(案)

農薬評価書

クロランスラムメチル

2009年4月 食品安全委員会農薬専門調査会

目 次

		頁
0	審議の経緯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
0	食品安全委員会委員名簿 · · · · · · · · · · · · · · · · · · ·	3
0	食品安全委員会農薬専門調査会専門委員名簿 · · · · · · · · · · · · · · · · · · ·	3
0	要約 · · · · · · · · · · · · · · · · · · ·	5
Ι	. 評価対象農薬の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	1. 用途 · · · · · · · · · · · · · · · · · ·	
	2. 有効成分の一般名 · · · · · · · · · · · · · · · · · · ·	
	3. 化学名 · · · · · · · · · · · · · · · · · · ·	
	4. 分子式 · · · · · · · · · · · · · · · · · · ·	
	5. 分子量 · · · · · · · · · · · · · · · · · · ·	
	6. 構造式 · · · · · · · · · · · · · · · · · · ·	6
	7. 開発の経緯・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
I	. 安全性に係る試験の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	1. 動物体内運命試験 · · · · · · · · · · · · · · · · · · ·	
	(1)ラット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(2)畜産動物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	2. 植物体内運命試験 · · · · · · · · · · · · · · · · · · ·	
	(1)だいず(発芽後処理) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(2)だいず(発芽前処理) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3. 土壌中運命試験 · · · · · · · · · · · · · · · · · · ·	0
	4. 水中運命試験 · · · · · · · · · · · · · · · · · · ·	•
	(1)加水分解試験・・・・・・・・・・・・・・・・・・・・・・・・・・・1(0
	(2)水中光分解試験・・・・・・・・・・・・・・・・・・・・・・・・1(0
	5. 土壌残留試験 · · · · · · · · · · · · · · · · · · ·	0
	6. 作物残留試験 · · · · · · · · · · · · · · · · · · ·	0
	7. 後作物残留試験 · · · · · · · · · · · · · · · · · · ·	0
	8. 一般薬理試験 · · · · · · · · · · · · · · · · · · ·	1
	9. 急性毒性試験 · · · · · · · · · · · · · · · · · · ·	1
	(1)急性毒性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	(2)急性神経毒性試験(ラット)······1	1
	10. 眼・皮膚に対する刺激性及び皮膚感作性試験・・・・・・・・・・・・・・・・・・・1	1
	1 1. 亜急性毒性試験	2
	(1) 90 日間亜急性毒性試験(マウス)・・・・・・・・・・・・・・・・・・・・・・・ 12	2
	(2) 21 日間亜急性経皮毒性試験 (ウサギ)	2

1 2. 慢性毒性試験及び発がん性試験 · · · · · · · · · · · · · · · · · · ·	12
(1)1 年間慢性毒性試験(イヌ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
(2)2年間慢性毒性/発がん性併合試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
(3)2年間発がん性試験(マウス)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
13.生殖発生毒性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
(1)2世代繁殖試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
(2)発生毒性試験(ラット) ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥	14
(3)発生毒性試験(ウサギ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
1 4 . 遺伝毒性試験 · · · · · · · · · · · · · · · · · · ·	15
Ⅲ.食品健康影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
- 別紙 1 : 代謝物/分解物略称 · · · · · · · · · · · · · · · · · · ·	19
別紙2:検査値等略称····································	20
• 参照 · · · · · · · · · · · · · · · · · ·	21

<審議の経緯>

2005年 11月 29日 残留農薬基準告示 (参照 1)

2008年 3月 25日 厚生労働大臣より残留基準設定に係る食品健康影響評価に

ついて要請(厚生労働省発食安第 0325006 号)、関係書類

の接受(参照 2~6)

2008年 3月 27日 第231回食品安全委員会(要請事項説明)(参照7)

2008年 10月 3日 第16回農薬専門調査会確認評価第二部会(参照8)

2009年 2月 24日 第48回農薬専門調査会幹事会(参照9)

2009年 4月 2日 第280回食品安全委員会(報告)

<食品安全委員会委員名簿>

見上 彪(委員長)

小泉直子 (委員長代理)

長尾 拓

野村一正

畑江敬子

廣瀬雅雄

本間清一

<食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士(座長) 三枝順三 布柴達男 林 真 (座長代理) 佐々木有 根岸友惠 赤池昭紀 代田眞理子 平塚 明 石井康雄 高木篤也 藤本成明 泉啓介 玉井郁巳 細川正清 上路雅子 田村廣人 松本清司 臼井健二 津田修治 柳井徳磨 江馬 眞 津田洋幸 山崎浩史 大澤貫寿 出川雅邦 山手丈至 太田敏博 長尾哲二 與語靖洋 大谷 浩 中澤憲一 吉田 緑 納屋聖人 若栗 忍 小澤正吾

小林裕子 西川秋佳

(2008年4月1日から)

小林裕子

佐々木有	根本信雄
代田眞理子	平塚 明
高木篤也	藤本成明
玉井郁巳	細川正清
田村廣人	堀本政夫
津田修治	松本清司
津田洋幸	本間正充
長尾哲二	柳井徳磨
中澤憲一*	山崎浩史
永田 清	山手丈至
納屋聖人	與語靖洋
西川秋佳	吉田 緑
布柴達男	若栗 忍
	代田眞理子高末相關也 工井爾 人

根岸友惠

*:2009年1月19日まで

要約

トリアゾロピリミジン環を有する除草剤である「クロランスラムメチル」 (CAS No.147150-35-4) について、各種資料 (米国、カナダ等) を用いて食品健康影響評価を 実施した。

評価に供した試験成績は、動物体内運命(ラット、ヤギ及びニワトリ)、植物体内運命(だいず)、土壌中運命、水中運命、急性毒性(ラット及びウサギ)、亜急性毒性(マウス及びウサギ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、クロランスラムメチル投与による影響は、主に肝臓及び腎臓に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

各試験で得られた無毒性量の最小値は、イヌを用いた 1 年間慢性毒性試験の 5 mg/kg 体重/日であったので、これを根拠として安全係数 100 で除した 0.05 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

I. 評価対象農薬の概要

1. 用途

除草剤

2. 有効成分の一般名

和名:クロランスラムメチル

英名: cloransulam-methyl (ISO 名)

3. 化学名

IUPAC

和名:メチル 3-クロロ-2-(5-エトキシ-7-フルオロ[1,2,4]トリアゾロ

[1,5-d]ピリミジン-2-イルスルホンアミド)ベンゾアート

英名: methyl 3-chloro-2-(5-ethoxy-7-fluoro[1,2,4]triazolo

[1,5-c]pyrimidin-2-ylsulfonamido)benzoate

CAS (No.147150-35-4)

和名:メチル 3-クロロ-2-[[(5-エトキシ-7-フルオロ [1,2,4] トリアゾロ

[1,5-q]ピリミジン-2-イル)スルホニル]アミノ]ベンゾアート

英名: methyl 3-chloro-2-[[(5-ethoxy-7-fluoro [1,2,4] triazolo

[1,5-c]pyrimidin-2-yl)sulfonyl]amino]benzoate

4. 分子式

C₁₅H₁₃ClFN₅O₅S

5. 分子量

429.8

6. 構造式

$$OCH_2CH_3$$
 CO_2CH_3 OCO_2CH_3 OCO_2

7. 開発の経緯

クロランスラムメチルはダウ エランコ社 (現 ダウ アグロサイエンス社) によって 開発されたトリアゾロピリミジン環を有する除草剤であり、だいずの広葉雑草の防除 に用いられる。植物のアセト乳酸合成酵素 (ALS) を阻害することで除草作用を示す。

米国及びカナダでだいずを対象に登録されているが、日本では登録されていない。 ポジティブリスト制度導入に伴う暫定基準値が設定されている。

Ⅱ. 安全性に係る試験の概要

米国資料(1997年)及びカナダ資料(2001年)等を基に、毒性に関する主な科学的知見を整理した。(参照2~5)

1. 動物体内運命試験

(1) ラット

Fischer ラット(一群雌雄各 5 匹)に $[ani^{-14}C]$ クロランスラムメチルを 5 mg/kg 体重(以下、[1.(1)]において「低用量」という。)または 1,000 mg/kg 体重(以下、[1.(1)]において「高用量」という。)で単回経口投与、また、低用量で反復経口投与(14 日間非標識体を反復投与後、15 日目に標識体を投与)し、動物体内運命試験が実施された。

投与 72 時間後の組織及びカーカス¹を併せた総残留放射能は、総投与放射能 (TAR) の $0.7\sim2\%$ であった。最も残留放射能量が多かったのは血液、腎臓及び肝臓であった $(0.01\sim0.03\%$ TAR)。

尿及び糞中には、それぞれ 10 及び 3 種類の化合物が存在した。親化合物は、低用量群では、尿中に雄及び雌でそれぞれ $10.8 \sim 12.7$ 及び $29.1 \sim 40.4\%$ TAR、糞中に雄及び雌でそれぞれ $3.6 \sim 7.8$ 及び 6.9% TAR 以下であった。高用量群では、親化合物が尿中に $1.2 \sim 6.3\%$ TAR、糞中に $70.2 \sim 72.3\%$ TAR 存在した。低用量群の糞中では、親化合物よりも多い成分(雄で 28.5% TAR、雌で 10.0% TAR)が存在したが、これはクロランスラムメチルのベンゼン環またはピリミジン環に水酸基をもった代謝物であった。

標識体投与後 72 時間で、 $89.5\sim101\%$ TAR が尿(ケージ洗浄液を含む)及び糞中に排泄された。低用量群では、投与方法にかかわらず、雄では尿中排泄が $49.6\sim51.9\%$ TAR、糞中排泄が $41.9\sim48.1\%$ TAR であり、尿及び糞中の排泄率は同等であった。一方、雌では、尿中排泄が $68.4\sim79.7\%$ TAR、糞中排泄が $20.7\sim20.9\%$ TAR と、主要排泄経路は尿中であった。高用量群では、雌雄とも糞中排泄率が高く、尿及び糞中排泄率が、雄ではそれぞれ 9.7 及び 82.8%TAR、雌ではそれぞれ 17.3 及び 78.0%TAR であった。

また、Fischer ラット(一群雌雄各3匹)に[tri-14C]クロランスラムメチルを低用

¹ 組織・臓器を取り除いた残渣のことをカーカスという(以下、同じ)。

量で単回経口投与する試験も実施された。

投与 72 時間後の組織及びカーカスの残留放射能は雌雄とも 5%TAR 未満であった。

尿中には 11 種類、糞中には 8 種類の成分が存在した。親化合物は、尿中に雄で 5.3% TAR、雌で 35.9% TAR、糞中に雄で 2.0% TAR、雌で 2.6% TAR 存在した。代謝物は尿中にベンゼン環 4 または 5 位が水酸化された代謝物 A、B 及びクロランスラムの N アセチルシステイン抱合体が、糞中に A が存在した。

 $[ani^{-14}C]$ クロランスラムメチル投与群と同様、雄ラットでは、尿中排泄率(37~39%TAR)及び糞中排泄率(48~51%TAR)に大きな差はなかったが、雌ラットでは、尿中排泄率(70~72%TAR)が糞中排泄率(20~22%TAR)より大きかった。(参照 2、4、5)

(2) ヤギ

泌乳期ヤギ (一群1匹、品種不明) に $[ani^{-14}C]$ クロランスラムメチルまたは $[tri^{-14}C]$ クロランスラムメチルを0.3 mg/kg体重/日(10 ppm混餌投与に相当)で連続5日間強制経口投与し、動物体内運命試験が実施された。

放射能濃度が最も高かったのは腎臓($0.12~\mu g/g$)、次いで肝臓($0.045~\mu g/g$)、血液($0.035~\mu g/g$)、筋肉及び脂肪($0.002~\mu g/g$)であり、乳汁中の放射能は $0.001~\mu g/g$ 未満であった。

腎臓組織中に、親化合物が総残留放射能(TRR)の51%($0.066 \mu g/g$)、代謝物 Dが1.3%TRR存在した。肝臓組織中には、代謝物Dが9.5%TRR($0.005 \mu g/g$)存在 し、親化合物は $0.003 \mu g/g$ 未満であった。その他肝臓及び腎臓には複数の成分が存在したが、いずれも10%TRR($0.05 \mu g/g$)未満であった。

尿及び糞中に排泄された放射能は、[ani-14C]クロランスラムメチル投与群及び [tri-14C]クロランスラムメチル投与群ともに、それぞれ93及び81%TARであった。 [ani-14C]クロランスラムメチル投与群及び[tri-14C]クロランスラムメチル投与群で残留放射能に大きな差がなかったことから、アニリン環及びトリアゾロピリミジン環の架橋部分の開裂は生じないことが示唆された。 (参照3、5)

(3) ニワトリ

白色レグホン種産卵期ニワトリ(一群5羽)に、 $[ani^{-14}C]$ クロランスラムメチルまたは $[tri^{-14}C]$ クロランスラムメチルを、それぞれ0.90または0.89 mg/kg体重/日(9 ppm混餌投与相当)で1日2回、連続5日間カプセル経口投与し、動物体内運命試験が実施された。

排泄物中に排泄された放射能は99.7%TARであった。排泄物中には親化合物、代謝物A及びBが存在した。

卵及び組織中には、これらの代謝物は検出されず、また、 $[ani^{-14}C]$ クロランスラムメチル投与群及び $[tri^{-14}C]$ クロランスラムメチル投与群で放射能の残留濃度及び

分布が異なることから、アニリン環及びトリアゾロピリミジン環の間で開裂が生じたと考えられた。主要代謝物として、代謝物Fが肝臓(50%TRR、0.07 $\mu g/g$)及び筋肉(60%TRR、0.021 $\mu g/g$)に存在した。卵中には親化合物(40%TRR、0.006 $\mu g/g$)のみ同定された。(参照3、5)

2. 植物体内運命試験

(1) だいず (発芽後処理)

顆粒水和剤に調製した $[ani^{-14}C]$ クロランスラムメチルまたは $[tri^{-14}C]$ クロランスラムメチルを、発芽 43 日後(発育段階 V5)のだいず(品種不明)に、88 g ai/ha(慣行量の 5 倍)の用量で処理し、処理 0、1 及び 20 日後に採取した茎葉(forage)及び処理 98 日後(収穫期)に採取しただいず子実を試料として、植物体内運命試験が実施された。

茎葉中の総残留放射能濃度は、 $[ani^{-14}C]$ クロランスラムメチル処理区及び $[tri^{-14}C]$ クロランスラムメチル処理区で、処理 0 日後にはそれぞれ 7.4 及び 10.4 mg/kg であったが、処理 20 日後にはそれぞれ 0.71 及び 1.05 mg/kg に減少した。収穫期の子実中の総残留放射能濃度は、 $[ani^{-14}C]$ クロランスラムメチル処理区及び $[tri^{-14}C]$ クロランスラムメチル処理区で、それぞれ 0.019 及び 0.007 mg/kg であった。

茎葉中には、親化合物の他、処理1日後以降、主要代謝物としてホモグルタチオン抱合体、システイン抱合体、代謝物 I 等が存在した。収穫期の子実中では、放射能はタンパク質、多糖類などの植物成分と結合して存在していた。

発芽後のだいずにおける主要代謝経路は、ホモグルタチオン抱合体形成及び光分解であると考えられた。光分解による主要産物はスルホンアミド(代謝物 H)及びスルホン酸誘導体(代謝物 I)であると考えられた。(参照 3、5)

(2)だいず(発芽前処理)

顆粒水和剤に調製した $[ani^{-14}C]$ クロランスラムメチルまたは $[tri^{-14}C]$ クロランスラムメチルを、477 g ai/ha(慣行量の 13.6 倍)の用量で処理し、4~6 cm の深さに混和した土壌に、だいず(品種不明)を播種し、処理 27 及び 61 日後に採取した茎葉(forage)及び処理 140 日後(収穫期)に採取しただいず子実を試料として、植物体内運命試験が実施された。

クロランスラムメチルの一部は、土壌中で分解され、生成されたトリアゾロピリミジン環のみを持つ分解物がだいずに吸収され、さらに代謝を受けることで、Gを含めた少量代謝物が、生成されると考えられた。植物体中に存在した他の代謝物は、すべてアニリン環及びトリアゾロピリミジン環の両方を有する化合物であった。

放射能の一部は、茎葉ではセルロース及びリグニンに、子実ではタンパク質に結合して存在していた。(参照 5)

3. 土壌中運命試験

好気的土壌中では、クロランスラムメチルの推定半減期は $13\sim28$ 日と算出された。 土壌中主要分解物は \mathbf{B} 、 \mathbf{C} 及び \mathbf{D} であった。

好気的湛水条件下におけるクロランスラムメチルの水相中の推定半減期は 25.6 日であり、処理 31 日後に水相中に総処理放射能(TAR)の 76~82%が残存していた。一方、嫌気的湛水土壌中では、クロランスラムメチルの水相中の推定半減期は 16 日であった。水相及び沈泥中の主要分解物はJであった。水相中では、C も主要分解物であった。

5℃の条件下では、クロランスラムメチルの推定半減期は 237 日と算出され、分解物はほとんど検出されなかった。

土壌中では、光分解による推定半減期は 30~70 日であり、光分解は土壌中におけるクロランスラムメチルの主たる分解経路ではないと考えられた。(参照 2、5)

4. 水中運命試験

(1) 加水分解試験

クロランスラムメチルの加水分解による推定半減期は、pH5で 365 日以上、pH7で 231 日と、中性及び酸性条件下で分解は非常に緩慢であったが、pH9の条件下では速やかに分解され、推定半減期は 3 日と算出された。主要分解物は E 及び Fであった。(参照 E 2、5)

(2) 水中光分解試験

クロランスラムメチルは水中では速やかに光分解を受け、推定半減期は 22 分と 算出された。水中の主要分解物は H 及び I であった。 (参照 2、5)

5. 土壤残留試験

砂壌土(米国)を用い、クロランスラムメチルを分析対象化合物とした土壌残留試験 (圃場試験)が実施された。その結果、クロランスラムメチルの推定半減期は 6.6 日と 算出された。(参照 5)

6. 作物残留試験

国内における作物残留試験成績は提出されていない。

7. 後作物残留試験

顆粒水和剤に調製した $[ani^{-14}C]$ クロランスラムメチルまたは $[tri^{-14}C]$ クロランスラムメチルを、55 g ai/ha(慣行量の 1.6 倍量)の用量で 1 回処理し、処理 120 日後に小麦、レタス、ばれいしょを植え付けして、後作物残留試験が実施された。

レタス、ばれいしょの塊茎、小麦の茎葉部(forage)、穀粒及び麦わらにおける残留放射能を測定した。収穫期の小麦の麦わら及び穀粒において、残留放射能が比較的

高く、その大部分は穀粒ではデンプン、麦わらではリグニン及びセルロースに取り込まれるか、結合して存在した。すべての試料中で、親化合物は検出限界未満であった。同定された代謝物は、 $[tri^{-14}C]$ クロランスラムメチル処理区の麦わらに存在した代謝物 I (6.6% TRR、0.004 mg/kg) のみであり、10% TRR (0.004 mg/kg) を超える代謝物は存在しなかった。(参照 3、5)

8. 一般薬理試験

一般薬理試験については、参照した資料に記載がなかった。

9. 急性毒性試験

(1) 急性毒性試験

クロランスラムメチル (原体) の急性毒性試験が実施された。結果は表 1 に示されている。 (参照 2、4、5)

投与経路	動物種	LD ₅₀ (mg/kg 体重)		観察された症状	
女子 产		雄	雌	観祭されが出た人	
経口	Fischer	>5,000	>5,000	症状及び死亡例なし	
/注 日	ラット			MEANIX O'GLE PIVA C	
経皮	NZW	>2.000	>2,000 >2,000	 症状及び死亡例なし	
性火	ウサギ	<i>></i> 2,000		MEANIX O'GLIC PIPA C	
吸入	Fischer	LC ₅₀ (mg/L)	 症状及び死亡例なし	
"汉八	ラット >3.77	>3.77			

表 1 急性毒性試験結果概要(原体)

(2)急性神経毒性試験(ラット)

Fischer ラット (一群雌雄各 10 匹) を用いた強制経口 (原体:0、20、1,000 及び 2,000 mg/kg 体重、溶媒:0.5%MC 溶液) 投与による急性神経毒性試験が実施された。

臨床症状及び死亡例はなく、体重変化、機能観察総合検査(FOB)、自発運動量、神経組織の肉眼的病理検査及び病理組織学的検査において、検体投与の影響は認められなかった。

本試験における無毒性量は、雌雄とも本試験の最高用量 2,000 mg/kg 体重であると考えられた。神経毒性は認められなかった。(参照 2、4、5)

10. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼及び皮膚刺激性試験が実施され、眼に対しては軽微な刺激性が認められたが、皮膚に対する刺激性は認められなかった。

Hartley モルモットを用いた皮膚感作性試験の結果、皮膚感作性は陰性であった。 (参照 2、4、5)

11. 亜急性毒性試験

(1)90日間亜急性毒性試験(マウス)

B6C3F1 マウス (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、100、500 及び1,000 mg/kg 体重/日) 投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表2に示されている。

本試験において、100 mg/kg 体重/日以上投与群の雄及び 500 mg/kg 体重/日以上投与群の雌で肝細胞肥大が認められたので、無毒性量は雄で 50 mg/kg 体重/日、雌で 100 mg/kg 体重/日であると考えられた。(参照 2、4、5)

五二 00 日間正記には「日間の) フィック 「				
投与群	雄	雌		
1,000 mg/kg 体重/日	・肝絶対重量増加、	・ALP増加を伴う肝比重量増加		
	・腎比重量 ² 減少	・腎比重量減少		
	・尿細管上皮空胞の減少			
500 mg/kg 体重/日	• 腎絶対重量減少	・小葉中心性あるいは小葉中間帯肝		
以上	・ALP増加を伴う肝比重量増加	細胞肥大(染色性の変化を伴う)		
100 mg/kg 体重/日	・小葉中心性あるいは小葉中間帯肝	100 mg/kg 体重/日以下		
以上	細胞肥大(染色性の変化を伴う)	毒性所見なし		
50 mg/kg 体重/日	毒性所見なし			

表 2 90 日間亜急性毒性試験(マウス)で認められた毒性所見

(2) 21 日間亜急性経皮毒性試験(ウサギ)

NZW ウサギ (一群雌雄各 5 匹) を用いた経皮 (原体:0、100、500 及び 1,000 mg/kg 体重/日、6 時間/日、5 日/週) 投与による 21 日間亜急性経皮毒性試験が実施された。 雄では、検体投与の影響は認められなかった。1,000 mg/kg 体重/日投与群の雌で、 RBC、Hb、Ht 減少、不同赤血球症及び巨大赤血球増多症、MCV 増加が認められた。

本試験における無毒性量は、雄で本試験の最高用量 1,000 mg/kg 体重/日、雌で 500 mg/kg 体重/日であると考えられた。(参照 2、4、5)

12. 慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、5、10 及び 50 mg/kg 体重/日) 投与による 1 年間慢性毒性試験が実施された。

-

² 体重比重量を比重量という(以下同じ)。

50 mg/kg 体重/日投与群の雌雄で ALP、ALT 増加、Alb、T.Bil 減少が、同群の雄で肝及び副腎絶対重量増加が、同群の雌で卵巣絶対重量増加及び肝細胞肥大が認められた。10 mg/kg 体重/日以上投与群の雌雄で肝細胞に色素(ヘモジデリンと考えられた)沈着が認められた。

本試験において、10 mg/kg 体重/日以上投与群の雌雄で肝細胞に色素沈着が認められたので、無毒性量は雌雄とも5 mg/kg 体重/日であると考えられた。(参照5)

(2)2年間慢性毒性/発がん性併合試験(ラット)

Fischer ラット (一群雌雄各 60 匹) を用いた混餌 (原体: 0、10、75 及び 325 mg/kg 体重/日) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

死亡率に検体投与の影響は認められなかった。各投与群で認められた毒性所見は 表3に示されている。

投与に関連した腫瘍の発生頻度の増加は認められなかった。

雄で認められた精巣絶対及び比重量増加に伴い、精巣間質細胞腫瘍の大きさが大型化する傾向が認められた(腫瘍発生頻度に増加は認められなかった)。

本試験において、75 mg/kg 体重/日以上投与群の雄で腎盂乳頭の鉱質沈着が、雌で腎近位尿細管上皮細胞空胞化が認められたので、無毒性量は雌雄とも 10 mg/kg 体重/日であると考えられた。発がん性は認められなかった。 (参照 5)

表 0 2 中間受任母性/元が70年月日的歌(ファイ) こ記のうれの音性が元					
投与群	雄	此隹			
325 mg/kg 体重/日	• 体重增加抑制	• 体重增加抑制			
	・肝比重量増加、精巣絶対及び比	・T.Chol 減少			
	重量増加	• 腎集合管上皮細胞肥大			
	• 腎集合管上皮細胞肥大	・甲状腺ろ胞過形成及びろ胞細胞			
	• 腎近位尿細管上皮細胞空胞化	肥大			
	・甲状腺ろ胞過形成及びろ胞細胞				
	肥大				
75 mg/kg 体重/日	• 腎盂乳頭鉱質沈着	• 腎近位尿細管上皮細胞空胞化			
以上					
10 mg/kg 体重/日 - 毒性所見なし		毒性所見なし			

表3 2年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見

(3)2年間発がん性試験(マウス)

B6C3F1マウス(一群雌雄各60匹)を用いた混餌(原体:0、10、100及び1,000mg/kg体重/日)投与による2年間発がん性試験が実施された。

死亡率に検体投与の影響は認められなかった。

1,000 mg/kg 体重/日投与群の雌雄で体重増加抑制、WBC 及び PLT 増加、肝絶対

重量の増加が、同群の雄で腎絶対重量の減少が、100 mg/kg 体重/日以上投与群の雌雄で染色性の変化を伴った肝細胞肥大が、同群の雄で腎尿細管空胞の減少が認められた。

本試験において、100 mg/kg 体重/日以上投与群の雌雄で肝細胞肥大等が認められたので、無毒性量は雌雄とも 10 mg/kg 体重/日であると考えられた。発がん性は認められなかった。(参照 2、4、5)

13. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット (一群雌雄各 30 匹) を用いた混餌 (原体:0、10、100 及び 500 mg/kg 体重/日) 投与による 2 世代繁殖試験が実施された。

親動物 (F_1) の 10 mg/kg 体重/日投与群の雌雄それぞれ 1 例及び 500 mg/kg 体重/日投与群の雌 1 例が、瀕死状態のため切迫と殺された。これらの個体は剖検時に尿路に病変が認められた。

親動物では、500 mg/kg 体重/日投与群の雌雄で、甲状腺ろ胞上皮細胞肥大(P 及び F_1)が、100 mg/kg 体重/日以上投与群の雌雄で、脂肪変性を伴った腎集合管肥大及び空胞化(P 及び F_1)が認められた。

児動物では、500 mg/kg 体重/日投与群で生後 4 日生存率の減少(F_1 及び F_2)が認められた。

本試験における無毒性量は、親動物では雌雄とも 10 mg/kg 体重/日、児動物では雌雄とも 100 mg/kg 体重/日であると考えられた。繁殖能に対する影響は認められなかった。(参照 2、4、5)

(2)発生毒性試験(ラット)

SD ラット(一群雌 30 匹)の妊娠 $6\sim16$ 日に強制経口(原体:0、100、500 及び 1,000 mg/kg 体重/日、溶媒:0.5%Methocel A4M 水溶液)投与し、発生毒性試験が実施された。

母動物、胎児ともに、検体投与の影響は認められなかった。

本試験における無毒性量は、母動物及び胎児で本試験の最高用量 1,000 mg/kg 体 重/日であると考えられた。催奇形性は認められなかった。(参照 2、4、5)

(3) 発生毒性試験(ウサギ)

NZW ウサギ(一群雌 20 匹)の妊娠 $7\sim19$ 日に強制経口(原体:0、30、100 及び 300 mg/kg 体重/日、溶媒:0.5%Methocel A4M 水溶液)投与し、発生毒性試験が実施された。

母動物では、300 mg/kg 体重/日投与群で、流産(2 例)、体重増加抑制及び摂餌 量減少が認められた。

胎児では、検体投与の影響は認められなかった。

本試験における無毒性量は、母動物で 100 mg/kg 体重/日、胎児で本試験の最高 用量 300 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 2、4、5)

14. 遺伝毒性試験

クロランスラムメチルの細菌を用いた復帰突然変異試験、チャイニーズハムスター卵巣細胞(CHO-K1-BH4)を用いた HGPRT 遺伝子突然変異試験、ラットリンパ球を用いた染色体異常試験、マウスを用いた小核試験が実施された。

結果は表4に示されており、すべて陰性であったので、クロランスラムメチルに遺伝毒性はないものと考えられた。 (参照2、4、5)

表 4 遺伝毒性試験概要(原体)

試験		試験		結果
	復帰突然 変異試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA 1537 株)	$0.15\sim15 \mu g/7^{\circ} \nu - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	陰性
in vitro	HGPRT 遺伝 子変異試験	チャイニーズハムスター卵巣 由来細胞 (CHO-K1-BH4)	50~800 μg/mL (+/-S9)	陰性
	染色体異常 試験	ラットリンパ球	53~600 μg/mL (+/-S9)	陰性
in vivo	小核試験	ICR マウス(骨髄細胞) (一群雌雄各 5 匹)	500、1,667、5,000 mg/kg 体重 (単回強制経口投与)	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

皿. 食品健康影響評価

参照に挙げた資料を用いて、農薬「クロランスラムメチル」の食品健康影響評価を 実施した。

ラットを用いた動物体内運命試験の結果、投与 72 時間後に組織及びカーカスの残留放射能は 0.7~2%TAR であり、最も残留放射能量が多かったのは血液、腎臓及び肝臓であった。

主要代謝物はベンゼン環またはピリミジン環に水酸基を持つ化合物、あるいは代謝物A及びBであった。

経口投与後 72 時間以内に 89.5~101%TAR が排泄された。排泄経路は、低用量群 (5 mg/kg 体重投与群)の雄では尿中と糞中の差が小さく、雌では尿中排泄が主要排 泄経路であったが、高用量群 (1,000 mg/kg 体重投与群)では雌雄とも糞中が主要排 泄経路であった。

植物体内運命試験の結果、可食部への放射能の残留はごく少量であると考えられた。 植物における主要代謝経路は、ホモグルタチオン抱合及び光分解によるスルホンアミ ド及びスルホン酸誘導体生成であると考えられた。

各種毒性試験結果から、クロランスラムメチル投与による影響は、主に肝臓及び腎臓に観察された。神経毒性、発がん性、繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

各種試験結果から、農産物中の暴露評価対象物質をクロランスラムメチル(親化合物)及び代謝物 D (クロランスラム) と設定した。

各試験における無毒性量等は表5に示されている。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量の最小値がイヌを用いた1年間慢性毒性試験の5 mg/kg 体重/日であったので、これを根拠として安全係数100で除した0.05 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

ADI 0.05 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌

(無毒性量) 5 mg/kg 体重/日

(安全係数) 100

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際に確認する こととする。

表 5 各試験における無毒性量等の比較

			無毒性量(mg/kg 体重/日) ¹⁾		
動物種	試験	投与量	71117		食品安全委員会
274 174 122		(mg/kg 体重/日)	米国	カナダ	農薬専門調査会
ラット	2 年間	0,10,75,325	雌雄: 75	雌雄: 10	雌雄:10
	慢性毒性/	0(10(10(020	, , , , , , , , , , , , , , , , , , ,	V-map V IO	V-дагда V 10
	発がん性		 雌雄・血液学的。生化。	 雌雄:腎近位尿細管上	雄・腎盂乳頭鉱質沈着
	併合試験			皮細胞空胞化等	雌: 腎近位尿細管上皮
	VI II II (4)		の変化等	(発がん性は認められ	
			(発がん性は認められ	, , , , , , , , , , , , , , , , , , , ,	(発がん性は認められ
			ない)		ない)
	2 世代	0,10,100,500	親動物 雌雄:10	親動物 雌雄:10	親動物 雌雄:10
	繁殖試験	3,13,133,333	児動物:100	児動物:100	児動物:100
	>107 E-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		720,777)	725,7 1,7 1 2 0 0
			親動物 雌雄:脂肪変	 親動物 雌雄:脂肪変	親動物 雌雄:脂肪変
				性を伴った腎集合	
				 管肥大及び空胞化	
			児動物:	 児動物:	児動物:
			生後4日生存率減少	生後4日生存率減少	生後4日生存率減少
			(繁殖能に対する影	(繁殖能に対する影	(繁殖能に対する影
			響なし)	響なし)	響なし)
	発生毒性	0,100,500,	母動物及び胎児:1,000	母動物及び胎児:1,000	母動物及び胎児:1,000
	試験	1,000	母動物及び胎児:	母動物及び胎児:	母動物及び胎児:
			毒性所見なし	毒性所見なし	毒性所見なし
			(催奇形性は認められ	(催奇形性は認められ	(催奇形性は認められ
			ない)	ない)	ない)
マウス	90 日間	0、50、100、	雄:50	雄:50	雄:50
	亜急性	500、	雌:100	雌: 100	雌:100
	毒性試験	1,000			
			雌雄:肝細胞肥大	雌雄:肝細胞肥大	雌雄:肝細胞肥大
	2 年間	0,10,100,	雌雄: 10	雌雄: 10	雌雄: 10
	発がん性	1,000		. , -	. , -
	試験	Í	雌雄:肝細胞肥大等	 雌雄:体重増加抑制等	 雌雄:肝細胞肥大等
	~ .		· · · · · · · · · · · · · · · ·	(発がん性は認められ	
				ない)	ない)
				<u>'</u>	<u>,</u>

投与量		₩ <i>旨</i> 昌	無毒性量(mg/kg 体重/日) ¹⁾		
動物種	試験		米国	カナダ	食品安全委員会
(mg/kg 体重/日)		不 国	A J A	農薬専門調査会	
ウサギ	発生毒性	0,30,100,300	母動物:100	母動物:100	母動物:100
	試験		胎児:300	胎児:300	胎児:300
			母動物:体重増加抑制	母動物:体重増加抑制	母動物:体重増加抑制
			等	等	等
			胎児:毒性所見なし	胎児:毒性所見なし	胎児:毒性所見なし
			(催奇形性は認めら	(催奇形性は認めら	(催奇形性は認めら
			れない)	れない)	れない)
イヌ	1年間	0,5,10,50	雌雄:10	雌雄:5	雌雄:5
	慢性毒性				
試験		雌雄:ALT、ALP增加	雌雄:ALT、ALP增加	雌雄:肝細胞色素沈着	
			を伴う肝細胞肥大	等	
			及び肝細胞色素沈		
			着		
		NOAEL: 10	NOAEL : 5	NOAEL : 5	
ADI(cRfD)		UF: 100	SF: 100	SF: 100	
		cRfD: 0.1	ADI: 0.05	ADI: 0.05	
ADI(cRfD)設定根拠資料		イヌ 1 年間慢性毒性	イヌ 1 年間慢性毒性	イヌ 1 年間慢性毒性	
		試験	試験	試験	

NOAEL:無毒性量 SF:安全係数 UF:不確実係数 cRfD:慢性参照用量

1)無毒性量欄には、最小毒性量で認められた主な毒性所見等を記した。

<別紙1:代謝物/分解物略称>

記号	略称	化学名
	4-OH-phenyl-cloransulam-methyl	methyl
A		3-chloro-2-(5-ethoxy-7-fluoro[1,2,4]triazolo[1,5-c]
		pyrimidin-2-ylsulfonamido)-5-hydroxybenzoate
	5-OH-cloransulam-methyl	methyl
В		3-chloro-2-{[(7-fluoro-5-hydroxy[1,2,4]triazolo[1,5-c]
		pyrimidin-2-yl)sulfonyl]amino}benzoate
C	5-OH-cloransulam	3-chloro-2-(7-fluoro-5-hydroxy[1,2,4]triazolo[1,5-c]
		pyrimidin-2-ylsulfonamido)benzoic acid
D	cloransulam	3-chloro-2-(5-ethoxy-7-fluoro[1,2,4]triazolo[1,5-c]
D		pyrimidin-2-ylsulfonamido)benzoic acid
E	cloransulam-methyl acetic acid	[3-({[2-chloro-6-(methoxycarbonyl)phenyl]amino}
E		${\bf sulfonyl)}\hbox{-}1H\hbox{-}1,2,4\hbox{-}{\bf triazol}\hbox{-}5\hbox{-}{\bf yl}] {\bf acetic\ acid}$
	cloransulam-methyl imidate	{3-({[2-chloro-6-(methoxycarbonyl)phenyl]amino}
F		${\bf sulfonyl)\hbox{-}1\hbox{-}[ethoxy(imino)methyl]\hbox{-}1} H\hbox{-}1,2,4\hbox{-}triazol$
		-5-yl}acetic acid
G	methyl-ASTP-cysteine	7S-[3-aminosulfonyl-5-methoxy-[1,2,4]triazolo
G		[1,5-c]-pyrimidinyl]cysteine
Н	sulfonamide(ASTP)	5-ethoxy-7-fluoro-(1,2,4)triazol[1,5c]pyrimidine
П		-2-sulfonamide
I	sulfonic acid(TPSA)	2-(dioxidosulfanyl)-5-ethoxy-7-fluoro[1,2,4]triazolo
1		[1,5-c]pyrimidine
J		N -(2-carboxy-phenyl-6-chloro)-{1-methyl-5-(2-
o o		fluoroethenyl)-1,2,4-triazol-3-sulfonamide

<別紙2:検査値等略称>

略称	名称
ai	有効成分量
Alb	アルブミン
ALP	アルカリホスファターゼ
ALS	アセト乳酸合成酵素
ALT	アラニンアミノトランスフェラーゼ
	(=グルタミン酸ピルビン酸トランスアミナーゼ (GPT))
FOB	機能観察総合評価
Hb	ヘモグロビン (血色素量)
Ht	ヘマトクリット値
LC_{50}	半数致死濃度
LD_{50}	半数致死量
MC	メチルセルロース
MCV	平均赤血球容積
PLT	血小板数
RBC	赤血球数
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
TP	総蛋白質
TRR	総残留放射能
WBC	白血球数

<参照>

- 1 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する 件(平成 17 年 11 月 29 日付、厚生労働省告示第 499 号)
- 2 US EPA: Pesticide Fact Sheet "Cloransulam-methyl" (2000)
- 3 US EPA: permanent tolerance request for the use of the new chemical:cloransulam-methyl in/on soybean, seed at 0.02 ppm, forage at 0.1 ppm, and in/on soybean, hay at 0.2 ppm(1997)
- 4 US EPA: XDE-565 Technical (Cloransulam methyl, FirstaRate herbicide) and NAF-75 89% a.i. Herbicide: Review of Toxicology Data submitted by the Registrant in Support of Registration.(1997)
- 5 Health Canada: Regulatory Note "Cloransulam-methyl"
- 6 食品健康影響評価について
 - (URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-cloransulam-methyl-200325.pdf)
- 7 第 231 回食品安全委員会
 - (URL: http://www.fsc.go.jp/iinkai/i-dai231/index.html)
- 8 第 16 回食品安全委員会農薬専門調査会確認評価第二部会 (URL: http://www.fsc.go.jp/senmon/nouyaku/kakunin2_dai16/index.html)
- 9 第 48 回食品安全委員会農薬専門調査会幹事会 (URL: http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai48/index.html)
- 10 The e-Pesticide Manual (14 edition) ver 4.0 (British Crop Protection Council): 167 cloransulam-methyl