(案)

農薬評価書

プロメトリン

2015年7月 食品安全委員会農薬専門調査会

目 次

		貝
0	審議の経緯	. 3
0	食品安全委員会委員名簿	. 3
0	食品安全委員会農薬専門調査会専門委員名簿	. 3
0	要 約	. 6
Ι.	評価対象農薬の概要	. 7
	1. 用途	
	3. 化学名	
	4. 分子式	
	5. 分子量	
	6. 構造式	
	7. 開発の経緯	
)	
Π.	安全性に係る試験の概要	. 9
	1. 動物体内運命試験	
	(1) 吸収	
	(2)分布	
	(3)代謝	
	(4) 排泄	
•	2. 植物体内運命試験	
	(1) 水稲	
	(2) セルリー	
	(3) わた①	
	(4) わた②	
	(5) わた③	
	(6) わた及びだいず	
	3. 土壌中運命試験	
•	(1) 好気的湛水土壤中運命試験	
	(2) 好気的及び嫌気的湛水土壌中運命試験	
	(3) 好気的、好気的/嫌気的湛水及び滅菌好気的土壌中運命試験	
	(4)土壤吸着試験	
	4. 水中運命試験	
•	4.	
	(2)水中光分解試験(滅菌蒸留水/自然水)(3)水中光分解試験(緩衝液)	25 25
		/:1

	(4)水中光分解試験(自然水)	25
	5. 土壌残留試験	26
	6. 作物残留試験	26
	7. 一般薬理試験	26
	8. 急性毒性試験	28
	(1)急性毒性試験	28
	(2) 急性神経毒性試験(ラット)	29
	9. 眼・皮膚に対する刺激性及び皮膚感作性試験	29
	10. 亜急性毒性試験	30
	(1)90 日間亜急性毒性試験(ラット)	30
	(2)90 日間亜急性毒性試験(イヌ)	30
	(3)28 日間亜急性毒性試験(マウス)<参考資料>	31
	(4)90 日間亜急性神経毒性試験(ラット)	31
	(5) 21 日間亜急性経皮毒性試験(ウサギ)<参考資料>	32
	1 1. 慢性毒性試験及び発がん性試験	32
	(1)2 年間慢性毒性試験(ラット)(製剤)	32
	(2)2年間慢性毒性試験(イヌ)(製剤)	33
	(3)2年間慢性毒性/発がん性併合試験(ラット)①	33
	(4)2年間慢性毒性/発がん性併合試験(ラット)②	34
	(5)2年間発がん性試験(マウス)	34
	1 2. 生殖発生毒性試験	35
	(1)2 世代繁殖試験(ラット)	35
	(2)3 世代繁殖試験(ラット)(製剤)<参考資料>	36
	(3)発生毒性試験(ラット)①	36
	(4)発生毒性試験(ラット)②	36
	(5) 発生毒性試験(ウサギ)	37
	1 3. 遺伝毒性試験	37
	14. その他の試験	39
	(1) 28 日間免疫毒性試験(マウス)	39
Ш	. 食品健康影響評価	40
	別紙1:代謝物/分解物略称	
	別紙 2: 検査値等略称	
	別紙 3: 作物残留試験成績	
	条昭	53

<審議の経緯>

1963 年 6月 22 日 初回農薬登録

2005年 11月 29日 残留農薬基準告示 (参照 1)

2013年 1月 30日 厚生労働大臣から残留基準設定に係る食品健康影響評価

について要請(厚生労働省発食安 0130 第 11 号)、関係

書類の接受(参照 2~5)

2013年 2月 4日 第462回食品安全委員会(要請事項説明)

2013年 6月 7日 第27回農薬専門調査会評価第一部会

2015年 2月 3日 追加資料受理(参照7、8)

2015年 5月 28日 第46回農薬専門調査会評価第一部会

2015年 7月 8日 第125回農薬専門調査会幹事会

2015 年 7月 28日 第 571 回食品安全委員会(報告)

<食品安全委員会委員名簿>

(2015年6月30日まで) (2015年7月1日から)

熊谷 進(委員長) 佐藤 洋(委員長)

佐藤 洋 (委員長代理) 山添 康 (委員長代理)

山添 康 (委員長代理)熊谷 進三森国敏 (委員長代理)吉田 緑石井克枝石井克枝

 上安平洌子
 堀口逸子

 村田容常
 村田容常

く食品安全委員会農薬専門調査会専門委員名簿>

(2014年3月31日まで)

• 幹事会

納屋聖人(座長) 上路雅子 松本清司

西川秋佳*(座長代理) 永田 清 山手丈至**

三枝順三(座長代理**) 長野嘉介 吉田 緑

赤池昭紀 本間正充

· 評価第一部会

上路雅子 (座長)津田修治山崎浩史赤池昭紀 (座長代理)福井義浩義澤克彦相磯成敏堀本政夫若栗 忍

• 評価第二部会

吉田 緑 (座長) 桑形麻樹子 藤本成明

松本清司(座長代理) 泉 啓介 ・評価第三部会	腰岡政二根岸友惠	細川正清 本間正充
三枝順三 (座長)	小野 敦	永田 清
納屋聖人(座長代理)	佐々木有	八田稔久
浅野 哲	田村廣人	増村健一
• 評価第四部会		
西川秋佳*(座長)	川口博明	根本信雄
長野嘉介(座長代理*;	代田眞理子	森田 健
座長**)		
山手丈至(座長代理**)	玉井郁巳	與語靖洋
井上 薫**		*: 2013年9月30日まで
		**: 2013年10月1日から
(2014年4月1日から)		
• 幹事会		
西川秋佳 (座長)	小澤正吾	林 真
納屋聖人(座長代理)	三枝順三	本間正充
赤池昭紀	代田眞理子	松本清司
浅野 哲	永田 清	與語靖洋
上路雅子	長野嘉介	吉田 緑*
• 評価第一部会		
上路雅子 (座長)	清家伸康	藤本成明
赤池昭紀(座長代理)	林 真	堀本政夫
相磯成敏	平塚明	山崎浩史
浅野 哲	福井義浩	若栗 忍
篠原厚子		
・評価第二部会		
吉田 緑(座長)*	腰岡政二	細川正清
松本清司(座長代理)	佐藤 洋	本間正充
小澤正吾	杉原数美	山本雅子
川口博明	根岸友惠	吉田 充
桑形麻樹子		
・評価第三部会		
三枝順三(座長)	高木篤也	中山真義
納屋聖人(座長代理)	田村廣人	八田稔久
太田敏博	中島美紀	増村健一
小野 敦	永田 清	義澤克彦

• 評価第四部会

西川秋佳(座長)佐々木有本多一郎長野嘉介(座長代理)代田眞理子森田 健井上 薫玉井郁巳山手丈至加藤美紀中塚敏夫與語靖洋

*:2015年6月30日まで

<第 27 回農薬専門調査会評価第一部会専門参考人名簿>

平塚明林真

要約

s-トリアジン系 (メチルチオ型) 除草剤である「プロメトリン」(CAS No.7287-19-6) について、各種資料を用いて食品健康影響評価を実施した。

評価に用いた試験成績は、動物体内運命(ラット)、植物体内運命(水稲、セルリー等)、作物残留、亜急性毒性(ラット、イヌ)、慢性毒性(ラット及びイヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代及び3世代繁殖試験(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性等の試験成績である。

各種毒性試験の結果、プロメトリン投与による影響は、主に体重(増加抑制)、血液(貧血)、腎臓(重量増加等)及び肝臓(重量増加等)に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

各種試験結果から、農産物中の暴露評価対象物質をプロメトリン(親化合物のみ) と設定した。

各試験で得られた無毒性量のうち最小値は、イヌを用いた 2 年間慢性毒性試験の 3 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.03 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

また、プロメトリンの単回投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ラットを用いた急性神経毒性試験の 150~mg/kg 体重であったことから、これを根拠として、安全係数 100~で除した 1.5~mg/kg 体重を急性参照用量 (ARfD) と設定した。

I. 評価対象農薬の概要

1. 用途

除草剤

2. 有効成分の一般名

和名:プロメトリン

英名: prometryn (ISO名)

3. 化学名

IUPAC

和名:2,4-ビス(イソプロピルアミノ)-6-メチルチオ-1,3,5-トリアジン

英名: 2,4-bis(isopropylamino)-6-methylthio-1,3,5-triazine

CAS (No.7287-19-6)

和名: N,N'-ビス(1-メチルエチル)-6-(メチルチオ)-1,3,5-トリアジン

-2,4-ジアミン

英名: N,N²bis(1-methylethyl)-6-(methylthio)-1,3,5-traizine

-2,4-diamine

4. 分子式

 $C_{10}H_{19}N_5S$

5. 分子量

241.4

6. 構造式

7. 開発の経緯

プロメトリンは、ガイギー社によって開発された s・トリアジン系 (メチルチオ型) 除草剤であり、植物の光合成電子伝達系を阻害し、炭水化物の生合成・蓄積を阻害 することによって除草効果を示すと考えられている。米国、豪州等において登録さ

れている。

国内では 1963 年に初回農薬登録されており、ポジティブリスト制度導入に伴う 暫定基準が設定されている。

Ⅱ. 安全性に係る試験の概要

各種運命試験 [I.1~4] は、プロメトリンのトリアジン環の炭素を 14 C で均一に標識したもの(以下「 $[\text{tri-}^{14}\text{C}]$ プロメトリン」という。)を用いて実施された。 放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)から プロメトリンの濃度(mg/kg 又は $\mu g/g$)に換算した値として示した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

動物体内運命試験が実施された。試験群は表1に示されている。

用量 試験群 標識体 投与経路 • 回数 種類 (動物数) (mg/kg)血中濃度、分布、胆汁排泄 [tri-14C] 雌:0.5 Ι 単回経口 $(n=3\sim5)$ 雄:0.46、雌:0.47 (低用量群) [tri-14C] 分布、排泄、代謝(n=5) Π 単回経口 雄:494、雌:440 (高用量群) 非標識体を 0.5 mg/kg 体重で 14 日間経口投 分布、排泄、代謝(n=5) III[tri-14C] 与 + 標 識 体 を 0.46 雌雄: 0.46 mg/kg 体重で単回経 口投与 雄:575 [tri-14C] 代謝(n=5) IV単回経口 雌:509

表 1 動物体内運命試験における試験群

(1) 吸収

① 血中濃度推移

試験群Iにより、血中濃度推移が検討された。 血中薬物動態学的パラメータは表2に示されている。(参照2、7)

双 2	3
投与量(mg/kg 体重)	0.5
性別	雌
C _{max} (µg/mL)	0.25
T _{max} (hr)	8
$\mathrm{T}_{1/2}$ (日)	13
AUC _{inf} (hr • μg/mL)	56.5

表 2 血中薬物動態学的パラメータ

注): I 群は Tif: RAIf ラット、II 群~IV 群は SD ラットが用いられた。

② 吸収率

胆汁中排泄試験 [1.(4)②] における尿中、胆汁中及びケージ洗浄液の放射能の合計から、プロメトリンの吸収率は少なくとも 91.6% と算出された。 (参照 2、7)

(2)分布

試験群 I、II 及び III により体内分布が検討された。

各試験群における主要臓器及び組織における残留放射能量は表 3 に示されている。

試験群 I において、投与 11 日後には赤血球に $0.37 \mu g/g$ の残留放射能が認められた以外は $0.05 \mu g/g$ 以下であった。

試験群 II 及び III において、いずれの用量群においても性差は認められず、分布パターンに用量差は認められなかった。反復投与群の分布結果が低用量群の結果と同様であることから、赤血球を除く組織への残留性及び蓄積性はないと考えられた。

各試験群における赤血球濃度はいずれも血漿濃度に比べ高いことから、プロメトリン又は代謝物が赤血球と特異的に結合していると考えられた。なお、赤血球における半減期は9日であった。(参照2、7)

表3 主要臓器及び組織における残留放射能量(µg/g)

_	払り	工女順品及い祖戦に		KP-6/ 6/
投与量 (mg/kg 体重)	性別	8 時間後	48 時間後	168 時間後
0.5 (試験群 I)	雌	赤血球(0.726)、カーカス 1(0.316)、肝臓(0.241)、腎臓(0.213)、肺(0.125)、脾臓(0.119)、心臓(0.0675)、卵巣(0.0651)、子宮(0.0485)、骨(0.0449)、脂肪(0.0328)、血漿(0.0290)	赤血球(0.785)、肺(0.107)、肝臓(0.0975)、 脾臓(0.0937)、腎臓(0.0663)、心臓(0.0427)、卵巣(0.0293)、カーカス(0.0161)、骨(0.0145)、子宮(0.0103)、脂肪(0.0098)、脳(0.0076)、血漿(0.0053)	
0.46 (試験群 II)	雄			赤血球(0.196)、脾臟 (0.035)、肺(0.026)、 心臓(0.024)、肝臓 (0.021)、腎臓(0.011)、 血漿(0.006)
0.47 (試験群 III)	雌			赤血球(0.227)、脾臓(0.043)、肺(0.033)、心臓(0.029)、肝臓(0.025)、腎臓(0.015)、血漿(0.009)
494 (試験群 II)	雄			赤血球(242)、肺(35.4)、 脾臟(25.4)、心臟(24.8)、 肝臟(21.0)、腎臟(10.9)、 血漿(7.48)
440 (試験群 II)	雌			赤血球(316)、肺(53.9)、 脾臓(50.2)、心臓(34.3)、 肝臓(33.8)、卵巣(30.2)、 腎臓(20.3)、血漿(10.6)
0.5 mg/kg 体重 で 14 日間経口	雄			赤血球(0.260)、肺(0.042)、脾臓(0.031)、心臓(0.029)、肝臓(0.028)、腎臓(0.014)、血漿(0.006)
投与+0.46 mg/kg 体重 (試 験群 III)	雌			赤血球(0.271)、肺(0.042)、脾臓(0.040)、 肝臓(0.037)、心臓(0.037)、腎臓(0.016)、 卵巣(0.014)、血漿(0.006)

/:測定せず

_

¹ 組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

(3) 代謝

尿、糞中及び胆汁中排泄試験[1.(4)]における尿、糞及び胆汁及び試験群IVにおける尿及び糞を試料として、代謝物同定・定量試験が実施された。

尿、糞及び胆汁中の主要代謝物は表 4 に示されている。

試験群 I において、尿中及び胆汁中には未変化のプロメトリンは認められず、 糞中に 0.9% TAR 認められた。

試験群 II、III 及び IV における糞中の代謝物はいずれも 10%TRR 以下であった。

プロメトリンのラットにおける主要代謝経路は、メチルチオ基の硫黄酸化(代謝物 F の生成)、メチルスルフィニル基の加水分解(代謝物 H の生成)、脱アルキル化によるイソプロピル基の消失(代謝物 B、C 及び I の生成)、アミノ基の水酸基への置換(代謝物 J の生成)、S-S 二量体の形成(代謝物 S 及び T の生成)並びにプロメトリン、代謝物 B 及び C の抱合化であると考えられた。(参照 2、7)

表 4 尿、糞及び胆汁中の主要代謝物 (%TAR)

				7 T S T V III 10 T (
投与量 (mg/kg 体重) (試験群)	性別	試料	プロメトリン	代謝物
٠,		尿	_	An(3.9), B(0.5)
0.5	雌	糞	0.9	-
(試験群 I)		胆汁	_	Ag(10.3), B(6.2), C(4.6)
雄:494 雌:509 (試験群II 高用量 投与群雄+試験群 IV 雌合算) **	雌雄	尿	1.86	Bn(6.48)、T(3.56)、An (3.24)、O(2.57)、K(2.37)、S(2.37)、I(1.46)、U(1.38)、B(1.38)、M(1.34)、C(1.22)、Ag (1.07)、D(0.99)、Ac (0.75)、R(0.71)、G(0.59)、F(0.55)、L(0.47)、Bc (0.43)、Asg (0.36)、E(0.32)、Q(0.32)、J(0.24)、Cg (0.20) 、P(0.08)、V(0.04)、N(0.04)
0.46 (試験群 II)	雄		0.17	J(2.09) 、K(1.44) 、I(0.92) 、P(0.83) 、 H(0.74) 、B(0.61) 、G(0.61) 、Cg(0.57) 、 F(0.09) 、C(0.04)
0.47 (試験群 II)	雌		0.20	J(2.22) 、 K(1.83) 、 I(1.59) 、 Cg(1.23) 、 H(1.03) 、 P(0.87) 、 B(0.75) 、 G(0.71) 、 F(0.20)、 C(0.20)
494 (試験群 II)	雄		1.96	B(3.03) 、 P(1.74) 、 K(1.38) 、 H(1.38) 、 J(1.07) 、 F(0.76) 、 I(0.62) 、 C(0.49) 、 Cg(0.49) 、 G(0.36)
440 (試験群 II)	雌		1.16	B(4.01), P(2.09), K(1.22), J(0.99), F(0.73), H(0.66), C(0.40), Cg(0.40), I(10.33), G(0.23)
非標識体 0.5 mg/kg 体重で 14 日間経口投与+標	雄	糞	0.44	I(2.08) \ H(1.59) \ J(1.15) \ K(0.84) \ Cg(0.80) \ P(0.66) \ G(0.57) \ B(0.35) \ F(0.35) \ C(0.18)
識体 0.46 mg/kg 体重で単回経口 (試験群 III)	雌		0.18	I(3.23) \ H(2.23) \ Cg(2.00) \ J(1.46) \ K(1.18) \ P(0.96) \ G(0.68) \ B(0.55) \ F(0.46) \ C(0.18)
575 (試験群 IV)	雄		1.42	B(3.06), I(2.26), K(2.26), P(1.51), H(1.47), J(0.93), Cg(0.71), F(0.62), C(0.53), G(0.31)
509 (試験群 IV)	雌		1.82	B(3.09), K(2.14), I(1.98), H(1.54), P(1.35), F(0.95), J(0.87), Cg(0.63), C(0.55), G(0.28)

^{-:}検出されず

試料採取時間:試験群 I 尿及び糞:48 時間、試験群 I 胆汁:41 時間、試験群 I~III:168 時間、試験群 IV:72 時間

^{**:} 第 I 群、第 III 群及び第 IV 群の $MeOH/H_2O$ 抽出でのプロファイルの結果、尿中代謝物のプロファイルは第 II 群雄と第 IV 群雌と同等であると考えられることから、尿中代謝物のプロファイルは、第 II 群雄と第 IV 群雌の合算値として示されている。

(4) 排泄

① 尿及び糞中排泄

試験群 II 及び III により、尿及び糞中排泄が検討された。

各試験群における投与後 168 時間の尿及び糞中排泄率は表 5 に示されている。 試験群 II 及び III において、投与後 168 時間に尿及び糞中に合計で 86~ 98%TAR が排泄され、尿及び糞へ排泄された放射能濃度はほぼ同程度であった。 (参照 2、7)

表 5 投与後 168 時間の試験群 II 及び III における尿及び糞中排泄率 (%TAR)

試験群		II			III		
	雄:	0.46	雄:	494	 非標識体 0.5 mg/kg 体重で 14		
投与量	雌:0.47		雌:440		日間経口投与+標識体 0.46		
	(mg/kg 体重)		(mg/kg	g体重)	mg/kg 体重で単回経口投与		
性別	雄 雌		雄	雌	雄	雌	
尿	47.1 49.6		46.5	52.7	53.3	51.8	
糞	43.6 41.6		44.6	33.1	44.2	45.5	
組織中残留	0.35 0.37		0.55	0.63	0.53	0.38	
血液中残留	1.20 1.31		1.52	1.89	1.48	1.46	
ケージ洗浄液	+		0.82	1.05	0.43	0.97	

② 胆汁中排泄

試験群Iにおいて胆汁中排泄試験が実施された。

投与後48時間の尿、糞及び胆汁中排泄率は表6に示されている。

プロメトリンは主に胆汁中に排泄された。

表 6 投与後 48 時間の尿、糞及び胆汁中排泄率 (%TAR)

試料	雌
尿	23.7
糞	3.88
胆汁	66.6
ケージ洗浄液	1.34

2. 植物体内運命試験

(1)水稲

栽培容器に播種された水稲(品種:きらら397)に[tri-14C]プロメトリンを480g ai/haの用量で播種直後の土壌表面に単回散布し、処理30日後及び61日後に青刈り茎葉、処理132日後に玄米及びもみ殻と合わせた稲わらを採取し、植物体内運命試験が実施された。

各試料中の残留放射能分布及び代謝物は表7に示されている。

処理 30 日及び 61 日後の青刈り茎葉における主要代謝物はIで 6.4~14.0% TRR であった。抽出残渣のマイクロ波抽出により、残渣中の残留放射能の 80%以上が抽出され、代謝物 H が 1.7~4.4% TRR(0.0084~0.041 mg/kg)、M が 1.4~ 3.8% TRR(0.0063~0.036 mg/kg)、I が 1.3~3.0% TRR(0.0061~0.026 mg/kg)及び N が 1.0~2.1% TRR(0.0066~0.10 mg/kg)認められた。

玄米にはプロメトリンは認められず、代謝物 I が 0.1% TRR (0.0001 mg/kg) 認められた。玄米の抽出残渣のマイクロ波抽出により糖類が認められ、41.6% TRR (0.034 mg/kg) がデンプンに取り込まれたと考えられた。(参照 2、7)

表,自844年00次出版对形为市及6年8的119 (WHIN)											
	100 July -										アセト
試料	抽出画分	プロメ トリン	В	F	Н	J	I	С	M	N	ン+抽 出残渣
青刈り茎葉	65.1	6.2	1.3	1.0	3.2	0.2	14.0	ND	2.7	1.2	34.9
(30 日後)	(0.6)	(0.057)	(0.012)	(0.009)	(0.030)	(0.002)	(0.129)	ND	(0.025)	(0.011)	(0.322)
青刈り茎葉	59.3	3.7	3.6	0.5	1.1	2.0	6.4	0.1	5.1	2.3	40.7
(61 日後)	(0.179)	(0.011)	(0.011)	(0.02)	(0.03)	(0.006)	(0.020)	(0.003)	(0.015)	(0.007)	(0.123)
もみ殻+稲	63.2	ND	0.8	ND	0.5	NID	6.0	ND	5.3	4.4	36.7
わら (132 日後)	(0.535)	ND	(0.007)	ND	(0.004)	ND	(0.050)	ND	(0.045)	(0.037)	(0.310)
玄米	17.3	ND	ND	ND	ND	ND	0.1	ND	ND	ND	82.7
(132 日後)	(0.014)						(0.0001)				(0.067)

表7 各試料中の残留放射能分布及び代謝物 (%TRR)

ND: 検出せず

抽出画分:アセトニトリル、アセトニトリル/水 (80:20)、アセトニトリル/水 (70:30)及び水画分の合計値

():残留放射能濃度(mg/kg)

(2) セルリー

ほ場で 20 日間生育されたセルリー(品種: Utah5270)に $[tri^{-14}C]$ プロメトリンを 1.79 kg ai/ha(以下、II.2.(2)において「1 倍処理区」という。)又は 3.58 kg ai/ha(以下、II.2.(2)において「2 倍処理区」という。)の用量で単回茎葉散布し、処理 119 日後に 2 倍処理区 50%成熟試料、処理 158 日後に 1 倍処理区 50%成熟及び 2 倍処理区成熟試料並びに処理 175 日後に 1 倍処理区成熟試料を採取し、植物体内運命試験が実施された。散布直後及び成熟試料採取時に土壌を採取し、2 倍処理区成熟試料についてはさらに代謝物について補足試験が実施された。

各試料中の残留放射能分布及び代謝物は表8に示されている。

有機相における主要成分は、代謝物 C で $15\sim20\%TRR$ 認められたほか、未変化のプロメトリン、代謝物 D、E、F、G、H、I 及び J が認められた。補足試験

では代謝物B及びIが認められた。

水相における主要代謝物は I の側鎖アルコールの構造異性体 (P2/P4) であり、ほかに C 及び J が認められた。補足試験において、代謝物 C が 7.9% TRR (0.026 mg/kg)、X が 7.7% TRR (0.025 mg/kg)、J/X が 7.4% TRR (0.024 mg/kg)、P2 が 6.6% TRR (0.021 mg/kg)、I が 5.1% TRR (0.017 mg/kg) 認められたほか、代謝物 D、C/P2、H の側鎖アルコールの構造異性体 P1/P3、J 及び J/P6 が認められた。

土壌中の残留放射能濃度は、散布直後には 1 倍処理区で 0.943 mg/kg、2 倍処理区で 2.40 mg/kg であり、ほとんどの残留放射能は $0\sim7.62$ cm の深さに認められた。

散布直後の土壌中には未変化のプロメトリンが $66\sim70\%$ TRR($0.58\sim1.36$ mg/kg)、分解物 B が $24\sim25\%$ TRR ($0.20\sim0.52$ mg/kg)、分解物 H が $5\sim8\%$ TRR($0.04\sim0.16$ mg/kg) 認められ、成熟時には未変化のプロメトリンが $32\sim37\%$ TRR($0.10\sim0.27$ mg/kg)、分解物 B が 16%TRR($0.05\sim0.12$ mg/kg)、分解物 H が $43\sim46\%$ TRR($0.15\sim0.32$ mg/kg) 認められた。(参照 2、7)

1.100.1-						
有機相	水相抽出				抽山建沐	総残留放射能
抽出		\mathbf{C}	\mathbf{C} \mathbf{J}		1田山/文(国	(mg/kg)
7.0	71.8	8.3	5.6	25.0	10.0	0.347
5.3	84.8	7.2	8.2	26.5	10.3	0.484
9.7	62.0	18.9	1.4	16.2	13.3	0.734
5.9	71.5	7.2	4.6	23.5	10.8	0.345
19.4		68	3.6		11.9	0.331
	抽出 7.0 5.3 9.7 5.9	抽出 7.0 71.8 5.3 84.8 9.7 62.0 5.9 71.5	抽出 C 7.0 71.8 8.3 5.3 84.8 7.2 9.7 62.0 18.9 5.9 71.5 7.2	抽出 C J 7.0 71.8 8.3 5.6 5.3 84.8 7.2 8.2 9.7 62.0 18.9 1.4 5.9 71.5 7.2 4.6	抽出 C J P2/P4# 7.0 71.8 8.3 5.6 25.0 5.3 84.8 7.2 8.2 26.5 9.7 62.0 18.9 1.4 16.2 5.9 71.5 7.2 4.6 23.5	抽出 C J P2/P4# 抽出残渣 7.0 71.8 8.3 5.6 25.0 10.0 5.3 84.8 7.2 8.2 26.5 10.3 9.7 62.0 18.9 1.4 16.2 13.3 5.9 71.5 7.2 4.6 23.5 10.8

表 8 各試料中の残留放射能分布及び代謝物 (%TRR)

#:Iの側鎖アルコール及びその構造異性体が含まれる。

(3) わた①

ほ場で栽培のわた(品種: Stoneville 506) に[tri-14C]プロメトリンを発芽前に 3.14 kg ai/ha、発芽後(播種 33 日後)に 0.73 kg ai/ha 及び播種 61 日後に 1.68 kg ai/ha の用量で散布し、50%成熟時及び成熟時に試料を採取し、植物体内運命試験が実施された。成熟時の試料は茎、種子、さや外被及びわた繊維に分類して採取され、散布直後及び成熟時に土壌が採取された。

各試料の残留放射能分布は表9に示されている。

50%成熟試料の有機相における主要成分は未変化のプロメトリンで 40%TRR

^{*・}補足試験

であり、ほかに代謝物として少量の F が認められた。水相においては代謝物 I の側鎖アルコールの構造異性体(P2/P4)が 1.53% TRR、H が 0.83% TRR、J が 0.64% TRR 及び I が 0.61% TRR 認められた。

成熟試料の茎及び種子の有機相においては、大部分は未変化のプロメトリンで、水相では、50%成熟試料と比べ非常に極性の高い分画の割合が増加した。種子の非抽出残渣を酵素処理又は酸加水分解処理することにより、50%成熟試料の水相と同様の分画が認められた。

土壌中のほとんどの残留放射能は、 $0\sim7.62~{\rm cm}$ の深さに $0.69\sim3.59~{\rm mg/kg}$ 認められた。播種直後の土壌中には未変化のプロメトリンが $82.2\sim82.6\%{\rm TRR}$ $(0.96\sim1.01~{\rm mg/kg})$ 認められたが、播種 $138~{\rm H}$ 後には $25.2\sim26.0\%{\rm TRR}$ $(0.79\sim0.81~{\rm mg/kg})$ に減少した。土壌中の分解物は、8 が $0.96\sim1.32\%{\rm TRR}$ $(0.01\sim0.03~{\rm mg/kg})$ 、C が $0.38\sim0.74\%{\rm TRR}$ $(0.004\sim0.02~{\rm mg/kg})$ 、H が $1.36\sim11.9\%{\rm TRR}$ $(0.02\sim0.34~{\rm mg/kg})$ 、I が $0.00\sim3.40\%{\rm TRR}$ $(0.00\sim0.06~{\rm mg/kg})$ 、J が $0.00\sim1.63\%{\rm TRR}$ $(0.00\sim0.02~{\rm mg/kg})$ 認められた。 (参照 2、7)

試料	有機相 抽出	水相 抽出	抽出残渣	総残留放射能 (mg/kg)
茎(50%成熟)	41.9	39.4	22.4	0.71
茎(100%成熟)	10.9	11.1	72.7	0.38
さや外被(100%成熟)	6.87	8.81	80.9	0.29
わた繊維(100%成熟)	16.3	5.16	74.6	0.27
わた種子(100%成熟)	13.7	8.97	69.2	0.34

表 9 各試料の残留放射能分布 (%TRR)

(4) わた②

温室内のポットにわた(品種: Stoneville213)を播種し、[tri-14C]プロメトリンを播種1日後に6.3 kg ai/ha、播種35日後に1.5 kg ai/ha 及び播種63日後に4.5 kg ai/ha の用量で散布し、未成熟時及び成熟時に試料を採取し、植物体内運命試験が実施された。成熟時には茎、種子及びわた繊維に分類して採取し、散布直後及び成熟試料採取時に土壌が採取された。

各試料の残留放射能分布及び代謝物は表 10 に示されている。

クロロホルム相の主要成分は未変化のプロメトリンであった。

水相の主要成分は代謝物 I で最大 3.6%TRR であり、ほかに代謝物 D、H、J 及び P5 が認められた。また、成熟茎部にはプロメトリン又はその代謝物のグルタチオン抱合体が存在すると推定された。

オートクレーブ加水分解によって未成熟茎部、成熟茎部及び種子からそれぞれ 94.6% TRR (2.49 mg/kg)、78.1% TRR (1.00 mg/kg) 及び 48.3% TRR (0.057 mg/kg) がメタノール/水抽出法より抽出された。代謝物として、未成熟茎部には

H が 54.3%TRR(1.43 mg/kg)、I が 9.4%TRR(0.248 mg/kg)、P5 が 25.9%TRR(0.682 mg/kg)、成熟茎部に H が 32.2%TRR(0.412 mg/kg)、I が 12.1%TRR(0.155 mg/kg)、P5 が 30.8%TRR(0.394 mg/kg)、種子に I が 3.4%TRR(0.004 mg/kg)、P5 が 20.3%TRR(0.024 mg/kg)認められた。

土壌中のほとんどの残留放射能は $0\sim7.62$ cm の深さに $2.71\sim7.64$ mg/kg 認められた。土壌中には未変化のプロメトリンが $0.978\sim4.02$ mg/kg 認められた。 (参照2、7)

クロロ 水相 抽出 ホルム 試料 プロメ 抽出 残渣 В \mathbf{C} Ι D Η Ι P5 J トリン 抽出 未成熟 51.038.88.1 0.9 1.0 20.0 0.2 2.20.526.5 茎部 (1.34)(1.02)(0.213) | (0.024) | (0.026) | (0.526)(0.006) (0.060)(0.012) (0.697)成熟 22.911.71.9 0.8 0.722.5< 0.1 0.1 3.6 0.8 1.1 42.7 $(0.293) \mid (0.150) \mid (0.024) \mid (0.010) \mid (0.009) \mid (0.288) \mid (<0.001) \mid (0.001) \mid (0.046) \mid (0.010) \mid (0.014) \mid (0.547) \mid (0.547) \mid (0.016) \mid (0.$ 茎部 成熟 1.7 11.0 0.8 72.0 種子 (0.002)(0.013)(0.001)(0.085)

表 10 各試料中の残留放射能分布及び代謝物 (%TRR)

/:代謝物同定せず ():mg/kg

-:該当なし

(5) わた③

ポットに $[tri^{-14}C]$ プロメトリンを 0、6.9 及び 13.8 mg/ポットの用量で土壌に均一に混和し、わた(品種名:Coker100A)を播種し、播種 1、3、6、10 及び 23 週後に葉部、茎部、丸さやに分離して採取又は 1 週間栽培されたわたの苗をホーグランド液で 4 日間栽培し、 $[tri^{-14}C]$ プロメトリンを 0.25 mg/L 含む水耕液に移植し、移植後 2 及び 4 週間後に植物体を採取し、また、移植後 1 及び 4 週間後に CO_2 を捕集し、植物体内運命試験が実施された。

土壌処理区においては、処理 23 週間後に未変化のプロメトリンが葉部及び茎部に 16%TRR 及び 34%TRR、代謝物として微量の H が認められた。種子には残留放射能は認められなかった。

水耕処理区においては、土壌処理区と概ね同様の結果であったが、代謝物 H は認められなかった。また、 $^{14}CO_2$ も認められなかった。(参照 2、7)

(6)わた及びだいず

播種 17 日後のわた(品種名: DPL smoothleaf)又はだいず(品種名: Lee)の苗を $[tri^{-14}C]$ プロメトリンを 0.5 mg/L 含む水耕液に移植し、光度 30,100 ルクス、29.4℃で 14 時間の明条件下及び 23.9℃で 10 時間の暗条件下に移植後、12、24、36 及び 48 時間後に茎葉及び根部を採取し、加えて代謝物の検討のためわた

では移植2日及び7日後、だいずでは移植後2日後に茎葉と根部を採取して、植物体内運命試験が実施された。

わた及びだいずにおいて、最初の12時間で 14 C-プロメトリンの吸収量が多かったが、36時間後にはほとんど停止した。

処理 2 日後の茎葉及び根部における残留放射能の分布は、わたで 37%TRR 及び 63%TRR、だいずで 77%TRR 及び 23%TRR であった。わた及びだいずとも、茎葉部及び根の主要成分は未変化のプロメトリン(わた茎葉: $18\sim24\%$ TRR、わた根部: $34\sim47\%$ TRR、だいず茎葉: 53%TRR、だいず根: 15%TRR)で、代謝物 H がわたの茎葉に $10\sim21\%$ TRR、だいずの茎葉に 13%TRR 認められた。わた及びだいずとも根部には代謝物 H は認められなかった。(参照 2、7)

植物におけるプロメトリンの主要代謝経路は、①メチルチオ基の硫黄酸化によるメチルスルフィニル誘導体(スルホキシド)への代謝による代謝物 F の生成、②メチルスルフィニル基の加水分解による代謝物 H (ヒドロキシトリアジン)の生成、③イソプロピル基(1 個または双方)の消失による代謝物 B、C 及び I の生成、④代謝物 I のアミノ基の水酸基への置換による J の生成であると考えられた。

3. 土壤中運命試験

(1) 好気的湛水土壌中運命試験

壌土に池水(pH 7.4)又はシルト質壌土に河川水(pH 8.1)(土壌及び自然水はいずれもスイス)を添加し、 19.5 ± 0.5 ^{\circ}の暗所で加湿空気を通してプレインキュベートし、 $[tri^{-14}C]$ プロメトリンを約 397 $\mu g/実験ユニットとなるように添加後、<math>20$ ^{\circ}の暗所で加湿空気を通して、最長 268 日間インキュベートして、好気的湛水土壌中運命試験が実施された。

各試験区における水層中及び土壌中の残留放射能濃度及び分解物は表 11、プロメトリンの水層、底質土壌及び処理区全体の推定半減期は表 12 に示されている。

池水処理区において、水層における主要分解物は H で最大 7.6% TAR であり、ほかに B、F 及び I が $0.3\sim3.8\%$ TAR 認められた。土壌中における主要分解物は H で最大 10.5% TAR であり、ほかに B、F 及び I が $0.3\sim2.3\%$ TAR 認められた。

河川水処理区において、水層における主要分解物は H で最大 11.1%TAR であり、ほかに F が最大 5.9%TAR、B 及び I が $0.3\sim3.4\%TAR$ 認められた。土壌中における主要分解物は H で 6.8%TAR であり、ほかに B、F 及び I が $0.2\sim1.4\%TAR$ 認められた。

底質土壌/水系におけるプロメトリンの無機化率は低く、処理 268 日後の池水処理区で 0.4%TAR 及び河川水処理区で 0.5%TAR であった。

プロメトリンは水層では速やかに、土壌中では緩やかに分解された。

プロメトリンの推定分解経路は、メチルスルファニル基が水酸基に置換されることによる分解物 H の生成、メチルスルファニル基の酸化及びスルホキシド化された分解物 F の生成、脱アルキル化された分解物 B の生成であり、最終的に CO_2 に分解されると考えられた。(参照 2、7)

表 11 各試料中の残留放射能濃度及び分解物 (%TAR)

土壌	処理後	試料	抽出性	プロメ	F	В	Н	I	CO_2	非抽出性
(水層)	日数(日)	P-V/1-1	1川口工	トリン	1.	Ъ	11	1	002	クト7川口1工
	0	水層	91.4	91.4	LOD	LOD	LOD	LOD	ND	1.2
	U	土壌	8.3	8.3	LOD	LOD	LOD	LOD	ND	1.2
	7	水層	50.6	50.6	LOD	LOD	LOD	LOD	< 0.05	4.4
	1	土壌	45.8	44.6	0.6	0.6	LOD	LOD	<0.03	4.4
	35	水層	49.5	44.1	2.6	1.3	1.3	LOD	<0.05	E 1
池水	59	土壌	40.0	37.9	1.4	0.8	LOD	LOD	<0.03	5.1
(壌土)	58	水層	29.8	21.5	3.8	1.0	2.9	0.6	0.2	15.3
	90	土壌	50.5	44.7	2.3	1.3	2.2	LOD		
	149	水層	19.9	15.6	2.2	0.4	1.5	0.3	0.2	12.9
		土壌	40.1	35.7	1.6	0.8	2.0	LOD		
	268	水層	16.6	3.2	1.9	LOD	7.6	3.6	0.4	34.9
		土壌	39.2	25.6	0.9	0.6	10.5	1.7		
	0	水層	95.9	95.9	LOD	LOD	LOD	LOD	ND	0.5
		土壌	4.3	4.3	LOD	LOD	LOD	LOD		
	7	水層	59.7	59.7	LOD	LOD	LOD	LOD	10.05	0.0
	1	土壌	38.9	38.9	LOD	LOD	LOD	LOD	< 0.05	2.3
المارا المار	30	水層	41.4	39.3	1.2	0.6	LOD	LOD	<0.05	F 0
河川水 (シルト	30	土壌	50.6	49.3	0.6	0.7	LOD	LOD	<0.05	5.0
質壌土)	58	水層	34.4	25.3	5.9	1.9	1.6	0.4	0.1	7.4
貝塚上儿	96	土壌	51.4	48.3	1.4	0.7	0.9	LOD	0.1	1.4
	140	水層	32.2	25.7	4.0	0.9	1.6	LOD	0.4	16.4
	149	土壌	45.2	42.4	1.2	0.8	0.5	LOD	0.4	16.4
	960	水層	29.8	10.2	4.4	0.4	11.1	3.4	0.5	26.0
	268	土壌	47.2	37.6	1.3	0.9	6.8	0.6	0.5	26.0

ND:検出されず、LOD:検出限界未満

表 12 プロメトリンの水層、底質土壌及び処理区全体の推定半減期(日)

試験区	水層	底質土壌	処理区全体
池水処理区	5.3	177	110
河川水処理区	10.9	381	236

(2) 好気的及び嫌気的湛水土壌中運命試験

シルト質壌土(pH 7.25、スイス)、2 種類の壌質砂土[①(pH 7.60、スイス)及び②(pH 5.65、ドイツ)]及び砂壌土(pH 7.50、スイス)を暗所、 20 ± 2 ℃でプレインキュベートした土壌に[tri-14C]プロメトリンを $3.84\sim4.92$ μ g/g 乾土となるように添加し、加湿空気の通気下に暗所、 20 ± 2 ℃で最長 168 日間(シルト質壌土は最長 351 日間)インキュベートして、好気的土壌中運命試験が実施された。

また、シルト質壌土(pH 7.25、スイス)を暗所、 20 ± 2 ℃でプレインキュベートした土壌を湛水し、1 日 2 回窒素通気し、20℃で 30 日間平衡化した後、 $[tri^{-14}C]$ プロメトリンを $4.86\sim4.92~\mu g/g$ 乾土を添加し、暗所、 20 ± 2 ℃で 1 日 2 回窒素通気し、最長 120 日間インキュベートして、嫌気的湛水土壌中運命試験が実施された。

好気的条件下及び嫌気的湛水条件下における各試料中の残留放射能分布及び 分解物は表 13 及び表 14、プロメトリン及び分解物の推定半減期は表 15 に示さ れている。

好気的条件下において、主要分解物として F が最大 22.6%TAR、H が最大 31.1%TAR 及び S1 が最大 20.6%TAR 認められ、そのほか I が最大 9.0%TAR 認められた。

嫌気的湛水条件下においては、主要成分は未変化のプロメトリンで、ほかに分解物 F が最大 2.1%TAR 認められた。

プロメトリンの推定半減期は好気的条件下で $20.6\sim121$ 日、嫌気的湛水条件下で $1,040\sim1,070$ 日であった。

プロメトリンの好気的条件下における推定代謝経路は、硫黄の酸化による分解物 F を経由した分解物 S1 の生成、スルフィニル及びスルホン酸の水酸基への置換による分解物 H の生成及び脱アルキル化による分解物 I の生成であり、最終的に CO_2 に分解されると考えられた。(参照 2、7)

表 13 好気的条件下における各試料中の残留放射能分布及び分解物 (%TAR)

土壌	処理後 日数(日)	抽出性	プロメ トリン	I	S1	Н	F	CO ₂ + 揮発性	非抽出性
	0	94.2	94.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>0.6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>0.6</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td>0.6</td></lod<></td></lod<>	<lod< td=""><td></td><td>0.6</td></lod<>		0.6
	14	86.8	67.8	2.5	<lod< td=""><td>3.0</td><td>13.6</td><td>0.2</td><td>10.5</td></lod<>	3.0	13.6	0.2	10.5
2 (9.1	28	74.6	40.8	1.5	7.7	8.4	14.9	0.8	20.1
シルト質壌土	56	58.5	16.3	2.2	13.3	15.9	9.4	2.4	34.5
貝俵上	98	51.0	10.0	3.5	12.8	19.7	4.0	5.2	43.6
	168	33.8	1.1	5.6	12.7	13.7	<lod< td=""><td>17.0</td><td>44.8</td></lod<>	17.0	44.8
	351	12.0	0.2	4.4	5.5	0.8	0.5	30.9	46.3
	0	98.3	98.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>0.1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>0.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td>0.1</td></lod<></td></lod<>	<lod< td=""><td></td><td>0.1</td></lod<>		0.1
	14	88.9	66.3	2.2	<lod< td=""><td>3.0</td><td>17.3</td><td>0.2</td><td>9.5</td></lod<>	3.0	17.3	0.2	9.5
壌質砂	28	87.2	55.9	<lod< td=""><td>4.3</td><td>6.6</td><td>19.2</td><td>0.7</td><td>16.4</td></lod<>	4.3	6.6	19.2	0.7	16.4
土①	56	64.9	19.9	2.5	12.5	13.3	14.9	2.0	33.4
	98	58.1	17.2	3.6	10.1	16.7	9.0	5.4	41.7
	168	41.7	1.3	7.7	14.3	17.4	<lod< td=""><td>12.0</td><td>47.5</td></lod<>	12.0	47.5
	0	96.9	96.9	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td><loq< td=""></loq<></td></lod<></td></lod<>	<lod< td=""><td></td><td><loq< td=""></loq<></td></lod<>		<loq< td=""></loq<>
	14	96.4	91.7	<lod< td=""><td><lod< td=""><td><lod< td=""><td>4.7</td><td>0.1</td><td>2.9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>4.7</td><td>0.1</td><td>2.9</td></lod<></td></lod<>	<lod< td=""><td>4.7</td><td>0.1</td><td>2.9</td></lod<>	4.7	0.1	2.9
壤質砂	28	97.0	88.3	<lod< td=""><td><lod< td=""><td>3.8</td><td>4.2</td><td>0.1</td><td>6.0</td></lod<></td></lod<>	<lod< td=""><td>3.8</td><td>4.2</td><td>0.1</td><td>6.0</td></lod<>	3.8	4.2	0.1	6.0
土②	56	90.7	75.4	<lod< td=""><td><lod< td=""><td>10.4</td><td>3.8</td><td>0.7</td><td>14.8</td></lod<></td></lod<>	<lod< td=""><td>10.4</td><td>3.8</td><td>0.7</td><td>14.8</td></lod<>	10.4	3.8	0.7	14.8
	98	80.7	55.6	<lod< td=""><td><lod< td=""><td>20.2</td><td>3.8</td><td>0.8</td><td>26.6</td></lod<></td></lod<>	<lod< td=""><td>20.2</td><td>3.8</td><td>0.8</td><td>26.6</td></lod<>	20.2	3.8	0.8	26.6
	168	75.9	39.0	1.8	<lod< td=""><td>31.1</td><td>3.0</td><td>0.9</td><td>28.4</td></lod<>	31.1	3.0	0.9	28.4
	0	101	101	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>0.1</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td>0.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td>0.1</td></lod<></td></lod<>	<lod< td=""><td></td><td>0.1</td></lod<>		0.1
	14	92.5	63.0	5.4	<lod< td=""><td>1.5</td><td>22.6</td><td>0.1</td><td>12.5</td></lod<>	1.5	22.6	0.1	12.5
砂壌土	28	85.7	45.3	2.1	10.0	7.1	20.3	0.6	21.8
地表上	56	63.6	13.8	3.9	19.0	15.3	10.5	1.5	38.0
	98	53.3	4.5	7.2	20.6	18.5	1.7	4.0	48.8
41.OD +\	168	40.7	1.1	9.0	14.7	15.3	<lod< td=""><td>9.3</td><td>43.3</td></lod<>	9.3	43.3

<LOD:検出限界未満、<LOQ:定量限界未満、/:該当なし

表 14 嫌気的湛水条件下における各試料中の残留放射能分布及び分解物 (%TAR)

土壌	処理後 日数(日)	試料	抽出性	プロメトリン	I	S1	Н	F	CO ₂ + 揮発性	土壌非抽出性
	0	水層	95.8	107	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td></lod<>		
		土壌	11.2							0.4
	1.4	水層	28.5	00.4	<1 OD	<1 OD	<lod< td=""><td>∠I OD</td><td>ND</td><td></td></lod<>	∠I OD	ND	
	14	土壌	71.9	99.4	<lod< td=""><td>/LOD</td><td><pod< td=""><td>ND</td><td>0.7</td></pod<></td></lod<>	/LOD		<pod< td=""><td>ND</td><td>0.7</td></pod<>	ND	0.7
シルト質	42	水層	14.4	101	<lod< td=""><td rowspan="2"><lod< td=""><td rowspan="2"><lod< td=""><td></td><td rowspan="2">ND</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td rowspan="2"><lod< td=""><td></td><td rowspan="2">ND</td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td rowspan="2">ND</td><td></td></lod<>		ND	
壌土	壌土 42	土壌	88.4	101	\LOD			~LOD		1.4
	70	水層	11.2	00.4	<1 OD	<i od<="" td=""><td><lod< td=""><td><i od<="" td=""><td>ND</td><td></td></i></td></lod<></td></i>	<lod< td=""><td><i od<="" td=""><td>ND</td><td></td></i></td></lod<>	<i od<="" td=""><td>ND</td><td></td></i>	ND	
	70	土壌	89.4	98.4	<lod< td=""><td><fod< td=""><td><lod< td=""><td><pod< td=""><td>ND</td><td>1.7</td></pod<></td></lod<></td></fod<></td></lod<>	<fod< td=""><td><lod< td=""><td><pod< td=""><td>ND</td><td>1.7</td></pod<></td></lod<></td></fod<>	<lod< td=""><td><pod< td=""><td>ND</td><td>1.7</td></pod<></td></lod<>	<pod< td=""><td>ND</td><td>1.7</td></pod<>	ND	1.7
	120	水層	9.6	96.8	≺I OD		DD <lod< td=""><td>~I OD</td><td>ND</td><td></td></lod<>	~I OD	ND	
	120	土壌	89.9	90.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>\LOD</td><td>ND</td><td>2.0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>\LOD</td><td>ND</td><td>2.0</td></lod<></td></lod<>	<lod< td=""><td>\LOD</td><td>ND</td><td>2.0</td></lod<>	\LOD	ND	2.0
	0	水層	99.7	00.4	<i od<="" td=""><td><i od<="" td=""><td><lod< td=""><td>0.1</td><td></td><td></td></lod<></td></i></td></i>	<i od<="" td=""><td><lod< td=""><td>0.1</td><td></td><td></td></lod<></td></i>	<lod< td=""><td>0.1</td><td></td><td></td></lod<>	0.1		
201.1 所	U	土壌	<lod< td=""><td>96.4</td><td>\LUD</td><td>/LUD</td><td>\LUD</td><td>2.1</td><td></td><td><lod< td=""></lod<></td></lod<>	96.4	\LUD	/LUD	\LUD	2.1		<lod< td=""></lod<>
シルト質	E0	水層	20.1	05.4	<i od<="" td=""><td><i od<="" td=""><td><i td="" ud<=""><td>0.9</td><td>ND</td><td></td></i></td></i></td></i>	<i od<="" td=""><td><i td="" ud<=""><td>0.9</td><td>ND</td><td></td></i></td></i>	<i td="" ud<=""><td>0.9</td><td>ND</td><td></td></i>	0.9	ND	
壌土 (西科野*)	58	土壌	76.0	95.4	<lod< td=""><td>< LOD</td><td><lod< td=""><td>0.2</td><td>ND</td><td>2.8</td></lod<></td></lod<>	< LOD	<lod< td=""><td>0.2</td><td>ND</td><td>2.8</td></lod<>	0.2	ND	2.8
(再試験*) -	190	水層	19.3	00.0	<i od<="" td=""><td><i od<="" td=""><td><i od<="" td=""><td rowspan="2">0.4</td><td>MD</td><td></td></i></td></i></td></i>	<i od<="" td=""><td><i od<="" td=""><td rowspan="2">0.4</td><td>MD</td><td></td></i></td></i>	<i od<="" td=""><td rowspan="2">0.4</td><td>MD</td><td></td></i>	0.4	MD	
	120	土壌	70.1	88.8	<lod< td=""><td></td><td><lod< td=""><td>ND</td><td>2.5</td></lod<></td></lod<>		<lod< td=""><td>ND</td><td>2.5</td></lod<>		ND	2.5

注:プロメトリン、I、S1、H及びFの放射能は土壌中の放射能。

<LOD:検出限界未満、/:該当なし

*:水の酸化還元電位が正になったので再試験を実施した。

表 15 好気的及び嫌気的湛水条件下におけるプロメトリン及び分解物の推定半減期 (日)

試験条件	土壌	プロメトリン	F	Н	S1
	シルト質壌土	26.4	14.1	74.8	141
47 /= 6/A	壤質砂土①	26.5	19.3	70.7	114
好気的	壤質砂土②	121	11.9		
	砂壌土	20.6	13.8	142	100
嫌気的湛水	シルト質壌土	1,070			
嫌気的湛水	シルト質壌土	1.040			
(再試験*)		1,040			

/:参照資料に記載なし。

(3) 好気的、好気的/嫌気的湛水及び滅菌好気的土壌中運命試験

砂壌土(pH 6.5、ドイツ)に $[tri^{-14}C]$ プロメトリンを 10 mg/kg 乾土となるように土壌処理し、好気的条件下で暗所 25 $^{\circ}$ 、最長 360 日間インキュベート、好気的条件下で暗所 25 $^{\circ}$ 、30 日間インキュベートした後に湛水し窒素通気して暗所 25 $^{\circ}$ で最長 90 日間インキュベート、又は土壌を滅菌した後に好気的条件下で

^{*:}水の酸化還元電位が正になったので再試験を実施した。

暗所 25℃、最長 90 日間インキュベートして土壌中運命試験が実施された。

好気的、好気的/嫌気的湛水及び滅菌好気的土壌の放射能分布及び分解物は表 16 に示されている。

好気的条件下における主要分解物は H で最大 26.2% TAR であった。ほかに B が最大 4.5% TAR 認められた。好気的/嫌気的湛水条件下及び滅菌好気的条件下では、プロメトリンの分解は僅かであり、分解物として H 及び B が認められた。

プロメトリンは緩慢に分解され、好気的条件下ではメチルチオ基の加水分解物が生成され、脱アルキル化されると考えられた。

好気的条件下におけるプロメトリンの推定半減期は286日であった。(参照2、7)

表 16 好気的、好気的/嫌気的湛水及び滅菌好気的土壌の放射能分布及び分解物 (%TAR)

試験条件	処理後 日数(日)	抽出性	プロメトリン	В	Н	CO ₂ + 揮発性	非抽出性
	0	97.0	97.0	ND	ND	ND	0.3
	30	97.8	92.5	3.4	1.9	0.1	2.1
非滅菌/	60	95.4	86.4	4.5	4.5	0.2	6.2
好気的	90	100	91.1	3.9	5.1	0.2	2.4
	180	77.8	64.6	0.8	12.4	0.3	14.8
	360	66.4	37.3	1.1	26.2	0.5	30.8
好気的/	60	91.9	83.7	4.2	4.0	< 0.1	3.3
嫌気的湛水	90	87.2	81.1	3.9	2.2	< 0.1	3.7
冷井 /	30	96.8	92.2	3.3	1.3	ND	1.7
滅菌/ 好気的	60	96.0	89.0	4.7	2.3	< 0.1	2.0
外大人(口)	90	96.8	91.0	3.7	2.1	< 0.1	3.4

ND: 検出されず

(4)土壤吸着試験

6種類の国内土壌 [軽埴土(宮城、新潟、茨城、和歌山)、シルト質埴壌土(茨城)及び砂質埴壌土(愛知)]を用いて、土壌吸着試験が実施された。

Freundlich の吸着係数 K_F^{ads} は $3.67\sim228$ であり、有機炭素含有量により補正した吸着係数 K_F^{ads} は $171\sim13,400$ であった。(参照 2、7)

4. 水中運命試験

(1) 加水分解試験

pH 5 (酢酸緩衝液)、pH 7 (リン酸緩衝液)又は pH 9 (ホウ酸緩衝液)の滅菌各緩衝液に $[tri^{-14}C]$ プロメトリンを 1.5 mg/L となるように添加し、 $25 ^{\circ}$ で最長

30日間インキュベートして、加水分解試験が実施された。

処理 7 日後を除き試験期間を通じて 90%以上がプロメトリンであり、プロメトリンはいずれの pH においても 25 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 30 日間のインキュベートで安定であると考えられた。処理 7 日後に分解物 $^{\circ}$ $^{$

(2) 水中光分解試験(滅菌蒸留水/自然水)

滅菌蒸留水及び滅菌自然水 [河川水 (茨城), pH 7.3] にプロメトリンを 5 mg/L となるように添加し、キセノン光 (光強度: $36.7\sim38.9 \text{ W/m}^2$ 、波長: $300\sim400 \text{ nm}$) を照射し、25℃で最長 14 日間インキュベートして、水中光分解試験が実施された。

プロメトリンの推定半減期は、滅菌蒸留水で 3.9 日(東京春季太陽光換算値: 18.4 日)、滅菌自然水で 5.3 日(東京春季太陽光換算値: 26.5 日)であった。暗所対照区では、14 日を超えた。(参照 2、7)

(3) 水中光分解試験(緩衝液)

リン酸緩衝液(pH 7)に $[\text{tri-}^{14}C]$ プロメトリンを約 5 mg/L となるように添加し、キセノン光(光強度: 58.0 ± 4.01 W/m²、波長: $300\sim400$ nm)を照射し、 25 ± 1 °Cで最長 36 日間インキュベートして、水中光分解試験が実施された。

プロメトリンの推定半減期は 59 日 (東京春季太陽光換算値:440 日) であった。暗所対照区においてはプロメトリンの分解は認められなかった。

光照射区において、未変化のプロメトリンは処理 36 日後に 64.0%TAR であり、ほかに分解物として H が最大 9.08%TAR、Q/Z が最大 7.44%TAR 及び B が最大 6.79%TAR 認められた。

緩衝液中でのプロメトリンの推定分解経路は、メチルチオ基の硫黄の酸素置換による分解物 Q の生成、イソプロピル基の消失による分解物 B の生成、メチルチオ基の水酸化による分解物 H の生成及びメチルチオ基の消失による分解物 Z の生成であると考えられた。 (参照 Z、7)

(4)水中光分解試験(自然水)

滅菌自然水 [池水(英国)、pH7.37] に $[tri^{-14}C]$ プロメトリンを約 5 mg/L となるように添加し、キセノン光(光強度:38.5 W/m²、波長: $300\sim400$ nm)を照射し、 25 ± 2 ℃で最長 8 日間インキュベートして、水中光分解試験が実施された。

プロメトリンの推定半減期は 7.1 日(北緯 35 度の春季太陽光換算値: 35.0 日) であった。

自然水中での未変化のプロメトリンは処理 8 日後に 48.8%TAR であり、暗所対照区では 93.4%TAR であった。分解物として B が最大 19.0%TAR、H が最大

8.66%TAR、I が最大 7.41%TAR、W2+C が最大 4.88%TAR、Z+W1 が最大 7.12%TAR 認められた。

自然水におけるプロメトリンの推定分解経路は、イソプロピル基の水酸化による分解物 W1 の生成、イソプロピル基の消失による分解物 B 及び C の生成、メチルチオ基の水酸化による分解物 H の生成及び H のイソプロピル基の消失による分解物 I の生成、分解物 H 及び I の水酸基の消失による分解物 W2 及び Z の生成であると考えられた。(参照 2、7)

5. 土壌残留試験

砂壌土(佐賀)、壌土(愛知)、火山灰土・壌土(神奈川、鹿児島及び岩手)、沖積土・壌土(神奈川)、洪積火山灰土・壌土(埼玉)、鉱質土(静岡)、沖積土・ 埴壌土(埼玉)及び火山灰土(茨城)を用いて、プロメトリンを分析対象とした土 壌残留試験(ほ場又は容器内)が実施された。

結果は表 17 に示されている。 (参照 2、7)

銀作	試験		土壌	推定半減期(日)
日本(19)大	•	濃度	上依	プロメトリン
		3,600 g ai/ha¹)	砂壌土	5.5
	.km ₩	(1回)	壌土	27.9
ほ場試験	畑地	1,000 g ai/ha ²⁾	火山灰土・壌土	19.9
は場所に		(1回)	火山灰土・壌土	3.8
	水田	1,000 g ai/ha ²⁾	沖積土・壌土	11.7
	小 田	(2回)	火山灰土・壌土	28.4
	加地久孙	$5~\mathrm{mg/kg^{3)}}$	洪積火山灰土・壌土	31.2
宏见内学脸	畑地条件	(1回)	鉱質土	113
容器内試験	₩Ⅲ冬卅	4 mg/kg ³⁾	沖積土・埴壌土	97.6
	水田条件	(1回)	火山灰土	75.5

表 17 土壌残留試験成績

6. 作物残留試験

水稲、野菜等を用いて、プロメトリンを分析対象とした作物残留試験が実施された。結果は別紙 3 に示されている。プロメトリンの最大残留値は、最終散布 41 日後に収穫した稲わらの 0.24 mg/kg であった。また、可食部では全て定量限界未満であった。(参照 2、7)

7. 一般薬理試験

プロメトリンのマウス、イヌ及びネコを用いた一般薬理試験が実施された。結果は表 18 に示されている。 (参照 2、7)

¹⁾水和剤、2)粒剤、3)純品を使用。

表 18 一般薬理試験

			10 1	0 水未生			
試験	の種類	動物種	動物数 /群	投与量 (mg/kg 体重) (投与経路)	最大無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	結果の概要
筋弛 緩作 用	ローター ロッド法	ICR マウス	雄 12	0、200、600、 2,000 (経口)	200	600	落下例の増加
及び 運動 協調 性	斜板法	ICR マウス	雄 11	0、200、600、 2,000 (経口)	2,000	_	影響なし
		ICR マウス	雄 10 ~11	0、200、600、 2,000 (経口)	200	600	睡眠時間延長
図、心	拍数及び血	雑種 イヌ	雌雄 各	0、600 (腹腔内)	_	600	呼吸数及び心拍数の増加、血 圧の下降、血流 量減少、P-Q、 QRS 及び QT 時間の短縮傾向
					_	2,000	血圧の下降
上頸節前	頁交感神経 丁線維刺激				2,000	_	影響なし
節後	袋線維刺激				2,000	_	影響なし
ンの	作用に対す る影響	雑種 ネコ	雌雄 各 4~5	2,000 (腹腔内)	2,000	_	影響なし
よる 拍数i	降圧及び心 減少に対す る影響				2,000	_	影響なし
によ に対	る降圧作用ける影響				_	2,000	降圧作用抑制
		ICR マウス	雄 10 ~12	0、60、200、 600、2,000 (経口)	60	200	腸管輸送能の 亢進
	筋緩用及運協性 ヘタ 「呼図流 上節 上節 ノン 迷よ拍 アにこ 脱れ作用び動調性 キー 吸、量 一(三二)の (型は)がの (では)を変している。	緩用及運協性 ヘタ 呼図流 上節 ノン 迷よ拍 アにに 作用び動調性 キー 吸、量 一(頸前麻 変線 麻ア作る麻神降減る麻チる対麻 中下の大変 が が眠 圧数酔 作下の大変 が が眠 圧数酔 作下の との では、 なび が 大対 が に響下 刺及に響下 コ圧 多下 が いま かんび が りょく かんび がんがん かんび かんび かんび かんび かんび かんび かんび かんび かんび かん	筋緩用及運協性 中央ド 日口口 日口口 日口口 日内 	 筋砂で種類 筋砂に作用で運動調性 ハレーター法 対板法 ハレーツド法 対板法 ロロッド法 対板法 マウス が種 なま11 本11 でウス が種 がする中ののでは、からでは、からでは、お数かでのでは、からでは、お数がでは、お数がでは、お数がでは、おりますでは、まりますでは、まりまりますでは、まりますでは、まりますでは、まりまりまりますでは、まりますでは、まりまりまりますでは、まりますでは、まりまりでは、まりますでは、まりますでは、まりますでは、まりまりますでは	動物種 動物類 一の	 試験の種類 節地 接作用 マウス に マウス が 1 に	大寒の種類 動物種 動物種 大寒作用電 (根身経路) 大寒作用電 (根身経路) (人のの (経口) (X口) (XD) (XD)

溶媒;経口投与: 0.5% CMC 溶液、腹腔内投与: 0.5% CMC 添加生理食塩液

^{-:}最少作用量又は最大無作用量は設定されず。

8. 急性毒性試験

(1)急性毒性試験

プロメトリン原体の急性毒性試験が実施された。結果は表 19 に示されている。 (参照 2、7)

表 19 急性毒性試験概要 (原体)

		LD_{50} (mg	y/kg 休重)	
投与経路	動物種	雄	雌	観察された症状
経口 a)	SD ラット 雌 5 匹		>2,000	2,000 mg/kg 体重/日:顔面汚れ、立毛 及び糞便量減少(3 例) 死亡例なし
経口 b)	ラット (系統不明) 5匹(雌雄匹数 不明)	3,7	750	2,500 mg/kg 体重以上:腹臥、昏睡及 び不規則性呼吸 2,500 mg/kg 体重以上で死亡例
経口の	Donryu ラット 雄 6 匹	3,750		2,670 mg/kg 体重/日以上: 不安状態及 びうずくまり 2,670 mg/kg 体重以上で死亡例
経口d)	SD ラット 雌雄各 10 匹	3,350	3,100	2,100 mg/kg 体重以上:嘔吐、流涎及 び運動機能低下 2,100 mg/kg 体重以上で死亡例
経口 e)	Wistar ラット 雌雄各 10 匹	1,450	1,440	839 mg/kg 体重以上: 鎮静、運動失調、 昏睡、流涎、尿失禁及び下痢 1,049 mg/kg 体重以上で死亡例
経口 e)	ddy マウス 雌雄各 10 匹	2,200	2,690	1,470 mg/kg 体重以上:鎮静、運動失調、痙攣様発作、脱力、昏睡、流涎、流涙及び立毛 雌雄:1,843 mg/kg 体重以上で死亡例
腹腔内 e)	Wistar ラット 雌雄各 10 匹	382	397	210 mg/kg 体重(雄)、262 mg/kg 体重以上:鎮静、昏睡、運動失調、流涎、尿失禁及び下痢 雄:262 mg/kg 体重以上で死亡例 雌:328 mg/kg 体重以上で死亡例
腹腔内 e)	ddy マウス 雌雄各 10 匹	394	402	289 mg/kg 体重以上: 鎮静、運動失調、 昏睡、流涎、尿失禁、下痢 雌雄: 347 mg/kg 体重以上で死亡例
皮下 e)	Wistar ラット 雌雄各 10 匹	>4,000	>4,000	4,000 mg/kg 体重:軽微な立毛及び鎮 静 雌雄:4,000 mg/kg 体重で死亡例
皮下 e)	ddy マウス 雌雄各 10 匹	>4,000	>4,000	4,000 mg/kg 体重:軽微な鎮静及び立 毛 雌雄:4,000 mg/kg 体重で死亡例
経皮 f)	Wistar ラット 雄 10 匹	>2,500		症状及び死亡例なし
経皮 f)	SD ラット 雌雄各 5 匹	>2,000	>2,000	症状及び死亡例なし

経皮 g)	Wistar ラット 雌雄各 10 匹	>5,000	>5,000	症状及び死亡例なし
経皮 g)	ddy マウス 雄 10 匹	>5,000		症状及び死亡例なし
		LC ₅₀ (r	mg/m³)	2.17 mg/L:呼吸数減少、呼吸深度増
吸入	Wistar ラット 雌雄各 5 匹	>2,170	>2,170	加、音反応減退、活動低下、流涎、後 肢撤去反射低下 死亡例なし
吸入	Wistar ラット 雌雄各 5 匹	>2,260	>2,260	2.26 mg/L:呼吸運動異常、流涎、半 閉眼、呼吸異常、鼻口部及び顎周辺被 毛褐色汚染 死亡例なし

溶媒; a): 1%CMC、b): 20%アラビアゴム溶液、c): 10%アラビアゴム溶液、d): プロピレングリコール、e): コーンオイル、f): エタノール及び g): 蒸留水

プロメトリンの代謝物 H を用いた急性毒性試験が実施された。結果は表 20 に示されている。 (参照 2、7)

表 20 急性毒性試験概要(代謝物 H)

投与経路 動物種		LD_{50} (mg	/kg 体重)	知宛された庁屮	
女子 腔始	到彻里	期物種 雄 雌		観察された症状	
経口	SD ラット	>2.000	>9.000	呼吸困難、立毛及び屈曲位	
産口	雌雄各5匹	>2,000	>2,000	死亡例なし	

溶媒: 0.1%ポリソルベート含有 0.5%CMC

(2) 急性神経毒性試験(ラット)

SD ラット(一群雌雄各 10 匹)を用いた強制単回経口(原体:0、150、500 及び1,500 mg/kg 体重)投与による急性神経毒性試験が実施された。

1,500 mg/kg 体重投与群の雌雄で体重増加抑制及び摂餌量減少(投与当日~1日後以降)が認められた。

500 mg/kg 体重/日以上投与群の雌雄で歩行運動量が低下(投与当日)し、同投与群の雌及び 1,500 mg/kg 体重投与群の雄で総運動量の低下(投与当日)が認められた。

詳細な機能検査(FOB)及び神経病理組織学的検査において検体投与の影響は認められなかった。

本試験において、500 mg/kg 体重以上の雌雄で歩行運動量の低下等が認められたので、無毒性量は雌雄とも 150 mg/kg 体重であると考えられた。急性神経毒性は認められなかった。 (参照 7)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギ及びヒマラヤウサギを用いた眼刺激性及び皮膚刺激性試験が実施され、眼粘膜に対して軽度の刺激性が認められ、皮膚に対して弱い刺激性が認められ

た。

Hartley モルモット及び Pirbright White モルモットを用いた Buehler 法及び Optimaization test 法による皮膚感作性試験が実施され、経皮投与による感作性は 認められなかったが、皮内投与による惹起において感作性が認められた。(参照 2、7)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、500、1,000 及び 5,000 ppm、平均検体摂取量は表 21 参照)投与による 90 日間亜急性毒性試験が実施された。

投与群 5,000 ppm 50 ppm 500 ppm 1,000 ppm 検体摂取量 雄 3.2 32.3 340 64.0 (mg/kg 体重/日) 雌 4.0 40.0 80.8 367

表 21 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

各投与群で認められた毒性所見は表 22 に示されている。

本試験において、1,000 ppm 投与群雄で体重増加抑制等、雌で RBC 及び Ht 減少等が認められたので、無毒性量は雌雄とも 500 ppm(雄:32.3 mg/kg 体重/日、雌:40.0 mg/kg 体重/日)であると考えられた。(参照 2、7)

投与群	雄	雌
5,000 ppm	・RBC、Hb 及び Ht 減少	体重増加抑制及び摂餌量減少
	・PLT 増加	(投与1週以降)
	・ALP 増加	・Hb 減少
		・ALP 及び Chol 増加
		・限局性尿細管拡張
1,000 ppm 以上	・体重増加抑制及び摂餌量減少	・RBC 及び Ht 減少
	(投与1週以降)	・PLT 及び Ret 増加
500 ppm 以下	毒性所見なし	毒性所見なし

表 22 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

(2)90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、20、200 及び 2,000 ppm、 平均検体摂取量は表 23 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 23 90 日間亜急性毒性試験(イヌ)の平均検体摂取量

投与群		20 ppm	200 ppm	2,000 ppm
検体摂取量	雄	0.81	8.26	70.6
(mg/kg 体重/日)	雌	0.89	8.13	82.8

各投与群で認められた毒性所見は表 24 に示されている。

本試験において、2,000 ppm 投与群の雌雄で肝絶対及び比重量 2 増加、Ht 減少等が認められたので、無毒性量は雌雄とも 200 ppm (雄: 8.26 mg/kg 体重/日、雌: 8.13 mg/kg 体重/日)であると考えられた。 (参照 2、7)

表 24 90 日間亜急性毒性試験 (イヌ) で認められた毒性所見

· ·		
投与群	雄	雌
2,000 ppm	・Ht 減少	・RBC、Hb、Ht 及び PTT 減少
	フィブリノーゲン減少	・ALT、GGT 増加
	• 血小板増加	・TG 減少
	• 心拍数增加	・尿ケトン体増加
	・肝絶対及び比重量増加[§]	・肝絶対 [§] 及び比重量増加
	・線維化を伴う限局性肝細胞壊死 [§]	・肝顆粒球浸潤
	• 肝細胞肥大 [§]	
200 ppm 以下	毒性所見なし	毒性所見なし

^{§:}統計学的有意差は認められないが、検体投与の影響と考えられた。

(3) 28 日間亜急性毒性試験(マウス) <参考資料 3>

ICR マウス (一群雌雄各 5 匹) を用いた混餌 (0、30、100、300、600、1,000、3,000、10,000 及び 30,000 ppm、検体摂取量 (計算値): <math>0、4.5、15、45、90、150、450、1,500 及び 4,500 mg/kg 体重/日) 投与による 28 日間亜急性毒性試験が実施された。

30,000 ppm 投与群の動物は 2 週間後までに全例死亡し、毒性所見は胃腸管粘膜の赤色化や胃潰瘍等消化管に限定されていた。10,000 ppm 投与群で小腸粘膜の暗桃赤色化が認められたが、病理組織学的な影響は認められなかった。

3,000 ppm 以下の投与群において毒性所見は認められなかった。(参照 **2、3、7**)

(4)90日間亜急性神経毒性試験(ラット)

SD ラット (一群雌雄各 12 匹) を用いた混餌 (原体、雄:0、500、1,000 及び 2,000 ppm、雌:0、250、500 及び 1,000 ppm、平均検体摂取量は表 25 参照) 投与による 90 日間亜急性神経毒性試験が実施された。

² 体重比重量を比重量という(以下同じ。)。

³ 検体の純度等詳細が不明なため参考資料とした。

表 25 90 日間亜急性神経毒性試験 (ラット) の平均検体摂取量

投与群		250 ppm	500 ppm	1,000 ppm	2,000 ppm
検体摂取量	雄		33	67	135
(mg/kg 体重/日)	雌	19	40	79	

本試験において、1,000 ppm 以上投与群の雄で体重増加抑制(投与1週以降)及び摂餌量減少(投与2週以降)が認められたので、無毒性量は雄で500 ppm (33 mg/kg 体重/日)、雌で本試験の最高用量1,000 ppm (79 mg/kg 体重/日)であると考えられた。亜急性神経毒性は認められなかった。(参照7)

(5) 21 日間亜急性経皮毒性試験(ウサギ) <参考資料 4>

NZW ウサギ (一群雌雄各 5 匹) を用いた経皮 (原体:0、10、100 及び1,000 mg/kg 体重/日) 投与による 21 日間亜急性経皮毒性試験が実施された。

本試験において、検体投与の影響は認められなかった。(参照2、3、7)

11. 慢性毒性試験及び発がん性試験

本剤においては、慢性毒性試験[11.(1)及び11.(2)]が製剤を用いて行われた。 食品安全委員会農薬専門調査会はこれらの試験について、以下の理由により評価 可能な試験であると判断した。

- 1) 製剤に含まれる他の成分による影響は認められていない。
- 2) EPA において製剤を用いた試験を評価資料として用いている。

なお、この判断については、今後の評価の前例とはせず、その都度判断するものとする。

(1)2年間慢性毒性試験(ラット)(製剤)

ラット(系統不明、一群雌雄各 25 匹)を用いた混餌(50%水和剤、有効成分: 0、50、250 及び 1,250 ppm、平均検体摂取量は表 26 参照)投与による 2 年間慢性毒性試験が実施された。

表 26 2 年間慢性毒性試験 (ラット) の平均検体摂取量

投与群		50 ppm	$250~\mathrm{ppm}$	$1,\!250~\mathrm{ppm}$
検体摂取量	雄	1.8	9.1	46.3
(mg/kg 体重/日)	雌	2.5	12.6	62.5

本試験において、検体投与の影響は認められなかったので、無毒性量は雌雄とも本試験の最高用量 $1,250~{\rm ppm}$ (雄: $46.3~{\rm mg/kg}$ 体重/日、雌: $62.5~{\rm mg/kg}$ 体重/日)であると考えられた。(参照 2、7)

_

⁴ 感染症が各群でみられていることから、参考資料とした。

(2)2年間慢性毒性試験(イヌ)(製剤)

ビーグル犬 (一群雌雄各 3 匹) を用いた混餌 (80%水和剤、有効成分:0、15、150及び 1,500 ppm) 投与による 2 年間慢性毒性試験が実施された。

本試験において、1,500 ppm 投与群の雄でび漫性肝細胞色素沈着、腎臓尿細管変性、同投与群の雌雄で骨髄萎縮が認められたことから、無毒性量は雌雄とも150 ppm であると考えられた。

なお、本試験においては、摂餌量に関する情報が不十分であったことから、食品安全委員会農薬専門調査会において IPCS の換算係数 (参照 6) を基に検討した結果、無毒性量に相当する検体摂取量は 3 mg/kg 体重/日であると考えられた。 (参照 2、3、7)

(3)2年間慢性毒性/発がん性併合試験(ラット)①

Fischer ラット [発がん群:一群雌雄各 40 匹、慢性毒性群:一群雌雄各 16 匹 (12 か月及び 18 か月に各 8 匹と殺)]を用いた混餌(原体:0、30、300、1,000 及び 3,000 ppm、平均検体摂取量は表 27 参照)投与による 2 年間慢性毒性/発がん性併合試験が実施された。

表 27 2 年間慢性毒性/発がん性併合試験 (ラット) ①の平均検体摂取量

投与群		$30~\mathrm{ppm}$	300 ppm	1,000 ppm	3,000 ppm
検体摂取量	雄	1.1	11.1	38.0	119
(mg/kg 体重/日)	雌	1.3	12.6	45.4	140

各投与群で認められた毒性所見は表 28 に示されている。

検体投与に関連して発生頻度の増加した腫瘍性病変は認められなかった。

本試験において、1,000 ppm 投与群の雄で体重増加抑制等、同投与群の雌で肝壊死巣が認められたので、無毒性量は雌雄とも 300 ppm (雄:11.1 mg/kg 体重/日、雌:12.6 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 2、7)

表 28 2 年間慢性毒性/発がん性併合試験(ラット)①で認められた毒性所見

投与群	雄	雌
3,000 ppm	・LDH 減少 ・尿蛋白及び尿比重増加 ・腎絶対及び比重量増加 ・腎コロイド変性*	・体重増加抑制(投与1週以降) ・RBC、WBC、Hb及びHt減少 ・PLT増加 ・LDH減少 ・尿蛋白、尿中赤血球及び円柱増加 ・腎絶対及び比重量増加 ・腎細胞浸潤及びコロイド変性*
1,000 ppm 以上	・体重増加抑制(投与1週以降) ・尿 pH、ウロビリノーゲン及び 尿中結晶増加	・肝壊死巣
300 ppm 以下	毒性所見なし	毒性所見なし

^{*:} 硝子円柱に相当する所見。

(4)2年間慢性毒性/発がん性併合試験(ラット)②

SD ラット [発がん性群:一群雌雄各 50 匹、慢性毒性群:一群雌雄各 20 匹及び中間と殺群:一群雌雄各 10 匹(52 週後にと殺)]を用いた混餌(原体:0、10、100、750 及び1,500 ppm、平均検体摂取量は表 29 参照)投与による 2 年間慢性毒性/発がん性併合試験が実施された。

表 29 2 年間慢性毒性/発がん性併合試験 (ラット) ②の平均検体摂取量

投与群		10 ppm	100 ppm	750 ppm	1,500 ppm
検体摂取量	雄	0.38	3.90	29.5	40.9
(mg/kg 体重/日)	雌	0.49	4.91	37.3	80.6

各投与群で認められた毒性所見は表30に示されている。

検体投与に関連して発生頻度の増加した腫瘍性病変は認められなかった。

本試験において、1,500 ppm 投与群雌雄で体重増加抑制等が認められたので、無毒性量は雌雄とも 750 ppm(雄:29.5 mg/kg 体重/日、雌:37.3 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 2、3、7)

表 30 2年間慢性毒性/発がん性併合試験(ラット)②で認められた毒性所見

投与群	雄	雌
1,500 ppm	・体重増加抑制(投与 12 週以降) 及び摂餌量(投与 1 週)減少 ・腎盂の結石	・体重増加抑制(投与 12 週以降) 及び摂餌量(投与 1 週)減少・Hb 及び Ht 減少・腎絶対及び比重量増加
750 ppm 以下	毒性所見なし	毒性所見なし

(5)2年間発がん性試験(マウス)

ICR マウス (一群雌雄各 60 匹) を用いた混餌 (原体: 0、10、1,000 及び 3,000

ppm、平均検体摂取量は表 31 参照)投与による 2 年間発がん性試験が実施された。

表 31 2年間発がん性併合試験(マウス)の平均検体摂取量

投与群		10 ppm	1,000 ppm	3,000 ppm
横体摂取量 雄		1.4	145	475
(mg/kg 体重/日)	雌	1.5	164	530

検体投与に関連して発生頻度の増加した腫瘍性病変は認められなかった。

本試験において、非腫瘍性病変として、3,000 ppm 投与群の雄で脾臓髄外造血 亢進、腸間膜リンパ節過形成及びアミロイド沈着(盲腸)、雌で体重増加抑制、 アミロイド沈着(肺)等が認められた。なお、1,000 ppm 以下では病理組織学的 検査は実施されていない。発がん性は認められなかった。(参照 2、3、7)

12. 生殖発生毒性試験

(mg/kg 体重/日)

(1)2世代繁殖試験(ラット)

SD ラット(一群雌雄各 30 匹)を用いた混餌(原体:0、10、750 及び 1,500 ppm、 平均検体摂取量は表 32 参照) 投与による 2 世代繁殖試験が実施された。

投与群10 ppm750 ppm1,500 ppm検体摂取量20.6347.593.1機体摂取量47.593.1

0.65

0.72

48.2

54.6

100

109

表 32 2世代繁殖試験 (ラット) の平均検体摂取量

雄

雌

各投与群における毒性所見は表33に示されている。

F₁世代

本試験において、親動物及び児動物で、750 ppm 投与群の雌雄で体重増加抑制等が認められたので、無毒性量は親動物及び児動物の雌雄とも 10 ppm (P雄: 0.63 mg/kg 体重/日、P雌: 0.70 mg/kg 体重/日、 F_1 雄: 0.65 mg/kg 体重/日、 F_1 雌: 0.72 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 2、3、7)

表 33 2世代繁殖試験(ラット)で認められた毒性所見

	+/L	親 : P、児 : F 1		親:F ₁ 、児:F ₂	
投与群		雄 雌		雄	雌
親	1,500 ppm	•体重增加抑制及	•体重增加抑制及		
動		び摂餌量減少	び摂餌量減少		
物		(投与7日以降)	(投与7日以降)		
	750 ppm 以上	750 ppm 以下		·体重增加抑制及	· 体重增加抑制及
		毒性所見なし		び摂餌量減少	び摂餌量減少
	10 ppm			毒性所見なし	毒性所見なし
児	1,500 ppm			・低体重及び体重	・低体重及び体重
動				増加抑制	増加抑制
物	物 750 ppm 以上 ・低体重及び体		・低体重及び体重	750 ppm 以下	
		増加抑制	増加抑制	毒性所見なし	
	10 ppm	毒性所見なし	毒性所見なし		

(2)3世代繁殖試験(ラット)(製剤)<参考資料5>

ラット (系統不明、一群雄: 10 匹、雌: 20 匹)を用いた混餌 [50%水和剤: 0、50 及び 100 ppm、検体摂取量 (計算値 6): $2.5\sim5.0$ mg/kg 体重/日及び $5\sim10$ mg/kg 体重/日] 投与による 3 世代繁殖試験が実施された。

本試験において、検体投与の影響は認められなかった。(参照2、7)

(3)発生毒性試験(ラット)①

SD ラット (一群雌 25 匹) の妊娠 6 日~15 日に強制経口 (原体:0、25、100 及び 250 mg/kg 体重/日、溶媒:2%CMC) 投与による発生毒性試験が実施された。

母動物で、250 mg/kg 体重/日投与群で多尿、体重増加抑制(妊娠 10 日以降)及び摂餌量減少(妊娠 $6\sim11$ 日)が認められた。

胎児で、100 mg/kg 体重/日以上投与群で骨化遅延(趾骨及び踵骨)の増加が、250 mg/kg 体重/日投与群で骨化遅延(第5 胸骨分節)が4 例に認められた。

本試験における無毒性量は、母動物で 100 mg/kg 体重/日、胎児で 25 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照 2、7)

(4)発生毒性試験(ラット)②

SD ラット(一群雌 26 匹)の妊娠 6 日~15 日に強制経口(原体:0、10、50 及び 250 mg/kg 体重/日、溶媒:0.5%Tween80 含有 3%コーンスターチ液)投与による発生毒性試験が実施された。

母動物では、250 mg/kg 体重/日投与群で体重減少(妊娠7及び8日)、体重

-

⁵ 用量設定が2用量のみの試験であることから参考資料とした。

⁶ 文献に基づく平均値から求めた検体摂取量(以下同じ。) (参照 6)

増加抑制(妊娠 $6\sim16$ 日)及び摂餌量減少(妊娠 $6\sim7$ 日以降)が認められた。 胎児では、250~mg/kg 体重/日投与群で低体重及び骨化遅延(胸骨及び中手骨) が認められた。

本試験において、250 mg/kg 体重/日投与群の母動物で体重増加抑制等が、胎児で低体重等が認められたので、無毒性量は母動物及び胎児とも50 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照2、3、7)

(5)発生毒性試験(ウサギ)

NZW ウサギ(一群雌 19 匹)の妊娠 7日~19日に強制経口(原体:0、2、12及び 72 mg/kg 体重/日、溶媒:0.5%Tween80 含有 3%コーンスターチ液)投与による発生毒性試験が実施された。

母動物においては、72 mg/kg 体重/日投与群で流産(2 例、妊娠 16 及び 23 日)、体重増加抑制(妊娠 10~14 日以降)及び摂餌量減少(妊娠 13~14 日以降)が認められた。また、同投与群において、統計学的有意差はないが、後期吸収胚の増加及び平均生存胎児数の減少が認められた。

胎児においては、72 mg/kg 体重/日投与群で前肢近位指節骨の骨化遅延が認められた。

本試験において、72 mg/kg 体重/日投与群の母動物で体重増加抑制等、同投与群胎児で骨化遅延が認められたので、無毒性量は母動物及び胎児とも 12 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照 2、3、7)

13. 遺伝毒性試験

プロメトリン原体の細菌を用いた DNA 修復試験、復帰突然変異試験、ヒトリンパ球由来細胞を用いた *in vitro* 染色体異常試験、ラット培養肝細胞を用いた UDS 試験、マウス及び細菌を用いた宿主経由試験並びにマウスを用いた *in vivo* 小核試験が実施された。

結果は表 34 に示されているとおり、全て陰性であったことから、プロメトリンに遺伝毒性はないものと考えられた。(参照 2、3、7)

表 34 遺伝毒性試験概要 (原体)

Ī	試験	対象	処理濃度・投与量	結果
	DNA 修復 試験	Bacillus subtilis (H-17 及び M-45 株)	250~10,000 μg/well	陰性
	DNA 修復 試験	(菌種・菌株不明)	~1,000 μg/プレート	陰性
	復帰突然 変異試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株)	5~2,000 μg/プレート(+/-S9)	陰性
	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537 株)	20~5,000 μg/プレート(+/-S9)	陰性
in vitro	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株)	10~5,000 μg/プレート(+/-S9)	陰性
	復帰突然 変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株)	50~10,000 μg/プレート(+/-S9)	陰性
		Escherichia coli (WP2hcr-)	50~10,000 μg/プレート(+/-S9)	
	染色体異常 試験	ヒトリンパ球由来細胞	7.5~120 μg/mL(-S9) 10~80 μg/mL(+S9)	陰性
	UDS 試験	ラット培養肝細胞	\sim 156 µg/mL	陰性
宿主経由試験	復帰突然変異試験	Swiss Webstar マウス(雄) S. typhimurium (TA1535、TA1538 株)	<急性暴露法> 930~3,750 mg/kg(単回経口投 与) <亜急性暴露法> TA1535:500~1,900 mg/kg 体 重/日(5 回経口投与) TA1538:465~1,870 mg/kg 体 重/日)(5 回経口投与)	陰性
in vivo	小核試験	B6C3F1 マウス (骨髄細胞) (一群雌雄各 8 匹)	① $1,920 \text{ mg/kg}$ 体重 (単回経口投与) (投与 16 、 24 及び 48 時間後に採取) ② $480\sim1,920 \text{ mg/kg}$ 体重(単回経口投与)(投与 24 時間に採取)	陰性

主として動物、植物及び土壌中由来の代謝物 H の細菌を用いた復帰突然変異試験が実施された。

結果は表35に示されているとおり、陰性であった。(参照2、7)

表 35 遺伝毒性試験概要(代謝物 H)

	試験		対象	処理濃度・投与量	結果
i	n vitro	復帰突然 変異試験	1 1 1 4 4 8 1 4 1 1 1 1 1 4 1 5 3 5	①156~2,500 μg/プレート(-S9) ②313~5000 μg/プレート(+S9)	陰性

14. その他の試験

(1) 28 日間免疫毒性試験(マウス)

ICR マウス (一群雌 10 匹) を用いた混餌 (原体: 0、500、2,000 及び 5,000 ppm、平均検体摂取量: 0、106、413 及び 1,040 mg/kg 体重/日) 投与による 28 日間免疫毒性試験が実施された。

5,000 ppm 投与群で体重増加抑制(投与 $0\sim3$ 日)が認められた。また、同投与群において脾臓細胞 10^6 個当たりの IgM 抗体産生細胞数及び脾臓当たりの IgM 抗体産生細胞数が統計学的に有意に減少した。

本試験において、一般毒性及び免疫毒性に対する無毒性量は 2,000 ppm (413 mg/kg 体重/日) であると考えられた。 (参照 7)

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて、農薬「プロメトリン」の食品健康影響評価を実施した。

 14 C で標識されたプロメトリンのラットを用いた動物体内運命試験の結果、プロメトリンは 8 時間後に C_{max} に達した。プロメトリンの吸収率は少なくとも 91.6% と算出された。プロメトリンは主に胆汁中に排泄された。投与後 168 時間に尿及び 糞中に $86\sim98\%$ が排泄された。

未変化のプロメトリンは尿中には 1.86% TAR、糞中に 1.96% TAR 排泄された。 代謝物は尿中に Bn、K、O、S 等、糞中に B、H、I、K、P 等、胆汁中に Ag、B、C 等が認められた。

 14 C で標識されたプロメトリンを用いた植物体内運命試験の結果、10%TRR を超える代謝物として I(水稲)、C 及び P2/P4(セルリー)並びに H(わた及びだいず)が検出された。

プロメトリンを分析対象とした作物残留試験の結果、最大残留値は稲わらの 0.24 mg/kg であった。可食部においては全て定量限界未満であった。

各種毒性試験の結果、プロメトリン投与による影響は、主に体重(増加抑制)、 血液(貧血)、腎臓(重量増加等)及び肝臓(重量増加等)に認められた。神経毒 性、発がん性、繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

植物体内運命試験の結果、10%TRR を超える代謝物として、I、C、H 及び P2/P4 が認められたが、代謝物 I、C 及び H はラットにおいて認められる代謝物であり、代謝物 P2/P4 はラットで認められた代謝物 I のアルコール体であったことから、農産物中の暴露評価対象物質をプロメトリン(親化合物のみ)と設定した。

各試験における無毒性量等は表 36 に、単回経口投与により惹起されると考えられる毒性影響等は表 37 に示されている。

各試験で得られた無毒性量のうち最小値はラットを用いた 2 世代繁殖試験の 10 ppm(雄:0.63 mg/kg 体重/日、雌:0.70 mg/kg 体重/日)であった。一方、ラットを用いた 2 年間慢性毒性/発がん性併合試験①の無毒性量は 300 ppm(雄:11.1 mg/kg 体重/日、雌:12.6 mg/kg 体重/日)であり、2 世代繁殖試験で認められた主な毒性所見(体重増加抑制)は 2 年間慢性毒性/発がん性併合試験①においても認められた。これらの試験における無毒性量の差は用量設定の違いによるものであると考えられることから、ラットにおける無毒性量は 11.1 mg/kg 体重/日とするのが妥当であると考えられた。

以上より、食品安全委員会農薬専門調査会は、各試験で得られた無毒性量のうち最小値は、イヌを用いた2年間慢性毒性試験の3 mg/kg 体重/日であったことから、これを根拠として、安全係数100で除した0.03 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

また、プロメトリンの単回投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ラットを用いた急性神経毒性試験の 150 mg/kg 体重であっ

たことから、これを根拠として、安全係数 100 で除した 1.5 mg/kg 体重を急性参照 用量(ARfD)と設定した。

ADI 0.03 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)2年間(投与方法)混餌

(無毒性量) 3 mg/kg 体重/日

(安全係数) 100

ARfD 1.5 mg/kg 体重

(ARfD 設定根拠資料) 急性神経毒性試験

(動物種) ラット(投与方法) 強制経口

(無毒性量) 150 mg/kg 体重

(安全係数) 100

参考

<米国 EPA>

cRfD 0.04 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)2年間(投与方法)混餌

(NOEL) 3.75 mg/kg 体重/日

(不確実係数) 100

ARfD(13~49 歳女性) 0.12 mg/kg 体重

(ARfD 設定根拠資料) 発生毒性試験

(動物種)ウサギ(投与方法)強制経口

(無毒性量) 12 mg/kg 体重

(安全係数) 100

ARfD (一般の集団) 設定の必要なし

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際に確認することとする。

表 36 各試験における無毒性量等

		200 日成版100			=
		投与量	無毒	性量(mg/kg 体重	
動物種	試験	(mg/kg 体重/日)	EPA	食品安全委員会	
- ,			/	農薬専門調査会	
ラット	90 日間亜急性	0,50,500,1,000,5,000	/	雄:32.3	雄:3.2
	毒性試験	ppm		雌:40.0	雌:4.0
		雄:0、3.2、32.3、64.0、			
		340		雄:体重増加抑	雌雄:体重増加
		雌:0、4.0、40.0、80.8、		制等	抑制等
		367		雌:RBC 及び	
				Ht 減少等	
		雄:0、500、1,000、2,000	/	雄:33	雄:33
	神経毒性試験	雌:0、250、500、1,000	/	雌:79	雌:79
		雄:0、33、67、135			
		雌:0、19、40、79		雄:体重増加抑	雄:体重増加抑
				制及び摂餌量減	制及び摂餌量減
			/	少	少
			/	雌:毒性所見な	雌:毒性所見な
			/	L	L
				(亜急性神経毒	(亜急性神経毒
				性は認められな	性は認められな
				レ ハ)	い)
	2 年間慢性毒	0, 50, 250, 1,250 ppm	/	雄:46.3	雄:9.1
	性試験	(50%水和剤)		雌:62.5	雌:12.6
		雄:0、1.8、9.1、46.3			
		雌:0、2.5、12.6、62.5		雌雄:毒性所見	雄:肝臓脂肪変
				なし	性
					雌:肝体重比増
					加
	2 年間慢性毒	0,30,300,1,000,3,000	/	雄:11.1	雄:11.1
	性/発がん性併	ppm	/	雌:12.6	雌:12.6
	合試験①	雄:0、1.1、11.1、38.0、		,	·
		119	/	雄:体重増加抑	雄: 体重増加抑
		雌: 0、1.3、12.6、45.4、	/	制等	制等
		140		雌:肝壊死巣	雌:RBC減少等
		~			
				 (発がん性は認	(発がん性は認
				められない)	められない)
				, , , , , ,	, , , , , ,
<u> </u>			V		

性/発がん性併合試験②	の、10、100、750、1,500 ppm 雄:0、0.38、3.90、29.5、 40.9 雌:0、0.49、4.91、37.3、 80.6 0、10、750、1,500 ppm P雄:0、0.63、47.5、 93.1 P雌:0、0.70、52.8、 102 F ₁ 雄:0、0.65、48.2、 100 F ₁ 雌:0、0.72、54.6、 109	加抑制等	親動物及び児動物: P雄: 0.63 P雌: 0.70 Fla雄: 0.65 Fla雌: 0.72 親動物及び児動物及び児動物の雌雄: 体重増加抑制等 (繁殖能に対する影響は認めら	抑制 (発がん性は認められない) 親動物及び児動物とア雄: 0.63 P雄: 0.70 F1a雄: 0.65 F1a雌: 0.72 親動物及び児動物及び児動物及び児動物及び児動物及び児動物及び児動物の雌雄: 体重増加抑制 (繁龗は認めら
発生毒性試験①	0、25、100、250		れない) 母動物:100 胎児:25 母動物:体重増 加抑制等 胎児:骨化遅延 (催奇形性は認 められない)	れない) 母動物及び胎 児:25

	発生毒性試験 ②	0、10、50、250		母動物及び胎 児:50	母動物及び胎 児:50
			母動物:体重 増加抑制等 胎児:胸骨不 完全化骨等	母動物:体重増加抑制等 胎児:低体重等	母動物:体重増加抑制等胎児:胸骨不完全化骨等
				(催奇形性は認 められない)	(催奇形性は認 められない)
マウス	2 年間発がん 性試験	0、10、1,000、3,000	雄:475 雌:164		雄:1.4 雌:1.5
		雄:0、1.4、145、475 雌:0、1.5、164、530	雄:毒性所見なし は:体重増加抑制		雌雄:体重増加 抑制
				(発がん性は認 められない)	(発がん性は認められない)
ウサギ	発生毒性試験	0, 2, 12, 72	母動物及び 胎児:12	母動物及び胎 児:12	母動物及び胎 児:12
			量減少	母動物:体重增加抑制等 胎児:骨化遅延	母動物:体重增加抑制等胎児:不完全骨化
				(催奇形性は認められない)	(催奇形性は認 められない)
イヌ	90 日間亜急性 毒性試験	0、20、200、2,000 ppm 雄: 0、0.81、8.26、70.6		雄: 8.26 雌: 8.13	雄:8.26 雌:8.13
		雌:0、0.89、8.13、82.8		雌雄:肝絶対及 び比重量増加、 Ht 減少等	雄:体重増加抑制等 雌:肝顆粒球浸潤等

2 年間慢性毒性試験	0、15、150、1,500 ppm (80%水和剤) 雌雄:0、0.3、3、30	3.75	3 雌雄:骨髄萎縮	3.0
			等	
	NOAEL:	NOAEL: 3	NOAEL : 0.63	
ADI	ADI (DØD)			SF: 100
ADI (cRfD)		UF: 100	ADI: 0.03	ADI: 0.0063
	cRfD: 0.04			
	イヌ2年間	イヌ2年間慢性	ラット2世代繁	
ADI 設定	E根拠資料	慢性毒性試	毒性試験	殖試験
		験		

| 駅 | NOAEL:無毒性量 ADI:一日摂取許容量 SF:安全係数 cRfD:慢性参照用量 UF:不確実係数 1):無毒性量の欄には、最小毒性量で認められた主な毒性所見を記した。 / : 資料なし

表 37 単回経口投与等により生ずる可能性のある毒性影響等

		1 1 351 5 3			
動物種	試験	投与量	無毒性量及び急性参照用量設定に関連するエンドポイント 1)		
到1707里	12人的大	(mg/kg 体重)	(mg/kg 体重)		
	急性毒性試験	2,000	雌: —		
			雌:顔面の汚れ、立毛及び糞便量減少		
	急性毒性試験	2,500、5,000	雌雄: —		
			雌雄:腹臥、昏睡及び不規則呼吸		
	急性毒性試験	1,780 、 2,670 、	雌雄: 1,780		
		4,000、6,000			
ラット			雌雄:不安状態及びうずくまり		
	急性毒性試験	0、2,100、2,500、	雌雄:一		
		3,600、4,300、5,200			
			雌雄:嘔吐、流涎及び運動機能低下		
	急性毒性試験	0、839、1,050、	雌雄:一		
		1,310 \ 1,640 \			
		2,050、2,540	雌雄:鎮静、運動失調、昏睡、流涎、尿失禁及び下痢		
	急性神経毒性	0, 150, 500, 1,500	雌雄: 150		
	試験				
			雌雄:歩行運動量の低下		
	急性毒性試験	0、1,470、1,840、	雌雄:一		
		2,300 、 2,880 、			
マウス		3,600、4,500(雄の			
		み)、5,630(雌のみ)			
			及び立毛		
			NOAEL: 150		
	ARfD		SF: 100		
			ARfD: 1.5		
	ARfD 設定根	拠資料	急性神経毒性試験		
	ADOD AUGAI	THE OR DAKE	MOADI・無害歴書 二・無害歴書は設定できない		

ARfD: 急性参照用量 SF: 安全係数 NOAEL: 無毒性量 - : 無毒性量は設定できない 1) 最小毒性量で認められた主な毒性所見を記した。

<別紙1:代謝物/分解物略称>

記号	略称	化学名
		<i>N</i> -イソプロピル-6-メチルスルファニル-[1,3,5]トリア
В	GS11354	ジン-2,4-ジアミン
С	GS26831	6-メチルスルファニル-[1,3,5]トリアジン-2,4-ジアミン
	GS17791	
D	(ammeline)	4,6-ジアミノ-[1,3,5]トリアジン-2-オール
	GS35713	
E	(ammelide)	6 -アミノ-[1,3,5]トリアジン-2,4-ジオール
	GS16141	<i>N.N</i> -ジイソプロピル-6-メタンスルフィニル-[1,3,5]ト
F	SYN501306	リアジン-2,4-ジアミン
	5111001000	<i>N</i> , <i>N</i> -ジイソプロピル-6-メタンスルホニル-[1,3,5]トリ
G	GS16158	アジン-2,4-ジアミン
	GS11526	
Н	ヒドロキシプロメトリン、	4,6-ビス-イソプロピルアミノ-[1,3,5]トリアジン-2-オー
11	ヒドロキシプロパジン	N
T		4-アミノ-6-イソプロピルアミノ-[1,3,5]トリアジン-2-
I	GS17794	オール
J	GS11957	6-イソプロピルアミノ-[1,3,5]トリアジン-2,4-ジオール
K	CGA10582	2-アセチルアミノ-3-(4,6-ジアミノ[1,3,5]トリアジン-2-
17	CGA10502	イルスルファニル)・プロピオン酸
L	GS14129	N-イソプロピル-6-メタンスルフィニル-[1,3,5]トリア
		ジン-2,4-ジアミン <i>N,N</i> -ジイソプロピル-[1,3,5]トリアジン-2,4,6-トリア
M	CSA A084330	1,1,1,1,2,1,2,2,1,1,2,1,2,1,2,1,2,1,2,1
N	CSA A090893	<i>N</i> イソプロピル-[1,3,5]トリアジン-2,4,6-トリアミン
0	メラミン	2,4,6-トリアミノ-1,3,5-トリアジン
		4,6-ビス-イソプロピルアミノ-[1,3,5]トリアジン-2-チ
P	GS11955	オール
	G31435	
Q	プロメトン	<i>N,N</i> -ジイソプロピル-6-メトキシ-[1,3,5]トリアジン -2,4-ジアミン
	GS12756	
R	GS14626	<i>N</i> -イソプロピル-6-メトキシ-[1,3,5]トリアジン-2,4-ジ
11	UD14040	アミン
~		1,3,5-トリアジン-2,4-ジアミン,6,6'-ジチオビス[<i>N,N</i> '-
S	プロメトリン S-S 二量体	ビス(1-メチルエチル)-6-(メチルチオ)-1,3,5-トリアジン -2,4-ジアミン]
		-2,4 - ン
Γ	代謝物[B]S-S 二量体	チルエチル)-6-(メチルチオ)-1,3,5-トリアジン-2,4-ジア
_		ミン
		1,3,5-トリアジン-2,4-ジアミン,6-[[4-アミノ-6-[(1-メチ
U	S-S 二量体 (プロメトリン	ルエチル)アミノ]-1,3,5-トリアジン-2-イル] <i>N,N</i> ² ビス
	と代謝物[B]	(1-メチルエチル)- 6-(メチルチオ)-1,3,5-トリアジン
	0010	-2,4-ジアミン]
V	CGA229247	6-メタンスルフィニル-[1,3,5]トリアジン-2,4-ジアミン

X	MCO-IV-34	6-(2-ヒドロキシ-1-メチル-エチルアミノ)-[1,3,5]トリア ジン-2,4-ジオール
Z	_	<i>N,N</i> -ジイソプロピル-[1,3,5]トリアジン-2,4-ジアミン
P1	代謝物[H]の側鎖アルコー ル	4-(2-ヒドロキシ-1-メチル-エチルアミノ)-6-イソプロピルアミノ-[1,3,5]トリアジン-2-オール
P2	代謝物[I]の側鎖アルコー ル体 MCO-III-25	4-アミノ-6-(2-ヒドロキシ-1-メチル-エチルアミ ノ)-[1,3,5]トリアジン-2-オール
Р3	代謝物[H]の側鎖アルコー ル体	4-(1-ヒドロキシ-1-メチル-エチルアミノ)-6-イソプロピルアミノ-[1,3,5]トリアジン-2-オール
P4	代謝物[I]の側鎖アルコー ル体	4-アミノ-6-(1-ヒドロキシ-1-メチル-エチルアミ ノ)-[1,3,5]トリアジン-2-オール
P5	シアヌル酸	[1,3,5]トリアジン-2,4,6-トリオール
P6	CGA236433 thiodiaminotriazine	4,6·ジアミノ·[1,3,5]トリアジン·2·チオール
S1	UK2	4,6-ビス-イソプロピルアミノ·[1,3,5]トリアジン-2-スル ホン酸
W1	_	2-(4-イソプロピルアミノ-6-メチルスルファニル -[1,3,5]トリアジン-2-イルアミノ)-プロパン-1-オール
W2	GS28304	<i>N</i> ・イソプロピル-[1,3,5]トリアジン-2,4·ジアミン
Ag	_	プロメトリンの脱チオメチル体のグルタチオン抱合体
Ac	_	プロメトリンの脱チオメチル体のシステイン抱合体
Asg	_	プロメトリンの S グルクロン酸抱合体
An	_	プロメトリンの脱チオメチル体の <i>N</i> -アセチルシステイン抱合体
Bn	_	代謝物 B の脱チオメチル体の N アセチルシステイン 抱合体
Bc	_	代謝物 B の脱チオメチル体のシステイン抱合体
Cg		代謝物 C の脱チオメチル体のグルタチオン抱合体

-:略称なし

<別紙2:検査値等略称>

- 刀寸//2 4 - 1天]	
略称	名称
ai	有効成分量(active ingredient)
ALP	アルカリホスファターゼ
ALT	アラニンアミノトランスフェラーゼ [=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)]
AUC	薬物濃度曲線下面積
Chol	コレステロール
C_{max}	最高濃度
GGT	γ-グルタミルトランスフェラーゼ [=γ-グルタミルトランスペプチダーゼ(γ-GTP)]
Hb	へモグロビン (血色素量)
Ht	ヘマトクリット値
IgM	免疫グロブリン M
LC_{50}	半数致死濃度
LD_{50}	半数致死量
LDH	乳酸脱水素酵素
CMC	カルボキシメチルセルロース
MCHC	平均赤血球血色素濃度
PHI	最終使用から収穫までの日数
PLT	血小板数
PTT	部分トロンボプラスチン時間
RBC	赤血球数
Ret	網状赤血球数
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
TG	トリグリセリド
T_{max}	最高濃度到達時間
TRR	総残留放射能
WBC	白血球数

<別紙3:作物残留試験成績>

					残留值(mg/kg)			
作物名 (分析部位)	試験ほ場	使用量	回数	PHI (目)	公的分析機関 社内分析機関			
実施年度	数	(g ai/ha)	g ai/ha) (回)		目 古 は	プロメ		立わは
 水稲	1		2	41	最高値	平均値	最高値	平均值
(玄米)	1			41			<0.005	< 0.005
1973年度	1	1,000G	2	69			< 0.005	< 0.005
水稲 (稲わら)	1	湛水散布	2	41			0.24	0.17
1973 年度	1		2	69			<0.01	< 0.01
水稲 (玄米)	1	600G	1	88	< 0.002	< 0.002	< 0.02	< 0.02
1972 年度	1	湛水散布	1	123	< 0.002	< 0.002	< 0.02	< 0.02
小麦 (種子)	1	1,000WP	1	94	< 0.01	<0.01	< 0.005	< 0.005
1974 年度	1	土壌散布	2	68	< 0.01	< 0.01	< 0.005	< 0.005
小麦			1	170	< 0.02	< 0.02	< 0.005	< 0.005
(種子) 1974 年度			2	87	< 0.02	< 0.02	< 0.005	< 0.005
小麦(ねよ)	,	1,000WP	1	170	< 0.02	< 0.02	< 0.02	< 0.02
(わら) 1974 年度	1	土壌散布	2	87	< 0.02	< 0.02	< 0.02	< 0.02
小麦			1	127	<0.01	< 0.01	< 0.02	< 0.02
(青刈) 1974 年度			2	44	<0.01	< 0.01	< 0.02	< 0.02
大麦 ^{a)} (種子) 1974 年度	1	850EC	1	149	<0.003	<0.003	< 0.005	< 0.005
大麦 ^{a)} (麦わら) 1974 年度	1	土壌散布	1	149	<0.003	<0.003	<0.02	<0.02
大麦	1	1,000WP	2	82	< 0.005	< 0.005	< 0.005	< 0.005
(種子) 2011 年度	1	土壌散布	2	92	< 0.005	< 0.005	< 0.005	< 0.005
とうもろこし (生食用子実)	1		1	105	< 0.005	< 0.005	< 0.005	< 0.005
1977 年度	1	1,000WP	1	98	< 0.005	< 0.005	< 0.005	< 0.005
とうもろこし (対場で生)	1	土壌散布	1	118	< 0.005	< 0.005	< 0.005	< 0.005
(乾燥子実) 1977 年度	1		1	119	< 0.005	< 0.005	< 0.005	< 0.005
	_		_	60	< 0.005	< 0.005	<0.01	< 0.01
とうもろこし	1	800WP	1	70	< 0.005	< 0.005	<0.01	<0.01
(青刈) 1985 年度		土壌散布		53	< 0.005	< 0.005	<0.01	<0.01
	1		1	63	< 0.005	< 0.005	<0.01	<0.01

試験 ほ場 数	使用量	回数	DITT				
	('/1)	回数(回)	PHI (目)	残留値(mg/kg) 公的分析機関 社内分析機関			
	(g ai/ha)			プロメトリン			
1		1	150	最高値	平均值	最高値	平均值
	500EC 土壌散布						<0.05
1		1	110	<0.005	<0.005	< 0.05	< 0.05
1	500EC	1	01			<0.04	< 0.04
1	土壤散布	1	91			~0.04	\0. 04
1	400EC 土壤散布	1	122	< 0.02	< 0.02	< 0.005	< 0.005
1		1	131	< 0.02	< 0.02	< 0.005	< 0.005
1	1,000WP 土壤散布	1	142	< 0.002	< 0.002	< 0.02	< 0.02
1		1	115	< 0.002	< 0.002	< 0.02	< 0.02
1	1.500WP	1	126	< 0.005	< 0.005	< 0.005	< 0.005
1	土壌散布	1	116	< 0.005	< 0.005	< 0.005	< 0.005
1	800WP 土壌散布	1	142	< 0.005	< 0.005	< 0.005	< 0.005
1		1	153	< 0.005	< 0.005	< 0.005	< 0.005
1	800WP 土壤散布	1	120	< 0.005	< 0.005	< 0.005	< 0.005
1		1	133	< 0.005	< 0.005	< 0.005	< 0.005
1	1,000WP	1	113	< 0.005	< 0.005	< 0.005	< 0.005
1	土壌散布	1	122	< 0.005	< 0.005	< 0.005	< 0.005
1	800WP 土壤散布	1	132			< 0.01	< 0.01
1		1	123			< 0.01	< 0.01
1	1,000G 土壌散布	2	102	< 0.002	< 0.002	< 0.005	< 0.005
1		2	123	< 0.002	< 0.002	< 0.005	< 0.005
1	1,000WP 土壌散布	1	145	< 0.005	< 0.005	< 0.005	< 0.005
1		1	137	< 0.005	< 0.005	< 0.005	< 0.005
1	1,000WP 土壤散布	1	108	< 0.005	< 0.005	< 0.01	< 0.01
1		1	106	< 0.005	< 0.005	< 0.01	< 0.01
1	480G 土壤散布	1	154	< 0.005	< 0.005	< 0.002	< 0.002
1		1	202	< 0.005	< 0.005	< 0.002	< 0.002
1	800WP (散布法記 載なし)	1	112	< 0.005	< 0.005	< 0.005	< 0.005
							<0.005
1							<0.005 <0.005
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 土壤散布 1 500EC 土壤散布 1 400EC 1 土壤散布 1 1,000WP 1 土壤散布 1 1,500WP 1 土壤散布 1 800WP 1 土壤散布 1 800WP 1 土壤散布 1 1,000WP 1 土壤散布	1 土壤散布 1 1 500EC 土壤散布 1 1 400EC 土壤散布 1 1 1,000WP 土壤散布 1 1 1,500WP 土壤散布 1 1 800WP 土壤散布 1 1 800WP 土壤散布 1 1 1,000WP 土壤散布 1 1 480G 土壤散布 1 1 480G 土壤散布 1 1 480WP (散布法記 1 1 800WP (散布法記 1	1 土壤散布 1 110 1 500EC 土壤散布 1 91 1 400EC 土壤散布 1 131 1 1,000WP 土壤散布 1 142 1 1,500WP 土壤散布 1 126 1 土壤散布 1 116 1 800WP 1 1 142 1 土壤散布 1 153 1 800WP 1 1 133 1 1,000WP 1 1 113 1 土壤散布 1 122 1 800WP 1 1 132 1 土壤散布 1 123 1 1,000G 2 102 123 1 1,000WP 1 1 145 1 土壤散布 1 137 1 1,000WP 1 1 108 1 土壤散布 1 108 1 土壤散布 1 108 1 土壤散布 1 106 1 土壤散布 1 106 1 土壤散布 <td>1 土壌散布 1 110 <0.005 1 500EC 土壌散布 1 91 1 400EC 1 122 <0.02 1 土壌散布 1 131 <0.02 1 1,000WP 1 142 <0.002 1 土壌散布 1 115 <0.002 1 1,500WP 1 126 <0.005 1 整散布 1 116 <0.005 1 800WP 1 142 <0.005 1 地壌散布 1 153 <0.005 1 800WP 1 120 <0.005 1 地壌散布 1 133 <0.005 1 北壌散布 1 132 <0.005 1 北壌散布 1 122 <0.005 1 北壌散布 1 123 <0.002 1 北壌散布 1 132 <0.002 1 北壌散布 1 137 <0.005 1 1,000WP 1 145 <0.005 1 土壌散布 1 137 <0.005 1 北壌散布 1 108 <0.005 1 北壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 120 <0.005 1 土壌散布 1 120 <0.005 1 土壌散布 1 120 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 202 <0.005 1 土壌散布 1 202 <0.005 1 800WP (散布法記</td> <td>1 土壌散布 1 110 <0.005 <0.005 1 500EC 土壌散布 1 91</td> <td>1 土壌散布 1 110 <0.005 <0.005 <0.005 1 土壌散布 1 91</td>	1 土壌散布 1 110 <0.005 1 500EC 土壌散布 1 91 1 400EC 1 122 <0.02 1 土壌散布 1 131 <0.02 1 1,000WP 1 142 <0.002 1 土壌散布 1 115 <0.002 1 1,500WP 1 126 <0.005 1 整散布 1 116 <0.005 1 800WP 1 142 <0.005 1 地壌散布 1 153 <0.005 1 800WP 1 120 <0.005 1 地壌散布 1 133 <0.005 1 北壌散布 1 132 <0.005 1 北壌散布 1 122 <0.005 1 北壌散布 1 123 <0.002 1 北壌散布 1 132 <0.002 1 北壌散布 1 137 <0.005 1 1,000WP 1 145 <0.005 1 土壌散布 1 137 <0.005 1 北壌散布 1 108 <0.005 1 北壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 120 <0.005 1 土壌散布 1 120 <0.005 1 土壌散布 1 120 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 106 <0.005 1 土壌散布 1 202 <0.005 1 土壌散布 1 202 <0.005 1 800WP (散布法記	1 土壌散布 1 110 <0.005 <0.005 1 500EC 土壌散布 1 91	1 土壌散布 1 110 <0.005 <0.005 <0.005 1 土壌散布 1 91

16 Holm 57	試験 ほ場 数	使用量 (g ai/ha)	回数 (回)	PHI (目)	残留值(mg/kg)			
作物名 (分析部位) 実施年度					公的分析機関		社内分析機関	
					プロメトリン			
					最高値	平均値	最高値	平均値
キャベツ (葉球)	1	1,000WP 土壤散布	1	65	<0.01	<0.01	< 0.01	<0.01
1972 年度	1		1	85	<0.01	<0.01	< 0.01	< 0.01
たまねぎ	1	500WP 土壌散布	1	127	< 0.005	<0.005	< 0.005	< 0.005
(鱗茎) 1981 年度	1	1,000WP 土壌散布	1	225	< 0.005	< 0.005	< 0.005	< 0.005
たまねぎ (鱗茎)	1		1	85	< 0.005	< 0.005	< 0.005	< 0.005
	1	800WP		102	< 0.005	< 0.005	< 0.005	< 0.005
1986 年度	1	土壌散布	1	86	< 0.005	< 0.005	< 0.005	< 0.005
1300 十尺	1			110	< 0.005	< 0.005	< 0.005	< 0.005
ねぎ	1		1	64	< 0.005	< 0.005	< 0.01	< 0.01
(茎葉)		500WP 土壌散布		126	< 0.005	< 0.005	< 0.01	< 0.01
1977 年度	1		1	72	< 0.005	< 0.005	< 0.01	< 0.01
	-			149	< 0.005	< 0.005	< 0.01	< 0.01
にんじん (可食部)	1	1,000WP 土壤散布	2	65	< 0.004	<0.004	< 0.005	< 0.005
1979、 1980 年度	1		2	40	< 0.004	<0.004	< 0.005	< 0.005
菜豆 (さやいんげん)	1	1,000WP 土壤散布	1	71	< 0.005	< 0.005	<0.01	<0.01
1986 年度	1		1	72	< 0.005	< 0.005	< 0.01	< 0.01
だいず (えだまめ)	1	400EC 土壤散布	1	102	< 0.02	< 0.02	< 0.005	< 0.005
1974 年度	1		1	91	< 0.02	< 0.02	< 0.005	< 0.005
だいず (えだまめさや)	1		1	102	< 0.04	< 0.04	< 0.02	< 0.02
1974 年度	1		1	91	< 0.04	< 0.04	< 0.02	< 0.02
だいず	1	1,500WP 土壤散布	1	99	< 0.005	< 0.005	< 0.005	< 0.005
(えだまめ) 1984 年度	1		1	77	< 0.005	< 0.005	< 0.005	< 0.005
だいず (えだまめ)	1	800WP 土壤散布	1	109	< 0.005	< 0.005	< 0.005	< 0.005
1986 年度	1		1	96	< 0.005	< 0.005	< 0.005	< 0.005

a): はだかむぎ

G: 粒剤、WP: 水和剤、EC: 乳剤 /: 該当なし

<参照>

- 1 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する 件(平成 17 年 11 月 29 日付け厚生労働省告示第 499 号)
- 2 農薬抄録 プロメトリン (除草剤) (平成 24 年 4 月 25 日改訂) : シンジェンタ ジャパン株式会社、一部公表
- 3 U.S. EPA: Reregistration Eligibility Decision(RED): Prometryn (1996)
- 4 U.S. EPA: R.E.D.Facts: PROMETRYN (1996)
- 5 食品健康影響評価について(平成25年1月30日付け厚生労働省発令食安0130 第7号)
- 6 IPCS: Principles and Methods for the Risk Assessment of Chemicals in Food, Annex 2, DOSE CONVERSION TABLE
- 7 農薬抄録 プロメトリン (除草剤) (平成 26 年 8 月 12 日改訂) : シンジェンタ ジャパン株式会社、一部公表
- 8 プロメトリンの食品健康影響評価に係る追加資料要求事項回答書:シンジェンタ ジャパン株式会社、2014 年、未公表