(案)

動物用医薬品評価書

鶏大腸菌症生ワクチン (ガルエヌテクト CBL)

2012年7月

食品安全委員会動物用医薬品専門調査会

目 次

·	頁
〇審議の経緯	
〇食品安全委員会委員名簿 ······	2
〇食品安全委員会動物用医薬品専門調査会専門委員名簿 ·······	2
〇要約 ······	3
I. 評価対象動物用医薬品の概要	
1. 主剤 ······	4
2. 効能・効果 ····································	4
3.用法▪用量 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	4
4. 添加剤等 ······	4
5. 開発の経緯	4
Ⅱ. 安全性に係る知見の概要	5
1. ヒトに対する安全性	5
(1) 主剤について	5
(2)添加剤について	6
2. 鶏に対する安全性	6
(1)鶏に対する安全性試験	6
(2)鶏に対する臨床試験	. 7
3. その他	
Ⅲ. 食品健康影響評価 ····································	8
▪ 別紙:検査値等略称 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	9
• 参照	9

〈審議の経緯〉

2012年 2月 6日 農林水産大臣より製造販売の承認に係る食品健康影響評価について 要請(23消安第4963号)、厚生労働大臣より残留基準設定に係る食 品健康影響評価について要請(厚生労働省発食安0203第4号)、関 係資料の接受

2012年 2月 9日第418回食品安全委員会(要請事項説明)

2012年 3月21日第138回動物用医薬品専門調査会

2012年 7月 23日 第 440 回食品安全委員会 (報告)

〈食品安全委員会委員名簿〉

(2012年6月30日まで)(2012年7月1日から)小泉 直子(委員長)熊谷 進 (委員長)

熊谷 進(委員長代理*)佐藤 洋(委員長代理)長尾 拓山添 康(委員長代理)野村 一正三森 国敏 (委員長代理)

 畑江 敬子
 石井 克枝

 廣瀬 雅雄
 上安平 冽子

 村田 容常
 村田 容常

*:2011年1月13日から

〈食品安全委員会動物用医薬品専門調査会専門委員名簿〉

(2012年6月30日まで)

三森 国敏 (座長)

山手 丈至 (座長代理)

石川 さと子 福所 秋雄

石川 整 舞田 正志

小川 久美子 松尾 三郎

寺本 昭二 山口 成夫

天間 恭介 山崎 浩史

頭金 正博 渡邊 敏明

能美 健彦

(専門参考人)

澤田 純一

要約

鶏大腸菌症生ワクチン(ガルエヌテクト CBL)について食品健康影響評価を実施した。 主剤の鶏大腸菌血清型 O78 AESN1331 株は、野外分離株の crp 遺伝子を欠損変異型 crp 遺伝子に置き換えて作出されたもので、その塩基配列は全て大腸菌由来である。また、自 然状態において、一定の頻度で crp 遺伝子の欠損変異株が分離されることが報告されてい る。これらのことから、鶏大腸菌血清型 O78 AESN1331 株において、遺伝子を置き換え ることに起因する安全性上の新たな懸念は生じないものと考えられた。

鶏大腸菌症は鶏及び七面鳥の感染性疾病で、大腸菌の血清型 O78 において、鶏大腸菌症 由来株とヒトの毒素原性大腸菌由来株との間で疫学的な関連性は認められていない。また、 鶏大腸菌血清型 O78 AESN1331 株は、ヒトの病原性大腸菌の病原性遺伝子を保有してい ないことから、ヒトに対する病原性大腸菌には相当しない。さらに、鶏大腸菌血清型 O78 AESN1331 株は、野外分離株より鶏体内への定着性が減弱しており、ヒナに 2 回噴霧投与 した場合でも投与 4 日後には消失することが認められている。これらのことから、鶏大腸 菌血清型 O78 AESN1331 株はヒトに対して病原性を示さないものと考えられた。

本製剤の安定剤として使用されている添加剤については、物質の使用状況、既存の毒性 評価及び本製剤の投与量を考慮すると、本製剤の含有成分として摂取した場合の健康影響 は無視できると考えられる。

また、鶏大腸菌血清型 O78 AESN1331 株の病原性復帰は認められないこと及び性状は 安定であることが確認されている。

以上のことから、本製剤が適切に使用される限りにおいては、食品を通じてヒトの健康に影響を与える可能性は無視できるものと考えられる。

I. 評価対象動物用医薬品の概要

1. 主剤 (参照1)

主剤は鶏大腸菌血清型 O78 AESN1331 株 1 である。本製剤 1 バイアル(1,000 羽分)中に鶏大腸菌血清型 O78 AESN1331 株(以下「製造用株」という。)が $10^{10}\sim10^{12}$ CFU 含まれている。

2. 効能・効果 (参照 1)

効能・効果は、鶏大腸菌症の予防である。

3. 用法・用量 (参照 1)

本製剤を日局の生理食塩液を用いて 1,000 羽分当たり 100~300 mL に溶解し、3~4 週間隔で 2 回投与する。初回は噴霧器、第 2 回は噴霧器又は散霧器を用いて投与する。

4. 添加剤等 (参照1)

本製剤 1 バイアル(1,000 羽分)中に、安定剤として脱脂粉乳(100 mg)、酵母エキス(50 mg)及び D-ソルビトール(100 mg)が含まれている。

5. 開発の経緯 (参照 2~6)

鶏大腸菌症は、大腸菌 (Escherichia coli) を原因菌とする鶏及び七面鳥の感染性疾病で、敗血症、心膜炎、肝包膜炎、気嚢炎、眼球炎、蜂窩織炎等の病型がある。感染経路は主に呼吸器系を介した水平感染である。通常、卵用鶏よりも肉用鶏で発生することが多く、特に5~10 週齢のブロイラーに多発する。本症は世界的に発生がみられており、日本では、厚生労働省発表の食鳥検査成績において、解体禁止及び全廃棄の措置が取られる原因の第一位となっている。鶏に病原性を示す菌株の血清型は O78、O2 又は O1が主体で、日本においても O78 を主体に、次いで O2 が多く分離されており、特にブロイラーの蜂窩織炎の症例では O78 が多く分離されている。(参照 2~4)

日本における鶏大腸菌症ワクチンとしては、組換え型 F11 線毛抗原及びベロ細胞毒素 抗原を主成分とする油性アジュバント加不活化ワクチン (筋肉内投与) 及び大腸菌の全 菌体破砕処理抗原を主成分とする脂質アジュバント加不活化ワクチン (点眼投与) の 2 製品が承認されている。前者は種鶏用であるためヒナに対して能動免疫の付与ができず、 後者は接種に手間がかかるという難点がある。(参照 2、3)

鶏大腸菌血清型 O1 の菌株を用いたトランスポゾンのランダム挿入変異株の解析から、cAMP レセプタータンパク質をコードする crp 遺伝子が、本菌の β 溶血性の表現型及び鶏に対する病原性発現に関与することが明らかにされている。そこで、野外分離株(J29 株。以下「親株」という。)の染色体上にある完全な crp 遺伝子を、親株 crp 遺伝子から遺伝子改変された欠損変異型 crp 遺伝子(以下「 Δcrp 遺伝子」という。)を挿入したプラスミドベクターを用いて形質転換させた大腸菌との接合によって Δcrp 遺伝子に置き

¹ 野外分離株(J29 株)を親株とし、その染色体上の crp 遺伝子を欠損変異型 crp 遺伝子に置き換えた変異株である。

換え、さらにコロニー選択により crp 遺伝子欠損変異株である製造用株を作出した(セルフクローニング²及びナチュラルオカレンス³に該当。)(参照 5、6)。製造用株を鶏に噴霧投与した場合、製造用株は呼吸器系に数日間のみ定着して免疫を惹起し、投与 4 日後には消失することが確認されている。また、採卵鶏へ噴霧投与した場合、製造用株の卵内への移行、産卵率の低下等は認められなかった。これらのことから、簡便でかつ短時間に多数のヒナに対して投与可能な噴霧又は散霧の用法が適用可能なワクチンとして、本製剤が開発された。

海外では、本製剤と類似の鶏大腸菌弱毒生ワクチンが使用されている。

Ⅱ. 安全性に係る知見の概要

1. ヒトに対する安全性

(1) 主剤について(参照2、3、7、8)

主剤の製造用株は、親株の crp 遺伝子を、形質転換させた大腸菌との接合及びコロニー選択により、親株由来の crp 遺伝子から PCR を用いて crp 遺伝子のオープンリーディングフレーム (ORF) の中心部分に相当する塩基を欠損させて作出された Δ crp 遺伝子に置き換えて作出されたものである。作出に用いられたプラスミドは製造用株には残存しておらず、製造用株の塩基配列は全て大腸菌由来である。また、自然状態において、一定の頻度で crp 遺伝子の欠損変異株が分離されることが報告されている。これらのことから、製造用株において、遺伝子を置き換えることに起因する安全性上の新たな懸念は生じないものと考えられた。

鶏大腸菌症の起因菌である大腸菌株は、ヒトに対して病原性を示す大腸菌株とは保有する病原因子が異なるとされている。大腸菌の血清型 O78 においても、鶏大腸菌症由来株とヒトの毒素原性大腸菌由来株との間で疫学的な関連性は認められていない。一般に、ヒトに対する病原性大腸菌は腸管毒素原性大腸菌(ETEC)、腸管侵入性大腸菌(EIEC)、腸管病原性大腸菌(EPEC)、腸管出血性大腸菌(EHEC) 及び腸管凝集接着性大腸菌(EAEC) の 5 種類に分類され、それぞれ同定可能な独自の病原因子を保有している。製造用株は、ヒトの病原性大腸菌の病原性遺伝子である eaeA、stx1、stx2、LT、ST、astA、aggR 及び virA を保有していないことから、ヒトに対する病原性大腸菌には相当しない。また、製造用株は、親株より鶏体内への定着性が減弱しており、ヒナに2回噴霧投与した場合でも投与4日後には消失することが認められている。これらのことから、製造用株はヒトに対して病原性を示さないものと考えられた。

_

² 同種の核酸のみを用いて加工する技術。用いる遺伝子組換え技術がセルフクローニングに該当する場合、遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律(以下「カルタヘナ法」という。)の対象とする技術から除外されている。(参照 5)

³ 異種の核酸を用いた場合であっても、自然条件で核酸を交換することが知られている種の核酸のみを 用いて加工する技術。用いる遺伝子組換え技術がナチュラルオカレンスに相当する場合、カルタヘナ 法の対象とする技術から除外されている。(参照 5)

(2) 添加剤について (参照 9~12)

本製剤に安定剤として使用されている添加剤のうち、D-ソルビトールは過去に動物用 医薬品の添加剤として用いられており、食品安全委員会で評価されている(参照9)。脱 脂粉乳は、通常食品としても摂取されている。酵母エキスは、酵母を原料として自己消 化や酵素添加により分解してエキス化したもので、食品として広く利用され摂取されて いる (参照 10~12)。

以上のことから、本製剤に含まれている添加剤は、物質の使用状況、既存の毒性評価 及び本製剤の投与量を考慮すると、本製剤の含有成分として摂取した場合の健康影響は 無視できると考えられる。

2. 鶏に対する安全性

(1) 鶏に対する安全性試験 (参照2、13)

SPF 鶏ひな(白色レグホン、1日齢、雌雄計30羽/群)を用いて、本製剤の試作ワク チンの常用量4又は100倍量5をそれぞれ3週間隔で2回噴霧投与し、本製剤の安全性試 験が実施された。対照群には溶解用液を投与した6。試験期間中、臨床観察を実施した。 体重は、初回投与時、初回投与7及び14日後、第2回投与時、第2回投与7及び14 日後の計6回測定された。また、各回投与1、7及び14日後に各群5羽で割検及び病 理組織学的検査に用いた。

各投与群それぞれ1例が死亡した。常用量群における死亡例では、卵黄遺残及び筋胃 炎に加えて削痩及び下痢が、100 倍量群における死亡例では、上部消化器及び皮下の水 腫を伴った血管炎及び血管周囲炎並びに肝細胞の萎縮及び発育不良が観察された。これ らの所見と死亡原因との関係は不明であるが、鶏大腸菌症に罹患した場合の典型的な病 理変化像が認められなかったことから製造用株に起因する鶏大腸菌症ではなく、偶発的 な事態等により衰弱した結果として突然死したものと考えられた。

その他に一般状態、体重及び剖検において投与に起因すると思われる変化はみられな かった。病理組織学的検査では、両投与群の鼻腔、肺及び気嚢に軽度又は中等度の炎症 性変化(偽好酸球浸潤及びリンパ球浸潤)がみられたが、変化は一過性であり速やかに 消失した。

⁴ 試作ワクチン (1,000 羽分) を 300 mL の溶解用液に溶解し、1 羽当たり 0.3 mL ずつ投与。生菌数は、 初回投与: 8.4×10^7 CFU/羽、第2回投与: 5.3×10^7 CFU/羽であった。

⁵ 試作ワクチン(1,000 羽分)を 3 mL の溶解用液に溶解し、1 羽当たり 0.3 mL ずつ投与。生菌数は、 初回投与: 8.1×10° CFU/羽、第2回投与: 5.4×10° CFU/羽であった。

⁶ 溶解用液を1羽当たり0.3 mL ずつ投与。

⁷ 初回投与6日後に常用量群の1羽、同7日後に100倍量群の1羽が死亡したため、それぞれ同日に剖 検した。その結果、第2回投与14日後の剖検は、常用量群及び100倍量群ともに4羽ずつ実施され た。

(2) 鶏に対する臨床試験 (参照2、14)

鶏大腸菌症野外株の侵襲が認められた1施設及び鶏大腸菌症の発生が認められなかった3施設において、計124,716羽(63,208羽/試験群、61,508羽/対照群)の鶏を用いて本製剤の臨床試験が実施された。本製剤の試作ワクチン®を、試験群の初生ひなに初回は噴霧投与、第2回は初回投与3~4週後に噴霧又は散霧投与し、対照群は非投与とした。本試験における投与方法及び投与時期を、表1に示した。

各投与後 14 日間にわたり一般状態(元気、食欲、呼吸器及び消化器症状)について 観察し、育成率、体重(初回及び第 2 回投与時、第 2 回投与 2 週後、出荷時の計 4 回) 等について調査した。

		施設1	施設 2	施設3	施設4
投与方法	初回	噴霧	噴霧	噴霧	噴霧
	第2回	散霧	散霧	噴霧	噴霧
投与時期	初回	初生	初生	初生	初生
	第2回	3 週齢	3 週齢	4 週齢	4 週齢

表 1 鶏の臨床試験における投与方法及び投与時期

その結果、異なる 4 施設で本製剤の試作ワクチンを投与された試験群 63,208 羽について、各回投与後 14 日間にわたり投与に起因する一般状態の異常は認められず、また、最終出荷までの育成率、増体重等に異常は認められなかったことから、本製剤の投与における鶏の安全性に問題はないものと考えられた。

3. その他 (参照 1、2、7)

本製剤の小分製品の規格として、夾雑菌否定試験、4 日齢の鶏を用いた安全性試験等が設定され、それらの試験が実施された結果、問題のないことが確認されている。さらに、これらの試験は製造方法にも規定されており、製造時に規格への適合性が確認されることとなっている。

また、本製剤の主剤(製造用株)について病原性復帰及び性状の安定性が調べられており、鶏に噴霧投与して、10代継代した主剤(製造用株)の病原性復帰は認められないこと及び性状は安定であることが確認されている。

^{8 1} バイアル (1,000 羽分) 中の成分・含有量: [主剤] 鶏大腸菌 AESN1331 株 (1×10¹⁰ CFU 以上)、 [安定剤] 脱脂粉乳 (100 mg)、酵母エキス (50 mg)、ソイビーン・カゼインダイジェストブロス (60 mg)、D-ソルビトール (100 mg)

Ⅲ. 食品健康影響評価

主剤の製造用株は、親株の crp 遺伝子を欠損型の Δ crp 遺伝子に置き換えて作出されたもので、その塩基配列は全て大腸菌由来である。また、自然状態において、一定の頻度で crp 遺伝子の欠損変異株が分離されることが報告されている。これらのことから、製造用株において、遺伝子を置き換えることに起因する安全性上の新たな懸念は生じないものと考えられた。

鶏大腸菌症は鶏及び七面鳥の感染性疾病で、大腸菌の血清型 O78 において、鶏大腸菌症由来株とヒトの毒素原性大腸菌由来株との間で疫学的な関連性は認められていない。また、製造用株は、ヒトの病原性大腸菌の病原性遺伝子を保有していないことから、ヒトに対する病原性大腸菌には相当しない。さらに、製造用株は、親株より鶏体内への定着性が減弱しており、ヒナに 2 回噴霧投与した場合でも投与 4 日後には消失することが認められている。これらのことから、製造用株はヒトに対して病原性を示さないものと考えられた。

本製剤の安定剤として使用されている添加剤については、物質の使用状況、既存の毒性評価及び本製剤の投与量を考慮すると、本製剤の含有成分として摂取した場合の健康 影響は無視できると考えられる。

また、製造用株の病原性復帰は認められないこと及び性状は安定であることが確認されている。

以上のことから、本製剤が適切に使用される限りにおいては、食品を通じてヒトの健康に影響を与える可能性は無視できるものと考えられる。

〈別紙:検査値等略称〉

略称等	名称
cAMP	環状アデノシン一リン酸
CFU	コロニー形成単位(colony-forming unit)
ORF	オープンリーディングフレーム
PCR	ポリメラーゼ連鎖反応

〈参照〉

- 1. 日生研株式会社. 動物用医薬品製造販売承認申請書 ガルエヌテクト CBL (未公表)
- 2. 日生研株式会社. 動物用医薬品製造販売承認申請書 ガルエヌテクト CBL 添付資料 概要 (未公表)
- 3. 日生研株式会社. 動物用医薬品製造販売承認申請書 ガルエヌテクト CBL 添付資料 1 起源又は発見の経緯(未公表)
- 4. 中澤宗生. "鶏の大腸菌症"、動物の感染症、小沼操、明石博臣、菊池直哉、澤田拓士、 杉本千尋、宝達勉編. 第二版、近代出版、2006 年、p.220
- 5. 環境省 HP: 遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する 法律の解説. 平成 19 年 4 月 1 日修正

(http://www.bch.biodic.go.jp/download/law/070401law_manual_ver5.pdf)

- 6. 農林水産省消費・安全局. 「セルフクローニング及びナチュラルオカレンスに該当すると判断された大腸菌株、ウイルス株について」(平成19年2月1日)
- 7. 日生研株式会社. 動物用医薬品製造販売承認申請書 ガルエヌテクト CBL 添付資料 2 物理的、化学的試験に関する資料 (未公表)
- 8. 日生研株式会社. 鶏大腸菌症生ワクチン (ガルエヌテクト CBL) に関する追加資料 (未公表)
- 9. 食品安全委員会. 「食品健康影響評価の結果の通知について」(平成 18 年 11 月 16 日付府食第 914 号): (別紙)動物用医薬品評価書 鶏のトリニューモウイルス感染症生ワクチン (ノビリス TRT・1000)の再審査に係る食品健康影響評価について、2006年
- 10. 酵母エキス. 第十六改正日本薬局方(平成23年3月24日 厚生労働省告示第65号)
- 11. 酵母エキス. 微生物学・分子生物学辞典、朝倉書店. 1997年、p. 334
- 12. 酵母エキス. 丸善食品総合辞典、丸善株式会社. 平成 10 年、p. 385
- 13. 日生研株式会社. 動物用医薬品製造販売承認申請書 ガルエヌテクト CBL 添付資料 9 安全性に関する資料 (未公表)
- 14. 日生研株式会社. 動物用医薬品製造販売承認申請書 ガルエヌテクト CBL 添付資料 14 臨床試験に関する資料 (未公表)