

府 食 第 478 号 平成 26年 6月 24日

厚生労働大臣 田村 憲久 殿

食品安全委員会 委員長 熊谷

食品健康影響評価の結果の通知について

平成26年3月20日付け厚生労働省発食安0320第3号をもって厚生労働大臣から食品安全委員会に意見を求められたクロラントラニリプロールに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

クロラントラニリプロールの一日摂取許容量を 0.26 mg/kg 体重/日と設定する。

農薬評価書

クロラントラニリプロール (第4版)

2014年6月 食品安全委員会

目 次

		貝
0	審議の経緯	
0		
0		
0	要約	. 9
Ι	. 評価対象農薬の概要	10
	1. 用途	10
	2. 有効成分の一般名	10
	3. 化学名	10
	4. 分子式	10
	5. 分子量	10
	6. 構造式	10
	7. 開発の経緯	11
П	. 安全性に係る試験の概要	12
	1. 動物体内運命試験	
	(1) ラット	
	(2) ニワトリ	
	(3) ヤギ	
	2. 植物体内運命試験	
	(1)水稲	
	(2) りんご	
	(3) レタス	20
	(4) トマト	20
	3. 土壌中運命試験	21
	(1)好気的湛水土壌中運命試験	21
	(2)好気的土壌中運命試験	22
	(3)土壌吸着試験	23
	4. 水中運命試験	23
	(1)加水分解試験	23
	(2)水中光分解試験(滅菌緩衝液及び自然水)	23
	5. 土壌残留試験	
	6. 作物等残留試験	
	(1)作物残留試験(国内)	
	(2)作物残留試験(海外)	
	(3)家畜残留試験(海外)	

(4)魚介類における最大推定残留値2	26
(5)後作物残留試験2	26
(6)推定摂取量2	26
7. 一般薬理試験2	27
8. 急性毒性試験	28
(1)急性毒性試験2	28
(2)急性神経毒性試験2	28
9. 眼・皮膚に対する刺激性及び皮膚感作性試験2	29
1 O. 亜急性毒性試験	29
(1)90日間亜急性毒性試験(ラット)2	29
(2)90日間亜急性毒性試験(イヌ)3	30
(3)90日間亜急性神経毒性試験(ラット)3	30
(4) 28 日間亜急性経皮毒性試験(ラット)3	31
1 1. 慢性毒性試験及び発がん性試験3	31
(1)1年間慢性毒性試験(イヌ)3	31
(2)2年間慢性毒性/発がん性併合試験(ラット)	32
(3)18 か月間発がん性試験(マウス)	32
1 2. 生殖発生毒性試験3	33
(1)2世代繁殖試験(ラット)3	33
(2)発生毒性試験(ラット)3	34
(3)発生毒性試験(ウサギ)3	34
1 3.遺伝毒性試験3	35
1 4. その他の試験	36
(1)14 日間亜急性毒性試験(ラット):肝薬物代謝酵素誘導	36
(2)28日間亜急性毒性試験(ラット):肝薬物代謝酵素誘導3	36
(3) 28 日間亜急性毒性試験(イヌ):肝薬物代謝酵素誘導3	37
(4) 28 日間亜急性毒性試験(マウス):肝薬物代謝酵素誘導3	37
(5)副腎皮質の透過型電子顕微鏡を用いた観察(ラット)	38
(6)28日間亜急性毒性試験(ラット):副腎機能検査	38
(7)28日間亜急性免疫毒性試験(ラット)	39
(8) 28日間亜急性免疫毒性試験(マウス)3	39
Ⅲ. 食品健康影響評価	41
• 別紙 1:代謝物/分解物略称 4	45
• 別紙 2:検査値等略称 4	47
• 別紙 3:作物残留試験 4	48
• 別紙 4:家畜残留試験	77

•	別紙5:	:推定摂取量	9
	参照		3 1

<審議の経緯>

-第1版関係-

2008年 3月 10日 農林水産省から厚生労働省へ農薬登録申請に係る連絡 及び基準値設定依頼(新規:水稲、りんご等)

2008年 3月 25日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 0325001 号)、関係書類の接受(参照 1~49)

2008年 3月27日第231回食品安全委員会(要請事項説明)

2008年 7月 11日 第 22 回農薬専門調査会総合評価第二部会

2008年 **7**月 **23**日 インポートトレランス申請(ばれいしょ、ほうれんそう等)

2008年 8月 4日 関係書類の接受(参照 50)

2008年 8月19日第42回農薬専門調査会幹事会

2008年 8月 28日 第 252 回食品安全委員会 (報告)

2008年 8月 28日 から 9月 26日まで 国民からの意見・情報の募集

2008年 10月 6日 農薬専門調査会座長から食品安全委員会委員長へ報告

2008年 10月 9日 第 257 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照51)

2009年 7月 22日 初回農薬登録 (芝)

2009年 9月 28日 残留農薬基準告示 (参照 52)

一第2版関係一

2010年 7月 12日 農林水産省から厚生労働省へ農薬登録申請に係る連絡 及び基準値設定依頼(適用拡大:だいこん、かぶ、なし、 あんず及びかき)

2010年 7月 14日 インポートトレランス申請(米、かんきつ類、魚介類等)

2010年 8月 11日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安 0811 第 3 号)

2010年 8月 12日 関係書類の接受 (参照 53~62)

2010年 8月 19日 第 344 回食品安全委員会(要請事項説明)

2011年 4月 15日 第71回農薬専門調査会幹事会

2011年 6月 14日 農薬専門調査会座長から食品安全委員会委員長へ報告

2011年 6月 16日 第 386 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照63)

2012年 12月 28日 残留農薬基準告示(参照 70)

一第3版関係一

2012年 4月 16日 インポートトレランス申請(みかん、ラズベリー等)

- 2012年 5月 9日 農林水産省から厚生労働省へ農薬登録申請に係る連絡 及び基準値設定依頼(適用拡大:さといも、やまのいも 等)
- 2012年 7月 18日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安 0718 第 3 号)
- 2012年 7月 18日 関係書類の接受 (参照 64~67)
- 2012年 7月 23日 第 440 回食品安全委員会 (要請事項説明)
- 2012年 11月 5日 追加資料受理 (参照 68)
- 2012年 11月 12日 第 453 回食品安全委員会(審議)(同日付け厚生労働大臣へ通知) (参照 69)
- 2013年 10月 22日 残留農薬基準告示 (参照 71)

一第4版関係一

- 2014年 1月 24日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準値設定依頼(適用拡大:オクラ及びしょうが)
- 2014年 3月 20日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安 0320 第 3 号)
- 2014年 3月 25日 関係書類の接受 (参照 72~74)
- 2014年 3月31日第509回食品安全委員会(要請事項説明)
- 2014年 4月 2日 追加資料受理(参照75)
- 2014年 6月 24日 第519回食品安全委員会(審議)

(同日付け厚生労働大臣へ通知)

く食品安全委員会委員名簿>

見上 彪(委員長)

長尾 拓 野村一正 畑江敬子

廣瀬雅雄**

本間清一

*:2007年2月1日から

**: 2007年4月1日から

(2009年6月30日まで) (2011年1月6日まで)

小泉直子(委員長)

長尾 拓 野村一正

畑江敬子 廣瀬雅雄

村田容常

(2012年6月30日まで)

小泉直子(委員長)

小泉直子(委員長代理*) 見上 彪(委員長代理*) 熊谷 進(委員長代理*)

長尾 拓 野村一正

畑江敬子

廣瀬雅雄

村田容常

*:2009年7月9日から *:2011年1月13日から

(2012年7月1日から)

熊谷 進(委員長)

佐藤 洋(委員長代理)

山添 康(委員長代理)

三森国敏 (委員長代理)

石井克枝

上安平洌子

村田容常

赤池昭紀

石井康雄

泉 啓介

上路雅子

臼井健二

江馬 眞

大澤貫寿

太田敏博

大谷 浩

小澤正吾

小林裕子

<食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士 (座長)

林 真(座長代理*)

三枝順三

佐々木有

代田眞理子**** 高木篤也

玉井郁巳

田村廣人 津田修治

津田洋幸

出川雅邦

長尾哲二 中澤憲一

納屋聖人

成瀬一郎***

西川秋佳**

布柴達男

根岸友惠

平塚 明

藤本成明

細川正清 松本清司

柳井徳磨

山崎浩史

山手丈至 與語靖洋

吉田 緑

若栗 忍

*:2007年4月11日から

6

: 2007年4月25日から *: 2007年6月30日まで ***: 2007年7月1日から

(2010年3月31日まで)

鈴木勝士 (座長) 佐々木有 平塚 明 林 真 (座長代理) 代田眞理子 藤本成明 相磯成敏 高木篤也 細川正清 赤池昭紀 玉井郁巳 堀本政夫 石井康雄 田村廣人 松本清司 泉 啓介 津田修治 本間正充 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 中澤憲一* 臼井健二 山手丈至 太田敏博 永田 清 與語靖洋 義澤克彦** 大谷 浩 納屋聖人 小澤正吾 西川秋佳 吉田 緑 若栗 忍 川合是彰 布柴達男 小林裕子 根岸友惠 三枝順三*** 根本信雄

> *: 2009年1月19日まで **: 2009年4月10日から ***: 2009年4月28日から

(2012年3月31日まで)

納屋聖人 (座長) 佐々木有 平塚 明 林 真 (座長代理) 代田眞理子 福井義浩 相磯成敏 高木篤也 藤本成明 赤池昭紀 玉井郁巳 細川正清 浅野 哲** 田村廣人 堀本政夫 本間正充 石井康雄 津田修治 泉 啓介 增村健一** 津田洋幸 上路雅子 長尾哲二 松本清司 臼井健二 永田 清 柳井徳磨 太田敏博 長野嘉介* 山崎浩史 小澤正吾 西川秋佳 山手丈至 川合是彰 布柴達男 與語靖洋 川口博明 根岸友惠 義澤克彦

小林裕子 三枝順三 根本信雄 八田稔久 吉田緑若栗忍

*:2011年3月1日まで
**:2011年3月1日から

要 約

アントラニリックジアミド系殺虫剤である「クロラントラニリプロール」(CAS No. 500008-45-7) について、各種試験成績等を用いて食品健康影響評価を実施した。なお、今回、作物残留試験(オクラ及びしょうが)の成績等が新たに提出された。

評価に用いた試験成績は、動物体内運命(ラット、ニワトリ及びヤギ)、植物体内運命(水稲、りんご等)、作物等残留、亜急性毒性(ラット及びイヌ)、亜急性神経毒性(ラット)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性等の試験成績である。

各種毒性試験結果から、クロラントラニリプロールの毒性は低く、投与による影響は主に体重(増加抑制)及び肝臓(小葉中心性肝細胞肥大)に認められた。神経毒性、発がん性、繁殖能に対する影響、催奇形性、免疫毒性及び遺伝毒性は認められなかった。

各種試験結果から、農産物、畜産物及び魚介類中の暴露評価対象物質をクロラントラニリプロール(親化合物のみ)と設定した。

各試験で得られた無毒性量のうち最小値は、マウスを用いた 18 か月間発がん性試験の 26.1 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.26 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

I. 評価対象農薬の概要

1. 用途

殺虫剤

2. 有効成分の一般名

和名: クロラントラニリプロール 英名: chlorantraniliprole (ISO 名)

3. 化学名

IUPAC

和名:3-ブロモ-N-[4-クロロ-2-メチル-6-(メチルカルバモイル)フェニル]-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボキサミド

英名:3-bromo-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl] -1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide

CAS (No.500008-45-7)

和名:3-ブロモ-N-[4-クロロ-2-メチル-6-[(メチルアミノ)カルボニル] フェニル]-1-(3-クロロ-2-ピリジニル)-1H-ピラゾール-5-カルボキサミド

英名: 3-bromo-N-[4-chloro-2-methyl-6-[(methylamino)carbonyl] phenyl]-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide

4. 分子式

 $C_{18}H_{14}BrCl_2N_5O_2$

5. 分子量

483.15

6. 構造式

7. 開発の経緯

クロラントラニリプロールは、米国デュポン社により開発されたアントラニリックジアミド系殺虫剤であり、鱗翅目、双翅目及び一部の鞘翅目害虫に殺虫活性を示す。作用機構は、昆虫の筋肉細胞内のカルシウムチャンネル(リアノジン受容体)に作用してカルシウムイオンを放出させ筋収縮を起こし、その結果、昆虫は速やかに活動停止し、死に至る。我が国では 2009 年に初回農薬登録され、キャベツ、トマト等に適用がある。海外では米国、カナダ等で登録されている。

今回、農薬取締法に基づく農薬登録申請(適用拡大:オクラ及びしょうが) 及びインポートトレランス設定(らっかせい、ラディッシュ等)の要請がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験 [II. 1~4] は、クロラントラニリプロールのベンズアミドカルボニル基の炭素を 14 C で標識したもの(以下「 $[ben^{-14}C]$ クロラントラニリプロール」という。)及びピラゾールカルボニル基の炭素を 14 C で標識したもの(以下「 $[pyr^{-14}C]$ クロラントラニリプロール」という。)を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合は比放射能(質量放射能)からクロラントラニリプロールに換算した値(mg/kg 又は $\mu g/g$)を示した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

(1) ラット

①吸収

a. 血中濃度推移

SD ラット(一群雌雄各 4 匹)に[ben-14C]クロラントラニリプロール及び[pyr-14C]クロラントラニリプロールの等量混合液を 10 mg/kg 体重(以下[1.(1)]において「低用量」という。)若しくは 200 mg/kg 体重(以下[1.(1)]において「高用量」という。)で単回経口投与、又は SD ラット(一群雌雄各 3 匹)に同混合液を低用量で 14 日間経口投与し、血中濃度推移が検討された。反復投与群については、単回投与試験で雌の組織中残留放射能濃度が雄より高かったことから、雌について多くの時点で試料を採取し、血中濃度推移が検討された。

血漿中及び赤血球中薬物動態学的パラメータは表1に示されている。

単回投与されたクロラントラニリプロールは速やかな吸収及び消失を示した。血漿中における $T_{1/2}$ は雌より雄の方が短かったが、用量間の差は少なかった。低用量群と高用量群の C_{max} の比較から、高用量群の吸収率は低下すると考えられた。赤血球中の濃度は血漿中濃度より低いことから、赤血球へ蓄積する可能性は低いと考えられた。

反復経口投与群では、血漿中及び赤血球中濃度は最終投与時まで増加し、投与終了時点においてもプラトーに達せず、 T_{max} は 24 時間であった。これらの放射能濃度は反復投与終了後減少した。雌における血漿中 $T_{1/2}$ は、単回投与の約 2 倍の 173 時間に延長した。(参照 2)

表 1 血漿中及び赤血球中薬物動態学的パラメータ

	投与回数		単回	反復投与		
	投与量	10 mg/	kg 体重	200 mg/	/kg 体重	10 mg/kg 体重
	性別	雄	雌	雄	雌	雌
	T _{max} (hr)	5	9	11	12	24
A. 444	$C_{max} (\mu g/g)$	3.3	5.4	5.8	7.7	32.0
血漿	$\mathrm{T}_{1/2}\left(\mathrm{hr}\right)$	37.5	82.4	42.9	77.9	173
	AUC(hr·μg/g)	116	493	429	766	19
	T _{max} (hr)	4	6	6	10	24
+ / +4	$C_{max} (\mu g/g)$	1.9	3.0	2.7	3.7	8.0
赤血球	T _{1/2} (hr)	34.8	61.4	39.0	65.4	146
	AUC(hr·μg/g)	46	155	152	235	5

b. 吸収率

胆汁中排泄試験 [1.(1) **4**b] における尿、胆汁及び体組織(消化管内容物を除く。) 残存の放射能の合計から算出された吸収率は、低用量群では 73 ~85%、高用量群では 12~13%であった。(参照 2)

②分布

SD ラット (一群雌雄各 4 匹) に[ben-14C]クロラントラニリプロール及び [pyr-14C]クロラントラニリプロールの等量混合液を低用量又は高用量で単回経口投与し、 T_{max} 時又は T_{max} [1/2]時に得られた臓器及び組織、排泄試験 [1. (1) ②a] で投与 168 時間後に得られた組織及び臓器並びに反復投与群 [1. (1) と同様の方法で投与] については、 T_{max} 時及び投与 21 日後に得られた組織及び臓器を用いて体内分布試験が実施された。

主要組織中の残留放射能濃度は表2に示されている。

単回投与後の組織中放射能濃度は、低用量群では消化管内容物以外では、 肝臓、消化管及び副腎において高く、その他に下垂体、膀胱及び脂肪で高かった。その後、いずれの組織においても経時的に減少し、投与 168 時間後には全ての組織で低濃度となり、クロラントラニリプロール及び代謝物に蓄積性はないと考えられた。高用量群においても、低用量群と同様の分布がみられ、投与 168 時間後には全ての組織で血漿中濃度より低い値となった。雌雄で比較すると、いずれの用量においても、雌の方が雄よりも組織中残留濃度が高い傾向が認められた。これは、雌より雄の $T_{1/2}$ が短いこと及び雄の尿中排泄率が僅かに大きいことに起因すると考えられた。

反復経口投与群では、雄と比較して、雌においてより高濃度の放射能が組織に残留する傾向が認められた。しかし、雌雄いずれにも血漿中濃度より高い放射能濃度を示した臓器及び組織は認められず、投与期間終了後に経時的

に減少したことから、ラットの体内にクロラントラニリプロール及び代謝物 は蓄積しないと考えられた。(参照 2)

投与 回数	投与量	性別	T _{max} *	単回投与群:投与168時間後 反復投与群:投与21日後
	10	雄	消化管内容物(61.1)、肝臓(20.0)、消化管(13.8)、膀胱(9.91)、 副腎(8.59)、 血漿(4.00)、全血(2.99)	血漿(0.14)、肝臓(0.14)、 その他(0.1 未満)
	mg/kg 体重	雌	消化管内容物(44.9)、肝臓(17.4)、下垂 体(13.8)、消化管(11.9)、副腎(11.6)、 脂肪(8.06)、血漿(5.18)	血漿(2.01)、全血(1.13)、 その他(1.0 未満)
単回 投与	200	雄	消化管内容物(1,230)、消化管(52.7)、 肝臓(31.1)、下垂体(25.3)、甲状腺 (14.2)、副腎(14.2)、膀胱(12.7)、カ ーカス(9.81)、血漿(8.76)	消化管内容物(1.12)、血漿 (0.74)、その他(0.7以下)
	mg/kg 体重	雌	消化管内容物(1,290)、消化管(57.8)、 下垂体(52.3)、肝臓(40.7)、甲状腺 (36.0)、副腎(30.8)、脂肪(20.1)、卵 巣(16.9)、膀胱(16.2)、カーカス 1(14.7)、血漿(14.6)、腎臓(11.9)	血漿(5.45)、全血(3.09)、その他(2.0以下)
反復	10 mg/kg 体重	雄	消化管内容物(19.3)、血漿(4.6)、肝 臓(4.5)	血漿(0.6)、その他(0.5 未満)
投与		雌	血漿(32.0)、消化管内容物(30.7)、肝 (17.3) 安与群雄は投与 5 時間後、雌は投与 9 時	血漿(14.0)、その他(10.0 未満)

表 2 主要組織中の残留放射能濃度 (μg/g)

③代謝

尿及び糞中排泄試験 [1.(1) **(4) (1) (4) (a) (1) (4) (5) (5) (5) (5) (5) (6) (1) (4) (5) (6) (5) (6) (6) (1) (1) (4) (6) (6) (1) (1) (4) (6) (6) (1) (4) (6) (6) (7) (6) (6) (7) (7) (6) (7) (**

尿、糞及び胆汁中の代謝物は表3に示されている。

クロラントラニリプロールは広範に代謝され、特に胆汁中のクロラントラリニプロール分布割合が低いことから、肝臓において広範に代謝されることが示唆された。

クロラントラニリプロールの主要代謝経路は、ベンゼン環メチル基炭素及 び *N*-メチル基の水酸化、その後の脱メチル化、水分子の脱離を伴う窒素と炭 素への結合による環形成、アルコールの酸化によるカルボン酸の生成、アミ

^{*:} 単回投与群の低用量投与群雄は投与5時間後、雌は投与9時間後、高用量投与群雄は投 与11時間後、雌は9時間後、反復投与群は投与15日後。

¹組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

ド架橋の開裂、アミンの加水分解及びOグルクロン酸抱合が考えられた。(参照 2)

表3 尿、糞及び胆汁中の代謝物(%TAR)

投与				クロラントラ	
回数	投与量	性別	試料	ニリプロール	代謝物
					G(7.4), D(4.6), A(2.9), H(2.7), L(1.7), B(0.6),
			尿	0.5	D'(0.6)、K(0.6)、C(0.3)、I (0.1)、未同定代謝
			//1-	0.0	物(6.2)
		雄			G(10.4), L(8.9), D(7.4), H(2.7), A(1.9),
		<i>Α</i> μ.	糞	4.5	C(1.4)、D'(1.1)、I(0.8)、未同定代謝物(16.7)
	10				J(2.0), L(1.7), E' (1.6), I(1.2), D'(1.1), A(0.4),
	mg/kg		胆汁	0	H'(0.3)、D(0.2)、G(0.1)、未同定代謝物(2.2)
	mg/kg 体重				H(3.7), C(3.4), A(2.8), D(2.4), G(2.2), B(0.9),
単	产生		尿	0.6	D'(0.7)、K(0.7)、未同定代謝物(17.3)
□					C(15.0), H(4.9), G(4.8), A(3.7), M(3.7),
投		雌	糞	6.7	D(3.5)、D'(1.7)、K(1.3)、未同定代謝物(14.5)
与				0.1	C'(4.4)、D'(3.2)、J'(0.6)、G(0.4)、E'(0.3)、
			胆汁		
	200	雄	尿	0.3	C(0.3)、M(0.3)、B(0.2)、未同定代謝物(7.8)
					G(1.0), D(0.7), A(0.4), H(0.4), C(0.1), K(0.1),
			744-		B(0.01)、未同定代謝物(3.7)
	mg/kg		糞	78.6	D(1.8)、未同定代謝物(9.6)
	体重		尿	0.1	C(0.4), H(0.4), D(0.3), G(0.3), A(0.2), B(0.2),
					K(0.1)、未同定代謝物(2.2)
			糞	85.3	C(3.0)、D(1.1)、未同定代謝物(1.6)
					G(4.0), D(3.0), A(1.5), E(0.9), H(0.9), L(0.8),
			尿	0.8	I(0.6), D'(0.4), K(0.3), F(0.1), B(0.04),
		雄			C(0.03)、未同定代謝物(3.2)
	10		-}K-	0.7.0	G(7.3)、D(7.1)、L(6.9)、E(1.5)、C(1.2)、未
反復	10		糞	37.8	同定代謝物(7.6)
投与	mg/kg				C(1.3), H(1.3), A(1.2), D(1.1), G(1.1), B(0.8),
	体重		尿	0.2	E(0.4)、K(0.4)、D'(0.3)、M(0.3)、I(0.1)、未
		雌	~ • •		同定代謝物(3.2)
					C(9.8), D(2.3), E(2.2), M(1.9), G(1.5), N(1.4),
			糞	54.9	未同定代謝物(4.0)
					\(\sigma \sigma

C'、D'、E'、H'、J': それぞれの代謝物のグルクロン酸抱合体。

④排泄

a. 尿及び糞中排泄

SD ラット(一群雌雄各 4 匹)に [ben-14C]クロラントラニリプロール及び [pyr-14C]クロラントラニリプロールの等量混合液を低用量又は高用量で単回経口投与した群の最終投与 168 時間後並びに[1.(1)①a.]で用いた反復投与群で得られた最終投与 6 日後の尿及び糞を用いて、排泄試験が実施された。 各投与群における尿及び糞中排泄率は、表 4 に示されている。

単回投与群では、いずれの用量においても、投与放射能は投与 48~72 時間後までに大部分が排泄され、主に糞中に排泄された。反復投与群においても、単回投与群と同様に主に糞中に排泄された。(参照 2)

Z i Will Control												
投与回数	単回投与						•	反復投与				
投与量	10 mg/kg 体重				mg/kg 体重 200 mg/kg 体重			重	10) mg/l	kg 体I	重
性別	雄		Т	堆	雄		雌		雄		此	É
試料	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞	尿	糞
最終試料採 取時間*	29.2	62.0	23.8	64.3	5.2	91.6	3.8	91.0	16.7	72.9	12.1	81.6

表 4 尿及び糞中排泄率 (%TAR)

b. 胆汁中排泄

胆管カニュレーションした SD ラット(低用量群:雌雄各 5 匹、高用量:雌雄各 4 匹)に[ben-14C]クロラントラニリプロール及び[pyr-14C]クロラントラニリプロールの等量混合液を低用量又は高用量で単回経口投与し、投与後 48 時間の胆汁、尿及び糞を経時的に採取し、胆汁中排泄試験が実施された。また、消化管内容物及びカーカスは投与 48 時間後に採取された。

投与後 48 時間の胆汁、尿及び糞中排泄率並びに投与 48 時間後の消化管内 容物及びカーカス中の放射能残存率は表 5 に示されている。

胆汁中排泄率は高用量群の方が低用量群より低かったことから、糞中へ排泄された放射能は低用量では胆汁へと再吸収され、高用量では未吸収で排泄されたと考えられた。また、尿中排泄率は非カニュレーションラット[1.(1) ④a.]と比較してほぼ同等の割合であることから、糞からの再吸収は低いと考えられた。(参照 2)

^{*:} 単回投与試験は投与 168 時間後、反復投与試験は最終投与 6 日後。

表 5 投与後 48 時間の胆汁、尿及び糞中排泄率並びに投与 48 時間後の消化管 内容物及びカーカス中の放射能残存率(%TAR)

投与量	性別	胆汁	尿*	粪	消化管 内容物	カーカス
10 mg/kg	雄	52.7	33.0	10.1	0.6	2.3
体重	雌	49.1	21.2	19.7	0.6	5.8
200 mg/kg	雄	6.7	8.4	54.7	23.8	2.8
体重	雌	5.0	8.5	70.8	7.2	3.0

*:ケージ洗浄液を含む。

(2) ニワトリ

ISA Brown 産卵鶏(一群 5 羽)に[ben-14C]クロラントラニリプロール又は[pyr-14C]クロラントラニリプロールを 10 mg/kg 飼料/日相当で 14 日間連続カプセル経口投与し、動物体内運命試験が実施された。

投与開始後 14 日では排泄物中に総回収率で 98.5%TAR 排出され、主要な排泄経路であると考えられた。

卵白では投与開始後 5 日で 1.33 μg/g 検出され、残りの期間もほぼ同様な 濃度で推移し、投与開始後 14 日では総回収率で 2.96%TAR であった。

卵黄では放射能濃度は投与開始後徐々に増加し、投与開始後 8 日で 0.56 $\mu g/g$ に達し平衡状態となり、投与開始後 14 日では総回収率で 0.38% TAR であった。

組織中放射能濃度は肝臓で最も高く $0.52 \,\mu\text{g/g}$ であり、筋肉で $0.022 \,\mu\text{g/g}$ 、腹腔内脂肪で $0.035 \,\mu\text{g/g}$ 、皮膚(脂肪を含む。)で $0.052 \,\mu\text{g/g}$ であった。

卵白、卵黄及び各組織中(筋肉を除く。)には未変化のクロラントラニリプロールがそれぞれ $0.36\sim0.41$ 、 $0.059\sim0.11$ 及び $0.007\sim0.046$ $\mu g/g$ 認められたが、筋肉中では 0.001 $\mu g/g$ 未満であった。主要代謝物は卵白で M が 0.12 $\mu g/g$ (9.23%TRR)、N が 0.55 $\mu g/g$ (40.4%TRR)、卵黄で C が 0.078 $\mu g/g$ (16.6%TRR)、E が 0.112 $\mu g/g$ (24.0%TRR)、肝臓で B が 0.021 $\mu g/g$ (3.96%TRR)であった。(参照 55)

(3) ヤギ

英国ザーネン種ヤギ(一群 1 頭)に $[ben^{-14}C]$ クロラントラニリプロール又は $[pyr^{-14}C]$ クロラントラニリプロールを 10 mg/kg 飼料/日相当で 7 日間連続カプセル経口投与し、動物体内運命試験が実施された。

投与開始後 7日では糞中に総回収率で 78.9% TAR、尿中に 10.7% TAR、乳 汁中に 0.79% TAR、胆汁中に 0.07% TAR 排出され、主に糞中へ排泄される と考えられた。

乳汁の放射能濃度は投与開始後 $2\sim3$ 日で最高 $0.081~\mu g/g$ に達した後減少し、投与後 7 日で $0.047~\mu g/g$ であった。可食組織中では肝臓が最も高く $0.64~\mu g/g$ であり、筋肉で $0.017~\mu g/g$ 、脂肪(平均値)で $0.068~\mu g/g$ 、腎臓で $0.09~\mu g/g$ であった。

乳汁及び各組織中には親化合物がそれぞれ 0.016 及び $0.002\sim0.004$ $\mu g/g$ 認められた。主要代謝物は肝臓で K が 0.048 $\mu g/g$ (7.54%TRR) であった。 (参照 55)

2. 植物体内運命試験

(1) 水稲

プラスチック製容器に水稲(品種名: Montsinanell)の種子を播種し、播種 16 日後 $(1\sim2$ 葉期)に[ben- 14 C]クロラントラニリプロール及び[pyr- 14 C] クロラントラニリプロールの等量混合液を 400 g ai/ha の用量で土壌表面に処理した。処理 2 日後に湛水し、処理 14、28、56 及び 132(成熟期)日後に植物全体を採取し、植物体内運命試験が実施された。未熟植物は葉身、葉鞘及び根、成熟植物は葉身、葉鞘、根及び花序に分けて試料とされた。

採取試料各部位の総残留放射能濃度は表 6 に示されている。

処理後日数に伴って、根及び葉身の放射能濃度が増加したことから、土壌中の放射能は根から吸収され、地上部へ移行すると考えられた。可食部である玄米の残留放射能濃度は 0.16 mg/kg であった。

処理132日後の葉身中の主要成分は未変化のクロラントラニリプロールで あり、52.3%TRR(2.12 mg/kg)を占めた。代謝物として Q をはじめとする 16 種類が検出されたが、O が最大 6.1%TRR 検出された以外は 5%TRR 未満 であった。葉鞘においても、主要成分は未変化のクロラントラニリプロール (64.9%TRR) であり、そのほかに 6 種類の代謝物が検出されたが、いずれ も 5.3%TRR 以下であった。葉身及び葉鞘の結果から、わらとしての代謝物 の分布を計算した。その結果、未変化のクロラントラニリプロールが 53.8%TRR (0.49 mg/kg) であり、代謝物は N が最大で 5.4%TRR (0.049 mg/kg) 検出された。もみ殻においても主要成分は未変化のクロラントラニ リプロールであり(66.3%TRR、0.12 mg/kg)、そのほかに O 等 4 種類の代 謝物が検出されたが、いずれも 3.2%TRR 以下であった。玄米中においても 主要成分は未変化のクロラントラニリプロール(51.4%TRR、0.08 mg/kg) であり、ほかに K、Q 等 5 種類の代謝物が検出されたが、いずれも 1.8% TRR以下であった。また、わら中には玄米及びもみ殼に検出されなかった S が 1.1%TRR 検出された。これはラットにおいて検出されなかった代謝物であ った。

水稲における主要代謝経路として、(1)Nメチル基の水酸化による C の生成、又はベンゼン環メチル基の水酸化による D の生成、(2)水分子の脱離及

び縮合による O の生成、さらに N に至る経路、(3)C のヒドロキシメチルアミド基の N-脱メチル化による M の生成、(4)フェニル及びヘテロサイクル環の間に位置するアミド架橋の開裂によって K 及び A を生じる経路が考えられた。 (参照 3)

12.0	1 A 4 A 6 A 7 T		心况田从	71 HL /成/又	(IIIg/ Ng/	
마바 +미 국구 (과 44.5			採取試	料部位		
試料採取時期	葉身	葉鞘	根	もみ殻	玄米	わら*
処理 14 日後	0.34	0.17	0.07			
処理 56 日後	1.27	0.08	0.21			
処理 132 日後	4.06	0.13	0.28	0.17	0.16	0.90

表 6 採取試料各部位の総残留放射能濃度 (mg/kg)

(2) りんご

温室内で砂壌土を入れたプラスチックポット内で栽培したりんご(品種名: Braeburn)樹の茎葉に [ben-14C]クロラントラニリプロール又は [pyr-14C]クロラントラニリプロールを 300 g ai/ha の用量(100 g ai/ha×3回)で散布し、葉及び果実を採取し、植物体内運命試験が実施された(各処理の間隔及び試料採取時期は表 7 を参照)。

処理回数	処理間隔	試料採取時期		
1	_	処理直後		
2	28 日	処理直前及び処理直後		
9	42 ∃	処理直前、処理直後、処理		
Э	42 µ	15 日後及び処理 30 日後		

表 7 各処理の間隔及び試料採取時期

試料中の総残留放射能は表8に示されている。果実及び葉試料のいずれに おいても、残留放射能は主に表面洗浄液に存在し、抽出液中の放射能濃度は 僅かであった。標識位置による差は認められなかった。

表面洗浄液及び抽出液中の同定可能な化合物は、いずれの試料においても未変化のクロラントラニリプロールのみであり、第3回処理30日後の果実試料では85%TRR以上を占めていた。代謝物の量は僅かで、数種の未同定代謝物の存在が示唆されたものの、極めて微量のため同定できなかった。これらの未同定代謝物は、いずれも単独で0.8%TRR以下であった。(参照4)

^{*:}葉身及び葉鞘の合計、それぞれの重量に基づいて計算した。

表 8 試料中の総残留放射能(%TRR)

標識体		クロラン プロール	[pyr-14C]クロラン トラニリプロール		
試料	葉	果実	葉	果実	
表面洗浄液	65.9~86.5	71.9~96.5	37.1~90.7	68.1~95.6	
抽出液 1	11.9~29.5	2.4~22.6	6.4~60.7	3.8~28.3	
抽出液 2	1.0~4.9	0.5~3.7	0.8~3.5	0.3~4.3	

抽出液 1: アセトニトリル、 抽出液 2: アセトニトリル: 水(1:1)

(3) レタス

試験ほ場($1 \text{ m} \times 1.5 \text{ m}$)に播種、栽培したレタス(品種名: Green Salad Bowl)に、 $[\text{ben}^{-14}\text{C}]$ クロラントラニリプロール及び $[\text{pyr}^{-14}\text{C}]$ クロラントラニリプロールの等量混合液を、合計 300 g ai/ha の用量(100 g ai/ha×3 回:第 1 回処理は播種 5 週後(発芽 29 日後の 3 葉期)、第 $2 \text{ 回はそれから } 13 \text{ 日後の } 9 \text{ 葉期、第 } 3 \text{ 回はさらに } 10 \text{ 日後で成熟の } 15 \text{ 日前)で茎葉散布し、植物体内運命試験が実施された(各処理の間隔及び試料採取時期は表 <math>9 \text{ を参照}$)。

 処理回数
 処理間隔
 試料採取時期

 1
 処理直後

 2
 13日
 処理直前及び処理直後

 3
 10日
 処理直前、処理直後、処理7日後及び処理15日後

表 9 各処理の間隔及び試料採取時期

各回の処理直後には、放射能は試料の 66.8~92.1%TRR が表面洗浄液中に存在した。処理後、時間の経過に伴い植物組織の抽出液に放射能の割合が高くなったことから、内部への移行が示唆された。表面洗浄液中と抽出液中の放射能の放射能残留量及び濃度の合計は、第2及び3回処理直前には、前回処理後より減少した。最終処理直後の放射能濃度は1.34 mg/kg であったが、処理15日後に収穫した成熟植物の濃度は0.30 mg/kg に減少した。この時、成熟植物の43.8%TRR が洗浄により除去された。

いずれの試料においても、同定可能な主要成分は未変化のクロラントラニリプロールであり、80%TRR以上を占めた。そのほかに未同定代謝物が認められたが、それらは微量であり、単独で 0.8%TRR を超える代謝物はなかった。 (参照 5)

(4) トマト

温室内で砂壌土を入れたプラスチック容器内に発芽後 19 日目に移植し、

栽培したトマト(品種名: Money Maker)に、 $[ben-^{14}C]$ クロラントラニリプロール及び $[pyr-^{14}C]$ クロラントラニリプロールの等量混合投与液を、合計 300 g ai/ha の用量(100 g ai/ha×3 回)で茎葉散布し、葉及び果実を採取して植物体内運命試験が実施された(各処理の間隔及び試料採取時期は表 10 を参照)。

処理回数	処理間隔	試料採取時期
1	_	処理直後
2	23 日	処理直前及び処理直後
0	97 🗆	処理直前、処理直後、処理 15
3	27 日	日後及び処理 30 日後(成熟期)

表 10 各処理の間隔及び試料採取時期

果実及び葉試料のいずれにおいても、残留放射能は主に表面洗浄液に存在し、抽出液中の放射能濃度は僅かであった。果実については、第3回処理15日後では78.7%TRRが表面洗浄液に存在し、果実抽出液中からは21.0%TRRが認められた。葉についても、果実とほぼ同様で、残留放射能は表面洗浄液に73.4%TRR存在した。葉及び果実において吸収及び分布の差はなかった。全ての試料において、同定可能な主要成分は未変化のクロラントラニリプロールであり、85%TRR以上を占めた。その他に未同定代謝物が認められたが、それらは微量であり、単独で0.9%TRRを超える代謝物はなかった。(参照6)

3. 土壤中運命試験

(1)好気的湛水土壤中運命試験

[ben- 14 C]クロラントラニリプロール又は[pyr- 14 C]クロラントラニリプロールを、水深約 1.0 cm の湛水状態にした非滅菌土壌 [埴壌土(日本)] に 300 mg/kg 乾土の用量で土壌混和し、25 $^{\circ}$ $^{\circ}$ 、暗条件下で 180 日間インキュベートし、好気的湛水土壌中運命試験が実施された。オートクレーブ処理した滅菌土壌を用いた試験も実施された。

各試料中における総残留放射能は表 11 に示されている。

非滅菌土壌では、田面水中の放射能は、全試験期間を通じて両標識体とも経時的に減少した。また、土壌抽出液中の放射能は、60 日後に最大値に到達し、180 日後には再び減少した。非抽出性残渣は処理直後では定量限界未満であったが、試験期間中に増加した。両標識体とも 14 日後から $^{14}CO_2$ が検出され、180 日後に $2.4\sim2.8\%TAR$ が検出された。

滅菌土壌では、田面水中の放射能は、全試験期間を通じて両標識体とも減

少した。また、土壌抽出液中の放射能は 100 日後には最大となった。非抽出性残渣は処理直後では定量限界未満であったが試験期間中に僅かに増加した。

非滅菌土壌の主要成分未変化のクロラントラニリプロールであり、処理後、未変化のクロラントラニリプロールの水相及び土壌中残留量は緩やかに減少し、処理 180 日後には両標識体において $54.0 \sim 66.7 \%$ TAR となった。水相にはいずれの標識体についても、単独で 1% TAR を超える分解物は検出されなかった。土壌には主な分解物として O が同定され、最大 $13.1 \sim 13.7\%$ TAR (0.04 mg/kg) 検出された。この分解物以外に、 $[\text{ben-}^{14}\text{C}]$ クロラントラニリプロール処理で M 及び T、 $[\text{pyr-}^{14}\text{C}]$ クロラントラニリプロール処理で Q 及び M が検出、同定されたがいずれも 5% TAR 未満であった。

滅菌土壌では、処理後、未変化のクロラントラニリプロールの放射能の減少は僅かであった。処理直後の放射能は両標識体において $91.2\sim94.3\%$ TAR で、180 日後にそれぞれ $87.4\sim90.4\%$ TAR であった。主な分解物は O で、最大 $3.0\sim5.6\%$ TAR (土壌相)であった。これ以外に、T、M、Q 及び未同定代謝物が検出されたが、いずれも微量であった。

クロラントラニリプロールの推定半減期は非滅菌土壌で 284 日、滅菌土壌で 1,640 日であった。 (参照 7)

	試料	[b	en- ¹⁴ C]クロ	ラン	[pyr- ¹⁴ C]クロラン						
工 校	採取	4	ラニリプロー	ール	トラ	トラニリプロール					
土壌	時期	田玉水	土	:壌	田盂水	土	壌				
	(目)	田面水	抽出液	残渣	田面水	抽出液	残渣				
非滅菌	0	89.9	6.8	<loq< td=""><td>88.5</td><td>7.6</td><td><loq< td=""></loq<></td></loq<>	88.5	7.6	<loq< td=""></loq<>				
土壌	60	4.6	79.6	11.8	5.0	81.9	9.9				
	180	2.5	68.9	68.9 20.1		74.8	17.3				
滅菌土壌	0	86.4	6.3	<loq< td=""><td>89.8</td><td>5.9</td><td><loq< td=""></loq<></td></loq<>	89.8	5.9	<loq< td=""></loq<>				
	100	6.1	90.7	2.8	5.5	92.0	1.2				

表 11 各試料中における総残留放射能 (%TAR)

LOQ:定量限界

(2) 好気的土壌中運命試験

[ben-¹⁴C]クロラントラニリプロール又は[pyr-¹⁴C]クロラントラニリプロールを、砂壌土(米国ミシシッピ州)に 300 mg/kg 乾土の用量で土壌混和し、 $25\pm2^{\circ}$ C又は $35\pm2^{\circ}$ Cの暗条件下で 365日($25\pm2^{\circ}$ C)又は 240日間($35\pm2^{\circ}$ C)インキュベートし、好気的土壌中運命試験が実施された。

いずれの試験系においても、クロラントラニリプロールの時間経過に伴う減少が認められ、365 日後に 25 及び 35 $^{\circ}$ $^{\circ}$ Cにおいて、それぞれ 70.6 $^{\circ}$

74.9%TAR 及び $62.5\sim63.7$ %TAR となり、クロラントラニリプロールは生物 的及び非生物的プロセスにより分解した。最も多く検出された分解物は O で、25℃で $8.3\sim9.5$ %TAR、35℃で $12.4\sim14.7$ %TAR の最大値を示した。その 他主要な分解物として、 $Q(最大 2.2\sim5.2$ %TAR)及び $T(最大 4.9\sim8.2$ %TAR) が認められた。最終的には $^{14}CO_2$ に無機化された。

クロラントラニリプロールの推定半減期は 25 ± 2 ℃で 886 日、 35 ± 2 ℃で 443 日であった。 (参照 8)

(3)土壤吸着試験

5 種類の土壌 [壌質砂土 (スペイン及び米国ジョージア州)、シルト質埴壌土 (米国インディアナ州)、砂壌土 (米国ミシシッピ州)及び壌土 (イタリア)]を用いて土壌吸着試験が実施された。

Freundlich の吸着係数 K^{ads} は $1.2\sim9.2$ 、有機炭素含有率により補正した 吸着係数 Koc は $153\sim526$ であった。

また、火山灰土壌(茨城)を用いて土壌吸着試験が実施された。

Freundlich の吸着係数 K^{ads} は 5.2、有機炭素含有率により補正した吸着係数 Koc は 100 であった。 (参照 9)

4. 水中運命試験

(1)加水分解試験

pH 4 (クエン酸緩衝液)、pH 7 (トリスマレイン酸緩衝液)及び pH 9 (ホウ酸緩衝液) の各滅菌緩衝液に[ben-14C]クロラントラニリプロール又は [pyr-14C]クロラントラニリプロールを $0.6~\mu g/mL$ となるように添加し、恒温槽中で $25\pm1^{\circ}$ C、30 日間インキュベートして、加水分解試験が実施された。 pH 4 及び 7 の緩衝液中においてクロラントラニリプロールはほとんど分解せず、極めて安定であった。

pH 9 の緩衝液中においては、クロラントラニリプロールは速やかに分解した(処理 30 日後に $12.8\sim13.2\%$ TAR)。分解物として O が検出された(処理 30 日後に $78.7\sim86.7\%$ TAR)。

クロラントラニリプロールの pH 9 の緩衝液中における推定半減期は、10日であると考えられた。 (参照 10)

(2) 水中光分解試験(滅菌緩衝液及び自然水)

[ben-¹⁴C]クロラントラニリプロール又は[pyr-¹⁴C]クロラントラニリプロールを滅菌緩衝液(pH 7、リン酸緩衝液)及び滅菌自然水(英国スコットランド河川水、pH 7.0)に 0.6 μ g/mL の用量で添加し、 25 ± 1 °Cで 21 日間キセノンランプ光(光強度:456 W/m²、測定波長:300~800 nm)を連続照射する水中光分解試験が実施された。

滅菌緩衝液中では、クロラントラニリプロールは光照射により経時的に減少し、 $[ben^{-14}C]$ クロラントラニリプロール処理では処理直後の 98.6%TAR から処理 5 日後には検出限界未満に、 $[pyr^{-14}C]$ クロラントラニリプロール処理では処理直後の 98.9%TAR から処理 8 日後には検出限界未満となった。主要分解物として、U、V 及び W がそれぞれ最大で $49.1\sim52.8\%$ TAR (1日後)、 38.5~40.8%TAR (2~5日後)及び 88.2~90.2%TAR (15~21日後)検出された。このうち分解物 U 及び B は B 及び B には検出限界未満となった。クロラントラニリプロールの推定半減期は B 時間 B 時間 B であり、自然太陽光 B 北緯 B (東京)、春 B 換算で B 1.7日であった。

また、暗対照区において、試験終了時のクロラントラニリプロールの放射 能濃度は $93.0 \sim 93.5\%$ TAR であり、分解は僅かであった。

滅菌自然水中では、クロラントラニリプロールは光照射により急速に減少し、 $[ben^{-14}C]$ クロラントラニリプロール処理では処理直後の 99.4% TAR から処理 1 日後には 5.8% TAR、 $[pyr^{-14}C]$ クロラントラニリプロール処理では処理直後の 101% TAR から処理 2 日後に 1.0% TAR となった。主要分解物として、V 及び W が $46.8\sim51.4\%$ TAR(12 時間後)及び $89.3\sim94.4\%$ TAR(5 日後)検出された。分解物 U は 5% TAR 以下の濃度で認められた。クロラントラニリプロールの推定半減期は 7.4 時間 (0.31 日)であり、自然太陽光 [北緯 35 度 (東京)、春] 換算で 1.43 日であった。

また、暗対照区において、試験終了時の放射能濃度は $94.5\sim97.2\%$ TAR であり、ほとんど分解されなかった。(参照 11)

5. 土壤残留試験

火山灰・軽埴土(茨城)、風積・砂土(宮崎)及び沖積・埴壌土(高知)を用い、クロラントラニリプロール及び分解物(O及びW)を分析対象化合物とした土壌残留試験(容器内及びほ場試験)が実施された。結果は表 12に示されている。(参照 12)

推定半減期(日) クロラントラ 試験 状態 濃度* 土壌 ニリプロール クロラントラ ニリプロール |+分解物 0 及び W 火山灰・軽埴土 約 327 容器内試験 畑地 1.0 mg/kg風積•砂土 150 g ai/ha(1回) 火山灰・軽埴土 約 149 約 161 及び 450 g ai/ha 畑地 風積・砂土 約 161 約 166 $(3 \Box)^{-1}$ ほ場試験 火山灰・軽埴土 約 2 約 2 水田 100 g ai/ha²⁾ 沖積・埴壌土 約6 約 29

表 12 土壌残留試験成績

6. 作物等残留試験

(1)作物残留試験(国内)

水稲、茶、野菜、果物等を用い、クロラントラニリプロールを分析対象化 合物とした作物残留試験が実施された。

結果は別紙 3 に示されている。クロラントラニリプロールの最大残留値は、最終散布 3 日後に収穫した茶(荒茶)の 38.8 mg/kg であった。(参照 13、56、67、74)

(2)作物残留試験(海外)

ばれいしょ、キャベツ、ブロコリー等を用い、クロラントラニリプロールを分析対象化合物とした作物残留試験が米国にて実施された。

結果は別紙 3 に示されている。可食部におけるクロラントラニリプロールの最大残留値は、最終散布 1 日後に収穫したほうれんそうの 9.7 mg/kg であった。(参照 57、61、68、75)

(3) 家畜残留試験(海外)

①ニワトリ

ニワトリの肉類及び卵について、クロラントラニリプロール並びに代謝物 N、E及び Cを分析対象とした家畜残留試験が実施された。

結果は別紙4に示されている。

クロラントラニリプロールの最大残留値は 0.17~mg/kg 体重/日投与の全卵における $0.039~\mu g/g$ であった。代謝物 N、E 及び C の最大残留値はそれぞれ 0.17~mg/kg 体重/日投与の全卵における $0.057~\mu g/g$ 、 $0.011~\mu g/g$ 及び $0.005~\mu g/g$ であった。(参照 59)

^{*:}容器内試験では純品、ほ場試験では1)5%水和剤、2)1%粒剤を使用。

②家畜

ウシの肉類及び乳汁について、クロラントラニリプロール並びに代謝物 G 及び D を分析対象とした家畜残留試験が実施された。

結果は別紙4に示されている。

全乳においてはクロラントラニリプロールの最大残留値は、50~mg/kg 飼料/日相当の用量での投与後 14~Hの $0.028~\mu g/g$ であった。代謝物 G の最大残留値は 50~mg/kg 飼料/日相当の用量での投与後 10~Hの $0.014~\mu g/g$ 、D の最大残留値は投与後 7~Hの $0.030~\mu g/g$ であった。組織におけるクロラントラニリプロールの最大残留値は 50~mg/kg 飼料/日相当の用量での投与後 1~H の脂肪で $0.16~\mu g/g$ であった。(参照 60)

(4) 魚介類における最大推定残留値

クロラントラニリプロールの公共用水域における水産動植物被害予測濃度(水産 PEC)及び生物濃縮係数(BCF)を基に、魚介類の最大推定残留値が算出された。

クロラントラニリプロールの水産 PEC は $0.19 \mu g/L$ 、BCF は 49(計算値)、 魚介類における最大推定残留値は $0.047 \mu g/k$ g であった。(参照 48)

(5)後作物残留試験

畑地後作物としてクロラントラニリプロールをなすに1回定植時灌注処理 (0.325 g ai/株)及び3回生育期散布 (450g ai/ha)し、最終散布27又は14日後にだいこん又はキャベツを栽培し、後作物残留試験が実施された。また、きゅうりに1回定植時灌注処理(0.45g ai/株)及び3回生育期散布(450g ai/ha)し、最終散布40又は8日後にだいこん、キャベツ又ははくさいを栽培し、後作物残留試験が実施された。だいこんは播種113日後、はくさいは定植54日後及びキャベツは定植57日後に採取された。

水田後作物としてはクロラントラニリプロールを水稲に 1 回散布 (100g ai/ha) し、最終散布 62 又は 110 日後にだいこん又は小麦を栽培し、後作物 残留試験が実施された。だいこんは播種 71 日後及び小麦は播種 202 日後に採取された。

その結果、全ての作物において、クロラントラニリプロール及び代謝物 O は定量限界未満(<0.01 mg/kg)であった。 (参照 14)

(6)推定摄取量

作物残留試験の分析値及び魚介類における最大推定残留値を用いて、クロラントラニリプロールを暴露評価対象化合物として食品中から摂取される推定 摂取量が表 13 に示されている(別紙 5 参照)。 なお、本推定摂取量の算定は、登録されている又は申請されている使用方法 からクロラントラニリプロールが最大の残留を示す使用条件で、全ての適用作 物に使用され、また、魚介類への残留が上記の最大推定残留値を示し、かつ、 加工・調理による残留農薬の増減が全くないとの仮定の下に行った。

表 13 食品中から摂取されるクロラントラニリプロールの推定摂取量

	国民平均	小児(1~6 歳)	妊婦	高齢者(65 歳以上)
	(体重:55.1 kg)	(体重:16.5 kg)	(体重:58.5 kg)	(体重:56.1 kg)
摂取量 (μg/人/日)	374	101	267	494

7. 一般薬理試験

ラット及びマウスを用いた一般薬理試験が実施された。結果は表 14 に示されている。(参照 15)

表 14 一般薬理試験概要

=======================================	動物 数/群 数/群 投与量* (mg/kg 体重) (投与経路)		最大無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	結果概要		
	一般状態 (Irwin 法)	ICR マウス	雌雄 各 3	0、200、600、 2,000 (経口)	2,000	_	投与による影響なし
中枢	一般状態	SD ラット	雄 5	0、200、600、 2,000 (経口)	2,000	I	投与による影響なし
神経系	自発運動量	SD ラット	雄 5	0、200、600、 2,000 (経口)	2,000	_	投与による影響なし
	痙攣誘発及 び抑制作用 (電撃痙攣)	SD ラット	雌 5	0、200、600、 2,000 (経口)	2,000	_	投与による影響なし
循環器系	血圧、心拍数	SD ラット	雌 5	0、200、600、 2,000 (経口)	2,000	-	投与による影響な し
腎機能	尿量、Na ⁺ 、 K ⁺ 、Cl·濃度、 Na ⁺ /K ⁺ 比、 浸透圧	SD ラット	雌 5	0、200、600、 2,000 (経口)	2,000	_	投与による影響なし

^{*:}溶媒として 0.5%MC 水溶液を用いた。

一:最小作用量は設定できなかった。

8. 急性毒性試験

(1) 急性毒性試験

クロラントラニリプロール原体を用いた急性毒性試験が実施された。結果は表 15 に示されている。(参照 $16\sim18$)

投与	与 動物種 LD ₅₀ (mg/kg 体重)		観察された症状	
経路	性別・匹数	雄 雌		観祭された症状
経口*	SD ラット 雌 3 匹		>5,000	症状及び死亡例なし
経皮	SD ラット 雌雄各 5 匹	>5,000	>5,000	症状及び死亡例なし
HT7 =	SD ラット	LC_{50}	(mg/L)	雄:眼及び口に分泌物
吸入	雌雄各5匹	>5.1	>5.1	雌:眼瞼閉鎖 死亡例なし

表 15 急性毒性試験結果概要 (原体)

クロラントラニリプロールの代謝物を用いた急性経口毒性試験が実施された。結果は表 16 に示されている。 (参照 $19\sim20$)

化合物	投与 経路*	動物種 性別・匹数	LD ₅₀ (mg/kg 体重) 雌	観察された症状
代謝物 O	経口	SD ラット 雌 5 匹	>2,000	症状及び死亡例なし
代謝物 Q	経口	ICR マウス 雌 5 匹	>2,000	症状及び死亡例なし

表 16 急性経口毒性試験結果概要 (代謝物)

(2) 急性神経毒性試験

SD ラット (一群雌雄各 12 匹) を用いた強制経口 (原体:0、200、700 及び2,000 mg/kg 体重、溶媒:0.5%MC 水溶液) 投与による急性神経毒性試験が実施された。

死亡率、一般状態、体重変化、詳細な状態の観察、機能検査、剖検及び病理組織学的検査(神経組織)のいずれにおいても、検体投与の影響は認められなかった。本試験においていずれの投与群でも毒性所見は認められなかったので、無毒性量は雌雄とも本試験の最高用量 2,000 mg/kg 体重であると考えられた。急性神経毒性は認められなかった。(参照 21)

^{*:}溶媒として 0.5%MC 水溶液を用いた。

^{*:}溶媒として 0.5%MC 水溶液を用いた。

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼及び皮膚刺激性試験が実施された。皮膚に対する刺激性は認められなかったが、眼に対しては軽微な刺激性(EPAの基準)又は刺激性なし(EECの分類)と判定された。(参照22、23)

Hartley モルモットを用いた皮膚感作性試験 (Maximization 法) が実施された。皮膚感作性は認められなかった。 (参照 24)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体: 0、600、2,000、6,000 及び 20,000 ppm: 平均検体摂取量は表 17 参照) 投与による 90 日間亜急性毒性試験が実施された (実際の投与期間は、雄 97 日間、雌 98 日間であった。)。

投与群		600 ppm	2,000 ppm	6,000 ppm	20,000 ppm
平均検体摂取量	雄	36.9	120	359	1,190
(mg/kg 体重/日)	雌	47.0	157	460	1,530

表 17 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

血液生化学的検査において、2,000 ppm 以上投与群の雌で T.Bil の減少が 認められたが、毒性学的に意義のある変化とは考えられなかった。

臓器重量測定において、20,000 ppm 投与群の雌で肝絶対重量、比重量 ²及 び対脳重量比の増加が認められたが、血液生化学的検査項目及び病理組織学 的検査において関連する変化が認められなかったので、検体投与による毒性 変化ではないと考えられた。

病理組織学的検査において、検体投与による影響は認められなかった。なお、再度鏡検した結果 3、各投与群において副腎皮質小型空胞が認められ、雄ではその発生頻度が増加した[対照群、600、2,000、6,000、20,000 ppm 投与群で、それぞれ雄 0/10、1/10、2/10、4/10 例、雌 1/10、0/10、0/10、0/10、2/10 例]。変化の程度は雄の 20,000 ppm 投与群の 2 例で軽度、その他の動物では軽微であり対照群と同程度であった。しかし、後述するようにこの副腎皮質小型空胞の増加は検体投与による毒性変化とは考えられなかった [14. (5) 及び(6) 参照]。

本試験において、いずれの投与群でも毒性所見が認められなかったので、

² 体重比重量を比重量という(以下同じ。)。

³ ラットを用いた 2 年間慢性毒性/発がん性併合試験[11.(2)]及び 2 世代繁殖試験[12.(1)]において、副腎皮質束状帯に小型空胞の増加が認められたため、副腎皮質について再度鏡検された。

無毒性量は雌雄とも本試験の最高用量 20,000 ppm(雄:1,190 mg/kg 体重/日、雌:1,530 mg/kg 体重/日)であると考えられた。(参照 25)

(2)90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、1,000、4,000、10,000及び 40,000 ppm: 平均検体摂取量は表 18を参照) 投与による 90日間亜急性毒性試験が実施された。

投与群		1,000 ppm	4,000 ppm	10,000 ppm	40,000 ppm					
平均検体摂取量 雄		32.2	119	303	1,160					
(mg/kg 体重/日)	(mg/kg 体重/日) 雌		133	318	1,220					

表 18 90 日間 亜急性 毒性 試験 (イヌ) の 平均検体 摂取量

臓器重量測定において、40,000 ppm 投与群の雄で肝絶対及び比重量の増加が認められたが、血液生化学的検査項目及び病理組織学的検査において関連する変化が認められなかったので、検体投与による毒性変化ではないと考えられた。

その他の検査項目において、検体投与の影響は認められなかった。

本試験において、いずれの投与群でも毒性所見が認められなかったので、無毒性量は雌雄とも本試験の最高用量 40,000 ppm(雄:1,160 mg/kg 体重/日、雌:1,220 mg/kg 体重/日)であると考えられた。(参照 26)

(3)90日間亜急性神経毒性試験(ラット)

SD ラット (一群雌雄各 12 匹) を用いた混餌 (原体: 0、200、1,000、4,000 及び 20,000 ppm: 平均検体摂取量は表 19 参照) 投与による 90 日間亜急性神経毒性試験が実施された。

投与群		200 ppm	1,000 ppm	4,000 ppm	20,000 ppm
平均検体摂取量	雄	12.7	64.2	255	1,310
(mg/kg 体重/日)	雌	15.1	77.3	304	1,590

表 19 90 日間亜急性神経毒性試験 (ラット) の平均検体摂取量

死亡率、一般状態、体重変化、詳細な状態の観察、機能検査、剖検及び病理組織学的検査(神経組織)のいずれにおいても、検体投与の影響は認められなかった。

本試験において、いずれの投与群でも毒性所見が認められなかったので、 無毒性量は雌雄とも本試験の最高用量 20,000 ppm (雄:1,310 mg/kg 体重/ 日、雌:1,590 mg/kg体重/日) であると考えられた。亜急性神経毒性は認められなかった。(参照 27)

(4) 28 日間亜急性経皮毒性試験 (ラット)

SD ラット (一群雌雄各 10 匹) を用いた経皮 (原体:0、100、300 及び1,000 mg/kg 体重/日、6 時間/日、29 日間連続) 投与による 28 日間亜急性経皮毒性試験が実施された。

1,000 mg/kg 体重/日投与群の雌雄において、体重増加抑制及び食餌効率の減少が認められた。

病理組織学的検査において、全投与群の雄で副腎皮質束状帯にび漫性小型空胞が観察されたが、毒性変化ではないと判断された[14.(5)及び(6)参照]。 その他の検査項目に検体投与の影響は認められなかった。

本試験において、1,000 mg/kg 体重/日投与群の雌雄で体重増加抑制及び食餌効率の減少が認められたので、無毒性量は雌雄とも 300 mg/kg 体重/日であると考えられた。 (参照 28)

11. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 (原体:0、1,000、4,000、10,000 及び 40,000 ppm; 平均検体摂取量は表 20 を参照) 投与による 1 年間慢性毒性試験が実施された。

投与群		1,000 ppm	4,000 ppm	10,000 ppm	40,000 ppm
平均検体摂取量	雄	32.0	112	317	1,160
(mg/kg 体重/日)	雌	34.0	113	278	1,230

表 20 1年間慢性毒性試験(イヌ)の平均検体摂取量

血液生化学的検査において、40,000 ppm 投与群の雄で ALP の増加が認められ、検体投与による影響と考えられたが、毒性学的意義は不明であった。 臓器重量測定において、40,000 ppm 投与群の雄の肝比重量並びに雌の肝絶対重量、比重量及び対脳重量比が有意に増加したが、血液生化学的検査項目及び病理組織学的検査において関連する変化が認められなかったので、検体投与による毒性変化ではないと考えられた。

本試験において、いずれの投与群でも毒性所見が認められなかったので、無毒性量は雌雄とも本試験の最高用量 40,000 ppm(雄:1,160 mg/kg 体重/日、雌:1,230 mg/kg 体重/日)であると考えられた。(参照 29)

(2)2年間慢性毒性/発がん性併合試験(ラット)

SD ラット(主群:一群雌雄各 60 匹、衛星群(投与 12 か月後に中間と殺): 一群雌雄各 10 匹)を用いた混餌(原体:0、200、1,000、4,000 及び 20,000 ppm:平均検体摂取量は表 21 参照)投与による 2 年間慢性毒性/発がん性併合試験が実施された。本試験は当初、24 か月(104 週)の投与期間が予定されていたが、各投与群の死亡率が増加し、毒性試験ガイドラインで求められている最終解剖時で 25%の生存率を確保できない可能性があると予測された。よって、最終解剖を約 1 か月早め、雄は投与 99 週後、雌は投与 98 週後に実施された。

<u> </u>	(大) - 1 的										
投与群		200 ppm	1,000 ppm	4,000 ppm	20,000 ppm						
平均検体摂取量	雄	7.71	39.0	156	805						
(mg/kg 体重/日)	雌	10.9	51.0	212	1,080						

表 21 2 年間慢性毒性/発がん性併合試験 (ラット) の平均検体摂取量

血液生化学的検査において、20,000 ppm 投与群の雄及び 200 ppm 以上投与群の雌で T.Bil が有意に減少したが、毒性学的に意義のある変化とは考えられなかった。

病理組織学的検査において、1,000 ppm 以上投与群の雄で副腎皮質のび漫性小空胞が増加した。しかし、病変の程度は1例(中等度)を除き軽微又は軽度であった。後述するように副腎の変化は検体投与による毒性変化ではないと考えられた[14.(5)及び(6)参照]。

腫瘍性病変として、雌の 20,000 ppm 投与群において甲状腺ろ胞細胞腺腫が増加傾向を示した (対照群 0/60 例、20,000 ppm 投与群 4/60 例)。しかしその発生頻度は軽度であり、Fisher の直接確率計算法では有意差はなく、背景データ (1.11~6.12%) を僅かに超える値であった。また、前腫瘍段階である過形成病変及びろ胞細胞癌の増加は認められず、甲状腺に投与に関連する非腫瘍性病変も観察されなかったことから、同腫瘍の増加は偶発的なものであり、検体投与の影響ではないと考えられた。

本試験において、いずれの投与群でも毒性所見が認められなかったので、無毒性量は雌雄とも本試験の最高用量 20,000 ppm (雄: 805 mg/kg 体重/日、雌: 1,080 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。 (参照 30)

(3) 18 か月間発がん性試験(マウス)

ICR マウス (一群雌雄各 70 匹) を用いた混餌 (原体:0、20、70、200、1,200 及び 7,000 ppm: 平均検体摂取量は表 22 参照) 投与による 18 か月間

発がん性試験が実施された。

				, , ,		
投与群		20 ppm	70 ppm	200 ppm	1,200 ppm	7,000 ppm
平均検体摂取量	雄	2.60	9.20	26.1	158	935
(mg/kg 体重/日)	雌	3.34	11.6	32.9	196	1,150

表 22 18 か月間発がん性試験(マウス)の平均検体摂取量

臓器重量測定において、1,200 ppm 以上投与群の雄で肝絶対重量、比重量及び対脳重量比の増加並びに病理組織学的検査において小葉中心性肝細胞肥大が認められた。1,200 ppm 以上投与群の雌に認められた肝絶対重量、比重量及び対脳重量比の増加は、病理組織学的検査において関連する変化が認められなかったので、毒性変化ではないと考えられた。

7,000 ppm 投与群の雄で肝臓の変異肝細胞巣 (好酸性細胞) が増加し (5/70例)、検体投与による影響と考えられた。この変化は 20、70 及び 1,200 ppm 投与群においても各 1 例に認められたが、これらの投与群の発生頻度は背景データ ($2\sim4\%$) の範囲内であり、検体投与による影響とは考えられなかった。

腫瘍性病変の発生頻度に検体投与の影響は認められなかった。

本試験において、1,200 ppm 以上投与群の雄で小葉中心性肝細胞肥大等が認められ、雌ではいずれの投与群でも毒性所見が認められなかったので、無毒性量は雄で 200 ppm(雄:26.1 mg/kg 体重/日)、雌で本試験の最高用量7,000 ppm(雌:1,150 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 31)

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット (一群雌雄各 30 匹) を用いた混餌 (原体: 0、200、1,000、4,000及び 20,000 ppm: 平均検体摂取量は表 23参照) 投与による 2 世代繁殖試験が実施された。

投与群			200 ppm	1,000 ppm	4,000 ppm	20,000 ppm
	D## //-	雄	12.0	60.4	238	1,200
平均検体摂取量	P世代	雌	15.5	77.8	318	1,590
(mg/kg体重/日)	互批件	雄	18.1	89.4	370	1,930
	F ₁ 世代	雌	20.4	104	406	2,180

表 23 2 世代繁殖試験(ラット)の平均検体摂取量

親動物の臓器重量測定において、4,000 ppm 以上投与群の雌 (P 及び F₁)で肝絶対重量、比重量及び対脳重量比が増加したが、病理組織学的変化が認められなかったので、毒性変化ではないと考えられた。また、同群の雌雄において副腎絶対重量、比重量及び対脳重量比が増加したが、病理組織学的検査で 200 ppm 以上投与群の雄において認められた副腎皮質束状帯のび漫性小型空胞の増加も毒性変化ではないと判断され [14.(5)及び(6)参照]、他のラットの毒性試験(90 日間亜急性毒性及び 2 年間慢性毒性/発がん性併合試験)においても副腎重量の変化は認められなかったことから、検体投与による毒性変化ではないと考えられた。

親動物 $(P \& U F_1)$ の繁殖能に関しては、いずれの検査項目にも検体投与の影響は認められなかった。

児動物において、20,000 ppm 投与群の雄(F_1)で包皮分離日数の延長が認められたが、これは同群にみられた一過性の低体重(対照群と比較して有意差なし)による二次的な変化で毒性変化ではないと考えられた。その他の検査項目にも検体投与の影響は認められなかった。

本試験において、親動物及び児動物のいずれの投与群でも毒性所見が認められなかったため、無毒性量は親動物及び児動物の雌雄とも本試験の最高用量 20,000 ppm(P 雄:1,200 mg/kg 体重/日、P 雌:1,590 mg/kg 体重/日、F₁雄:1,930 mg/kg 体重/日、F₁雌:2,180 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 32)

(2)発生毒性試験(ラット)

SD ラット (一群雌 22 匹) の妊娠 $6\sim20$ 日に強制経口 (原体:0、20、100、300 及び 1,000 mg/kg 体重/日、溶媒:0.5%MC 水溶液) 投与する発生毒性試験が実施された。

母動物及び胎児に対して、検体投与の影響はみられなかったので、無毒性量は母動物で及び胎児とも本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 33)

(3)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 22 匹) の妊娠 $7\sim28$ 日に強制経口 (原体:0、20、100、300 及び 1,000 mg/kg 体重/日、溶媒:0.5%MC 水溶液) 投与する発生毒性試験が実施された。

母動物及び胎児に対して、検体投与の影響は認められなかったので、無毒性量は母動物及び胎児とも本試験の最高用量 1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 34)

13. 遺伝毒性試験

クロラントラニリプロール (原体) の細菌を用いた復帰突然変異試験、チャイニーズハムスター卵巣由来細胞を用いた遺伝子突然変異試験、ヒトリンパ球を用いた染色体異常試験及びマウスを用いた小核試験が実施された。

試験結果は表 24 に示されているとおり、全ての試験において陰性であり、 クロラントラニリプロールに遺伝毒性はないと考えられた。(参照 $35\sim37$ 、 53)

表 24 遺伝毒性試験概要 (原体)

	試験	対象	処理濃度・投与量	結果
in vitro	復帰突然変	Salmonella typhimurium	50~5,000 μg/プレート	
	異試験	(TA98, TA100, TA1535,	(+/-S9)1)	
		TA1537 株)		陰性
		Escherichia coli		
		(WP2 uvrA 株)		
	復帰突然変	S.typhimurium	333~5,000 μg/プレート	
	異試験	(TA98, TA100, TA1535,	(+/-S9)1)	
		TA1537 株)		陰性
		E.coli		
		(WP2 uvrA 株)		
	遺伝子突然	チャイニーズハムスター卵巣	15.6~250 μg/mL (+/-S9)	
	変異試験	由来細胞(CHO-K ₁)		7/A 1.4L
				陰性
	染色体異常	ヒトリンパ球	4 時間処理:	
	試験		125~500 μg/mL (+/-S9)	pΔ Lil.
			20 時間処理:	陰性
			125~500 μg/mL (-S9)	
	染色体異常	ヒトリンパ球	4 時間処理:	
	試験		50~500 μg/mL (-S9)	
			1~25 μg/mL (+S9)	陰性
			22 時間処理:	
			50~500 μg/mL (-S9)	
in vivo	小核試験	ICR マウス(骨髄細胞)	500、1,000、2,000 mg/kg	
		(一群雌雄各5匹)	体重	陰性
			(単回経口投与)	

注) +/-S9: 代謝活性化系非存在下及び存在下

¹⁾ 代謝活性化系非存在下及び存在下とも 5,000 µg/plate で検体の析出を認めた。

主に動物(推定)、植物、土壌及び加水分解由来の代謝物 O 並びに主に植物 及び土壌由来の代謝物 Q の細菌を用いた復帰突然変異試験が実施された。

試験結果は表 25 に示されているとおり、全て陰性であった。(参照 38~39)

被験物質 試験 対象 処理濃度・投与量 結果 $20 \sim 2.000 \, \mu g/J^2 \, \nu - \, \ \ (+/-S9)$ 代謝物 0 復帰突然変 S. typhimurium 異試験 (TA98, TA100, 陰性 TA1535、TA1537株) E. coli (WP2 uvrA 株) 復帰突然変 $33.3 \sim 5,000 \, \mu g/J \, \nu - \rangle$ 代謝物 Q S. typhimurium 異試験 (TA98, TA100, (+/-S9)陰性 TA1535、TA1537株) E. coli (WP2 uvrA 株)

表 25 遺伝毒性試験概要 (代謝物)

注) -/+S9: 代謝活性化系非存在下及び存在下

14. その他の試験

(1)14日間亜急性毒性試験(ラット):肝薬物代謝酵素誘導

SD ラット (一群雌雄各 5 匹) を用いた強制経口 (原体:0、25、100 及び 1,000 mg/kg 体重/日、溶媒:ポリエチレングリコール) 投与による 14 日間 亜急性毒性試験が実施された。

肝臓を用いてペルオキシゾーム及びミクロゾームを調製した。肝ペルオキシゾームについては、パルミトイル CoA を基質としてβ-酸化活性が測定された。肝ミクロゾームについては、総チトクローム P450、CYP1A1、CYP2B1/2、CYP2E1、CYP3A 及び CYP4A1 が測定された。その結果、100 mg/kg 体重/日以上投与群の雌で CYP3A が増加した。

その他の観察項目において、検体投与の影響は認められなかった。(参照 40)

(2) 28 日間亜急性毒性試験 (ラット): 肝薬物代謝酵素誘導

SD ラット(一群雌雄各 5 匹)を用いた混餌(原体:0、300、1,500 及び8,000 ppm: 平均検体摂取量は表 26 参照) 投与による 28 日間亜急性毒性試験が実施された。

表 26 28 日間亜急性毒性試験 (ラット) の平均検体摂取量

投与群		300 ppm	1,500 ppm	8,000 ppm
平均検体摂取量	平均検体摂取量 雄		106	584
(mg/kg 体重/日)	雌	24	128	675

血液生化学的検査において、甲状腺ホルモン(T_3 及び T_4)及び甲状腺刺激ホルモン(TSH)が測定された。また、肝臓試料を用いて UDP-GT 活性が測定された。その結果、雌の 1,500 ppm 以上投与群で、UDP-GT の増加が認められた。 T_3 、 T_4 及び TSH 濃度に変化は認められなかった。

臓器重量測定において、1,500 ppm 以上投与群の雌で肝比重量が、8,000 ppm 投与群の雌で肝対脳重量比が増加し、病理組織学的検査において、8,000 ppm 投与群の雌 3 例に肝細胞肥大が認められた。しかし、血液生化学的検査において、肝毒性を示唆する変化は認められなかったため、毒性変化ではないと考えられた。(参照 41)

(3) 28 日間亜急性毒性試験(イヌ): 肝薬物代謝酵素誘導

ビーグル犬(一群雌雄各 2 匹)を用いてカプセル経口(原体:0、300 及び 1,000 mg/kg 体重/日)投与し、28 日間亜急性毒性試験が実施された。肝薬物代謝酵素誘導に対する影響を検討するため、肝臓を用いて総チトクローム P-450、CYP1A1、CYP2B1/2、CYP2E1、CYP3A2 及び CYP4A1 が測定された。

その結果、1,000 mg/kg 体重/日投与群の雌雄で、総チトクローム P-450 の増加が認められた。さらに、それに伴い、300 及び 1,000 mg/kg 体重/日投与群の雌雄で、CYP1A1 及び CYP2B1/2 の増加が認められ、これらの変化は検体投与による影響であると考えられた。その他の測定項目に変化は認められなかった。(参照 42)

(4) 28 日間亜急性毒性試験(マウス): 肝薬物代謝酵素誘導

マウス (一群雌雄各 5 匹) を用いて混餌 (原体:0、300、1,000 及び 7,000 ppm) 投与し、28 日間亜急性毒性試験が実施された。肝薬物代謝酵素誘導に対する影響を検討するため、肝臓を用いて β -酸化活性及び総チトクローム P-450 が測定された。

その結果、300 ppm 以上投与群の雌雄で、総チトクローム P-450 の増加が認められ(対照群と比較して有意差なし)、検体投与による影響であると考えられた。(参照 43)

(5) 副腎皮質の透過型電子顕微鏡を用いた観察 (ラット)

ラットを用いた2年間慢性毒性/発がん性併合試験[11.(2)]及び2世代繁殖試験[12.(1)]の病理組織学的検査において、観察された雄の副腎皮質小型空胞について、透過型電子顕微鏡を用いて副腎皮質細胞内の構造及び細胞内小器官の形態が検索された。

対照群及び 20,000 ppm 投与群のラットの副腎について検索された結果、 光学顕微鏡で観察された小型空胞は、電子顕微鏡では脂肪滴として認められ た。電子顕微鏡検査に用いる組織切片の評価は範囲が限られるため、光学顕 微鏡検査所見で認められた程度の差(程度 0、1 及び 2)に相当する差を、電 子顕微鏡では脂肪量の差として見出すことはできなかった。副腎皮質細胞内 小器官(ミトコンドリア、滑面小胞体、遊離型リボゾーム、ポリゾーム、ゴ ルジ装置、リポフスチン及びリソソーム)に異常は認められなかった。

以上の結果、本検体を投与されたラットに観察された副腎皮質細胞小型空胞の増加は対照群で観察された形態学的変動の範囲内であり、細胞毒性を示す変化ではないと考えられた。 (参照 44)

(6) 28 日間亜急性毒性試験 (ラット):副腎機能検査

SD ラット (一群雄 10 匹) を用いて経皮 (原体:0及び 1,000 mg/kg 体重 /日、6 時間/日、連続 28 日間) 投与し、28 日間亜急性毒性試験が実施された。 副腎機能に対する影響を検査するために、投与 29 日後に副腎皮質刺激ホルモン (ACTH、12.5 μ g/ラット) を投与し、30分後血清中コルチコステロイドが測定された。

1,000 mg/kg 体重/日投与群においては体重増加抑制及び食餌効率減少が認められた。血清中コルチコステロン濃度に検体投与の影響は認められなかった。副腎の病理組織学的検査の結果、5,000 mg/kg 体重/投与群で副腎皮質束状帯び漫性小型空胞の頻度が軽度に増加した [無処置対照群 0/10 例、脱イオン水対照群 1/10 例、検体投与群 4*/10 例(*: Fisher の直接確率計算法、p<0.05)]。

以上の結果、検体はラットにおけるコルチコステロン合成を抑制しないこと考えられた。検体の経皮投与は、ラットの副腎機能に影響を与えず、副腎皮質束状帯におけるび漫性小型空胞形成を僅かに上昇させたものと考えられた。(参照 45)

<ラットに認められた副腎皮質び漫性小型空胞について>

ラットの亜急性毒性試験[10.(1)]、慢性毒性/発がん性併合試験[11.(2)] 及び2世代繁殖試験[12.(1)]の病理組織学的検査において、雄で用量相関性 ではあるが軽微又は軽度な副腎皮質小型空胞が増加又は増加傾向を示した。 観察された変化は、電子顕微鏡による観察の結果、脂肪滴であることが確認 され、小胞の数及び大きさは対照群と 20,000 ppm 投与群で同等であり、細胞内小器官に異常は認められなかった [14.(5)]。また検体 1,000 mg/kg 体重/日(6 時間/日、連続 28 日間)を 28 日間投与後、副腎皮質刺激ホルモンを皮下投与して血清中コルチコステロイドが測定されたが、血清中コルチコステロン濃度に検体投与の影響は認められなかった [14.(6)]。さらに、副腎に同変化が認められた試験においても、副腎のコルチコステロン産生の変化に関連する検査項目に変化は認められなかった。したがって、副腎に観察された皮質の小型空胞化は検体投与による変化であるものの、毒性変化ではないと結論した。

(7) 28 日間亜急性免疫毒性試験 (ラット)

SD ラット(一群雌雄各 10 匹)を用いて混餌(原体:0、1,000、5,000 及び 20,000 ppm:平均検体摂取量は表 27 を参照)投与し、28 日間亜急性免疫毒性試験が実施された。

(X) 20 自由显示性光发母性的微()) 1 / 6) 1 · 6) () () () () () () () () ()								
投与群		1,000 ppm	5,000 ppm	20,000 ppm				
平均検体摂取量	平均検体摂取量 雄		363	1,450				
(mg/kg 体重/日)	雌	82	397	1,600				

表 27 28 日間亜急性免疫毒性試験 (ラット) の平均検体摂取量

液性免疫機能を検査する目的で、投与 22 日後に全てのラットにヒツジ赤血球(SRBC)の浮遊液(4×10⁸ /mL)0.5 mL を尾静脈内投与し、その 6日後(投与 28日後)に採血して得られた血清中の SRBC 特異的 IgM 抗体をELISA 法により測定し、抗体価が算出された。その結果、いずれの投与群のSRBC 特異的 IgM 抗体価についても、対照群の抗体価と有意差はなく、検体投与による液性免疫応答の抑制は認められなかった。

本試験において、20,000 ppm 投与群の雌雄においても、検体投与による液性免疫応答の抑制が認められなかったので、無毒性量は雌雄とも本試験の最高用量 20,000 ppm(雄:1,450 mg/kg 体重/日、雌:1,600 mg/kg 体重/日)であると考えられた。免疫毒性は認められなかった。(参照 46)

(8) 28日間亜急性免疫毒性試験(マウス)

ICR マウス (一群雌雄各 10 匹) を用いて混餌 (原体:0、300、1,700 及び 7,000 ppm: 平均検体摂取量は表 28 を参照) 投与し、28 日間亜急性免疫毒性試験が実施された。

表 28 28 日間亜急性免疫毒性試験 (マウス) の平均検体摂取量

投与群		300 ppm	1,700 ppm	7,000 ppm
平均検体摂取量	P均検体摂取量 雄		264	1,140
(mg/kg 体重/日)	雌	64	362	1,570

液性免疫機能を検査する目的で、投与 23 日後に全てのマウスに SRBC の浮遊液(1×10⁹/mL)0.2 mL を尾静脈内投与し、その 5 日後(投与 28 日後)に採血して得られた血清中の SRBC 特異的 IgM 抗体を ELISA 法により測定し、抗体価が算出された。その結果、いずれの投与群の SRBC 特異的 IgM 抗体価についても、対照群の抗体価と有意差はなく、検体投与による液性免疫応答の抑制は認められなかった。

本試験において、7,000 ppm 投与群の雌雄においても、検体投与による液性免疫応答の抑制が認められなかったので、無毒性量は雌雄とも本試験の最高用量 7,000 ppm(雄:1,140 mg/kg 体重/日、雌:1,570 mg/kg 体重/日)であると考えられた。免疫毒性は認められなかった。(参照 47)

皿. 食品健康影響評価

参照に挙げた資料を用いて、農薬「クロラントラニリプロール」の食品健康 影響評価を実施した。なお、今回、作物残留試験(オクラ及びしょうが)の成 績等が新たに提出された。

 14 C で標識したクロラントラニリプロールのラットを用いた動物体内運命試験において、経口投与されたクロラントラニリプロールは速やかに吸収され、吸収率は低用量投与群で $73\sim85\%$ 、高用量投与群で $12\sim13\%$ であり、投与後72時間までに主に糞中に排泄された。また、糞中排泄されたクロラントラニリプロールは低用量投与では胆汁中経由で、高用量投与では未吸収で排出されると考えられた。主要組織中の残留放射能濃度は、 T_{max} 付近で肝臓、消化管及び副腎で高値を示したが、経時的に減少したことから、体内蓄積性はないと考えられた。クロラントラニリプロールは肝臓において広範に代謝されると考えられた。

 14 C で標識したクロラントラニリプロールの畜産動物を用いた動物体内運命試験の結果、主要代謝物はニワトリでは卵白で N(0.55 μ g/g、40.4%TRR)、卵黄で C(0.078 μ g/g、16.6%TRR)及び E(0.112 μ g/g、24.0%TRR)、ヤギでは肝臓で K(0.048 μ g/g、7.54%TRR)であった。

 14 C で標識したクロラントラニリプロールの植物体内運命試験が実施された。いずれの作物においても残留放射能の主要成分は未変化のクロラントラニリプロール(51.4%TRR、0.08 mg/kg)であり、代謝物として玄米で K、Q 等が検出されたが 1.8%TRR 以下であった。

クロラントラニリプロールを分析対象化合物とした作物残留試験が実施され、可食部におけるクロラントラニリプロールの最大残留値は、茶(荒茶)の38.8 mg/kg であった。また、魚介類におけるクロラントラニリプロールの最大推定残留値は0.047 mg/kg であった。

クロラントラニリプロール並びに代謝物 N、E 及び C(ニワトリ)又は D 及び G(ウシ)を分析対象とした畜産物残留試験が実施され、クロラントラニリプロールの最大残留値はウシの脂肪における $0.16~\mu g/g$ であった。代謝物の最大残留値は卵における N の $0.057~\mu g/g$ であった。

各種毒性試験結果から、クロラントラニリプロールの毒性は低く、投与による影響は、主に体重(増加抑制)及び肝臓(小葉中心性肝細胞肥大)に認められた。本検体を投与したラットに認められた副腎皮質の細胞質小型空胞の増加は、検体投与による毒性変化ではないと考えられた。神経毒性、発がん性、繁殖能に対する影響、催奇形性、免疫毒性及び遺伝毒性は認められなかった。

各種試験結果から、代謝物の毒性は親化合物の毒性からみて低いものと考えられることから、農産物、畜産物及び魚介類中の暴露評価対象物質をクロラントラニリプロール(親化合物のみ)と設定した。

各試験における無毒性量等は表 29 に示されている。

食品安全委員会は、各試験で得られた無毒性量のうち最小値は、マウスを用いた 18 か月間発がん性試験の 26.1~mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.26~mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

ADI 0.26 mg/kg 体重/日

(ADI 設定根拠資料) 発がん性試験

(動物種) マウス

(期間) 18 か月間

(投与方法) 混餌

(無毒性量) 26.1 mg/kg 体重/日

(安全係数) 100

表 29 各試験における無毒性量等

-	1	我 25 日前	N _一 大「C O T T O T T	<u> </u>	r
動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考 ¹⁾
ラット	90 日間 亜急性 毒性試 験	0、600、2,000、 6,000、20,000 ppm 雄:0、36.9、 120、359、1,190 雌:0、47.0、 157、460、1,530	雄:1,190 雌:1,530	雄:一雌:一	毒性所見なし
	90 日間 亜急性 神経毒性試験	0、200、1,000、 4,000、20,000 ppm 雄:0、12.7、 64.2、255、 1,310 雌:0、15.1、 77.3、304、 1,590	雄:1,310 雌:1,590	雄:一雌:一	毒性所見な し (亜急性神 経毒性は認 められない)
	2年間 慢性毒 性/発が ん性併 合試験	0、200、1,000、 4,000、20,000 ppm 雄:0、7.71、 39.0、156、805 雌:0、10.9、 51.0、212、 1,080	雄:805 雌:1,080	雄:一雌:一	毒性所見な し (発がん性は 認められな い)
	2世代繁殖試験	0、200、1,000、 4,000、20,000 ppm P雄: 0、12.0、 60.4、238、 1,200 P雌: 0、15.5、 77.8、318、 1,590 F1雄: 0、18.1、 89.4、370、 1,930 F1雌: 0、20.4、 104、406、2,180	親及び児動物 P雄:1,200 P雌:1,590 F1雄:1,930 F1雌:2,180	親及び児動物 P雄:- P雌:- F1雄:- F1雌:-	毒性所見な し (繁殖能に 対する影響 は認められ ない)

	発生毒性試験	0,20,100,300, 1,000	母動物:1,000 胎児:1,000	母動物:一 胎児:一	毒性所見な し (催奇形性 は認められ ない)
マウス	18 か月 間発が ん性試 験	0、20、70、200、 1,200、7,000 ppm 雄:0、2.60、 9.20、26.1、158、 935 雌:0、3.34、 11.6、32.9、196、 1,150	雄:26.1 雌:1,150	雄:158 雌:一	雄:小葉中心 性肝細胞 大等 毒性所見 ないのがいる はない)
ウサギ	発生毒 性試験	0, 20, 100, 300, 1,000	母動物:1,000 胎児:1,000	母動物:一 胎児:一	毒性所見な し (催奇形性 は認められ ない)
イヌ	90 日間 亜急性 毒性試 験	0、1,000、4,000、 10,000、40,000 ppm 雄:0、32.2、119、 303、1,160 雌:0、36.5、133、 318、1,220	雄:1,160 雌:1,220	雄:一 雌:一	毒性所見なし
	1年間慢性毒性試験	0、1,000、4,000、 10,000、40,000 ppm 雄:0、32.0、 112、317、1,160 雌:0、34.0、 113、278、1,230	雄:1,160 雌:1,230	雄:一 雌:一	毒性所見なし

^{1):}備考に最小毒性量で認められた毒性所見を記した。 -:最小毒性量を設定できず。

<別紙1:代謝物/分解物略称>

記号	・代謝物/ 万暦物略称 / 化学名
A	3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 <i>H</i> -ピラゾール-5-カルボン酸
	2-[[[3 -ブロモ-1-(3 -クロロ- 2 -ピリジニル)-1 H -ピラゾール- 5 -イル]カル
В	ボニル]アミノ]-5-クロロ-3-メチル安息香酸
	3-ブロモ- N -[4-クロロ-2-[[(ヒドロキシメチル)アミノ]カルボニル]-6-
C	メチルフェニル]-1-(3-クロロ-2-ピリジニル)-1 <i>H</i> -ピラゾール-5-カルボ
	キサミド
	[[2-[[[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 H -ピラゾール- 5 -イル)カ
C'	ルボニル]アミノ]-5-クロロ-3-メチルベンゾイル]アミノ]メチルβ-D-グ
	ルコピラノシド酸
	3-ブロモ- <i>N</i> -[4-クロロ-2-(ヒドロキシメチル)-6-[(メチルアミノ)カルボ
D	ニル]フェニル]-1-(3-クロロ-2-ピリジニル)-1 H -ピラゾール- 5 -カルボ
	キサミド
	[2-[[[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 <i>H</i> -ピラゾール-5-イル]カル
D'	ボニル]アミノ]-5-クロロ-3-[(メチルアミノ)カルボニル]フェニル]メチ
	ル β-D-グルコピラノシド酸
E	2-[3-プロモ-1-(3-クロロ-2-ピリジニル)-1H-ピラゾール-5-イル]-6-ク
	ロロ-8-(ヒドロキシメチル)-4(3 <i>H</i>)-キナゾリノン
	2-[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1H-ピラゾール-5-イル]-6-ク
E'	ロロ-1,4-ジヒドロ-4-オキソ-8-キナゾリニル]メチル β-D-グルコピラ
	ノシド酸
F	2-[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 <i>H</i> -ピラゾール-5-イル]-6-ク
	ロロ-8-(ヒドロキシメチル)-3-メチル-4(3 <i>H</i>)-キナゾリノン
	3-ブロモ- <i>N</i> -[4-クロロ-2-(ヒドロキシメチル)-6-[[(ヒドロキシメチル)
G	アミノ)カルボニル]フェニル]-1-(3-クロロ-2-ピリジニル)-1 <i>H</i> -ピラゾ
	ール-5-カルボキサミド
Н	N-[2-アミノカルボニル]-4-クロロ-6-(ヒドロキシメチル)フェニル]-3-
	ブロモ-1-(3-クロロ-2-ピリジニル)-1 <i>H</i> -ピラゾール-5-カルボキサミド
H'	[3-(アミノカルボニル)-2-[[[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 <i>H</i> -
п	ピラゾール-5-イル]カルボニル]アミノ]-5-クロロフェニル]メチル β -D- グルコピラノシド酸
	$2 \cdot [5 \cdot \overline{)}$ ロモ・2 · $(3 \cdot \overline{)}$ ロロ・ピリジン・2 · $(3 \cdot \overline{)}$ ・ $(3 \cdot $
I	2-[3-プロモ-2-(3-プロロ-ビリンプ-2-7ル)-2H ピブノール-3-7ル]-6- クロロ-3,4-ジヒドロ-3-メチル-4-オキソ-8-キナゾリンカルボン酸
	2-[3-プロモ-1-(3-クロロ-2-ピリジル)-1H-ピラゾール-5-イル]-6-クロ
J	2 t3 ノロモ 1 (3 クロロ 2 ヒップル) 1 <i>III</i> ヒップ・ル 3 イル 3 クロ ロ-1,4-ジヒドロ-4-オキソ-8-キナゾリンカルボン酸
J'	β-D-グルコピラノシド酸 1-[2-[3-ブロモ-1-(3-クロロ-2-ピリジニ
U	

	ル)-1 <i>H</i> -ピラゾール-5-イル]-6-クロロ-1,4-ジヒドロ-4-オキソ-8-キナゾ
	リンカルボン酸塩
K	2-アミノ-5-クロロ-3-[(メチルアミノ)カルボニル]安息香酸
L	2-[[[3 -ブロモ- 1 -(3 -クロロ- 2 -ピリジニル)- 1 <i>H</i> -ピラゾール- 5 -イル]カルボニル]アミノ]- 5 -クロロ- 3 -[(メチルアミノ)カルボニル]安息香酸
M	N-[2-(アミノカルボニル)-4-クロロ-6-メチルフェニル]-3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 H -ピラゾール-5-カルボキサミド
N	2-[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 H -ピラゾール-5-イル]-6-クロロ-8-メチル-4(3 H)-キナゾリノン
О	2-[3-ブロモ-1-(3-クロロ-2-ピリジニル)-1 H -ピラゾール-5-イル]-6-クロロ-3, 8-ジメチル-4(3 H)-キナゾリノン
Q	5-ブロモ- <i>N</i> -メチル-1 <i>H</i> -ピラゾール-3-カルボキサミド
S	2-アミノ-5-クロロ-3-メチル安息香酸
T	2,6-ジクロロ- 4 -メチル- $11H$ -ピリド $[2,1$ - $b]$ キナゾリン- 11 -オン
U	2-[(2-ブロモ-4 <i>H</i> -ピラゾロ[<i>1,5-d</i>]ピリド[<i>3,2-b</i>] [1.4]オキサジン-4-イルインデン)アミノ]-5-クロロ- <i>N</i> ,3-ジメチルベンズアミド
V	2-[3-ブロモ-1-(3-ヒドロキシ-2-ピリジニル)-1 H -ピラゾール-5-イル]-6-クロロ-3,8-ジメチル-4(3 H)-キナゾリノン
W	2-(5-ブロモ-1 <i>H</i> -ピラゾール-3-イル)-6-クロロ-3,8-ジメチル-4(3 <i>H</i>)-キナゾリノン

<別紙2:検査値等略称>

略称	名称
ACTH	副腎皮質刺激ホルモン
ai	有効成分量(active ingredient)
ALP	アルカリホスファターゼ
AUC	薬物濃度曲線下面積
BCF	生物濃縮係数
C_{max}	最高濃度
CYP	チトクローム アイソザイム
ELISA	酵素免疫測定法
LC_{50}	半数致死濃度
LD_{50}	半数致死量
MC	メチルセルロース
PEC	環境中予測濃度
PHI	最終使用から収穫までの日数
SRBC	ヒツジ赤血球
$T_{1/2}$	消失半減期
Т3	トリヨードチロニン
T_4	チロキシン
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
Tmax	最高濃度到達時間
TRR	総残留放射能
TSH	甲状腺刺激ホルモン
UDP-GT	ウリジン二リン酸グルクロニルトランスフェラーゼ

<別紙3:作物残留試験>

○国内における作物残留試験成績

作物名			大月久川貝				mg/kg)	
(栽培形態)	使用量 (g ai/ha) 処理方法	験ほ場	回 数 (回)	PHI (目)	公的分析機関 社内分析機関			析機関
[分析部位]					2	^フ ロラントラ:	ニリプロール	
実施年		数	(Ш/		最大値	平均值	最大値	平均值
水稲	0.5 g/箱 ^{G2}	1	1	13	< 0.01	<0.01	< 0.01	< 0.01
[玄米] 2006 年	散布	1	1	119	<0.01	<0.01	<0.01	<0.01
水稲	0.5 g/箱 ^{G2}	1	1	137	0.01	0.01	< 0.01	< 0.01
[稲わら] 2006 年	散布	1	1	119	0.02	0.02	< 0.01	< 0.01
			3	1			< 0.01	< 0.01
			3	3			< 0.01	< 0.01
未成熟と うもろこ		1	3	7			< 0.01	< 0.01
しょうもろこ	$50^{ m WP1}$		3	14			< 0.01	< 0.01
(露地)	散布		3	1			<0.01	< 0.01
[子実] 2011 年			3	3			< 0.01	< 0.01
2011 +		1	3	7			< 0.01	< 0.01
			3	14			< 0.01	< 0.01
	47.8-50 ^{WP1} 散布		3	1	2		<0.01	< 0.01
		1	3	3			< 0.01	< 0.01
とうもろ			3	7			< 0.01	< 0.01
こし			3	14			< 0.01	< 0.01
(露地) [乾燥子実]			3	1			<0.01	< 0.01
2011年			3	3			< 0.01	< 0.01
		1	3	7			< 0.01	< 0.01
			3	14			< 0.01	< 0.01
			3	7	0.03	0.03	0.02	0.02
だいず	25 WP1 散布	1	3	14	< 0.01	< 0.01	< 0.01	< 0.01
(露地)	HX 7 1		3	21	< 0.01	< 0.01	< 0.01	< 0.01
[乾燥子実]			3	7	< 0.01	<0.01	<0.01	< 0.01
2006年	25 ^{WP1} 散布	1	3	14	< 0.01	< 0.01	< 0.01	< 0.01
	■ 財X 111		3	21	< 0.01	< 0.01	< 0.01	< 0.01
			2	7	0.01	0.01	<0.01	< 0.01
だいず	25 WP1	1	2	14	< 0.01	< 0.01	< 0.01	< 0.01
(露地)	散布無人ヘリコプ		2	21	< 0.01	< 0.01	< 0.01	< 0.01
[乾燥子実]	ターによる散		2	7	0.01	0.01	< 0.01	< 0.01
2010年	布	1	2	14	0.01	0.01	< 0.01	< 0.01
			2	21	<0.01	<0.01	<0.01	< 0.01
さといも	41.5^{WP1}	1	3	1	< 0.01	< 0.01	< 0.01	< 0.01

作物名		試					mg/kg)		
(栽培形態)	使用量	験	回 2//		PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)		クロラントラ	ニリプロール	,	
実施年	及星为区	数			最大値	平均値	最大値	平均値	
(露地)	散布		3	3	< 0.01	< 0.01	< 0.01	< 0.01	
[塊茎]			3	7	< 0.01	< 0.01	< 0.01	< 0.01	
2009 年	TO WD1		3	1	< 0.01	<0.01	< 0.01	< 0.01	
	50 ^{WP1} 散布	1	3	3	< 0.01	<0.01	< 0.01	< 0.01	
	וויאנו		3	7	< 0.01	<0.01	< 0.01	< 0.01	
	o o WP1		3	1	< 0.01	<0.01	< 0.01	< 0.01	
かんしょ	33 WP1 散布	1	3	3	< 0.01	< 0.01	< 0.01	< 0.01	
(露地)	127 114		3	7	< 0.01	< 0.01	< 0.01	< 0.01	
[塊茎]	50 WP1		3	1	< 0.01	< 0.01	< 0.01	< 0.01	
2010年	散布	1	3	3	< 0.01	< 0.01	< 0.01	< 0.01	
	120 110		3	7	< 0.01	<0.01	< 0.01	< 0.01	
	45 WP1		3	1	< 0.01	< 0.01	< 0.01	< 0.01	
さといも	散布	1	3	3	< 0.01	< 0.01	< 0.01	< 0.01	
(露地)	124.77		3	7	< 0.01	<0.01	<0.01	< 0.01	
[塊茎]	43 WP1 散布		3	1	< 0.01	<0.01	< 0.01	< 0.01	
2009 年		1	3	3	< 0.01	<0.01	< 0.01	< 0.01	
			3	7	< 0.01	<0.01	<0.01	< 0.01	
	48.8 ^{WP1} 散布		3	1	< 0.01	<0.01	< 0.01	< 0.01	
やまのい		1	3	3	< 0.01	< 0.01	< 0.01	< 0.01	
も (露地)			3	7	< 0.01	< 0.01	< 0.01	< 0.01	
[塊茎]			3	1	< 0.01	< 0.01	<0.01	< 0.01	
2009年	50 ^{WP1} 散布	1	3	3	< 0.01	< 0.01	< 0.01	< 0.01	
			3	7	< 0.01	<0.01	< 0.01	< 0.01	
			3	1	0.15	0.15			
	70^{WP1}		3	3	0.11	0.11			
,	散布	1	3	7	0.06	0.06			
オクラ (施設)			3	14	0.03	0.03			
[果実]			3	1	0.28	0.27			
2011年	56.3-68.8 ^{WP1}		3	3	0.14	0.14			
	散布	1	3	7	0.03	0.03			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3	14	0.03 0.02	0.03			
			3	14	0.02	0.02	<0.01	<0.01	
1 2 2 25	41.5^{WP1}		3	3			<0.01	<0.01	
しょうが (露地)	散布	1	3	7			0.01	0.01	
[根茎]			3	14			< 0.01	< 0.01	
2011年	44.5-45 ^{WP1}	1	3	1			< 0.01	< 0.01	
	散布	1	3	3		-	< 0.01	< 0.01	

作物名		試				残留値(mg/kg)		
(栽培形態)	使用量	験		PHI	公的分析機関 社内分析機関			析機関	
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)	2	ウロラントラ	ニリプロール		
実施年	7C4711	数	(12)		最大値	平均值	最大値	平均值	
			3	7		1	< 0.01	< 0.01	
			3	14			< 0.01	< 0.01	
	₩D1		3	1			0.27	0.26	
さやえん	50 ^{WP1} 散布	1	3	3			0.22	0.22	
どう (施設)			3	7			0.10	0.10	
(池段)[さや]			3	1			0.13	0.13	
2010年	45.3 ^{WP1} 散布	1	3	3			0.10	0.10	
	120 110		3	7			0.08	0.08	
			3	1	0.16	0.16	0.19	0.19	
さやいん	42~48.5 ^{WP1} 散布	1	3	3	0.11	0.10	0.10	0.10	
げん	127 113		3	7	0.10	0.10	0.10	0.10	
(施設) [さや]			3	1	0.12	0.12	0.12	0.12	
2010年	45.8 ^{WP1} 散布	1	3	3	0.11	0.11	0.12	0.12	
	EX 7[1]		3	7	0.15	0.14	0.13	0.13	
	18.8~25 WP1 散布		3	3	0.15	0.14	0.10	0.10	
			3	7	0.11	0.11	0.09	0.09	
えだまめ		1	3	14	0.14	0.14	0.10	0.10	
(露地)			3	21	0.04	0.04	0.03	0.03	
[さや]	25 WP1 散布	1	3	3	0.32	0.32	0.20	0.20	
2006年			3	7	0.19	0.19	0.13	0.12	
			3	14	0.16	0.16	0.11	0.10	
			3	21	0.11	0.10	0.06	0.06	
			2	3*			0.12	0.12	
ごま		1	2	7*			0.11	0.11	
(露地)	50 WP1		2	14	,		0.04	0.04	
[種子] 2010 年	散布		2	3*			0.04	0.04	
2010 4		1	2	7*			0.08	0.08	
			2	14		T	0.03	0.03	
モロヘイヤ			2	1	14.6	14.4			
(施設)	120 ^{WP1} 散布	1	2	3	10.9	10.4			
[茎葉]	EX 7 1		2	7	10.8	10.6			
2010 年 モロヘイ			2	14	5.02	4.90			
ヤ ヤ	1 0 0 WD1		2	1	7.44	7.26			
(施設)	188 ^{WP1} 散布	1	2	3	6.00	5.98			
[茎葉] 2011 年			2	7	3.79	3.60			

作物名		試				残留值(mg/kg)	
(栽培形態)	使用量	験	口	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)	2	クロラントラ	ニリプロール	,
実施年	是是为 位	数			最大値	平均値	最大値	平均値
			3	1*			11.2	11.1
えごま		1	3	3			6.96	6.80
(施設)	50 WP1		3	7			3.01	3.00
[葉]	散布		3	1*			17.4	17.4
2012 年		1	3	3			13.9	13.6
			3	7 3	0.10	0.18	5.23	5.16
はくさい			4		0.18		0.26	0.26
[茎葉]	$500~\mathrm{mL^{WP1}}$	1	4	7	0.06	0.06	0.03	0.03
2005年	(100倍)		4	14	0.05	0.05	0.03	0.02
	/tvルトレイ灌注		4	21	0.01	0.01	0.01	0.01
はくさい	はくさい [茎葉] 2006年 及び 50 ^{WP1} 散布		4	3	0.15	0.15	0.46	0.46
		1	4	7	0.01	0.01	0.08	0.08
2006年			4	14	0.08	0.08	< 0.01	<0.01
			4	21	0.04	0.04	0.01	0.01
			4	1	0.34	0.33	0.37	0.36
	500 mL ^{WP1}	1	4	3	0.14	0.14	0.31	0.30
はくさい (露地) [茎葉] 2008 年	(100倍)		4	7	0.25	0.24	0.24	0.24
	/セルトレイ灌注		4	14	0.12	0.12	0.05	0.05
	及び		4	1	0.05	0.05	0.07	0.06
2000 +	75WP1 散布	1	4	3	0.08	0.08	0.10	0.10
			4	7	0.05	0.05	0.01	0.01
			4	14	0.04	0.04	0.03	0.02
			4	1	0.18	0.18	0.29	0.29
		1	4	3	0.15	0.15	0.19	0.19
14 2 5 1 1	1g ^{G1} /株植穴処	_	4	7	0.07	0.07	0.12	0.12
はくさい [茎葉]	理 及び		4	14	0.03	0.03	0.06	0.06
2010年	69.5-73 ^{WP1} 散		4	1	1.39	1.38	2.00	2.00
	布	4	4	3	0.84	0.84	1.15	1.15
		1	4	7	0.53	0.52	0.58	0.57
			4	14	0.32	0.32	0.39	0.38
			2	1	3.18	3.18	2.50	2.48
			2	3	3.29	3.16	2.95	2.92
	37.5-50WP1	1	2	7	1.75	1.67	1.66	1.66
こまつな	散布		2	14	0.67	0.65	0.67	0.66
(施設) [茎葉] 2008 年		LWP1 1 1 音	2	21	0.29	0.28	0.27	0.27
			2	1	1.30	1.29	1.14	1.14
	50 ^{WP1}		2	3	0.91	0.88	0.79	0.78
	散布	1	2	7	0.45	0.44	0.44	0.44
			2	14	0.05	0.05	0.10	0.10

作物名		試					mg/kg)	
(栽培形態)	使用量	験	口口	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)	2	^{フロラントラ:}	ニリプロール	,
実施年	70.1274	数	(Ш)		最大値	平均值	最大値	平均值
			2	21	0.02	0.02	0.03	0.03
			2	1			5.86	5.76
			2	3			4.99	4.92
		1	2	7	/		4.43	4.42
みずな			2	14			1.49	1.48
(施設)	$50^{ m WP1}$		2	21			0.58	0.58
[茎葉]	散布		2	1			1.04	1.02
2007 年			2	3			0.99	0.99
		1	2	7			0.75	0.74
			2	14			0.27	0.26
			2	21			0.16	0.16
			4	3	0.08	0.08	0.09	0.09
	キャベツ 500 mLWP1	,	4	7	0.12	0.12	0.02	0.02
キャベツ		1	4	14	0.08	0.08	0.03	0.03
(露地) [葉球]	/セルトレイ灌注		4	21	0.03	0.03	0.04	0.04
	及び 7 o WP1 #/ - fr		4	3	0.12	0.12	0.03	0.03
2005 年	50 ^{WP1} 散布	1	4	7	0.07	0.07	0.03	0.03
		1	4	14	0.05	0.05	0.02	0.02
			4	21	0.02	0.02	< 0.01	< 0.01
	500 mLWP1		4	1	0.03	0.03	0.04	0.04
	(100 倍)/セルト レイ灌注		4	3	0.03	0.03	0.04	0.04
	及び	1	4	7	0.03	0.03	0.04	0.04
キャベツ (露地)	62.5-75 ^{WP1} 散 布		4	14	0.01	0.01	0.03	0.03
[葉球] 2008 年	500 mL ^{WP1}		4	1	0.32	0.30	0.77	0.76
2000 —	(100 倍)/セルト レイ灌注	1	4	3	0.25	0.24	0.57	0.56
	V1推任 及び	1	4	7	0.15	0.14	0.27	0.26
	50.5 ^{WP1} 散布		4	14	0.08	0.08	0.23	0.23
	1g ^{G1} /株植穴処		4	1	0.14	0.14	0.19	0.19
	理	1	4	3	0.32	0.32	0.31	0.30
キャベツ (露地) [葉球]	及び 7.7 OWD #6-7	1	4	7	0.11	0.10	0.11	0.11
	57.8WP1 散布		4	14	0.07	0.07	0.05	0.05
2010年	1g ^{G1} /株植穴処		4	1	0.36	0.36	0.29	0.28
2010 +	理及び	1	4	3	0.16	0.16	0.33	0.32
	70.3 ^{WP1} 散布		4	7	0.15	0.15	0.12	0.12

作物名		試				残留値(i	mg/kg)	
(栽培形態)	使用量 (g ai/ha)	験ほ	回数	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/na) 処理方法	場場	— 奴 (回)	(日)	Ź	クロラントラ	ニリプロール	,
実施年		数	,,		最大値	平均值	最大値	平均値
			4	14	0.04	0.04	0.05	0.05
			2	1	0.39	0.39	0.56	0.54
	A WWD1		2	3	0.45	0.44	0.45	0.45
	45 ^{WP1} 散布	1	2	7	0.27	0.26	0.26	0.26
チンゲン			2	14	0.13	0.13	0.11	0.10
サイ (施設)			2	21	0.08	0.08	0.09	0.08
[茎葉]			2	1	1.33	1.32	1.85	1.80
2009年	$50^{ m WP1}$		2	3	1.15	1.14	1.48	1.48
	散布	1	2	7	0.67	0.66	0.74	0.72
			2	14	0.23	0.22	0.41	0.41
			2	21	0.04	0.04	0.04	0.04
	$500~\mathrm{mL^{WP1}}$		4	3	0.21	0.20	0.19	0.18
	(100 倍)	_	4	7	0.10	0.10	0.08	0.08
ブロッコリー (震地)	/セルトレイ灌注 及び	1	4	14	0.03	0.03	0.02	0.02
	50 ^{WP1} 散布		4	21	< 0.01	<0.01	< 0.01	< 0.01
	500 mL ^{WP1} (100 倍)		4	3	0.10	0.10	0.10	0.10
2005 年	/セルトレイ灌注	1	4	7	0.04	0.04	0.03	0.03
	及び 17 5-27 5WP1	1	4	14	< 0.01	<0.01	< 0.01	< 0.01
	17.5~37.5 ^{WP1} 散布		4	21	< 0.01	<0.01	< 0.01	< 0.01
	$500~\mathrm{mL^{WP1}}$		4	1	0.66	0.65	0.56	0.54
	(100倍)		4	3	0.66	0.65	0.44	0.44
ブロッコリ	/セルトレイ灌注 及び	1	4	7	0.63	0.61	0.55	0.54
(露地)	150 ^{WP1} 散布*		4	14	0.55	0.55	0.57	0.56
[花蕾]	500 mL ^{WP1} (100 倍)		4	1	0.37	0.37	0.31	0.30
2009年	/セルトレイ灌注		4	3	0.16	0.16	0.18	0.18
	及び 195wp1	1	4	7	0.15	0.15	0.20	0.20
	125 ^{WP1} 散布*		4	10	0.07	0.07	0.05	0.05
	1 g ^{G1} /株植穴		4	1	0.20	0.20	0.30	0.30
ブロッコリ 一 (露地) [花蕾] 2011 年	処理		4	3	0.13	0.13	0.19	0.19
	及び 68.3 ^{WP1}	1	4	7	0.07	0.06	0.07	0.07
	散布		4	14	0.01	0.01	0.01	0.01
	1 g ^{G1} /株植穴	1	4	1	0.22	0.21	0.30	0.30
	処理	1	4	3	0.14	0.14	0.15	0.15

作物名		試					mg/kg)		
(栽培形態)	使用量	験	回	PHI	公的分	析機関	社内分	析機関	
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(日)	2	^{フロラントラ:}	ニリプロール	,	
実施年		数			最大値	平均值	最大値	平均值	
	及び 40-62.5 ^{WP1}		4	7	0.04	0.04	0.05	0.05	
	散布		4	10	< 0.01	< 0.01	< 0.01	< 0.01	
			3	1	0.17	0.17	0.20	0.19	
	$75^{ m WP1}$	1	3	3	0.26	0.26	0.23	0.23	
カリフラワ	散布	1	3	7	0.16	0.16	0.09	0.08	
(露地)			3	14	0.03	0.02	0.02	0.02	
[花蕾]			3	1	< 0.01	< 0.01	<0.01	< 0.01	
2009年	52.5^{WP1}	1	3	3	< 0.01	< 0.01	<0.01	< 0.01	
	散布		3	7	< 0.01	< 0.01	<0.01	< 0.01	
			3	14	<0.01	<0.01	<0.01	<0.01	
	$500~\mathrm{mL^{WP1}}$		4	1			0.22	0.22	
	(100倍)		4	3			0.07	0.07	
カリフラ	/tルトレイ灌注 カリフラ 及び	1	4	7			0.08	0.08	
ワー (露地) [花蕾]	66.8WP1 散布		4	14			< 0.01	< 0.01	
	500 mLWP1		4	1			0.18	0.18	
2011年	(100 倍) /セルトレイ灌注	_	4	3			0.16	0.16	
	及び 62.5-67.8 ^{WP1}	1	4	7			0.11	0.11	
	散布		4	14			< 0.01	< 0.01	
			3	1	0.54	0.54			
		1	3	3	0.21	0.20			
はなっこり一	$500~\mathrm{mL^{WP1}}$	1	3	7	0.15	0.15			
(露地)	(100 倍) /セルトレイ灌注		3	14	0.04	0.04			
[花蕾及び	及び		3	1	0.53	0.52			
茎] 2010 年	75 ^{WP1} 散布	1	3	3	0.45	0.44			
		1	3	7	0.20	0.20			
			3	14	0.03	0.03			
			4	3	2.29	2.28	2.26	2.18	
レカコ	$500~\mathrm{mL^{WP1}}$	1	4	7	3.08	3.00	2.05	2.02	
レタス (施設)	(100 倍) /セルトレイ灌注	1	4	14	1.00	0.96	0.98	0.94	
[茎葉]	及び		4	21	0.61	0.59	0.63	0.62	
2005 年	50WP1 散布	1	4	3	0.60	0.60	0.32	0.32	
		1	4	7	0.39	0.38	0.17	0.16	

作物名		試					mg/kg)	
(栽培形態)	使用量	験ほ	回 数	PHI	公的分	析機関	 社内分	析機関
[分析部位]	(g ai/ha) 処理方法	場場	— <u>剱</u> (回)	(日)	2	ウロラントラ :	ニリプロール	
実施年	, = , = ,	数	(II)		最大値	平均值	最大値	平均値
			4	14	0.06	0.06	0.06	0.06
			4	21	0.01	0.01	< 0.01	<0.01
	$500~\mathrm{mL^{WP1}}$		4	1	1.26	1.22	1.27	1.26
	(100 倍)		4	3	0.88	0.87	0.91	0.90
1 2 2	/セルトレイ灌注 及び	1	4	7	0.68	0.67	1.21	1.20
レタス (施設)	112 ^{WP1} 散布		4	14	0.61	0.60	0.63	0.62
[茎葉] 2009 年	500 mL ^{WP1} (100 倍)		4	1	0.60	0.58	0.80	0.80
2009 +	/セルトレイ灌注		4	3	0.39	0.38	0.54	0.54
	及び 10~1~0WP1	1	4	7	0.45	0.44	0.38	0.38
	125-150 ^{WP1} 散布		4	14	0.03	0.03	0.06	0.06
	1 g ^{G1} /株植穴		4	1	1.83	1.80	1.49	1.48
	処理 及び 195-144WP1		4	3	1.94	1.94	1.91	1.88
1 . 7 7		1	4	7	0.86	0.86	1.80	1.78
レタス (施設)	散布		4	14	0.83	0.82	1.48	1.48
[茎葉] 2010 年	1 g ^{G1} /株植穴		4	1	1.30	1.28	1.17	1.16
2010 +	処理	1	4	3	1.05	1.02	1.09	1.08
	及び 139-140 ^{WP1}	1	4	7	1.17	1.16	1.26	1.24
	散布		4	14	0.49	0.48	0.48	0.48
			2	1			1.99	1.98
			2	3			2.42	2.40
		1	2	7			2.26	2.22
サラダ菜			2	14			0.62	0.61
(施設) [茎葉]	50 ^{WP1} 散布		2	21			0.08	0.08
2007年	III AFI		$\frac{2}{2}$	$\frac{1}{3}$			2.31 1.63	2.31 1.63
,		1	$\frac{2}{2}$	3 7			1.65	1.65
		1	2	14			0.70	0.70
			2	21			0.48	0.48
	500 mL ^{WP1}		4	1			5.91	5.82
	(100 倍)		4	3			1.47	1.45
サラダ菜 (施設) [茎葉] _	/セルトレイ灌注* 及び	1	4	7			0.76	0.75
	100 ^{WP1} 散布*		4	14			0.12	0.12
2010年	$500~\mathrm{mL^{WP1}}$		4	1			8.64	8.63
	(100倍)	1	4	3			6.74	6.65
	/セルトレイ灌注		4	7			4.76	4.63

作物名		試				残留値(ı	mg/kg)	
(栽培形態)	使用量	験	口	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)	2	クロラントラン	ニリプロール	/
実施年)C 12/3 IA	数	(11)		最大値	平均値	最大値	平均値
	及び 96.7 ^{WP1} 散布*		4	14			0.64	0.63
	12.11		2	1			1.84	1.83
			2	3			1.42	1.42
		1	2	7	_		1.10	1.10
リーフレ			2	14			0.25	0.24
タス	50^{WP1}		2	21			0.07	0.07
(施設) [茎葉]	散布		2	1			6.83	6.70
2007年			2	3			5.76	5.70
		1	2	7			3.45	3.42
			2	14			0.76	0.76
			2	21			0.14	0.14
	500 mL ^{WP1}		4	1			7.20	6.98
	(100 倍)		4	3			6.35	6.34
リーフレ 及び タス 75^{WP1}散布 (施設)	/セルトレイ灌注	1	4	7			2.37	2.34
	75 ^{WP1} 散布*		4	14			0.70	0.68
	500 mL ^{WP1}		4	1			8.59	8.46
2010年	(100倍)		4	3			5.88	5.81
	/セルトレイ灌注 及び	1	4	7			3.34	3.27
	96.7 ^{WP1} 散布*		4	14			0.44	0.44
			3	3			0.19	0.19
ふき		1	3	7			0.17	0.16
(施設)	$75^{ m WP1}$		3	14			0.07	0.06
[茎葉] 2011 年	散布							0.29
2011 +		1 2 3 1.42 1 2 7 1.10 2 14 0.25 2 2 1 6.83 2 3 5.76 3.45 0.76 2 14 0.76 2 21 0.14 4 1 7.20 6.35 2.37 4 14 0.70 4 1 8.59 5.88 3.34 4 14 0.44 3 3 0.19 1 3 7 0.17						0.14
					0.01	0.01		0.08
								0.17
		1						0.11
ねぎ								0.06
(露地) [茎葉]	50 ^{WP1} 散布							0.05
2006年	177.114							0.56
2006年		1						0.42
								0.16
わ せ [*]	EOO T WD1				0.06	0.06		0.06
ねぎ (露地)	500 mL ^{WP1} (100 倍)	1	4	1				
[茎葉]	/セルトレイ灌注		4	3			0.09	0.09

作物名		試					mg/kg)	
(栽培形態)	使用量 (g. qi/ha)	験ほ	回数	PHI	公的分		社内分	析機関
[分析部位]	(g ai/ha) 処理方法	場場	— 数 (回)	(目)	2	ウロラントラ :	ニリプロール	/
実施年		数			最大値	平均值	最大値	平均值
2011年	及び 48 ^{WP1} 散布		4	7			0.04	0.04
	40…11 100/11		4	14			0.02	0.02
	500 mL ^{WP1}		4	1			0.23	0.22
	(100 倍)	_	4	3			0.26	0.26
	/tルトレイ灌注 及び	1	4	7			0.20	0.20
	45 ^{WP1} 散布		4	14			0.19	0.19
			3	1			0.02	0.02
アスパラ		1	3	3			< 0.01	< 0.01
ガス (施設)	50WP1		3	7			< 0.01	< 0.01
[若茎]	散布		3	1			0.02	0.02
2010年	2010年	1	3	3			< 0.01	< 0.01
			3	7		Г	< 0.01	<0.01
パセリ (施設)	$50^{ m WP1}$		3	7	5.70	5.62		
[茎葉]	散布	1	3	14	4.18	4.12		
2010年			3	21	2.51	2.46		
パセリ	0.0 0WP1		3	7	6.34	6.10		
(施設) [茎葉]	99.3 ^{WP1} 散布	1	3	14	3.31	3.23		
2011年			3	21	0.18	0.17		
			4	1	0.02	0.02	0.03	0.03
トマト	$25~\mathrm{mL^{WP1}}$	1	4	7	0.04	0.04	0.04	0.04
(施設)	(100 倍) /ポット灌注		4	14	0.04	0.04	0.03	0.02
[果実] 2006 年	及び		4	1	0.20	0.19	0.14	0.14
2000 +	100 ^{WP1} 散布	1	4	7	0.12	0.12	0.10	0.10
			4	14	0.08	0.08	0.09	0.09
			4	1	0.09	0.08	0.07	0.06
		1	4	3	0.13	0.12	0.08	0.08
ミニトマ	$25~\mathrm{mL^{WP1}}$	1	4	7	0.08	0.08	0.09	0.08
ト (梅聖)	(100 倍) /ポット灌注		4	14	0.12	0.12	0.13	0.12
(施設) / [果実]	アルット催任 及び		4	1	0.07	0.07	0.05	0.05
2007年	62.5 ^{WP1} 散布	1	4	3	0.05	0.05	0.05	0.04
		1	4	7	0.05	0.05	0.04	0.04
		L	4	14	0.04	0.04	0.04	0.04

作物名		試				残留値(1	mg/kg)	
(栽培形態)	使用量	験	口 */r	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)	2	クロラントラ	ニリプロール	,
実施年		数	\		最大値	平均値	最大値	平均値
	25 mL ^{WP1} (100 倍)		3	1	0.23	0.22	0.20	0.20
	/ポット灌注	1	3	7	0.10	0.10	0.09	0.09
ピーマン (施設)	及び		3	14	0.03	0.02	0.02	0.02
[果実]	100 ^{WP} 散布 25 mL ^{WP1}							
2006年	(100 倍)		3	1	0.32	0.32	0.39	0.38
2005 年	/ポット灌注	1	3	7	0.23	0.23	0.25	0.24
	及び 125 ^{WP1} 散布		3	14	0.14	0.14	0.12	0.12
	25 mL ^{WP} (100 倍)		3	1	0.04	0.04	0.06	0.06
	/ポット灌注	1	3	7	0.02	0.02	<0.01	< 0.01
なす (施設)	及び 100 ^{WP} 散布		3	14	< 0.01	<0.01	<0.01	< 0.01
[果実]	$25~\mathrm{mL^{WP1}}$		3	1	0.26	0.26	0.18	0.18
2006年	(100 倍) /ポット灌注	1	3	7	0.06	0.06	0.06	0.06
	及び	1						
	100 ^{WP1} 散布		3	14	0.01	0.01	<0.01	<0.01
	25 mL ^{WP1} (100 倍)		4*	1	1.17	1.12		
	/ポット灌注	1	4* 4*	3 7	0.60	0.59		
ししとう	及び				0.24	0.24		
(施設)	150WP 散布		4*	14	0.05	0.05	,	
[果実] 2011 年	25 mL ^{WP1} (100 倍)		4*	1	2.60	2.50		
2011 +	/ポット灌注	1	4* 4*	3 7	$1.93 \\ 0.88$	1.90 0.86		
	及び							
	141WP1 散布		4*	14	0.56	0.55		
	25 mL ^{WP} (100 倍)		4*	1	1.03	1.02		
	/ポット灌注	1	4*	3	1.04	1.04		
甘長とう がらし	及び		4*	7	0.65	0.64		
(施設)	150WP 散布		4*	14	0.42	0.42	,	
[果実]	25 mL ^{WP1} (100 倍)		4*	1	1.26	1.26		
2011年	/ポット灌注	1	4*	3	0.98	0.96		
	及び		4*	7	0.59	0.58		
	90 ^{WP1} 散布		4*	14	0.13	0.13		
すいか			3	1	<0.01	<0.01	<0.01	<0.01
(施設)	$75^{ m WP1}$	1	3	3	< 0.01	<0.01	<0.01	<0.01
[果肉]	散布		3	7	<0.01	<0.01	<0.01	<0.01
2009年	散布	1	3	1	<0.01	<0.01	<0.01	<0.01
			3	3	< 0.01	<0.01	< 0.01	< 0.01

作物名		試				残留値(1	mg/kg)	
(栽培形態)	使用量	験	口	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)		クロラントラ	ニリプロール	,
実施年	(2.4.7) 区	数	(1117		最大値	平均值	最大値	平均値
			3	7	< 0.01	< 0.01	< 0.01	< 0.01
			3	1	0.25	0.25	0.34	0.33
すいか		1	3	3	0.20	0.20	0.33	0.32
(施設)	75 ^{WP1}		3	7	0.12	0.12	0.22	0.22
[果皮]	散布		3	1	0.11	0.10	0.14	0.14
2009年		1	3	3	0.08	0.08	0.13	0.12
			3	7	0.09	0.09	0.12	0.12
			3	1	< 0.01	< 0.01		
	$50~^{ m WP1}$	1	3	3	< 0.01	< 0.01		
メロン	(施設)	1	3	7	< 0.01	< 0.01		
			3	14	< 0.01	<0.01	,	
[果肉]			3	1	< 0.01	<0.01		
2011 年	62.5-62.8 WP1 散布	1	3	3	< 0.01	<0.01		
	11 11 11 11 11 11 11 11 11 11 11 11 11		3	7	<0.01	<0.01		
			3	14	<0.01	<0.01	/	
	$50^{ m WP1}$		3	1	0.50	0.50		
	散布	1	3	3 7	$0.54 \\ 0.51$	$0.54 \\ 0.50$		
メロン (施設)	10.7		3	14	0.31 0.41	0.30		
[果皮]			3	1	0.46	0.46	/	
2011年	62.5-62.8 WP1		3	3	0.49	0.48		
	散布	1	3	7	0.46	0.46		
			3	14	0.41	0.40		
			3	1			< 0.01	< 0.01
1. 5 38 7		1	3	3			< 0.01	< 0.01
とうがん (施設)	50 WP1		3	7			< 0.01	< 0.01
[果実]	散布		3	1			<0.01	< 0.01
2012年		1	3	3			< 0.01	< 0.01
			3	7			< 0.01	< 0.01
			3	1	3.71	3.64	2.93	2.90
	38.1^{WP1}	_	3	3	3.74	3.72	4.08	4.03
ほうれん	散布	1	3	7	3.25	3.24	3.52	3.48
そう (##===1)			3	14	4.14	4.10	3.94	3.88
(施設) [茎葉] 2010 年			3	1	4.67	4.66	3.35	3.32
	45.7^{WP1}		3	3	3.80	3.71	2.64	2.64
	散布	1	3	7	3.56	3.54	3.04	3.00
	III.VIII		3	14	0.74	0.72	0.51	0.51
きゅうり	25 mL ^{WP1}	1	4	1	0.05	0.05	0.04	0.04
_ , , , ,] -	-		1	1	

作物名		試				残留値(i	mg/kg)	
(栽培形態)	使用量	験	口 */r	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(日)	2	^{ウロラントラ:}	ニリプロール	,
実施年	, = , = , = ,	数	()		最大値	平均值	最大値	平均値
(施設) [果実]	(100 倍) /ポット灌注		4	7	0.01	0.01	0.01	0.01
2006 年	及び 100 ^{WP1} 散布		4	14	<0.01	<0.01	<0.01	<0.01
	25 mL ^{WP1} (100 倍)		4	1	0.07	0.07	0.06	0.06
	/ポット灌注 及び	1	4	7	< 0.01	< 0.01	< 0.01	< 0.01
	150 ^{WP1} 散布		4	14	<0.01	<0.01	<0.01	<0.01
			3	1	1.80	1.78	1.57	1.54
		1	3	3	0.67	0.66	0.63	0.62
だいこん		_	3	7	0.28	0.28	0.68	0.68
(露地)	$50~^{ m WP1}$		3	15	0.10	0.10	0.14	0.14
[葉部]	散布		3	1	1.30	1.29	0.71	0.70
2007年		1	3	3	1.13	1.12	0.73	0.70
		1	3	7	0.38	0.38	0.37	0.36
			3	14	0.57	0.56	0.35	0.35
			3	1	< 0.01	< 0.01	< 0.01	< 0.01
		1	3	3	< 0.01	< 0.01	< 0.01	<0.01
だいこん		1	3	7	< 0.01	< 0.01	< 0.01	<0.01
(露地)	$50~^{ m WP1}$		3	15	< 0.01	< 0.01	< 0.01	<0.01
[根部] 2007 年	散布		3	1	< 0.01	< 0.01	< 0.01	< 0.01
2007 +		1	3	3	< 0.01	< 0.01	< 0.01	< 0.01
			3	7	< 0.01	< 0.01	< 0.01	< 0.01
			3	14	< 0.01	<0.01	< 0.01	<0.01
	50 WP1		1	1			5.00	5.00
はつかだ	散布	1	1	3			6.75	6.62
いこん			1	7			2.65	2.58
(露地) [茎部]	To Whi		1	1			0.18	6.50
2012 年	50 ^{WP1} 散布	1	1	3			0.06	3.75
			1	7			< 0.01	2.62
	EO WD1		4	1			0.04	0.04
はつかだ いこん (愛地)	50 ^{WP1} 散布	1	4	7			0.01	0.01
	יווי אעו		4	14			< 0.01	< 0.01
(露地) [根部]	NO WID:		4	1			< 0.01	<0.01
2012 年	50 ^{WP1} 散布	1	3 3 3 3 3 3 1 1 1 1 4 4 4 4	7			< 0.01	< 0.01
	· ·		4	14			< 0.01	< 0.01

作物名		試					mg/kg)	
(栽培形態)	使用量	験	回	PHI	公的分	析機関	社内分	析機関
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(日)	2	^{フロラントラ:}	ニリプロール	,
実施年		数	(Ш)		最大値	平均值	最大値	平均值
			3	1	2.77	2.74	3.34	3.21
		1	3	3	2.48	2.47	2.54	2.54
かぶ		1	3	7	2.00	1.98	2.22	2.22
(露地)	$50~^{ m WP1}$		3	14	1.66	1.64	1.70	1.70
[葉部]	散布		3	1	3.38	3.36	3.25	3.20
2007年		1	3	3	2.69	2.68	2.61	2.54
		1	3	7	1.54	1.56	1.63	1.57
			3	14	1.24	1.22	1.07	1.05
			3	1	< 0.01	< 0.01	< 0.01	< 0.01
			3	3	0.01	0.01	< 0.01	< 0.01
2 20	かぶ	1	3	7	0.01	0.01	< 0.01	< 0.01
かふ (露地) [根部] 2007年	$50~^{ m WP1}$		3	14	0.02	0.02	< 0.01	< 0.01
	散布		3	1	0.03	0.03	0.03	0.03
			3	3	0.02	0.02	< 0.01	< 0.01
		1	3	7	0.02	0.02	< 0.01	< 0.01
			3	14	0.01	0.01	< 0.01	< 0.01
			3	3			3.12	3.08
クレソン		1	3	7			0.78	0.78
(施設)	$50~^{ m WP1}$		3	14			< 0.14	0.14
[茎葉]	散布		3	3			1.24	1.22
2011年		1	3	7			0.39	0.39
			3	14			0.04	0.04
			3	3	0.31	0.31	0.21	0.21
	$240~^{\rm WP2}$	1	3	7	0.31	0.30	0.14	0.14
りんご	散布	1	3	14	0.23	0.23	0.22	0.22
(露地)			3	21	0.17	0.16	0.12	0.12
[果実]			3	3	0.10	0.10	0.09	0.09
2006 年	$250~^{ m WP2}$	1	3	7	0.09	0.09	0.05	0.05
	散布	1	3	14	0.08	0.08	0.05	0.04
			3	21	0.06	0.06	0.04	0.04
りんご (露地) [果実] 2008 年			3	1	0.34	0.32	0.37	0.37
	$200~^{\mathrm{WP2}}$	1	3	3	0.33	0.32	0.33	0.32
	散布	1	3	7	0.31	0.31	0.36	0.34
			3	14	0.36	0.36	0.34	0.34
	$180~^{ m WP2}$	1	3	1	0.19	0.18	0.18	0.18

作物名		試					mg/kg)		
(栽培形態)	使用量	験	口	PHI	公的分	析機関	<u></u> 社内分	析機関	
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(目)	クロラントラニリプロール				
実施年	CZ7/IA	数	(11)		最大値	平均值	最大値	平均值	
	散布		3	3	0.18	0.18	0.16	0.16	
			3	7	0.18	0.18	0.15	0.14	
			3	14	0.16	0.16	0.14	0.14	
			3	3	0.13	0.12	0.16	0.16	
	$160~^{\mathrm{WP2}}$	1	3	7	0.12	0.12	0.12	0.12	
なし	散布	1	3	14	0.10	0.10	0.12	0.12	
(露地)			3	21	0.07	0.07	0.09	0.08	
[果実]			3	3	0.13	0.12	0.18	0.18	
2005 年	$280~^{ m WP2}$	1	3	7	0.09	0.08	0.13	0.13	
	散布	1	3	14	0.06	0.06	0.14	0.14	
			3	21	0.08	0.08	0.11	0.10	
			3	1	0.27	0.26	0.34	0.33	
	なし	1	3	3	0.23	0.22	0.26	0.25	
701		1	3	7	0.29	0.29	0.24	0.24	
(露地) [果実]	$200~^{ m WP2}$		3	14	0.19	0.19	0.22	0.22	
	散布		3	1	0.15	0.15	0.17	0.17	
2008年		1	3	3	0.15	0.15	0.12	0.12	
		1	3	7	0.12	0.12	0.16	0.16	
			3	14	0.11	0.10	0.11	0.10	
			2	3	0.02	0.02	< 0.01	< 0.01	
	80 WP2	1	2	7	0.02	0.02	< 0.01	< 0.01	
t t	散布	1	2	14	0.01	0.01	< 0.01	< 0.01	
(露地)			2	21	< 0.01	< 0.01	< 0.01	< 0.01	
[果肉]			2	3	< 0.01	<0.01	<0.01	< 0.01	
2006 年	$100~^{ m WP2}$	1	2	7	< 0.01	< 0.01	< 0.01	< 0.01	
	散布	1	2	14	< 0.01	< 0.01	< 0.01	< 0.01	
			2	21	< 0.01	< 0.01	< 0.01	< 0.01	
			2	3	1.74	1.67	1.11	1.1	
	$80~^{ m WP2}$	-	2	7	0.99	1.16	1.02	1.02	
7. 7.	散布	1	2	14	1.17	0.98	0.6	0.6	
もも (露地) [果皮] 2006 年			2	21	0.64	0.62	0.43	0.42	
			2	3	0.70	0.70	0.49	0.48	
	$100~^{ m WP2}$		2	7	0.63	0.63	0.44	0.44	
	散布	1	2	14	0.63	0.62	0.42	0.42	
			2	21	0.34	0.02	0.31	0.3	

作物名		試			残留值(mg/kg)					
(栽培形態)	使用量	験	口	PHI (日)	公的分	析機関	社内分析機関			
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)		2	ウロラントラ :	ニリプロール			
実施年	, _ , _ , _ ,	数	(11)		最大値	平均值	最大値	平均值		
			3	1	< 0.01	<0.01	< 0.01	< 0.01		
	$72~^{\rm WP2}$	1	3	3	<0.01 <0.01		< 0.01	< 0.01		
もも	散布	1	3	7	< 0.01	<0.01	< 0.01	< 0.01		
(露地)			3	14	< 0.01	< 0.01	< 0.01	< 0.01		
[果肉]			3	1	< 0.01	< 0.01	< 0.01	< 0.01		
2008 年	$80~^{ m WP2}$,	3	3	< 0.01	< 0.01	< 0.01	< 0.01		
	散布	1	3	7	< 0.01	< 0.01	< 0.01	< 0.01		
			3	14	< 0.01	< 0.01	< 0.01	< 0.01		
			3	1	1.44	1.42	0.86	0.86		
	$72~^{\mathrm{WP2}}$		3	3	0.48	0.48	0.79	0.78		
もも	散布	1	3	7	1.33	1.30	0.62	0.62		
(露地)			3	14	0.93	0.90	0.36	0.35		
[果皮]			3	1	1.36	1.34	1.13	1.10		
2008 年	80 WP2 散布	1	3	3	1.36	1.30	0.56	0.54		
			3	7	0.63	0.62	0.76	0.76		
			3	14	< 0.01	< 0.01	< 0.01	< 0.01		
	80 WP2 散布	1	2	3			0.11	0.11		
			2	7			0.09	0.08		
ネクタリン			2	14			0.08	0.08		
(露地)			2	21			0.10	0.10		
[果実] 2006 年		1	2	3			0.08	0.08		
2000 —			2	7			0.08	0.08		
			2	14			0.06	0.06		
			3	21 3			0.07	0.06		
	$250~^{ m WP2}$		3	3 7			$0.63 \\ 0.52$	$0.62 \\ 0.52$		
あんず	散布	1	3	14			0.50	0.49		
(露地)			3	21			0.47	0.45		
[果実] 2006 年	100 WP9		3	3			0.29	0.28		
2000 +	160 ^{WP2} 散布	1	3	7 14			$0.28 \\ 0.34$	$0.28 \\ 0.32$		
	네스제		3	$\frac{14}{21}$			0.54	0.52		
			3	3			0.03	0.03		
すもも			3	7			0.02	0.02		
(露地) [果実]	200 ^{WP2} 散布	1	3	14			0.04	0.04		
2006年	大小		3	21			0.04	0.04		
		1	3	3			0.09	0.08		

作物名		試				残留値(i	mg/kg)		
(栽培形態)	使用量	験	口	PHI	公的分	析機関	社内分	社内分析機関	
[分析部位]	(g ai/ha) 処理方法	ほ 場	数 (回)	(日)		クロラントラン	ニリプロール		
実施年	处星力伍	数	(四)		最大値	平均值	最大値	平均值	
			3	7			0.06	0.06	
			3	14			0.04	0.04	
			3	21			0.03	0.03	
			3	1*	1.09	1.08			
	$125~^{\mathrm{WP2}}$	1	3	3*	0.92	0.92			
うめ	散布		3	7*	0.67	0.66			
(露地)			3	14	0.44	0.44	,		
[果実] 2011 年			3	1*	0.59	0.59			
2011 4	160 WP2	1	3	3*	0.58 0.57				
	散布		3	7*	0.45 0.44				
			3	14	0.32	0.32			
			3	3			0.39	0.38	
	280 WP2	1	3	7	_		0.31	0.31	
おうとう	散布		3	14			0.25	0.24	
(施設)			3	21			0.18	0.18	
[果実] 2006 年	200 WP2 散布	1	3	3			0.23	0.23	
2000 +			3	7	_		0.22	0.22	
			3	14			0.14	0.14	
			3	21			0.13	0.13	
	167 ^{WP2} 散布	1	3	1			0.13	0.12	
			3	3			0.10	0.10	
おうとう			3	7			0.09	0.09	
(施設)			3	14			0.09	0.09	
[果実]			3	1			0.19	0.18	
2011年	180 ^{WP2} 散布	1	3	3			0.18	0.18	
		1	3	7			0.12	0.12	
			3	14			0.16	0.16	
	FOWD1		2	1	0.23	0.23	0.23	0.22	
いちご	50 ^{WP1} 散布	1	2	7	0.16	0.16	0.11	0.11	
(施設)	HI VEI		2	14	0.09	0.08	0.08	0.08	
[果実]	₩OWD1		2	1	0.31	0.30	0.15	0.14	
2006年	50 ^{WP1} 散布	1	2	7	0.09	0.09	0.17	0.16	
	EX /III		2	14	0.10	0.10	0.10	0.10	
			3	1	0.11	0.11	0.10	0.10	
ぶどう	$60~^{ m WP2}$	_	3	3	0.16	0.16	0.10	0.10	
(無袋)	散布	1	3	7	0.08	0.08	0.09	0.09	
(施設) [果実]			3	14	< 0.01	< 0.01	< 0.01	< 0.01	
2007年	100 WP2		3	1	0.45	0.44	0.29	0.29	
	散布	1	3	3	0.52	0.51	0.36	0.35	

作物名		試			残留值(mg/kg)					
(栽培形態)	使用量	験	回数	PHI	公的分	析機関	社内分	析機関		
[分析部位]	(g ai/ha) 処理方法	は場	(回)	(目)	Ž	クロラントラン	ニリプロール			
実施年	実施年		()		最大値	平均值	最大値	平均值		
			3	7	0.50	0.50	0.27	0.26		
			3	14	0.41	0.41	0.31	0.30		
			3	1	0.07	0.07	0.05	0.05		
		1	3	3	0.04	0.04	0.04	0.04		
かき		1	3	7	0.04	0.04	0.04	0.04		
(露地)	$100~^{\mathrm{WP2}}$		3	14	0.03	0.03	0.02	0.02		
[果実]	散布		3	1	0.05	0.05	0.05	0.05		
2007年		1	3	3	0.06	0.06	0.06	0.06		
		1	3	7	0.07	0.07	0.05	0.05		
			3	14	0.07	0.07	0.04	0.04		
	400 WP2 散布		1	3	25.8	25.2	29.9	29.8		
		1	1	7	20.7	20.6	25.4	24.8		
茶			1	14	4.02	4.00	5.05	5.00		
(露地)			1	21	0.36	0.35	0.34	0.34		
[荒茶]		1	1	3	29.3	29.0	38.8	38.6		
2006 年			1	7	14.1	14.0	19.1	18.8		
			1	14	4.49	4.48	5.79	5.66		
			1	21	0.89	0.88	1.00	0.96		
			1	3			17.3	16.9		
			1	7			13.2	13.0		
- [,] -		1	1	14			2.78	2.76		
茶 (露地)	$200~^{\mathrm{WP2}}$		1	21			0.24	0.24		
[浸出液]	散布		1	3			19.8	19.6		
2006年			1	7			9.48	9.47		
		1	1	14			3.06	3.00		
			1	21			0.51	0.51		
			3	1			8.08	8.08		
バジル		1	3	3			6.82	6.72		
(施設)	50 ^{WP1}		3	7			4.05	4.04		
[茎葉]	散布		3	1			5.89	5.86		
2012 年		1	3	3			4.17	4.14		
WD1 -			3	7			2.14	2.04		

- ・WP1:水和剤(5%)、WP2:水和剤(10%)、G1:粒剤(0.5%)、G2:粒剤(1.0%)
- ・全てのデータが定量限界未満の場合は定量限界値に<を付して記載した。 ・農薬の使用回数又は使用時期 (PHI) が、登録又は申請された使用方法から逸脱している場合は使用 回数又はPHIに*を付した。

○海外における作物残留試験成績

作物名	試験	本年日	処理量	回数	PHI	残留値((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
	1	$35\%\mathrm{WG}$	49	3	0	< 0.003	< 0.003
ばれいしょ					0	< 0.003	< 0.003
(塊茎)					7	< 0.003	< 0.003
2004 年					14	< 0.003	< 0.003
2004 +					21	< 0.003	< 0.003
					28	< 0.003	< 0.003
	1	$35\%^{ m WG}$	50-52	3	-1	< 0.003	< 0.003
ばれいしょ					0	< 0.003	< 0.003
(塊茎)					7	< 0.003	< 0.003
2004 年					15	< 0.003	< 0.003
2004 —					21	< 0.003	< 0.003
					28	< 0.003	< 0.003
	1	$35\%^{ m WG}$	74-76	3	0	< 0.003	< 0.003
ばれいしょ					1	< 0.003	< 0.003
(塊茎)					3	0.004	0.003
2005 年					7	< 0.003	< 0.003
2005 —					14	0.003	0.003
					21	< 0.003	< 0.003
	1	$35\%^{ m WG}$	76	3	0	< 0.003	< 0.003
					1	< 0.003	< 0.003
ばれいしょ					3	< 0.003	< 0.003
(塊茎)					7	< 0.003	< 0.003
2005 年					14	< 0.003	< 0.003
					21	< 0.003	< 0.003
			380		14	0.004#	0.003#
ばれいしょ	13	$35\%^{ m WG}$	74-78	3	14	0.005	0.003
(塊茎)							
2005 年							
ばれいしょ	2	$35\%^{\mathrm{WG}}$	74-78	3	15	0.004	< 0.003
(塊茎)							
2005 年							
キャベツ	6	$20\%^{ m SC}$	110-116	2	3	1.2	0.59
(葉球)							
(外葉付き)							
2005 年							

#:米国 GAP を越える処理量での残留値

WG: 顆粒水和剤 SC: フロアブル剤

作物名	試験	-last Trit	処理量	回数	PHI	残留値	(mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均值
キャベツ (葉球) (外葉付き) 2006 年	1	$20\%^{ ext{SC}}$	116-118	2	3	0.31	0.28
キャベツ (葉球) (外葉を除去) 2005 年	2	$20\%^{ ext{SC}}$	110-115	2	3	0.098	0.078
キャベツ (葉球) (外葉を除去) 2006 年	1	$20\%^{ ext{SC}}$	116-118	2	3	0.054	0.037
ブロッコリー (頭部及び茎) 2005 年	1	$20\%^{ m sc}$	113-114	2	0 0 1 3 7 10	0.62 0.58 0.71 0.71 0.1 0.05	0.56 0.46 0.67 0.56 0.1 0.042
ブロッコリー (頭部及び茎) 2005 年	6	20%sc	110-116	2	3	0.44	0.30
からしな (茎葉部) 2005 年	6	20% ^{SC}	112-116	2	3	6.1	3.6
レタス (茎葉部) (外葉付き) 2005 年	1	20% ^{SC}	111-113	2	0 0 1 3 7 10	0.87 0.69 0.62 0.64 0.27 0.07	0.63 0.56 0.55 0.46 0.18 0.05
レタス (茎葉部) (外葉付き) 2005 年	6	$20\%^{ ext{SC}}$	109-115	2	1	2.50	1.07
レタス (茎葉部) (外葉を除去) 2005 年 SC:フロアブル剤	3	20% ^{SC}	110-118	2	1	0.74	0.30

SC:フロアブル剤

作物名	試験		処理量	回数	PHI	残留值(mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
リーフレタス (茎葉部) 2005 年	7	$20\%^{ ext{SC}}$	112-116	2	1	6.30	4.44
セルリー (茎葉部) 2005 年	7	20% ^{SC}	112-118	2	1	3.80	2.35
セルリー (茎葉部) (外葉を除去) 2005 年	3	$20\%^{ ext{SC}}$	112-114	2	1	2.60	1.00
トマト (果実) 2005 年	13	20%sc	109-120	2	1	0.13	0.06
ピーマン (果実) 2005 年	6	20%sc	106-118	2	1	0.19	0.11
ピーマン (果実) 2006 年	1	$20\%^{ ext{SC}}$	113	2	1	0.16	0.14
とうがらし類 (果実) 2005 年	4	$20\%^{ ext{SC}}$	112-118	2	1	0.22	0.12
きゅうり (果実) 2005 年	1	20% ^{SC}	118-119	2	0 0 1 3 7 10	0.008 0.025 0.022 0.016 0.006 0.004	0.007 0.022 0.017 0.013 0.006 0.004
きゅうり (果実) 2005 年	6	20% ^{SC}	109-124	2	1	0.083	0.032
メロン (カンタループ) (果実) 2005 年	6	$20\%^{ m SC}$	110-121	2	1	0.120	0.069
メロン (マスクメロン) (果実) 2005 年	1	$20\%^{ m SC}$	113-114	2	1	0.011	0.010

SC:フロアブル剤

作物名	試験	실패	処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(日)	最高値	平均値
ペポカボチャ (果実) 2005 年	6	$20\%^{ ext{SC}}$	108-121	2	1	0.093	0.048
ほうれんそう (茎葉部) 2005 年	1	$20\%^{ ext{SC}}$	110-113	2	0 0 1 3 7 10	0.82 3.9 3.4 3.5 2.7 2.7	0.77 3.7 3.4 3.1 2.4 2.3
ほうれんそう (茎葉部) 2005 年	6	$20\%^{ ext{SC}}$	110-118	2	1	9.70	7.43
りんご (果実) 2005 年	1	35%WG	112	2	$0 \\ 0 \\ 7 \\ 14 \\ 21 \\ 28$	0.073 0.14 0.11 0.091 0.070 0.069	0.068 0.13 0.10 0.088 0.066 0.067
りんご (果実) 2005 年	11	35%WG	111-118	2	14	0.3	0.076
りんご (果実) 2005 年	1	35% ^{WG}	109-113	2	15	0.078	0.073
なし (果実) 2005 年	1	35% ^{WG}	113-115	2	10	0.065	0.054
なし (果実) 2005 年	1	35%WG	112	2	13	0.038	0.033
なし (果実) 2005 年	5	35% ^{WG}	112-113	2	14	0.14	0.063

WG: 顆粒水和剤 SC: フロアブル剤

作物名	試験	-best 17°11		回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(日)	最高値	平均値
t t	1	$35\%^{ m WG}$	116	2	1 3	0.166 0.108	0.158 0.101
(果実)					8	0.100	0.074
2005 年					10	0.119	0.118
					14	0.140	0.114
	1	$35\%^{\mathrm{WG}}$	112	2	1	0.338	0.318
<i>t t</i>					3	0.286	0.264
(果実)					8	0.336	0.289
2005 年					11	0.268	0.255
					15	0.182	0.172
& &	2	$35\%^{ m WG}$	111	2	9	0.130	0.098
(果実)			112				
2005 年							
t t	4	$35\%\mathrm{WG}$	111-	2	10	0.311	0.172
(果実)			114				
2005 年							
t t	4	$35\%\mathrm{WG}$	110-	2	11	0.352	0.171
(果実)			116				
2005 年					_		
	1	$35\%^{ m WG}$	112	2	0	0.003	0.003
					0	0.005	0.004
					5	0.004	0.003
		o zwo	110	0	10	0.005	0.004
すもも		35 ^{WG}	112	2	10	0.013	0.011
(果実)		(オイル カーカ)					
2005 年		加用) 35% ^{WG}	111-112	2	10	0.011	0.011
		(展着剤	111 114		10	0.011	0.011
		加用)					
		35%WG	112	2	14	0.003	0.003
		35% ^{WG}	112	2	21	<0.003	<0.003
	1	35% ^{WG}	112	2	10	0.010	0.009
	1	35% ^{WG}	114	$\frac{2}{2}$	10	0.010	0.003
すもも		00% (オイル		-		0.020	0.022
(果実)		加用)					
2005年		35%WG		2		0.031	0.029
		(展着剤		_		2.001	
		加用)					
1110 mile 1 1 - 20	<u> </u>	, 147		1	·		

WG: 顆粒水和剤

作物名	試験	本年日	処理量	回数	PHI	残留値(mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(日)	最高値	平均値
すもも	6	$35\%^{\mathrm{WG}}$	112	2	10	0.760	0.752
(果実)							
2005 年							
	1	$35\%^{ m WG}$	112	2	10	0.120	0.100
		$35\%^{ m WG}$		2	1	0.150	0.150
おうとう		(オイル					
(果実)		加用)					
2005 年		$35\%^{\mathrm{WG}}$		2	10	0.210	0.190
		(展着剤					
		加用)					
	1	$35\%^{ m WG}$	112	2	10	0.370	0.360
		$35\%^{ m WG}$		2	1	0.490	0.480
おうとう		(オイル					
(果実)		加用)					
2005 年		$35\%\mathrm{WG}$		2	10	0.610	0.570
		(展着剤					
		加用)					
おうとう	2	$35\%^{\mathrm{WG}}$	110-112	2	9	0.190	0.145
(果実)							
2005 年							
おうとう	4	$35\%^{ m WG}$	110-112	2	10	0.480	0.247
(果実)							
2005 年							
	1	$20\%^{ ext{SC}}$	116-	2	1	0.0443	0.0403
ぶどう			119		2	0.0438	0.0365
(果実)					7	0.0417	0.0392
2005 年					13	0.0144	0.0130
					23	0.0123	0.0153
	1	$20\%^{ m SC}$	112	2	1	0.5910	0.429
ぶどう					4	0.3760	0.296
(果実)					7	0.3450	0.335
2005 年					15	0.2880	0.248
					20	0.3850	0.320

作物名	試験	- 수대 표대	処理量	回数	PHI	残留值(mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
ぶどう (果実) 2005 年	2	$20\%^{ m SC}$	111- 115	2	13	0.5890	0.360
ぶどう (果実) 2005 年	6	20% ^{SC}	112- 116	2	14	0.3650	0.164
ぶどう (果実) 2005 年	2	$20\%^{ ext{SC}}$	110- 112	2	15	0.5910	0.298
綿実 (種子) 2005 年	1	35% ^{WG}	110-118	2	0 0 7 14 21 28	0.052 0.078 0.062 0.033 0.019 0.015	0.041 0.078 0.061 0.029 0.011 0.014
綿実 (種子) 2005 年	1	35%w ^G	110-112	2	0 0 6 14 20 25	0.150 0.240 0.370 0.260 0.180 0.230	0.120 0.230 0.340 0.250 0.180 0.210
綿実 (種子) 2005 年	1	35% ^{WG}	112	2	20	0.019	0.016
綿実 (種子) 2005 年	7	35% ^{WG}	109-114	2	21	0.150	0.063
綿実 (種子) 2005 年	3	35%WG	111-113	2	22	0.085	0.055
綿実 (種子) 2005 年	2	35% ^{WG}	112	2	23	0.006	0.006
綿実 (繰綿) 2005 年	5	35% ^{WG}	109-114	2	21	13.0	5.62
線実 (繰綿) 2005 年	2	35% ^{WG}	110-114	2	22	15.0	6.79

作物名	試験	-tol Tru	処理量	回数	PHI	残留値	(mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(日)	最高値	平均值
	5	$35\%^{\mathrm{WG}}$	120-	2	0	0.190	0.13
グリーンビーン			123		1	0.15	0.13
(キや)					7	0.081	0.072
2006年					14	0.079	0.055
					21	0.084	0.040
グリーンビーン	4	$35\%^{\mathrm{WG}}$	117-	2	1	0.30	0.15
(きや)			120				
2006年							
グリーンビーン	6	$35\%^{\mathrm{WG}}$	78.1-	2	0	0.25	0.13
(さや)			81.5		1	0.25	0.134
2007年					3	0.13	0.074
グリーンビーン	4	$35\%\mathrm{WG}$	78.1-	2	1	0.12	0.072
(さや)			81.5				
2007年							
	1	5%SC	20	6	0	-	3.080
ポールビーン					1	-	0.057
(さや)					3	-	0.028
2006 年					7	-	0.014
					14	-	0.003
	1	$5\%^{ m SC}$	40	6	0	-	11.0
ポールビーン					1	-	0.145
(きや)					3	-	0.086
2006年					7	-	0.033
					14	-	0.011
とうもろこし	2	$20\%^{ ext{SC}}$	222-	2	13	< 0.003	< 0.003
(穀粒)			1130				
2007年							
とうもろこし	4	20%SC	216-	2	14	< 0.003	< 0.003
(穀粒)			223				
2007年							
とうもろこし	3	$20\%^{ m SC}$	218-	2	15	0.009	0.006
(穀粒)			1120				
2007年							
とうもろこし	6	$20\%^{ m SC}$	0.198-	4	1	< 0.010	< 0.010
(穀粒)			0.218				
2008年							
とうもろこし	1	$20\%^{ m SC}$	0.303	5	1	< 0.010	< 0.010
(穀粒)			_				
2008年							
WC,晒蛤水和刘	•						

作物名	試験	lud med	処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(日)	最高値	平均値
稲	6	$60\%^{\mathrm{FS}}$	560-561	1	116-	0.087	0.049
(穀粒)		(散布)			143		
2007年							
稲	8	60%FS	560-561	1	113-	0.064	0.045
(穀粒)		(土壌			138		
2007年	0	処理)	1000	0	100	0.054	0.049
稲 (穀粒)	2	60% ^{FS} (土壌	1080- 1120	2	120- 148	0.054	0.043
2007 年		処理)	1120		140		
ブラックベリー	2	35%WG	0.197-	2	3	0.445	0.242
(果実)	_	3375	0.199			0.110	0.212
2008年			lb/Acre				
ラズベリー	3	35%WG	0.201-	2	3	0.536	0.361
(果実)			0.208				
2008年			lb/Acre				
ラズベリー	1	$35\%^{ m WG}$	0.202	2	1	0.15	0.0902
(果実)			lb/Acre		3		
2008年					7	0.0921	0.0908
2371	~	OF0/WC	0.105	0	10	0.0671	0.059
ミント (茎葉)	5	$35\%\mathrm{WG}$	0.195- 0.205	2	3	6.24	4.50
2008 年			0.203 lb/A				
コーヒー豆	1	35%WG	158	3	7	_	0.115
(豆)	1	0070	100		21	-	0.031
2007年							
	1	$35\%^{\mathrm{WG}}$	158	3	1	-	0.188
コーヒー豆					3	-	0.163
(豆)					7	-	0.155
2008年					14	-	0.056
					21	-	0.021
コーヒー豆	1	$35\%^{\mathrm{WG}}$	52.5	1	7	-	0.098
(豆)					21	-	0.025
2008 年	1	OF0/WC	150	9	1	_	0.905
コーヒー豆	1	35%WG	158	3	$\frac{1}{3}$	- -	$0.205 \\ 0.140$
(豆)					3 7	-	0.140 0.101
2008年					14	-	0.101 0.069
					21	-	0.023

WG: 顆粒水和剤 SC: フロアブル剤 FS: フロアブル剤

作物名	試験	本年日	処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
アーモンド	5	$35\%^{\mathrm{WG}}$	223-	2	10	0.009	0.005
(果実)			227				
2006年							
アーモンド	1	$35\%^{\mathrm{WG}}$	223	2	11	0.009	0.008
(果実)							
2006年							
ペカン	1	$35\%^{\mathrm{WG}}$	225	2	9	0.016	0.015
(果実)							
2006年							
ペカン	5	$35\%^{\mathrm{WG}}$	225-	2	10	0.016	0.007
(果実)			227				
2006年							
アルファルファ	12	$20\%^{ ext{SC}}$	111-	2	0	11	6.2
(茎葉)			116				
2008年							
アルファルファ	10	$20\%^{ ext{SC}}$	112-	2	0	1.8	0.69
(種子)			116				
2008年							
なたね	6	18.4%	219-	2	1	1.2	0.47
(種子)		SC	231				
2010年							
ひまわり	5	18.4%	219-	2	1	0.85	0.40
(種子)		SC	230				
2010年							

作物名	試験		処理量	回数	PHI	残留值((mg/kg)
(分析部位) 実施年	ほ場数	剤型	(g ai/ha)	(回)	(目)	最高値	平均値
らっかせい	6	18.4% ^{SC}	224-228	2	1	0.046	0.01
(可食部)							
2012 年							
ラディッシュ	6	$18.4\%^{SC}$	224-232	2	1	0.26	0.076
(根部)							
2008年							
小麦	5	18.4% ^{SC}	201-209	2	1	0.428	0.252
(穀粒)							
2009 年							
大麦	3	18.4% ^{SC}	200-207	2	1	2.17	1.93
(穀粒)							
2009 年							
ソルガム	3	18.4% ^{SC}	200-202	2	1	1.52	1.15
(穀粒)							
2009 年							
ねぎ	5	18.4% ^{SC}	199-203	2	1	1.50	0.811
(茎葉)							
2009年							
さやいんげん	9	18.4% ^{SC}	192-204	2	1	0.411	0.146
(さや)							
2008年							
さやえんどう	9	18.4% ^{SC}	197-208	2	1	0.652	0.206
(さや)							
2008年							
さやえんどう	1	18.4% ^{SC}	202	2	1	0.496	0.449
(さや)					3	0.308	0.307
2008年					6	0.240	0.226
					13	0.0977	0.0844

SC:フロアブル剤

<別紙4:家畜残留試験>

	投与濃度	ш, т.				残留値(mg/kg)		
動物 種 動物 数/群	(ppm) 又は 投与量 (mg/kg 体 重/日)	試料	試料 採取日	クロラ ントラ ニリプ ロール	代謝物 N	代謝物 E	代謝物 C	代謝物 G	代謝物 D
	投与方法							,	
ニワ	0.17	全卵	投与 0	0.039	0.057	0.011	0.005	/	
トリ	mg/kg 体 重/日	肝臓	~14 日 最終投	0.009	/	/	/		
	14 日間投	筋肉	与後	<0.001					
	与	皮膚		< 0.002					
		(脂肪 を含							
ウシ	1 mg/kg 飼	む) 全乳	1	<0.003	/	/	/	10,000	10,000
3頭/	T IIIg/Kg 两 料/日	土北	3		/	/	/	<0.003	<0.003
群	28 日間		5	<0.003	/	/		<0.003	<0.003
	カプセル 経口投与		7	<0.003				<0.003	<0.003
	性口汉子		10	<0.003	/			<0.003	
			14	<0.003				<0.003	<0.003
			21						<0.003
			28	<0.003				<0.003	<0.003
	3 mg/kg 飼		1	<0.003	/	/	/	<0.003	<0.003
	料/日		3	<0.003		/	/	<0.003	0.003
	28 日間		5	<0.003				<0.003	0.004
	カプセル 経口投与		7	<0.003				<0.003	0.005
	42.4		10	<0.003				<0.003	0.004
			14	<0.003				0.003	0.004
			21	< 0.003				< 0.003	0.004
			28	<0.003				< 0.003	0.004
	10 mg/kg		1	< 0.003	/	/	/	< 0.003	0.004
	飼料/日		3	0.005				0.003	0.011
	28 日間 カプセル		5	0.005				0.003	0.010
	経口投与		7	0.006				0.005	0.013
			10	0.005				0.005	0.013
			14	0.005				0.004	0.011
			21	0.004				0.004	0.011
			28	0.006				0.004	0.013

	1	T		T			1		
ウシュ語	50 mg/kg	全乳	1	0.008	/	/	/	<0.003	0.010
3頭/群	飼料/日 28 日間		3	0.021] /			0.009	0.029
741	カプセル		5	0.024] /			0.009	0.025
	経口投与		7	0.027				0.012	0.030
			10	0.020				0.013	0.029
			14	0.024] /			0.011	0.027
			21	0.016] /			0.009	0.026
			28	0.017	1/			0.011	0.029
	50 mg/kg		1	0.010		/	/	0.004	0.015
	飼料/日		3	0.020	/			0.011	0.035
	28 日間 カプセル		5	0.020	/			0.009	0.031
	経口投与		7	0.027	/			0.013	0.043
	(回復群)		10	0.024	/			0.014	0.039
			14	0.028	/			0.011	0.039
			21	0.018	1/			0.012	0.038
			28	0.021	1/			0.013	0.045
	1 mg/kg 飼	脂肪	最終投	0.004		/	/	/	
	料/日	筋肉	与後 1	<0.003					
	28 日間 カプセル	肝臓	日	0.005					
	経口投与	腎臓		<0.003					
	3 mg/kg 飼	脂肪	最終投	0.015		/	/	/	
	料/日	筋肉	与後 1	0.004					
	28 日間 カプセル	肝臓	日	0.014					
	経口投与	腎臓		0.009					
	10 mg/kg	脂肪	最終投	0.036	/				
	飼料/日 28 日間	筋肉	与後 1 日	0.009					
	カプセル	肝臓	H	0.035					
	経口投与	腎臓		0.035	/				
	50 mg/kg	脂肪	最終投	0.16					
	飼料/日 28 日間	筋肉	与後 1 日	0.029	/				/
	カプセル	肝臓		0.13					
	経口投与	腎臓		0.081	/	/	/		

/:データなし

<別紙5:推定摂取量>

作物名 残留値		国民 (体重: {		小児(1~6 歳) (体重:16.5 kg)		妊婦 (体重:58.5 kg)		高齢者(65歳以上) (体重:56.1 kg)	
	(mg/kg)	ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量
米	0.01	164.2	1.64	85.7	0.86	105.3	1.05	180.2	1.80
大豆	0.03	39	1.17	20.4	0.61	31.3	0.94	46.1	1.38
その他の豆 類	0.32	0.1	0.03	0.1	0.03	0.1	0.03	0.1	0.03
だいこん (葉)	1.78	1.7	3.03	0.6	1.07	3.1	5.52	2.8	4.98
かぶ(根)	0.03	2.8	0.08	0.8	0.02	0.1	0.00	5	0.15
かぶ (葉)	3.36	0.3	1.01	0.1	0.34	0.1	0.34	0.6	2.02
はくさい	0.46	17.7	8.14	5.1	2.35	16.6	7.64	21.6	9.94
キャベツ	0.12	24.1	2.89	11.6	1.39	19	2.28	23.8	2.86
ブロッコリー	0.2	5.2	1.04	3.3	0.66	5.5	1.10	5.7	1.14
レタス	6.7	9.6	64.32	4.4	29.48	11.4	76.38	9.2	61.64
ねぎ	0.66	9.4	6.20	3.7	2.44	6.8	4.49	10.7	7.06
トマト	0.19	32.1	6.10	19	3.61	32	6.08	36.6	6.95
なす	0.26	12	3.12	2.1	0.55	10	2.60	17.1	4.45
きゅうり	0.07	20.7	1.45	9.6	0.67	14.2	0.99	25.6	1.79
オクラ	0.27	1.4	0.38	1.1	0.30	1.4	0.38	1.7	0.46
しょうが	0.01	1.5	0.02	0.3	0.00	1.1	0.01	1.7	0.02
未成熟 えんどう	0.26	1.6	0.42	0.5	0.13	0.2	0.05	2.4	0.62
未成熟 いんげん	0.19	2.4	0.46	1.1	0.21	0.1	0.02	3.2	0.61
りんご	0.37	24.2	8.95	30.9	11.43	18.8	6.96	32.4	11.99
なし	0.33	6.4	2.11	3.4	1.12	9.1	3.00	7.8	2.57
& &	0.02	3.4	0.07	3.7	0.07	5.3	0.11	4.4	0.09
ネクタリン	0.11	0.1	0.01	0.1	0.01	0.1	0.01	0.1	0.01
あんず	0.62	0.2	0.12	0.1	0.06	0.1	0.06	0.4	0.25
すもも	0.08	1.1	0.09	0.7	0.06	0.6	0.05	1.1	0.09
おうとう	0.38	0.4	0.15	0.7	0.27	0.1	0.04	0.3	0.11
イチゴ	0.30	5.4	1.62	7.8	2.34	5.2	1.56	5.9	1.77
かき	0.07	9.9	0.69	1.7	0.12	3.9	0.27	18.2	1.27
茶	38.6	6.6	254.76	1	38.60	3.7	142.82	9.4	362.84
魚介類	0.047	93.1	4.38	39.6	1.86	53.2	2.50	114.8	5.40
合計	+		374		101		267		494

[・]残留値は申請されている使用時期・回数のうち各試験区の平均残留値の最大値を用いた。

- ・「ff」: 平成 $17\sim19$ 年の食品摂取頻度・摂取量調査 (参照 76) の結果に基づく農産物摂取量 ($\mu g/\mathcal{N}$ 日)
- ・「摂取量」:残留値から求めたクロラントラニリプロールの推定摂取量(µg/人/日)。
- 「その他の豆類」はえだまめの値を用いた。
- ・かんしょ、さといも類、やまいも及びだいこん類(根)については、残留値が定量限界未満であったため、摂取量の計算はしていない。

<参照>

- 1. 農薬抄録クロラントラニリプロール(殺虫剤)(平成 20 年 1 月 25 日改訂): デュポン株式会社、一部公表
- 2. ^{14C}-標識クロラントラニリプロールを用いたラット体内における代謝試験 (GLP対応):米国デュポン社ハスケル研究所、2006年、未公表
- 3. 水稲における代謝試験 (GLP 対応): Chales River Laboratories (英国)、2006年、未公表
- 4. りんごにおける代謝試験(GLP対応): Inveresk (英国)、2005年、未公表
- 5. レタスにおける代謝試験 (GLP 対応): Inveresk (英国)、2005 年、未公表
- 6. トマトにおける代謝試験 (GLP 対応): Inveresk (英国)、2005 年、未公表
- 7. 好気的湛水土壤中運命試験(GLP 対応): Charles River Laboratories、2006年、未公表
- 8. 好気的土壤中運命試験(GLP 対応): Inveresk (英国)、2005 年、未公表
- 9. 土壌吸着性試験(GLP 対応):米国デュポン社ハスケル研究所、2005 年、 未公表
- 10. 加水分解運命試験(GLP 対応): Inveresk、2004 年、未公表
- 11. 水中光分解運命試験(GLP 対応): Inveresk、2005 年、未公表
- 12. 土壌残留性試験: デュポン株式会社、2005~2006 年、未公表
- 13. 作物残留性試験成績:デュポン株式会社、2005~2006年、未公表
- 14. 後作物残留性試験成績:デュポン株式会社、2005~2006年、未公表
- 15. クロラントラニリプロールにおける薬理試験(GLP 対応): 日精バイリス、 2006 年、未公表
- 16. ラットにおける急性経口毒性試験 (GLP 対応):米国デュポン社ハスケル研究所、2004年、未公表
- 17. ラットにおける急性経皮毒性試験 (GLP 対応):米国デュポン社ハスケル研究所、2004年、未公表
- 18. ラットにおける急性吸入毒性試験 (GLP 対応):米国デュポン社ハスケル研究所、2004年、未公表
- 19. 代謝物 O のラットにおける急性経口毒性試験(GLP 対応):米国デュポン社 ハスケル研究所、2006 年、未公表
- 20. 代謝物 Q のマウスにおける急性経口毒性試験 (GLP 対応): 米国デュポン社 ハスケル研究所、2006 年、未公表
- 21. ラットを用いた急性神経毒性試験(GLP 対応):米国デュポン社ハスケル研究所、2004年、未公表
- 22. ウサギを用いた眼刺激性試験 (GLP 対応): 米国デュポン社ハスケル研究所、 2004 年、未公表
- 23. ウサギを用いた皮膚刺激性試験 (GLP 対応):米国デュポン社ハスケル研究 所、2004年、未公表
- 24. モルモットを用いた皮膚感作性試験 (GLP 対応): Product Safety Laboratories、 2004 年、未公表

- 25. ラットを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP 対応):米国デュポン社ハスケル研究所、2004年、未公表
- 26. イヌを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP 対応): MPI リサーチ、2004 年、未公表
- 27. ラットを用いた 90 日間反復経口投与神経毒性試験(GLP 対応):デュポン社 ハスケル研究所、2005 年、未公表
- 28. ラットを用いた 28 日間反復経皮投与毒性試験(GLP 対応): デュポン社ハスケル研究所、2006 年、未公表
- 29. イヌを用いた飼料混入投与による1年間反復経口投与毒性試験(GLP対応): MPI リサーチ、2006年、未公表
- 30. ラットを用いた飼料混入投与による 2 年間反復経口投与毒性/発がん性併合試験(GLP対応): デュポン社ハスケル研究所、2006年、未公表
- 31. マウスを用いた 18 か月間飼料混入投与による発がん性試験: デュポン社ハスケル研究所、2006 年、未公表
- 32. 繁殖毒性試験(GLP対応): デュポン社ハスケル研究所、2006年、未公表
- 33. ラットにおける催奇形性試験 (GLP 対応): デュポン社ハスケル研究所、2004 年、未公表
- 34. ウサギにおける催奇形性試験 (GLP 対応): デュポン社ハスケル研究所、2005 年、未公表
- 35. 細菌を用いた復帰突然変異試験(GLP 対応): BioReliance(米国)、2004 年、 未公表
- 36. ヒト末梢血リンパ球を用いた *in vitro* 染色体異常試験 (GLP 対応): BioReliance(米国)、2004 年、未公表
- 37. マウス骨髄細胞を用いた小核試験 (GLP 対応): デュポン社ハスケル研究所、2004 年、未公表
- 38. 代謝物 O の細菌を用いた復帰突然変異試験 (GLP 対応): デュポン社ハスケル研究所、2006 年、未公表
- 39. 代謝物 Q の細菌を用いた復帰突然変異試験(GLP 対応): デュポン社ハスケル研究所、2006 年、未公表
- 40. ラットを用いた 2 週間反復強制経口投与毒性試験:デュポン社ハスケル研究 所、2006 年、未公表
- 41. ラットを用いた飼料混入投与による 28 日間反復経口投与毒性試験:デュポン社ハスケル研究所、2003年、未公表
- 42. イヌを用いた 28 日間カプセル投与による反復経口投与毒性試験
- 43. マウスを用いた飼料混入投与による 28 日間反復経口投与毒性試験:未公表
- 44. ラットの副腎皮質における組織学的変化に関する試験の概要:デュポン社ハスケル研究所、2006年、未公表
- 45. 雄ラットを用いた 28 日間反復経皮投与による副腎機能検査(一部 GLP 対応): デュポン社ハスケル研究所、2006 年、未公表
- 46. ラットを用いた 28 日間混餌投与免疫毒性試験 (GLP 対応):デュポン社ハ

- スケル研究所、2006年、未公表
- 47. マウスを用いた 28 日間混餌投与免疫毒性試験(GLP 対応): デュポン社ハスケル研究所、2006 年、未公表
- 48. クロラントラニリプロールの魚介類における最大推定残留値に係る資料
- 49. 食品健康影響評価について (平成 20 年 3 月 25 日付け厚生労働省発食安第 0325001 号)
- 50. クロラントラニリプロール 残留基準値設定資料:デュポン株式会社、 2004~2006 年、未公表
- 51. 食品健康影響評価の結果の通知について (平成 20 年 10 月 9 日付け府食第 1080 号)
- 52. 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 21 年 9 月 28 日付け平成 21 年厚生労働省告示第 422 号)
- 53. 農薬抄録クロラントラニリプロール(殺虫剤)(平成 22 年 5 月 12 日改訂): デュポン株式会社、一部公表
- 54. クロラントラニリプロールの安全性評価追加資料、変異原生:デュポン株式 会社、未公表
- 55. クロラントラニリプロールの安全性評価追加資料、動物体内運命試験(産卵ニワトリ、泌乳ヤギ):デュポン株式会社、未公表
- 56. クロラントラニリプロール、作物残留試験成績:デュポン株式会社、未公表
- 57. クロラントラニリプロール、作物残留試験成績(海外):デュポン株式会社、 未公表
- 58. Request and justification for a waiver of cryfish magnitude of residue studies with Chlorantraniliprole: デュポン株式会社、未公表
- 59. Request and justification for a waiver of poultry feeding studies with Chlorantraniliprole: デュポン株式会社、未公表
- 60. Estimated Chlorantraniliprole residues and proposed MRLs/Tolerances in livestock commodities North America : デュポン株式会社、未公表
- 61. クロラントラニリプロール、残留基準値設定資料:デュポン株式会社、未公表
- **62**. 食品健康影響評価について(平成 22 年 8 月 11 日付け厚生労働省発食安 0811 第 3 号)
- 63. 食品健康影響評価の結果の通知について(平成23年6月16日付け府食第496号)
- 64. 食品健康影響評価について(平成 24 年 7 月 18 日付け厚生労働省発食安 0718 第 3 号)
- 65. クロラントラニリプロール 残留基準値設定資料:デュポン株式会社、 2004~2012年、未公表
- 66. 農薬抄録クロラントラニリプロール(殺虫剤)(平成24年4月17日改訂): デュポン株式会社、一部公表
- 67. クロラントラニリプロール、作物残留試験成績:デュポン株式会社、未公表

- 68. クロラントラニリプロール 残留基準値設定資料:デュポン株式会社、 2004~2012年、未公表
- 69. 食品健康影響評価の結果の通知について (平成 24 年 11 月 12 日付け府食第 986 号)
- 70. 食品、添加物等の規格基準(昭和34年厚生省告示370号)の一部を改正する件について(平成24年12月28日付け厚生労働省告示595号)
- 71. 食品、添加物等の規格基準(昭和34年厚生省告示370号)の一部を改正する件について(平成25年10月22日付け厚生労働省告示337号)
- 72. 食品健康影響評価について(平成 26 年 3 月 20 日付け厚生労働省発食安 0320 第 3 号)
- 73. 農薬抄録クロラントラニリプロール (殺虫剤) (平成 25 年 12 月 12 日改訂): デュポン株式会社、一部公表予定
- 74. クロラントラニリプロール、作物残留試験成績(しょうが、オクラ):デュポン株式会社、未公表
- 75. クロラントラニリプロール 残留基準値設定資料:デュポン株式会社、 2011~2014年、未公表
- 76. 平成 17~19 年の食品摂取頻度・摂取量調査(薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会資料、2014年2月20日)