデータを重視した。

35 ヒトにおける知見(疫学データ等)については、核種を問わず、曝露された線量につい
 36 ての情報の信頼度が高いもの、及び調査・研究手法が適切なものを選択して食品健康影響
 37 評価を行うこととした。

38 現時点における科学的水準からは、低線量の放射線に関する閾値の有無について科学39 的・確定的に言及することはできなかった。また、ある疫学データに基づき直線仮説の適

用を検討している論文もあるが、モデルの検証は難しく、そのデータだけに依存すること 1 はできない。国際機関において、比較的高線量域で得られたデータを一定のモデルにより $\mathbf{2}$ 低線量域に外挿することに関して、閾値がない直線関係であるとの考え方に基づいてリス 3 ク管理上の数値が示されているが、もとより、仮説から得られた結果の適用については慎 4 重であるべきである。今回の食品健康影響評価においては、実際のヒトへの影響を重視し、 $\mathbf{5}$ 根拠の明確な疫学データで言及できる範囲で結論を取りまとめることとした。なお、ヒト 6 は常に自然界からの放射線(日本平均では約1.5 mSv/年(放射線医学総合研究所2007)、 $\overline{7}$ 世界平均では約2.4 mSv/年(UNSCEAR 2008))や正常なヒト体内に存在する放射性物 8 質からの放射線など自然線源からの被ばくのみならず、医療被ばくなどの人工被ばくを受 9 けている。データの解釈に当たっては、これらの被ばくに加え、種々の要因による放射線 10 被ばく以外の健康上のリスクも存在していることを考慮して検討を進めることとした。 11 12

本評価の趣旨に照らせば、本来は、食品の摂取に伴う放射性物質による内部被ばくのみ 1314の健康影響に関する知見に基づいて評価を行うべきであるが、そのような知見は極めて少 なく、客観的な評価を科学的に進めるためには外部被ばくを含んだ疫学データをも用いて 15評価せざるを得なかった。また、参照した文献等において、曝露された線量についての情 16報が1年間当たりの年間線量で示されず累積線量を用いて取りまとめられていたものも多 17く存在し、また、多くの年間線量値は一定の仮定の下で累積線量から割り出されていたこ 18とから、根拠となり得る文献において疫学データを累積線量で取りまとめていた場合にあ 19っては、本ワーキンググループにおいてもそれを尊重することとし、累積線量によって健 20康への影響を検討することが妥当と判断した。なお、累積線量又は年間線量における食品 21の寄与率を科学的合理性をもって推定できるような文献は見当たらなかった。 22

23 根拠を明確に示せる科学的知見に基づき食品健康影響評価の結論を取りまとめる必要が
24 あるが、性別、年齢、社会経済的な状況及び喫煙等の生活習慣といった交絡因子あるいは
25 調査研究の方法論的な限界から来るバイアス等複雑な要因を排除しきれないことに加え、
26 用いられた疫学データが有する統計学的な制約から、一定水準以下の低線量の放射線曝露
27 による健康影響を確実に示すことができる知見は現時点において得られていない。現在の
28 科学的水準においてそれを検出することは事実上困難と考えられた。

29

30 疫学データには種々の制約が存在するが、そうした制約を十分認識した上で、本ワーキ
 31 ンググループにおいては、入手し得た文献について検討を重ね、研究デザインや対象集団
 32 の妥当性、統計学的有意差の有無、推定曝露量の適切性、交絡因子の影響、著者による不
 33 確実性の言及等の様々な観点から、本評価において参考にし得る文献か否かについて整理
 34 した(別添論文リスト参照)。

35 その結果、成人に関して、低線量での健康への影響がみられた、あるいは高線量での健
 36 康への影響がみられなかったと報告している大規模な疫学データに基づく次のような文献
 37 があった。

38

- 1 ①インドの高線量地域での累積吸収線量 500 mGy 強³において発がんリスクの増加がみら
- 2 れなかったことを報告している文献(Nair et al. 2009)
- 3 ②広島・長崎の被爆者における固形がんによる死亡の過剰相対リスクについて、被ばく線
 4 量0~125 mSv の群で線量反応関係においての有意な直線性が認められたが、被ばく線
 5 量0~100 mSv の群では有意な相関が認められなかったことを報告している文献

(Preston et al. 2003)

- 7 ③広島・長崎の被爆者における白血病による死亡の推定相対リスクについて、対照(0 Gy)
 8 群と比較した場合、臓器吸収線量 0.2 Gy 以上4で統計学的に有意に上昇したが、0.2 Gy
 9 未満では有意差はなかったことを報告している文献(Shimizu et al. 1988)
- 10

6

11 また、小児に関しては、線量の推定等に不明確な点のある文献ではあるが、チェルノブ
12 イリ原子力発電所事故時に 5 歳未満であった小児を対象として、白血病のリスクの増加を
13 報告している文献(Noshchenko et al. 2010)があった。また、甲状腺がんについては、
14 チェルノブイリ原子力発電所事故に関連して、被ばく時の年齢が低いほどリスクが高かっ
15 たことを報告している文献があった(Zablotska et al. 2011)。さらに、胎児への影響に関
16 しては、1 Gy 以上の被ばくにより精神遅滞がみられたが、0.5 Gy 以下の線量については健
17 康影響が認められなかったことを報告している文献(UNSCEAR 1993)があった。

18

19 以上から、本ワーキンググループが検討した範囲においては、放射線による影響が見い
20 だされているのは、通常の一般生活において受ける放射線量を除いた生涯における累積の
21 実効線量として、おおよそ 100 mSv 以上と判断した。

22

23 小児に関しては、より影響を受けやすい可能性(甲状腺がんや白血病)があると考えら24 れた。

25 100 mSv 未満の線量における放射線の健康影響については、疫学研究で健康影響がみら
26 れたとの報告はあるが、信頼のおけるデータと判断することは困難であった。種々の要因
27 により、低線量の放射線による健康影響を疫学調査で検証し得ていない可能性を否定する
28 こともできず、追加の累積線量として 100 mSv 未満の健康影響について言及することは現
29 在得られている知見からは困難であった。

30 31

32 3. ウランによる健康影響について

- 33 ウランはすべての同位体が放射性核種であることから化学物質及び放射性物質両方の毒34 性を発現する可能性がある。
- 35 ウランは、ヒト及び実験動物に対して腎毒性を示す。低濃度のウランを含む井戸水を飲

³ 被ばくした放射線が β 線又は γ 線だったと仮定した場合、放射線荷重係数 1 を乗じて、500 mSv 強となる。

⁴ 被ばくした放射線が β 線又は γ 線だったと仮定した場合、放射線荷重係数 1 を乗じて、0.2 Sv 以上となる。

1 用したヒトに関する疫学調査では、腎尿細管への影響を示唆する知見は得られているが、

2 その臨床的意義は明らかではない。

3 実験動物においては、ウランは主として腎臓、肝臓に影響を与え、発生毒性も示されて
 4 いるが、最も影響を受けやすいのは腎尿細管である。

5 遺伝毒性については、*in vitro*のほ乳類細胞を用いた染色体異常試験、小核試験、コメッ
6 トアッセイ、突然変異試験で陽性であり、*in vivo*試験でマウス精原細胞の染色体異常の誘
7 発等が報告されており、いずれもメカニズムとしては放射線による DNA 損傷に起因する
8 ものと考えられた。

9 発がん性について、ヒト及び実験動物に関するデータは不十分であり、現時点ではウラ10 ンの経口摂取による発がん性を示す知見は得られていない。

11

12 実験動物を用いた試験において最も低い用量で認められた影響は、30日間飲水投与試験
 13 (マウス)における母動物での小型一次卵胞数の減少に基づく NOAEL 0.5 μg/L(0.125~
 14 0.250 μg U/kg 体重/日相当)であった。

15 この試験において生殖能力の指標には影響はみられなかった。卵胞数の減少については
16 用量反応関係がみられているが、信頼性が未確立の手法を用いて得られた結果であり評価
17 結果にも不明確な点が認められた。さらに再現性について判断することは困難であること
18 から、今回は TDIの設定根拠としては採用しなかった。

次に低い用量で認められた影響は、NZW ウサギ 91 日間飲水投与試験の雄の腎尿細管の 19 病理組織学的変化(細胞質空胞変性、核大小不同)であり、LOAEL はウランとして 0.05 20mg/kg 体重/日であった。しかし、試験中に雄ウサギのパスツレラへの感染が認められてい 21る。引き続き行われた SPF の NZW 雄ウサギを用いた 91 日間飲水投与試験では、腎臓の 22病理組織学的変化の発生頻度及び程度の統計学的解析から、600 mg/L(40.98 mg U/kg 体 23重/日) 投与群のみで有意差が認められている。著者らは前の試験において、より低い投与 24量で観察された腎臓の変化と合わせて、この試験における LOAEL を 24 mg/L(1.36 mg 25U/kg 体重/日)と結論している。前に行われた試験の LOAEL 0.05 mg U/kg 体重/日を TDI 26の算出に用いなかった。 27

28 その次に低い用量で認められた影響は、ラットの 91 日間飲水投与試験における全投与群 で認められた腎尿細管の変化(雌雄に尿細管上皮核の小囊状の変形、雄では、近位尿細管 の拡張、尿細管基底部の核の管腔側への変位、及び細胞質の空胞変性)であり、LOAEL は ウランとして 0.06 mg/kg 体重/日であった。この試験では離乳期のラット(雌雄、各投与 群 15 匹)が用いられ、病理組織学的検査を含め幅広い検査が行われている。したがって、 この試験における LOAEL に不確実係数を適用して TDI を算出することが適切であると考 えられた。

35 この試験において、体重等の全身影響はなく、病理組織学的検査項目以外に腎毒性を示
 36 す結果は認められなかったこと、腎臓における病理組織学的結果に明らかな用量相関は認
 37 められないことから、このウランの腎臓への影響は、重篤な病変ではないと考えられた。
 38 これらの腎臓に対する影響及び体内動態においては、排泄が速く、定常状態にあると判断

39 されることから、91日間の亜慢性試験による追加の不確実係数は不要と考えられた。ウラ

ンは腎臓から速やかに排泄されることを考慮して、不確実係数は 300(種差 10、個体差 10、
 LOAEL から NOAEL への外挿 3)を適用することが適当と判断した。したがってウラン
 の LOAEL を 0.06 mg/kg 体重/日とし、不確実係数 300 を適用したところ、ウランの TDI
 は 0.2 µg/kg 体重/日となった。

 $\mathbf{5}$

6 TDIに相当する摂取量のウランによる放射線量は、実効線量として約 0.005 mSv/年に相
7 当し(参考1参照)、十分低い線量であると考えられた。したがって、ウランの毒性は化学
8 物質としての毒性がより鋭敏に出るものと考えられた。

9 10

11 **く参考1>**

TDI=0.2 μg/kg 体重/日について、体重 60 kg とした場合、天然のウランの存在度と各同
 位体の線量換算係数を用いて放射線の大きさを見積もると、約 0.005 mSv/年に相当。

14

核種	天然存在度 %	半減期 yrs	Specific activity	換算係数
			Bq/μg	mSv/Bq
234 U	0.0054	$2.446 \ge 10^5$	230	4.9 x 10 ⁻⁵
235 U	0.72	$7.038 \ge 10^8$	0.0803	4.7 x 10 ⁻⁵
238U	99.2745	$4.470 \ge 10^9$	0.0124	4.5 x 10 ⁻⁵

15

16 <参考2>

17 対象者数が 50 と少ないなど、不確実性が大きいためあくまで参考であるが、カナダ・ノ
18 バスコシア州住民のウラン摂取量と尿中グルコース及びβ2-MG 排泄量に関する Zamora et
19 al. (1998)のデータにベンチマークドース法を適用すると、性・年齢・飲料水ウランレ
20 ベル(高・低)を調整したベンチマークドースの 95%信頼下限値(BMDL)として 74~
21 82 μg U/日が得られた。

22

23

1 XIV. その他の考慮すべき事項

2 上記の評価結果に基づいて食品中のウラン以外の放射性物質についてのリスク管理を行
3 う場合には、本評価結果が、通常の一般生活において受ける放射線量を除いた生涯におけ
4 る累積線量で示されていることを考慮し、食品からの放射性物質の検出状況、日本人の食
5 品摂取の実態等を踏まえて、管理を行うべきである。

6

 $\overline{7}$

1 **<略号>**

本書中で使用した略号については次にならった 8-ヒドロキシ-2'-デオキシグアノシン 8-OHdG AEC 米国 原子力委員会 絶対リスク AR AST アスパラギン酸アミノトランスフェラーゼ ATSDR 米国 有害物質·疾病登録局 アスコルビン酸 Asc BEIR 米国 電離放射線の生物影響に関する委員会 BMI Body Mass Index BUN 血液尿素窒素 CAC コーデックス委員会 CAT カタラーゼ 米国 疾病管理予防センター CDC \mathbf{CF} 濃度係数 慢性リンパ性白血病 CLL 信頼区間 CI米国 エネルギー省 DOE DP 陰膳法 EAR 過剰絶対リスク エチレンジアミン四酢酸 EDTA EFSA 欧州 食品安全機関 EPA 米国 環境保護庁 EPRI 米国 電力研究所 過剰相対リスク ERR 拡大テチャ川コホート ETRC 雑種第一代 F1 FDA 米国 食品医薬品庁 蛍光 in situ ハイブリダイゼーション FISH FSH 卵胞刺激ホルモン GPx グルタチオンペルオキシダーゼ グルタチオンレダクターゼ GR GSD 幾何学的標準偏差 GSSG 酸化グルタチオン 高バックグラウンド放射線 HBR

HBRA	高バックグラウンド放射線地域
HEDR	ハンフォード環境線量再構築
IAEA	国際原子力機関
IARC	国際がん研究機関
ICRP	国際放射線防護委員会
IQ	知能指数
IRIS	統合リスク情報システム
IRR	罹患率比
JECFA	FAO(国際連合食糧農業機関)/WHO 合同食品添加物専門家会議
LD_{50}	半数致死量
LE	Long-Evans
LET	線エネルギー付与
LH	黄体形成ホルモン
LOAEL	最小毒性量
MB	マーケットバスケット法
MF	修正係数
MH	Mantel-Haenzel
NAG	N-アセチル-β-D-グルコサミニダーゼ
NAS	米国科学アカデミー
NCI	米国研究審議会
NCRP	米国 放射線防護審議会
NEA/OECD	原子力機関/経済協力開発機構
NIS	sodium/iodine symporter
NOAEL	無毒性量
NOEL	無作用量
NPN	非タンパク性窒素
NRC	米国 原子力規制委員会
NRPB	英国 放射線防護協会
NTS	ネバダ核実験場
NZW	New Zealand White
OR	オッズ比
OTRC	オリジナルテチャ川コホート
PAM(s)	肺胞マクロファージ
RBM	赤色骨髄
REM	急速眼球運動

RR	相対リスク
RfD	経口参照用量
$ m rT_3$	リバーストリヨードサイロニン
SD	標準偏差
SD ラット	Sprague-Dawley ラット
SE	標準誤差
SEER	Surveillance Epidemiology and End Results
SIR	標準化罹患比
SMR	標準化死亡比
SOD	スーパーオキシドジスムターゼ
SPF	Specific Pathogen-Free
T_3	トリヨードサイロニン
T_4	サイロキシン
TBARS	チオバルビツール酸反応物質
TDI	耐容一日摂取量
TRDS	Techa River Dosimetory System
TSH	甲状腺刺激ホルモン
U-NTA	硝酸ウラニル三酢酸
DHHS	米国 保険社会福祉庁
UA	酢酸ウラニル
UNSCEAR	原子放射線に関する国連科学委員会
WHO	世界保健機関
nd	不検出
β ₂ -MG	β2-ミクログロブリン

低線量におけるヒトへの影響に関する知見の検討結果

A:参考にしたもの、 B:参考のサポートとしたもの、 -:その他

番号	出典	検討結果
1	Nair RR et al., Background radiation and cancer incidence in Kerala, India- Karanagappally cohort study., Health Phys. 2009 Jan;96(1):55-66.	А
2	Tao Z et al., Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995., J Radiat Res (Tokyo). 2000 Oct;41 Suppl:31–41.	А
3	Wang ZY et al., Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China., J Natl Cancer Inst. 1990 Mar 21;82(6):478–85.	В
4	Hall P et al., Thyroid nodularity after diagnostic administration of iodine-131., Radiat Res. 1996 Dec;146(6):673-82.	В
5	Holm LE et al., Cancer risk in population examined with diagnostic doses of 131I., J Natl Cancer Inst. 1989 Feb 15;81(4):302–6.	-
6	Hall P et al., Cancer mortality after iodine-131 therapy for hyperthyroidism., Int J Cancer. 1992 Apr 1;50(6):886-90.	А
7	Andersson M et al., Cancer risk among staff at two radiotherapy departments in Denmark., Br J Radiol. 1991 May;64(761):455–60.	А
8	Sorahan T and Roberts PJ., Childhood cancer and paternal exposure to ionizing radiation: preliminary findings from the Oxford Survey of Childhood Cancers., Am J Ind Med. 1993 Feb;23(2):343-54.	-
9	Tawn EJ et al., Chromosome studies in plutonium workers., Int J Radiat Biol Relat Stud Phys Chem Med. 1985 May;47(5):599–610.	-
10	Kelly S and Dagle A., Cytogenetic damage in americium poisoning. NY State J Med 1974 74(9):1597–1598	-
11	Conard RA. 1984. Late radiation effects in Marshall Islanders exposed to fallout 28 years ago. In: Boice KD, Fraument JF, eds. Radiation carcinogenesis: Epidemiology and biological significance. New York, NY: Raven Press, 57-71.	_
12	Hamilton TE, van Belle G, LoGerfo JP., Thyroid neoplasia in Marshall Islanders exposed to nuclear fallout., JAMA. 1987 Aug 7;258(5):629-35.	_
13	Rallison ML et al., Thyroid disease in children. A survey of subjects potentially exposed to fallout radiation., Am J Med. 1974 Apr;56(4):457-63.	_
14	Gilbert ES et al., Thyroid cancer rates and 131I doses from Nevada atmospheric nuclear bomb tests., J Natl Cancer Inst. 1998 Nov 4;90(21):1654–60.	-
15	Astakhova LN et al., Endemic goiter in Belarus following the accident at the Chernobyl nuclear power plant. In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, the Netherlands: Elsevier, 67–95, 1996.	_
16	Drobyshevskaya et al., Thyroid cancer in children of Belarus following the Chernobyl accident. In: Nagataki S, Yamashita S, eds. Nagasaki symposium radiation and human health: Proposal from Nagasaki. Amsterdam, the Netherlands: Elsevier, 49–65, 1996.	_
17	Auvinen A et al., Fallout from Chernobyl and incidence of childhood leukaemia in Finland, 1976–92., BMJ. 1994 July 16; 309(6948): 151–154.	А
18	Busby CC., Very low dose fetal exposure to Chernobyl contamination resulted in increases in infant leukemia in Europe and raises questions about current radiation risk models., Int J Environ Res Public Health, 2009 Dec:6(12):3105–14.	В

番号	出典	検討結果
	Noshchenko AG et al., Radiation-induced leukemia among children aged 0-5	
19	vears at the time of the Chernobyl accident., Int J Cancer, 2010 Jul	А
	15;127(2):412–26.	
	Padovani L et al., Cytogenetic study in lymphocytes from children exposed to	
20	ionizing radiation after the Chernobyl accident., Mutat Res. 1993 Sep;319(1):55-	-
	60.	
01	Jacob P et al., Thyroid cancer risk to children calculated., Nature. 1998 Mar	
21	5;392(6671):31–2.	_
22	HANFORD THYROID DISEASE STUDY FINAL REPORT, CDC, 2002	А
	Kossenko MM et al., Issues in the comparison of risk estimates for the	
	population in the Techa River region and atomic bomb survivors., Radiat Res.	-
23	1997 Jul;148(1):54–63.	
	Kossenko MM et al., Studies on the extended Techa river cohort: cancer risk	_
	estimation., Radiat Environ Biophys. 2002 Mar;41(1):45–8.	_
24	Kossenko MM., Cancer mortality among Techa River residents and their	D
24	offspring., Health Phys. 1996 Jul;71(1):77-82.	D
	liyinskikh NN et al., Chromosome aberrations in the radiationexposed residents	
25	around Mayak nuclear facility in the Chelyabinsk region, Russia. Environ Toxicol,	_
	1999, 14(4):414–423.	
26	Yoshimoto Y et al., J Radiat Res (Tokyo). 1991 Dec;32(4):327–51.	_
20	Mortality among the offspring (F1) of atomic bomb survivors, 1946-85.	
	Brent RL., The effect of embryonic and fetal exposure to x-ray, microwaves,	
27	and ultrasound: counseling the pregnant and nonpregnant patient about these	-
	risks. Semin Oncol. 1989 Oct;16(5):347–68.	
28	Lloyd DC et al., Chromosomal aberrations in human lymphocytes induced in	В
20	vitro by very low doses of X-rays., Int J Radiat Biol. 1992 Mar;61(3):335-43.	Б
29	Preston DL et al., Solid cancer incidence in atomic bomb survivors exposed in	В
	utero or as young children. J Natl Cancer Inst. 2008 Mar 19;100(6):428-36.	2
30	Wakeford R and Little MP, Risk coefficients for childhood cancer after	_
	intrauterine irradiation: a review. Int J Radiat Biol. 2003 May;79(5):293-309.	
	Jacob A et al., Thyroid cancer risk 40+ years after irradiation for an enlarged	
31	thymus: an update of the Hempelmann cohort.Radiat Res. 2010 Dec;1/4(6):/53-	_
32	Cardis E et al., Risk of thyroid cancer after exposure to 1311 in childhood., J	В
	Nati Gancer Inst. 2005 May 18;97(10):724-32.	
33	Astakhova LN et al., Chernobyl-related thyroid cancer in children of Belarus: a	в
34	case-control study., Radiat Res. 1998 Sep;150(3):349-56.	Ľ
0.4	Kazakov VS et al., Thyroid cancer after Chernobyl. Nature. 1992 Sep	
34	3;359(6390):21.	_
	Noshchenko AG et al., Radiation-induced leukemia risk among those aged 0-20	
35	at the time of the Chernobyl accident: a case-control study in the Ukraine., Int	-
	J Cancer. 2002 Jun 1;99(4):609–18.	
26	Petridou E et al., Infant leukaemia after in utero exposure to radiation from	P
30	Chernobyl., Nature. 1996 Jul 25;382(6589):352-3.	В
	Berrington A et al., 100 years of observation on British radiologists: mortality	
37	from cancer and other causes 1897–1997., Br J Radiol. 2001 Jun;74(882):507–	В
	19.	
	Langner I et al., Cosmic radiation and cancer mortality among airline pilots:	
38	results from a European cohort study (ESCAPE)., Radiat Environ Biophys. 2004	В
	Feb;42(4):247–56.	
	Preston DL et al., Studies of mortality of atomic bomb survivors. Report 13:	
39	Solid cancer and noncancer disease mortality: 1950–1997., Radiat Res. 2003	А
	Oct;160(4):381-407.	

番号	出典	検討結果
40	Tondel M et al., Risk of malignancies in relation to terrestrial gamma radiation in a Swedish population cohort., Sci Total Environ. 2011 Jan 1;409(3):471–7.	В
41	Zablotska LB et al., Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident., Br J Cancer. 2011 Jan 4;104(1):181-7.	В
42	Brenner AV et al., I–131 dose response for incident thyroid cancers in ukraine related to the chornobyl accident., Environ Health Perspect. 2011 Jul;119(7):933–9.	В
43	de Vathaire F et al., Thyroid cancer following nuclear tests in French Polynesia., Br J Cancer. 2010 Sep 28;103(7):1115-21.	В
44	Krestinina LY et al., Solid cancer incidence and low-dose-rate radiation exposures in the Techa River cohort: 1956 2002., Int J Epidemiol. 2007 Oct;36(5):1038-46.	В
45	Krestinina L et al., Leukemia incidence among people exposed to chronic radiation from the contaminated Techa River, 1953–2005. Radiat Environ Biophys. 2010 May;49(2):195–201.	В
46	Ostroumova E et al., Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956-2004., Br J Cancer. 2008 Dec 2;99(11):1940-5.	В
47	Shimizu Y et al., Life Span Study Report 11 Part 2. Cancer Mortality In The Years 1950–1985 Based on The Recently Revised Doses(DS86)., 1988	A
48	Pierce DA et al., Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990., Radiat Res. 1996 Jul;146(1):1–27.	В
49	International Consortium for Research on the Health Effects of Radiation Writing Committee and Study Team, Davis S et al., Childhood leukaemia in Belarus, Russia, and Ukraine following the Chernobyl power station accident: results from an international collaborative population-based case-control study., Int J Epidemiol. 2006 Apr;35(2):386-96.	В
50	UNSCEAR 1993 REPORT SOURCES AND EFFECTS OF IONIZING RADIATION	-
51	BEIR V. 1990. Health effects of exposure to low levels of ionizing radiation. Biological Effects of Ionizing Radiations. National Academy Press.	_