(案)

遺伝子組換え食品等評価書

JPBL012 株を利用して生産された プロテアーゼ

令和4年(2022年)4月

食品安全委員会遺伝子組換え食品等専門調査会

目 次

		貝
<審議の	の経緯>	. 3
く食品を	安全委員会委員名簿>	. 3
く食品を	安全委員会遺伝子組換え食品等専門調査会専門委員名簿>	. 3
要	为	. 4
I. 評値	西対象添加物の概要	. 5
Ⅱ. 食品	品健康影響評価	. 5
第1.	安全性評価において比較対象として用いる添加物及び宿主等の性質並びに	こ遺
石	〒子組換え添加物及び組換え体との相違	5
1.	従来の添加物の性質及び用途等に関する資料	5
2 .	宿主及び導入 DNA	6
3.	宿主の添加物製造への利用経験又は食経験に関する資料	6
4.	宿主の構成成分等に関する資料	6
5.	遺伝子組換え添加物の性質及び用途等に関する資料	6
6.	安全性評価において検討が必要とされる遺伝子組換え添加物と従来の添加	口物
及	なび組換え体と宿主等の相違点	7
第2.	宿主に関する事項	7
1.	分類学上の位置付け(種名(学名)・株名等)に関する事項	7
2.		
3.	寄生性及び定着性に関する事項	7
4.	病原性の外来因子(ウイルス等)に汚染されていないことに関する事項	8
5.	宿主の近縁株の病原性及び有害生理活性物質の生産に関する事項	8
	ベクターに関する事項	
1.	名称及び由来に関する事項	8
2 .	性質に関する事項	8
第4.		
	挿入 DNA の供与体に関する事項	
2.	挿入 DNA 又は遺伝子(抗生物質耐性マーカーを含む。)及びその遺伝子図	奎物
- •)性質に関する事項	
3.	挿入遺伝子及び抗生物質耐性マーカー遺伝子の発現に関わる領域に関する	5事
-	[
	ベクターへの挿入 DNA の組込方法に関する事項	
	構築された発現ベクターに関する事項	
	DNA の宿主への導入方法に関する事項	
	抗生物質耐性マーカー遺伝子の安全性に関する事項	
	組換え体に関する事項	
	宿主との差異に関する事項	
	遺伝子導入に関する事項	
第6.	組換え体以外の製造原料及び製造器材に関する事項	. 13

1.	添加物の製造原料又は製造器材としての使用実績があること	13
2 .	添加物の製造原料又は製造器材としての安全性について知見が得られて	こいる
Ξ	ع	13
第7.	遺伝子組換え添加物に関する事項	13
1.	諸外国における認可、食用等に関する事項	13
2 .	組換え体の残存に関する事項	13
3.	製造に由来する非有効成分の安全性に関する事項	13
4.	精製方法及びその効果に関する事項	13
5.	含有量の変動により有害性が示唆される常成分の変動に関する事項	13
第8.	第2から第7までの事項により安全性の知見が得られていない場合に必	必要な
再	事項	14
Ⅲ. 食品	品健康影響評価結果	14
く参照)	>	15

<審議の経緯>

2022年1月24日 厚生労働大臣から遺伝子組換え食品等の安全性に係る食品健

康影響評価について要請(厚生労働省発生食0124第1号)、

関係書類の接受

2022年2月1日 第846回食品安全委員会(要請事項説明)

2022年2月17日 第222回遺伝子組換え食品等専門調査会

2022 年 4 月 26 日 第 856 回食品安全委員会 (報告)

<食品安全委員会委員名簿>

山本 茂貴(委員長)

浅野 哲(委員長代理 第一順位)

川西 徹(委員長代理 第二順位)

脇 昌子(委員長代理 第三順位)

香西 みどり

松永 和紀

吉田 充

く食品安全委員会遺伝子組換え食品等専門調査会専門委員名簿>

2022年3月31日まで 2022年4月1日から

中島春紫(座長) 中島春紫(座長)

山川 隆 (座長代理) 山川 隆 (座長代理)

安達 玲子 小野 竜一 安達 玲子 佐々木 伸大

岡田 由美子 近藤 一成 岡田 由美子 近藤 一成

小関 良宏 樋口 恭子 小野 道之 樋口 恭子

小野 道之 藤原 すみれ 小野 竜一 藤原 すみれ

<第 222 回遺伝子組換え食品等専門調査会専門参考人名簿>

児玉 浩明(千葉大学大学院園芸学研究科教授)

手島 玲子 (岡山理科大学獣医学部教授)

要 約

「JPBL012 株を利用して生産されたプロテアーゼ」について、食品健康影響評価を実施した。

本添加物は、Bacillus licheniformis Ca63 株を宿主として、宿主由来のプロテアーゼ遺伝子を導入することで作製した JPBL012 株を利用して生産されたプロテアーゼである。本添加物は、タンパク質のペプチド結合をエンド型で加水分解し、ペプチドやアミノ酸を生成する酵素であり、タンパク質の可溶化に使用される。

「遺伝子組換え微生物を利用して製造された添加物の安全性評価基準」(平成 16 年 3 月 25 日食品安全委員会決定)に基づき、挿入遺伝子の安全性、挿入遺伝子から産生されるタンパク質の毒性、アレルギー誘発性等について確認した結果、従来の添加物と比較して新たに安全性を損なうおそれのある要因は認められなかった。

以上のことから、「JPBL012 株を利用して生産されたプロテアーゼ」は、 人の健康を損なうおそれはないと判断した。

I. 評価対象添加物の概要

(申請内容)

名 称: JPBL012 株を利用して生産されたプロテアーゼ

用 途:食品加工におけるタンパク質の分解

申請者:ノボザイムズ ジャパン株式会社

開発者: Novozymes A/S (デンマーク)

本添加物は、Bacillus licheniformis Ca63 株を宿主として、宿主由来のプロテアーゼ遺伝子を導入することで作製した JPBL012 株を利用して生産されたプロテアーゼである。本添加物は、セリンプロテアーゼの一種であるSubtilisinであり、ダイズ及び魚類由来のタンパク質のペプチド結合をエンド型で加水分解する酵素として食品加工に使用される。

Ⅱ. 食品健康影響評価

- 第1. 安全性評価において比較対象として用いる添加物及び宿主等の性質並び に遺伝子組換え添加物及び組換え体との相違
 - 1. 従来の添加物の性質及び用途等に関する資料
 - (1) 名称、基原及び有効成分

従来の添加物の名称、基原及び有効成分は、以下のとおりである。

名 称 : プロテアーゼ (Alcalase 2.4 L FG)

生 産 菌: Bacillus licheniformis

有効成分:プロテアーゼ (Subtilisin)

IUB No.: EC 3.4.21.62 CAS No.: 9014-01-1

(2) 製造方法

Alcalase 2.4 L FG は、培養、除菌、精製等の工程を経て製造される。

(3) 用途及び使用形態

セリンプロテアーゼの一種である Subtilisin は、ダイズ及び魚類由来のタンパク質及びペプチドをエンド型で加水分解する酵素であり、加工食品の製造に用いられるタンパク質加水分解物(アミノ酸液など)を生産する際に用いられている。なお、製造工程の加熱処理により、使用した酵素は失活する。

(4) 摂取量

既存のプロテアーゼ製品が全て本添加物を用いた製品に置き換わり、 全ての「その他の調味料」aの製造に使用され、最終製品中に 100%残存

a 令和元年「国民健康・栄養調査報告」食品群別摂取量の食品分類

すると仮定した場合、最大一日摂取量は 1.12 mg TOS (Total Organic Solids) / kg 体重/日である。

2. 宿主及び導入 DNA

(1) 宿主の種名(学名)、株名等及び由来

宿主は、*B. licheniformis* Ca63 株である。*B. licheniformis* Ca63 株は、自然界から分離された菌株である。

(2) DNA 供与体の種名、株名又は系統名等及び由来

プロテアーゼ(aprL)遺伝子の供与体は、 $\mathit{B. licheniformis}\,\mathrm{Ca63}\,$ 株である。

(3) 挿入 DNA の性質及び導入方法

aprL 遺伝子は、本申請添加物の有効成分であるプロテアーゼ(以下 faprL」という。)をコードする。

aprL遺伝子発現カセットをインテグラーゼにより宿主ゲノムの複数の遺伝子座に導入した。その際、一部の標的遺伝子座において遺伝子欠失が確認された。なお、aprL の生産性を高めるため、宿主の RNA ポリメラーゼ β サブユニットをコードする遺伝子の 1 塩基を置換し、リファンピシン耐性を付与している(参照 1)。また、欠失導入用ベクターを用いた相同組換えにより、内在性のプロテアーゼ遺伝子を欠失させている(参照 2)。

3. 宿主の添加物製造への利用経験又は食経験に関する資料

B. licheniformis は、食品や食品用酵素の製造において、長年にわたり安全に使用されている(参照 3)。また、*B. licheniformis* Ca63 株は、プロテアーゼの生産菌として用いられている。

4. 宿主の構成成分等に関する資料

B. licheniformis が有害生理活性物質及び栄養阻害物質を生産するという報告はなく、国立感染症研究所病原体等安全管理規程におけるバイオセーフティレベル(以下「BSL」という。)1に相当する。(参照 3~5)

5. 遺伝子組換え添加物の性質及び用途等に関する資料

(1) 製品名及び有効成分

本添加物の製品名及び有効成分は、以下のとおりである。

製品名:aprL

有効成分:プロテアーゼ (Subtilisin)

IUB No.: EC 3.4.21.62 CAS No.: 9014-01-1

(2) 製造方法

aprL は、JPBL012 株を生産菌として、培養、ろ過、製剤化等の工程を経て製造される。生産菌は、2回の除菌・ろ過により分離・除去される。

(3) 用途及び使用形態

aprL は、従来の添加物と同様に、食品加工において、加工助剤として使用される。

(4) 有効成分の性質及び従来の添加物との比較 aprL は、従来の添加物と同様に、タンパク質を加水分解する。

6. 安全性評価において検討が必要とされる遺伝子組換え添加物と従来の添加物及び組換え体と宿主等の相違点

(1)遺伝子組換え添加物と従来の添加物 本添加物である aprL と従来の aprL のアミノ酸配列は、同一である。

(2) 組換え体と宿主

JPBL012 株と宿主との相違点は、JPBL012 株には aprL 遺伝子が複数 コピー導入され、プロテアーゼの高産生性を獲得している点、 RNA ポリメラーゼ β サブユニットをコードする遺伝子の塩基置換によりリファンピシン耐性を獲得している点及び複数の遺伝子を欠失している点である。

以上1から6までから、本添加物及び本添加物の生産菌の比較対象となり 得る従来の添加物及び宿主があると判断し、以下の各事項について評価を行った。

第2. 宿主に関する事項

1. 分類学上の位置付け(種名(学名)・株名等)に関する事項 宿主は、*B. licheniformis* Ca63 株である。

2. 病原性及び有害生理活性物質等の生産に関する事項

 $B.\ licheniformis$ が有害生理活性物質及び栄養阻害物質を生産するという報告はなく、国立感染症研究所病原体等安全管理規程における BSL1 に相当する (参照 $3\sim5$)。

3. 寄生性及び定着性に関する事項

B. licheniformis には、腸管内への寄生性及び定着性を示唆する報告はない。

- **4. 病原性の外来因子 (ウイルス等) に汚染されていないことに関する事項** *B. licheniformis* には、病原性の外来因子の存在を示唆する報告はない。
- **5. 宿主の近縁株の病原性及び有害生理活性物質の生産に関する事項** *B. licheniformis* の近縁種には、*B. subtilis* 及び *B. pumilus* が知られているが、毒性物質を産生する *B. cereus* 等とは明確に区別されている(参照 6)。

第3. ベクターに関する事項

1. 名称及び由来に関する事項

遺伝子導入用ベクターpJPV048 の作製には、*Staphylococcus aureus* 由来のプラスミド pE194 が用いられた。

2. 性質に関する事項

- (1) DNA の塩基数及びその塩基配列を示す事項 プラスミド pE194 の塩基数及び塩基配列は明らかになっている。
- (2)制限酵素による切断地図に関する事項 プラスミド pE194 の制限酵素による切断地図は明らかになっている。
- (3) 既知の有害塩基配列を含まないことに関する事項 プラスミド pE194 の塩基配列は明らかになっており、既知の有害塩基 配列は含まれていない。
- (4) 薬剤耐性に関する事項 プラスミド pE194 には、エリスロマイシン耐性遺伝子が含まれている。
- (5) 伝達性に関する事項 プラスミド pE194 には、伝達を可能とする塩基配列は含まれていない。
- (6)宿主依存性に関する事項プラスミド pE194 の複製開始配列は、Bacillus 属で機能する。

第4. 挿入 DNA、遺伝子産物、並びに発現ベクターの構築に関する事項

- 1. 挿入 DNA の供与体に関する事項
- (1) 名称、由来及び分類に関する事項 aprL 遺伝子の供与体は、B. licheniformis Ca63 株である。
- (2) 安全性に関する事項

B. licheniformis Ca63 株は、長年の使用経験があり、ヒトに対する病原性及び毒素産生性は知られておらず、また、国立感染症研究所病原体等

安全管理規程における BSL1 に相当する (参照 3~5)。

2. 挿入 DNA 又は遺伝子 (抗生物質耐性マーカーを含む。) 及びその遺伝子産物の性質に関する事項

- (1) 挿入遺伝子のクローニング又は合成方法に関する事項 aprL 遺伝子は、B. licheniformis Ca63 株より PCR 法により得られた。
- (2) 塩基数及び塩基配列と制限酵素による切断地図に関する事項 挿入 DNA の塩基数、塩基配列及び制限酵素による切断地図は、明らか になっている。
- (3) 挿入遺伝子の機能に関する事項
 - ① aprL 遺伝子

aprL 遺伝子がコードする aprL は、タンパク質のペプチド結合をエンド型で加水分解し、ペプチドやアミノ酸を生成させる酵素である(参照 7)。

- a. 挿入遺伝子の供与体のアレルギー誘発性に関する知見
 - B. licheniformis Ca63 株のアレルギー誘発性の可能性を調べるために文献検索bを行った。その結果、アレルギー誘発性を示唆する報告はなかった。
- b. 遺伝子産物についてそのアレルギー誘発性に関する知見

aprL を有効成分とする酵素製品について、アレルギー誘発性を示唆する報告はない。B. licheniformis 由来のプロテアーゼのアレルギー誘発性の可能性を調べるために文献検索 b を行った。その結果、アレルギー誘発性を示唆する報告はなかった。

- c. 遺伝子産物の物理化学的処理に対する感受性に関する知見
 - (a) 人工胃腸液に対する感受性

aprL は我が国において 20 年以上の使用実績があり、従来の aprL とアミノ酸配列が同じであることから消化性試験は実施しなかった。

(b) 加熱処理に対する感受性

aprL の加熱処理に対する感受性を調べる目的で、pH7.0 の各温度帯で 30 分処理した後の活性を測定した。その結果、 80° の処理によって完全に失活することが示された(参照 8)。

d. 遺伝子産物と既知のアレルゲンとの構造相同性に関する知見 aprL と既知のアレルゲンとの構造相同性の有無を調べるため、アレ

9

b PubMed、検索日:2021年7月

ルゲンデータベース。を用いて相同性検索を行った。その結果、連続する 80 アミノ酸配列で 35%以上の相同性を示す既知のアレルゲンとして、 複数のアレルゲンが認められた。これらの多くは吸入をばく露経路とする呼吸器誘発性アレルゲンであり、食物アレルゲンとして 3 種類のアレルゲンが検出されたが、aprL との間に連続した 8 アミノ酸配列の完全一致は認められなかった。一方、連続する 8 アミノ酸配列が完全に一致する既知のアレルゲンが複数検出されたが、これらは食物アレルゲンとして登録されていない(参照 $9\sim14$)。

以上の結果及び B. licheniformis 由来 aprL を有効成分とするプロテアーゼの食品用酵素としての使用実績から、aprL タンパク質がアレルギー誘発性を有する可能性は低いと考えられた。

3. 挿入遺伝子及び抗生物質耐性マーカー遺伝子の発現に関わる領域に関する事項

(1) プロモーターに関する事項

aprL 遺伝子のプロモーターは、amyL4199 プロモーター、amyQsc プロモーター及び cry3A プロモーターで構成される P3 プロモーター配列である。amyL4199 プロモーター及び amyQsc プロモーターは、それぞれ B. liceniformis Ca63 株 由 来 の amyL プロモーター 及び B. amyloliquefaciens DSM7 株由来の amyQ プロモーターに変異を導入したものである。cry3A プロモーターは、B. thuringiensis subsp. tenebrionis DSM5525 株に由来する cry3A 遺伝子の野生型プロモーター配列である。

(2) ターミネーターに関する事項

aprL 遺伝子のターミネーターは、B. liceniformis Ca63 株由来の amyL ターミネーター配列及び B. clausii DSM8716 株由来の aprH ターミネーター配列である。

(3) その他、挿入遺伝子の発現制御に関わる塩基配列を組み込んだ場合には、 その由来、性質等が明らかであること

aprL 遺伝子の発現制御に、B. thuringiensis subsp. tenebrionis DSM5525 株由来の cry3A mRNA 安定化配列を用いている。cry3A mRNA 安定化配列は、殺虫活性を示すタンパク質をコードする遺伝子のプロモーター領域に存在する配列であるが、タンパク質をコードする領域は含まれない。そのほか、インテグラーゼ(attR 配列)を用いている。

[。]ネブラスカ大学アレルゲンデータベース(The Food Allergy Research and Resource Program; FARRP, version 21)

4. ベクターへの挿入 DNA の組込方法に関する事項

プラスミド pE194 に、インテグラーゼ遺伝子断片、cry3A mRNA 安定化配列断片、aprL 遺伝子断片等を挿入することにより、遺伝子導入用ベクターpJPV048 を作製した。

5. 構築された発現ベクターに関する事項

- (1)塩基数及び塩基配列と制限酵素による切断地図に関する事項 遺伝子導入用ベクターpJPV048の塩基数、塩基配列及び制限酵素によ る切断地図は明らかになっている(参照15)。
- (2)原則として、最終的に構築された発現ベクターには、目的以外のタンパク質を組換え体内で発現するオープンリーディングフレームが含まれていないこと

第5-2-(2) に記載のとおりである。

(3)宿主に対して用いる導入方法において、意図する挿入領域が発現ベクター上で明らかであること

遺伝子導入用ベクターpJPV048上の意図する挿入領域は、aprL遺伝子発現カセットを含む領域である。

(4) 導入しようとする発現ベクターは、目的外の遺伝子の混入がないよう純化されていること

遺伝子導入用ベクターpJPV048 は、構築の過程において精製されていることから、目的外の遺伝子の混入がないように純化されている。

6. DNA の宿主への導入方法に関する事項

あらかじめ、各標的遺伝子座にマーカー遺伝子発現カセット(P3 プロモーター、cry3A mRNA 安定化配列、マーカー遺伝子及びインテグラーゼ認識配列を含む)を相同組換えにより導入し、各マーカーにより選抜した。その後、遺伝子導入用ベクターpJPV048 をインテグラーゼの作用により挿入し、エリスロマイシン耐性を示す形質転換体を選抜した。各標的遺伝子座において、cry3A mRNA 安定化配列間でループアウトが生じ、マーカー遺伝子、インテグラーゼ遺伝子、インテグラーゼ認識配列及びエリスロマイシン耐性遺伝子が宿主ゲノムから脱落した。

7. 抗生物質耐性マーカー遺伝子の安全性に関する事項

遺伝子導入用ベクターpJPV048 は、エリスロマイシン耐性遺伝子を持ち、 染色体に挿入されるが、ループアウトで脱落するため宿主の染色体には導入 されない。また、生産菌株に抗生物質耐性マーカー遺伝子は存在しないこと をシークエンス解析により確認している。

第5. 組換え体に関する事項

1. 宿主との差異に関する事項

JPBL012 株は、aprL 遺伝子発現力セットが導入されている点、DNA 置換及び欠失がなされている点で宿主と異なる。

2. 遺伝子導入に関する事項

(1)制限酵素による切断地図に関する事項

JPBL012 株の染色体上への aprL 遺伝子発現カセットの導入位置を確認する目的で、シークエンス解析を行った。その結果、設計通り各遺伝子座に全長の発現カセットが挿入されたことが確認された(参照 16)。また、挿入領域の各構成要素及び制限酵素による切断地図は明らかになっている。

(2) オープンリーディングフレームの有無並びにその転写及び発現の可能 性に関する事項

挿入 DNA と宿主ゲノムの接合部位に生じるオープンリーディングフレーム(以下「ORF」という。)の有無を調べる目的で、各標的遺伝子導入座における挿入 DNA の 5'近傍配列領域を含む領域、及び 3'近傍配列を含む領域について、ORF 検索を行った(参照 $9\sim14$)。その結果、 $6\sim14$ 0の読み枠において、終止コドンから終止コドンで終結する連続する $10\sim14$ 0 の記り、終止コドンから終止コドンで終結する連続する $10\sim14$ 0 の記り、

次いで、上記の ORF と既知のアレルゲンとの相同性の有無を調べる目的で、アレルゲンデータベース。を用いて相同性検索を行った。その結果、連続する 80 アミノ酸配列に対して 35%以上の相同性を示す既知のアレルゲンとして、複数のアレルゲンが認められた。これらの多くは吸入をばく露経路とする呼吸器誘発性アレルゲンであり、食物アレルゲンとして登録されている 3 種類のアレルゲンが検出されたが、aprL との間に連続した 8 アミノ酸配列の完全一致は認められなかった。また、連続する 8 アミノ酸配列が完全に一致する既知のアレルゲンは認められなかった。

さらに、これらの ORF と既知の毒性タンパク質との相同性の有無を調べる目的で、タンパク質データベース d を用いて E-value< 1.0×10^{-5} を指標として相同性検索を行った。その結果、データベース中の既知のタンパク質と相同性を示す ORF が検出されたが、相同性を示した箇所は内在性遺伝子の部分領域であり、毒性を有する可能性は低いと考えられた

c ネブラスカ大学アレルゲンデータベース(The Food Allergy Research and Resource Program; FARRP, version 21)

d NCBI データベース (検索: 2021 年 4 月)

(参照 14)。なお、各遺伝子座において、aprL をコードする ORF と部分的に相同性を示す毒性タンパク質が検出されたが、プロテアーゼの機能を有するタンパク質であり、毒性を有する可能性は低いと考えられた。

第6. 組換え体以外の製造原料及び製造器材に関する事項

1. 添加物の製造原料又は製造器材としての使用実績があること

aprL 製品の製造原料及び製造器材は、食品用酵素の製造において長年安全に利用されてきた実績がある。

2. 添加物の製造原料又は製造器材としての安全性について知見が得られていること

aprL 製品の製造原料及び製造器材は、食品用酵素の製造において長年安全に利用されてきた実績を有することから、有害性はないと考えられる。また、本製品の原料は、Food Chemicals Codex 等の規格に適合している。

第7. 遺伝子組換え添加物に関する事項

1. 諸外国における認可、食用等に関する事項

aprL 製品は、日本を含む世界各国で 20 年以上にわたり販売され、食品用加工助剤として用いられている。JPBL012 株を利用して生産される aprL 製品に関しては、デンマークにおいて食品用加工助剤として承認されているほか、欧米を中心に申請を行う予定としている。

2. 組換え体の残存に関する事項

aprL 製品に組換え DNA の残存がないことを PCR 解析により確認した (参照 17)。

3. 製造に由来する非有効成分の安全性に関する事項

aprL の製品前の酵素サンプルは、食品衛生法(昭和 22 年法律第 233 号) の規格基準を満たしている(参照 18)。また、製造原料は、食品用酵素への使用が認められた品質のものが用いられ、適切な製造管理の下で製造が行われるならば、安全性に問題のある非有効成分は含まれないと考えられる。

4. 精製方法及びその効果に関する事項

aprL は、生産菌の培養物を、粗ろ過、除菌ろ過、限外ろ過等の精製工程を経ることで得られる。適切な製造管理の下で製造が行われるならば、これらの工程において、安全性に問題のある物質が混入することはないと考えられる。

5. 含有量の変動により有害性が示唆される常成分の変動に関する事項

aprL の製造原料及び製造方法は、従来の食品用酵素の製造に使用されて

いるものと同様であり、適切な製造管理の下で製造が行われるならば、含有量の変動により有害性が示唆される常成分の変動はないと考えられる。

第8. 第2から第7までの事項により安全性の知見が得られていない場合に必要な事項

第2から第7までの事項により安全性の知見は得られている。

Ⅲ. 食品健康影響評価結果

「JPBL012 株を利用して生産されたプロテアーゼ」について、「遺伝子組換え微生物を利用して製造された添加物の安全性評価基準」(平成 16 年 3 月 25 日食品安全委員会決定)に基づき評価した結果、人の健康を損なうおそれはないと判断した。

<参照>

- 1. Goldstein BP. Resistance to rifampicin: a review. Journal of Antibiotics, Review 2014;67(9):625-630
- **2.** *Bacillus licheniformis* Ca63株における欠失導入用ベクターを用いたDNA 欠失の概要(社内文書)
- 3. Chapter 4: Safety evaluation of foods and food ingredients derived from microorganisms. Regulatory Toxicology and Pharmacology, Article 1990;12(3 PART 2):S114-S128
- 4. 国立感染症研究所病原体等安全管理規程 別冊1 「病原体等のBSL分類等」
- 5. 国立感染症研究所病原体等安全管理規程(改訂第三版)
- 6. Bacillus licheniformis TSCA Section 5(h)(4) Exemption: Final Decesion Document
 - https://www.epa.gov/sites/production/files/2015-09/documents/fra005.pdf [accessed May 16, 2018]
- 7. 参考資料2.食品用酵素データ集. 取り扱い手法と実践-: 株式会社シーエムシー出版; 2013年7月31日
- 8. 社内文書6. Temperature and pH activity profiles and Temperature stability for subtilisin produced by *Bacillus licheniformis*, strain NZYM-CB(社外秘)
- 9. Sequence homology of ORFs in the *** locus on the genome of JPBL012 to allergens and toxins(社內文書)
- 10. Sequence homology of ORFs in the *** locus on the genome of JPBL012 to allergens and toxins(社内文書)
- 11. Sequence homology of ORFs in the *** locus on the genome of JPBL012 to allergens and toxins(社內文書)
- 12. Sequence homology of ORFs in the *** locus on the genome of JPBL012 to allergens and toxins(社內文書)
- 13. Sequence homology of ORFs in the *** locus on the genome of JPBL012 to allergens and toxins(社內文書)
- 14. Sequence homology of ORFs in the *** locus on the genome of JPBL012 to allergens and toxins(社內文書)
- 15. 遺伝子導入ベクターpJPV048の DNA塩基配列並びに構成(社内文書)
- 16. JPBL012株の遺伝子挿入部位の塩基配列(社内文書)
- 17. Absence of residual DNA in the product (社内文書)
- 18. Characterization of Representative and Tox Batches from JPBL012 (社内文書)