

府 食 第 140 号 平成22年2月25日

厚生労働大臣 長妻 昭 殿

食品安全委員会 委員長 小泉

食品健康影響評価の結果の通知について

平成21年8月4日付け厚生労働省発食安0804第6号をもって厚生労働大臣から食品安全委員会に意見を求められたスピネトラムに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

スピネトラムの一日摂取許容量を 0.024 mg/kg 体重/日と設定する。

農薬評価書

スピネトラム

(第2版)

2010年2月 食品安全委員会

目 次

		良
0)審議の経緯	. 3
0)食品安全委員会委員名簿	. 3
0)食品安全委員会農薬専門調査会専門委員名簿	. 4
0)要約	. 5
I	. 評価対象農薬の概要	. 6
	1. 用途	. 6
	2. 有効成分の一般名	. 6
	3. 化学名	. 6
	4. 分子式	. 7
	5. 分子量	. 7
	6. 構造式	. 8
	7. 開発の経緯	. 8
_	ch A 44 to 17 7 54 FA A 455 FF	^
Ш	. 安全性に係る試験の概要	
	1. 動物体内運命試験	
	(1) スピネトラム-J	
	(2) スピネトラム-L	
	2. 植物体内運命試験	
	(1)レタス	
	(2) かぶ	
	(3)りんご	
	(4)水稲	24
	3. 土壌中運命試験	25
	(1)好気的湛水土壌中運命試験	25
	(2) 好気的土壌中運命試験	26
	(3)土壌表面光分解試験	27
	(4)土壌吸着試験	27
	4. 水中運命試験	27
	(1)加水分解試験	27
	(2)水中光分解試験(滅菌緩衝液)	28
	(3)水中光分解試験(滅菌自然水)	28
	5. 土壌残留試験	29
	6. 作物残留試験	
	(1)作物残留試験	
	(2)後作物残留試験	30

(3)推定摂取量	31
7. 一般薬理試験	31
8. 急性毒性試験	32
(1)急性毒性試験	32
(2)急性神経毒性試験	33
9. 眼・皮膚に対する刺激性及び皮膚感作性試験	33
1 0. 亜急性毒性試験	33
(1)90 日間亜急性毒性試験(ラット)	33
(2)90 日間亜急性毒性試験(イヌ)	36
11.慢性毒性試験及び発がん性試験	37
(1)1年間慢性毒性試験(イヌ)	37
(2)2年間慢性毒性/発がん性併合試験(ラット)	38
(3)18 カ月間発がん性試験(マウス)	39
(4)1年間慢性神経毒性試験(ラット)	40
1 2 . 生殖発生毒性試験	40
(1)2世代繁殖試験(ラット)	40
(2)発生毒性試験(ラット)	42
(3)発生毒性試験(ウサギ)	42
1 3.遺伝毒性試験	42
Ⅲ. 食品健康影響評価	44
別紙1:代謝物/分解物略称	47
別紙2:検査値等略称	49
別紙3:作物残留試験(国内)	50
別紙4:作物残留試験(海外)	52
- 务昭	55

<審議の経緯>

-第1版関係-

2008年 2月26日インポートトレランス申請(グレープフルーツ、レモン等)

2008年 3月 3日 厚生労働大臣より残留基準設定に係る食品健康影響評価に

ついて要請(厚生労働省発食安第 0303013 号)、関係書類

の接受 (参照 1~46)

2008年 3月 27日 第 229 回食品安全委員会 (要請事項説明) (参照 47)

2008年 7月 30日 第 14 回農薬専門調査会確認評価第二部会 (参照 48)

2008年 11月 18日 第 45 回農薬専門調査会幹事会 (参照 49)

2008年 12月 4日 第 265 回食品安全委員会(報告)

2008年 12月 4日 より 2009年1月2日 国民からの御意見・情報の募集

2009年 1月 13日 農薬専門調査会座長より食品安全委員会委員長へ報告

2009年 1月 15日 第 269 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照50)

一第2版関係一

2009年 6月 18日 農林水産省より厚生労働省へ農薬登録申請に係る連絡及び 基準設定依頼(新規:稲、りんご、なし等)

2009年 8月 4日 厚生労働大臣より残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安 0804 第 6 号)、関係書類の接受(参照 51~53)

2009年 8月 6日 第 297 回食品安全委員会 (要請事項説明) (参照 54)

2010年 1月 20日 第 59 回農薬専門調査会幹事会 (参照 55)

2010年 2月23日 農薬専門調査会座長より食品安全委員会委員長へ報告

2010年 2月 25日 第 321 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知)

く食品安全委員会委員名簿>

(2009年6月30日まで) (2009年7月1日から)

見上 彪(委員長) 小泉直子(委員長)

小泉直子(委員長代理) 見上 彪(委員長代理*)

長尾拓長尾拓野村一正野村一正畑江敬子廣瀬雅雄廣瀬雅雄大田容常

*:2009年7月9日から

<食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士 (座長) 三枝順三 布柴達男 林 真(座長代理) 佐々木有 根岸友惠 代田眞理子 平塚 明 赤池昭紀 石井康雄 高木篤也 藤本成明 泉 啓介 玉井郁巳 細川正清 上路雅子 田村廣人 松本清司 臼井健二 津田修治 柳井徳磨 江馬 眞 津田洋幸 山崎浩史 大澤貫寿 出川雅邦 山手丈至 長尾哲二 太田敏博 與語靖洋 大谷 浩 中澤憲一 吉田 緑 若栗 小澤正吾 納屋聖人 忍

西川秋佳

(2008年4月1日から)

小林裕子

小林裕子

三枝順三***

鈴木勝士 (座長) 平塚 明 佐々木有 林 真(座長代理) 代田眞理子 藤本成明 相磯成敏 高木篤也 細川正清 赤池昭紀 玉井郁巳 堀本政夫 石井康雄 田村廣人 本間正充 泉 啓介 津田修治 松本清司 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 中澤憲一* 臼井健二 山手丈至 太田敏博 永田 清 與語靖洋 大谷 浩 納屋聖人 義澤克彦** 小澤正吾 西川秋佳 吉田 緑 川合是彰 布柴達男 若栗 忍

> 根岸友惠 *: 2009年1月19日まで 根本信雄 **: 2009年4月10日から ***: 2009年4月28日から

要約

土壌放線菌(Saccharopolyspora spinosa)由来マクロライド系殺虫剤であるスピネトラム(スピネトラム-J 及びスピネトラム-L の混合物、CAS No. 187166-40-1 及び 187166-15-0)について、各種試験成績等を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット)、植物体内運命(レタス、かぶ、りんご及び水稲)、作物残留、亜急性毒性(ラット及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2 世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、スピネトラム投与による影響は、主に多数の臓器におけるリン脂質症と考えられるマクロファージ又は組織球の集簇及び空胞化並びに上皮細胞の空胞化(甲状腺、腎臓、精巣上体等)であった。神経毒性、発がん性、催奇形性及び遺伝毒性は認められなかった。

各試験で得られた無毒性量の最小値は、イヌを用いた 1 年間慢性毒性試験の 2.49 mg/kg 体重/日であったので、これを根拠として、安全係数 100 で除した 0.024 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

I. 評価対象農薬の概要

1. 用途

殺虫剤

2. 有効成分の一般名

和名:スピネトラム

英名: spinetoram (ISO 名)

3. 化学名

IUPAC

和名:スピネトラム-Jとスピネトラム-Lの混合物 <スピネトラム-J>

(2R,3aR,5aR,5bS,9S,13S,14R,16aS,16bR)-2-(6-デオキシ-3-O-エチル-2,4-ジ-O-メチル- α -L-マンノピラノシロキシ)-13-[(2R,5S,6R)-5-(ジメチルアミノ) テトラヒドロ-6-メチルピラン-2-イロキシ]-9-エチル-2,3,3a,4,5,5a,5b,6,9,10,11,12,13,14,16a,16b-ヘキサデカヒドロ-<math>14-メチル-1H-as-インダセノ[3,2-d] オキサシクロドデシン-7,15-ジオン<スピネトラム-L>

(2R,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-2-(6-デオキシ-3-O-エチル-2,4-ジ-Oメチル- α -L-マンノピラノシロキシ)-13-[(2R,5S,6R)-5-(ジメチルアミノ) テトラヒドロ-6-メチルピラン-2-イロキシ]-9-エチル-2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-テトラデカヒドロ-4,14-ジメチル-1H-as-インダセノ[3,2-d] オキサシクロドデシン-7,15-ジオン

英名: mixture of spinetoram-J and spinetoram-L

<spinetoram-J>

 $(2R,3aR,5aR,5bS,9S,13S,14R,16aS,16bR)-2-(6-deoxy-3-O-ethyl-2,4-di-O-methyl-\alpha-L-mannopyranosyloxy)-13-[(2R,5S,6R)-5-(dimethylamino)tetrahydro-6-methylpyran-2-yloxy]-9-ethyl-2,3,3a,4,5,5a,5b,6,9,10,11,12,13,14,16a,16b-hexadecahydro-14-methyl-1<math>H$ -as-indaceno[3,2-d]oxacyclododecine-7,15-dione

<spinetoram-L>

(2R,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-2-(6-deoxy-3-O-ethyl-2,4-di-O-methyl- α -L-mannopyranosyloxy)-13-[(2R,5S,6R)-5-(dimethyl amino)tetrahydro-6-methylpyran-2-yloxy]-9-ethyl -2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-tetradecahydro-4,14-dimethyl-1H-as-indaceno[3,2-d]oxacyclododecine-7,15-dione

CAS (No.187166-40-1, 187166-15-0)

和名:スピネトラム-Jとスピネトラム-Lの混合物

<スピネトラム-J>

- 1H-as-インダセノ[3,2-d]オキサシクロドデシン-7,15-ジオン, 2-[(6
- -デオキシ-3-Oエチル-2.4-ジ-Oメチル- α -L-マンノピラノシル)オキシ
- -13-[[(2R,5S,6R)-5-[ijyfnrs]] -13-[[(2R,5S,6R)-5-[ijyfnrs]]
- -ピラン-2-イル]オキシ]-9-エチル
- -2,3,3a,4,5,5a,5b,6,9,10,11,12,13,14,16a,16b-ヘキサデカヒドロ
- -14- \cancel{F} \cancel{N} -(2R,3aR,5aR,5bS,9S,13S,14R,16aS,16bR)
- <スピネトラム-L>
 - 1H-as-インダセノ[3,2-d]オキサシクロドデシン-7,15-ジオン, 2-[(6
 - -デオキシ-3-Oエチル-2,4-ジ-O-メチル- α -L-マンノピラノシル)オキシ]

 - -ピラン-2-イル]オキシ]-9-エチル
 - -2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-テトラデカヒドロ-4,14
 - -ジメチル-(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)

英名: mixture of spinetoram-J and spinetoram-L

<spinetoram-J>

- 1*H*-as-indaceno[3,2-*d*]oxacyclododecin-7,15-dione, 2-[(6
- -deoxy-3-O-ethyl-2,4-di-O-methyl-α-L-mannopyranosyl)oxy]
- -13-[(2R,5S,6R)-5-(dimethylamino)tetrahydro-6-methyl-2H-pyran-2-yl]oxy]-9-ethyl
- -2,3,3a,4,5,5a,5b,6,9,10,11,12,13,14,16a,16b-hexadecahydro
- 14-methyl-(2*R*,3a*R*,5a*R*,5b*S*,9*S*,13*S*,14*R*,16a*S*,16b*R*)
- <spinetoram-L>
 - 1*H*-as-indaceno[3,2-d]oxacyclododecin-7,15-dione, 2-[(6
 - -deoxy-3-O-ethyl-2,4-di-O-methyl-α-L-mannopyranosyl)oxy]
 - -13-[[(2R,5S,6R)-5-(dimethylamino)tetrahydro-6-methyl-2H
 - -pyran-2-yl]oxy]-9-ethyl
 - -2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-tetradecahydro-4,14
 - -dimethyl-(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)

4. 分子式

5. 分子量

スピネトラム-J: $C_{42}H_{69}NO_{10}$ スピネトラム-L: $C_{43}H_{69}NO_{10}$ スピネトラム-J: 748.02 スピネトラム-L: 760.03

6. 構造式

スピネトラム-J

スピネトラム-L

7. 開発の経緯

スピネトラムは、米国ダウ・アグロサイエンス社がスピノシン誘導体の一連の探索研究から開発したマクロライド系殺虫剤である。土壌放線菌(Saccharopolyspora spinosa)が産生する活性物質(スピノシン)に由来し、昆虫の神経伝達系に関与すると考えられている。すなわち、シナプス後膜に存在するアセチルコリン受容体とGABA受容体のイオンチャンネルに作用し、神経の異常興奮を引き起こすと考えられている。野菜類、茶、果樹及び水稲に寄生する鱗翅目、双翅目及びハモグリバエ類の害虫に対して防除効果を示す。

スピネトラムは、スピネトラム・J及びスピネトラム・Lの混合物で、原体中にはそれぞれ58.1及び8.4%以上(2成分の合計で83.0%以上)含まれる。海外においては、2008年にニュージーランド及び米国で登録されている。日本においては、2005年からダウ・アグロサイエンス社と住友化学の共同開発が進められてきた。

今回、住友化学株式会社より農薬取締法に基づく農薬登録申請(新規:稲、 りんご、なし等)がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験[II.1~4]は、表 1 及び 2 に示す標識体又は混合物を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合はスピネトラムに換算した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

	略称	標識位置
(1)	14C-スピネトラム-J	スピネトラム-J のマクロライド環の炭素を均一に
1)	コンスとネトノムも	¹⁴ C で標識したもの
		スピネトラム-J のマクロライド環の炭素を均一に
2	¹⁴ C-スピネトラム-J(D5)	14C で標識し、さらにマンノピラノシドの3位のエ
		トキシ基を重水素で標識したもの
		スピネトラム-J のマクロライド環の炭素を均一に
3	14C-スピネトラム-J(D2)	14Cで標識し、さらにインダセン環の4及び5位を
		重水素で標識したもの
(<u>4</u>)	14C-スピネトラム-L	スピネトラム·L のマクロライド環の炭素を均一に
4)		¹⁴ C で標識したもの
		スピネトラム·L のマクロライド環の炭素を均一に
5	¹⁴ C-スピネトラム-L(D5)	14C で標識し、さらにマンノピラノシドの3位のエ
		トキシ基を重水素で標識したもの
	14C-スピネトラム-L(D2)	スピネトラム·L のマクロライド環の炭素を均一に
6		14Cで標識し、さらにインダセン環の4及び5位を
		重水素で標識したもの

表 1 標識体の略号及び標識位置

表 2 投与及び処理に用いた混合物の組成

略号	組成
¹⁴ C-スピネトラム-J(I)	①:②:③=1:1:1
14C-スピネトラム-J(II)	①:②=1:1
¹⁴ C-スピネトラム-L(I)	④ : ⑤ : ⑥=1 : 1 : 1
¹⁴ C-スピネトラム-L(II)	④ : ⑤=1 : 1

1. 動物体内運命試験

(1) スピネトラム-J

① 吸収

a. 血中濃度推移

Fischer ラット (一群雌雄各 4 匹) に 14 C-スピネトラム-J(I)を 10 mg/kg 体重 (以下[1.]において「低用量」という。) 若しくは 100 mg/kg 体重 (以下[1.]において「高用量」という。) で単回経口投与し、又は低用量で静脈内投与して、血中濃度推移について検討された。

血漿中放射能濃度推移は表3に示されている。

単回経口投与したスピネトラム-J は速やかな吸収及び消失を示した。血漿

中における T_{max} 及び $T_{1/2}$ に性差は認められなかった。(参照 2)

投与方法		単回経	静脈内投与						
投与量(mg/kg 体重)	1	.0	10	00	10				
性別	雄	雌	雄	雌	雄	雌			
Tmax (時間)	1.4	1.5	2.0	1.7					
C _{max} (µg/mL)	0.2	0.3	2.0	1.7	19.0	9.5			
T _{1/2} (時間)	3.9	3.9	8.7	10.7	7.4	6.8			

表 3 血漿中放射能濃度推移

/:適用せず

b. 吸収率

排泄試験[1.(1)④]における静脈内投与での糞中排泄率は77.4~85.1%であり、そのうち親化合物は6.9~16.6%であった。経口投与後の糞中の親化合物と代謝物の割合は、静脈内投与と類似していたことから、経口投与されたスピネトラムの一部は、吸収された後、未変化の親化合物として排泄されたと考えられた。

したがって、尿中総放射能、投与後 24 時間に排泄された糞中の代謝物由来の放射能及び投与後 24~168 時間に排泄された糞中の総放射能の合計から、低用量投与群における経口吸収率は、雄で 72%、雌で 77%と推定された。 (参照 2)

② 分布

a. 分布①

血中濃度推移検討試験[1.(1)①a.]及び排泄試験[1.(1)④]で得られた組織及び臓器を用いた体内分布試験が実施された。

主要組織中の残留放射能濃度は表 4 に示されている。

投与 168 時間後の組織中放射能濃度は、いずれの投与群においても、雄では脂肪、腎臓、肝臓、リンパ節及び胃腸管で高く、雌ではそれらに加え卵巣で高かった。しかし、いずれの投与群の組織においても投与 168 時間後には 2%TAR を超えず、スピネトラム-J 及び代謝物に残留性はないと考えられた。低用量群と高用量群の組織中放射能濃度を比較すると、雌雄ともにほぼ 10 倍の差が認められた。単回経口投与群と反復経口投与群の組織中放射能濃度はほぼ同じであった。静脈内投与群の組織中放射能濃度は、多くの組織で、単回経口投与群よりも約 3 倍高かった。(参照 2)

表 4 主要組織中の残留放射能濃度 (μg/g)

投与	投与量	性別	投与 168 時間後
方法	(mg/kg 体重)	1生为1	汉子 108 时间仮
		雄	腎臓(0.36)、脂肪(0.29)、肝臓(0.16)、リンパ節(0.12)、胃
	10	ж	腸管(0.11)、その他(0.1 未満)
	10	雌	脂肪(0.43)、腎臓(0.37)、肝臓(0.14)、胃腸管(0.12)、卵巣
単回		миг	(0.12)、リンパ節(0.10)、子宮(0.10)、その他(0.1 未満)
経口		雄	脂肪(11.8)、腎臓(4.06)、リンパ節(2.73)、副腎(1.89)、胃
ルエ ロ		4年	腸管(1.62)、膵臓(1.36)、肝臓(1.09)、その他(1.0 未満)
	100		脂肪(12.2)、腎臓(3.54)、卵巣(2.53)、胃腸管(2.23)、リン
		雌	パ節(2.13)、膀胱(1.89) 、副腎(1.74)、皮膚(1.69)、膵臓
			(1.54)、肝臓(1.53)、その他(1.0 未満)
	10	雄	脂肪(0.30)、腎臓(0.28)、肝臓(0.17)、リンパ節(0.11)、胃
反復		広臣	腸管(0.10)、その他(0.1 未満)
経口		雌	脂肪(0.49)、腎臓(0.27)、肝臓(0.14)、リンパ節(0.12)、 胃
			腸管(0.11)、その他(0.1 未満)
			腎臓(0.89)、脂肪(0.88)、肝臓(0.41)、脾臓(0.33)、骨髄
		雄	(0.26)、副腎(0.23)、リンパ節(0.19)、胃腸管(0.18)、皮膚
			(0.15)、その他(0.1 未満)
静脈内	10		脂肪(2.37)、腎臓(0.74)、肝臓(0.37)、卵巣(0.35)、脾臓
		ılləff -	(0.31)、胃腸管(0.25)、リンパ節(0.24)、副腎(0.23)、膀胱
		雌	(0.23)、子宮(0.18)、甲状腺(0.15)、肺(0.15)、膵臓(0.10)、
			その他(0.1 未満)

b. 分布②

Fischer ラット (一群雌雄各 4 匹) に 14 C-スピネトラム-J(II)を低用量又は高用量で単回経口投与し、 C_{max} 時(投与 2 時間後)及び $1/2C_{max}$ 時(投与 7 時間後)にと殺して得られた組織及び臓器を用いた体内分布試験が実施された。

主要組織中の残留放射能濃度は表5に示されている。

 C_{max} 時における組織中放射能濃度は、雌雄いずれの投与群においても、消化管、リンパ節、肝臓、肺、副腎及び脾臓で高かった。 $1/2C_{max}$ 時における消化管、脂肪、リンパ節、肺及び副腎では、 C_{max} 時と同等かそれ以下の濃度で残存していたが、肝臓では減少していた。

低用量群と高用量群の組織中放射能濃度を比較すると、ほとんどの組織中放射能濃度はほぼ用量に比例し 10 倍の差が認められた。

低用量群において、 $1/2C_{max}$ 時の組織中放射能濃度は、平均して C_{max} 時の 60%であった。このことから、ほとんどの組織において投与 7 時間後以前に放射能濃度は最高値に達し、投与 7 時間後より減少し始めたことが示された。高用量群においては C_{max} 時と $1/2C_{max}$ 時の組織中放射能濃度の差は、低用量群で認められた差より小さく、100~mg/kg 体重の用量で飽和が生じたことが示された。 (参照 3)

表 5 主要組織中の残留放射能濃度 (μg/g)

投与量 (mg/kg 体重)	性別	C _{max} 時(投与2時間後)	1/2C _{max} 時(投与7時間後)
	雄	消化管(152)、リンパ節(37.2)、肝臓(14.0)、肺(12.7)、副腎(7.26)、脾臓(6.43)、骨髄(5.68)、膀胱(5.53)、その他(5.0 未満)	(5.70)、副腎(4.29)、膀胱(4.24)、
10	雌	消化管(119)、リンパ節(32.3)、肝臓(22.4)、肺(21.6)、副腎(16.0)、脾臓(11.6)、骨髄(10.6)、膵臓(7.86)、腎臓(7.38)、脂肪(5.56)、甲状腺(5.12)、その他(5.0 未満)	(9.38)、脂肪(8.19)、骨髄(7.84)、 脾臓(6.32)、膵臓(5.26)、副腎
	雄	消化管(1,270)、肝臓(170)、リンパ節(135)、肺(92.6)、副腎(76.9)、脾臓(51.4)、骨髄(50.5)、その他(50.0未満)	(62.2)、骨髄(60.6)、副腎(46.4)、
100	雌	消化管(1,160)、肝臓(172)、リンパ節(140)、肺(133)、副腎(114)、骨髄(83.8)、脾臓(74.0)、膵臓(65.6)、甲状腺(51.9)、その他(50.0 未満)	髄(149)、肺(112)、副腎(91.5)、

③ 代謝

排泄試験[1.(1)④]で得られた尿及び糞並びに体内分布試験②[1.(1)②b.]で得られた血漿、肝臓、腎臓及び甲状腺を用いて代謝試験が実施された。 尿及び糞中代謝物は表 6 に示されている。

全投与群の代謝物プロファイルには、投与量、性別又は投与回数による大きな差は認められなかった。尿中において、親化合物は、低用量単回経口投与群の雌雄及び反復経口投与群では認められず、高用量単回経口投与群の雌で 0.06% TAR、静脈内投与群から $0.05\sim0.29\%$ TAR 認められた。糞中からは、親化合物はいずれの投与群でも認められた($6.9\sim40.0\%$ TAR)。尿中の主要代謝物はスピネトラム-Jのグルタチオン抱合体であり、 $2.0\sim5.4\%$ TAR 認められた。糞中の主要代謝物はスピネトラム-Jのシステイン抱合体であり、 $26.7\sim57.1\%$ TAR 認められた。

血漿、肝臓、腎臓及び甲状腺中において、親化合物は C_{max} 群では 4 種の組織全部から、 $1/2C_{max}$ 群では血漿を除く全組織から検出された。親化合物は肝臓で最も多く認められ、 C_{max} 群では $1.4\sim3.1\%$ TAR であった。代謝物は7 種類認められたが、5% TAR を超えるものはなかった。最も多く認められたのは親化合物のグルタチオン抱合体であり、肝臓で $1.2\sim2.1\%$ TAR であった。その他に F 及び F のグルタチオン抱合体が主に肝臓及び腎臓で 1% TAR 以下認められた。

スピネトラム-J の主要代謝経路は、親化合物のグルタチオン抱合化、N 脱メチル化、O・脱エチル化及び水酸化により生じた代謝物のグルタチオン抱合化及びグルタチオン抱合体からシステイン抱合体への変換が考えられた。 (参照 2、3)

表 6 尿及び糞中代謝物 (%TAR)

投与	投与量	性	試	スピネトラム	大· 「(四) ()
方法	(mg/kg体重)	別	料	-J	代謝物
		雄	尿	0.0	スピネトラム-J-Glu(2.1)、F-Glu(1.1)、 M-Glu(0.27)、B-Glu(0.21)、J-Ace(0.14)、 F-CysI(0.02)、N-Glu(0.01)、未同定代謝物(0.17)
		•	糞	20.9	スピネトラム-J-Cys(29.1)、F-CysI(12.4)、 F-CysII(11.7)、F(6.6)、N-Glu(4.4)、M-Cys(1.8)
	10	雌	尿	0.0	スピネトラム-J-Glu(2.4)、F-Glu(1.2)、 M-Glu(0.30)、B-Glu(0.24)、J-Ace(0.15)、 F-CysI(0.06)、N-Glu(0.02)、未同定代謝物(0.21)
単回		此	糞	14.7	スピネトラム-J-Cys(45.8)、 F-CysII(7.6)、 F-CysI(7.2)、F(3.9)、N-Glu(2.4)、M-Cys(1.1)、 未同定代謝物(1.6)
経口		雄	尿	0.0	スピネトラム-J-Glu(3.4)、B-Glu(0.34)、 F-Glu(0.24)、M-Glu(0.06)、J-Ace(0.05)、 F-CysI(0.04)、N-Glu(0.02)、未同定代謝物(0.05)
	100		糞	40.0	スピネトラム-J-Cys(30.8)、F-CysI(5.5)、F-CysII(2.2)、N-Glu(1.9)、M-Cys(0.33)、未同定代謝物(3.0)
		雌	尿	0.06	スピネトラム-J-Glu(3.6)、B-Glu(0.36)、 F-Glu(0.33)、J-Ace(0.10)、M-Glu(0.08)、 F(0.04)、F-CysI(0.03)、N-Glu(0.01)、未同定代 謝物(0.15)、
			糞	15.6	スピネトラム-J-Cys(57.1)、F-CysI(6.9)、 N-Glu(2.4)、F-CysII(1.7)、M-Cys(0.25)
	10	1-11-	尿	0.0	スピネトラム-J-Glu(2.0)、F-Glu(0.80)、 B-Glu(0.20)、M-Glu(0.19)、F-CysI(0.04)、 N-Glu(0.01)、未同定代謝物(0.10)
反復		雄		22.0	スピネトラム-J-Cys(38.5)、F-CysII(6.4)、 F(6.3)、J-Ace(5.3)、F-CysI(4.8)、N-Glu(1.7)、 M-Cys(0.95)
経口		雌	尿	0.0	スピネトラム-J-Glu(2.6)、F-Glu(0.78)、 B-Glu(0.26)、M-Glu(0.19)、F-CysI(0.06)、 J-Ace(0.06)、N-Glu(0.02)、未同定代謝物(0.11)
			糞	22.2	スピネトラム-J-Cys(47.7)、F-CysI(6.2)、 F-CysII(4.6)、F(4.3)、N-Glu(2.2)、M-Cys(0.69)、 未同定代謝物(1.70)
静脈内	10	雄	尿	0.05	スピネトラム-J-Glu(5.2)、F-Glu(2.2)、 M-Glu(0.53)、B-Glu(0.52)、J-Ace(0.32)、 F-CysI(0.03)、N-Glu(0.01)、未同定代謝物(0.10)

投与	投与量	性	試	スピネトラム	代謝物
方法	(mg/kg体重)	別	料	-J	1 (
			糞	0.0	スピネトラム-J-Cys(26.7)、F-CysII(15.0)、
			美	6.9	F(11.5), F-CysI(11.1), N-Glu(3.9), M-Cys(2.3)
					スピネトラム-J-Glu(5.4)、F-Glu(2.1)、
		雌	尿	0.29	B-Glu(0.54), M-Glu(0.51), J-Ace(0.50),
					F-CysI(0.06)、N-Glu(0.02)、未同定代謝物(0.13)
				16.6	スピネトラム-J-Cys(27.3)、F(14.4)、
			糞		F-CysII(12.8), F-CysI(9.0), N-Glu(3.2),
					M-Cys(1.9)

-Glu: グルタチオン抱合体、-Cys: システイン抱合体、-Ace: アセチルシステイン抱合体 F-CvsI:Fのシステイン抱合体 異性体 I、 F-CvsII:Fのシステイン抱合体 異性体 II

4 排泄

Fischer ラット(一群雌雄各 4 匹)に非標識スピネトラム-Jを低用量で 14 日間経口投与し、15日目に14C-スピネトラム-Jを低用量で投与した反復経口 投与群並びに血中濃度推移検討試験[1.(1)①a.]で用いた単回経口投与群及 び静脈内投与群から得られた、投与後 168 時間の尿及び糞を用いた排泄試験 が実施された。

投与後168時間の尿及び糞中排泄率は表7に示されている。

単回経口投与群では、投与後 168 時間の尿中に 4%TAR 以上、糞中に 80%TAR 以上が排泄され、そのほとんどが投与後 24 時間に排泄された。主 要排泄経路は糞中であった。投与量、性別及び投与回数の違いによる差は認 められなかった。また、投与経路にかかわらず、同量の放射能(約90%TAR) が糞及び尿に排泄された。静脈内投与においては、経口投与した場合より尿 中に排泄された割合が高かったが $(9\sim10\%TAR)$ 、主要排泄経路は糞中であ った。(参照2)

<u> </u>	/ 区 100	H-1] [H-1] G-2	/// C	/ /)) /L T	- (/01/	1117		
投与方法			圣口						
投与量]	l0 mg/k	g体重		100 mg/kg 体重				
性別	姑	É	Щ	進	1	推	ļ	堆	
⇒ L √lo1		714		214		21/4			

表 7 投与後 168 時間の尿及び糞中排泄率 (%TAR)

1				- I	L ' '					
投与量	1	0 mg/k	g体重		100 mg/kg 体重					
性別	姑	É	Щ	准	拉	准	雌			
試料	尿	尿 糞		糞	尿	糞	尿	糞		
投与後 168 時間*	4.8	86.9	4.6	84.6	4.3	83.3	4.8	83.9		
投与方法		反復紀	圣口		静脈内					
投与量	1	0 mg/k	g体重		10 mg/kg 体重					
性別	対	É	雌		加	准	雌			
試料	尿	糞	尿	糞	尿	糞	尿	糞		
投与後 168 時間*	3.7	85.8	4.1	89.6	9.1	77.4	9.8	85.1		

注) 尿中排泄率の値はケージ洗浄液を含む。

^{*:} 反復投与試験については、標識体投与後 168 時間。

(2) スピネトラム-L

① 吸収

a. 血中濃度推移

Fischer ラット(一群雌雄各 4 匹)に ¹⁴C-スピネトラム-L(II)を低用量若しくは高用量で単回経口投与し、又は低用量で静脈内投与して、血中濃度推移について検討された。

血漿中放射能濃度推移は表8に示されている。

単回投与したスピネトラム-L は速やかな吸収及び消失を示した。血漿中における T_{max} 、 C_{max} 及び $T_{1/2}$ に性差は認められなかった。(参照 4)

			112 112 12 12 1			
投与方法		単回経	静脈内投与			
投与量(mg/kg 体重)	1	.0	100		10	
性別	雄	雌	雄	雌	雄	雌
T _{max} (時間)	3.5	1.3	4.0	3.0		
C _{max} (µg/mL)	0.3	0.4	2.3	2.9	23.3	9.5
T _{1/2} (時間)	7.8	7.3	22.8	23.9	12.0	11.6

表 8 血漿中放射能濃度推移

/:適用せず

b. 吸収率

排泄試験[1.(2)④]における静脈内投与での糞中排泄率は 78.5~80.7%であり、そのうち親化合物は 16.9~22.5%であった。経口投与後の糞中の親化合物と代謝物の割合は、静脈内投与と類似していたことから、経口投与されたスピネトラムの一部は、吸収された後、未変化の親化合物として排泄されたと考えられた。

したがって、尿中総放射能、投与後 24 時間に排泄された糞中の代謝物由来の放射能及び投与後 24~168 時間に排泄された糞中の総放射能の合計から、低用量投与群における経口吸収率は、雄で 74%、雌で 83%と推定された。 (参照 4)

② 分布

a. 分布①

血中濃度推移検討試験[1.(2)①a.]の及び排泄試験[1.(2)④]で得られた 組織及び臓器を用いて体内分布試験が実施された。

投与 168 時間後の主要組織中の残留放射能濃度は表 9 に示されている。

投与 168 時間後の組織中放射能濃度は、いずれの投与群においても、雄では脂肪、リンパ節、副腎、胃腸管及び膵臓で高く、雌ではそれらに加え卵巣及び子宮で高かった。しかし、いずれの投与群の組織においても 6%TAR を超えず、スピネトラム-L 及び代謝物に残留性はないと考えられた。低用量群

と高用量群の組織中放射能濃度を比較すると、雌雄ともに 10 倍以上の差が認められた。単回経口投与群と反復経口投与群の組織中放射能濃度はほぼ同じであった。静脈内投与群の組織中放射能濃度は、多くの組織で、単回経口投与群よりも約 3 倍高かった。(参照 4)

	表 9	土安	組織中の残留放射能濃度(μg/g)
投与 方法	投与量 (mg/kg 体重)	性別	投与 168 時間後
	10	雄	脂肪(2.18)、リンパ節(1.16)、副腎(0.63)、肝臓(0.63)、胃腸管(0.40)、腎臓(0.34)、膵臓(0.26)、膀胱(0.21)、その他(0.2 以下)
単回	10	雌	脂肪(2.81)、リンパ節(0.72)、皮膚(0.64)、副腎(0.53)、胃腸管(0.43)、卵巣(0.39)、膵臓(0.36)、子宮(0.32)、膀胱(0.30)、腎臓(0.27)、肝臓(0.24)、その他(0.2 以下)
経口		雄	脂肪(56.5)、リンパ節(18.5)、皮膚(13.7)、副腎(13.1)、胃腸管(7.51)、腎臓(7.51)、膵臓(5.84)、肝臓(5.10)、その他(5.0 未満)
	100	雌	脂肪(58.1)、卵巣(15.4)、リンパ節(13.9)、子宮(11.4)、皮膚(11.1)、副腎(8.83)、胃腸管(8.80)、腎臓(7.72)、膵臓(5.91)、膀胱(5.36)、その他(5.0 未満)
	10	雄	脂肪(2.37)、リンパ節(0.94)、胃腸管(0.74)、副腎(0.60)、 皮膚(0.46)、肝臓(0.39)、腎臓(0.37)、骨髄(0.33)、膵臓 (0.32)、その他(0.2 未満)
経口	10	雌	脂肪 (2.31) 、リンパ節 (0.91) 、卵巣 (0.75) 、副腎 (0.50) 、胃腸管 (0.47) 、子宮 (0.45) 、膀胱 (0.38) 、腎臓 (0.27) 、骨髄 (0.27) 、膵臓 (0.25) 、その他 $(0.2$ 未満)
静脈内	10	雄	脂肪(6.73)、リンパ節(2.38)、副腎(1.50)、胃腸管(1.08)、 肝臓(1.06)、腎臓(0.79)、膵臓(0.78)、膀胱(0.55)、皮膚 (0.51)、甲状腺(0.44)、脾臓(0.39)、その他(0.3 未満)
		雌	脂肪(7.01)、皮膚(2.21)、リンパ節(2.18)、膵臓(1.21)、副腎(1.15)、膀胱(0.89)、腎臓(0.74)、胃腸管(0.73)、卵巣(0.57)、骨髄(0.46)、肝臓(0.46)、その他(0.4 未満)

表 9 主要組織中の残留放射能濃度 (μg/g)

b. 分布②

Fischer ラット (一群雌雄各 4 匹) に 14 C-スピネトラム-L(II)を低用量又は 高用量で単回経口投与し、 C_{max} 及び $1/2C_{max}$ 時 1 にと殺して得られた組織及 び臓器を用いて体内分布試験が実施された。

主要組織中の残留放射能濃度は表 10 に示されている。

 C_{max} 時における組織中放射能濃度は、雌雄いずれの投与群においても、消化管、リンパ節、肝臓、肺、副腎及び脾臓で高かった。 $1/2C_{max}$ 時における消化管、脂肪、リンパ節、肺及び副腎では、 C_{max} 時と同等かそれ以下の濃度

_

 $^{^{1}}$ C_{max} 時:低用量群の雄は投与 3 時間後、雌は投与 2 時間後、高用量群の雄は投与 4 時間後、雌は投与 3 時間後。 $1/2C_{max}$ 時:低用量群の雄は投与 10 時間後、雌は投与 8 時間後、高用量群の雄は投与 21 時間後、雌は投与 10 時間後。

で残存していたが、肝臓では減少していた。

低用量群と高用量群の組織中放射能濃度を比較すると、ほとんどの組織でほぼ用量に比例した差が認められた(C_{max} 時で 17 倍、 $1/2C_{max}$ 時で $9\sim13$ 倍)。

雄における $1/2C_{max}$ 時の組織中放射能濃度は、平均して C_{max} 時の 80% (低用量群) 又は 40% (高用量群) であった。一方、雌における $1/2C_{max}$ 時の組織中放射能濃度は、平均して C_{max} 時の 130% (低用量群) とほぼ同等(高用量群) であった。(参照 5)

	•	K IV	工女心似个少没由从初化版点	× (M8/8/
投与 方法	投与量 (mg/kg 体重)	性別	C _{max} 時1)	1/2C _{max} 時 ²⁾
		雄	肝臓(22.9)、肺(21.4)、副腎(14.6)、脾臓(11.7)、骨髄(9.71)、	消化管(67.2)、肺(24.6)、リンパ 節(17.0)、副腎(11.5)、骨髄(10.4)、 脂肪(8.24)、肝臓(6.65)、甲状腺 (5.52)、胸腺(5.36)、その他(5.0 未満)
単回	10	雌	パ節 (33.4)、肺 (19.0)、副腎 (16.1)、脾臓(10.6)、腎臓(8.02)、	消化管(73.6)、肺(26.3)、リンパ 節(21.5)、骨髄(16.1)、副腎(15.3)、 脾臓(11.8)、肝臓(9.77)、甲状腺 (6.87)、脂肪(6.50)、下垂体(6.44)、 腎臓(6.09)、膵臓(5.80)、卵巣 (5.71)、胸腺(5.57)、その他(5.0 未満)
経口	100	雄	肺(303)、肝臓(270)、副腎(236)、 骨髄(174)、脾臓(153)、膵臓 (128)、脂肪(124)、甲状腺(116)、 腎臓(110)、下垂体(97.0)、胸腺 (79.7)、心臓(53.5)、皮膚(52.9)、 その他(50.0 未満)	消化管(371)、リンパ節(217)、脂肪(156)、骨髄(91.9)、副腎(77.8)、脾臓(57.1)、肺(51.3)、胸腺(50.2)、その他(50.0 未満)
		雌	肝臓(284)、肺(224)、副腎(175)、骨髄(168)、脾臓(123)、甲状腺(118)、膵臓(106)、腎臓(95.2)、下垂体(78.2)、卵巣(73.5)、脂肪(71.7)、その他(50.0 未満)	消化管(602)、リンパ節(338)、骨髄(249)、副腎(199)、脂肪(169)、肺(117)、脾臓(117)、肝臓(109)、卵巣(92.8)、胸腺(75.0)、下垂体(65.8)、甲状腺(64.0)、腎臓(62.2)、膵臓(58.9)、皮膚(58.9)、その他(50.0 未満)

表 10 主要組織中の残留放射能濃度 (μg/g)

③ 代謝

排泄試験[1.(2)4)]で得られた尿及び糞並びに体内分布試験②[1.(2)2)]

¹⁾ 低用量群の雄は投与 3 時間後、雌は投与 2 時間後、高用量群の雄は投与 4 時間後、雌は投与 3 時間後。

²⁾ 低用量群の雄は投与 10 時間後、雌は投与 8 時間後、高用量群の雄は投与 21 時間後、雌は投与 10 時間後。

で得られた血漿、肝臓、腎臓及び甲状腺を用いて代謝試験が実施された。 尿及び糞の代謝物は表 11 に示されている。

全投与群の代謝物プロファイルには、投与量、性別又は投与回数による大きな差は認められなかった。親化合物は、尿中では最大で0.07%TAR、糞中では $6.5\sim26.1\%$ TAR 認められた。主要代謝物は、尿中ではスピネトラム-Lのグルタチオン抱合体 $(1.3\sim2.4\%$ TAR)、糞中ではスピネトラム-Lのシステイン抱合体 $(49.2\sim64.0\%$ TAR) であった。

血漿、肝臓、腎臓及び甲状腺中において、親化合物は C_{max} 群及び $1/2C_{max}$ 群ともに検出された。親化合物は肝臓で最も多く認められ、 C_{max} 群では 3.4 $\sim 6.0\%$ TAR であった。代謝物は 8 種類認められたが、5% TAR を超えるものはなかった。最も多く認められた代謝物は C であり、 C_{max} 群の肝臓で $0.8\sim 2.3\%$ TAR であった。スピネトラム-L のグルタチオン抱合体は、 C_{max} 群の肝臓で $0.8\sim 1.2\%$ TAR であった。

スピネトラム-L の主要代謝経路は、親化合物のグルタチオン抱合化、N-脱メチル化、O脱エチル化により生じた代謝物のグルタチオン抱合化及びグルタチオン抱合体からシステイン抱合体への変換が考えられた。(参照 4、5)

表 11 尿及び糞中の代謝物 (%TAR)

			<u> </u>	## DE TO 1	- 02 CB3] [83 (/0 1/11/)
投与	投与量	性別	試料	スピネトラム	代謝物
方法	(mg/kg 体重)	132/3 3	F 111	-L	1 2043 104
			尿	0.00	スピネトラム-L-Glu(1.6)、G-Cys(0.20)、 C-Glu(0.19)、K-Sul(0.16)、未同定代謝物(0.04
		雄			~ 0.23)
	10		糞	16.9	スピネトラム-L-Cys(51.5)、C(6.5)、I-Glu(5.2)、 K-Sul(4.5)
	10				スピネトラム-L-Glu(1.6)、G-Cys(0.21)、
			尿	0.00	K-Sul(0.18)、C-Glu(0.18)、未同定代謝物(0.08
		雌			$\sim 0.28)$
			₩-	0.70	スピネトラム-L-Cys(58.3)、K-Sul(6.7)、
単回			糞	6.50	I-Glu(4.5)、C(3.9)、未同定代謝物(4.08)
経口					スピネトラム-L-Glu(2.1)、C-Glu(0.25)、
			尿	0.00	G-Cys(0.14)、K-Sul(0.11)、未同定代謝物(0.05
		雄			\sim 0.32)
			糞	18.4	スピネトラム·L-Cys(64.0)
	100		1		スピネトラム-L-Glu(2.0)、C-Glu(0.24)、
		雌	尿	0.05	K-Sul(0.16)、G-Cys(0.13)、未同定代謝物(0.07)~0.37)
			糞	21.8	スピネトラム-L-Cys(55.7)、C(5.9)
			美	41.0	ハヒホトノム L Cys(00.7)、C(0.9)
反復					スピネトラム-L-Glu(1.6)、C-Glu(0.19)、
経口	10	雄	尿	0.00	K-Sul(0.16)、G-Cys(0.13)、未同定代謝物(0.05
性日					\sim 0.19)

投与 方法	投与量 (mg/kg 体重)	性別	試料	スピネトラム -L	代謝物
			糞	21.5	スピネトラム-L-Cys(50.9)、C(7.7)、 K-Sul(3.6)、未同定代謝物(3.0)
		雌	尿	0.00	スピネトラム-L-Glu(1.3)、C-Glu(0.16)、 G-Cys(0.15)、K-Sul(0.14)、未同定代謝物(0.06 ~0.20)
			糞	26.1	スピネトラム-L-Cys(49.2)、C(4.9)、 K-Sul(3.0)、G-cys(1.1)、未同定代謝物(2.0)
		雄	尿	0.07	スピネトラム-L-Glu(2.4)、C-Glu(0.28)、 G-Cys(0.16)、K-Sul(0.13)、未同定代謝物(0.05 ~0.39)
静脈			糞	22.5	スピネトラム-L-Cys(52.6)、未同定代謝物(5.4)
内	10	雌	尿	0.18	スピネトラム-L-Glu(2.1)、C-Glu(0.24)、 G-Cys(0.18)、K-Sul(0.10)、未同定代謝物(0.06 ~0.36)
			糞	16.9	スピネトラム-L-Cys(55.4)、K-Sul(3.6)、未同 定代謝物(2.6)

-Sul:硫酸抱合体 -Glu:グルタチオン酸抱合体 -Cys:システイン抱合体

4 排泄

Fischer ラット(雌雄各 4 匹)に非標識スピネトラム-L を低用量で 14 日間経口投与し、15 日目に ¹⁴C-スピネトラム-L を低用量で投与した反復投与群並びに血中濃度推移検討試験[1.(2)①a.]で用いた単回経口投与群及び静脈内投与群から得られた尿及び糞を用いて、排泄試験が実施された。

投与後 168 時間の尿及び糞中排泄率は表 12 に示されている。

経口投与群では、投与後 168 時間の尿中に 2.3%TAR 以上、糞中に 80%TAR 以上が排泄され、そのほとんどが投与後 24 時間に排泄された。投与量、性別及び投与回数の違いによる差は認められなかった。また、静脈内投与群においても、尿及び糞中への排泄の割合は経口投与群と同様であった。(参照 4)

衣 12 投主	表 12 投 7後 100 時間の旅及の異中排池学(MTAN)							
投与方法		単回経口						
投与量		10 mg/l	xg 体重		-	100 mg	g/kg 体重	<u>į</u>
性別	加加	隹	此	É	太	隹	此	Ě
試料	尿	糞	尿	糞	尿	糞	尿	糞
投与後 168 時間*	3.2	84.6	2.9	84.0	3.4	82.5	3.5	83.3
投与方法		反復:	経口			静	脈内	
投与量		10 mg/l	xg 体重			10 mg	/kg 体重	<u>.</u>
性別	加加	隹	此	É	太	雄 雌		
試料	尿	糞	尿	糞	尿 糞 尿 糞			
投与後 168 時間*	2.9	86.7	2.3	86.4	4.4	80.7	3.7	78.5

表 12 投与後 168 時間の尿及び糞中排泄率 (%TAR)

注) 尿中排泄率の値はケージ洗浄液を含む。

^{*:} 反復投与試験については、標識体投与後 168 時間。

2. 植物体内運命試験

(1) レタス

砂壌土を充填したポットにレタス(品種名: New Fire Red MI)の種子を播き、 14 C-スピネトラム- 14 C) を 900 g ai/ha 又は 14 C-スピネトラム- 14 C(II)を 300 g ai/ha の用量で 1 回(3 回処理試料の 3 回目処理日と同じ日に全量を 1 度に処理)又は 3 回($^{1/3}$ 量ずつを収穫予定日の 2 週間前より開始して、7日間隔で処理)茎葉に散布し、植物体内運命試験が実施された。1 回処理を行ったポットからは、処理 0 (処理約 1 時間後)、 $^{0.25}$ 、 1 、 3 及び 7日後に、 1 回処理を行ったポットからは最終処理 3 及び 7日後に、植物の土壌表面より約 2 2 cm 上をハサミで切り取ることにより試料採取された。なお、処理7日後の試料には一部乾燥したものがあったことから、処理7日後のデータは評価に用いられなかった。

レタス中の親化合物及び代謝物の放射能濃度は表 13 に示されている。

植物体の残留放射能は、いずれの試料においても、そのほとんどが有機溶媒による洗浄液及び抽出液中に存在し、抽出残渣に 5.2%TRR 以下、水溶性 画分には 3.4%TRR 以下しか認められなかった。また、処理 3 日後の残留放射能濃度は 3 回処理試料(スピネトラム-J:6.1 mg/kg、スピネトラム-L:3.4 mg/kg)の方が、1 回処理試料(スピネトラム-J:36.4 mg/kg、スピネトラム-L:10.8 mg/kg)よりも顕著に低かった。

スピネトラム-J1回処理試料において、主要成分は親化合物であった(17.6 \sim 63.6%TRR、 $6.4\sim$ 31.7 mg/kg)。主要代謝物として、B($8.9\sim$ 19.6%TRR、 $4.4\sim$ 11.6 mg/kg)及び D($6.6\sim$ 11.2%TRR、 $3.3\sim$ 5.9 mg/kg)が認められた。3回処理試料では、これらの成分はいずれも 1 mg/kg 未満であった。

スピネトラム-L 処理試料においても、親化合物と、主要代謝物として C 及び E が認められたが、残留濃度はスピネトラム-J 処理試料と比べ、かなり低かった。スピネトラム-L 試料では、放射能の大部分が多成分の極性混合物であった。

スピネトラム-J 処理試料 多成分混合物 スピネトラム-J D TRR(%) TRR(%)mg/kg TRR(%) mg/kg mg/kg TRR(%) mg/kg $8.0 \sim$ $17.6 \sim$ $6.4 \sim$ $8.9\sim$ $4.4 \sim$ $6.6 \sim$ 3.3~ $16.0 \sim$ 1回処理* 63.631.719.6 11.6 11.2 5.036.513.6 3回処理** 8.50.57.20.414.8 0.951.13.1 スピネトラム-L 処理試料 スピネトラム-L 多成分混合物

mg/kg

 $0.4 \sim$

2.1

0.1

TRR(%)

 $2.0\sim$

5.9

1.1

mg/kg

 $0.2 \sim$

0.7

0.04

TRR(%)

13.4~

74.6

77.5

mg/kg

 $1.6 \sim$

8.0

2.6

TRR(%)

 $3.5\sim$

17.6

1.5

表 13 レタス中の親化合物及び代謝物の放射能濃度

mg/kg

 $0.6 \sim$

6.2

0.1

TRR(%)

 $5.1\sim$

52.4

2.8

(2) かぶ

1回処理*

3 回処理**

砂壌土を充填したポットで栽培したかぶ(品種名: Purple Top White Globe) に、 14 C-スピネトラム-J(I) を 900 g ai/ha 又は 14 C-スピネトラム-L(II) を 300 g ai/ha の用量で 1 回(全量を 1 度に処理)又は 3 回($^{1/3}$ 量ずつを収穫予定日の 2 週間前より開始して、7 日間隔で処理)茎葉処理し、植物体内運命試験が実施された。1 回処理を行ったポットからは、処理 0(処理約 1 時間後)、 $^{0.25}$ 、 1 、 3 及び 7 日後に、3 回処理を行ったポットからは最終処理 3 及び 7 日後に植物を採取し、かぶの茎葉部を塊根のすぐ上で切り取り、茎葉部と根部に分けて試料とした。

かぶ茎葉部及び根部試料中の親化合物及び代謝物の放射能濃度は表 14 及び 15 に示されている。

茎葉部試料では、スピネトラム-J 処理試料で $86.3\sim99.3\%$ TRR、スピネトラム-L 処理試料で $73.5\sim97.3\%$ TRR が有機溶媒による洗浄液及び抽出液中に存在し、水溶性画分では 8.6% TRR を超えることはなかった。処理 7 日後までの残留放射能濃度は 3 回処理試料(スピネトラム-J: $4.9\sim7.2$ mg/kg、スピネトラム-L: $1.1\sim2.2$ mg/kg)の方が、1 回処理試料(スピネトラム-J: $7.6\sim11.8$ mg/kg、スピネトラム-L: $2.0\sim5.3$ mg/kg)よりも低かった。

根部試料では、スピネトラム-J 処理試料で 87%TRR 以上、スピネトラム-L 試料で 75%TRR 以上が有機溶媒による洗浄液及び抽出液中に存在した。 処理 7 日後までの残留放射能濃度は 3 回処理試料(スピネトラム-J: $0.03\sim0.098~mg/kg$ 、スピネトラム-L: $0.015\sim0.016~mg/kg$)と、1 回処理試料(スピネトラム-J: $0.004\sim0.123~mg/kg$ 、スピネトラム-L: $0.004\sim0.031~mg/kg$)とで顕著な差はなかった。

スピネトラム-Jを1回処理した茎葉部試料において、処理3日後に親化合物 (9.4% TRR, 1.1 mg/kg)、B(8.5% TRR, 1.0 mg/kg) 及びD(11.2% TRR, 1.3 mg/kg) が認められ、合計で29% TRRを占めていた。3回処理試料では

^{*:}処理0~3日後の値、**:最終処理3日後の値

これらの 3 成分が合計で 20%TRR を占め、D が主要代謝物であった。スピネトラム-L を処理した茎葉部試料においては、親化合物、C 及び E の残留放射能濃度はスピネトラム-J 処理試料よりもかなり低く、処理 3 日後で、合計 4.6%TRR であった。スピネトラム-L 処理試料においては、放射能の大部分が多成分の極性混合物であった。

根部試料では、スピネトラム-Jの1回処理3日後に、親化合物、B及びDが合計で約50%TRRを占めていた。スピネトラム-Lの1回処理3日後では親化合物及びEが合計で17.8%TRRを占めていた。

かぶにおける主要代謝経路として、レタスにおける代謝経路と同様に、forosamine 糖部分が変化しN-脱メチル化及びN-formyl 化代謝物が生成される経路及び親化合物やこれら代謝物のマクロライド骨格が開裂又は開環し、多数の極性成分を生成する経路が考えられた。(参照 7)

表 14 かぶ茎葉部試料中の親化合物及び代謝物の放射能濃度

		スピネトラム-J 処理試料								
処理回数	スピネト	、ラム-J	В		D		多成分混合物			
	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg		
1回処理*	9.4	1.1	8.5	1.0	11.2	1.3	51.0	6.0		
3 回処理*	4.9	0.4	4.1	0.3	11.4	0.8	53.3	3.8		
	スピネトラム-L 処理試料									
処理回数	スピネト	・ラム - L	С		Е		多成分》	昆合物		
	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg		
1回処理*	2.9	0.06	1.0	0.02	0.6	0.01	73.8	1.6		
3回処理*	3.0	0.07	1.1	0.02	0.5	0.01	68.8	1.5		

^{*:}処理3日後(1回処理)及び最終処理3日後(3回処理)の値

表 15 かぶ根部試料中の親化合物及び代謝物の放射能濃度

		スピネトラム-J 処理試料								
処理回数	スピネトラム-J		В		D		多成分混合物			
	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg		
1回処理*	22.3	0.03	10.0	0.01	16.6	0.02	9.9	0.01		
			スピネ	トラム-	L処理試料	4				
処理回数	スピネト	・ラム - L	С		Е		多成分》	昆合物		
	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg		
1回処理*	14.8	0.01	_	_	3.0	0.001	13.1	0.004		

^{*:}処理3日後の値 -:検出されず

(3) りんご

戸外で栽培したりんご樹(品種名: Granny Smith)に、 14 C-スピネトラム-J(I) を 1,810 g ai/ha 又は 14 C-スピネトラム-L(II)を 1,110 g ai/ ha の用量で 1 回葉面処理し、植物体内運命試験が実施された。処理前に、りんご果樹の処理する 1 本の枝以外のすべての枝をプラスチックで覆い、移行性確認用試料とされた。未成熟期のりんご果実及び葉が処理 0(処理約 5 時間後)、1、3、7 及び 14 日後に、成熟期のりんご果実が処理 30 日後に、処理 3 日後に覆いをした果実が処理 7 日後に採取された。

果実の残留放射能は、試験期間を通して 96%TRR 以上が表面洗浄液と果皮に存在し、果肉には 4.0%TRR 未満が存在した。移行性確認用果実試料の残留放射能は定量限界未満であり、移行性確認用葉試料の残留放射能が処理葉の 0.2%未満であったことから、親化合物及び代謝物ともに枝を介して容易に移行しないことが示された。

果実試料において、親化合物は処理 0 日後にスピネトラム-J 処理試料の82.2%TRR (0.72 mg/kg) 及びスピネトラム-L 処理試料の42.6%TRR (0.18 mg/kg) 認められたが、処理 30 日後にはスピネトラム-J 処理試料の22.2%TRR (0.16 mg/kg)、処理 14 日後にはスピネトラム-L 処理試料の0.9%TRR (0.005 mg/kg) に減少した。主要代謝物として、スピネトラム-J 処理試料では B (処理 7 日後で最大 13.5%TRR、0.16 mg/kg) 及び D (処理3 日後で最大 4.9%TRR、0.07 mg/kg)、スピネトラム-L 処理試料では C (処理0 日後で最大 8.0%TRR、0.03 mg/kg) 及び E (処理3 日後の暗所で最大2.7%TRR、0.04 mg/kg) が検出された。スピネトラム-J 処理試料では、その他に微量代謝物として F 及び H が検出された。

葉試料において、親化合物は処理 0 日後にスピネトラム-J 処理試料の80.2%TRR (105 mg/kg) 及びスピネトラム-L 処理試料の26.8%TRR (18.6 mg/kg) から、処理30日後にはスピネトラム-J 処理試料の19.9%TRR (27.8 mg/kg) 及びスピネトラム-L 処理試料の0.2%TRR (0.12 mg/kg) に減少した。主要代謝物として、スピネトラム-J 処理試料ではB(処理3日後で最大13.9%TRR、23.3 mg/kg)及びD(処理3日後で最大4.1%TRR、6.91 mg/kg)、スピネトラム-L 処理試料ではC(処理1日後で最大3.2%TRR、1.53 mg/kg)及びE(処理3日後の暗所で最大2.5%TRR、1.47 mg/kg)が検出された。

りんごにおける主要代謝経路として、forosamine 糖部分が変化し N-脱メチル化及び N-formyl 化代謝物が生成される経路、ラムノース部分が変化し F及びHを生成する経路及び親化合物やこれら代謝物のマクロライド骨格が開裂又は開環し、多数の極性成分を生成する経路が考えられた。(参照 8)

(4) 水稲

 14 C-スピネトラム-J(I)又は 14 C-スピネトラム-L(II)を 100 g ai/ha の用量で植穴の有効成分を含まない粒剤に添加し、 $2\sim4$ 葉期の水稲(品種名: Japonica M202)を定植後湛水し栽培した。処理 7、14、28、72(青刈り稲)、149(もみ、もみ殼及び玄米)及び 162(稲わら)日後に植物を採取し、植物体内運命試験が実施された。

各試料における総残留放射能濃度は表 16、水稲試料中の親化合物及び代謝物の放射能濃度は表 17 に示されている。

スピネトラム-J 及びスピネトラム-L を処理した水稲の両方において、残留放射能濃度は速やかに減少した。処理 162 日後の稲わらにおける残留量は、処理 72 日後の青刈り稲における量より $2\sim4$ 倍高かったが、これは乾燥した稲わら中の水分含量が青刈り稲中の水分含量より低かったためと考えられた。玄米及びもみ殻中の残留量が低かったことから、スピネトラム-J 及びスピネトラム-L が稲のもみ中に移行して残留する可能性は低いことが示された。

稲植物体において、スピネトラム-J は処理 7 日後に 63.2%TRR であったが、処理 162 日後には 11.3%TRR まで減少した。スピネトラム-L は処理 7 日後に 54.5%TRR であったが、処理 162 日後に 3.3%TRR まで減少した。

スピネトラム-J 及びスピネトラム-L とも同様の代謝を受け、それぞれのN-demethyl 体(B 及び C)及び N-formyl 体(D 及び E)が生成された。それぞれの最大検出量は、B が 25.5%TRR(5.23 mg/kg)、D が 10.6%TRR(0.009 mg/kg)、C が 10.7%TRR(1.12 mg/kg)、E が 1.7%TRR(0.057 mg/kg)であった。成熟期の稲わらではいずれの代謝物も 3.4%TRR 以下に減少していた。

水稲における主要代謝経路として、レタスと同様に、forosamine 糖部分が変化しN-脱メチル化及びN-formyl 化代謝物が生成される経路及び親化合物やこれら代謝物のマクロライド骨格が開裂又は開環し、多数の極性成分を生成する経路が考えられた。(参照 9)

-									
処理化合物	スピネトラム-J								
採取時期	処理7日後	処理72日後	処理 162 日後	処	理 149 日	後			
試料	全体	青刈り稲	稲わら	もみ	もみ殻	玄米			
残留放射能濃度	20.5	0.09	0.21	0.004	0.015	0.001*			
処理化合物			スピネトラム-L	1					
採取時期	処理7日後	処理72日後	処理 162 日後	処	理 149 日	後			
試料	全体	青刈り稲	稲わら	もみ	もみ殻	玄米			
残留放射能濃度	10.4	0.02	0.08	0.002*	0.004*	0.002*			

表 16 各試料における総残留放射能濃度 (mg/kg)

^{*:} 検出限界 (スピネトラム-J: 0.001 mg/kg、スピネトラム-L: 0.002 mg/kg) と定量限界 (スピネトラム-J: 0.003 mg/kg、スピネトラム-L: 0.006 mg/kg) の間の値であった。

# 17	표하 들수 사시 근	ᅟᄼᅘᄱᄉᄴᅑ	. すぐ /ユヒ ヨカナ ルカル /ヘト ナトヒ ウナナ メトヒ ン曲 垚
衣 1/	作 試 科 屮	り、親化合物及	び代謝物の放射能濃度

処理後日数		スピネトラム-J 処理試料								
及び試料	総残留加	放射能	スピネト	スピネトラム-J		В		D*		
X O 1247	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg		
処理7日後	96.1	19.7	63.2	13.0	25.5	5.2	3.3	0.66		
処理 72 日後 青刈り稲	52.6	0.05	27.8	0.03	5.2	0.005	10.6	0.01		
処理 162 日後 稲わら	38.1	0.08	11.3	0.02	3.4	0.007	2.1	0.005		
処理後日数	スピネトラム-L 処理試料									
及び試料	総残留加	総残留放射能		スピネトラム-L		C**		E**		
X 0 1247	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg	TRR(%)	mg/kg		
処理7日後	92.9	9.7	54.5	5.7	10.7	1.12	1.6	0.17		
処理 14 日後	72.1	2.4	29.3	0.99	6.0	1.7	1.8	0.06		
処理 162 日後 稲わら	15.5	0.01	3.3	0.003	_	_	0.30	0.00		

^{*:} D は検出されたピークの約91%を占めていたので、総残留放射能の91%の値を示した。

3. 土壤中運命試験

(1) 好気的湛水土壤中運命試験

 14 C-スピネトラム-J(I)又は 14 C-スピネトラム-L(II)を水深約 1.0 cm の湛水 状態にした非滅菌土壌 [砂質埴壌土(茨城)] に乾土あたり 1 mg/kg の用量で水相に混和し、25°C、暗条件下で 180 日間インキュベートして好気的湛水土壌中運命試験が実施された。

各抽出相における放射能分布は表 18 に示されている。

スピネトラム-J を処理した土壌試料において、アルカリ性及び酸性溶媒抽出液中の放射能は処理 0 日後の 24%TAR から、処理 30 日後の 84%TAR に増加した後、試験終了時には 82%TAR に減少した。土壌残渣中の放射能は、処理 0 日後の 1%TAR から、試験終了時には 14%TAR に増加した。親化合物は、水相中では処理 0 日後の 66%TAR から、試験終了時に 0.2%TAR まで減少し、土壌中では処理 0 日後の 24%TAR から、処理 30 日後に 76%TAR に増加した後、試験終了時には 45%TAR に減少した。分解物として、B が水相中に最大1.3%TAR、土壌中に最大 30%TAR 認められた。

スピネトラム-L を処理した土壌試料において、アルカリ性及び酸性溶媒抽出液中の放射能は処理 0 日後の 32%TAR から、処理 30 日後に 87%TAR に増加した後、試験終了時には 78%TAR に減少した。土壌残渣中の放射能は、処理 0 日後の 1%TAR から、試験終了時には 14%TAR に増加した。親化合物は、水相中では処理 0 日後の 56%TAR から、試験終了時に 0.3%TAR まで減少し、土壌中では試験 0 日後の 31%TAR から、処理 30 日後に 79%TAR に増加した後、試験終了時には 65%TAR に減少した。分解物として、C が水相中に最大

^{**:} C は検出されたピークの約 74%、E は約 23%を占めていたので、それぞれの総残留放射能の 74 及び 23%の値を示した。

^{-:}放射能は検出されず。

2.6%TAR、土壌中に最大 11%TAR 認められた。

スピネトラム-J の推定半減期は 193 日、スピネトラム-L の推定半減期は 456 日であった。(参照 10)

表 10 日面田刊 2317 创放 3 能 7 刊 (
スピネトラム-J 処理試料								
抽出相	抽出物	処理	後日数(日)				
111111111111111111111111111111111111111	1m m 40	0	30	180				
水相	スピネトラム-J	66.2	3.6	0.2				
	В	1.3	0.9	1.3				
土壌抽出相*	抽出物合計	24.4	83.9	81.9				
	スピネトラム -J	23.8	75.8	44.7				
	В	nd	4.9	29.6				
土壌残渣		0.7	9.5	14.3				

表 18 各抽出相における放射能分布 (%TAR)

スピネトラム-L 処理試料								
抽出相	抽出物	処理後日数						
7四口7百	1ш ш 100	0	30	100	180			
水相	スピネトラム-L	55.8	1.8	0.5	0.3			
	C	2.6	0.9	0.4	0.5			
土壤抽出相*	抽出物合計	31.6	87.3	83.1	78.4			
	スピネトラム-L	30.5	78.6	65.4	65.0			
	C	nd	6.3	11.0	8.9			
土壌残渣		0.9	8.2	11.4	13.8			

^{*:}アルカリ性溶媒抽出相と酸性溶媒抽出相の合計、nd:検出されず

(2) 好気的土壌中運命試験

 14 C-スピネトラム-J(I)又は 14 C-スピネトラム-L(II)を 4 種類の米国土壌 [壌土(ミシシッピ州及びバージニア州)、シルト質壌土(アイオワ州)、砂壌土(カリフォルニア州)] に乾土あたり 0.2 mg/kg の用量で土壌混和し、25^{\circ}C の暗条件下で 12 カ月間インキュベートして好気的土壌中運命試験が実施された。

スピネトラム-J 及びスピネトラム-L は、4 種類のいずれの土壌においても経時的に分解し、試験終了時には 3%TAR 以下に減少した。スピネトラム-J 処理土壌からは、主要分解物として B が 4 種類の土壌について最大 $45.2 \sim 68.1\%$ TAR 検出されたが、試験終了時には $6.3 \sim 44.5\%$ TAR に減少した。スピネトラム-L 処理土壌からは、主要分解物として C が 4 種類の土壌について最大 $12.2 \sim 41.0\%$ TAR 検出されたが、試験終了時には 9.1%TAR 以下に減少した。その他に 2%TAR 以下の微量分解物が多数認められた。揮発性放射能として 14CO $_2$ が認められ、試験終了時にはスピネトラム-J 処理土壌で $5.0 \sim 35.2\%$ TAR、スピネトラム-L 処理土壌で $9.5 \sim 36.2\%$ TAR に達した。

推定半減期はスピネトラム-J で 8~29 日、スピネトラム-L で 3~17 日であった。(参照 11)

(3)土壤表面光分解試験

 14 C-スピネトラム-J(I)又は 14 C-スピネトラム-L(II)を壌土(ミシシッピ州)に乾土あたり 20~mg/kg~の用量で土壌表面に均一に処理し、25^{\circ}Cの暗条件下で 15~日間(スピネトラム-J)又は 18~日間(スピネトラム-L)キセノンランプ光 [光強度: 44~W/m²(波長: $300\sim400~$ nm)及び 399~W/m²(波長: $290\sim800~$ nm)〕を連続照射する土壌表面光分解試験が実施された。

スピネトラム-J は光照射により経時的に減少し、処理直後の 97.1% TAR から試験終了時には 58.2% TAR まで減少した。分解物は多数認められたが、いずれも 5% TAR 未満であった。

スピネトラム-L は光照射により経時的に減少し、処理直後の 93.2% TAR から、試験終了時には 25.7% TAR まで減少した。分解物は多数認められたが、いずれも 7% TAR 未満であった。

暗所対照区において、試験終了時に 87.7%TAR (スピネトラム-J) 及び 82.9%TAR (スピネトラム-L) が親化合物として残存していた。

スピネトラム-J の推定半減期は 63 日、北緯 35 度(東京)、春の自然太陽 光換算で 170 日、スピネトラム-L の推定半減期は 15 日、北緯 35 度 (東京)、 春の自然太陽光換算で 63 日であった。(参照 12)

(4)土壤吸着試験

7 種類の土壌 [埴壌土 (英国)、壌土 (イタリア)、壌質砂土 (ドイツ及び英国)、砂質埴壌土 (ドイツ) 及び砂壌土 (日本及び英国)] を用い、スピネトラム (スピネトラム・J 及びスピネトラム・L)、代謝物 B 及び C の土壌吸着試験が実施された。結果は表 19 に示されている。(参照 13)

化合物	Freundlich の 吸着係数(K ^{ads})	有機炭素含有率により 補正した吸着係数 (Koc)		
スピネトラム-J	21~55	1,200~3,438		
スピネトラム-L	15~121	$1,100\sim7,563$		
代謝物 B	$24 \sim 65$	1,233~4,063		
代謝物 C	17~76	1,278~4,750		

表 19 土壤吸着試験結果概要

4. 水中運命試験

(1)加水分解試験

pH 5 (酢酸緩衝液)、pH 7 (トリスアミノメタン酸緩衝液)及び pH 9 (ホウ酸緩衝液)の各滅菌緩衝液に 14 C-スピネトラム-J (D5)又は 14 C-スピネトラム-L (D5)を $0.5 \mu g/mL$ となるように添加し、 25° Cの恒温槽中で 30日間、暗条件下でインキュベートして、加水分解試験が実施された。

スピネトラム-J は、pH 5 及び 7 の緩衝液中ではほとんど分解せず、安定であった。pH 9 の緩衝液中では徐々に分解した(処理 30 日後に 89.1% TAR)。分解物として B が検出された (処理 30 日後に最大 6.7% TAR)。

スピネトラム-L は、pH 5 及び 7 の緩衝液中ではほとんど分解せず、安定であった。pH 9 の緩衝液中では徐々に分解した(処理 30 日後に 81.6% TAR)。 分解物として C が検出された (処理 30 日後に最大 11.9% TAR)。

スピネトラム-Jの pH 9 の緩衝液中における推定半減期は、算出不能であった。スピネトラム-Lの推定半減期は 154 日であると考えられた。(参照 14)

(2) 水中光分解試験 (滅菌緩衝液)

 14 C-スピネトラム-J(I)又は 14 C-スピネトラム-L(II)を滅菌緩衝液(pH 7、トリスアミノメタン酸緩衝液)に $0.3 \mu g/mL$ (スピネトラム-J)又は $0.5 \mu g/mL$ (スピネトラム-L)の用量で添加し、 $25\pm 2^{\circ}$ Cで 19 日間キセノンランプ光(光強度: 454 W/m^2 、波長: $290\sim800 \text{ nm}$)を連続照射する水中光分解試験が実施された。

スピネトラム-J は光照射により経時的に減少し、処理直後の 98.4%TAR から、処理 4 日後には検出限界未満となった。主要分解物として、未同定の MW813 が処理 7 日後に最大 11%TAR 検出されたが、試験終了時(処理 19日後)には約 1%TAR に減少した。他に B が検出された(処理 0.33 日後に最大 7%TAR)。

スピネトラム-L は光照射により経時的に減少し、処理直後の 94.9%TAR から処理 2 日後には検出限界未満となった。主要分解物として C が処理 0.17 日後に最大 12%TAR 検出されたが、処理 2 日後には 1%TAR 未満に減少した。暗所対照区では、試験終了時に 90%TAR 以上が親化合物として残存しており、分解物は認められなかった。

スピネトラム-J の推定半減期は 0.38 日、北緯 35 度 (東京)、春の自然太陽光換算で 2.21 日、スピネトラム-L の推定半減期は 4.1 時間 (0.17 日)、北緯 35 度 (東京)、春の自然太陽光換算で 23.8 時間 (0.99 日) であった。(参照 15)

(3) 水中光分解試験(滅菌自然水)

 14 C-スピネトラム-J 又は 14 C-スピネトラム-L を滅菌自然水(米国アイオワ州、河川水、pH 8.5)に $1~\mu g/mL$ (スピネトラム-J)又は $2~\mu g/mL$ (スピネトラム-L)の用量で添加し、 $25\pm 2^{\circ}$ Cで 16~日間キセノンランプ光(光強度:482~W/m²、波長: $290\sim800~$ nm)を連続照射する水中光分解試験が実施された。

スピネトラム-J は光照射により経時的に減少し、処理直後の 96.5% TAR から処理 4 日後には検出限界未満となった。主要分解物として、B が処理 0.33

日後に最大28%TAR検出されたが、処理4日後には検出限界未満に減少した。 スピネトラム-Lは光照射により経時的に減少し、処理直後の98.1%TARから処理1日後には検出限界未満となった。主要分解物として、Lが処理0.33日後に最大23%TAR検出されたが、処理8日後には検出限界未満に減少した。その他にCが検出された(処理0.13日後に最大8.8%TAR)。

暗所対照区では、試験終了時に 94%TAR 以上が親化合物として残存しており、分解物は認められなかった。

スピネトラム-J の推定半減期は 0.13 日、北緯 35 度 (東京)、春の自然太陽光換算で 0.94 日、スピネトラム-L の推定半減期は 0.07 日、北緯 35 度 (東京)、春の自然太陽光換算で 12 時間 (0.50 日) であった。(参照 16)

5. 土壤残留試験

火山灰土・軽埴土 (茨城)、砂質埴壌土 (大分)及び風積土・砂土 (宮崎)を用い、スピネトラム (スピネトラム・J及びスピネトラム・L)及び分解物 (B及び C)を分析対象化合物とした土壌残留試験 (容器内及び圃場試験)が実施された。結果は表 20 に示されている。(参照 17)

				推定半減期(日)		
試験	状態	濃度*	土壌	スピネトラム	スピネトラム +分解物 B、C	
	湛水	0.21 mg/lrg	火山灰土・軽埴土	203	222	
容器内	他小	0.21 mg/kg	砂質埴壌土	226	227	
試験	畑水分	0.34 mg/kg	火山灰土・軽埴土	25	126	
			風積土・砂土	82	361	
	水田	250 g ai/ha ¹⁾	火山灰土・軽埴土	1(1)	1(1)	
圃場	/ Т	200 g al/lla	砂質埴壌土	95(116)	105(161)	
試験	畑地	360 g ai/ha ²⁾	火山灰土・軽埴土	14(13)	108(96)	
	ΛΗ ΔΕ 11 = 24 E(2 ~~ x)		風積土・砂土	9(9)	17(17)	

表 20 土壤残留試験成績

6. 作物残留試験

(1)作物残留試験

① 作物残留試験(国内)

水稲、茶、野菜及び果物を用い、スピネトラム-J及びスピネトラム-L並びに代謝物 B、C、D及び Eを分析対象化合物とした作物残留試験が実施された。

^{*:}容器内試験では原体、圃場試験では1)0.5%粒剤、2)12%水和剤を使用。

^{():}計算式から求められた推定半減期。

結果は別紙 3 に示されている。最高値は、スピネトラム-J 及びスピネトラム-L ではそれぞれ最終散布 1 日後に収穫したサラダ菜の 3.35 及び 0.96 mg/kg、B 及び C ではそれぞれ最終散布 1 日後に収穫したレタスの 0.643 及び 0.061 mg/kg、D では最終散布 7 日後の茶(荒茶)の 0.725 mg/kg、E では最終散布 1 日後に収穫したサラダ菜の 0.029 mg/kg であった。(参照 18)

② 作物残留試験(海外)

a. 比較試験

スピノサド²の残留データをスピネトラムに読み替えることが適切か検討するため、比較試験が実施された。フロアブル剤を複数回、茎葉処理した後のりんご、てんさい、芝草、リーフレタス、オレンジ及びトマトにおけるスピネトラム、スピノサド及びそれらの代謝物の残留量を測定した。

結果は別紙 4 に示されている。最高値及び平均値は、芝草以外のすべての作物で、スピネトラムの方がスピノサドよりも低かった。芝草の最高値は、スピネトラムとスピノサドで同等であった。したがって、スピノサドの残留データをスピネトラムに読み替えることが適切であることが示された。(参照 19)

b. 作物残留試験

りんご、オレンジ、グレープフルーツ及びレモンを用い、スピノシン A、スピノシン D、代謝物であるスピノシン B、スピノシン K 及び N-demethyl spinosyn D を分析対象化合物とした米国における作物残留試験が実施された。

結果は別紙 3 に示されている。分析対象化合物の合計の最高値は、最終散布 1 日後に収穫したグレープフルーツの 0.152 mg/kg であった。(参照 20)

(2)後作物残留試験

水田後作物として小麦(玄麦)及びだいこん(葉及び根部)、畑地後作物としてかぶ(葉及び根部)及びきゅうりを用い、スピネトラム-J、スピネトラム-L、代謝物 B、C、D 及び E を分析対象化合物とした後作物残留試験が実施された。

スピネトラム-J、スピネトラム-L 及び代謝物は、すべての試験において定量限界未満であった。(参照 21)

-

 $^{^2}$ スピノサドは、ダウ・アグロサイエンス社が開発した殺虫剤であり、スピネトラムと同じマクロライド骨格を有する。スピノサドは、スピノシン A 及びスピノシン D の混合物で、原体中にはそれぞれ 72 及び 4%以上含まれる。なお、日本では 1999 年に初回農薬登録され、ポジティブリスト制度導入に伴う暫定基準が設定されている。

(3)推定摂取量

国内における作物残留試験[6.(1)①]の分析値における最大推定残留値を用いて、スピネトラムを暴露評価対象化合物として食品中から摂取される推定摂取量が表 21 に示されている。詳細は別紙 5 に示されている。

なお、本推定摂取量の算定は、登録に基づく使用方法からスピネトラムが 最大の残留を示す使用条件で、すべての適用作物に使用され、かつ、加工・ 調理による残留農薬の増減が全くないとの仮定の下に行った。

表 21 食品中から摂取されるスピネトラムの推定摂取量

	国民平均	小児(1~6 歳)	妊婦	高齢者(65歳以上)	
	(体重:53.3 kg)	(体重:15.8 kg)	(体重:56.6 kg)	(体重:54.2 kg)	
摂取量(μg/人/日)	61.3	25.3	48.8	40.0	

7. 一般薬理試験

ラット及びイヌを用いた一般薬理試験が実施された。結果は表 22 に示されている。(参照 22)

表 22 一般薬理試験概要

試験の種類		試験の種類動物種		1 11/1/44		最大 無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	結果の概要
	一般状態 (Irwin 法)	SD ラット	雌雄 各 3	0、200、600、 2,000 (経口)	2,000	_	投与による影響なし	
中	自発運動量	SD ラット	雄 5	0、200、600、 2,000 (経口)	600	2,000	自発運動量減少	
中枢神経系	痙攣誘発 及び 抑制作用 (ペンテトラゾー ル誘発痙攣)	SD ラット	雄 10	0、200、600、 2,000 (経口)	2,000	_	投与による影響なし	
腎機能	尿量、 Na+、K+、Cl- 濃度、 Na+/K+比、 浸透圧	SD ラット	雄 10	0、200、600、 2,000 追加試験: 0、50、 100、150 (経口)	50	100	100 mg/kg 体重以上で尿中 K+排泄量の減少 200 mg/kg 体重以上投与群で尿量の減少、600 mg/kg 体重以上投与群で尿中 Cl-排泄量の減少、 2,000 mg/kg 体重投与群で Na+排泄量の減少及び浸透圧の増加	
呼吸器系	呼吸数、 1回換気量、 分時換気量	SD ラット	雄 6	0、200、600、 2,000 (経口)	2,000	_	投与による影響なし	

試験の種類		動物種	動物数 匹/群	投与量* (mg/kg 体重) (投与経路)	最大 無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	結果の概要
循環器系	血圧、 心拍数、 心電図	ビーグル 犬	雄 4	0、200、600、 2,000 (経口)	2,000	I	投与による影響なし

^{*:}溶媒として 0.5%MC 溶液を用いた。

8. 急性毒性試験

(1)急性毒性試験

スピネトラム原体 [純度:85.8% (スピネトラム-J:64.6%、スピネトラム-L:21.2%)] を用いた急性毒性試験が実施された。結果は表 23 に示されている。(参照 $23\sim25$)

表 23 急性毒性試験結果概要 (原体)

投与	動物種	LD ₅₀ (mg/kg 体重)		観察された症状		
経路	性別・匹数	雄	雌	既余で407と近4人		
経口*	Fischer ラット		>5,000	水様便、会陰部及び口周囲の汚れ		
7,212	雌3匹		3,000	死亡例なし		
ý⊽ H→	Fischer ラット 雌雄各 5 匹	>5,000	>5,000	会陰部、口周囲、鼻周囲又は眼周囲		
経皮				の汚れ死亡例なし		
				7 7 7		
	SD ラット 雌雄各 5 匹	LC_{50} (mg/L)		被毛の汚れ、眼、会陰部又は広範囲		
吸入		>5.5	>5.5	に及ぶ身体の汚れ		
				死亡例なし		

^{*:}溶媒として 0.5%MC 水溶液を用いた。

代謝物 B、D 及び E のラットを用いた急性経口毒性試験が実施された。結果は表 24 に示されている。(参照 $26\sim27$)

表 24 急性毒性試験結果概要 (代謝物)

被験物質	投与	動物種	LD ₅₀ (mg/kg 体重)	観察された症状	
似歌物貝	経路*	性別・匹数	雌		
代謝物 B	経口	Fischer ラット 雌 13 匹	3,130	活動低下、肛門性器の汚れ、 下痢、顔面汚れ、軟便、便量 の減少及び円背姿勢 5,000 mg/kg 体重で死亡例	
代謝物 D	経口	Fischer ラット 雌 5 匹	>5,000	症状及び死亡例なし	
代謝物 E	経口	Fischer ラット 雌 3 匹	>5,000	症状及び死亡例なし	

^{*:}溶媒として 0.5%MC 水溶液を用いた。

(2) 急性神経毒性試験

Fischer ラット(一群雌雄各 10 匹)を用いた強制経口[原体(純度 85.5%): 0、200、630 及び 2,000 mg/kg 体重、溶媒: 0.5%MC 水溶液] 投与による急性神経毒性試験が実施された。

死亡率、一般状態、体重変化、詳細な状態の観察、機能検査、剖検及び病理組織学的検査(神経組織)のいずれにおいても、検体投与の影響は認められなかった。

本試験において、毒性所見は認められなかったので、無毒性量は雌雄とも本試験の最高用量 2,000~mg/kg 体重であると考えられた。神経毒性は認められなかった。(参照 28)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼及び皮膚刺激性試験が実施された [純度:85.8% (スピネトラム-J:64.6%、スピネトラム-L:21.2%)]。眼に対しては刺激性あり(米国 EPA の基準)又はごく軽度の刺激性あり(Kay and Calandra の方法)と判定されたが、皮膚に対する刺激性は認められなかった。(参照 29、30)

BALB/cAnNCrl マウスを用いた皮膚感作性試験 (LLNA 試験) が実施された [純度:85.8% (スピネトラム-J:64.6%、スピネトラム-L:21.2%)]。弱い皮膚感作性が認められた。(参照 31)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

Fischer ラット (一群雌雄各 10 匹) を用いた混餌 [原体 (純度: 83.0%、スピネトラム-J: 62.0%、スピネトラム-L: 21.0%); 2000 200 200

	表 25 90 日间里志任毎任武線(ブット)の十均候体授取重								
投与群		120 ppm	500 ppm	1,000 ppm	2,000 ppm	4,000 ppm			
	平均検体摂取量	雄	7.92	32.4	65.8	128			
	(mg/kg 体重/日)	雌	9.50	39.6	79.3	159	311		

表 25 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

/:該当なし

各投与群で認められた毒性所見は表 26、回復群に認められた毒性所見は表 27 に示されている。

回復群においても、投与群において認められた病変と同様の病変が認めら

れたが、雌の腸間膜におけるマクロファージ又は組織球集簇以外の病変は、その程度が軽減し、回復性が認められた。雌の肝臓では、肝小葉の門脈周囲領域に褐色色素を含有するマクロファージ又は組織球の集簇が認められた。この色素は特殊染色の結果、リポフスチン及びヘモジデリンから成り、その程度はヘモジデリンの方がリポフスチンより顕著に沈着していた。また、この色素は 90 日間投与試験群では認めらないことから、活性化マクロファージによる細胞膜の正常な処理の結果であり、回復の進行を示していると考えられた。

0、2,000 及び 4,000 ppm 投与群の雌 (それぞれ 5、3 及び 2 匹) の腎臓 (皮質) について、電子顕微的検査が実施された。2,000 ppm 投与群の雌の尿細管上皮細胞内に、電子密度の低い不定形物質及び稀に渦巻き状の膜構造を含む不均一なリソゾームが認められた。4,000 ppm 投与群の雌では尿細管上皮細胞内に不定型物質又は膜の渦を含有する空胞の存在が示唆された。これらの変化は CAD として知られている薬剤を投与した動物で観察されるものと類似しており、本剤が CAD である可能性が示唆された。

本試験において、1,000 ppm 以上投与群の雄及び 500 ppm 以上投与群の雌でマクロファージ又は組織球の集簇等が認められたので、無毒性量は雄で500 ppm(32.4 mg/kg 体重/日)、雌で 120 ppm(9.50 mg/kg 体重/日)であると考えられた。(参照 32)

表 26 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
4,000 ppm		・摂餌量減少
		・MCHC 減少
		・ALP 増加
		・尿中 Bil 増加
		骨格筋(後肢)筋線維変性
2,000 ppm	・体重増加抑制	• 体重増加抑制
以上	• 摂餌量減少	・MCHC 減少
	・AST 増加	・AST 増加
	・脾絶対及び比重量3増加、肝及び	・T ₃ 減少
	甲状腺比重量増加	・甲状腺、腎、心絶対及び比重量増加、
	・マクロファージ又は組織球の集簇	肝絶対重量増加
	(骨髄及び肝)	・マクロファージ又は組織球の集簇(骨
	• 多核肝細胞	格筋)
	• 腎近位尿細管硝子滴減少	・空腸及び回腸固有層内組織球空胞化
	・骨格筋(背中及び頭部)筋線維変	・骨格筋 (頭部及び喉頭) 筋線維変性
	性	
1,000 ppm	・ALT 増加	・Hb、Ht、MCV 及び MCH 減少、WBC
以上	・マクロファージ又は組織球の集簇	及び網状赤血球数増加
	(縦隔リンパ節、腸間膜リンパ	・脾絶対及び比重量増加、肝比重量増加
	節、脾臓、胸腺、空腸、回腸)	・マクロファージ又は組織球の集簇(縦
	・甲状腺ろ胞上皮細胞空胞化	隔リンパ節、胸腺及び回腸)
	• 骨格筋(喉頭部)筋線維変性	· 骨格筋(背中)筋線維変性
500 ppm	500 ppm 以下	·TG 減少
以上	毒性所見なし	· T ₄ 減少
		・マクロファージ又は組織球の集簇[腸
		間膜リンパ節、脾臓、骨髄(胸骨、後
		肢及び脊椎)、空腸及び肝臓]
		・腎尿細管上皮細胞空胞化
		・甲状腺ろ胞上皮細胞空胞化、コロイド
100		枯渇
120 ppm		毒性所見なし

表 27 90 日間亜急性毒性試験 (ラット) の回復群で認められた毒性所見

投与群	雄	雌
1,000 ppm	・ALT 増加	・脾比重量増加
	· 腎近位尿細管硝子滴形成減少	・マクロファージ又は組織球の集
	・マクロファージ又は組織球の集簇	簇[縦隔リンパ節、腸間膜リン
	(縦隔リンパ節、腸間膜リンパ節)	パ節、空腸、回腸及び骨髄(後
	・甲状腺ろ胞上皮細胞空胞化	肢及び胸骨)]
		・肝門脈周囲リポフスチン*含有マ
		クロファージ及び組織球集簇
		・甲状腺ろ胞上皮細胞空胞化

^{*:} ヘモジデリンとリポフスチンが同時に含まれる。

-

³ 体重比重量を比重量という (以下同じ)。

(2)90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌 [原体(純度:85.8%、スピネトラム-J:64.6%、スピネトラム-L:21.2%):0、150、300 及び 900 ppm: 平均検体摂取量は表 28 を参照] 投与による 90 日間亜急性毒性試験が実施された。

表 28 90 日間亜急性毒性試験 (イヌ) の平均検体摂取量

投与群		150 ppm	300 ppm	900 ppm
平均検体摂取量	雄	5.73	9.82	27.1
(mg/kg 体重/日)	雌	4.97	10.2	31.0

各投与群で認められた毒性所見は表 29 に示されている。

300 ppm 以上投与群の雌雄において、血液学的検査で赤血球系パラメーターが変化し、正球性低色素性再生性貧血が示唆されたが、赤血球系パラメーターの変化は軽度であった。また、イヌを用いた 1 年間慢性毒性試験で同様の変化は認められず、投与の長期化により重篤化はしないものと考えられた。

150 ppm 投与群の雄で回腸、空腸及び鼻腔組織並びに直腸のリンパ組織内及びリンパ節内マクロファージの空胞化のみが認められたが、生理学的免疫応答の範囲内と考えられた。

本試験において、300 ppm 以上投与群の雌雄で骨髄壊死等が認められたので、無毒性量は雌雄とも 150 ppm(雄:5.73 mg/kg 体重/日、雌:4.97 mg/kg 体重/日)であると考えられた。(参照 33)

表 29 90 日間亜急性毒性試験 (イヌ) で認められた毒性所見

	双 Zu	
投与群	雄	雌
900 ppm	削痩、円背位、自発運動減少、反応性	・体重増加抑制
	減少、無便及び尿による外陰部汚れ(1	・Hb、WBC、RBC、Ht、PLT、MCH 及び
	匹)	MCHC 減少、大型非染色性細胞*及び
	・Hb、RBC、Ht、MCH 及び MCHC 減	Mon 増加
	少、網状赤血球数及び大型非染色性細	・AST 及び Glob 増加、Alb 減少
	胞*增加	・肝絶対及び比重量増加
	・AST 及び Alb 増加	・胸腺比重量減少
	・肝絶対及び比重量増加	・マクロファージの空胞化(十二指腸、空
	・マクロファージの空胞化(肺)	腸、喉頭、肺及び胃のリンパ組織内、扁
	・動脈炎又は血管周囲炎(大動脈、脳、	桃)
	心臓、肺、腸間膜リンパ節、鼻腔組織、	・動脈炎又は血管周囲炎(腎臓、縦隔リン
	胃及び精巣)	パ節、腸間膜リンパ節及び膣)
300 ppm	• 体重增加抑制	・円背位、自発運動減少及び無便(1匹)
以上	・WBC、PLT 及び Eos 減少	•網状赤血球数増加
	・ALP 及び Glob 増加	・胸腺絶対重量減少
	・胸腺絶対及び比重量減少	・マクロファージの空胞化(盲腸、結腸、
	・マクロファージの空胞化(盲腸、結腸、	回腸、鼻腔組織及び直腸のリンパ組織内、
	回腸、空腸、喉頭、鼻腔組織、直腸及	脾臓、縦隔及び腸間膜リンパ節、扁桃腺、
	び胃のリンパ組織内、脾臓、縦隔及び	骨髄)
	腸間膜リンパ節、扁桃、骨髄)	・骨髄壊死
	· 心房心筋線維変性	・膵腺房萎縮及び腺房細胞壊死
	• 骨髄壊死	・肝クッパー細胞増生、肥大及び空胞化
	・肝クッパー細胞増生、肥大及び空胞化	・肝及び脾髄外造血
	・胸腺皮質萎縮	
150 ppm	毒性所見なし	毒性所見なし

*:白血球分類においてペルオキシダーゼ活性が低く、大型の細胞のことを称す。芽球、異型リンパ球、一部の大型リンパ球及び単球が含まれる。本試験においては、リンパ球の空胞化、すなわち、リン脂質症に起因した変化と考えられた。

11. 慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた混餌 [原体 (純度:85.8%、スピネトラム-J:64.6%、スピネトラム-L:21.2%):0、50、100 及び 200 ppm: 平均検体摂取量は表 30 参照]投与による 1 年間慢性毒性試験が実施された。

表 30 1年間慢性毒性試験(イヌ)の平均検体摂取量

投与群		50 ppm	100 ppm	200 ppm
平均検体摂取量	雄	1.57	2.96	5.36
(mg/kg 体重/日)	雌	1.31	2.49	5.83

臓器重量測定において、200 ppm 投与群の雄で肝絶対及び比重量の増加が 認められた。肝重量の高値は、対照群と比べ有意差はなかった。

病理組織学的検査において、200 ppm 投与群の雄1例で精巣上体、雌1例

で胸腺、甲状腺、喉頭及び膀胱に動脈炎が認められた。血管壁の壊死を伴う 結節性動脈炎はビーグル犬に自然発生性にしばしば認められ、化合物により 顕在化する可能性が示唆されている。本剤のビーグル犬への投与においても、 増悪化されて発現した可能性があると考えられた。

本試験において、200 ppm 投与群の雌雄で動脈炎等が認められたので、無毒性量は雌雄とも 100 ppm(雄:2.96 mg/kg 体重/日、雌:2.49 mg/kg 体重/日)であると考えられた。(参照 34)

(2)2年間慢性毒性/発がん性併合試験(ラット)

SD ラット (発がん性群:一群雌雄各 50 匹、慢性毒性群 (投与 12 カ月後に中間と殺):一群雌雄各 10 匹)を用いた混餌 [原体 (純度: 85.8%、スピネトラム-J:64.6%、スピネトラム-L:21.2%): 0、50、250、500 及び 750 ppm: 平均検体摂取量は表 31 参照] 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

表 31 2年間慢性毒性/発がん性併合試験(ラット)の平均検体摂取量

投与群		50 ppm	250 ppm	500 ppm	750 ppm
平均検体摂取量	雄	2.12	10.8	21.6	32.9
(mg/kg 体重/日)	雌	2.63	13.2	26.6	40.0

各投与群で認められた毒性所見は表 32 に示されている。

500 ppm 以上投与群の雌で心絶対及び比重量増加が認められた。また、同群の雌では投与 12 カ月後に肝比重量の増加が認められた。これらの変化に関連すると考えられる病理組織学的変化は認められなかったが、検体投与に起因した変化と考えられた。

腫瘍性病変の発生頻度に検体投与の影響は認められなかった。

本試験において、500 ppm 以上投与群の雌雄で甲状腺ろ胞上皮細胞細胞質空胞化等が認められたので、無毒性量は雌雄とも 250 ppm(雄: 10.8 mg/kg 体重/日、雌: 13.2 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 35)

表 32 2年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見

投与群	雄	雌
750 ppm	・マクロファージ又は組織球の集簇	・肺胞マクロファージ又は組織球の集簇
	(腸間膜リンパ節)	・網膜変性及び空胞化
500 ppm	• 体重增加抑制	・心絶対及び比重量増加
以上	・甲状腺ろ胞上皮細胞細胞質空胞化	・肝比重量増加(投与12カ月後のみ)
		甲状腺ろ胞上皮細胞細胞質空胞化
		・マクロファージ又は組織球の集簇[腸
		間膜リンパ節、縦隔リンパ節、脾(白髄)
		及び回腸 (パイエル板)]
250 ppm 以下	毒性所見なし	毒性所見なし

(3) 18 カ月間発がん性試験(マウス)

ICR マウス (一群雌雄各 50 匹) を用いた混餌 [原体 (純度:85.8%、スピネトラム-J:64.6%、スピネトラム-L:21.2%):0、25、80、150 及び 300 ppm: 平均検体摂取量は表 33 参照] 投与による 18 カ月間発がん性試験が実施された。

表 33 18 カ月間発がん性試験(マウス)の平均検体摂取量

投与群		25 ppm	80 ppm	150 ppm	300 ppm
平均検体摂取量	雄	3.0	10.0	18.8	37.5
(mg/kg 体重/日)	雌	4.0	12.8	23.9	46.6

各投与群で認められた毒性所見は表34に示されている。

腫瘍性病変の発生頻度に検体投与の影響は認められなかった。

本試験において、300 ppm 投与群の雌雄で腺胃部粘膜過形成及び腺胃部粘膜腺腔拡張等が認められたので、無毒性量は雌雄とも 150 ppm (雄: 18.8 mg/kg 体重/日、雌: 23.9 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 36)

表 34 18 カ月間発がん性試験(マウス)で認められた毒性所見

投与群	雄	雌
300 ppm	 ・腺胃部粘膜過形成(多発及び限局性) ・腺胃部粘膜腺腔拡張(多発及び限局性) ・腺胃部粘膜下組織慢性炎症(多発及び限局性) ・肺胞マクロファージ集簇・精巣上体頭部上皮細胞空胞化 	 ・体重増加抑制 ・摂餌量減少 ・腺胃部粘膜過形成(多発及び限局性) ・腺胃部粘膜腺腔拡張(多発及び限局性) ・腺胃部粘膜下組織慢性炎症(多発及び限局性) ・肺胞マクロファージ集簇
150 ppm 以下	毒性所見なし	毒性所見なし

(4)1年間慢性神経毒性試験(ラット)

Fischer ラット (一群雌雄各 10 匹)を用いた混餌 [原体 (純度:85.8%、スピネトラム-J:64.6%、スピネトラム-L:21.2%):0、50、250、500 及び 750 ppm: 平均検体摂取量は表 35 参照] 投与による 1 年間慢性神経毒性試験が実施された。

投与群		50 ppm	250 ppm	500 ppm	750 ppm	
平均検体摂取量雄		2.4	12.0	24.4	36.7	
(mg/kg 体重/日) 雌		2.9	14.7	29.6	44.3	

表 35 1年間慢性神経毒性試験 (ラット) の平均検体摂取量

死亡率、一般状態、体重変化、詳細な状態の観察、機能検査、剖検及び病理組織学的検査(神経組織)のいずれにおいても、検体投与の影響は認められなかった。

本試験において、いずれの投与群においても毒性所見が認められなかったので、無毒性量は雌雄とも本試験の最高用量 750 ppm(雄: 36.7 mg/kg 体重/日、雌: 44.3 mg/kg 体重/日)であると考えられた。神経毒性は認められなかった。(参照 37)

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット (一群雌雄各 27 匹) を用いた混餌 [原体 (純度:85.8%、スピネトラム-J:64.6%、スピネトラム-L:21.2%):0、3、10 及び 75 mg/kg 体重/日:平均検体摂取量は表 36 参照] 投与による 2 世代繁殖試験が実施された。

投与群 (mg	:/kg体重/日)	3	10	75
	P世代	雄	3.24	10.8	80.8
平均検体摂取量	1 ETV	雌	3.13	10.5	78.4
(mg/kg体重/日)	F1世代	雄	3.16	10.5	79.0
	I.TIIT.] /	雌	2.97	9.87	74.9

表 36 2世代繁殖試験(ラット)の平均検体摂取量

各投与群で認められた毒性所見は表 37 に示されている。

親動物では F₁ 雌雄において、肝絶対及び比重量が増加し、検体投与に関連した変化と考えられたが、この変化に対応する病理組織学的変化は認められ

ず、毒性学的意義は不明であった。また、両世代雌雄において、甲状腺ろ胞上皮細胞細胞質空胞化が認められたが、血清中 TSH、 T_3 及び T_4 レベルには、投与に関連した影響は認められなかった。

親動物の繁殖能に関しては、75 mg/kg 体重/日投与群の P 雌 4 例及び F_1 雌 3 例で難産が認められ、そのほとんどでは数日間にわたり分娩が遅延した。 児動物においては、75 mg/kg 体重/日投与群 P 世代で分娩時生存率が低下し、統計学的に有意差はないものの着床後死亡率も軽度に増加した。 F_1 世代でも有意差はないものの同様の変化がみられ、再現性が認められたので、検体投与の影響と考えられた。

本試験において、75 mg/kg 体重/日投与群の親動物の雌雄で甲状腺ろ胞上皮細胞細胞質空胞化等、児動物で分娩時生存率の低下が認められたので、無毒性量は親動物及び児動物の雌雄とも 10 mg/kg 体重/日(P雄: 10.8 mg/kg 体重/日、P雌: 10.5 mg/kg 体重/日、 F_1 雄: 10.5 mg/kg 体重/日、 F_1 雌: 9.87 mg/kg 体重/日)であると考えられた。また、75 mg/kg 体重/日投与群の雌で難産が認められたことから繁殖能に対する無毒性量は 10 mg/kg 体重/日(P 雄: 10.8 mg/kg 体重/日、P雌: 10.5 mg/kg 体重/日、 F_1 雄: 10.5 mg/kg 体重/日、10.5 mg/kg 化

表 37 2世代繁殖試験(ラット)で認められた毒性所見

	表の と世代系担政教(ファー) こ此のうれのに毎日が元								
	投与群	親:P、児:F ₁		親	: F ₁ 、児 : F ₂				
	汉子杆	雄	此推	雄	雌				
親動物	75 mg/kg 体重/日	・甲状腺ろ胞 上皮細胞細 胞質空胞化 (び漫性)	・切迫と殺(1 例、難産) ・着床後胎児死亡率増加 ・難産、分娩遅延 ・外陰部分泌物、鼻周囲 汚れ、皮膚及び粘膜蒼 白化 a) ・子宮片側限局性肥厚 b) 及び胎児組織遺残	・肝地軍状皮質が ・肝地軍状皮質が近過 を関でが近過 ・腎で ででで でで でで でで でで でで でで でで でで	・切迫と殺(1 例、胎児 遺残) ・着床後胎児死亡率増加 ・難産、分娩遅延 ・外陰部分泌物、鼻、口 周囲及び下腹部の汚 れ、皮膚及び粘膜蒼白 化 a)				
			及び胎児組織 遺残 b(各1例) ・甲状腺ろ胞上皮細胞細 胞質空胞化(び漫性) ・腎近位尿細管褐色色素 沈着(多発性) ・子宮筋層肉芽腫性炎 (限局性)b)、慢性活動 性炎 b(各1例)	官物巴巴索 沈着(多発 性)	・子宮胎児組織遺 残 り(1例) ・肝絶対及び比重量増加 ・甲状腺ろ胞上皮細胞細 胞質空胞化(び漫性) ・腎近位尿細管褐色色素 沈着(多発性) ・子宮慢性活動性 炎 り(1例)				
	10 mg/kg 体重/日 以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし				
児	75 mg/kg 体重/日	• 分娩時生存率	減少	• 分娩時生存率	減少				

動	10	毒性所見なし	毒性所見なし
物	mg/kg 体重/日		
	以下		

- a) これらの症状は難産を示した動物に認められた。
- b) これらの病変は、子宮内に遺残していた後期死亡胎児に関連した病変である。

(2)発生毒性試験(ラット)

SD ラット(一群雌 26 匹)の妊娠 $6\sim20$ 日に強制経口[原体(純度:85.8%、スピネトラム-J:64.6%、スピネトラム-L:21.2%):0、30、100 及び 300 mg/kg体重/日、溶媒:0.5%METHOCEL®A4M 水溶液] 投与する発生毒性試験が実施された。

母動物において、300 mg/kg 体重/日投与群で体重増加抑制及び摂餌量減少が認められた。

胎児では、検体投与の影響は認められなかった。

本試験における無毒性量は、母動物で 100 mg/kg 体重/日、胎児で 300 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 39)

(3)発生毒性試験(ウサギ)

NZW ウサギ(一群雌 22 匹)の妊娠 $7\sim27$ 日に強制経口[原体(純度:83.0%、スピネトラム-J:62.0%、スピネトラム-L:21.0%):0、2.5、10 及び 60 mg/kg体重/日、溶媒:0.5%METHOCEL®A4M 水溶液] 投与する発生毒性試験が実施された。

母動物において、60 mg/kg 体重/日投与群の1例で検体投与に関連していると考えられる飢餓状態による衰弱及び体重減少が認められたため、妊娠21日に切迫と殺された。同群のその他の動物において、体重増加抑制、摂餌量及び排糞量減少並びに肝絶対及び比重量増加が認められた。

胎児では、検体投与の影響は認められなかった。

本試験における無毒性量は、母動物で 10 mg/kg 体重/日、胎児で 60 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 40)

13. 遺伝毒性試験

スピネトラム (原体:純度 85.8%) の細菌を用いた復帰突然変異試験、ラットリンパ球を用いた染色体異常試験、チャイニーズハムスター卵巣由来細胞 (CHO) を用いた遺伝子突然変異試験 (HGPRT 遺伝子座) 及びマウスを用いた小核試験が実施された。

試験結果は表 38 に示されているとおり、すべて陰性であった。スピネトラムに遺伝毒性はないと考えられた。(参照 $41\sim43$ 、52)

表 38 遺伝毒性試験概要 (原体)

	試験	対象	処理濃度・投与量	結果
in vitro	復帰突然 変異試験	Salmonella typhimurium (TA98、TA100、 TA1535、TA1537 株) Escherichia coli (WP2 uvrA 株)	1.0~5,000 μg/7° ν-} (+/-S9) 1)	陰性
	遺伝子突然 変異試験 (HGPRT 遺伝子座)	チャイニーズハムスター 卵巣由来細胞(CHO)	$10\sim 80^{2} \mu g/mL (-S9)$ $10\sim 320^{2} \mu g/mL (+S9)$ $10\sim 80^{2} \mu g/mL (-S9)$ $20\sim 240^{2} \mu g/mL (+S9)$	陰性
	染色体 異常試験	ラットリンパ球	4 時間処理: 10~80 μg/mL (+/-S9) 24 時間処理: 10~30 μg/mL (-S9)	陰性
in vivo	小核試験	ICR マウス (骨髄細胞) (一群雄 6 匹)	500、1,000、2,000 mg/kg 体重 (2 回経口投与)	陰性

- 注) +/-S9: 代謝活性化系存在下及び非存在下
 - 1) 代謝活性化系存在下及び非存在下で、菌株によって $100 \mu g/7$ ν -ト以上で生育阻害が、 $1,000 \mu g/7$ ν -ト以上で検体の析出が認められた。
 - 2) 代謝活性化系存在下及び非存在下で、50 µg/mL 以上で検体の析出が認められた。

スピネトラムの代謝物 B、D 及び E の細菌を用いた復帰突然変異試験が実施された。

結果は表 39 に示されているとおり、すべて陰性であった。(参照 44~45)

表 39 遺伝毒性試験概要 (代謝物)

被検物質	試験	対象	処理濃度・投与量	結果	
代謝物 B		S.typhimurium	0.33~3,330 μg/7° ν-\ (+/-S9)1)	陰性	
代謝物 D	復帰突然 変異試験	(TA98, TA100,		33.3~5,000 μg/7° ν-ト (+/-S9) ²⁾	陰性
代謝物 E		E. coli (WP2 uvrA株)	33.3~5,000 μg/7° ν-ト (+/-S9)2)	陰性	

- 注) +/-S9: 代謝活性化系存在下及び非存在下
 - 1) 代謝活性化系存在下及び非存在下で、菌株によって $33.3~\mu g/7^{\circ} \nu$ ト以上でバックグランド の菌の減少が認められた。
 - 2) 代謝活性化系存在下及び非存在下で、菌株によって 1,000 $\mu g/7^{\circ} \nu$ ト以上で検体の析出を認めた。

皿. 食品健康影響評価

参照に挙げた資料を用いて、農薬「スピネトラム」の食品健康影響評価を実施した。

 14 C で標識したスピネトラム(スピネトラム・J 及びスピネトラム・L)を用いた動物体内運命試験において、ラットに経口投与されたスピネトラムは速やかに吸収され、投与後 24 時間までに主に糞を介して排泄された。吸収率は 72 83 と推定された。主要組織中の残留放射能濃度は、消化管、リンパ節、肝臓、肺、脂肪、腎臓及び副腎で高値を示したが、投与 168 時間後にはいずれの組織においても 60 TAR を超えなかったことから、体内残留性はないと考えられた。主要代謝経路として、親化合物のグルタチオン抱合化、 10 が脱メチル化、 10 が脱メチル化、 10 がルタチオン抱合化の変換が考えられた。

 14 C で標識したスピネトラムを用い、レタス、かぶ、りんご及び水稲における植物体内運命試験が実施された。レタス、かぶ及びりんごにおいて、同定可能な主要化合物は親化合物及び代謝物 B、C、D 及び E であり、いずれも表面洗浄液中及び果皮(りんご)に存在した。土壌処理による収穫期の玄米における残留放射能は定量限界未満であった。植物体内における主要代謝経路として、forosamine 糖部分が変化しN-脱メチル化及びN-formyl 化代謝物が生成される経路と、親化合物やこれら代謝物のマクロライド骨格が開裂又は開環し、多数の極性成分を生成する経路が考えられた。

水稲、茶、野菜及び果物を用いて、スピネトラム・J、スピネトラム・L、代謝物 B、C、D 及び E を分析対象化合物とした作物残留試験が実施された。最大値は、スピネトラム・J の最終散布 1 日後に収穫したサラダ菜の 3.35 mg/kg であった。スピノサドの残留データをスピネトラムに読み替えることが適切かを検討する試験において、スピネトラムの残留量はスピノサドと同等又はそれ以下であり、読み替えは可能であると考えられた。スピノシン A、スピノシン D、代謝物であるスピノシン B、スピノシン K 及び N-demethyl spinosyn D を分析対象としたりんご、オレンジ、グレープフルーツ及びレモンにおける作物残留試験が実施され、最大残留値は最終散布 1 日後に収穫したグレープフルーツの 0.152 mg/kg であった。

各種毒性試験結果から、スピネトラム投与による影響は、主に多数の臓器におけるマクロファージ又は組織球の集簇及び空胞化並びに上皮細胞の空胞化(甲状腺、腎臓、精巣上体等)であった。スピネトラムが CAD のひとつと考えられていることから、これらの変化は CAD によって誘発されたリン脂質症の結果であると考えられた。

神経毒性、発がん性、催奇形性及び遺伝毒性は認められなかった。

各種試験結果から、農産物中の暴露評価対象物質をスピネトラム(親化合物のみ)と設定した。

各試験における無毒性量及び最小毒性量は表 40 に示されている。

表 40 各試験における無毒性量及び最小毒性量

		₩₽₽	無事界量	目.北丰州里	1
動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考
ラット	90 日間 亜急性 毒性試験	雄: 0、120、500、1,000、 2,000 ppm 雌: 0、120、500、1,000、 2,000、4,000 ppm 雄: 0、7.92、32.4、65.8、 128 雌: 0、9.50、39.6、79.3、 159、311	雄: 32.4 雌: 9.50	雄:65.8 雌:39.6	雌雄:マクロファージ 又は組織球の集簇等
	2年間 慢性毒性/ 発がん性 併合試験	が : 0、2.12、10.8、21.6、 32.9 雌: 0、2.63、13.2、26.6、 40.0	雄:10.8 雌:13.2	雄:21.6 雌:26.6	雌雄:甲状腺ろ胞上皮 細胞細胞質空胞化 等 (発がん性は認めら れない)
	1年間 慢性神経 毒性試験	の、50、250、500、750 ppm 雄:0、2.4、12.0、24.4、36.7 雌:0、2.9、14.7、29.6、44.3	雄:36.7 雌:44.3	雄:一雌:一	毒性所見なし (神経毒性は認めら れない)
	2世代繁殖試験	0、3、10、75 P雄:0、3.24、10.8、80.8 P雌:0、3.13、10.5、78.4 F1雄:0、3.16、10.5、79.0 F1雌:0、2.97、9.87、74.9	親動物及び 児動物 P雄:10.8 P雌:10.5 F1雄:10.5 F1雄:9.87 繁殖能 P雄:10.8 P雌:10.5 F1雄:10.5	親動物及び 児動物 P雄:80.8 P雌:78.4 F1雄:79.0 F1雌:74.9 繁殖能 P雄:80.8 P雌:78.4 F1雄:79.0 F1雌:74.9	親動物:甲状腺ろ胞上 皮細胞細胞質空胞 化等 児動物:分娩時生存率 低下 雌:難産
	発生毒性 試験	0,30,100,300	母動物:100 胎児:300	母動物:300 胎児:一	母動物:体重増加抑制 及び摂餌量減少 胎児:毒性所見なし (催奇形性は認めら れない)
マウス	18 カ月間 発がん性 試験	0、25、80、150、300 ppm 雄:0、3.0、10.0、18.8、37.5 雌:0、4.0、12.8、23.9、46.6	雄:18.8 雌:23.9	雄:37.5 雌:46.6	雌雄: 腺胃部粘膜過形 成及び腺胃部粘膜 腔拡張等 (発がん性は認めら れない)

動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考
ウサギ	発生毒性 試験	0,2.5,10,60	母動物:10 胎児:60	母動物:60 胎児:一	母動物:体重増加抑制 等 胎児:毒性所見なし (催奇形性は認めら れない)
イヌ	90 日間 亜急性 毒性試験	0、150、300、900 ppm 雄:0、5.73、9.82、27.1 雌:0、4.97、10.2、31.0	雄: 5.73 雌: 4.97	雄: 9.82 雌: 10.2	雌雄:骨髄壊死等
	1年間 慢性毒性 試験	0、50、100、200 ppm 雄:0、1.57、2.96、5.36 雌:0、1.31、2.49、5.83	雄:2.96 雌:2.49	雄:5.36 雌:5.83	雌雄:動脈炎等

¹⁾ 備考に最小毒性量で認められた毒性所見を記した。

食品安全委員会は、各試験で得られた無毒性量の最小値がイヌを用いた 1年間慢性毒性試験の 2.49~mg/kg 体重/日であったことから、これを根拠として、安全係数 100~で除した 0.024~mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

ADI 0.024 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌

(無毒性量) 2.49 mg/kg 体重/日

(安全係数) 100

<別紙1:代謝物/分解物略称>

記号	化学名
В	$ \begin{array}{l} (2R, 3aR, 5aR, 5bS, 9S, 13S, 14R, 16aS, 16bR) - 9 - ethyl - 14 - methyl - 13 - \{[(2S, 5S, 6R) - 6 - methyl - 5 - (methylamino) tetrahydro - 2H - pyran - 2 - yl]oxy\} - 7, 15 - dioxo - 2, 3, 3a, 4, 5, 5a, 5b, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16a, 16b - octadecahydro - 1H - as - indaceno [3, 2 - d]oxacyclododecin - 2 - yl 6 - deoxy - 3 - O - ethyl - 2, 4 - di - O - methyl - \beta - L - mannopyranoside \\ \end{array} $
C	$(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-9-ethyl-4,14-dimethyl-13-\{[(2S,5S,6R)-6-methyl-5-(methylamino)tetrahydro-2H-pyran-2-yl]oxy\}-7,15-dioxo-2,3,3a,5a,5b,6,7,9,10,11,12,13,14,15,16a,16b-hexadecahydro-1$H-as-indaceno [3,2-d]oxacyclododecin-2-yl 6-deoxy-3-$O-ethyl-2,4-di-$O-methyl-β-L-mannopyranoside$
D	$ \begin{array}{l} (2R, 3S, 6S) - 6 - (\{(2R, 3aR, 5aR, 5bS, 9S, 13S, 14R, 16aS, 16bR) - 2 - [(6 - deoxy - 3 - O - ethyl - 2, 4 - di - O - methyl - \beta - L - mannopyranosyl) oxy] - 9 - ethyl - 14 - methyl - 7, 15 - dioxo - 2, 3, 3a, 4, 5, 5a, 5b, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16a, 16b - octadecahydro - 1 H - as - indaceno [3, 2 - d] oxacyclododecin - 13 - yl oxy) - 2 - methyl tetrahydro - 2 H - pyran - 3 - yl (methyl) formamide $
E	$ \begin{array}{l} (2R, 3S, 6S) - 6 - (\{(2S, 3aR, 5aS, 5bS, 9S, 13S, 14R, 16aS, 16bS) - 2 - [(6 - deoxy - 3 - O - ethyl - 2, 4 - di - O - methyl - \beta - L - mannopyranosyl) oxyl - 9 - ethyl - 4, 14 - dimethyl - 7, 15 - dioxo - 2, 3, 3a, 5a, 5b, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16a, 16b - hexadecahydro - 1H - as - indaceno [3, 2 - d] oxacyclododecin - 13 - yl\ oxy) - 2 - methyl tetrahydro - 2H - pyran - 3 - yl\ (methyl) formamide $
F	$(2R, 3aR, 5aR, 5bS, 9S, 13S, 14R, 16aS, 16bS) - 13 - \{[(2S, 5S, 6R) - 5 - (dimethylamino) - 6 - methyltetrahydro - 2H-pyran - 2-yl]oxy\} - 9 - ethyl - 14 - methyl - 7, 15 - dioxo - 2, 3, 3a, 4, 5, 5a, 5b, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16a, 16b - octadecahydro - 1H-as - indaceno [3, 2-d]oxacyclododecin - 2-yl 6 - deoxy - 2, 4-di - O-methyl - \beta-L-mannopyranoside$
G	$(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-13-\{[(2S,5S,6R)-5-(dimethylamino)-6-methyltetrahydro-2H-pyran-2-yl]oxy\}-9-ethyl-4,14-dimethyl-7,15-dioxo-2,3,3a,5a,5b,6,7,9,10,11,12,13,14,15,16a,16b-hexadecahydro-1H-as-indaceno [3,2-d]oxacyclododecin-2-yl 6-deoxy-2,4-di-O-methyl-\beta-L-mannopyranoside$
Н	$(2R, 3aR, 5aR, 5bS, 9S, 13S, 14R, 16aS, 16bR) - 13 - \{[(2S, 5S, 6R) - 5 - (dimethylamino) - 6 - methyltetrahydro - 2H-pyran - 2-yl]oxy\} - 9 - ethyl-2 - hydroxy - 14 - methyl-2, 3, 3a, 4, 5, 5a, 5b, 6, 9, 10, 11, 12, 14, 13, 16a, 16b - hexadecahydro - 1H-as - indaceno [3, 2-d]oxacyclododecine - 7, 15 - dione$
I	$(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-13-\{[(2S,5S,6R)-5-(dimethylamino)-6-methyltetrahydro-2H-pyran-2-yl]oxy\}-9-ethyl-2-hydroxy-4,14-dimethyl-2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-tetradecahydro-1H-as-indaceno[3,2-d]oxacyclododecine-7,15-dione$
J	$ \begin{array}{l} (3aR, 5aR, 5bS, 9S, 13S, 14R, 16aS, 16bR) - 13 - \{[(2S, 5S, 6R) - 5 - (dimethylamino) - 6 - methyltetrahydro - 2H - pyran - 2 - yl]oxy\} - 9 - ethyl - 14 - methyl - 3a, 4, 5, 5a, 5b, 6, 9, 10, 11, 12, 13, 14, 16a, 16b - tetradecahydro - 1H - as - indaceno [3, 2 - d]oxacyclododecine - 2, 7, 15(3H) - trione \\ \end{array} $
K	(2S,3aR,5aS,5bS,9S,13S,14R,16aS,16bS)-9-ethyl-2,13-dihydroxy-4,14-dimethyl-2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-tetradecahydro-1\$H-as-indaceno[3,2-d] oxacyclododecine-7,15-dione

L	$(2S,3aR,5aR,5bS,9S,13S,14R,15aR,16aS,16bS)-9-ethyl-13-hydroxy-4,14-dimethyl-7,15-dioxo-2,3,3a,5a,5b,6,7,9,10,11,12,13,14,15,15a,16,16a,16b-octadecahydro-1H-as-indaceno[3,2-d]oxacyclododecin-2-yl 6-deoxy-3-O-ethyl-2,4-di-O-methyl-α-L-mannopyranoside$
M	monohydroxy spinetoram-J
N	monohydroxy C9-pseudoaglycone-175-J
MW813	未同定分解物

<別紙2:検査値等略称>

略称	名称
ai	有効成分量(active gradient)
Alb	アルブミン
ALP	アルカリホスファターゼ
ALT	アラニンアミノトランスフェラーゼ
ALI	[=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)]
AST	アスパラギン酸アミノトランスフェラーゼ
ADI	[=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)]
AUC	薬物濃度曲線下面積
Bil	ビリルビン
CAD	陽イオン性両親媒性薬物(Cationic amphiphilic drugs)
C_{max}	最高濃度
Eos	好酸球(百分率)
EPA	米国環境保護庁
GABA	γ-アミノ酪酸
Glob	グロブリン
Hb	ヘモグロビン (血色素量)
Ht	ヘマトクリット値
LC50	半数致死濃度
LD_{50}	半数致死量
LLNA	局所リンパ節法(Local Lymph Node Assay)
MC	メチルセルロース
MCH	平均赤血球へモグロビン量
MCHC	平均赤血球血色素濃度
MCV	平均赤血球容積
Mon	単球数 (百分率)
PHI	最終使用から収穫までの日数
PLT	血小板数
RBC	赤血球数
$T_{1/2}$	消失半減期
Тз	トリヨードサイロニン
T_4	サイロキシン
TAR	総投与(処理)放射能
TG	トリグリセライド
Tmax	最高濃度到達時間
TRR	総残留放射能
TSH	甲状腺刺激ホルモン
WBC	白血球数

<別紙3:作物残留試験(国内)>

		• 1F1077			(国1)				残留值(mg/kg)				
作物名	試験	//. III II	亘				的分析機					内分析機		
[栽培形態] (分析部位)	甫	使用量 (g ai/ha)	数	PHI (目)	スピネ	トラム -J	スピネ	トラム - L		スピネ	トラム -J	スピネ	トラム - L	
実施年	場数	(g airlia)	(回)	(4)	最高 値	平均 値	最高 値	平均 値	合計	最高 値	平均 値	最高 値	平均 値	合計
水稲 (玄米) 2006 年	2	G:50	1 1 1	130 137 144	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.02 <0.02 <0.02	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.02 <0.02 <0.02
水稲 (稲わら) 2006 年	2	G:50	1 1 1	112 119 126	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.02 <0.02 <0.02	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.02 <0.02 <0.02
トマト [施設] (果実) 2006 年	1	WP1: 96	2 2 2	$\begin{array}{c} 1\\7\\12\end{array}$	0.07 0.06 <0.01	0.06 0.06 <0.01	0.02 0.01 <0.01	0.02 0.01 <0.01	0.08 0.07 <0.02	$0.10 \\ 0.09 \\ 0.02$	$0.10 \\ 0.09 \\ 0.02$	0.03 0.02 <0.01	0.03 0.02 <0.01	0.13 0.11 0.03
トマト [施設] (果実) 2006 年	1	WP: 120	2 2 2	$\begin{array}{c} 1\\7\\21\end{array}$	0.05 0.03 0.01	0.05 0.03 0.01	0.01 <0.01 <0.01	0.01 <0.01 <0.01	0.06 0.04 0.02	$0.05 \\ 0.04 \\ 0.02$	$0.05 \\ 0.04 \\ 0.02$	0.02 0.01 <0.01	0.02 0.01 <0.01	$0.07 \\ 0.05 \\ 0.03$
ミニトマト [施設] (果実) 2006 年	1	WP1: 96	2 2 2	1 7 21	0.05 0.03 0.01	0.05 0.03 0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.06 0.04 0.02	0.07 0.04 0.01	0.07 0.04 0.01	0.01 <0.01 <0.01	0.01 <0.01 <0.01	0.08 0.05 0.02
ミニトマト [施設] (果実) 2006 年	1	WP1: 96	2 2 2	$\begin{array}{c} 1\\7\\21\end{array}$	0.13 0.09 0.04	0.13 0.09 0.04	0.03 0.02 <0.01	0.03 0.02 <0.01	0.16 0.11 0.05	0.22 0.08 0.04	0.22 0.08 0.04	0.05 0.01 <0.01	0.05 0.01 <0.01	0.27 0.09 0.05
なす [施設] (果実) 2006 年	1	WP1: 144	2 2 2	1 7 14	0.04 <0.01 <0.01	0.04 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.05 <0.02 <0.02	0.05 <0.01 <0.01	0.04 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.05 <0.02 <0.02
なす [施設] (果実) 2006 年	1	WP1: 96	2 2 2	1 7 14	0.04 <0.01 <0.01	0.04 <0.01 <0.01	0.01 <0.01 <0.01	0.01 <0.01 <0.01	0.05 <0.02 <0.02	0.03 <0.01 <0.01	0.03 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.04 <0.02 <0.02
キャベツ (葉球) 2006 年	1	WP: 96	2 2 2	1 7 14	0.14 <0.01 <0.01	0.14 <0.01 <0.01	0.04 <0.01 <0.01	0.04 <0.01 <0.01	0.18 <0.02 <0.02	0.07 <0.01 <0.01	0.07 <0.01 <0.01	0.02 <0.01 <0.01	0.02 <0.01 <0.01	0.09 <0.02 <0.02
キャベツ (葉球) 2006 年	1	WP1: 250	2 2 2	1 7 14	0.02 <0.01 <0.01	0.02 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.03 <0.02 <0.02	0.04 <0.01 <0.01	0.04 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.05 <0.02 <0.02
レタス [施設] (茎葉) 2006 年	1	WP1: 96	2 2 2 2	$\begin{array}{c}1\\7\\14\\21\end{array}$	2.24 0.92 0.37 0.18	2.24 0.92 0.36 0.18	$0.60 \\ 0.20 \\ 0.07 \\ 0.02$	$0.60 \\ 0.20 \\ 0.07 \\ 0.02$	2.84 1.12 0.43 0.20	$\begin{array}{c} 2.66 \\ 1.52 \\ 0.20 \\ 0.13 \end{array}$	2.65 1.50 0.20 0.13	$0.76 \\ 0.32 \\ 0.03 \\ 0.02$	$0.74 \\ 0.32 \\ 0.03 \\ 0.02$	3.39 1.82 0.23 0.15
レタス [施設] (茎葉) 2006 年	1	WP1: 96	2 2 2 2	$\begin{array}{c}1\\7\\14\\21\end{array}$	$0.09 \\ 0.05 \\ 0.01 \\ 0.01$	$0.08 \\ 0.05 \\ 0.01 \\ 0.01$	0.02 0.01 <0.01 <0.01	0.02 0.01 <0.01 <0.01	$0.10 \\ 0.06 \\ 0.02 \\ 0.02$	$0.25 \\ 0.29 \\ 0.02 \\ 0.02$	$0.25 \\ 0.29 \\ 0.02 \\ 0.02$	0.07 0.07 <0.01 <0.01	0.07 0.07 <0.01 <0.01	0.32 0.36 0.03 0.03
リーフレタス [施設] (茎葉) 2006 及び 2007 年	1	WP1: 144	2 2 2 2 2	1 7 14 21	2.60 0.13 0.11 0.02	2.57 0.13 0.10 0.02	0.67 0.01 <0.01 <0.01	0.66 0.01 <0.01 <0.01	3.23 0.14 0.11 0.03	_ _ _ _	_ _ _ _	_ _ _ _	- - - -	- - -
リーフレタス [施設] (茎葉) 2006 及び 2007 年	1	WP1: 96	2 2 2 2	$\begin{array}{c} 1 \\ 7 \\ 14 \\ 21 \end{array}$	2.10 0.52 0.03 <0.01	2.06 0.50 0.03 <0.01	0.39 0.03 <0.01 <0.01	0.39 0.03 <0.01 <0.01	2.45 0.53 0.04 <0.02	- - -	- - -	_ _ _ _	 - -	
サラダ菜 [施設] (茎葉) 2006 年	1	WP1: 96	2 2 2 2	1 7 14 21	1.99 0.62 0.08 <0.01	1.96 0.62 0.08 <0.01	0.51 0.13 0.02 <0.01	0.51 0.13 0.02 <0.01	2.47 0.75 0.10 <0.02	- - -	- - - -	_ _ _ _	- - - -	- - -

	= "				残留值(mg/kg)									
作物名	試験		亘				的分析機					内分析機		
[栽培形態] (分析部位)	甫	使用量 (g ai/ha)	数	PHI (目)	スピネ	トラム -J	スピネ	トラム - L		スピネ	トラム -J	スピネ	トラム - L	
実施年	場数	(g airna)	(回)	(11)	最高 値	平均 値	最高 値	平均 値	合計	最高 値	平均 値	最高 値	平均 値	合計
サラダ菜			2	1	3.35	3.34	0.96	0.96	4.30	_	_	_	_	_
[施設] (茎葉)	1	WP1: 96	2 2 2 2	$\frac{7}{14}$	$0.81 \\ 0.15$	$0.81 \\ 0.15$	$0.22 \\ 0.03$	$0.22 \\ 0.03$	$\frac{1.03}{0.18}$	_	_	_	_	_
2006年		00	$\frac{1}{2}$	21	< 0.01	< 0.01	< 0.01	< 0.01	<0.02	_	_	_	_	_
ねぎ			2	1	0.09	0.08	0.02	0.02	0.10	0.08	0.08	0.02	0.02	0.10
(茎葉)	1	WP1: 96	2 2 2 2	$\begin{array}{c} 7 \\ 14 \end{array}$	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02
2006年			2	21	< 0.01	<0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02
ねぎ		WP1:	$\frac{2}{2}$	$\frac{1}{7}$	0.07 <0.01	0.07 <0.01	0.02 <0.01	0.02 <0.01	0.09 <0.02	0.10 <0.01	0.10 <0.01	0.03 <0.01	0.03 <0.01	0.13 <0.02
(茎葉)	1	96	$\frac{2}{2}$	14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02
2006 年				21	< 0.01	<0.01	< 0.01	<0.01	< 0.02	<0.01	< 0.01	<0.01	<0.01	< 0.02
りんご		WP2:	$\frac{2}{2}$	$\frac{1}{7}$	$0.13 \\ 0.03$	$0.12 \\ 0.03$	0.02 <0.01	0.02 <0.01	$0.14 \\ 0.04$	$0.09 \\ 0.03$	$0.09 \\ 0.03$	0.01 <0.01	0.01 <0.01	$0.10 \\ 0.04$
(果実) 2006 年	1	250	$\frac{1}{2}$	14	0.03	0.03	< 0.01	< 0.01	0.04	0.02	0.02	< 0.01	< 0.01	0.03
			2	21	<0.01	<0.01	<0.01	<0.01	<0.02	0.02	0.02	<0.01	<0.01	0.03
りんご	,	WP2:	$\frac{2}{2}$	$\frac{1}{7}$	$0.08 \\ 0.04$	$0.08 \\ 0.04$	0.01 <0.01	0.01 <0.01	$0.09 \\ 0.05$	$0.08 \\ 0.04$	$0.08 \\ 0.04$	<0.01 <0.01	<0.01 <0.01	$0.09 \\ 0.05$
(果実) 2006 年	1	250	$\frac{2}{2}$	$\begin{array}{c} 14 \\ 21 \end{array}$	0.02 <0.01	0.02 <0.01	<0.01 <0.01	<0.01 <0.01	0.03 <0.02	0.02 <0.01	0.02 <0.01	<0.01 <0.01	<0.01 <0.01	0.03 <0.02
2000 1														
なし		WP2:	2 2 2 2	$\frac{1}{7}$	$0.11 \\ 0.08$	0.11 0.08	<0.01 <0.01	<0.01 <0.01	$0.12 \\ 0.09$	$0.07 \\ 0.07$	$0.06 \\ 0.07$	<0.01 <0.01	<0.01 <0.01	$0.07 \\ 0.08$
(果実) 2006 年		150	2	$\frac{14}{21}$	$0.06 \\ 0.03$	$0.06 \\ 0.03$	<0.01 <0.01	<0.01 <0.01	$0.07 \\ 0.04$	$0.04 \\ 0.05$	$0.04 \\ 0.05$	<0.01 <0.01	<0.01 <0.01	$0.05 \\ 0.06$
なし		WP2:	$\frac{2}{2}$	$\frac{1}{7}$	$0.08 \\ 0.01$	$0.08 \\ 0.01$	<0.01 <0.01	<0.01 <0.01	$0.09 \\ 0.02$	$0.07 \\ 0.02$	$0.07 \\ 0.02$	<0.01 <0.01	<0.01 <0.01	$0.08 \\ 0.03$
(果実) 2006 年		250	2 2 2 2	$\begin{array}{c} 14 \\ 21 \end{array}$	0.01 <0.01	0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.02 <0.02	0.02 <0.01	0.02 <0.01	<0.01 <0.01	<0.01 <0.01	0.03 <0.02
<u> </u>		WDo:												
(果肉)	2	WP2: 200∼	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{c} 7 \\ 14 \end{array}$	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.02 <0.02
2006年		250		21	<0.01	<0.01	< 0.01	<0.01	< 0.02	<0.01	<0.01	<0.01	<0.01	< 0.02
5 5		WP2:	$\frac{2}{2}$	$\frac{1}{7}$	$\frac{1.42}{0.55}$	$\frac{1.39}{0.54}$	$0.18 \\ 0.06$	$0.18 \\ 0.06$	$\frac{1.57}{0.60}$	$\frac{1.86}{0.91}$	$\frac{1.84}{0.90}$	$0.23 \\ 0.10$	$0.22 \\ 0.10$	$\frac{2.06}{1.00}$
(果皮)	1	200	$\frac{2}{2}$	13	0.36	0.36	0.04	0.04	0.40	0.46	0.44	0.04	0.04	0.48
2006年				19	0.25	0.25	0.02	0.02	0.27	0.34	0.34	0.03	0.02	0.36
\$ 5		WP2:	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	$\frac{1}{7}$	$\frac{1.39}{0.98}$	$\frac{1.38}{0.97}$	$0.31 \\ 0.19$	$0.30 \\ 0.18$	$\frac{1.68}{1.15}$	$\frac{1.97}{1.12}$	$\frac{1.90}{1.12}$	$0.40 \\ 0.21$	$0.40 \\ 0.20$	$\frac{2.30}{1.32}$
(果皮) 2006 年	1	200	$\frac{2}{2}$	$\frac{14}{21}$	$0.37 \\ 0.33$	$0.36 \\ 0.33$	0.05	0.05	0.41	0.56	$0.55 \\ 0.51$	0.06	$0.06 \\ 0.08$	$0.61 \\ 0.59$
いちご				21	0.55	0.55	0.05	0.05	0.38	0.51	0.51	0.08	0.08	0.55
[施設]	1	WP1:	2	1	0.11	0.11	0.03	0.03	0.14	0.11	0.11	0.03	0.03	0.14
(果実)	1	9.6	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{c} 7 \\ 14 \end{array}$	$0.03 \\ 0.02$	$0.03 \\ 0.02$	<0.01 <0.01	<0.01 <0.01	$0.04 \\ 0.03$	$0.04 \\ 0.02$	$0.04 \\ 0.02$	<0.01 <0.01	<0.01 <0.01	$0.05 \\ 0.03$
<u>2006</u> 年 いちご														
[施設]	1	WP1:	2	1	0.47	0.46	0.12	0.12	0.58	0.32	0.32	0.09	0.09	0.41
(果実)	1	9.6	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{c} 7 \\ 14 \end{array}$	$0.18 \\ 0.10$	0.18 0.10	$0.04 \\ 0.02$	$0.04 \\ 0.02$	$0.22 \\ 0.12$	$0.20 \\ 0.09$	$0.20 \\ 0.09$	$0.04 \\ 0.01$	$0.04 \\ 0.01$	$0.24 \\ 0.10$
<u>2006</u> 年 茶				7	0.89	0.88	0.16	0.16	1.04	1.08	1.08	0.19	0.18	1.26
余 (荒茶)	1	WP1:	1 1	14	0.03	0.03	< 0.01	< 0.01	0.04	0.03	0.03	< 0.01	< 0.01	0.04
2006年		144	ī	$\frac{20}{29}$	0.02 <0.01	0.02 <0.01	<0.01 <0.01	<0.01 <0.01	0.03 <0.02	0.03 <0.01	0.03 <0.01	<0.01 <0.01	<0.01 <0.01	0.04 <0.02
茶		WP1:	1 1	7 14	$0.24 \\ 0.07$	0.24	0.04 <0.01	0.04 <0.01	$0.28 \\ 0.07$	0.30	0.29 0.08	0.04 <0.01	0.04	0.33 0.09
(荒茶)	1	WP1. 144	1 1 1	21	0.02	$0.06 \\ 0.02$	< 0.01	< 0.01	0.03	$0.08 \\ 0.02$	0.02	< 0.01	<0.01 <0.01	0.03
2006年	게시 - 크	ฟ (0.5%)		30	0.02 剤(12%)	0.02	<0.01 · 水和各	<0.01	0.03	0.03	0.03	<0.01	<0.01	0.04

[・]G: 粒剤(0.5%)、WP1:水和剤(12%)、WP2:水和剤(25%) ・すべてのデータが定量限界未満の場合は定量限界値に<を付して記載した。

<別紙4:作物残留試験(海外)>

a. 比較試験

○スピネトラム

作物	使用量	PHI(回)	サンプル数	残留値(mg/kg)			
11-100	(g ai/ha)	F111(변 <i>)</i>	リンフル剱	最高	平均值		
りんごa	500	7	10	0.035	0.016		
りんごb	500	7	10	0.025	0.019		
芝草	100	3	6	2.674	2.160		
レタス	300	1	10	0.011	0.766		
オレンジa	210	1	10	0.081	0.034		
オレンジ♭	210	1	10	0.015	0.046		
トマト	300	1	10	0.042	0.020		
てんさい上部	280	3	10	0.616	0.393		
てんさい下部	280	3	10	0.014	(0.009)		

○スピノサド

作物	使用量	PHI(回)	サンプル数	残留値(mg/kg)		
TF40	(g ai/ha)	PПI(凹)	リンフル剱	最高	平均值	
りんごa	522	7	10	0.042	0.019	
りんご	522	7	10	0.087	0.030	
芝草	207	3	6	1.872	1.411	
レタス	522	1	10	4.154	1.962	
オレンジa	348	1	10	0.080	0.053	
オレンジ b	348	1	10	0.129	0.076	
トマト	522	1	10	0.050	0.034	
てんさい上部	370	3	10	1.197	0.604	
てんさい下部	370	3	10	0.019	(0.008)	

a: 低散布液量処理 (~75 gal/A) b: 高散布液量処理 (~350 gal/A)

(): 検出限界 (0.003 mg/kg) 以上、定量限界 (0.01 mg/kg) 未満の残留量を示す。

b. 作物残留試験成績

	試験圃場数	使用量 (g ai/ha)	回数回	PHI (目)	残留值(mg/kg)										
作物名 (分析部位) 実施年					スピノシン A		スピノシン B		スピノシン D		スピノシン K		N-demethyl spinosyn D		٨١
					最高 値	平均 値	最高 値	平均 値	最高 値	平均 値	最高 値	平均 値	最高 値	平均 値	合計
りんご (果実) 1995 年	1	500	5	1	0.053	_	ND	_	<0.01	_	ND	_	ND	_	0.063
りんご (果実) 1995 年	16	500	5	7	0.078	0.022	<0.01	<0.01	0.011	<0.01	ND	ND	ND	ND	0.042
りんご (果実) 1995 年	5	500	5	14	0.046	0.019	ND	ND	<0.01	<0.01	ND	ND	ND	ND	0.029
りんご (果実) 1995 年	2	500	5	3 10	0.063 0.022	0.042 0.014	ND <0.01	ND <0.01	<0.01 <0.01	<0.01 <0.01	ND ND	ND ND	ND ND	ND ND	0.052 0.034
オレンジ (果実) 1996 年	3	500	4	1 4	0.118 0.050	0.091 0.036	0.019 <0.01	0.014 <0.01	0.036 0.012	0.021 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	0.146 0.076
オレンジ (果実) 1996 年	1	500	4	7 14		_	_	_	_	_	_		_	_	<0.016* <0.016*
オレンジ (果実) 1996 年	12	500	4	1 4	1 1	-			_ _	_ _		1 1		_ _	0.086* 0.045*
オレンジ (果実) 1997 年	1	500	4	$\frac{1}{4}$	_ _		_	_		_ _	_ _	-	_ _	_ _	0.046* 0.022*
グレープ フルーツ (果実) 1996 年	2 1	500	4	1 4	0.159 0.072	0.105	0.025 0.011	0.017	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	0.152 0.113
グレープ フルーツ (果実) 1996 年	1	500	4	7 14	_ _	_ _	<0.016* <0.016*								
グレープ フルーツ (果実) 1996 年	5	500	4	1 4	_ _	_ _	0.064* 0.041*								
グレープ フルーツ (果実) 1997 年	1	500	4	1 4	-	_ _	_ _	_ _		_ _	_ _	<u> </u>	_ _	_ _	0.021* 0.018*
レモン (果実) 1996 年	2 1	500	4	1 4	0.037 0.023	0.029	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	<0.01 <0.01	<0.01	0.069 0.063
レモン (果実) 1996 年	1	500	4	7 14		_ _	_ _	<0.016* ND*							
レモン (果実) 1996 年	3	500	4	1 4	_ _	_ _	0.049* 0.035*								
レモン (果実) 1997 年		500	4	1 4	-	_ _	_ _	_ _	_ _	_ _	_ _	 -	_ _	_ _	0.138* 0.119*
レモン (果実) 1996 年	1	1000	4	1 4	-	_ _	_ _	_ _		_ _	_ _	_ _	_ _		0.048* 0.009*

^{*:}イムノアッセイ分析結果

<別紙5:推定摂取量>

作物名	残留値	国民	平均	小児(1	~6 歳)	妊	婦	高齢者 (65 歳以上) (体重:54.2 kg)		
		(体重:5	3.3 kg)	(体重:1	5.8 kg)	(体重:5	66.6 kg)			
	(mg/kg)	ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量	
キャベツ	0.18	22.8	4.1	9.8	1.8	22.9	4.1	19.9	3.6	
レタス	4.3	6.1	26.2	2.5	10.8	6.4	27.5	4.2	18.1	
ねぎ	0.13	11.3	14.7	4.5	0.59	8.2	1.1	13.5	1.8	
トマト	0.27	24.3	6.6	16.9	4.6	24.5	6.6	18.9	5.1	
なす	0.05	4.0	0.2	0.9	0.05	3.3	0.17	5.7	0.29	
りんご	0.14	35.3	4.9	36.2	5.1	30.0	4.2	35.6	5.0	
なし	0.12	5.1	0.61	4.4	0.53	5.3	0.64	5.1	0.61	
イチゴ	0.58	0.3	0.17	0.1	0.06	0.1	0.06	0.1	0.06	
茶	1.26	3.0	3.8	1.4	1.8	3.5	4.4	4.3	5.4	
合計		61.3		25.3		48.8		40.0		

- ・残留値は申請されている使用時期・回数のうち各試験区の平均残留値の最大値を用いた。
- ・「ff」: 平成 $10\sim12$ 年の国民栄養調査 (参照 $56\sim58$) の結果に基づく農産物摂取量 (g/人/日)。
- ・「摂取量」: 残留値から求めたスピネトラムの推定摂取量(µg/人/日)。
- ・「レタス」はレタス、リーフレタス、サラダ菜のうち残留値の高いサラダ菜の値を用いた。
- ・水稲(玄米)及びもも(果肉)については全データが定量限界未満であったため摂取量の計算に用いなかった。

<参照>

- 1 農薬抄録スピネトラム(殺虫剤)(平成20年1月25日改訂):住友化学株式会社(インポートトレランス申請に係る資料)、未公表
- 2 スピネトラム-Jのラットにおける代謝試験(GLP対応): Dow AgroScience LLC、2005 年、未公表
- 3 スピネトラム-J のラットにおける代謝試験 (GLP 対応): The Dow Chemical Company、2007年、未公表
- 4 スピネトラム-Lのラットにおける代謝試験 (GLP 対応): Dow AgroScience LLC、 2005 年、未公表
- 5 スピネトラム-L のラットにおける代謝試験 (GLP 対応): The Dow Chemical Company、2007年、未公表
- 6 スピネトラムのレタスにおける代謝試験 (GLP 対応): Dow AgroScience LLC、2005年、未公表
- 7 スピネトラムのカブにおける代謝試験 (GLP 対応): Dow AgroScience LLC、2005 年、未公表
- 8 スピネトラムのりんごにおける代謝試験 (GLP 対応): Dow AgroScience LLC、2005 年、未公表
- 9 スピネトラムのイネにおける代謝試験 (GLP 対応): Dow AgroScience LLC、2007 年、未公表
- 10 スピネトラムの好気的湛水土壌中運命試験(GLP 対応): Dow AgroScience LLC、 2007 年、未公表
- 11 スピネトラムの好気的土壌中運命試験(GLP 対応): Dow AgroScience LLC、2005年、未公表
- 12 スピネトラムの土壌表面光分解試験 (GLP 対応): Dow AgroScience LLC、2005 年、 未公表
- 13 スピネトラム及び N-脱メチル化代謝物の土壌吸脱着性試験 (GLP 対応): Dow AgroScience LLC、2007 年、未公表
- 14 スピネトラムの加水分解運命試験 (GLP 対応): Dow AgroScience LLC、2005 年、 未公表
- 15 スピネトラムの緩衝液中における水中光分解試験 (GLP 対応): Dow AgroScience LLC、2005 年、未公表
- 16 スピネトラムの自然水中における水中光分解試験 (GLP 対応): Dow AgroScience LLC、2007 年、未公表
- 17 土壤残留性試験:住友化学株式会社、2006年、未公表
- 18 作物残留性試験成績:住友化学株式会社、2006~2007年、未公表
- 19 XDE-175 およびスピノサドのりんご、リーフレタス、オレンジ、てんさいおよびトマトにおける作物残留性試験: Dow AgroScience LLC、2005 年、未公表
- 20 スピノサド米国 Oranges 作物残留試験 (RES96023) まとめ:住友化学株式会社、

- 2008年、未公表
- 21 後作物残留性試験成績:住友化学株式会社、2006~2007年、未公表
- 22 スピネトラム原体の生体機能に及ぼす影響 (GLP 対応): 株式会社三菱化学安全科 学研究所、2007 年、未公表
- 23 スピネトラム原体のラットにおける急性経口毒性試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 24 スピネトラム原体のラットにおける急性経皮毒性試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 25 スピネトラム原体のラットにおける急性吸入毒性試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表、未公表
- 26 代謝物 N-formyl-175-J 及び N-formyl-175-L のラットにおける急性経口毒性試験 (GLP 対応): Eurofins Product Safety Laboratories、2007 年、未公表
- 27 代謝物 N-demethyl-175-J のラットにおける急性経口毒性試験 (GLP 対応): Eurofins Product Safety Laboratories、2007年、未公表
- 28 スピネトラム原体のラットを用いた急性神経毒性試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 29 スピネトラム原体のウサギを用いた眼刺激性試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 30 スピネトラム原体のウサギを用いた皮膚刺激性試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 31 スピネトラム原体のマウスを用いた LLNA 試験(Local Lymph Node Assay) (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 32 ラットを用いた飼料混入投与による 90 日間反復経口投与毒性試験(GLP 対応): The Dow Chemical Company、2005 年、未公表
- 33 スピネトラム原体のイヌを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 34 スピネトラム原体のイヌを用いた飼料混入投与による 1 年間反復経口投与毒性試験 (GLP 対応): The Dow Chemical Company、2006 年、未公表
- 35 スピネトラム原体のラットを用いた飼料混入投与による 1 年間反復投与毒性/発がん性併合試験(GLP対応): The Dow Chemical Company、2007 年、未公表
- 36 スピネトラム原体のマウスを用いた飼料混入投与による発がん性試験: The Dow Chemical Company、2007年、未公表
- 37 スピネトラム原体のラットを用いた飼料混入投与による 12 カ月間反復経口投与神経 毒性試験 (GLP 対応): The Dow Chemical Company、2007 年、未公表
- 38 スピネトラム原体のラットを用いた繁殖毒性試験 (GLP 対応): The Dow Chemical Company、2006 年、未公表
- 39 ラットにおける催奇形性試験 (GLP 対応): The Dow Chemical Company、2005 年、 未公表

- 40 スピネトラム原体のウサギにおける催奇形性試験(GLP 対応): The Dow Chemical Company、2005 年、未公表
- 41 スピネトラム原体の細菌を用いる復帰突然変異試験 (GLP 対応): Covance Laboratories Inc.、2005 年、未公表
- 42 スピネトラム原体のラットリンパ球を用いた *in vitro* 染色体異常試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 43 スピネトラム原体のマウスを用いた小核試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 44 代謝物 N-formyl-175-J 及び N-formyl-175-L の細菌を用いる復帰突然変異試験(GLP 対応): Covance Laboratories Inc.、2007 年、未公表
- 45 代謝物 N-demethyl-175-J の細菌を用いる復帰突然変異試験(GLP 対応): Covance Laboratories Inc.、2007 年、未公表
- 46 食品健康影響評価について

(URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-spinetoram-200303.pdf)

47 第 229 回食品安全委員会

(URL: http://www.fsc.go.jp/iinkai/i-dai229/index.html)

48 第 14 回食品安全委員会農薬専門調査会確認評価第二部会

(URL: http://www.fsc.go.jp/senmon/nouyaku/kakunin2_dai14/index.html)

49 第 45 回食品安全委員会農薬専門調査会幹事会

(URL: http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai45/index.html)

50 スピネトラムに係る食品健康影響評価の結果の通知について

(URL: http://www.fsc.go.jp/hyouka/hy/hy-tuuchi-spinetoram_k.pdf)

- 51 農薬抄録スピネトラム (殺虫剤) (平成 21 年 1 月 30 日作成): 住友化学株式会社、 2009 年、一部公表予定
- 52 チャイニーズハムスター卵巣由来細胞 (CHO) を用いた遺伝子突然変異試験 (GLP 対応): The Dow Chemical Company、2005 年、未公表
- 53 食品健康影響評価について

(URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-spinetoram_k-210804.pdf)

54 第 297 回食品安全委員会

(URL: http://www.fsc.go.jp/iinkai/i-dai297/index.html)

55 第59回食品安全委員会農薬専門調査会幹事会

(URL: http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai59/index.html)

- 56 国民栄養の現状-平成 10 年国民栄養調査結果-:健康・栄養情報研究会編、2000 年
- 57 国民栄養の現状-平成 11 年国民栄養調査結果-:健康・栄養情報研究会編、2001 年
- 58 国民栄養の現状 平成 12 年国民栄養調査結果 : 健康・栄養情報研究会編、2002 年