

This is provisional English translation of an excerpt from the original full report.

Risk Assessment Report

Tiadinil (2nd Edition)

(Pesticides)

Food Safety Commission of Japan (FSCJ) September 2020

ABSTRACT

FSCJ conducted the risk assessment of a thiadiazolecarboxamide insecticide, tiadinil (CAS No. 223580-51-6), based on various documents. Data on fate in animals (goats and chicken) and residue in livestock products (lactating caw and laying hen) were newly available in this assessment.

The data used in the assessment include fate in animals (rats, goats and chicken), fate in plants (paddy rice), residues in crops, acute toxicity (rats and rabbits), subacute toxicity (rats and dogs), chronic toxicity (dogs), combined chronic toxicity/carcinogenicity (rats), carcinogenicity (mice), two-generation reproduction toxicity (rats), developmental toxicity (rats and rabbits), genotoxicity and mechanism of liver tumor induction in mice.

Major adverse effects of tiadinil observed are increased organ weight and liver hypertrophy, and vacuolation of renal tubular epithelial cells in the kidney. Tiadinil showed no effects on reproduction, teratogenicity and genotoxicity relevant to human health.

In a carcinogenicity study in mice, an increased incidence of hepatocellular adenomas was observed. However, a genotoxic mechanism was unlikely involved in tumor induction, and it was considered possible to establish a threshold dose in the assessment.

FSCJ identified the relevant substances for the residue definition for dietary risk assessment in agricultural products to be tiadinil and its metabolite D and E, for that in livestock products to be tiadinil and its metabolite C, and for that in livestock products and that for fishery products to be tiadinil (parent substance only).

The lowest value of the no-observed-adverse-effect level (NOAEL) in all tests was 4 mg/kg bw/day in a one-year chronic toxicity study in dogs. FSCJ specified an acceptable daily intake (ADI) of 0.04 mg/kg bw/day by applying a safety factor of 100 to the NOAEL.

The lowest NOAEL for potential adverse effects of a single oral administration of tiadinil was 150 mg/kg bw/day obtained in developmental toxicity studies in rats and in rabbits. FSCJ specified an acute reference dose (ARfD) to be 1.5 mg/kg bw by applying a safety factor of 100 to the NOAEL.

 Table 1. Levels relevant to toxicological evaluation of tiadinil

	Study	Dose	NOAEL (mg/kg bw/day) ¹	
Species		(mg/kg bw/day)	FSCJ	Reference (Summary reports)
	90-day subacute toxicity study	0, 80, 400, 2 000, 5 000 ppm	M: 28.0 F: 6.36	M: 28.0 F: 6.36
		M: 0, 6.06, 28.0, 139, 359 F: 0, 6.36, 32.8, 157, 411	M: Increased relative weight of the liver F: Increased relative and absolute weight of the liver	M: Increased relative weight of the liver F: Increased relative and absolute weight of the liver
	90-day subacute neurotoxicity study	0, 400, 2 000, 5 000 ppm	M: 139 F: 146	M: 139 F: 146
		M: 0, 27, 139, 355 F: 0, 29, 146, 360	M/F: Suppressed body weight	M/F: Suppressed body weight
			(No subacute neurotoxicity was observed)	(No subacute neurotoxicity was observed)
	Two-year combined chronic toxicity/carcinogenicity study	M: 0, 3.67, 19.0, 95.2 F: 0, 4.57, 23.2, 115	M: 19.0 F: 23.2 M/F: Suppressed body weight	M: 19.0 F: 23.2 M/F: Suppressed body weight
Rat			(No carcinogenicity)	(No carcinogenicity)
	Two-generation reproductive toxicity study	0, 80, 600, 5 000 ppm	Parent and offspring PM: 36.4	Parent and offspring PM: 36.4
		PM: 0, 4.90, 36.4, 300 PF: 0, 7.15, 53.6, 448 F ₁ M: 0, 5.63, 42.2, 353	PF: 53.6 F ₁ M: 42.2 F ₁ F: 58.4	PF: 53.6 F ₁ M: 42.2 F ₁ F: 58.4
		F ₁ F: 0, 7.72, 58.4, 489	Parent and offspring Suppressed body weight	Parent and offspring Suppressed body weight
			(No effects on reproductive activity)	(No effects on reproductive activity)
		0, 30, 150, 750	Dams: 150 Fetuses: 750	Dams: 150 Fetuses: 750
	Developmental toxicity study		Dams: Decreased /suppressed body weight Fetuses: No toxicity was observed. (No teratogenicity)	Dams: Suppressed body weight Fetuses: No toxicity was observed. (No teratogenicity)
Mouse	18-month carcinogenicity study	0, 150, 1 000, 7 000 ppm	M: 196 F: 267	M: 196 F: 267

		M: 0, 29.0, 196, 1 310	M/F: Increased incidence	M/F: Increased incidence of
		F: 0, 40.0, 267, 1 790	of hepatocellular	hepatocellular adenomas
			adenomas	
	Developmental toxicity study	0, 30, 150, 600	Dams: 150	Dams: 150
			Fetuses: 600	Fetuses: 600
			Dams:	Dams:
			Decreased/suppressed	Decreased/suppressed body
Rabbit			body weight	weight
			Fetuses: No toxicity was	Fetuses: No toxicity was
			observed	observed
			(No teratogenicity was	(No teratogenicity was
			observed)	observed)
		0, 20, 100, 500	M/F: 20	M/F: 20
	90-day subacute			
	toxicity study		M/F: Centrilobular	M/F: Centrilobular
_			hypertrophy of hepatocytes	hypertrophy of hepatocytes
Dog		0, 4, 20, 100	M/F: 4	M/F: 4
	One-year chronic			
	toxicity study		M/F: Suppressed body	M/F: Suppressed body
			weight	weight
ADI			NOAEL: 4	NOAEL: 4
			SF: 100	SF: 100
			ADI: 0.04	ADI: 0.04
The critical study for setting ADI			One-year chronic toxicity	One-year chronic toxicity
			study in dogs	study in dogs

ADI, Acceptable daily intake; NOAEL, No-observed-adverse-effect level; SF, Safety factor

¹⁾ The adverse effect observed at LOAEL

Table 2. Potential adverse effects of a single oral administration of tiadinil

_			
Species	Study	Dose (mg/kg bw or	Endpoints relevant to setting NOAEL and
	Study	mg/kg bw/day)	ARfD (mg/kg bw or mg/kg bw/day) 1
		M/F: 1 600, 2 240, 3 140,	-
	Acute toxicity study	4 390, 6 150	Maria di Man
			M/F: Reduced locomotive activity,
			proneness
Rat		F: 0, 30, 150, 750	Dams: 150
	-		Dames Dames and Jayannan and hadry year abt
	Developmental toxicity		Dams: Decreased/suppressed body weight,
	study		decreased feed intake
	·		
		F: 0, 30, 150, 600	Dams: 150
		1. 0, 20, 120, 000	
D 11.4	Developmental toxicity		Dams: Decreased/suppressed body weight
Rabbit	study		
	study		
			NOAEL: 150
ARfD			SF: 100
			ARfD: 1.5
			(1) Developmental toxicity study in rats
The critical study for setting ARfD			(2) Developmental toxicity study in
			rabbits

ARfD, Acute reference dose; NOAEL, No-observed-adverse-effect level; SF, Safety factor;

^{-,} NOAEL could not be specified

1) The adverse effect observed at LOAEL