

府 食 第 644号 平成28年10月25日

厚生労働大臣 塩崎 恭久 殿

食品安全委員会 委員長 佐藤

食品健康影響評価の結果の通知について

平成27年11月16日付け厚生労働省発生食1116第2号をもって厚生労働大臣から食品安全委員会に意見を求められたフェナザキンに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

フェナザキンの一日摂取許容量を 0.0046 mg/kg 体重/日、急性参照用量を 0.1 mg/kg 体重と設定する。

農薬評価書

フェナザキン

2016年10月 食品安全委員会

目 次

		貝
0) 審議の経緯	. 3
0) 食品安全委員会委員名簿	. 3
0) 食品安全委員会農薬専門調査会専門委員名簿	. 3
0) 要 約	. 6
I	. 評価対象農薬の概要	. 7
	1. 用途	. 7
	2. 有効成分の一般名	
	3. 化学名	. 7
	4. 分子式	
	5. 分子量	. 7
	6. 構造式	
	7. 開発の経緯	. 7
Π	. 安全性に係る試験の概要	
	1. 動物体内運命試験	
	(1)ラット	
	(2)ラット、マウス及びハムスター	
	2. 植物体内運命試験	
	(1) ぶどう	
	(2)りんご①	
	(3) りんご②	
	(4) オレンジ	
	(5) とうもろこし	
	3. 土壌中運命試験	
	(1)好気的土壌中運命試験①	
	(2)好気的土壌中運命試験②	
	(3)好気的/嫌気的湛水土壌中運命試験	
	(4)土壌表面光分解試験	
	4. 水中運命試験	
	(1)加水分解試験①	
	(2)加水分解試験②	20
	(3)水中光分解試験	20
	5. 土壌残留試験	20
	6. 作物残留試験	20
	(1)作物残留試験	20

	7. 一般薬理試験	20
	8. 急性毒性試験	20
	(1)急性毒性試験	20
	(2)急性神経毒性試験(ラット)	21
	9. 皮膚感作性試験	22
	10. 亜急性毒性試験	22
	(1)90 日間亜急性毒性試験(ラット)①	22
	(2) 90 日間亜急性毒性試験(ラット)②	22
	(3) 90 日間亜急性毒性試験(ハムスター)	23
	(4) 90 日間亜急性毒性試験(イヌ)	24
	(5) 21 日間亜急性経皮毒性試験(ウサギ)	24
	1 1. 慢性毒性試験及び発がん性試験	25
	(1)1 年間慢性毒性試験(イヌ)	25
	(2)2 年間慢性毒性/発がん性併合試験(ラット)	25
	(3) 18 か月間発がん性試験(ハムスター)	26
	1 2 . 生殖発生毒性試験	26
	(1)2世代繁殖試験(ラット)①	26
	(2)2世代繁殖試験(ラット)②	27
	(3)発生毒性試験(ラット)	28
	(4)発生毒性試験(ウサギ)	28
	1 3. 遺伝毒性試験	28
	14. その他の試験	29
	(1)28 日間免疫毒性試験(ラット)	29
Π	[. 食品健康影響評価	30
	別紙1:代謝物/分解物略称	35
	別紙 2:検査値等略称	
	別紙3:作物残留試験成績(海外)	
-	发 昭	11

<審議の経緯>

2014年 10月 6日 インポートトレランス設定の要請(茶、アーモンド等)

2015年 11月 16日 厚生労働大臣から残留基準設定に係る食品健康影響評価

について要請(厚生労働省発生食1116第2号)

2015年 11月 17日 関係書類の接受(参照1~37)

2015年 11月 24日 第585回食品安全委員会(要請事項説明)

2016年 2月 3日 第52回農薬専門調査会評価第一部会

2016年 5月 24日 追加資料受理 (参照 38~41)

2016年 8月 1日 第56回農薬専門調査会評価第一部会

2016年 8月 26日 第139回農薬専門調査会幹事会

2016年 9月 6日 第621回食品安全委員会(報告)

2016年 9月 7日 から10月6日まで 国民からの意見・情報の募集

2016年 10月 19日 農薬専門調査会座長から食品安全委員会委員長へ報告

2016年 10月 25日 第627回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知)

<食品安全委員会委員名簿>

(2015年7月1日から)

佐藤 洋(委員長)

山添 康(委員長代理)

熊谷 進

吉田 緑

石井克枝

堀口逸子

村田容常

<食品安全委員会農薬専門調査会専門委員名簿>

(2016年3月31日まで)

• 幹事会

西川秋佳 (座長) 小澤正吾 林 直 納屋聖人 (座長代理) 三枝順三 本間正充 赤池昭紀 代田眞理子 松本清司 浅野 哲 永田 清 與語靖洋 上路雅子 長野嘉介 吉田 緑*

• 評価第一部会

 上路雅子(座長)
 清家伸康
 藤本成明

 赤池昭紀(座長代理)
 林 真 堀本政夫

 相磯成敏
 平塚 明 山崎浩史

 浅野 哲
 福井義浩
 若栗 忍

篠原厚子

• 評価第二部会

吉田 緑 (座長) * 腰岡政二 細川正清 松本清司 (座長代理) 佐藤 洋 本間正充 小澤正吾 杉原数美 山本雅子 川口博明 根岸友惠 吉田 充

桑形麻樹子

• 評価第三部会

三枝順三 (座長) 中山真義 高木篤也 八田稔久 納屋聖人(座長代理) 田村廣人 太田敏博 中島美紀 増村健一 小野 敦 永田 清 義澤克彦

• 評価第四部会

西川秋佳 (座長) 佐々木有 本多一郎 長野嘉介 (座長代理) 代田眞理子 森田 健 井上 薫** 玉井郁巳 山手丈至

中塚敏夫 加藤美紀 與語靖洋

**: 2015年9月30日まで

*:2015年6月30日まで

(2016年4月1日から)

幹事会

西川秋佳 (座長) 三枝順三 長野嘉介 納屋聖人 (座長代理) 代田眞理子 林真 浅野 哲 清家伸康 本間正充 小野 敦 與語靖洋 中島美紀

• 評価第一部会

浅野 哲(座長) 桑形麻樹子 平林容子 平塚 明(座長代理) 佐藤 洋 本多一郎 堀本政夫 (座長代理) 清家伸康 森田 健 相磯成敏 山本雅子 豊田武士 小澤正吾 林 真 若栗 忍

• 評価第二部会

三枝順三 (座長) 高木篤也 八田稔久 小野 敦 (座長代理) 中島美紀 福井義浩 納屋聖人 (座長代理) 中島裕司 本間正充 腰岡政二 中山真義 美谷島克宏 根岸友惠 義澤克彦 杉原数美

• 評価第三部会

西川秋佳 (座長) 加藤美紀 髙橋祐次 長野嘉介 (座長代理) 川口博明 塚原伸治 與語靖洋 (座長代理) 久野壽也 中塚敏夫 石井雄二 篠原厚子 増村健一

太田敏博 代田眞理子 吉田 充

<第 56 回農薬専門調査会評価第一部会専門参考人名簿>

赤池昭紀 藤本成明

<第 139 回農薬専門調査会幹事会専門参考人名簿>

赤池昭紀 永田 清 松本清司

上路雅子

要約

キナゾリン系殺虫剤・殺ダニ剤である「フェナザキン」 (CAS No.120928-09-8) について、各種資料を用いて食品健康影響評価を実施した。

評価に用いた試験成績は、動物体内運命(ラット、マウス及びハムスター)、植物体内運命(ぶどう、りんご等)、作物残留、亜急性毒性(ラット、ハムスター及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(ハムスター)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、免疫毒性(ラット)、遺伝毒性等の試験成績である。

各種毒性試験の結果から、フェナザキン投与による影響は、体重(増加抑制)に 認められた。発がん性、繁殖能に対する影響、催奇形性、免疫毒性及び生体におい て問題となる遺伝毒性は認められなかった。

各種試験結果から、農産物中の暴露評価対象物質をフェナザキン及び代謝物 M12 と設定した。

各試験で得られた無毒性量のうち最小値は、ラットを用いた 2 年間慢性毒性/発がん性併合試験の 0.46 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.0046 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

また、フェナザキンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ラットを用いた発生毒性試験の 10 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.1 mg/kg 体重を急性参照用量(ARfD)と設定した。

I. 評価対象農薬の概要

1. 用途

殺虫剤・殺ダニ剤

2. 有効成分の一般名

和名:フェナザキン

英名: fenazaquin (ISO 名)

3. 化学名

IUPAC

和名: 4·tert-ブチルフェネチルキナゾリン-4·イルエーテル

英名: 4-tert-butylphenethyl quinazolin-4-yl ether

CAS (No. 120928-09-8)

和名: 4-[2-[4-(1,1-ジメチルエチル)フェニル]エトキシ]キナゾリン

英名: 4-[2-[4-(1,1-dimethylethyl)phenyl]ethoxy]quinazoline

4. 分子式

 $C_{20}H_{22}N_2O$

5. 分子量

306.4

6. 構造式

7. 開発の経緯

フェナザキンは、ダウエランコ社(現ダウアグロサイエンス社)によって開発されたキナゾリン系の殺虫剤・殺ダニ剤であり、ミトコンドリア呼吸鎖電子伝達系 Complex I の阻害により、殺虫効果を示すと考えられている。

国内での農薬登録はなされていない。今回、インポートトレランス設定(茶、アーモンド等)の要請がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験 [II. 1~4] は、フェナザキンのフェニル環の炭素を ^{14}C で均一に標識したもの(以下「 $[phe^{-14}C]$ フェナザキン」という。)及びキナゾリン環の炭素を ^{14}C で均一に標識したもの(以下「 $[qui^{-14}C]$ フェナザキン」という。)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)からフェナザキンの濃度 $(mg/kg \ Zl\mu g/g)$ に換算した値として示した。

代謝物/分解物略称及び検査値等略称は別紙1及び2に示されている。

1. 動物体内運命試験

(1) ラット

Fischer ラット (一群雌雄各 $3\sim6$ 匹) に[phe- 14 C]フェナザキン及び[qui- 14 C]フェナザキンを等量に調製し、1 mg/kg 体重(以下 [1. (1)] において「低用量」という。)若しくは 30 mg/kg 体重(以下 [1. (1)] において「高用量」という。)で単回経口投与、又は非標識フェナザキンを低用量で 14 日間反復経口投与後、15 日目に[phe- 14 C]フェナザキン及び[qui- 14 C]フェナザキンを等量に調製し、低用量で単回経口投与(以下 [1. (1)] において「反復投与」という。)して、動物体内運命試験が実施された。試験群は表 1 に示されている。

試験群	投与方法	投与量	性別及び匹数	試験項目
I	単回経口	1 mg/kg 体重	雌雄各 3 匹	代謝及び排泄
П	単回経口	1 mg/kg 体重	雌雄各5匹	分布、代謝及び排泄
Ш	単回経口	30 mg/kg 体重	雌雄各6匹	分布、代謝*及び排泄
IV	反復経口	1 mg/kg 体重/日	雌雄各5匹	分布、代謝及び排泄

表 1 動物体内運命試験における試験群

吸収率

尿及び糞中排泄試験 [1. (1)④] における尿中放射能から、経口投与後 168 時間の吸収率は低用量投与群で少なくとも 18.3%、高用量投与群で少なくとも 16.4%と算出された。

② 分布

試験群Ⅱ、Ⅲ及びⅣにより分布が検討された。

投与168時間後の主要臓器及び組織における残留放射能濃度は表2に示されている。

いずれの投与群においても脂肪及び卵巣の放射能濃度が比較的高かった。残留 放射能の分布に投与量及び投与方法の違いによる顕著な差は認められなかった。 (参照 1、2)

^{*:5} 匹を使用

表 2 投与 168 時間後の主要臓器及び組織における残留放射能濃度(µg/g)

投与方法	投与量 (mg/kg 体重)	性別	投与 168 時間後
単回経口		雄	脂肪(0.054)、肝臓(0.004)、骨(0.004)、血液(0.004)
中回程口 (試験群Ⅱ)	1	雌	脂肪(0.131)、卵巣(0.023)、子宮(0.008)、骨(0.007)、肺(0.005)、
		此臣	カーカス 1(0.005)、血液(0.004)
単回経口	30	雄	脂肪(2.18)、骨(0.178)、脾臓(0.138)、肝臓(0.122)、血液(0.115)
(試験群Ⅲ)		雌	脂肪(2.67)、卵巣(0.582)、骨 (0.191)、脾臓(0.171)、カーカス
(时间火和十Ⅲ)		此出	(0.101)、肝臓(0.098)、子宮(0.098)、肺(0.091)、血液(0.073)
		雄	脂肪(0.079)、骨(0.006)、肺(0.006)、カーカス(0.005)、血液
反復経口	1	仏出	(0.005)、血漿(0.005)
(試験群IV)	1	雌	脂肪(0.091)、卵巣(0.015)、骨(0.005)、カーカス(0.004)、肺
			(0.004)、脾臟(0.003)、肝臟(0.003)、血液(0.003)、血漿(0.003)

③ 代謝 (尿及び糞)

試験群 I、II、III及びIVにおいて得られた尿及び糞を用いて代謝物同定・定量試験が実施された。

尿及び糞中の代謝物は表3に示されている。

尿中では、いずれの投与群においても、未変化のフェナザキンは認められず、 主な代謝物として M2 が認められた。

糞中では未変化のフェナザキンのほか、主な代謝物として、M1、M3、M4 及び M11 が認められた。(参照 1、2)

表3 尿及び糞中の代謝物(%TAR)

投与 方法	投与量 (mg/kg 体重)	性別	試料	フェナザ	代謝物
		雄	尿	ND	M2(5.8)、未同定 NA-1(3.2)、未同定 NN-2 複合体(2.8)、 未同定 NN-3 複合体(1.7)、未同定 NN-1(0.1)
	1		糞	1.0	M1(17.3), M4(10.5), M3(6.9), M11(2.2)
开	1	雌	尿	ND	M2(4.7)、未同定 NN-2 複合体(2.7)、未同定 NA-1(2.7)、 未同定 NN-3 複合体(2.2)、未同定 NN-1(0.4)
単回経			糞	1.8	M1(13.7), M4(9.3), M3(5.3), M11(0.7)
経口		雄	尿	ND	M2(5.7)、未同定 NA-1(3.3)、未同定 NN-2 複合体(1.4)、 未同定 NN-3 複合体(1.4)、未同定 NN-1(0.1)
	20		糞	8.3	M1(16.4), M4(6.1), M3(4.3), M11(1.4)
	30	雌	尿	ND	M2(4.2)、未同定 NA-1(2.2)、未同定 NN-3 複合体(1.3)、 未同定 NN-2 複合体(1.2)、未同定 NN-1(0.3)
			糞	15.0	M1(11.9), M4(4.8), M3(3.5), M11(0.4)

¹ 組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

-

Ħ		雄	尿	ND	M2(4.8)、未同定 NN-2 複合体 (2.0)、未同定 NA-1 (1.9)、 未同定 NN-3 複合体(1.5)、未同定 NN-1(0.1)
反復経	1		糞	1.9	M1(19.9), M4(9.8), M3(8.4), M11(1.5)
経口	1	雌	尿	ND	M2(4.9)、未同定 NN-2 複合体(2.2)、未同定 NN-3 複合体(1.3)、未同定 NA-1(1.2)、未同定 NN-1(0.5)
			糞	3.6	M1(14.2), M4(10.4), M3(3.8), M11(0.5)

ND: 検出せず

注)未同定 NA-1:中性アグリコン画分において TLC 分析により 1 つのバンドで確認された代謝物。

未同定 NN-2 複合体: 尿の中性非抱合画分中の NN-2 及び NN-2A の合計。

未同定 NN-3 複合体: 尿の中性非抱合画分中の NN-3 及び NN-3A の合計。

未同定 NN-1: 尿の中性非抱合画分で最も極性が低いもの。

動物体内における主要代謝経路は、エーテル結合の開裂又はアルキル側鎖の酸化であると考えられた。

4 排泄

試験群Ⅰ、Ⅱ、Ⅲ及びⅣにより排泄が検討された。

投与後168時間における尿及び糞中排泄率は表4に示されている。

排泄パターンに性別及び投与量の違いによる顕著な差は認められなかった。 (参照 1, 2)

表 4 投与後 168 時間における尿及び糞中排泄率 (%TAR)

<u> </u>									
投与量	性別	試料	試彩	採取時間(時	 宇間)				
(mg/kg 体重)	11生万月	武件	$0 \sim 24$	0~48	0~168				
	+++	尿	15.9	19.6	20.9				
1	雄	糞	49.0	72.1	85.8				
(単回経口)	ill/ff-	尿	16.8	18.3	19.4				
	雌	糞	67.5	77.2	81.2				
	雄	尿	16.4	17.9	18.8				
1		糞	63.5	80.6	88.9				
(反復経口)	ill/ff-	尿	15.2	17.0	18.3				
	雌	糞	63.9	76.7	82.7				
	+++	尿	10.0	17.9	19.6				
30	雄	糞	18.6	58.0	71.9				
(単回経口)	illett:	尿	9.20	14.5	16.4				
	雌	糞	29.5	62.0	73.0				

(2) ラット、マウス及びハムスター

① 血中濃度推移

 14 C-フェナザキン(標識位置不明)を、Fischer ラット(一群雌雄 3 匹)に 1 に 10 若しくは 30 mg/kg 体重、ICR マウス(一群雌雄 3 匹)に 30 、 300 若しくは 750 mg/kg 体重又はシリアンゴールデンハムスター(一群雌雄 3 匹)に 5 、 25

若しくは 125 mg/kg 体重で単回経口投与し、血中濃度推移について検討された。 血漿中薬物動態学的パラメーターは表 5 に示されている。

いずれの種でも設定されている 25 又は 30 mg/kg 体重において、吸収はラットに比べマウス及びハムスターで比較的速やかであった。 $T_{1/2}$ はラットで 20.5~23.8 時間、マウスで 2.8~2.9 時間、ハムスターで 50.7~65.6 時間であり、ラット及びハムスターに比べマウスで速やかに消失した。マウスの 750 mg/kg 体重投与群の雌では、血漿中放射能濃度の第二のピークが 48 時間後に認められた。(参照 39)

表 5 血漿中薬物動態学的パラメーター

☆ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・									
ラット									
投与量(mg/kg 体重)		1	1	0	30				
性別	雄	雌	雄	雌	雄	雌			
$C_{max}(\mu g/g)$	0.202	0.255	2.52	3.99	4.82	8.47			
T _{max} (hr)	8	8	8	8	24	8			
T _{1/2} (hr)	29.0	34.7	21.2	23.3	23.8	20.5			
AUC _{0∞} (hr•μg/g)	7.35	6.26	78.7	78.5	227	249			
		マリ	ウス						
投与量(mg/kg 体重)	3	0	30	00	750*				
性別	雄	雌	雄	雌	雄	雌			
C _{max} (µg/g)	8.0	6.4	39.0	17.3	34.5	28.5/64.7			
T _{max} (hr)	0.5	1	4	1	4	2/48			
T _{1/2} (hr)	2.9	2.8	27.5	9.1	136	_			
AUC _{0∞} (hr•μg/g)	42.5	34.9	380	302	1,170	1,960			
		ハムン	スター						
投与量(mg/kg 体重)		5	2	5	1	25			
性別	雄	雌	雄	雌	雄	雌			
C _{max} (µg/g)	0.66	0.79	2.39	2.82	7.30	10.5			
T _{max} (hr)	2	1	2	2	4	8			
T _{1/2} (hr)	75.1	88.9	90.4	56.3	50.7	65.6			
AUC _{0∞} (hr•μg/g)	6.59	8.00	37.0	43.5	248	293			

^{*:} 雌において放射能濃度のピークが2つ認められたため、 C_{max} 及び T_{max} は2つの数値を示した。-:参照した資料において算出されず。

2. 植物体内運命試験

(1) ぶどう

ぶどう (品種:カベルネ・ソーヴィニョン) に、乳剤に調製した[phe-14C]フェナザキン若しくは[qui-14C]フェナザキンを、10.5 mg ai/区の用量で花期終了 $2\sim3$ 週後 (以下 [2. (1)] において「初期」という。) 若しくは 15 mg ai/区(慣行 濃度)の用量で花期終了 $9\sim10$ 週後 (以下 [2. (1)] において「後期」という。)

に花房処理、又は 9 mg ai/区の用量で初期に枝茎葉散布処理し、初期処理及び枝茎葉処理では処理 0、49 及び 76 日後、後期処理では処理 28 日後にそれぞれ果実を、枝茎葉処理では果実のほか枝茎葉を採取して、植物体内運命試験が実施された。また、 $[phe^{-14}C]$ フェナザキン又は $[qui^{-14}C]$ フェナザキンを、150 mg ai/区の用量(以下 [2.(1)] において「10 倍処理区」という。)で花期終了 $9\sim10$ 週後(後期)に花房処理し、処理 28 日後に果実を採取して、代謝物の同定が行われた。

初期及び後期処理後の放射能分布は表 6、初期処理 49 及び 76 日後の残留放射能及び代謝物は表 7 に示されている。

HPLC 分析において、初期処理 49 及び 76 日後の果実中における主要成分は未変化のフェナザキンであり、 $25.3\sim39.1\%$ TRR 認められた。10%TRR を超える代謝物として M3 が最大 12.9%TRR 認められた。また、初期処理 76 日後の表面洗浄液と抽出画分の合計において代謝物 M7 が 7.7%TRR、M9 が 4.1%TRR 認められ、抽出物の水相画分の β -グルコシダーゼ加水分解及び抽出残渣のアルカリ加水分解後にそれぞれ 26.2%TRR 及び 12.3%TRR となった。TLC による分析では代謝物 M1 及び M10 が認められたが、いずれも 10%TRR 未満であった。後期処理 28 日後の果実中においても、主要成分は未変化のフェナザキンであった。代謝物として M3、M6、M7、M8 及び M10 が認められたが、いずれも 10%TRR 未満であった。10 倍処理区でも同様の結果であった。

枝茎葉処理において、茎葉からは放射能(10 mg/kg)が検出されたが、果実からはほとんど検出されなかった。(参照 1、2、38)

X DAIAC KAICE KAICH IN THE COURT									
	+亜 ⇒穴	加工田公公		表面洗浄液	Ź	果実			
散布処理	標識	処理後	10%メタ	ジクロロ	100%メタ	十十二次	結合		
	化合物	日数	ノール	メタン	ノール	抽出液	残渣		
		0	0.7	21.4	55.4	17.5	5.0		
	[phe-14C]	49	13.4	25.6	21.3	34.3	5.4		
九十十日九十十日		76	6.6	14.0	13.1	44.6	21.7		
初期処理	[qui- ¹⁴ C]	0	0.9	25.2	54.8	15.9	3.2		
		49	7.9	18.1	17.5	37.7	18.8		
		76	5.4	11.0	12.9	39.1	31.6		
◇◇ 廿日 AΠ 工田	[phe-14C]	28	2.7	56.8	11.9	28.7*			
後期処理	[qui-14C]	28	5.6	38.2	17.5	38.	.8*		

表 6 初期及び後期処理後の放射能分布(%TRR)

表 7 初期処理後の残留放射能及び代謝物(%TRR)(HPLC分析)

標識体	処理後 日数	分布	フェナ ザキン	М3	M6	M7	M8	M9	
-----	-----------	----	------------	----	----	----	----	----	--

^{*:}抽出液及び結合残渣の合計

		表面洗浄液								
		ジクロロメタン	22.0	3.6	ND	ND	ND	ND		
	49	100%メタノール	9.5	$\frac{3.0}{2.7}$	ND	ND ND	ND	ND		
	日									
		抽出画分	7.6	6.6	ND	ND	ND	ND		
		合計	39.1	12.9						
[solo o 14C]		表面洗浄液	1	1	ı	ı	ı	•		
[phe-14C] フェナザ		ジクロロメタン	12.7	1.3	ND	ND	ND	ND		
キン		100%メタノール	5.9	2.8	0.8	ND	ND	1.6		
, ,	5 0	抽出画分	8.1	4.9	1.9	ND	ND	2.5		
	7 6 日	(小計)	26.7	9.0	2.7			4.1		
	Ц	加水分解								
		抽出画分水相	ND	ND	ND	ND	ND	8.2		
		抽出残渣	ND	ND	ND	ND	ND	ND		
		合計	26.7	9.0	2.7			12.3		
		表面洗浄液								
	4.0	ジクロロメタン	14.2	0.9	ND	ND	ND	ND		
	49 □	100%メタノール	7.5	1.1	ND	3.1	ND	ND		
	日	抽出画分	5.0	1.1	ND	1.0	1.6	ND		
		合計	26.7	3.1		4.1	1.6			
		表面洗浄液				•				
[qui-14C]		ジクロロメタン	9.5	0.9	ND	0.6	ND	ND		
フェナザ		100%メタノール	6.0	2.0	ND	4.8	ND	ND		
7 7		抽出画分	9.8	3.1	ND	2.3	ND	ND		
	76	(小計)	25.3	6.0		7.7				
	日	加水分解	ı	1		1				
		抽出画分水相	ND	ND	ND	4.1	ND	ND		
		抽出残渣	ND	ND	ND	14.4	ND	ND		
		合計	25.3	6.0		26.2				

ND:検出せず /:該当なし

(2) りんご①

りんご (品種: MUIIA) に、乳剤に調製した [phe-14C] フェナザキン又は [qui-14C] フェナザキンを、慣行濃度の 4 倍となる 450 g ai/ha (320 mg/樹) の用量で、果実が $2\sim3$ cm の時期 (以下 [2. (2)] において「初期」という。)若しくは果実が $6\sim7$ cm の時期 (以下 [2. (2)] において「後期」という。)に茎葉散布処理し、初期処理では処理 0、4、7、14、29、57 及び 92 日後、後期処理では処理 0、7、14、28 及び 42 日後にそれぞれ果実を採取して、植物体内運命試験が実施された。

各試料中の総残留放射能は表8に示されている。

果肉中に未変化のフェナザキンは認められず、複数の未同定代謝物が認められ

たが、いずれも 3%TRR 以下であった。

果皮中における主要成分は未変化のフェナザキンで、ほかに代謝物 M8 及び M10 が認められたが、いずれも 5%TRR 以下であった。

また、 $[phe^{-14}C]$ フェナザキン処理区の一部の果実を散布直後に被覆し遮光して、 光分解について検討された結果、果実中のフェナザキンは、遮光しない場合には 散布 14 日後に 40.6%TRR に減少したのに対し、遮光下では 86.5%TRR であり、 フェナザキンの代謝への光分解の関与が示唆された。(参照 1、3)

	初期	処理	後期処理		
試料	[phe-14C]	[qui-14C]	[phe-14C]	[qui-14C]	
	フェナザキン	フェナザキン	フェナザキン	フェナザキン	
果皮	0.653	0.802	1.92	2.47	
果肉	0.026	0.029	0.050	0.063	
全果実	0.136	0.161	0.367	0.489	

表8 各試料中の総残留放射能 (mg/kg)

(3) りんご②

りんご (品種:ゴールデンデリシャス) に、乳剤に調製した[phe- 14 C]フェナザキン若しくは[qui- 14 C]フェナザキンを、33 mg ai/L (慣行濃度の $^{0.333}$ 倍) 若しくは 133 mg ai/L (慣行濃度の $^{1.33}$ 倍) の用量で、果実が $^{2.5}$ cm の時期(以下 12 (3)]において「初期」という。)又は初期処理 5 週間後(以下 12 (3)]において「後期」という。)に果実に散布処理し、初期処理では処理 0 0、 7 0、 14 28 及び 105 日後、後期処理では処理 0 及び 70 日後にそれぞれ果実を採取して、植物体内運命試験が実施された。

りんご試料における残留放射能及び代謝物は表りに示されている。

果実中の主要成分は未変化のフェナザキンであり、10%TRR を超える代謝物として M12 が認められた。また、 $[phe^{-14}C]$ フェナザキンを低用量で後期処理した後 14 日間遮光し光分解について検討された結果、果実中のフェナザキンは 103%TRR であり、フェナザキンの代謝への光の関与が示唆された。また、遮光条件下では代謝物 M12 は認められなかったことから、代謝物 M12 は光分解生成物であることが示唆された。(参照 1、40、41)

表 9 りんこ未美中の残留放射能及の代謝物							
	処理	処理濃度	処理後	総残留	抽出	性放射能(%TRR)	抽山建沐
標識体	時期		日数	放射能	フェナ	 代謝物	抽出残渣 (%TRR)
	时期	(mg ai/L)	(目)	(mg/kg)	ザキン	1 (副 物	(%1KK)
[phe-14C]			0	0.367	99.2	ND	1.4
フェナ	初期	33	7	0.144	F 7 0	M12(31.6),	0.1
ザキン			1	0.144	57.8	M3/M10(1.3)	9.1

表 9 りんご果実中の残留放射能及び代謝物

			1.4	0.070	40.7	M12(30.6)	101
			14 28	0.078	$\frac{40.7}{28.5}$	M12(30.6) M12(19.8)	16.1 28.0
						M12 (16.1)	53.3
			105	0.005	20.8 99.3	M3/M10(0.5)	$\frac{03.3}{0.4}$
			U	1.10	99.5		0.4
			-	0.505	C1 0	M12(22.6),	<i>C</i> 0
			7	0.505	61.0	M3/M10(0.9)、未同	6.8
						定成分(0.9)	
			14	0.437	59.1	M12(32.1)、 M3/M10(1.1)、未同	9.1
		133	14	0.437	59.1	定成分(0.6)	g.1
		199				M12(28.4)、	
			28	0.145	49.7	M12(28.4)、 M3/M10(3.4)、未同	17.4
			20	0.140	49.7	定成分(1.2)	17.4
						M12(17.9)、未同定	
			105	0.048	16.7	成分(4.1)、	35.0
			100	0.046	10.7	M3/M10(1.9)	55.0
			0	0.223	104	ND	1.6
		33	70	0.223	26.3	M12(18.4)	40.8
			0	0.032	97.6	M3/M10(0.6)	0.4
			0	0.916	97.0	M12(32.5),	0.4
		133				M12(32.5)、 M6(4.7)、未同定成	
	後期	100	70	0.121	23.2	分(3.1)、	25.3
						M3/M10(1.2)	
		33				W19/W110(1,2)	
		(暗所	14	0.140	103	M3/M10(0.6)	3.0
		対照区)	14	0.140	100	W10/W110(0.0)	0.0
		/·4/W/ <u>←</u> /	0	0.369	98.0	M7(0.4)	1.8
			-			M12(9.6), M 8	<u></u>
			7	0.155	72.1	(0.6)、M7(0.5)、未	16.0
						同定成分(0.1)	•
		33	.	0.7.7.7		M12(17.6),	0.4 -
			14	0.133	57.4	M8(2.6)	31.0
[2.2	0.643	40.0	M12(10.7),	40.0
[qui-14C]	4		28	0.043	42.0	M8(1.6)	40.6
フェナ	初期		105	0.011	9.7	M12(8.0)	70.1
ザキン			0	1.03	99.9	ND	0.6
						M12(10.1),	
			7	0.608	75.7	M7(1.9)、M8(0.4)	12.1
		133	4.4	0.400	F O.0	M12(19.2),	10.0
			14	0.426	58.9	M8(1.1)、M7(0.9)	18.2
				0.100	0.0.0	M12(17.7),	20.
			28	0.199	36.3	M7(4.3), M8(3.2),	29.5
			28	0.199	36.3		29.5

						未同定成分(1.7)、 M3(0.4)	
			105	0.045	12.2	M12(12.5), M8(5.2), M4(0.8)	63.9
	公 #4	33	0	0.167	98.0	M8(0.1)	1.3
			70	0.042	32.6	M12(6.7)	51.5
			0	0.814	98.1	M8(0.3)	0.3
	後期	133	70	0.172	33.4	M12(13.7)、 M8(6.5)、未同定成 分(3.3)、M7(1.0)	40.5

ND: 検出せず

(4) オレンジ

オレンジ (品種: バレンシアオレンジ) に、乳剤に調製した[phe- 14 C]フェナザキン又は[qui- 14 C]フェナザキンを収穫 191 日前及び 63 日前に慣行濃度の 4 倍となる 1.2 g ai/樹の用量で樹木に散布処理し、1 回目散布 0、28、112 及び 191 日後、2 回目散布 0、19 及び 63 日後にそれぞれ果実を採取し、植物体内運命試験が実施された。

放射能は主に果皮に認められ、85.7~99.1%TRR であった。

1回目処理 191日後における、果実中の総残留放射能は $0.270\sim0.365$ mg/kg であった。主要成分は未変化のフェナザキンで、平均 0.157 mg/kg $(39.1\sim52.2\%$ TRR) 認められ、代謝物として M13 が平均 0.023 mg/kg $(5.0\sim8.0\%$ TRR) 認められた。

2回目処理 63 日後において、果実中の総残留放射能は $0.484\sim0.676$ mg/kg であった。主要成分として未変化のフェナザキンが $55.4\sim65.5\%$ TRR 認められ、代謝物として M13 が $0.8\sim0.9\%$ TRR 認められた。

また、2回目処理後に一部の果実を被覆し遮光して光分解について検討された。 2回目処理 63日後の果実において、遮光しない場合には、フェナザキンが 55.4 $\sim 65.5\%$ TRR 認められたのに対して遮光下では $80.9 \sim 83.7\%$ TRR 認められた。 代謝物 M13 の生成量に光条件の違いによる差は認められなかった。 (参照 1.5)

(5) とうもろこし

乳熟期のとうもろこし(品種: Hybrid 66P32)に、フロアブル剤に調製した [phe- 14 C]フェナザキン又は[qui- 14 C]フェナザキンを 505 g ai/ha の用量で散布処理し、処理 20 日後に茎葉及び雌穂を採取し、植物体内運命試験が実施された。

試料中の総残留放射能は表 10、穀粒及び茎葉の総残留放射能及び代謝物は表 11 に示されている。

穀粒の総残留放射能は 0.003~0.013 mg/kg であった。

穀粒における代謝物の分析は、[qui-14C]フェナザキン処理区のみで行われ、未

変化のフェナザキンは 23.1%TRR 認められた。代謝物として、フェナザキンの 二量体である M12 のほか複数の代謝物が認められたが、いずれも 10%TRR 未満であった。

茎葉では、未変化のフェナザキンが $29.8\sim48.8\%$ TRR 認められた。代謝物として、M12 が $19.8\sim54.3\%$ TRR 認められたほかに、M1、M8、M10、M13 等複数の代謝物が検出されたが、いずれも 10%TRR 未満であった。茎葉において、光により代謝物 M12 が生成されると考えられた。(参照 1、6)

表 10 試料中の総残留放射能 (mg/kg)

試料	[phe-14C]フェナザキン	[qui-14C]フェナザキン
穀粒	0.003	0.013
穂軸	0.010	0.012
雌穂(穀粒+穂軸)	0.005	0.013
茎葉	6.43	6.54

表 11 穀粒及び茎葉の総残留放射能及び代謝物

 衣 川 教位及び全条の総残曲放射能及び代謝物						
標識化合物	[phe-14C]フ	ェナザキン	[qui- ¹⁴ C]フェナザキン			
3-4×C						
試料	mg/kg	%TRR	mg/kg	%TRR		
抽出性画分			0.006	46.2		
フェナザキン			0.003	23.1		
M12			0.001	7.7		
未同定代謝物 a			0.002	15.4		
抽出残渣			0.007	53.8		
14/4루	茎葉					
試料	mg/kg	%TRR	mg/kg	%TRR		
抽出性画分	6.51	97.9	5.58	92.3		
フェナザキン	1.98	29.8	2.95	48.8		
M1	ND		0.033	0.5		
M8			0.419	6.9		
M10	0.119	1.8				
M12	3.61	54.3	1.20	19.8		
M13	0.03	0.5	0.073	1.2		
未同定代謝物 b	0.765	11.5	0.904	14.9		
抽出残渣	0.141	2.1	0.471	7.8		

ND: 検出せず

^{/:}該当なし

a:8成分を含み、いずれも 0.001 mg/kg 未満。

b: [phe-14C]標識体では 18 成分を含み、いずれも 1.1%TRR 以下。 [qui-14C]標識体では 21 成分を含み、いずれも 1.0%TRR 以下。

植物におけるフェナザキンの主要代謝経路は、エーテル結合の開裂、アルキル側鎖の酸化及びキナゾリン 2,4 位の水酸化、キナゾリンの酸化に続いてキナゾリン環の開裂も生じると考えられた。また、光化学反応により代謝物 M12 が生成すると考えられた。

3. 土壌中運命試験

(1) 好気的土壌中運命試験①

砂壌土 (米国) に[phe-¹⁴C]フェナザキン及び[qui-¹⁴C]フェナザキンの混合液を 0.443 mg/kg 乾土となるように処理し、 $22\sim23^{\circ}$ Cで最長 365 日間インキュベートして、好気的土壌中運命試験が実施された。

 $^{14}\text{CO}_2$ の生成は、処理後 112 日で 12.5%TAR、365 日で 27.2%TAR であった。 放射能中の成分として数種の分解物が認められたが、10%TAR を超えるものはなかった。

処理 $0\sim56$ 日の結果から算出されたフェナザキンの推定半減期は 58 日、処理 $84\sim365$ 日の結果から算出されたフェナザキンの推定半減期は 163 日であった。 (参照 1、36)

(2) 好気的土壌中運命試験②

4種の土壌 [2種の壌質砂土(ドイツ)、シルト質壌土(ドイツ)、砂質埴壌土(イギリス)] に[phe-14C]フェナザキンを 0.27~mg/kg 乾土となるように処理し、20C、暗条件下で最長 178~日間インキュベートして、好気的土壌中運命試験が実施された。

推定半減期は表12に示されている。

全ての土壌で揮発性有機物は 0.1% TAR 未満であった。壌質砂土①、壌質砂土②、砂質埴壌土及びシルト質壌土において、 14 CO $_2$ はそれぞれ 37.7、30.2、37.3 及び 33.3% TAR 認められ、非抽出性放射能はそれぞれ 19.3、13.9、26.8 及び 22.8% TAR であった。分解物 M1、M5 等多数の分解物が同定されたが、10% TAR を超えるものはなかった。

滅菌条件下では分解は遅く、フェナザキンは $54.7 \sim 77.2\%$ TAR 残留した。フェナザキンの分解は主に微生物によると考えられた。(参照 1、36)

表 12 推定半減期(日)

土壌	壤質砂土①	壤質砂土②	砂質埴壌土	シルト質壌土
推定半減期	67	115	76	96

(3) 好気的/嫌気的湛水土壤中運命試験

砂壌土 (採取地不明) に $[phe^{-14}C]$ フェナザキン及び $[qui^{-14}C]$ フェナザキンの混合物を処理し、好気的条件下、 20° C、暗条件下で 30 日間インキュベートした後、湛水し、窒素通気により嫌気的条件として、 22° Cで最長 60 日間インキュベートし、好気的/嫌気的湛水土壌中運命試験が実施された。

非抽出性放射能は $16.8\sim24.8\%$ TAR であり、 14 CO₂ は 2.4% TAR 認められた。嫌気的期間中及び好気的期間中に生成した微量の分解物に変化はなかった。フェナザキンは嫌気的条件下の 60 日間で 68.9% TAR から 52.7% TAR に減少した。フェナザキンの推定半減期は 155 日と算出された。(参照 1、36)

(4)土壤表面光分解試験

フラスコ中の壌質砂土に $[qui^{-14}C]$ フェナザキン又は $[phe^{-14}C]$ フェナザキンを $40 \mu g$ の用量で添加し、25 %、北緯 39.8 度の 7 月の自然光下で、最長 <math>30 日間インキュベートして、土壌表面光分解試験が実施された。

試料中の総残留放射能及び分解物は表 13 に示されている。

フェナザキンの推定半減期は14.3日と算出された。(参照1、36)

標識化合物	[phe-14C]フェナザキン	[qui-14C]フェナザキン
フェナザキン	34.7	42.2
非抽出性放射能	7.4	7.6
$^{14}\mathrm{CO}_2$	4.0	1.3
M8	0	36.6
M10	17.9	0
M(1)	7.3	0
M2	6.0	0
未同定物質	3.6	0

表 13 試料中の総残留放射能及び分解物 (%TAR)

4. 水中運命試験

(1)加水分解試験①

pH 5、7 及び 9 の各滅菌緩衝液に $[qui^{-14}C]$ フェナザキンを 0.1 mg/L となるように添加し、25^{\circ} 管条件下で 30 日間インキュベートして、加水分解試験が実施された。

分解物として M8 及び M10 が認められた。フェナザキンの推定半減期は pH 5、7 及び 9 の各滅菌緩衝液でそれぞれ 9.6、130 及び 219 日と算出された。(参照 1、36)

(2)加水分解試験②

pH 5、7 及び 9 の各滅菌緩衝液にフェナザキンを 0.1 mg/L となるように添加し、22、25、50 及び 70 \mathbb{C} の暗条件下で 30 日間インキュベートして、加水分解試験が実施された。

フェナザキンの推定半減期は表14に示されている。(参照1、36)

X · · · IEC "XXXI \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
温度	pH 5	pH 7	pH 9		
22°C	8.0	442	584		
$25^{\circ}\!\mathrm{C}$	6.4	354	366		
50°C	1.0	24.6	24.8		
70°C	0.3	6.7	2.4		

表 14 推定半減期(日)

(3) 水中光分解試験

蒸留水(pH 7.6)に[phe-¹⁴C]フェナザキン又は[qui-¹⁴C]フェナザキンを 0.1 mg/L の濃度となるように添加し、25^{\circ}C、北緯 39.8 度の自然光下で 30 日間インキュベートして水中光分解試験が実施された。

フェナザキンの推定半減期は15日と算出された。(参照1、36)

5. 土壤残留試験

土壌残留試験については、参照した資料に記載がなかった。

6. 作物残留試験

(1) 作物残留試験

海外において、茶、アーモンド及びおうとうを用いて、フェナザキンを分析対象化合物とした作物残留試験が実施された。結果は別紙3に示されている。

フェナザキンの最大残留値は、散布 7 日後に収穫した茶 (荒茶) の 4.97 mg/kg であった。 (参照 1、7~9)

7. 一般薬理試験

一般薬理試験については、参照した資料に記載がなかった。

8. 急性毒性試験

(1)急性毒性試験

フェナザキン (原体) のラット及びウサギを用いた急性毒性試験が実施された。 結果は表 15 に示されている。(参照 1、 $10\sim12$)

表 15 急性毒性試験概要 (原体)

投与 経路	動物種	LD ₅₀ (mg/kg 体重)		観察された症状
		雄	雌	
経口	Fischer ラット 雌雄各 5 匹	134	138	投与量: 雄 0、100、180、300 mg/kg 体重 雌 0、50、100、250 mg/kg 体重 100 mg/kg 体重以上(雄)、50 mg/kg 体重以上 (雌):自発運動抑制、円背位、挙尾、軟便、下 痢、被毛の汚れ、会陰部の汚れ、立毛、運動失調、 低姿勢、後肢麻痺(投与 1 時間後以降) 雄:180 mg/kg 体重以上で死亡例 雌:100 mg/kg 体重以上で死亡例
経皮	NZW ウサギ 雌雄各 5 匹	>5,000	>5,000	投与量: 5,000 mg/kg 体重 症状及び死亡例なし
		LC ₅₀ (mg/L)	投与量: 0.06、0.8、4.6 mg/L
吸入	Fischer ラット 雌雄各 10 匹	1.9	1.9	雌雄:自発運動抑制、昏睡、瀕死、呼吸困難、ラッセル音、鼻汁、毛づくろい行動の低下、運動失調、腹部膨満雄:4.6 mg/L 以上で死亡例雌:0.8 mg/L 以上で死亡例

(2) 急性神経毒性試験(ラット)

SD ラット (一群雌雄各 10 匹) を用いた単回強制経口 [原体:0、20、60 (雌) 又は 65 (雄) 及び 120 (雌) 又は 130 (雄) mg/kg 体重] 投与による急性神経毒性試験が実施された。

各投与群で認められた毒性所見は表 16 に示されている。

神経病理組織学的検査において、検体投与による影響は認められなかった。

本試験において、65 mg/kg 体重以上投与群の雄、60 mg/kg 体重以上投与群の雌で体重減少/体重増加抑制及び摂餌量減少が認められたので、無毒性量は雌雄とも 20 mg/kg 体重であると考えられた。明らかな急性神経毒性は認められなかった。(参照 1、13)

表 16 急性神経毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
130 mg/kg 体重	・軽度の脱水・自発運動量及び自発運動時間の減少・低体温	
120 mg/kg 体重		・軽度の脱水 ・低体温

65 mg/kg 体重 以上	・体重減少/体重増加抑制及び摂 餌量減少	
60 mg/kg 体重 以上		・体重減少/体重増加抑制及び摂 餌量減少
20 mg/kg 体重	毒性所見なし	毒性所見なし

^{/:}試験を実施せず

9. 皮膚感作性試験

Hartley モルモットを用いた皮膚感作性試験(Buehler 変法)が実施され、皮膚感作性は陰性であった。(参照 1、14)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)①

Fischer ラット (一群雌雄各 15 匹) を用いた強制経口 (原体:0、1、3、10 及び30 mg/kg 体重/日) 投与による90日間亜急性毒性試験が実施された。また、0及び30 mg/kg 体重/日投与群では、検体投与終了後1か月の回復群 (一群雌雄10 匹) が設けられた。

各投与群で認められた毒性所見は表17に示されている。

30 mg/kg 体重/日投与群の雌雄で、肝臓の O-DEM 活性増加が認められたが、 回復期間終了時には回復傾向が認められた。

また、検体投与による毒性影響にも回復傾向が認められた。

本試験において、10 mg/kg 体重/日以上投与群の雌雄で副腎絶対及び比重量 2 増加等が認められたので、無毒性量は雌雄とも 3 mg/kg 体重/日であると考えられた。 (参照 1、16)

投与群	雄	雌						
30 mg/kg 体重/日	体重増加抑制及び摂餌量減少	体重増加抑制及び摂餌量減少						
	(投与1週以降)	(投与1週以降)						
10 mg/kg 体重/日	・Chol 減少	・肝及び副腎絶対及び比重量増加						
以上	・副腎絶対及び比重量増加							
3 mg/kg 体重/日	毒性所見なし	毒性所見なし						
以下								

表 17 90 日間亜急性毒性試験 (ラット) ①で認められた毒性所見

(2)90 日間亜急性毒性試験(ラット)②

Fischer ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、15、45、150 及 び 450 ppm: 平均検体摂取量は表 18 参照) 投与による 90 日間亜急性毒性試験が実施された。

² 体重比重量のことを比重量という(以下同じ。)。

表 18 90 日間亜急性毒性試験 (ラット) ②の平均検体摂取量

投与群		15 ppm	45 ppm	150 ppm	450 ppm
平均検体摂取量	雄	1.0	3.0	9.6	28.7
(mg/kg 体重/日)	雌	1.2	3.5	11.5	33.0

各投与群で認められた毒性所見は表 19 に示されている。

雄の 150 ppm 以上投与群で肝臓の O-DEM 及び BZND 活性増加、450 ppm 投与群で EROD 活性増加、雌の 150 ppm 以上投与群で肝臓の O-DEM、BZND 及び EROD 活性増加が認められた。

本試験において、450 ppm 投与群の雌雄で体重増加抑制及び摂餌量減少等が認められたので、無毒性量は雌雄で 150 ppm (雄: 9.6 mg/kg 体重/日、雌: 11.5 mg/kg 体重/日)であると考えられた。 (参照 1、17)

表 19 90 日間亜急性毒性試験 (ラット) ②で認められた毒性所見

投与群	雄	雌
450 ppm	・体重増加抑制及び摂餌量減少(投 与 1 週以降)・ALT、AST、LDH 及び BUN 増加・Chol 減少	・体重増加抑制及び摂餌量減少(投 与1週以降)・肝絶対及び比重量増加
150 ppm 以下	毒性所見なし	毒性所見なし

(3)90日間亜急性毒性試験(ハムスター)

シリアンゴールデンハムスター (一群雌雄各 15 匹)を用いた強制経口 [原体: 0、5、25、50(雌)又は 75(雄)及び 100(雌)又は 150(雄) mg/kg 体重/日]投与による 90日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表 20 に示されている。

75 mg/kg 体重/日以上投与群の雄、50 mg/kg 体重/日以上投与群の雌で肝臓の O-DEM 活性増加が認められた。

本試験において、75 mg/kg 体重/日以上投与群の雄で体重増加抑制等が、25 mg/kg 体重/日以上投与群の雌で Chol 減少が認められたので、無毒性量は雄で25 mg/kg 体重/日、雌で5 mg/kg 体重/日であると考えられた。 (参照1、15)

表 20 90 日間亜急性毒性試験 (ハムスター) で認められた毒性所見

投与群	雄	雌
150 mg/kg 体重/日	・BUN 増加	
100 mg/kg 体重/日		・脾絶対及び比重量減少
75 mg/kg 体重/日 以上	・体重増加抑制(投与28日以降)^a・Hb減少・精巣絶対重量減少・前立腺絶対及び比重量減少	

	・精巣萎縮、精子形成低下 ・Glu、Chol、TP 及び Glob 減少 ・A/G 比増加	
50 mg/kg 体重/日		・体重増加抑制(投与 28 日以降)b
以上		・Hb 減少
		・Cre、TG、TP 及び Glob 減少
		・A/G 比増加
25 mg/kg 体重/日	25 mg/kg 体重/日以下	• Chol 減少
以上	毒性所見なし	
5 mg/kg 体重/日		毒性所見なし

- a: 150 mg/kg 体重/日投与群では投与 21 日以降に認められた。
- b: 100 mg/kg 体重/日投与群では投与 21 日以降に認められた。
- /: 試験を実施せず

(4)90日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、1、5 及び 15 mg/kg 体重/日) 投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表 21 に示されている。

本試験において、15 mg/kg 体重/日投与群の雌雄で体重増加抑制及び摂餌量減少等が認められたので、無毒性量は雌雄とも5 mg/kg 体重/日であると考えられた。 (参照1、18)

表 21 90 日間亜急性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
15 mg/kg 体重/日	体重増加抑制及び摂餌量減少 a	・体重増加抑制及び摂餌量減少 a
	(投与8日以降)	(投与8日以降)
	・Chol 減少	・Chol 減少
	・カリウム増加	・カリウム増加
5 mg/kg 体重/日以下	毒性所見なし	毒性所見なし

a:統計検定は実施されていないが、検体投与による影響と判断した。

(5) 21 日間亜急性経皮毒性試験 (ウサギ)

NZW ウサギ (一群雌雄各 5 匹) を用いた経皮 (原体: 0、100、315 及び 1,000 mg/kg 体重/日、6 時間/日)投与による 21 日間亜急性経皮毒性試験が実施された。また、0 及び 1,000 mg/kg 体重/日投与群では、検体投与終了後 2 週間の回復群 (一群雌雄 5 匹) が設けられた。

本試験において、いずれの投与群でも検体投与による影響は認められなかったので、無毒性量は雌雄とも本試験の最高用量 1,000~mg/kg 体重/日であると考えられた。(参照 1、19)

11. 慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、1、5 及び 12 mg/kg 体重/日) 3 投与による 1 年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表 22 に示されている。

本試験において、12 mg/kg 体重/日投与群の雌雄で体重減少/体重増加抑制及び 摂餌量減少が認められたので、無毒性量は雌雄とも 5 mg/kg 体重/日であると考 えられた。(参照 1、20)

表 22 1 年間慢性毒性試験(イヌ)で認められた毒性所見

(2)2年間慢性毒性/発がん性併合試験(ラット)

Fischer ラット (主群:一群雌雄各 60 匹) を用いた混餌 [原体:0、10、100、200 及び 400 (雄) 又は 450 ppm (雌):平均検体摂取量は表 23 参照] 投与による 2 年間慢性毒性/発がん性併合試験 4が実施された。

3 20 2 中间及任母は/ 元が70年月日 AMK (ファイ/ 0) 1 20 12 13 13 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15							
投与群		10 ppm	100 ppm	200 ppm	400 ppm	450 ppm	
平均検体摂取量	雄	0.46	4.5	9.2	18.3		
(mg/kg 体重/日)	雌	0.57	5.7	11.5		25.9	

表 23 2年間慢性毒性/発がん性併合試験(ラット)の平均検体摂取量

各投与群で認められた毒性所見は表 24 に示されている。

検体投与により発生頻度の増加した腫瘍性病変は認められなかった。

本試験において、100 ppm 以上投与群の雄で変異肝細胞巣、雌で体重増加抑制及び摂餌量減少が認められたので、無毒性量は雌雄とも 10 ppm (雄:0.46 mg/kg 体重/日、雌:0.57 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 1、21)

a: 統計学的有意差はないが、検体投与の影響と考えらえた。

^{/:}試験を実施せず

³ 12 mg/kg 体重/日投与群について試験開始時は 15 mg/kg 体重/日を投与したが、飼料の嗜好性低下に 起因する体重減少が認められたため、試験 95 日目に 10 mg/kg 体重/日に変更され、時間加重平均値 は 12 mg/kg 体重/日であった。

⁴ 6、12 及び 18 か月時の血液学的検査及び血液生化学的検査は各群 20 匹の非絶食動物の眼窩静脈叢から採取し、尿検査は各群 10 匹の尿を採取して実施された。

表 24 2 年間慢性毒性/発がん性併合試験 (ラット) で認められた毒性所見 (非腫瘍性病変)

投与群	雄	雌
450 ppm		・TG 減少
400 ppm		
200 ppm 以上	・体重増加抑制及び摂餌量減少(投 与1週以降)・Chol減少	· Chol 減少
100 ppm 以上	• 変異肝細胞巣 a	・体重増加抑制(投与3週以降)b 及び摂餌量減少(投与1週以降)
10 ppm	毒性所見なし	毒性所見なし

- a: 統計検定は実施されていないが、検体投与の影響と判断した。
- b: 200 ppm 以上投与群では投与1週以降に認められた。
- /:試験を実施せず

(3) 18 か月間発がん性試験 (ハムスター)

ゴールデンハムスター (対照群:一群雌雄各 100 匹、検体投与群:一群雌雄各 80 匹) を用いた強制経口 (原体:0、2、15 及び 30 (雄) 又は 35 (雌) mg/kg 体重/日) 投与による 18 か月間発がん性試験が実施された。

各投与群で認められた毒性所見は表 25 に示されている。

35 mg/kg 体重/日投与群の雌で副腎皮質腺腫の有意な増加が認められたが、その発生頻度(10%)はほぼ背景データ($2.9\sim9.4\%$)の範囲内であったため、毒性学的意義は低いと考えられた。

本試験において、15 mg/kg 体重/日以上投与群の雌雄で体重増加抑制等が認められたので、無毒性量は雌雄とも 2 mg/kg 体重/日であると考えられた。発がん性は認められなかった。(参照 1、22)

表 25 18 か月間発がん性試験 (ハムスター) で認められた毒性所見 (非腫瘍性病変)

投与群	雄	雌
35 mg/kg 体重/日		・Glu 増加
		・甲状腺及び脾絶対及び比重量減少
30 mg/kg 体重/日		
15 mg/kg 体重/日	· 体重增加抑制(投与 48 日以降)	・体重増加抑制(投与89日以降)
以上	・脾絶対及び比重量減少	
2 mg/kg 体重/日	毒性所見なし	毒性所見なし

/: 試験を実施せず

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)①

SD ラット (一群雌雄各 30 匹) を用いた強制経口 (原体:0、1、5 及び 25 mg/kg 体重/日、溶媒:10%アカシア水溶液) 投与による 2 世代繁殖試験が実施された。

各投与群で認められた毒性所見は表 26 に示されている。

本試験において、親動物では 25 mg/kg 体重/日投与群の雌雄で流涎等が認められ、児動物ではいずれの投与群でも検体投与による影響は認められなかったので、無毒性量は親動物で 5 mg/kg 体重/日、児動物で本試験の最高用量 25 mg/kg 体重/日であると考えられた。繁殖能に対する影響は認められなかった。(参照 1、23)

	投与群	親:P、児:F ₁			親:F ₁ 、児:F ₂			
欠 分群		雄 雌		雌		雄 雌		
親動物	25 mg/kg 体重/日	流涎(投与2 週以降)体重増加抑 制及び摂餌 量減少(投与 1週)	٠	流涎(投与2週以降)	•	流涎 体重増加抑 制	流涎体重増加抑制及び摂餌量減少	
	5 mg/kg 体重/日以下	毒性所見なし			毒	性所見なし		
児動物	25 mg/kg 体重/日以下	毒性所見なし			毒性所見なし			

表 26 2 世代繁殖試験 (ラット) ①で認められた毒性所見

(2)2世代繁殖試験(ラット)②

SD ラット(一群雌雄各 30 匹)を用いた強制経口(原体:0及び 40 mg/kg 体重/日、溶媒:10%アカシア水溶液)投与による2世代繁殖試験が実施された。 各投与群で認められた毒性所見は表27に示されている。

本試験において、親動物では 40 mg/kg 体重/日投与群の雌雄で、体重増加抑制及び摂餌量減少等が認められ、児動物において体重増加抑制が認められたので、無毒性量は親動物及び児動物とも 40 mg/kg 体重/日未満であると考えられた。繁殖能に対する影響は認められなかった。(参照 1、24)

	衣 27 2 世代条他試験(プット) ② と認められた毎年別兄							
投与群		親 : P、	児:F1	親: \mathbf{F}_1 、児: \mathbf{F}_2				
		雄	雌	雄	雌			
親動物	40 mg/kg 体重/日	 ・流涎(投与9日以降) ・色素涙(投与6日以降) ・腹部毛の尿着色(投与71日以降) ・体重増加抑制及び摂餌量減少(投与1~8日以降) 	 ・流涎(投与8日以降) ・自発運動低下(哺育期以降) ・体重増加抑制(投与15~22日以降)及び摂餌量減少(投与1~8日以降) 	・流涎 ・体重増加抑制 及び摂餌量減 少	・流涎 ・自発運動低下 ・色素涙 ・不規則呼吸 ・体重増加抑制 及び摂餌量減 少			

表 27 2世代繁殖試験 (ラット) ②で認められた毒性所見

児	40 mg/kg	体重増加抑制	体重増加抑制
動	体重/日		
物			

ラットを用いた 2 世代繁殖試験 [12.(1)及び 12.(2)] の総合評価として、無毒性量は親動物で 5 mg/kg 体重/日、児動物で 25 mg/kg 体重/日と考えられた。 繁殖能に対する影響は認められなかった。

(3)発生毒性試験(ラット)

SD ラット(一群雌 25 匹)の妊娠 $6\sim17$ 日に強制経口(原体:0、3、10 及び 40 mg/kg 体重/日、溶媒:10%アカシア水溶液)投与して、発生毒性試験が実施 された。

本試験において、40 mg/kg 体重/日投与群の母動物で体重増加抑制(妊娠 6~9 日以降)及び摂餌量減少(妊娠 6~9 日以降)が認められ、胎児ではいずれの投与群においても検体投与による影響は認められなかったので、無毒性量は母動物で 10 mg/kg 体重/日、胎児で本試験の最高用量 40 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 1、25)

(4) 発生毒性試験(ウサギ)

NZW ウサギ (一群雌 20 匹) の妊娠 $6\sim18$ 日に強制経口 (原体:0、3、13 及び 60 mg/kg 体重/日、溶媒:10%アカシア水溶液) 投与して、発生毒性試験が実施された。

本試験において、60 mg/kg 体重/日投与群の母動物において流産(1 例)、摂餌量減少(妊娠 6~12 日)及び早期吸収胚増加が認められ、胎児ではいずれの投与群においても検体投与による影響は認められなかったので、無毒性量は母動物で13 mg/kg 体重/日、胎児で本試験の最高用量60 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照1、20)

13. 遺伝毒性試験

フェナザキン(原体)の細菌を用いた復帰突然変異試験、マウスリンパ腫細胞を用いた遺伝子突然変異試験、チャイニーズハムスター卵巣由来細胞(CHO)を用いた染色体異常試験、ラット肝細胞を用いた UDS 試験並びにマウスを用いた姉妹染色分体交換試験及び小核試験が実施された。

結果は表 28 に示されている。マウスリンパ腫細胞を用いた遺伝子突然変異試験において、代謝活性化系存在下で突然変異頻度の軽度の増加が細胞毒性を伴って認められたが、細菌を用いた復帰突然変異試験、ほ乳類培養細胞を用いた染色体異常試験、ラット肝細胞を用いた UDS 試験を含むその他の試験が全て陰性であったのでフェナザキンに生体において問題となる遺伝毒性はないものと考えられた。(参照 1、27~32)

表 28 遺伝毒性試験概要 (原体)

	計 般	計伍	加细油度,北片县	红 田
	試験	対象	処理濃度・投与量	結果
in	復帰突然 変異試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537 株) Escherichia coli (WP2uvrA 株)	188~3,000 μg/プレート(+/-S9)	陰性
vitro	遺伝子突然 変異試験	マウスリンパ腫細胞 (L5178Y TK+/·)	$0.05 \sim 10 \mu\text{g/mL} (-\text{S9})$ $0.5 \sim 12 \mu\text{g/mL} (+\text{S9})$	陽性 a)
	染色体 異常試験	チャイニーズハムスター 卵巣由来細胞 (CHO)	0.1~1 μg/mL (-S9) 40~60 μg/mL (+S9) (4 時間処理)	陰性
in vivo/ in vitro	UDS 試験	SD ラット (肝細胞) (一群雄 4 匹)	180 及び 600 mg/kg 体重 (単回経口投与後 2 及び 14 時間で標本作製)	陰性
	姉妹染色分体 交換試験	ICR マウス (一群雄 3 匹)	500、1,000 及び 2,000 mg/kg 体重 (単回経口投与後 21 時間 で標本作製)	陰性
in vivo	小核試験	ICR マウス(骨髄細胞) (一群雌雄 5 匹)	雄:400、800 及び1,600 mg/kg 体重(2回経口投与後24時間 で標本作製) 雌:400、800 及び1,200 mg/kg 体重(2回経口投与後24時間 で標本作製)	陰性

+/- S9: 代謝活性化系存在下及び非存在下

a): 代謝活性化系存在下(+S9)で弱い陽性

14. その他の試験

(1) 28 日間免疫毒性試験(ラット)

SD ラット(一群雌 8 匹、陽性対照群雌 8 匹)にフェナザキンを強制反復経口 (0, 15, 30 及び 37.5/45 mg/kg 体重/日 5, 5 日/週)投与し、投与 25 日にヒツジ赤血球を静脈内投与して 28 日間免疫毒性試験が実施された。陽性対照としてシクロホスファミドが用いられた。

PFC アッセイ法によりヒツジ赤血球に対する液性抗体反応を測定した結果、いずれの投与群においても影響は認められなかった。

本試験において、30 mg/kg 体重/日投与群で低活動、30 mg/kg 体重/日以上投与群で運動失調及び死亡が認められたので、無毒性量は 15 mg/kg 体重/日であると考えられた。本試験条件下において、フェナザキンに免疫毒性は認められなかった。(参照 1、33)

_

⁵ 37.5/45 mg/kg 体重/日投与群について、45 mg/kg 体重/日投与群において投与 2 日及び 3 日後に死亡 が認められたことから、投与 8 日より用量が 37.5 mg/kg 体重/日に変更された。

皿. 食品健康影響評価

参照に挙げた資料を用いて農薬「フェナザキン」の食品健康影響評価を実施した。 14 C で標識したフェナザキンのラットを用いた動物体内運命試験の結果、経口投与後 168 時間の吸収率は低用量投与群で少なくとも $^{18.3\%}$ 、高用量投与群で少なくとも $^{16.4\%}$ と算出された。投与後 168 時間で、 $^{16.4\%}$ 20.9%TAR が尿中、 $^{71.9\%}$ 88.9%TAR が糞中に排泄され、主に糞中に排泄された。主な代謝物として、尿中で $^{18.9\%}$ 4、糞中で $^{18.9\%}$ 5、 $^{18.9\%}$ 6、 $^{18.9\%}$ 7、 $^{19.9\%}$ 7、 $^{19.9\%}$ 8、 $^{19.9\%}$ 7、 $^{19.9\%}$ 8、 $^{19.9\%}$ 9、 19

 14 C で標識したフェナザキンを用いた植物体内運命試験の結果、10%TRR を超える代謝物として、ぶどうで M3、りんごの果実及びとうもろこしの茎葉でフェナザキンの二量体である M12 が認められた。

フェナザキンを分析対象とした作物残留試験の結果、海外におけるフェナザキンの最大残留値は、茶(荒茶)の4.97 mg/kgであった。

各種毒性試験の結果から、フェナザキン投与による影響は、主に体重(増加抑制)に認められた。発がん性、繁殖能に対する影響、催奇形性、免疫毒性及び生体において問題となる遺伝毒性は認められなかった。

植物体内運命試験の結果、10%TRR を超える代謝物として M3 及び M12 が認められた。代謝物 M12 はラットで認められず、毒性に関する情報が不明なことから、農産物中の暴露評価対象物質をフェナザキン及び代謝物 M12 と設定した。

各試験における無毒性量等は表 29 に、単回経口投与等により生ずる可能性のある毒性影響等は表 30 にそれぞれ示されている。

食品安全委員会は、各試験で得られた無毒性量のうち最小値は、ラットを用いた 2年間慢性毒性/発がん性併合試験の 0.46 mg/kg 体重/日であったことから、これを 根拠として、安全係数 100 で除した 0.0046 mg/kg 体重/日を一日摂取許容量(ADI) と設定した。

また、フェナザキンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ラットを用いた発生毒性試験の 10 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.1 mg/kg 体重を急性参照用量 (ARfD) と設定した。

ADI 0.0046 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 0.46 mg/kg 体重/日

(安全係数) 100

ARfD 0.1 mg/kg 体重

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット(投与方法) 強制経口

(無毒性量) 10 mg/kg 体重/日

(安全係数) 100

参考

<EFSA (2013年) >

ADI 0.005 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 0.46 mg/kg 体重/日

0.1 mg/kg 体重

(安全係数) 100

ARfD

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット(投与方法) 強制経口

(無毒性量) 10 mg/kg 体重/日

(安全係数) 100

<米国(2014年)>

cRfD 0.05 mg/kg 体重/日

(cRfD 設定根拠資料) 亜急性及び慢性毒性試験

(動物種) イヌ

(期間) 90日間及び1年間

(投与方法) 混餌

(無毒性量) 5 mg/kg 体重/日

(不確実係数) 100

aRfD 0.15 mg/kg 体重

(aRfD 設定根拠資料) 免疫毒性試験

(動物種)ラット(投与方法)強制経口

(無毒性量) 15 mg/kg 体重/日

(不確実係数) 100

(参照 34、35)

表 29 各試験における無毒性量等

		投与量			
動物種	試験	で (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考1)
ラット	90 日間	0, 1, 3, 10,	雄:3	雄:10	雌雄:副腎絶対
	亜急性毒	30	雌:3	雌:10	及び比重量増加
	性試験①				等
		0, 15, 45, 150,	雄:9.6	雄:28.7	雌雄:体重増加
		450 ppm	雌:11.5	雌:33.0	抑制及び摂餌量
	90 日間				減少等
	亜急性毒	雄:0、1.0、3.0、			
	性試験②	9.6、28.7			
		雌:0、1.2、3.5、			
		11.5、33.0			
		雄:0、10、100、	雄:0.46	雄:4.5	雄:変異肝細胞
		200, 400 ppm	雌: 0.57	雌:5.7	巣
		雌:0、10、100、	79L 1 0.01	74. 1 011	雌:体重増加抑
	2 年間慢	200、450 ppm			制及び摂餌量減
	性毒性/	200(100 pp.m			少
	発がん性	雄:0、0.46、4.5、			
	併合試験	9.2、18.3			(発がん性は認
		雌:0、0.57、5.7、			められない)
		11.5, 25.9			
		0, 1, 5, 25	親動物	親動物	親動物
		0, 1, 0, 20	R 雄:5	P雄:25	雌雄:流涎等
			P雌:5	P雌:25	児動物:毒性所
			F ₁ 雄:5	F ₁ 雄:25	見なし
	2 世代		F ₁ 雌:5	F ₁ 雌:25	70 % 0
	繁殖試験		-1. m · ·		(繁殖能に対す
	1		児動物	 児動物	る影響は認めら
			P雄:25	P雄:-	れない)
			P雌:25	P雌:-	,
			F ₁ 雄:25	F ₁ 雄:-	
			F ₁ 雌:25	F ₁ 雌:一	
		0, 40	親動物	親動物	親動物
			P雄:-	P雄:40	雌雄: 体重増加
			P雌:-	P雌:40	抑制及び摂餌量
			F ₁ 雄:-	F ₁ 雄:40	減少等
	2 世代		\mathbf{F}_1 雌:一	F ₁ 雌:40	児動物:体重増
	繁殖試験		日私业	1D #L N-L	加抑制
	2		児動物 P 雄:-	児動物 P雄:40	 (繁殖能に対す
			P雌:— P雌:—	P 雌:40 P 雌:40	(繁煙能に対す る影響は認めら
			F 址 . — F ₁ 雄 : —	F 雄:40 F1雄:40	る影響は認めら れない)
			\mathbf{F}_1 雌: $-$	F1雄:40 F1雌:40	NU O V
	2 世代繁殖	 試験①及び②の	親動物:5	親動物:25	
	総合評価		児動物:25	児動物:40	
I	Arc H H I IIII		7 1 277 1/4 · 10	/ L 294 //4 · 10	l .

動物種	試験	投与量	無毒性量	最小毒性量	備考 1)	
到707厘	时间失	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	加与 7	
	発生毒性	0, 3, 10, 40	母動物:10 胎児: 40	母動物:40 胎児:一	母動物:体重増加抑制及び摂餌 量減少 胎児:毒性所見	
	試験				なし (催奇形性は認 められない)	
ハムス ター	90 日間亜 急性毒性 試験	雄:0、5、25、 75、150 雌:0、5、25、 50、100	雄:25 雌:5	雄:75 雌:25	雄:体重増加抑制等 雌:Chol 減少	
	18 か月間 発がん性 試験	雄:0、2、15、 30 雌:0、2、15、 35	雄:2 雌:2	雄:15 雌:15	雌雄: 体重増加 抑制等 (発がん性は認 められない)	
ウサギ	発生毒性 試験	0, 3, 13, 60	母動物:13 胎児:60	母動物:60 胎児:一	母動物:摂餌量 減少等 胎児:毒性所見 なし (催奇形性は認 められない)	
イヌ	90 日間亜 急性毒性 試験	0, 1, 5, 15	雄:5 雌:5	雄:15 雌:15	雌雄:体重増加 抑制及び摂餌量 減少等	
	1 年間 慢性毒性 試験	0, 1, 5, 12	雄:5 雌:5	雄:12 雌:12	雌雄:体重減少/ 体重増加抑制及 び摂餌量減少	
	AD:		NOAEL: 0.46 SF: 100 ADI: 0.0046			
	ADI 設定机	見拠資料 ・最 CE・安全を数	ラット2年間慢性 NOAEL・無毒性量	間慢性毒性/発がん性併合試験		

ADI: 一日摂取許容量 SF: 安全係数 NOAEL: 無毒性量

- : 無毒性量又は最小毒性量が設定できなかった。 1): 備考に最小毒性量で認められた所見の概要を示す。

表 30 単回経口投与等により生ずると考えられる毒性影響等

		投与量	無毒性量及び急性参照用量設定に関連す
動物種	試験	(mg/kg 体重又は mg/kg	るエンドポイント ¹⁾
到小小王	μ- (10)/(体重/日)	(mg/kg 体重又は mg/kg 体重/日)
ラット		雄:0、100、180、300	雌雄:一
		雌:0、50、100、250	MEAE •
	急性毒性試験	ME . U、 50、 100、 250	 雌雄 : 自発運動抑制、円背位、挙尾、立毛、
		L.W	運動失調、低姿勢、後肢麻痺
	急性神経毒性	雄:0、20、65、130	雌雄:20
	試験	雌:0、20、60、120	
	p. 100/C		雌雄:体重減少/増加抑制及び摂餌量減少
		0, 3, 10, 40	母動物:10
	発生毒性試験		
			母動物:体重増加抑制及び摂餌量減少
ウサギ		0, 3, 13, 60	母動物:13
	発生毒性試験		
			母動物:早期吸収胚増加
			NOAEL: 10
	AR	.fD	SF: 100
			ARfD: 0.1
	ARfD 設定	E根拠資料	ラット発生毒性試験

ARfD: 急性参照用量 SF: 安全係数 NOAEL: 無毒性量

-:無毒性量が設定できなかった。 1):最小毒性量で認められた主な毒性所見を記した。

<別紙1:代謝物/分解物略称>

略称	化学名
M1	4-(1-calboxy-1-methyl ethyl)phenethyl quinazolin-4-yl ether (PSD 評価書 Metabolite E)
M2	4-(1,1-dimethyl-2-hydroxyethyl)phenylacetic acid
M3	4-(1,1-dimethyl-2-hydroxyethyl)phenethyl quinazolin-4-yl ether
M4	4-(1-carboxy-1-methyl ethyl)phenethyl 2-hydroxyquinazolin-4-yl ether
M5	4-{2-[4'-(1,1-dimethylethyl)phenyl]ethoxy}quinazolone-2(1H)-one (PSD 評価書 Metabolite A)
M6	2-[4-(1,1-dimethylethyl)phenyl]ethyl-2-(formylamino)bezoate
M7	2,4-dihydroquinazoline
M8	4-hydroxyquinazoline (PSD 評価書 Metabolite K)
M9	4-(1-carboxy-1-methylethyl)phenethylalchol
M10	4- <i>tert</i> -butylphenethylalchol (PSD 評価書 Metabolite N)
M11	1-(4- <i>tert</i> -butylphenyl)-1-hydroxyethyl quinazolin-4-yl ether
M12	フェナザキン二量体
M13	4- <i>tert</i> -butylphenethyl 2-hydroxyquinazolin-4-yl ether
M①	4-(1,1-dimethylethyl)phenylacetic acid (PSD 評価書 Metabolite F)
M ②	4-(1,1-dimethylethyl)phenylethene (PSD 評価書 Metabolite M)

<別紙2:検査値等略称>

似乙,便且但守"	D. 1/1. 2
略称	名称
ai	有効成分量(active ingredient)
A/G 比	アルブミン/グロブリン比
BZND	ベンズフェタミン N・脱メチル化酵素
BUN	血液尿素窒素
Chol	コレステロール
Cre	クレアチニン
Glob	グロブリン
Glu	グルコース(血糖)
EROD	7-エトキシレゾフィン O 脱エチル化酵素
Hb	ヘモグロビン(血色素量)
HPLC	高速液体クロマトグラフ
LD_{50}	半数致死量
PFC	特異抗体産生細胞
PHI	最終使用から収穫までの日数
O-DEM	p-ニトロ-アニソール O 脱メチル化酵素
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
TG	トリグリセライド
TLC	薄層クロマトグラフ
T _{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
UDS	不定期 DNA 合成

<別紙3:作物残留試験成績(海外)>

作物名	試験					フェナザキン	
(実施国)	ほ場	使用量	回数	PHI	種類	残留値	
実施年	数	(g ai/ha)	(回)	(日)	111/00	(mg/kg)	
			1	0*		21.9	
			1	3*	種類荒茶発酵茶荒茶発酵茶荒茶発酵茶荒茶発酵茶洗茶発酵茶光発酵茶洗発酵洗洗洗光光光光大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大<l< td=""><td>15.8</td></l<>	15.8	
		100^{EC}	1	7	- 荒茶	4.97	
			1	10		2.86	
			1	14	-	0.44	
			1	0*		16.3	
			1	3*	_	7.99	
		100^{EC}	1	7	- 発酵茶	1.93	
		100	1	10		1.08	
茶			1	14	荒茶 一 一 荒茶 一 一 一 一 一 一 一 一 一 一 一 一 一 二	0.12	
(インド)	1		1	0*		0.12	
2008年			1	3*		0.32	
		100^{EC}	1	7	芸太浔山海	0.43	
		100	1	10	7	0.21	
			1			ND	
				0*			
		100^{EC}	1	_	発酵茶浸出液	0.78	
			1	3*		0.32	
			1	7		0.04	
			1	10		ND	
			1	14		ND	
			1	0*		17.4	
			1	3*		11.1	
		100^{EC}	1	7	荒茶	2.76	
			1	10	荒茶浸出液		1.89
			1	14		0.30	
			1	0*		13.7	
			1	3*		8.41	
		100^{EC}	1	7	発酵茶	1.54	
茶			1	10		1.19	
(インド)	1		1	14		0.13	
2008年			1	0*		1.11	
			1	3*		0.59	
		100^{EC}	1	7	荒茶浸出液	0.18	
			1	10		0.03	
			1	14		ND	
			1	0*		0.70	
			1	3*		0.28	
		100^{EC}	1	7	】 発酵茶浸出液 	0.03	
			1	10	-	ND	
			1	14	荒茶浸出液 発酵茶浸出液 荒茶 荒茶浸出液	ND	

作物名	試験	/- III II	⊢ N/I	DIII		フェナザキン
(実施国)	ほ場	使用量	回数	PHI	種類	残留値
実施年	数	(g ai/ha)	(回)	(日)		(mg/kg)
			1	0*		19.6
			1	3*	種類	13.1
		100^{EC}	1	7		3.29
			1	10		2.05
			1	14		0.23
			1	0*		15.8
			1	3*		7.26
		100^{EC}	1	7	発酵茶	1.80
			1	10		0.91
茶(イン・バ)	1		1	14	荒茶 荒茶 八大 八大 <td>0.10</td>	0.10
(インド) 2008 年	1		1	0*		1.00
4000 '+			1	3*	1	0.39
		100^{EC}	1	7	荒茶浸出液	0.14
			1	10	1	0.02
			1	14	1	ND
			1	0*		0.51
		100^{EC}	1	3*		0.36
			1	7		0.03
			1	10		ND
			1	14		ND
			1	0*		24.1
			1	3*		14.6
		100^{EC}	1	7	荒茶	4.65
			1	10		3.03
			1	14		0.37
			1	0*		17.0
			1	3*		8.36
		100^{EC}	1	7	· 発酵茶	2.37
			1	10		1.15
茶			1	14		0.11
(インド) 2009 年	1		1	0*		1.25
2008年			1	3*	1	0.46
		100^{EC}	1	7	· 荒茶浸出液	0.27
	10025	10	1	0.02		
			1	14	- -	ND
	1 0*		0.80			
			1	3*	 発酵茶浸出液	0.40
		$100^{ m EC}$	1	7		0.05
			1	10	1	ND
			1	14	1	ND

作物名	試験					フェナザキン
(実施国)	は場	使用量	回数	PHI	種類	残留値
実施年	数	(g ai/ha)	(回)	(目)	三次	(mg/kg)
· · · · · · · · · · · · · · · · · · ·			-	1* 7		0.468
			2			0.0231
			0			(0.0096)
		2 00000	2			0.0116
		$500^{ m SC}$	9	1.4	1—背3	(0.0082)
			2	14		(0.0083)
			9	0.1		0.0155
アーモンド	0		2	21		(0.0098)
(米国) 2008 年	2		9	1 \$		1.80
2008 4			2	1*		1.91
			9	7		1.01
		FOOSC	2	7	±几	1.17
		$500^{ m SC}$	0	1.4		1.23
			2	14		1.52
			0	21		1.33
			2	21		1.22
to		10090	9	7	/一寸7	[0.0022]
アーモンド	2		2	1	(1一日)	(0.0051)
(米国) 2008 年		490^{SC}	2	7	士 几	1.67
2000 —					′汉	1.27
		500 ^{sc} -	2	7	仁部	[0.0029]
アーモンド	2 50					[0.0012]
(米国) 2008 年						0.312
2000			4	1	(文)	0.461
· to			9	7	/→ 廿7	(0.0053)
アーモンド (米国)	2	$520^{ m SC}$	2	7	[一旦]	(0.0070)
2008年		520°C	2	7	士 几	1.28
2000			4	1	種 仁 力 七 力 大 力 大 </td <td>1.12</td>	1.12
· to			2	7	/→ 廿7	(0.0033)
アーモンド (米国)	2	$530^{ m sc}$	4	1	(一日)	(0.0034)
2008年		93050	2	7	去几	0.217
2000			<u> </u>	,	饭	0.315
おうとう						0.488
(米国) 2008 年	1	$500^{ m sc}$	2	3	果実	0.487
サワーチェリー						0.965
(米国) 2008 年	1	$500^{ m SC}$	2	3	3 果実	0.863
サワーチェリー						0.277
(米国) 2008 年	1	$500^{ m sc}$	2	3	果実	0.233

作物名 (実施国) 実施年	試験 ほ場 数	使用量 (g ai/ha)	回数 (回)	PHI (日)	種類	フェナザキン 残留値 (mg/kg)
				0*	果実	0.459
					., .	0.679
おうとう				3	果実	0.371
(米国)	1	$500^{ m SC}$	2	J	木 犬	0.577
2008年		90050	0000 2	7	果実	0.301
2008 #-					本夫	0.300
				14	果実	0.0906
					未 夫	0.149
おうとう						0.658
(米国)	1	$500^{ m SC}$	2	3	果実	0.471
2008年						0.451
サワーチェリー						0.712
(米国)	1	$500^{ m SC}$	2	3	果実	0.050
2008年	H 1 1 1					0.959

*:申請された使用方法から逸脱した場合に*を付した。

EC:乳剤

SC: フロアブル剤 ND: 検出されず

()内の数値は<LOQ、[]内の数値は<LOD を示す。

<参照>

- 1. 農薬抄録フェナザキン(平成 27 年 10 月 6 日作成): ゴーワン、一部公表予定
- 2. ラットにおける代謝試験(GLP 対応): Lilly Reseach Laboratories(米国)、 1992 年、未公表
- 3. ブドウにおける代謝(GLP 対応): DowElanco Europe Letcombe Laboratory (英国)、1994 年、未公表
- 4. リンゴにおける代謝(GLP 対応): DowElanco Environmental Chemistry Laboratories (英国)、1992年、未公表
- 5. オレンジにおける代謝(GLP対応): DowElanco North American Environmental Chemistry Laboratory(米国)、1992年、未公表
- 6. トウモロコシにおける代謝 (GLP 対応): PTRL West, Inc、2010年、未公表
- 7. Study on the resideues of Fenazaquin in processed green tea and fermented tea following the foliar application of Femazaquin 10% w/w EC formulation at the recommended dose 1000 ml/ha on tea plant in india (GLP 対応) : International Institute of Biotechnology and Toxicology (インド) 、2008 年、未公表
- 8. Magunitude and Decline of the Residue of Fenazaquin and Fenazaquin Dimer in or on Tree Nuts Agricultural Following One Application of GWN-1708-2008 (GLP 対応): Ricerca Biosciencees, LCC(米国)、2010 年、未公表
- 9. Magunitude and Decline of the Residue of Fenazaquin and Fenazaquin Dimer in or on Stone Fruit Agricultural and Processed Commodities Following One Application of GWN-1708-2008 (GLP 対応): Ricerca Biosciencees, LCC (米国)、2010年、未公表
- 10. ラットにおける急性経口毒性試験 (GLP 対応): Lilly Reseach Laboratories (米国)、1992 年、未公表
- 11. ウサギにおける急性経皮毒性試験 (GLP 対応): Lilly Reseach Laboratories (米国)、1989 年、未公表
- 12. ラットにおける急性吸入毒性試験 (GLP 対応): Lilly Research Laboratories (米国)、1990年、未公表
- 13. ラットにおける急性神経毒性試験 (GLP 対応): Charles River Laboratories (米国)、2012 年、未公表
- 14. モルモットを用いた皮膚感作性試験(GLP 対応): Lilly Reseach Laboratories (米国)、1989年、未公表
- 15. ハムスターを用いた 90 日間亜急性経口毒性試験(GLP 対応): Lilly Reseach Laboratories(米国)、1992 年、未公表
- 16. ラットを用いた 90 日間亜急性経口毒性試験(GLP 対応): Lilly Reseach Laboratories (米国) 、1992 年、未公表

- 17. ラットにおける 90 日間混餌投与試験(GLP 対応): Lilly Reseach Laboratories (米国)、1992 年、未公表
- 18. イヌにおける混餌投与による 90 日間毒性試験(GLP 対応): Lilly Reseach Laboratories(米国)、1992 年、未公表
- 19. ウサギにおける 21 日間経皮毒性試験(GLP 対応): Lilly Reseach Laboratories (米国)、1992 年、未公表
- 20. イヌにおける混餌投与による 1 年間毒性試験(GLP 対応): The Toxicology Reseach Laboratory, The Dow Chemical Company(米国)、1993年、未公表
- 21. ラットにおける混餌投与による 2 年間慢性毒性及び発がん性併合試験 (GLP 対応): Lilly Reseach Laboratories (米国)、1992 年、未公表
- 22. ハムスターを用いた 18 か月間経口発がん性試験 (GLP 対応): Lilly Reseach Laboratories (米国)、1992年、未公表
- 23. ラットにおける 2 世代繁殖毒性試験(GLP 対応): Argus Reseach Laboratories Inc. (米国) 、1991 年、未公表
- 24. ラットにおける 2 世代繁殖毒性試験(GLP 対応): Argus Reseach Laboratories Inc. (米国) 、1992 年、未公表
- 25. EL-436 原体のラットにおける催奇形性試験: Lilly Reseach Laboratories (米国)、 1989 年、未公表
- 26. EL-436 原体のウサギにおける催奇形性試験: Lilly Reseach Laboratories (米国)、 1990 年、未公表
- 27. S.typhimurium 及び E.coli を用いた変異原性試験(GLP 対応): Lilly Reseach Laboratories(米国)、1989 年、未公表
- 28. L5178Y TK+ゲマウスリンパ腫細胞の遺伝子突然変異試験(GLP 対応): Lilly Reseach Laboratories(米国)、1989 年、未公表
- 29. CHO 培養細胞を用いた *in vitro* 染色体異常試験:Lilly Reseach Laboratories (米国)、1989 年、未公表
- 30. マウス骨髄小核試験(GLP 対応): Lilly Reseach Laboratories(米国)、1989 年、未公表
- 31. マウスにおける *in vivo* 姉妹染色分体交換試験(GLP 対応): Lilly Reseach Laboratories(米国)、1989 年、未公表
- 32. ラットにおける *in vivo* DNA 修復試験(GLP 対応):Huntingdon Reseach Centre (英国)、1993 年、未公表
- 33. ラットにおける免疫毒性試験 (GLP 対応): IIT Reseach Institute (英国)、2011年、未公表
- 34. US EPA: Fenazaquin: Human Health Risk Assessment for Proposed New Uses on Alomond and Cherries. DP No.391819 (2014)
- 35. EFSA: Conclusion on the peer review of the pesiticide risk assessment of the active substance fenazaguin. EFSA J. 11(4): 3166 (2013)

- 36. PSD: Disclosure Document on Fenazaquin, Food and Environment Protection Act, Part III (1985)
- 37. 食品健康影響評価について(平成 27 年 11 月 16 日付、厚生労働省発生食 1116 第 2 号)
- 38. フェナザキン食品健康影響評価に係る追加資料要求事項に対する回答書:ゴーワン、未公表
- 39. PHARMACOKINETICS OF EL-436 (COMPOUND 193136) IN FISCHER 344 RATS, CD-1 MICE AND SYRIAN GOLDEN HAMSTERS FOLLOWING SINGLE ORAL ADMINISTRATION: DowElanco Europe(英国)、1994年、未公表
- 40. THE METABOLISM OF FENAZAQUIN IN APPLES LIVE PHASE AND INITIAL CHROMATOGRAPHY (GLP 対応): Inveresk Research(英国)、1997 年、未公表
- 41. CHARACTERISATION OF UNKNOWN FENAZAQUIN METABOLITES FROM APPLES (GLP 対応): Dow AgroSciences Facility (英国)、1998 年、未公表