

府 食 第 5 3 6 号 平成19年5月31日

厚生労働大臣 柳澤 伯夫 殿

> 食品安全委員会 委員長 見上

食品健康影響評価の結果の通知について

平成18年12月18日付け厚生労働省発食安第1218005号をもって貴省から当委員会に対し意見を求められたカナマイシンに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

カナマイシンの1日摂取許容量を0.008mg/kg 体重/日と設定する

動物用医薬品評価書

カナマイシンの食品健康影響評価について

2007年5月

食品安全委員会

〈目次〉

	頁
1. 薬剤の概要	 4
2. 毒性試験の概要	 4
2-1. 吸収・分布・代謝・排泄	 4
2-2. 毒性試験	 8
(1)急性毒性試験	 8
(2) 亜急性毒性試験	 8
(3)慢性毒性試験/発がん性試験	 9
(4) 繁殖毒性試験及び催奇形性試験	 9
(5)遺伝毒性試験	 9
(6)微生物学的影響に関する特殊試験	 10
(7) その他	 10
3. 食品健康影響評価について	 1 1
4. 参考資料	 1 3

〈審議の経緯〉

平成18年12月18日

平成18年12月21日 2月28日 平成19年

平成19年 3月13日 平成19年 4月19日 平成19年 4月19日

5月18日

5月29日 平成19年

平成19年 5月31日

厚生労働大臣から食品健康影響評価について要 請、関係書類の接受

第172回食品安全委員会(要請事項説明)第1回動物用医薬品専門調査会確認評価部会

第70回動物用医薬品専門調査会 第187回食品安全委員会(報告)

国民からの意見情報の募集

動物用医薬品専門調査会座長から食品安全委員 会委員長へ報告

第192回食品安全委員会(報告)

同日付で食品安全委員会委員長から厚生労働省 に通知

〈食品安全委員会委員〉

平成 18 年 12 月 20 日まで

委員長 寺田 雅昭 委員長代理 見上 彪

小泉 直子 長尾 拓 野村 一正 敬子 畑江 本間 清

平成 18 年 12 月 21 日から

委員長 見上 委員長代理* 小泉 直子

> 長尾 拓 野村 一正 敬子 畑江 雅雄** 廣瀬 本間 清-

*平成19年2月1日から **平成19年4月1日から

〈食品安全委員会動物用医薬品専門調査会専門委員〉

平成19年2月12日から

三森 国敏(座 国敏(座 三森 井上 松久(座長代理) 井上 松久(座長代理)

津田 青木 宙 青木 宙 修治 寺本 昭. 美奈子 博臣 寺本 昭二 博臣 明石 明石 長尾 美奈子 江馬 長尾 江馬 中村 政幸 眞 眞 大野 泰雄 中村 政幸 林 小川 久美子 眞 林 眞 渋谷 平塚 明 小川 久美子 渋谷 藤田 甚五郎 正 嶋田 藤田 正 緑 鈴木 嶋田 甚五郎 吉田 勝士 吉田 緑 鈴木 勝士 津田 修治

〈食品安全委員会動物用医薬品専門調査会確認評価部会専門委員〉

国敏(座 長) 林 (座長代理) 眞

渋谷 淳

嶋田 甚五郎

鈴木 勝士

寺本 昭二

平塚 明

要約(カナマイシン)

本評価書は、EMEA レポート(1999⁽¹⁾、2003⁽²⁾年)及びカナマイシンを有効成分とする動物用医薬品に係る食品健康影響評価資料⁽³⁾を基に、毒性に関する主な科学的知見を整理したものである。

カナマイシンはアミノグリコシド系抗生物質であり、作用機序は細菌のたん白質合成阻害で殺菌的に作用する。カナマイシンを主剤とする動物用医薬品は、国内では牛、豚、鶏、犬、EU諸国では牛、豚、馬、羊、山羊、鶏、七面鳥及びウサギに対する細菌感染症の治療又は予防に使用されている。ヒト用医薬品としても成人 $2g\sim/$ ヒト、小児 $200mg\sim/$ ヒト程度の用量で 30 年の長い歴史を有している。

カナマイシンの毒性学的 ADI は知見が不足していることから設定していない。しかしながら、CVMP 算出式に基づいて算出された微生物学的 ADI 0.008mg/kg 体重/日(0.48mg/ヒト)は、ヒトの臨床用量と比較して十分小さいこと、経口投与されたカナマイシンはほとんど吸収されないこと、ラットの亜急性毒性試験において経口投与では 200-300mg/kg 体重の高用量の投与でも全く毒性が認められないことを考慮すると、EMEA の評価書で述べられているように、保守的な微生物学的影響をエンドポイントとする限りにおいて、毒性学的影響として最も懸念される聴覚毒性や腎毒性のリスクは無視できるものと考えられた。

以上より、カナマイシンの食品健康影響評価については、ADIとして次の値を採用することが適当と考えられる。

カナマイシン 0.008 mg /kg 体重/日

カナマイシンの食品健康影響評価について

本評価書は、EMEA レポート(1999⁽¹⁾、2003⁽²⁾年)及びカナマイシンを有効成分とする動物用医薬品に係る食品健康影響評価資料⁽³⁾を基に、毒性に関する主な科学的知見を整理したものである。

1. 薬剤の概要(1),(2),(3)

(1)物質名

カナマイシン (Kanamycin)

(2)構造式

(3)分 子 式 : C18H36N4O11

(4)分 子 量 : 484.50

(5)使用目的及び使用状況等

カナマイシンは Streptomyces kanamyceticus から分離された、広域スペクトルを有するアミノグリコシド系抗生物質である。通常、カナマイシンとして指定される主要構成要素のカナマイシン A、そして同族体であるカナマイシン B およびカナマイシン C の 3 つの成分から構成されている。主としてグラム陰性の好気性細菌に対して有効で、グラム陽性菌に対しては一般の嫌気性菌と同様にその作用は限られている。作用機序は、細菌のたん白質合成阻害で殺菌的に作用する。

カナマイシン、ネオマイシンそしてパロモマイシンの間には、染色体あるいはプラスミドを 媒介した交差耐性が頻繁に生じる。

カナマイシンを主剤とする動物用医薬品は、国内では牛、豚、鶏、犬、EU 諸国では牛、豚、 馬、羊、山羊、鶏、七面鳥及びウサギに対する細菌感染症の治療又は予防に使用されている。 ヒト用医薬品の使用としても30年の長い歴史を有している。

2. 毒性試験の概要

2-1. 吸収・分布・代謝・排泄

カナマイシンの薬物動態に関する試験は多数実施されており、薬物動態に関して実験動物と ヒトとの間、カナマイシンと他のアミノグリコシド系との間に大きな差はないことが確認され ている。

他のアミノグリコシド系と同様に、カナマイシンは高い極性を有する陽イオン性物質でヒトを含む全ての動物種において、経口での生物学的利用率は低い(およそ 1%)。一方、全ての種

において、カナマイシンは注射等の非経口経路で投与された場合は急速かつ完全に吸収される。 カナマイシンの治療を受けている患者における筋注後の血漿中薬物濃度は、ワンコンパートメ ントモデルで適切に表現され、排出半減期は 2-3 時間であった。吸収された後、カナマイシン は主に体液のおよそ 40%に相当するとされている細胞外液に分布する。この場合尿から経時的 に排泄されるが、半減期は幼児では長く、出生時体重や年齢が関連することから、カナマイシンの排泄は腎機能の成熟度合いに影響されている可能性が考えられている。成人でも、重篤な 腎不全の患者では血漿中の半減期は 20~40 倍に延長する。

カナマイシンは実験動物とヒトの両者において代謝されることはなく、未変化体の形で非経口投与の場合は尿中に、経口投与の場合は腸で不活性化されることなく糞中に排泄される。腎機能が正常な患者に筋肉内投与した場合、投与量の80-90%が24時間以内に排泄される。血漿中たん白質結合率および赤血球結合率は、共に10%以下、胆汁中の濃度は血漿中濃度のおよそ30%であり、腸肝再循環は非主要経路であると考えられる。

実験動物及びヒトで、投与されたカナマイシンの一部は組織中に蓄積し、細胞内構成分と強固に結合する。蓄積は、主として、アミノグリコシド系薬物の選択的な標的部位である内耳の内リンパおよび外リンパ、そして腎臓の皮質領域で生じるが、治療用量ではこの結合は飽和状態となる。蓄積された薬物の一部はその後ゆっくりと放出されるが、カナマイシンを非経口的に単回投与した後の尿中からの完全排泄には、腎機能が正常な患者で最大 20 日を必要とするとされている。(1)

【ウシ、ブタ、ヒツジおよびニワトリにおける薬物動態試験】

硫酸カナマイシンをウシ、ブタおよびヒツジに筋肉内、鶏には皮下に単回投与した際の薬物動態試験が実施されている。投与前、投与後 0.5、1、2、3、4、6、9、12 および 14 時間に採血し、血漿中濃度を *Bacillus subtilis* ATCC6633 を用いた微生物学的方法(検出限界は 0.3-0.4 μ g/mL(300-400 μ g/L))で測定した。

ウシに 10、50mg/kg 体重を筋肉内投与後したところ、 C_{max} はそれぞれ 30、65 μ g/mL で、 T_{max} は 0.5~1 時間であった。

ニワトリにカナマイシン 15 mg/kg 体重を皮下投与したところ、 C_{max} は約 30μ g/mL、 T_{max} は $1\sim2$ 時間でウシと同様であった。その後、血漿中濃度は急速に減少し、投与後 12 時間には 1μ g/mL まで低下した。

ブタに 10、20mg/kg 体重を筋肉内投与したところ、 C_{max} はそれぞれ 30、50 μ g/mL、 T_{max} は 1 時間であった。

ヒツジに 10、20mg/kg 体重を筋肉内投与したところ、 C_{max} はそれぞれ 30、50 μ g/mL、 T_{max} は 1 時間であった。 (1)

【ウシにおける投与試験】

健常泌乳牛 3 頭に 7.5 mg/kg 体重を単回筋肉内投与し、投与後 72 時間まで約 12 時間間隔で尿、糞、乳汁を採取し、投与後 72 時間に肝臓、腎臓、筋肉、注射部位及び脂肪を採取した。投与量の 87.3-104.2%が回収された。カナマイシン A が最も多く回収されたのは尿中で78.7-95.1%であった。排泄は急速で、投与後 12 時間までに 86.9%が排泄された。糞中排泄率は 8.1-8.6%で、そのうち 6.3-7.2%は投与後 12 時間までに排泄された。投与後 12 時間までの乳汁中排泄率は 0.03-0.05% とごくわずかであった。組織中への分布は少なく、投与後 72 時間における全組織からの回収率は 0.5-0.6%であった。最も多く分布したのは腎臓で 0.3-0.4%であり、肝臓、注射部位、腹部脂肪はごくわずかであった。筋肉ではカナマイシンの残留は認められなかった。全組織における残留濃度は実質的にカナマイシン A の濃度であった。⁽²⁾

【ブタにおける投与試験】

健常雄ブタ 3 頭に 15 mg/kg 体重を単回筋肉内投与し、投与後 72 時間まで約 12 時間間隔で尿、糞を採取し、投与後 72 時間に肝臓、腎臓、筋肉、注射部位及び脂肪が付着した皮膚を採取した。投与量の 74.9-91.3% が回収された。尿中排泄率が最も高く、<math>72.6-90.2% であった。排泄は急速で、投与後 12 時間までに 86.4% が排泄された。糞中排泄率は 0.7-2.2% で、そのうち 0.4-1.6% は投与後 12 時間までに排泄された。組織中への分布は少なく、投与後 72 時間における全組織からの回収率は <math>0.6-0.7% であった。最も多く分布したのは腎臓で 0.4-0.6% であり、肝臓及び注射部位はごくわずかであった。筋肉及び脂肪が付着した皮膚ではカナマイシンの残留は認められなかった。全組織における残留濃度は実質的にカナマイシンA の濃度であった。(2)

【鶏における投与試験】

健常鶏(雌雄各 3 羽)に 15 mg/kg 体重を単回皮下投与し、投与後 72 時間まで約 12 時間間隔で尿、糞を採取し、投与後 72 時間に肝臓、腎臓、筋肉、注射部位及び皮膚+脂肪を採取した。投与量の 67.4-83.9%が回収された。尿及び糞中排泄率が最も高く、66.4-82.9%であった。排泄は急速で、投与後 12 時間までに 60.4%が排泄された。組織中への分布は少なく、投与後 72 時間における全組織からの回収率は 0.7-1.1%であった。腎臓、肝臓、筋肉、注射部位にほぼ均一に分布した。皮膚+脂肪ではカナマイシンの残留はごくわずかであった。全組織における残留濃度は実質的にカナマイシン A の濃度であった。 (2)

【子ウシにおける残留試験】

子ウシ 10 頭に 12 mg/kg 体重を 1 日 2 回 12 時間間隔で 5 日間連続筋肉内投与し、各組織中濃度を測定した。筋肉中濃度は最終投与後 10 日に検出限界($100\mu\text{g/kg}$)付近で、それ以降は検出限界未満となった。注射部位中濃度は最終投与後 10 日で $650\pm220\mu\text{g/kg}$ であったが、20 日には検出限界未満となった。肝臓中濃度は最終投与後 10、20、30、40 日において、それぞれ 3810、1480、200、 $<100\mu\text{g/kg}$ であった。腎臓に最も高濃度に分布し、最終投与後 10、20、30、40、50 日における腎臓中濃度はそれぞれ 16380、5970、710、 $<100\mu\text{g/kg}$ であった。脂肪中濃度はいずれの採取時点においても検出限界未満であった。(1)

子ウシ(雌雄各 8 頭)に $150 \, \mathrm{mg}$ を 1 日 2 回、5 日間連続筋肉内投与し、各組織中濃度を測定した。筋肉中濃度は最終投与後 7、28 日でそれぞれ 71、 $53 \, \mu\mathrm{g/kg}$ で、35 日には定量限界($50 \, \mu\mathrm{g/kg}$)以上の濃度を示したのは 2 頭(平均 $57 \, \mu\mathrm{g/kg}$)となった。最終投与後 49 日には全例が定量限界未満となった。最終投与後 7、28、35、49 日の組織中濃度は腎臓でそれぞれ 719、4706、4327、 $3417 \, \mu\mathrm{g/kg}$ 、肝臓で 2611、1671、1057、 $1013 \, \mu\mathrm{g/kg}$ 、注射部位で 3133、2237、2875、 $1631 \, \mu\mathrm{g/kg}$ であった。脂肪中濃度は最終投与後 7 日で $202 \, \mu\mathrm{g/kg}$ であり、 $28 \, \mathrm{日以降は定量限界未満であった。<math>(2)$

【ウシにおける乳汁中残留試験】

泌乳牛 5 頭に 7.5 mg/kg 体重を 1 日 2 回、5 日間連続筋肉内投与し、乳汁中濃度を測定した。 第 1 回目から 4 回目までの搾乳における平均乳汁中濃度はそれぞれ 1400、840、150、<100 μ g/kg (検出限界)であった。 (1)

泌乳牛 12 頭に 100000I.U.を 12 時間間隔で 2 回乳房内投与し、投与後 144 時間までの乳汁中濃度を測定した(検出限界 $7 \mu g/kg$ 、定量限界 $100 \mu g/kg$)。投与後 36、48、60、72 時間における乳汁中濃度はそれぞれ 668、329、154、99 $\mu g/kg$ であった。 $^{(2)}$

泌乳牛 20 頭に 7.5 mg/kg 体重を 1 日 2 回約 12 時間間隔で 5 日間連続筋肉内投与し、乳汁中濃度を測定した。最終投与後 36 時間で乳汁中のカナマイシン A 濃度は定量限界($50\mu g/L$)未満又は検出限界($17\mu g/L$)であった。 (2)

【ヒツジにおける乳汁中残留試験】

高泌乳ヒツジ4頭、低泌乳ヒツジ4頭に15 mg/kg 体重を1日2回12時間間隔で5日間連続筋肉内投与し、最終投与後120時間までの乳汁中濃度を測定した。乳汁中濃度は最終投与後4回目の搾乳(48時間)以降に検出限界(43µg/L)となった。(1)

【子ブタにおける残留試験】

子ブタ 10 頭に 15mg/kg 体重を 1 日 2 回、5 日間連続筋肉内投与し、各組織中濃度を測定した。筋肉および注射部位中濃度は最終投与後 20 日で検出限界(100μ g/kg)未満となった。肝臓中濃度は最終投与後 10、20、30、40 日において、それぞれ 4190、820、820、820、8200 、820

子ブタ(雌雄各 8 頭)に 150 mg を 1 日 2 回、5 日間連続筋肉内投与し、各組織中濃度を測定した。筋肉中濃度は最終投与後 7 日で $366\mu g/kg$ で、28 日には定量限界(52 $\mu g/kg$)以上の濃度を示したのは 2 頭となった。最終投与後 35、49 日には全例が定量限界未満となった。最終投与後 7、28、35、49 日の組織中濃度は肝臓でそれぞれ 4378、1157、917、429 $\mu g/kg$ 、腎臓で22745、1508、1040、1613 $\mu g/kg$ 、注射部位で 8679、339、3811、1419 $\mu g/kg$ であった。皮膚+脂肪中濃度は最終投与後 7 日で $163\mu g/kg$ であり、28 日以降は定量限界未満であった。(2)

【鶏における残留試験】

鶏 25 羽に 15 mg/kg 体重を 1 日 2 回、5 日間連続皮下投与し、各組織中濃度を測定した。筋肉、脂肪、注射部位中濃度はいずれの採取時点においても検出限界 $(100\mu g/kg)$ 未満となった。 肝臓中濃度は最終投与 10 日で $170\mu g/kg$ と低く、腎臓中濃度は最終投与後 10、20、30 日において、それぞれ 2980、190、 $<100\mu g/kg$ であった。 (1)

鶏(雌雄各 12 羽)に 15mg/kg 体重を単回筋肉内投与し、各組織中濃度を測定した。筋肉中濃度は投与後 5 日で 50μg/kg で、15 日以降には定量限界(50 μg/kg)未満となった。腎臓中濃度は投与後 5、15 日でそれぞれ 1600、600μg/kg で、20 日には定量限界(200μg/kg)以上の濃度を示したのは 1 羽(249μg/kg)となった。投与後 30 日には全例が定量限界未満となった。投与後 5、15、20、30 日の組織中濃度は肝臓でそれぞれ 1890、490、120、<100μg/kg(定量限界)、注射部位で 1150、40、261、130μg/kg であった。皮膚+脂肪中濃度は投与後 5 日で 70μg/kg であり、15 日以降は定量限界未満であった。(2)

【ウサギにおける残留試験】

ウサギ 25 匹に 15 mg/kg 体重を 1 日 2 回 12 時間間隔で 5 日間連続皮下投与し、各組織中濃度を測定した。腎臓中濃度は最終投与後 10、20、30、40、50 日において、それぞれ 10160、3470、210、 $<100 \mu g/kg(検出限界)であった。肝臓中濃度は最終投与後 <math>0$ 、20、30、40 日において、それぞれ 960、470、170、 $<100 \mu g/kg$ であった。筋肉及び脂肪中濃度はいずれの採取時点においても検出限界未満となった。(1)

2-2. 毒性試験

(1)急性毒性試験

マウスの LD₅₀ は経口投与で雄 18700、雌 17500 mg/kg 体重、静脈内投与で雄 240、雌 245 mg/kg 体重、皮下投与で雄 2020、雌 1970mg/kg 体重、筋肉内投与で雄 1320、雌 1190mg/kg 体重であった。 ⁽³⁾

EMEA ではラットおよびマウスの LD_{50} は経口投与で 5000mg/kg 体重以上、静脈内投与で 200-600 mg/kg 体重であると記載されている。 (1)

(2) 亜急性毒性試験

動物を用いた試験では聴覚あるいは腎臓に対する影響を除き、明らかな毒性は認められていない。

【ラットを用いた4週間亜急性毒性試験】

雄のCD ラットを用いた皮下(0、50 および 150 mg/kg 体重/日) 投与による 4 週間亜急性 毒性試験が実施されている。検査は主に腎臓について行われ、聴覚の機能は驚愕反応により 評価された。50mg では、尿中の上皮細胞数の軽度な増加および腎臓皮質の退色が認められたが、明らかな組織学的な変化はみられなかった。150 mg では、尿細管細胞の軽度な壊死を伴う腎症が認められた。聴覚には明らかな影響は認められなかった。(1)

【ラットを用いた6週間亜急性毒性試験】

雌のラットを用いた皮下(225 mg/kg 体重/日)投与による6週間亜急性毒性試験が実施され、明らかな機能的な聴覚損失が認められた。(1)

【ラットを用いた13週間亜急性毒性試験】

Wistar 系ラット(雌雄各 12 匹/群)を用いた硫酸カナマイシン(力価不明)の混餌(0、150、1500、15,000、100,000ppm; 雄 0、3.3、33.7、342.3、2192.1mg/kg 体重/日、雌 0、2.5、25.3、249.8、1609.0 mg/kg 体重/日)投与による 13 週間の亜急性毒性試験が実施されている。100,000ppm 投与群の雌雄において初期に体重増加量及び摂餌量の低値、軟便、腎臓の腫脹、退色、腎臓の絶対及び相対重量の高値、腎臓に尿細管上皮細胞内の硝子様物質の出現、尿細管の変性、尿円柱、尿細管の拡張、腎臓間質にリンパ球の浸潤、副腎の皮質網状帯にヘモジデリン沈着が認められた。これらの腎障害は雄においてより顕著で、血液生化学的検査において BUN の高値も認められた。⁽³⁾

【モルモットを用いた4週間亜急性毒性試験】

モルモットを用いた筋肉内(0、100、200 および 400mg/kg 体重/日) 投与による 4 週間亜急性毒性試験が実施された。その結果、耳介反射応答と蝸牛細胞の病理組織学的検査によって、中毒性難聴が確認された。著しい耳介反射の減弱と蝸牛細胞の軽度な消失が 200 および 400mg/kg の用量で認められた。100mg/kg では明らかな影響は認められなかった。⁽¹⁾

Hartley 系白色モルモット(10 匹/群)を用いた臀部筋肉内(0、100、200 および 400 mg/kg 体重/日) 投与による聴覚毒性に着目した 4 週間亜急性毒性試験が実施されている。100mg 投与群で 3 匹に耳介反射閾値の軽度な上昇が認められた。200mg 投与群では耳介反射閾値が 2 匹で喪失、1 匹で中程度上昇した。400mg 投与群では耳介反射閾値が 4 匹で高度、1 匹で中程度、2 匹で軽度上昇し、中程度以上の閾値の上昇が見られた個体のコルチ器に異常が認められた。⁽³⁾

【ウサギを用いた30日間亜急性毒性試験】

雄のウサギを用いた筋肉内(0、50 および 100mg/kg 体重/日) 投与による 30 日間亜急性毒性試験が実施された。腎臓と耳について病理組織学的検査を行った結果、50 および 100mg/kg で用量依存的な影響が認められた。また、50mg/kg では軽度な外有毛細胞の消失と軽度な近位尿細管障害を伴う腎症が認められた。(1)

(3)慢性毒性試験/発がん性試験

慢性毒性試験及び発がん性試験は実施されていない。

カナマイシンは発がん性を示唆するような化学構造を有しない。また、in vivo の遺伝毒性試験で陰性が認められていること、人における治療的使用において長い歴史を有することを考慮し、発がん性試験は不要と判断している。(1)

(4)繁殖毒性試験及び催奇形性試験

Wistar 系雌ラットに硫酸カナマイシンを妊娠 1 日から分娩まで筋肉内(0、20、200mg/kg 体重/日)投与し、母動物及び児動物への影響が調べられている。

母動物では 20mg 投与群で腎尿細管に軽度の変化、200mg 投与群では 1 匹が死亡した他、体重減少、たん白尿が認められ、病理組織学的検査では肝小葉中心性脂肪沈着、腎尿細管の変性が認められた。

児動物では、200mg 投与群の病理組織学的検査で肝臓及び腎臓に発育障害が認められた。⁽³⁾

EMEA では以下の知見が記載されている。

カナマイシンは 1000µg/mL の濃度までの 2~4 日間の暴露において、雄ウシの精子の運動性に影響を与えないことが確認されている。また、前 GLP 試験では、他のアミノグリコシド系と同様に、カナマイシンを妊娠動物に非経口的に投与した際に、肉眼的異常を誘発しないとされている。また、ヒト臨床使用で先天異常の増加が認められていないことに加え、ラット胚の中脳および肢芽細胞培養系を用いた in vitro スクリーニング試験で催奇形性を示唆するような所見は認められていない。

他のアミノグリコシド系と同様に、カナマイシンは子宮内暴露することによって、胎児の聴覚および 腎機能を障害する可能性がある。

200mg/kg 体重の用量をモルモットの妊娠後期(妊娠55日から62日)に子宮内暴露させると、新生児のコルチ器において有毛細胞の消失が認められた。

蝸牛上皮における明らかな障害が、妊娠中期の母マウスに 400 mg/kg 体重を腹腔内投与して、子宮内暴露されたマウス新生児で認められた。また、生後第2 週に1 週間腹腔内(400 mg/kg)投与した児ラットに蝸牛上皮の障害が認められた。 (1)

(5)遺伝毒性試験

【変異原性に関する各種試験の結果一覧】(1)

in vitro 試験

試験系	試験対象	用量	結果
復帰突然変異試験	S. typhimurium TA98、TA100、TA102、TA1535、	-*	陰性
(Ames 試験)	TA1536、TA1537、TA1538(±S9)		
	S. typhimurium TA104、TA2638(±S9)	- *	陽性
マウスリンフォーマ試験	マウスリンパ腫細胞	-*	陰性
(MLA)			

[※] 一は不明。

in vivo 試験

試験系	試験対象	用量	結果
小核試験	マウス骨髄(腹腔内)	− ※	陰性

※ 一は不明。

上記のように、 $in\ vitro\ O$ 試験においては、一般的な株ではないが $S.\ typhimurium\ TA104$ および $TA2638(\pm S9)$ を用いた復帰突然変異試験($Ames\$ 試験)で陽性が認められている。しかしながら、 $Ames\$ 試験と同じ遺伝子突然変異を指標とした $MLA\$ を含め、その他の $in\ vitro\$ 及び $in\ vivo\$ 試験では陰性結果が得られていることから、カナマイシンは生体内で問題となるような遺伝毒性を示さないとした。

(6)微生物学的影響に関する特殊試験

【ヒトの腸内細菌に対する 50%最小発育阻止濃度 (MIC₅₀)】 (1)

ヒトの腸内細菌 10 菌種(Bacteroides fragilis、Bifidobacterium spp.、Clostridium spp.、Fusobacterium spp.、Proteus spp.、Streptococcus spp.、Eubacterium spp.、Lactobacillus spp.、Escherichia coli、Peptostreptococcus spp.)のうち、最も感受性が高かったのはPeptostreptococcus spp.で、MIC $_{50}$ 値は $3.2\,\mu\text{g/mL}$ であった。

(7)その他

【免疫毒性試験】(1)

軟膏及びクリームを用いて感作させたモルモット及びヒトボランティアにおいて、硫酸カナマイシンは皮膚感作性を誘発しなかった。反復投与試験においても、血液学的パラメーター及び免疫系組織に明らかな影響は認められていない。

【ヒトにおける知見】(1)

カナマイシンを含むアミノグリコシド系のヒト臨床における副作用として最も重要なものは、 中毒性難聴と腎毒性である。これらの副作用の発症は治療期間と投与量に関連しており、高齢 者、脱水症状を示す患者あるいは腎疾患を患う患者で発症する可能性が最も高いとされている。

中毒性難聴は、前庭あるいは蝸牛細胞の進行性消失を伴う第8脳神経の損傷から生じる。カナマイシン誘発性の中毒性難聴は聴覚障害を特徴とし、まれに前庭徴候が認められる。珍しいケースではあるが、アミノグリコシド系抗生物質の治療を中断した後に進行性の難聴が生じることがある。

カナマイシンによる中毒性難聴の誘発は、血漿中薬物濃度の最高値が 30µg/mL あるいはそれ以上に上昇した際に発症するとされている。アミノグリコシド系薬物の治療を受けている患者での難聴あるいは腎毒性の発症率は 25%に達するとみなされている。

アミノグリコシド系抗生物質は胎盤を容易に通過し、妊娠後期の妊婦に対する使用では胎児血漿中および羊水中に薬物の蓄積を引き起こす可能性がある。なお、ヒト胎児血漿中の濃度は母体血漿中濃度の 16-50% と言われている。さらに、不可逆的な両側性難聴がストレプトマイシンに子宮内暴露した新生児で報告されている。硫酸カナマイシンの投与を受けている母親の母乳で育った赤ん坊は、乳幼児の治療用量の 0.95% を摂取したことになる。

臨床薬物動態試験において、日用量と C_{max} の値は中毒性難聴を評価する最適な指標であるとされており、腎毒性の評価における最適な指標は総用量と AUC であるとされている。

上記のような報告もあるが、一方では成人あるいは乳幼児に対してカナマイシンを毎日 10 mg/kg 体重の用量で筋肉内投与したときに、中毒性難聴および腎毒性はほとんど認められないということが多数の臨床文献で報告されている。

また、カナマイシンの治療を受けている患者における生殖障害の証拠は報告されてない。

3.食品健康影響評価について 【ADI の設定について】⁽¹⁾

EMEA においては、カナマイシンの毒性学的 ADI は、生殖発生毒性試験を欠くこと、中毒性難聴あるいは腎毒性について NOEL が得られていないという理由から設定していない。しかしながら、アミノグリコシド系抗生物質については、微生物学的作用が ADI の決定要因になるということで認識が得られており、以下のように微生物学的なデータをもとに ADI が算出されている。

微生物学的な ADI は、最も感受性の高かった Peptostreptococcus spp.の MIC $_{50}$ 値 $3.2\mu g/mL$ 、結 腸内容物に 150g、細菌が暴露される分画に 1、ヒト体重に 60kg を適用し、CVMP の算出式により、

$$\frac{3.2 \times 1^{*2}}{1^{*1}} \times 150$$
ADI (μ g/kg 体重/日) = $1^{*3} \times 60$ = 8μ g/kg 体重/日 (0.008 mg/kg 体重/日) = 480μ g/ヒト(0.48 mg/ヒト)

- *1:最も低い MIC₅₀を採用したことから 1
- *2:pH、接種濃度の影響に関するデータがないことから1
- *3:ヒトにおけるカナマイシンの経口投与時の生物学的利用率がおよそ1%であることから1。

と算出している。

この CVMP 算出式に基づいて算出された微生物学的 ADI は、JECFA の古い保守的な計算式を用いた場合と同様の値となっている。今後の評価で汎用されるであろう、現行の VICH ガイドラインに基づく結果とは異なると考えられるが、新たに試算を行うに足る詳細な知見は得られていない。従って、現時点における微生物学的 ADI の評価としては、暫定基準の見直しに当たって提出された資料に基づき、保守的な EMEA と同様の値を採用しておくことが適当と考えられる。

微生物学的 ADI 0.008 mg /kg 体重/日(0.48mg/ヒト)は、ヒトの臨床用量(内服薬として、EMEAの報告書では 120~200 mg /kg 体重/日、国内では1日 2~4g、小児 50~100mg/kg)と比較して十分小さい。また、カナマイシンは経口投与された場合ほとんど吸収されず、ラットの 13 週間亜急性毒性試験において 200-300mg/kg 体重の高用量の投与でも全く毒性が認められないことを考慮すると、カナマイシンの主たる影響は消化管に対するもので、EMEA の評価書で述べられているように、上記で算出された保守的な微生物学的影響をエンドポイントとする限りにおいて、毒性学的影響として最も懸念される聴覚毒性や腎毒性のリスクは無視できるものと考えられる。

【食品健康影響評価について】

以上より、カナマイシンの食品健康影響評価については、ADI として次の値を採用することが適当と考えられる。

カナマイシン 0.008 mg /kg 体重/日

暴露量については、当評価結果を踏まえ暫定基準値の見直しを行う際に確認することとする。

各試験における無毒性量の比較(カナマイシン)

動物種	試験	投与量(mg/kg 体重/日)	無毒性量(mg/kg 体重/日)	
			EMEA	承認時概要
マウス	発生毒性試験	400	_	
	(妊娠中期)	(腹腔内)	新生児の蝸牛上皮に障害	
ラット	4 週間	0, 50, 150	_	
	亜急性毒性試験	(雄のみ皮下。主として腎臓を検査)	尿中の上皮細胞数の軽度な増加及び腎皮質の退色	
			聴覚には明らかな影響はなし。	
	6週間	225	_	
	亜急性毒性試験 	(皮下)	機能的な聴覚消失	
	13 週間	0, 150, 1500, 15000, 100000ppm		雄; 342.3
	亜急性毒性試験	雄;0、3.3、33.7、342.3、2192.1		雌;249.8
	*******	雌;0、2.5、25.3、249.8、1609.0		体重増加量の低値、腎障害等
	新生児を用いた試験	400		
	3% L = 14 = 4EA	(腹腔内(生後第2週に投与))	蝸牛上皮に障害	ro 주니니
	発生毒性試験	0, 20, 200		母動物: 一
	(妊娠1日-分娩時まで)	(筋肉内)		胎児:20
				母動物:腎細尿管の軽度な変化
				治型が、自体が自び発送する。 治児:肝臓及び腎臓に発育障害
モルモット	4 週間	0, 100, 200, 400	100	
C/V C/1	亜急性毒性試験	(筋肉内。聴覚毒性を観察)	耳介反射の減弱と蝸牛細胞の軽度な消失	
	4週間	0, 100, 200, 400		_
	亜急性毒性試験	(筋肉内。聴覚毒性を観察)		耳介反射閾値の軽度な上昇
	発生毒性試験	200	_	
	(妊娠55-62日)	(経路不明)	新生児のコルチ器の有毛細胞の消失	
ウサギ	30 日間	0, 50, 100	_	
	亜急性 毒 性試験	(雄のみ筋肉内)	内耳の外有毛細胞の軽度な消失、軽度な近位尿細管障害を伴う	
			腎症	
毒性学的 ADI				
微生物学的 ADI			0.008	
微生物学的	微生物学的 ADI 設定根拠資料		Peptostreptococcus spp.の MIC ₅₀ 3.2µg/mL(CVMP 式)	
ADI			0.008	

4.参考資料

(1)COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS; KANAMYCIN SUMMARY REPORT(1) (2)COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS; KANAMYCIN SUMMARY REPORT(2) (3)カナマイシン有効成分とする動物用医薬品に係る食品健康影響評価資料(未公表)