

府 食 第 749 号 平成 19年 8月 2日

厚生労働大臣 柳澤 伯夫 殿

食品安全委員会 委員長 見上

食品健康影響評価の結果の通知について

平成 15 年 7 月 1 日付け厚生労働省発食安第 0701015 号、平成 17 年 11 月 8 日付け厚生労働省発食安第 1108001 号及び平成 18 年 7 月 18 日付け厚生労働省発食安第 0718032 号をもって貴省から当委員会に対して求められたピリプロキシフェンに係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成 1 5 年法律第 4 8 号)第 2 3 条第 2 項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添のとおりです。

記

ピリプロキシフェンの一日摂取許容量を 0.1 mg/kg 体重/日と設定する。

農薬評価書

ピリプロキシフェン

2007年8月

食品安全委員会

目次

•	目次	-	1	-
•	審議の経緯	-	3	-
•	食品安全委員会委員名簿	-	4	-
•	食品安全委員会農薬専門調査会専門委員名簿	-	4	-
•	要約	-	6	-
	. 評価対象農薬の概要	-	7	-
	1 . 用途	-	7	-
	2 . 有効成分の一般名			
	3 . 化学名			
	4 . 分子式			
	5 . 分子量			
	6 . 構造式			
	7 . 開発の経緯			
	. 試験結果概要			
	1.動物体内運命試験(ラット)			
	(1)薬物動態			
	(2)排泄(単回経口)			
	(3)排泄(反復経口)			
	(4)胆汁排泄			
	(5)体内分布 			
	(6) 代謝物同定・定量			
	2.植物体内運命試験			
	(1)きゅうりにおける植物体内運命試験			
	(2)土壌からきゅうりへの吸収移行及び代謝試験			
	(3)トマトにおける植物体内運命試験			
	(4)オレンジにおける植物体内運命試験			
	3 . 土壌中運命試験			
	(1)好気的土壌中運命試験 			
	(2)土壌表面光分解試験			
	(3)土壌吸着試験			
	(4)土壌溶脱性試験			
	4 . 水中運命試験			
	(1)加水分解試験			
	(2)水中光分解試験			
	5. 土壌残留試験			
	6 . 作物残留試験			
	7.一般薬理試験	1	8	-

8 . 急性毒性試験	-	20	-
9.眼・皮膚に対する刺激性及び皮膚感作性試験	-	21	-
1 0 . 亜急性毒性試験	-	21	-
(1)90 日間亜急性毒性試験(ラット)	-	21	-
(2)90日間亜急性毒性試験(マウス)	-	22	-
(3)90日間亜急性毒性試験(イヌ)	-	23	-
1 1 . 慢性毒性試験及び発がん性試験	-	23	-
(1)1年間慢性毒性試験(イヌ)	-	23	-
(2)1年間慢性毒性試験(イヌ)	-	24	-
(3)2年間慢性毒性/発がん性併合試験(ラット)	-	25	-
(4)18 カ月間発がん性試験(マウス)	-	25	-
1 2 . 生殖発生毒性試験	-	26	-
(1)2世代繁殖試験(ラット)	-	26	-
(2)発生毒性試験(ラット 、器官形成期投与)	-	28	-
(3)発生毒性試験(ラット 、妊娠前~妊娠初期投与)	-	28	-
(4)発生毒性試験(ラット 、妊娠~分娩期(周産期及び授乳期)投与)	-	29	-
(5)発生毒性試験(ウサギ)	-	30	-
1 3 . 遺伝毒性試験	-	31	-
. 総合評価	-	33	-
 別紙 1:代謝物/分解物略称	-	36	-
別紙 2:検査値等略称	-	37	-
別紙3:作物残留試験成績			
 別紙 4:推定摂取量	-	39	-
会 昭		40	

<審議の経緯>

- 清涼飲料水関連 -

2003 年 7 月 1 日 厚生労働大臣より清涼飲料水の規格基準改正に係る食品健康影響 評価について要請(厚生労働省発食安第0701015号)(参照1)

2003年 7月3日同接受

2003年 7月18日食品安全委員会第3回会合(要請事項説明)(参照2)

2003年 10月 8日 追加資料受理(参照3)

(ピリプロキシフェンを含む要請対象 93 農薬を特定)

2003年 10月 27日 農薬専門調査会第1回会合(参照4)

2004年 1月28日 農薬専門調査会第6回会合(参照5)

2005 年 1 月 12 日 農薬専門調査会第 22 回会合 (参照 6)

- 適用拡大申請関連及びポジティブリスト制度関連 -

2005年 10月 21日 農林水産省より厚生労働省へ適用拡大申請に係る連絡及び基準設定依頼(適用拡大:茶)

2005 年 11 月 8 日 厚生労働大臣より残留基準設定に係る食品健康影響評価について 要請、同接受(厚生労働省発食安第 1108001 号)(参照 7~56)

2005年 11月 10日 食品安全委員会第 119 回会合 (要請事項説明) (参照 57)

2005年 11月 29日 残留農薬基準告示 (参照 58)

2006年 7月 18日 厚生労働省より残留基準(暫定基準)設定に係る食品健康影響評価について追加要請、同接受(厚生労働省発食安第 0718032 号) (参照 59)

2006年 7月19日 農薬専門調査会総合評価第一部会第2回会合(参照60)

2006 年 7 月 20 日 食品安全委員会第 153 回会合(要請事項説明)(参照 61)

2006年 8月2日 農薬専門調査会総合評価第一部会第3回会合(参照62)

2007年 1月22日 追加資料受理(参照63)

2007年 4月11日 農薬専門調査会総合評価第一部会第10回会合(参照64)

2007 年 5 月 16 日 農薬専門調査会幹事会第 17 回会合 (参照 65)

2007 年 5 月 31 日 食品安全委員会第 192 回会合(報告)

2007年 5月31日より6月29日 国民からの御意見・情報の募集

2007年 8月1日 農薬専門調査会座長より食品安全委員会委員長へ報告

2007 年 8 月 2 日 食品安全委員会第 201 回会合(報告)

(同日付け厚生労働大臣へ通知)

< 食品安全委員会委員名簿 >

(2006年6月30日まで) (2006年12月20日まで) (2006年12月21日から)

寺田雅昭(委員長) 寺田雅昭(委員長) 見上 彪(委員長)

寺尾允男(委員長代理) 見上 彪(委員長代理) 小泉直子(委員長代理*)

 小泉直子
 長尾 拓

 坂本元子
 長尾 拓
 野村一正

 中村靖彦
 野村一正
 畑江敬子

 本間清一
 本間清一
 本間清一

*: 2007年2月1日から
**: 2007年4月1日から

<食品安全委員会農薬専門調査会専門委員名簿>

(2006年3月31日まで)

鈴木勝士 (座長)小澤正吾出川雅邦廣瀬雅雄 (座長代理)高木篤也長尾哲二石井康雄武田明治林 真江馬 眞津田修治*平塚 明太田敏博津田洋幸吉田 緑

*: 2005年10月1日から

(2007年3月31日まで)

鈴木勝士(座長) 三枝順三 根岸友恵 廣瀬雅雄(座長代理) 佐々木有 林 真 高木篤也 平塚 明 赤池昭紀 石井康雄 玉井郁巳 藤本成明 泉 啓介 田村廣人 細川正清 上路雅子 津田修治 松本清司 臼井健二 津田洋幸 柳井徳磨 江馬 眞 山崎浩史 出川雅邦 大澤貫寿 長尾哲二 山手丈至 中澤憲一 太田敏博 與語靖洋

大谷 浩 納屋聖人 吉田 緑

 小澤正吾
 成瀬一郎
 若栗 忍

 小林裕子
 布柴達男

(2007年4月1日から)

鈴木勝士(座長)佐々木有根岸友惠林 真(座長代理*)代田眞理子****平塚 明赤池昭紀高木篤也藤本成明

石井康雄 玉井郁巳 細川正清

泉 啓介 田村廣人 松本清司 上路雅子 津田修治 柳井徳磨 臼井健二 津田洋幸 山崎浩史 江馬 眞 山手丈至 出川雅邦 大澤貫寿 長尾哲二 與語靖洋 吉田 緑 太田敏博 中澤憲一 大谷 浩 若栗 忍 納屋聖人

小澤正吾成瀬一郎**** : 2007 年 4 月 11 日から小林裕子西川秋佳**** : 2007 年 4 月 25 日から三枝順三布柴達男*** : 2007 年 6 月 30 日まで

**** : 2007年7月1日から

要約

4-フェノキシフェノキシ構造を有する殺虫剤である「ピリプロキシフェン」 (IUPAC: 4-フェノキシフェニル(*RS*)-2-(2-ピリジルオキシ)プロピルエーテル) について、各種試験成績等を用いて食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット)、植物体内運命(きゅうり、トマト及びオレンジ)、土壌中運命、水中運命、土壌残留、作物残留、急性毒性(マウス及びラット)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。 試験結果から、発がん性、繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

各試験の無毒性量の最小値は、イヌを用いた1年間慢性毒性試験の10 mg/kg体重/日であったので、これを根拠として、安全係数100で除した0.1 mg/kg体重/日を一日摂取許容量(ADI)とした。

. 評価対象農薬の概要

1.用途

殺虫剤

2.有効成分の一般名

和名: ピリプロキシフェン 英名: pyriproxyfen (ISO 名)

3. 化学名

IUPAC

和名:4-フェノキシフェニル(RS)-2-(2-ピリジルオキシ)プロピルエーテル

英名: 4-phenoxyphenyl(RS)-2-(2-pyridyloxy)propyl ether

CAS (No. 95737-68-1)

和名:2-[1-メチル-2-(4-フェノキシフェノキシ)エトキシ]ピリジン

英名: 2-[1-methyl-2-(4-phenoxyphenoxy)ethoxy]pyridine

4 . 分子式

5 . 分子量

C20H19NO3

321.38

6. 構造式

7. 開発の経緯

ピリプロキシフェンは、1981 年に住友化学株式会社により開発された 4-フェノキシフェノキシ構造を有する殺虫剤である。本剤は、幼若ホルモンとして作用し、蛹化・成虫化の変態阻害作用等によりコナジラミ類、アブラムシ類、アザミウマ類等に対して殺虫効果を発現する。国内では 1995 年にラノー乳剤(ピリプロキシフェン 10.0%含有)、1997 年にラノーテープ(ピリプロキシフェン 1.0 g/m² 含有)が農薬登録されており、海外では韓国、タイ、フランス、アメリカ等で農薬登録されている。

住友化学株式会社より農薬取締法に基づく適用拡大申請(茶)がなされ、参照 7~55、63 の資料が提出されている。また、ポジティブリスト制度導入に伴う残留基準値が設定されている。

. 試験結果概要

各種運命試験(.1~6)は、ピリプロキシフェンのフェノキシフェニル基の炭素を ¹⁴C で標識したもの(Phe-¹⁴C-ピリプロキシフェン)及びピリジル基の 2、6位の炭素を ¹⁴C で標識したもの(Py-¹⁴C-ピリプロキシフェン)を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合はピリプロキシフェンに換算した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1.動物体内運命試験(ラット)

(1)薬物動態

SD ラットに Phe- 14 C-ピリプロキシフェンを低用量又は高用量(2 又は 1000 mg/kg 体重:1 群雌雄各 3 匹)で単回経口投与し、ピリプロキシフェンの薬物動態試験が実施された。

血中放射能濃度の推移は、表1に示されている。

低用量群における血中放射能濃度は、雄において投与 4 時間後、雌において 8 時間後に最高値に達し、最高濃度 (C_{max}) は、雄で $0.399~\mu$ g/g、雌で $0.086~\mu$ g/g であった。 半減期 $(T_{1/2})$ は、雄で 10 時間、雌で 14 時間であった。

高用量群における血中放射能濃度は、雌雄とも 8 時間後に最高値に達し、 C_{max} は、雄で 70 μ g/g、雌で 12 μ g/g であった。 $T_{1/2}$ は雌雄とも 12 時間であった。(参照 10、11)

	低月	用量	高用量		
	雄	雌	雄	雌	
T _{max} (時間)	4	8	8	8	
C _{max} (µ g/g)	0.399	0.086	70	12	
T _{1/2} (時間)	10	14	12	12	

表 1 血中放射能濃度の推移

(2)排泄(単回経口)

SD ラットに Phe- 14 C-ピリプロキシフェン又は Py- 14 C-ピリプロキシフェンをそれぞれ 低用量又は高用量(2 又は 1000 mg/kg 体重:1 群雌雄各 5 匹)で単回経口投与し、ピリプロキシフェンの排泄試験が実施された。

投与後7日間の尿中及び糞中排泄率は表2に示されている。

Phe-14C-ピリプロキシフェンを投与した場合、高用量群において、投与 10 時間後に軟便・下痢が認められたが翌日以降には回復した。低用量群には影響は認められなかった。

投与後2日間に総投与放射能(TAR)の93.1~95.8%、7日間に96.3~97.6%TARが 尿及び糞中に排泄された。主な排泄経路は糞(約80~90%)中であり、尿(約8%以下) 中は少なかった。

Py-14C-ピリプロキシフェンを投与した場合、高用量群において、投与後1日以内に軟便・下痢の症状が認められたが、低用量群では認められなかった。投与後2日間に88.9~92.9%TAR、7日間に92.3~98.5%TARが尿、糞及び呼気中に排泄された。排泄率は糞中が84.7~93.2%で高く、尿中が4.9~11.8%、呼気中が0.2~0.5%であった。(参

照8、9)

KI MINOSIIMEI (KIELIN) OHII (MILLIO)							
	低月	用量	高月	用量			
	尿	糞	尿	糞			
Phe-14C-ピリプロ	雄	8.3	89.3	6.8	89.6		
キシフェン	雌	5.2	91.7	4.8	91.5		
Py-14C-ピリプロキ	雄	5.7	86.1	7.5	89.0		
シフェン	雌	4.9	93.2	11.8	84.7		

表 2 尿中及び糞中排泄率(投与量に対する割合、%TAR)

(3)排泄(反復経口)

SD ラットに非標識体を低用量 (2 mg/kg 体重/日:1 群雌雄各 5 匹) で 14 日間 1 日 1 回反復経口投与し、最終投与 24 時間後に $Phe^{-14}C$ -ピリプロキシフェンを 1 回経口投与し、ピリプロキシフェンの排泄試験が実施された。

投与後7日間の尿中及び糞中排泄率は表3に示されている。

投与後2日間に87.9~89.8%TAR、7日間に91.6~92.7%TARが尿及び糞中に排泄された。主な排泄経路は糞(約80%)中であり、尿(約12%以下)中は少なかった。(参照8)

以上次0 共工进行十(这つ重广对),0 时日、 /							
	低用量						
		尿	糞				
Phe-14C-ピリプロ	雄	11.5	81.2				
キシフェン	雌	8.8	82.8				

表 3 尿中及び糞中排泄率(投与量に対する割合、%TAR)

(4)胆汁排泄

SD ラットに Phe-14C-ピリプロキシフェンを低用量(2 mg/kg 体重: 1 群雌雄各 3 匹)で単回経口投与し、ピリプロキシフェンの胆汁排泄試験が実施された。胆管導出を行ったラットを用いて、投与後 2 日間の糞、消化管内容物、尿及び胆汁への排泄量の定量及び胆汁中代謝物の同定を行った。

投与後 2 日間の排泄量は $79.9 \sim 90.2\%$ TAR であり、糞中排泄率は $38.4 \sim 51.3\%$ 、胆汁排泄率は $33.8 \sim 36.5\%$ であった。胆汁中には、4'-OH-Pyr、4'-OH-POPA、4'-OH-POP 及び 5",4'-OH-Pyr の硫酸抱合体が検出されたが、未変化のピリプロキシフェンは検出されなかった。胆汁中に未変化のピリプロキシフェンが検出されなかったので単回投与の糞中に排泄された未変化体($31 \sim 37\%$ TAR)は未吸収のものであり、ピリプロキシフェンの吸収率は $63 \sim 69\%$ であると考えられた。(参照 8)

(5)体内分布

SD ラットに Phe- 14 C-ピリプロキシフェンを低用量又は高用量(2 又は 1000 mg/kg 体重:1 群雌雄各 3 ~ 5 匹)で単回経口投与し、ピリプロキシフェンの体内分布試験が実施された。また、非標識体を低用量(2 mg/kg 体重:1 群雌雄各 5 匹)で 14 日間 1 日 1 回反復経口投与し、最終投与 24 時間後に Phe- 14 C-ピリプロキシフェンを 1 回経口投与して、体内分布が調べられた。

単回投与における主要組織内の残留放射能濃度は、表4に示されている。

低用量群では、脂肪以外の組織において投与 2 ~ 8 時間後に最高濃度となり、以後半減期 8 ~ 35 時間で減少し、投与 72 時間後には $0.03~\mu\,g/g$ 以下となった。組織別放射能分布量は肝臓において最も高く、 8 時間後に最高濃度 $2.13~2.44~\mu\,g/g$ (3.6~4.5% TAR) となった。

高用量群では、脂肪以外の組織において投与 2 ~ 8 時間後に最高濃度となり、以後半減期 5 ~ 17 時間で減少し、投与 72 時間後には 12 μ g/g 以下となった。腎臓及び肝臓における最高濃度はそれぞれ雄で 83 及び 323 μ g/g、雌で 34 及び 155 μ g/g であった。脂肪においては投与 24 (雄)及び 12 (雌)時間後に最高濃度 (155 及び 170 μ g/g)となり、半減期 23 ~ 35 時間で減少し、投与 72 時間後には 46 及び 45 μ g/g となった。組織別放射能分布量は全ての組織、時点で 2.3%TAR 未満であった。

各投与群において、投与7日後の各組織中の残留放射能の総和は0.3%TAR 以下であった。最も高濃度の残留放射能が検出されたのは脂肪で、低用量群及び反復投与群で $0.010\sim0.048~\mu\,g/g$ 、高用量群で $8.0\sim9.5~\mu\,g/g$ であった。その他の組織では、低用量群及び反復投与群で $0.006~\mu\,g/g$ 以下、高用量群で $2.6~\mu\,g/g$ 以下であった。

			33 130 MAX (1-8-87
		T _{max} 付近 ¹⁾	最終試料採取時間
		I max [1] LL	(168 時間後)
		肝臓(1.83)、血液(0.399)、腎臓	脂肪(0.010)、肝臓(0.003)、腎臓
低	雄	(0.322)、脂肪(0.189)	(0.001)、脾臓(0.001)、骨(0.001)、
用用			血液(<0.001)
量	雌	肝臓(2.13)、脂肪(0.311)、腎臓	脂肪(0.013)、肝臓(0.004)、卵巣
里		(0.151)、卵巣(0.103)、血液	(0.002)、腎臓(0.001)、脾臓(0.001)、
		(0.086)	血液(<0.001)
		肝臓(295)、脂肪(96)、腎臓(70)、	脂肪(8.0)、肝臓(1.7)、腎臓(0.4)、
-	雄	血液(70)	筋肉(0.3)、脾臓(0.2)、脳(0.2)、血
高用			液(<0.3)
量		肝臓(151)、脂肪(124)、腎臓(34)、	脂肪(9.5)、肝臓(1.5)、卵巣(0.9)、
里	雌	卵巣(32)、肺(19)、心臓(18)、血	腎臓(0.4)、子宮(0.3)、脳(0.3)、脾
		液(12)	臓(0.2)、血液(<0.3)

表4 主要組織内の残留放射能濃度(µg/g)

高用量群において、雌雄とも8時間後。

¹⁾低用量群において、雄は4時間後、雌は8時間後。

SD ラットに $Py^{-14}C$ -ピリプロキシフェンを低用量又は高用量(2 又は 1000 mg/kg 体重: 1 群雌雄各 5 匹)で単回経口投与し、ピリプロキシフェンの体内分布試験が実施された。

投与7日後の各組織中の残留放射能の総和は0.3%TAR以下であった。最も高濃度の残留放射能が検出されたのは脂肪で、低用量群で $0.014 \sim 0.015$ μ g/g、高用量群で $6.0 \sim 6.3$ μ g/g であった。(参照 $8 \sim 11$)

(6)代謝物同定・定量

SD ラットに Phe-¹⁴C-ピリプロキシフェンを低用量又は高用量(2 又は 1000 mg/kg 体重:1 群雌雄各5匹)で単回経口投与し、ピリプロキシフェンの代謝物同定・定量試験が実施された。また、非標識体を低用量(2 mg/kg 体重:1 群雌雄各5匹)で14 日間1日1回連続経口投与し、最終投与24 時間後に Phe-¹⁴C-ピリプロキシフェンを1回経口投与し、代謝物の同定・定量が行われた。

投与後 2 日間の尿及び糞中の代謝物はそれぞれ 11 及び 17 種類の計 26 種類以上が検出され、そのうち 10 種類の代謝物を同定し代謝経路を推定した。糞中の主な代謝物は末端フェニル基 4 位が酸化された 4'-OH-Pyr であり、24.5~54.4% TAR を占めた。その他末端フェニル基 2 位及びピリジン環 5 位の酸化、エーテル結合の開裂、硫酸抱合化を受けた代謝物を同定したが、これらはいずれも 9 % TAR 未満であった。未変化のピリプロキシフェンは糞のみに排泄され、その割合は $6.5 \sim 37.2\%$ TAR であった。

SD ラットに $Py^{-14}C$ -ピリプロキシフェンを低用量又は高用量(2 又は 1000 mg/kg 体重: 1 群雌雄各 5 匹)で単回経口投与し、ピリプロキシフェンの代謝物同定・定量試験が実施された。

投与後 2 日間の尿及び糞中の代謝物を 13 種類以上検出し、そのうち 10 種類の代謝物を同定し代謝経路を推定した。糞中の主な代謝物は末端フェニル基 4 位が酸化された 4'-OH-Pyr であり、23~48% TAR であった。その他末端フェニル基 2 位及びピリジン環 5 位の酸化、エーテル結合の開裂、硫酸又はグルクロン酸抱合化を受けた代謝物を同定したが、いずれも 10% TAR 未満であった。未変化のピリプロキシフェンは主として糞中に排泄され、21~35% TAR であった。

尿及び糞中における代謝物は表5に示されている。

SD ラットに Phe- 14 C-ピリプロキシフェンを低用量(2 mg/kg 体重: 1 群雌雄各 3 匹)で単回経口投与し、ピリプロキシフェンの代謝物同定・定量試験が実施された。

血液中の主な代謝物は 5",4'-OH-Pyr 硫酸抱合体であり、最高濃度は雄で $0.358~\mu$ g/g、雌で $0.037~\mu$ g/g であった。肝臓及び腎臓中の主な代謝物は雌雄とも 4'-OH-Pyr 硫酸抱合体、5",4'-OH-ピリプロキシフェン硫酸抱合体、4'-OH-POPA 硫酸抱合体であった。なお、雌の肝臓においては、4'-OH-Pyr も主な代謝物であった。(参照 $8 \sim 10$)

表 5 尿及び糞中における代謝物 (投与量に対する割合、%TAR)

投与	標識体	投与量	部	親化合物	√₩ ≦針#/m		
条件	(示政)(4)	1又一里	位	祝化口彻	代謝物		
			尿		4'-OH-POP 抱合体(0.5~3.1)、4'-OH-Pyr 抱合体		
			DK.	-	(0.4~1.0)		
		低用量			4'-OH-Pyr(24.5~43.3)、5",4'-OH-Pyr (2.0~8.5)、		
			糞	31.1~37.2	4'-OH-POPA(1.3~3.3) 、 4'-OH-POP(0.4~0.5) 、		
	Phe- ¹⁴ C-				2'-OH-Pyr(0.2), POPA(0.2)		
	標識体		尿	_	4'-OH-POP 抱合体(0.3~1.6)、4'-OH-Pyr 抱合体		
	1水吸件		<i>1</i> /N	_	(0.5~1.0)		
		高用量			4'-OH-Pyr+同抱合体(38.9~50.4)、		
			糞	25.1~31.1	4'-OH-POPA+同抱合体(1.9~4.0)、		
単 回			共	£3.1~31.1	5",4'-OH-Pyr+同抱合体(1.4~2.8)、4'-OH-POP+		
経口					同抱合体(0.5~0.7)、2'-OH-Pyr(0.2)、POPA(0.2)		
投与		低用量標	尿	-	PYPAC(1.0~1.7) 、4'-OH-Pyr 抱合体(0.3~0.4)		
	Py- ¹⁴ C-標 識体		糞	21.2~34.8	4'-OH-Pyr+同抱合体(24.0~47.8)、		
					5",4'-OH-Pyr+同抱合体(1.4~7.5)、		
				21.2 04.0	DPH-Pyr(0.8~1.1)、2'-OH-Pyr(1.8~2.8)、		
					5'-OH-Pyr(0.3)		
			尿	1.3~2.7	PYPAC(3.0~4.9) 、 4'-OH-Pyr+ 同 抱 合 体		
			721	1.0~2.7	(1.2~6.4)、5",4'-OH-Pyr 抱合体(0.1~0.2)		
		高用量			4'-OH-Pyr+同抱合体(41.1~48.7)、		
			糞	21.9~32.5	DPH-Pyr(1.2~1.6) 、 5",4'-OH-Pyr+ 同 抱 合 体		
					(0.7~1.2), 2'-OH-Pyr(0.2), 5'-OH-Pyr(0.1)		
			尿	_	4'-OH-POP 抱合体(0.8~3.8)、4'-OH-Pyr 抱合体		
反 復	Phe- ¹⁴ C-		//\		(0.6~1.4)		
経口	標識体	低用量			4'-OH-Pyr(34.5~54.4)、4'-OH-POPA(2.7~8.3)、		
投与	1.32.1144/1十		糞	$6.5 \sim 11.4$	5",4'-OH-Pyr(0.8~3.0) 、 4'-OH-POP(0.4~0.6) 、		
					2'-OH-Pyr(0.2)、POPA(0.1~0.4)		

(注)数値は5匹の平均値を示す。

検出限界未満であったものは計算に用いなかったため一部は2~4匹の平均値である。

2. 植物体内運命試験

(1)きゅうりにおける植物体内運命試験

Phe- 14 C-ピリプロキシフェン及び Py- 14 C-ピリプロキシフェンのメタノール溶液をきゅうり(品種名:相模半白)に約 200 μ g ai/葉もしくは約 15 μ g ai/果実に塗布し、葉面処理では処理 0、1、3、7、14 及び 21 日後に処理葉、処理葉以外の茎葉部及び果実を、果実表面処理では処理 0、3 及び 7 日後に果実を検体として採取し、ピリプロキシフェンの植物体内運命試験が実施された。収穫した葉及び果実は、表面洗浄液、抽出

液及び未抽出残渣に分画した。

残留放射能は、試験期間を通して、処理葉及び処理果実においてそれぞれ $95.7 \sim 102\%$ TAR ($15.1 \sim 19.2 \text{ mg/kg}$) 及び $91.0 \sim 104\%$ TAR ($0.07 \sim 2.24 \text{ mg/kg}$) であった。

表面洗浄液中の放射能は、処理 21 日後(葉)及び 7 日後(果実)において、それぞれ $20.5 \sim 37.6\%$ TAR(葉)、 $1.4 \sim 2.1\%$ TAR(果実)に徐々に減少したが、抽出液中の放射能は、 $52.5 \sim 66.4\%$ TAR(葉)、 $80.7 \sim 83.9\%$ TAR(果実)に、未抽出残渣中の放射能も、 $8.8 \sim 11.0\%$ TAR(葉)、 $8.9 \sim 12.7\%$ TAR(果実)に徐々に増加した。葉に処理されたピリプロキシフェンは経時的に消失し(21 日後 $29.6 \sim 45.4\%$ TAR)、半減期は $12.5 \sim 18.4$ 日であったのに対し、果実に処理されたピリプロキシフェンは速やかに消失し(7 日後 $8.2 \sim 8.5\%$ TAR)、半減期は $1.9 \sim 2.0$ 日であった。

葉及び果実の表面洗浄液及び抽出液中の代謝物は、遊離体の 4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr、POPA、2-OH-PY と極性の高い代謝物であった。葉における極性の高い代謝物は、4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr、POPA、PYPA、4'-OH-POPA 及び DPH-POPA のグリコシド抱合体であった。また、果実における極性の高い代謝物は、4'-OH-Pyr、DPH-Pyr、5"-OH-Pyr、POPA、PYPA、4'-OH-POPA 及び 4'-OH-POP のグリコシド抱合体であった。

きゅうりにおけるピリプロキシフェンの主要代謝経路は、エーテル結合の開裂、末端フェニル基 4 位の水酸化とピリジン環 5 位の水酸化であり、主要代謝物は 4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr 及び POPA であり、いずれもほとんどが抱合体の形で存在していた。 (参照 12)

(2)土壌からきゅうりへの吸収移行及び代謝試験

Phe- 14 C-ピリプロキシフェン及び Py- 14 C-ピリプロキシフェンのアセトニトリル溶液 (それぞれ 511 μ g、498 μ g を含む)を 100 g の土壌(乾土)に添加し、これを開花 期のきゅうり(品種名:相模半白)を栽培したワグネルポットの土壌表面に処理(250 g ai/ha 相当)し、ピリプロキシフェンの土壌からきゅうりへの吸収移行及び代謝試験が実施された。処理直後及び 7 日後に土壌を採取し、土壌表面から 10 cm までの層(土壌) とそれ以下の層(土壌)に分画した。きゅうりは 7 日後に採取し、果実と茎葉部に分画した。

処理 7 日後の土壌中の残留放射能は 91.5 ~ 100% TAR であり、多くは土壌 に存在し土壌 には 0.3% TAR 未満存在した。土壌 には、ピリプロキシフェンは 53.9 ~ 55.6% TAR 存在し、他に 4'-OH-Pyr、5"-OH-Pyr 及び DPH-Pyr が微量検出された。土壌抽出残渣には 30.7 ~ 34.8% TAR が残存した。

きゅうりに存在する放射能は Phe- 14 C-ピリプロキシフェンの場合 0.1%TAR 未満であった。Py- 14 C-ピリプロキシフェンの場合、果実に 0.5%TAR、茎葉部に 0.3%TAR 存在したが、ピリプロキシフェンは検出されず、残留放射能の大部分は PYPAC ($0.1 \sim 0.4\%$ TAR) であった。 (参照 13)

(3)トマトにおける植物体内運命試験

Phe-14C-ピリプロキシフェン及び Py-14C-ピリプロキシフェンのアセトン溶液を、

HPLC 用水で 20 倍に希釈しトマト (品種: Bush Beefsteak) の果実に 1 回につき 60 g ai/acre で収穫前約 35 日、約 21 日及び 7 日の 3 回散布した。最終処理 7 日後に収穫し、ピリプロキシフェンの植物体内運命試験が実施された。

トマト果実中の残留放射能の分布は表 6 に示されている。総残留放射能(TRR)は $0.259 \sim 0.335 \, \text{mg/kg}$ であった。主な残留物としてピリプロキシフェンが $49.8 \sim 67.6\% \, \text{TRR} (\, 0.132 \sim 0.237 \, \text{mg/kg}\,)$ その他に代謝物として、PYPA、 $4' \cdot \text{OH-Pyr}$ 、PYPAC、 $2 \cdot \text{OH-PY}$ 、DPH-Pyr、 $4' \cdot \text{OH-POPA}$ 及び $4' \cdot \text{OH-POP}$ が遊離体あるいは抱合体として $1.9 \sim 6.8\% \, \text{TRR}$ 検出された。特に、果実の抽出液中の PYPA は抱合体を含むと $10.9\% \, \text{TRR}$ 検出された。ピリプロキシフェンと $4' \cdot \text{OH-Pyr}$ は果汁では検出されなかった。また、果汁及び搾りかすには代謝物の遊離体及び抱合体の両方が検出された。トマトにおける主要代謝経路は末端フェニル基 4 位の水酸化及びエーテル結合の開裂であると考えられた。 (参照 14)

	Phe-14	C-標識体	Py- ¹⁴ C-標識体		
	%TRR	mg/kg	%TRR	mg/kg	
表面洗浄液	3.3	0.011	1.8	0.005	
搾りかす	82.4	0.276	65.3	0.169	
果汁	14.3	0.048	32.9	0.085	
総計	100	0.335	100	0.259	

表 6 成熟トマト果実中の残留放射能の分布

(4)オレンジにおける植物体内運命試験

Phe- 14 C-ピリプロキシフェン及び Py- 14 C-ピリプロキシフェン 10%乳剤を水で希釈し、バレンシアオレンジ(品種:Cutter Valencia)の果樹に 225 g ai/ha を茎葉散布した。 処理 28 日後に果実及び葉を収穫し、ピリプロキシフェンの植物体内運命試験が実施された。

果実は、表面洗浄液、果皮、果肉残渣及び果汁に分画し、葉は表面洗浄液と洗浄葉に 分画し、さらに洗浄葉を抽出液と未抽出残渣に分画した。

果実及び葉中の残留放射能の分布は表 7 に示されている。果実における総残留放射能は $0.087 \sim 0.203$ mg/kg であり、ピリプロキシフェンが $45.1 \sim 47.9\%$ TRR($0.039 \sim 0.097$ mg/kg) で、その大部分は果皮に存在した。主要な代謝物として 4'-OH-Pyr が $4.1 \sim 6.5\%$ TRR であった。抱合体は検出されなかった。未同定代謝物が多数認められたが、いずれも 7% TRR 未満 (合計では $26.1 \sim 37.1\%$ TRR) であった。

葉における総残留放射能は $7.22 \sim 9.14~mg/kg$ であり、ピリプロキシフェンが $22.1 \sim 28.1\%TRR(2.02 \sim 2.03~mg/kg)、4'-OH-Pyr とその抱合体が <math>10.9 \sim 11.4\%TRR(0.784 \sim 1.04~mg/kg)$ であった。また、ピリプロキシフェンの $6.4 \sim 7.2\%TRR$ 及び 4'-OH-Pyr の $2.1 \sim 2.5\%TRR$ が結合残留物として残留した。未同定代謝物が多数認められたが、いずれも 5%TRR 未満(合計では $20.7 \sim 28.9\%TRR$)であった。

オレンジの果実及び葉における主要代謝経路はエーテル結合の開裂及び水酸化であり、

さらに各代謝物の抱合化により多数の極性の高い代謝物が生成したと考えられた。 (参照 15)

		Phe-14C	-標識体	Py- ¹⁴ C-標識体		
		%TRR	mg/kg	%TRR	mg/kg	
	表面洗浄液	7.1	0.006	9.9	0.020	
Ħ	果皮	91.9	0.080	86.3	0.175	
実	果肉残渣	0.6	< 0.001	1.6	0.003	
	果汁	0.4	< 0.001	2.2	0.004	
	総計	100	0.087	100	0.203	
	表面洗浄液	5.6	0.406	5.8	0.532	
葉	葉	94.4	6.81	94.2	8.61	
	総計	100	7.22	100	9.14	

表7 果実及び葉の残留放射能の分布

3.土壤中運命試験

(1)好気的土壌中運命試験

Phe- 14 C-ピリプロキシフェン及び Py- 14 C-ピリプロキシフェンのアセトン溶液を容器内の野市土壌(砂質埴壌土)にそれぞれ乾土当たり 0.51 及び 0.48 mg ai/kg 添加し、25の暗条件下で、30 日間インキュベーションし、ピリプロキシフェンの好気的土壌中運命試験が実施された。

土壌中における残留放射能は、処理後徐々に減少し、30 日後に $64.1 \sim 77.2\%$ TAR、また、土壌残渣中及び揮散した放射能は処理後増加し、30 日後ではそれぞれ $33.9 \sim 45.7\%$ TAR 及び $16.9 \sim 28.2\%$ TAR であった。好気的条件下において、ピリプロキシフェンは速やかに分解し、標識化合物の違いによる差はなく、30 日後にいずれも 25.3% TAR で、半減期は 6.3 日であった。

主要な分解物は二酸化炭素で、処理 30 日後までの発生量は 16.9~28.2%TAR、さらに、Phe-¹⁴C-ピリプロキシフェンでは、4'-OH-Pyr、DPH-Pyr 及び 4'-OH-POPA、Pyr-¹⁴C-ピリプロキシフェンでは、4'-OH-Pyr、DPH-Pyr 及び PYPAC がわずかながら検出された。

分解経路としては、ピリプロキシフェンの末端フェニル基 4 位の水酸化により 4'-OH-Pyr が生成され、さらにエーテル結合の開裂により 4'-OH-POPA が生成され、さらにフェニル基の開裂を受け最終的には二酸化炭素にまで分解される経路が考えられた。一方、ピリプロキシフェン及び 4'-OH-Pyr のジフェニルエーテル結合の開裂により DPH-Pyr が生成され、アルキル鎖とフェニル基のエーテル結合の開裂により PYPA が 生成され、アルコールの酸化により PYPAC が生成され、最終的には二酸化炭素にまで分解される経路もあると考えられた。(参照 16)

(2)土壤表面光分解試験

非標識ピリプロキシフェンで 20 倍に希釈した $Phe^{-14}C$ -ピリプロキシフェン及び $Py^{-14}C$ -ピリプロキシフェンを愛知畑地土壌(砂壌土)、牛久火山灰畑地土壌(シルト質 壌土)に 100 mg ai/m^2 添加し、自然太陽光(兵庫県宝塚市〔7月〕)により、ピリプロキシフェンの土壌表面光分解試験が実施された。

光照射区における 8 週後のピリプロキシフェンの残留量は $54.5 \sim 61.2\%$ TAR で、暗所対照区 $87.5 \sim 88.7\%$ TAR に対し分解が進んでおり、ピリプロキシフェンの推定半減期は $11 \sim 13$ 週であった。主要分解物の二酸化炭素は、 $Phe^{-14}C$ -ピリプロキシフェンの場合、最大 13.3% TAR 生成した。

また、土壌残渣中の放射能は、暗所対照区の $3.4 \sim 6.0\%$ TAR に対して、 $Py^{-14}C$ -ピリプロキシフェンの場合、最大 26.1% TAR に達した。主な光分解物として、8 週後に $Phe^{-14}C$ -ピリプロキシフェン処理で POPA が $1.3 \sim 3.0\%$ TAR、 $Py^{-14}C$ -ピリプロキシフェン処理で PYPA が $0.7 \sim 4.7\%$ TAR、2-OH-PY が $0.9 \sim 2.0\%$ TAR 検出された。

ピリプロキシフェンの土壌表面光分解の主な経路は、エーテル結合の開裂の後、環開 裂等を受けて最終的に二酸化炭素まで分解される経路であると考えられた。(参照 17)

(3)土壌吸着試験

試験管内の4種類の土壌(小平壌土、野市埴壌土、愛知砂壌土、武庫砂:乾土1g)に Phe- 14 C-ピリプロキシフェン $1.53 \sim 74.6~\mu$ g/kg の $CaCl_2$ 水溶液を添加し、 $25~\pm~2~$ の暗条件下、水/土壌混濁系における土壌吸着試験が実施された。

Freundlich の吸着係数 K^{ads} は $25.1 \sim 637$ 、有機炭素含有率により補正した吸着係数 K_{oc} は $13000 \sim 58000$ (武庫砂を除く)であった。武庫砂を除き、90%TAR 以上が回収され、TLC 分析ではそのうちの 95%以上がピリプロキシフェンであった。

これらの吸着係数は十分に大きく、地下水汚染の可能性はほとんどないと考えられた。 (参照 18)

(4)土壤溶脱性試験

2種類の土壌(シルト質壌土(牛久)、砂質壌土(愛知))カラム(内径 3 cm × 30 cm、アルミホイルで遮光)に Phe- 14 C-ピリプロキシフェンを乾土あたり 1.0 mg/kg 添加し、360 mL の蒸留水を 2.0 mL/hr で滴下し、ピリプロキシフェンの土壌溶脱性試験が実施された。

ピリプロキシフェンは土壌の種類に関わらず 83.5%TAR 以上が処理土壌に留まり、溶出液中に 0.1 又は 2.8%TAR が検出された。 (参照 19)

4.水中運命試験

(1)加水分解試験

Phe- 14 C-ピリプロキシフェン及び Py- 14 C-ピリプロキシフェンを pH 4.0 の酢酸緩衝液、 pH 7.0、9.0 のホウ酸緩衝液に 0.1 mg/L 添加し、50 ± 0.1 、暗条件下で 7 日間インキュベーションし、ピリプロキシフェンの加水分解試験が実施された。

いずれの条件においてもピリプロキシフェンはほとんど分解されなかった。ピリプロ

キシフェンの半減期は、 $Py^{-14}C$ -ピリプロキシフェンで pH 4.0 で $367 \sim 718$ 日であったが、その他の条件では算出されなかった。未同定の加水分解物は 1.6%TAR 以下であった。

以上のことから、ピリプロキシフェンは加水分解に対し安定であると考えられた。(参照 20)

(2)水中光分解試験

濾過滅菌及びオートクレーブ滅菌した蒸留水及び河川水(兵庫県武庫川)に非イオン性界面活性剤 Tween85 を加え、Phe- 14 C-ピリプロキシフェン及び Py- 14 C-ピリプロキシフェンを 0.2 mg/L となるように調製し、太陽光(光強度: $21.4~\text{W/m}^2$ 、波長: $300 \sim 400~\text{nm}$)に 5 週間暴露し、ピリプロキシフェンの水中光分解試験が実施された。

ピリプロキシフェンの太陽光による分解は速やかであり、暴露 5 週後の残留放射能は蒸留水が $29.9 \sim 34.3\%$ TAR、河川水が $33.9 \sim 45.4\%$ TAR で差がなかった。また、半減期は蒸留水及び河川水においてそれぞれ 17.5 日及び 21 日(東京〔春〕太陽光換算: 16.0 日及び 19.3 日)であった。なお、暗条件では極めて安定であり、 5 週後においてもほとんど分解は認められなかった。

主要分解物は二酸化炭素及び PYPA であり、5 週後には、それぞれ $11.3 \sim 29.4\%$ TAR 及び $15.8 \sim 30.4\%$ TAR であった。その他の分解物として POPA、POP 及び DPH-Pyr が 2.1% TAR 以下、さらに、約 15 種の未同定光分解物が検出されたが、いずれも 3% TAR 以下であった。ピリプロキシフェンは、 $29.9 \sim 45.4\%$ TAR であった。

ピリプロキシフェンの水中光分解経路は、3つのエーテル結合のいずれにおいても開製を受け、2系統の分解経路: POPA、POP 系及び DPH-Pyr、PYPA 系を経て最終的に二酸化炭素にまで分解される経路であると考えられた。(参照 21)

5 . 土壤残留試験

火山灰軽埴土(日植防)及び沖積埴壌土(日植防(高知))を用いて、ピリプロキシフェンを分析対象とした土壌残留試験(容器内及び圃場)が実施された。

推定半減期は、容器内で21~26日、圃場では4~6日であった(表8)。(参照22)

試験	濃度	土壌	ピリプロキシフェン
容器内試験	E ma/lea	火山灰軽埴土	21 日
台台的机械	5 mg/kg	沖積埴壌土	26 日
圃場試験	250 g ai/ha	火山灰軽埴土	4日
四 *勿 記 尚央	× 4 回	沖積埴壌土	6 日

表8 土壌残留試験成績(推定半減期)

圃場試験では乳剤(10%)1000倍希釈液を使用。

6.作物残留試験

野菜(きゅうり、なす、トマト、メロン、ピーマン、ししとう)及び茶を用いて、ピリ プロキシフェンを分析対象化合物とした作物残留試験が実施された。分析法は、含水メタ ノールで抽出した試料を、加水分解、精製後、ガスクロマトグラフで定量するものであっ た。

その結果は別紙3に示されている。ピリプロキシフェンの最高値はピーマン(果実)の散布後1日目における1.42 mg/kg であった。(参照23)

別紙3の作物残留試験の分析値を用いて計算された、暴露評価対象化合物ピリプロキシフェンの食品中から摂取される推定摂取量が表9に示されている(別紙4参照)。

なお、本推定摂取量の算定は、申請された使用方法からピリプロキシフェンが最大の残留を示す使用条件で、今回申請された茶を含む全ての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定のもとに行った。

(体重:53.3 kg) (体重:15.8 kg) (体重:55.6 kg) (体重:54.2 kg) 摂取量 11.8 6.55 8.77 10.2	KI KIII I DIKING TO TO TO TO THE CONTROL OF THE CON							
摂取量 11.8 6.55 8.77 10.2		国民平均	小児 (1~6歳)	妊婦	高齢者(65歳以上)			
11.8 6.55 8.77 10.2		(体重:53.3 kg)	(体重:15.8 kg)	(体重:55.6 kg)	(体重:54.2 kg)			
$(ug/\lambda/P)$	摂取量 (μ g/人/日)	11.8	6.55	8.77	10.2			

表 9 食品中から摂取されるピリプロキシフェンの推定摂取量

7.一般薬理試験

マウス、ラット、ウサギ、モルモット及びイヌを用いた一般薬理試験が実施された。結果は表 10 に示されている。(参照 24)

	試験の種類	動物種	動物数 匹/群	投与量 mg/kg 体重	無作用量 mg/kg体重	作用量 mg/kg体重	概要
中枢神	一般状態		雌雄 3	0,200,1000, 5000 (経口)	1000	5000	5000 mg/kg 体重で、軟 便・下痢
経系	自発運動量		雄 3	0,30,125, 500,2000 (経口)	2000	-	影響なし。
	ぺントバルビタール 睡眠		雄 9~10	0,125,500, 2000 (経口)	2000	ı	影響なし。
	ぺンチレンテトラゾ - ル痙攣	マウス	雄 10	0,125,500, 2000 (経口)	2000	-	影響なし。
	電撃痙攣		雄 9~10	0,125,500, 2000 (経口)	2000	-	影響なし。
	痙攣誘発		雄 10	0,125,500, 2000 (経口)	2000	-	影響なし。
	酢酸鎮痛		雄 9~10	0,125,500, 2000 (経口)	2000	-	影響なし。

表 10 一般薬理試験

	試験の種類	動物種	動物数 匹/群	投与量 mg/kg 体重	無作用量 mg/kg 体重	作用量 mg/kg 体重	概要
	体温	₽	雄 3	0,200,1000, 5000 (経口)	5000	- -	影響なし。
	脳波	ウサギ	雄 3	群	-	影響なし。	
呼吸・循	呼吸数・血圧・ 心拍数・心電図 ・血流量	イヌ	雄 3		10	50	50 mg/kg 体重で、呼吸 促迫及び一時的な呼吸 停止、血圧の軽度な低 下及びその後の上昇、 血流量の増加
環器系	摘出心房	モリノモッ ト	雄 3	10 ⁻⁶ 、10 ⁻⁵ g/mL		ı	影響なし。
á	摘出回腸	ウサギ	雄 3	10 ⁻⁶ 、10 ⁻⁵ g/mL		-	影響なし。 影響なし。
自律神経系	打削山川河勿	モルモ ット	雄 3	10 ⁻⁶ 、10 ⁻⁵ g/mL		10 ⁻⁵ g/mL	
が	摘出輸精管	モルモット	雄 3	10 ⁻⁶ 、10 ⁻⁵ g/mL		1	影響なし。
消化器系	腸管内輸送能	マウス	雄 10	2000	2000	-	影響なし。
体性神	神経 - 筋	ラット	雄 3	10 ⁻⁶ 、10 ⁻⁵ g/mL		-	影響なし。
経系	角膜反射	ウサギ	雄 3	%	20 %	-	影響なし。
電解質	尿中電解質	ラット	雄 10	0,125,500, 2000 (経口)	500	2000	Na+の上昇及びK+の低
血	血液凝固	ラット	雄 4~5	0,125,500, 2000 (経口)	2000	-	影響なし。
液	溶血	ラット	雄 5	0,125,500, 2000 (経口)	2000	-	影響なし。

8. 急性毒性試験

ピリプロキシフェン(原体)の ICR マウス及び SD ラットを用いた急性経口毒性試験及び急性経皮毒性試験、SD ラットを用いた急性吸入毒性試験が実施された。

各試験の結果は表 11 に示されている。急性経口 LD_{50} はラット及びマウスの雌雄で 5000 mg/kg 体重超、急性経皮 LD_{50} はラット及びマウスの雌雄で 2000 mg/kg 体重超、急性吸入 LC_{50} はラットの雌雄で 1.3 mg/L 超であった。(参照 $25\sim29$)

投与経路	動物種	LD ₅₀ (mg	/kg 体重)	観察された症状	
投与紐陷	里儿17少11里	雄	雌	観宗で107と近4人	
	ICR マウス	>5000	>5000	自発動減少、掛大調、呼吸不規則、体重	
経口	ICK 4.7X			地呼叫 死亡	
	SD ラット	>5000	>5000	自発動減少、軟便、下痢、体動物が制	
経皮	ICR マウス	>2000	>2000	-	
流生人	SD ラット	>2000	>2000	-	
吸入	SD ラット	LC ₅₀ (mg/L)	流延 尿失禁 体重 割 中間	
火火	איל עפ	>1.3	>1.3		

表 11 急性毒性試験結果概要 (原体)

ピリプロキシフェンの原体混在物〔メチル異性体: 4-フェノキシフェニル(*RS*)-1-メチル-2-(2-ピリジルオキシ)エチルエーテル〕及び代謝物(4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr、POPA 及び PYPAC) の ICR マウスを用いた急性経口毒性試験が実施された。

各試験の結果は表 12 に示されている。原体混在物、代謝物のいずれも、急性経口 LD_{50} はマウスの雌雄とも 2000 mg/kg 体重超であった。 (参照 30、31)

	表 12 思性毒性試験結果概要(原体混在物及び代謝物)							
投与経路	化合物	動物種	LD ₅₀ (mg	/kg 体重)	観察された症状			
汉一八元	10 🗆 10	至以1707年	雄		電影で107と近4人			
経口	メチル異性体	ICR マウス	>2000	>2000	-			
経口	4'-OH-Pyr	ICR マウス	>2000	>2000	-			
経口	5"-OH-Pyr	ICR マウス	>2000	>2000	自発運動減少、失調性歩			
紅土口	5 -OH-FYI	ICK 4.7X	>2000	>2000	行、死亡			
経口	DPH-Pyr	ICR マウス	>2000	>2000	自発運動減少、失調性歩			
能上口	DF11-Fy1	ICK Y 7X	>2000	>2000	行、腹臥			
					自発運動減少、失調性歩			
経口	POPA	ICR マウス	>2000	>2000	行、腹臥、側臥、呼吸不			
					規則			
経口	PYPAC	ICR マウス	>2000	>2000	自発運動減少			

表 12 急性毒性試験結果概要(原体混在物及び代謝物)

9.眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギ(雌雄)を用いた眼一次刺激性試験及び皮膚一次刺激性試験(Draize 法)が実施された。眼に対して非常に軽度の刺激性(結膜潮紅等)が認められたが皮膚に対しては刺激性は認められなかった。(参照 33)

Hertlay モルモット(雄)を用いた皮膚感作性試験(Maximization 法)が実施された。 皮膚感作性は認められなかった。(参照 34)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

SD ラット(一群雌雄各 10 匹)を用いた混餌(原体:0、400、2000、5000 及び 10000 ppm: 平均検体摂取量は表 13 参照)投与による 90 日間亜急性毒性試験が実施された。

投与群		400 ppm	2000 ppm	5000 ppm	10000 ppm
検体摂取量	太 隹	23.5	118	309	642
(mg/kg 体重/日)	雌	27.7	141	356	784

表 13 ラット 90 日間亜急性毒性試験の平均検体摂取量

2000 ppm 投与群の雌で死亡(事故死)が1例確認された。

各投与群で認められた主な所見は表14に示されている。

副検において、10000 ppm 投与群の雄で肝臓に肥大、褪色域、斑点、暗色化が、同群の雌で褪色域、隆起域が認められた。病理組織学的検査では 2000 ppm 以上投与群で雌雄とも肝細胞肥大が認められた。赤血球系の測定値の低値、血中 T.Chol、TP、アルブミン及びリン脂質の増加が認められた。

本試験において、2000 ppm 以上投与群の雌雄で肝細胞肥大等が認められたので、無毒性量は雌雄で 400 ppm (雄: 23.5 mg/kg 体重/日、雌: 27.7 mg/kg 体重/日) であると考えられた。(参照 36)

投与群	広 隹	雌
10000 ppm	・TP、アルプミン増加	・TP、アルプミン、リン脂質増加
5000 ppm	・体重増加抑制	・体重増加抑制
以上	・MCH 増加	・RBC (5000 ppm のみ)、Hb
	・肝絶対重量増加	濃度、Ht 値減少
		・T.Chol 増加
		・肝絶対・比重量増加
2000 ppm	・RBC、Hb 濃度、Ht 値減少	・肝細胞肥大
以上	・T.Chol、リン脂質増加	

表 14 ラット 90 日間亜急性毒性試験で認められた毒性所見

¹ 体重比重量のことを比重量という(以下同じ)。

	・肝比重量¹増加、肝細胞肥大	
400 ppm	毒性所見なし	毒性所見なし

(2)90日間亜急性毒性試験(マウス)

ICR マウス(一群雌雄各 10 匹)を用いた混餌(原体:0、200、1000、5000 及び 10000 ppm: 平均検体摂取量は表 15 参照)投与による 90 日間亜急性毒性試験が実施された。

				_ J _ H-V-3/(-)	1 317411 374 1	~ <u></u>
投与群		200 ppm	1000 ppm	5000 ppm	10000 ppm	
検体摂!	取量	雄	28.2	149	838	2030
(mg/kg 位	(日/重	雌	37.9	197	964	2350

表 15 マウス 90 日間亜急性毒性試験の平均検体摂取量

5000 ppm 以上投与群の雄及び 10000 ppm 投与群の雌で死亡が増加し、投与による腎障害が死因と考えられた。雄では用量依存性の生存率低下が認められた。死亡例では、削痩、円背姿勢、糞便少量又は糞便なしが高頻度で認められた。

各投与群で認められた主な所見は表 16 に示されている。

肉眼的病理学検査において、腎盂拡張、嚢胞等の腎臓所見が、死亡動物には、5000 ppm 投与群の雄で 1/2、10000 ppm 投与群の雄で 5/7、雌で 6/9 の頻度で認められた。

臓器重量測定は肝臓、腎臓、精巣、副腎についてのみ実施された。5000 ppm 以上投与群の雄で肝、副腎比重量の増加が、5000 ppm 投与群の雌で肝絶対及び比重量の増加が認められた。

本試験において、1000 ppm 以上投与群の雄で MCH 減少、同群の雌で T.Chol 増加が認められたので、無毒性量は雌雄とも 200 ppm(雄: 28.2 mg/kg 体重/日、雌: 37.9 mg/kg 体重/日) であると考えられた。(参照 35)

投与群 ・体重増加抑制(4週目) ・RBC 減少 10000 ppm ・腎嚢胞 ・心筋変性(途中死亡例) ・心筋変性(途中死亡例) ・腎乳頭壊死 (途中死亡例) ・腎乳頭壊死 (途中死亡例) 5000 ppm ・体重増加抑制 ・摂水量増加 以上 · RBC 減少 ・摂水量増加 ・Hb 濃度、Ht 値減少 ・Hb 濃度、Ht 値減少 ・PLT 増加 ・PLT 増加 · MCV 減少 ・尿素窒素増加 ・MCHC 減少 (5000 ppm のみ) ・リン脂質増加 ・尿素窒素増加 ・肝絶対・比重量増加 ・AST、ALT 増加 ·小囊胞/尿細管拡張、腎盂拡張、

表 16 マウス 90 日間亜急性毒性試験で認められた毒性所見

	・腎褪色、肝暗色化	尿細管腎症、尿細管石灰沈着
	・肝、副腎比重量増加	
	・小嚢胞/尿細管拡張、腎盂拡張、	
	尿細管腎症、尿細管石灰沈着	
1000 ppm	・MCH 減少	・T.Chol 増加
以上		
200 ppm	毒性所見なし	毒性所見なし

⁽注) 10000 ppm 投与群についてはデータ数が少ないため統計解析を実施せず。

(3)90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた強制経口(原体: 0、100、300 及び 1000 mg/kg 体重/日;カプセル)投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた主な所見は表 17 に示されている。

300 mg/kg 体重/日以上投与群の雄で肝絶対及び比重量の増加が認められた。また、1000 mg/kg 体重/日投与群の雄及び300 mg/kg 体重/日以上投与群の雌で認められた肝細胞肥大は、電子顕微鏡検査の結果、滑面小胞体の増加によるものであった。

本試験において、300 mg/kg 体重/日以上投与群の雄で肝絶対及び比重量の増加、雌で肝細胞肥大等が認められたので、無毒性量は雌雄とも 100 mg/kg 体重/日であると考えられた。(参照 37)

投与群	雄	雌
1000 mg/kg 体重/	・ALP 増加	
日	・肝細胞肥大(滑面小胞体増	
	加)	
300 mg/kg 体重/日	・肝絶対・比重量増加	・T.Chol、以脂質増加
以上		・肝細胞肥大(滑面小胞体増
		加)
100 mg/kg 体重/日	毒性所見なし	毒性所見なし

表 17 イヌ 90 日間亜急性毒性試験で認められた毒性所見

11.慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いた強制経口 (原体:0、30、100、300 及び 1000 mg/kg 体重/日;ゼラチンカプセル) 投与による 1 年間の慢性毒性試験が実施された。 各投与群で認められた主な所見は表 18 に示されている。

1000 mg/kg 体重/日投与群では1例を除く全例に肝障害が認められた。肝障害は雌より雄で強く発現し、小葉中心性の線維化と胆管増生という特徴を持ち、被膜下領域で最も顕著で活動性慢性炎症性細胞浸潤と関連していた。一部に嚢胞性変性巣も認められ、

雄の重度の障害部位には肝細胞の結節性増生も付随していた。肝障害を示した動物では 胆嚢粘膜下線維化も認められた。

本試験において、30 mg/kg 体重/日以上投与群の雄で T.Chol 増加、肝比重量の増加、100 mg/kg 体重/日投与群の雌で T.Chol 増加等が認められたので、無毒性量は雄で 30 mg/kg 体重/日未満、雌で 30 mg/kg 体重/日であると考えられた。(参照 39)

投与群 1000 mg/kg 体重/日 ・嘔吐、流涎、下痢 ・嘔吐、流涎、下痢 ・一般状態の悪化、体重、摂餌量減 ・ALT 増加 ・PLT 増加 少 ・ALT、AST、総ビリルビン増加 ・肝臓の小葉中心性線維化、胆管増生、 ・肝肥大、表面不整 慢性炎症 ・肝臓の小葉中心性線維化、胆管増 生、慢性炎症 300 mg/kg 体重/日 ・削痩 (300 mg/kg 体重/日のみ) ・体重増加抑制 以上 · 体重增加抑制 ・ALP 増加、総トリグリセライド増加 ・肝絶対・比重量、甲状腺絶対重量増 ・Hb、RBC 減少 () ・MCV 増加 加 ・PT 延長 ・ALP 増加、総トリグリセライド増加 100 mg/kg 体重/日 ・PLT 増加 · PCV、Hb、RBC 減少 以上 ・T.Chol 増加 肝絶対重量増加 ・MCV 増加 ・甲状腺比重量増加 30 mg/kg 体重/日以 ・T.Chol 増加 30 mg/kg 体重/日において

表 18 イヌ 1 年間慢性毒性試験で認められた毒性所見

(2)1年間慢性毒性試験(イヌ)

・肝比重量増加(1例)

上

ビーグル犬(一群雌雄各4匹)を用いた強制経口(原体:0、3 及び 10 mg/kg 体重/日;ゼラチンカプセル)投与による1年間の慢性毒性試験が実施された。本試験は、前述の1年間慢性毒性試験 (イヌ)において無毒性量が設定できなかったために、追加試験として行われた。

毒性所見なし

血液学的検査において、3 及び 10 mg/kg 体重/日投与群の雄で、PLT 増加が認められたが、用量相関性はなく偶発的なものと考えられた。また、10 mg/kg 体重/日投与群の雌で、PLT 増加が認められたが、1 例を除き試験実施研究所の背景データの範囲内であったため、投与に起因する影響とは考えられなかった。

本試験において、毒性学的な変化は認められなかったので、無毒性量は雌雄とも 10 mg/kg 体重/日であると考えられた。(参照 40)

(3)2年間慢性毒性/発がん性併合試験(ラット)

SD ラット(一群雌雄各 50 匹)を用いた混餌(原体:0、120、600 及び 3000 ppm: 平均検体摂取量は表 19 参照)投与による 2 年間の慢性毒性/発がん性併合試験が実施された。

110 フラー2		3 IT / 7013 / 0	エロバッス・ファーン	
投与群	120 ppm	600 ppm	3000 ppm	
検体摂取量 雄		5.42	27.3	138
(mg/kg 体重/日) 雌		7.04	35.1	183

表 19 ラット 2 年間慢性毒性/発がん性試験の平均検体摂取量

各投与群で認められた主な所見は表20に示されている。

一般状態、生存率に影響は認められなかった。3000 ppm 投与群の雌雄で体重増加抑制が認められた。

検体投与に関連して発生頻度が増加した腫瘍性病変はなかった。

本試験において、3000 ppm 投与群の雌雄で体重増加抑制、摂餌量減少、血中 T.Chol の増加等が認められたので、無毒性量は雌雄とも600 ppm (雄:27.3 mg/kg 体重/日、雌:35.1 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。(参照41)

投与群	雄	雌
3000 ppm	・体重増加抑制	・体重増加抑制
	・摂餌量減少	・摂餌量減少
	・T.Chol、リン脂質増加	・T.Chol、以脂質増加
		・肝比重量増加
600 ppm	毒性所見なし	毒性所見なし
以下		

表 20 ラット 2 年間慢性毒性/発がん性併合試験で認められた毒性所見

(4)18カ月間発がん性試験(マウス)

ICR マウス (一群雌雄各 60 匹)を用いた混餌 (原体:0、120、600 及び 3000 ppm: 平均検体摂取量は表 21 参照)投与による 18 カ月間の発がん性試験が実施された。

表 21 マウス 18 カ月間発がん性試験の平均検体摂取量

投与群	120 ppm	600 ppm	3000 ppm	
検体摂取量 雄		16.4	81.3	423
(mg/kg 体重/日) 雌		21.1	107	533

600 ppm、3000 ppm 投与群の雄及び 3000 ppm 投与群の雌で、生存率に有意な低下

が認められた。

各投与群で認められた主な所見は表 22 に示されている。

血液学的検査において、3000 ppm 投与群の雄に MCV の減少が認められたが、他の検査項目に変化がないので、生物学的意義は明らかでなかった。また、600 ppm 投与群の雄で白血球数、補正白血球数に有意な低値が認められたが、用量相関性がなく、生物学的意義は明らかでなかった。

検体投与に関連して発生頻度が増加した腫瘍性病変はなかった。

本試験において、600 ppm 以上投与群の雄及び 3000 ppm 投与群の雌で生存率低下、全身性アミロイドーシス増加等が認められたので、無毒性量は雄で 120 ppm(16.4 mg/kg 体重/日)、雌で 600 ppm (107 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。(参照 42)

表 22 マウス 18 カ月間発がん性試験で認められた毒性所見

投与群	雄	雌
3000 ppm	・生存率低下	・生存率低下
	・円背姿勢、自発運動減少	・円背姿勢、自発運動減少
	・体重増加抑制	・体重増加抑制
	・腎臓表面の顆粒状、陥凹、粗造	・摂餌量減少
	・全身性アミロイドーシス増加(上皮小体、	・Hb 減少
	胆嚢、腺胃に有意差あり)	・肝絶対重量、肝比重量増加
	・慢性進行性腎症	・腎臓表面の顆粒状、陥凹、粗造
		・全身性アミロイドーシス増加(副腎皮質、
		甲状腺、上皮小体、肝臓等に有意差
		あり)
		・尿細管石灰化、慢性進行性腎症、皮
		質萎縮
600 ppm	・生存率低下	毒性所見なし
	・全身性アミロイドーシス増加(腺胃に有意	
	差あり)	
120 ppm	毒性所見なし	

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット(一群雌雄各 26 匹)を用いた混餌(原体:0、200、1000 及び 5000 ppm: 平均検体摂取量は表 23 参照)投与による2世代繁殖試験が実施された。

表 23 ラット 2 世代繁殖試験の平均検体摂取量

投与群			200 ppm	1000 ppm	5000 ppm
	P 世代	雄	15.5	76.4	386
検体摂取量	r eic	雌	17.7	87.3	442
(mg/kg 体重/日)	F1 世代	雄	19.4	97.3	519
	riej,	雌	20.6	105	554

親動物及び児動物における各投与群で認められた主な所見は、それぞれ表 24 に示されている。

親動物では、P 世代で、5000 ppm 投与群の雌雄で、体重増加抑制、摂餌量減少が認められた。F₁ 世代では、5000 ppm 投与群の雌雄で体重増加抑制、摂餌量減少が認められた。また、5000 ppm 投与群の雄で慢性間質性腎炎を示唆する所見の頻度及び程度の増加が認められた。

臓器重量については、F1世代で、5000 ppm 投与群の雌雄で肝絶対及び比重量の増加が認められ、1000 ppm 投与群の雄で肝比重量の増加、1000 及び 5000 ppm 投与群の雄で腎比重量の増加が認められた。

性周期、親動物の交尾率及び受胎率、母動物の妊娠期間、出産率、性比等については、 投与による影響は認められなかった。

児動物では、両世代で、5000 ppm 投与群の雌雄で体重増加抑制が認められた。生存性、臨床症状、病理所見については、投与による影響は認められなかった。

本試験において、親動物では、1000 ppm 投与群の雄で肝比重量、腎比重量の増加が、5000 ppm 投与群の雌で体重増加抑制及び摂餌量減少等が認められたので、無毒性量は雄で 200 ppm (P 雄: 15.5 mg/kg 体重/日、F₁雄: 19.4 mg/kg 体重/日)、雌で 1000 ppm (P 雌: 87.3 mg/kg 体重/日、F₁雌: 105 mg/kg 体重/日)であると考えられた。児動物では、5000 ppm 投与群の雌雄で体重増加抑制が認められたので、無毒性量は雌雄とも 1000 ppm (P 雄: 76.4 mg/kg 体重/日、P 雌: 87.3 mg/kg 体重/日、F₁雄: 97.3 mg/kg 体重/日、F₁雌: 105 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。 (参照 43)

表 24 ラット 2 世代繁殖試験で認められた毒性所見

	tひ ⊏ #¥	投与群 P 世代		F ₁ 世代	
	1又一年	太 隹	雌	雄	雌
	5000 ppm	・体重増加加	・体動的呼鳴	・体重増加に制	・体重増加に制
		・摂糧減少	・摂糧減少	・摂糧減少	・摂糧減少
親				・慢性質性腎炎	・肝絶対・比重量増
動				・肝絶対重量増加	加
物	1000 ppm	1000 ppm 以下	1000 ppm 以下	・肝比重量増加	1000 ppm 以下
	以上	毒性所見なし	毒性所見なし	・腎比重量増加	毒性所見なし
	200 ppm			毒性所見なし	

児	5000 ppm	・体重増加が制	・体重増加・体制	• 体重增加机	• 体重增加机制
動物	1000 ppm 以下	毒性所見なし	毒性が見なし	毒性所見なし	毒性所見なし

(2)発生毒性試験(ラット、器官形成期投与)

SD ラット(一群雌 36~42 匹)の妊娠 7~17 日に強制経口(原体:0、100、300 及び 1000 mg/kg 体重/日、溶媒:コーンオイル)投与して発生毒性試験が実施された。

母動物では、1000 mg/kg 体重/日投与群で中毒症状(軟便ないし下痢便、肛門部の発赤・腫脹、自発運動の減少、削痩、鼻周囲の血性汚れ、耳介及び四肢の蒼白化、体温低下等)が観察され 42 例中 12 例が死亡した。100 mg/kg 体重/日以上の各投与群において用量相関性のある体重増加抑制、摂餌量減少、摂水量増加が認められた。剖検では 1000 mg/kg 体重/日投与群において副腎の腫大及び胸腺の退縮がみられた。臓器重量では、帝王切開時に 1000 mg/kg 体重/日投与群で胸腺絶対重量の減少、腎絶対重量及び副腎絶対重量の増加、心絶対重量の減少、肝比重量の増加が、300 mg/kg 体重/日投与群で肝比重量、腎比重量の増加が認められた。分娩 21 日後の離乳時には、1000 mg/kg 体重/日投与群で脾絶対重量の減少が認められた。

胎児では、1000 mg/kg 体重/日投与群で、胚死亡率が増加し、生存胎児数が減少傾向を示した。骨格変異については第7頸椎横突孔の開存の発現率が300 mg/kg 体重/日以上の投与群で増加したが、腰肋等の変異の出現率に増加傾向がないので催奇形作用に結びつく所見とは考えられなかった。

出生児では検体投与に起因した影響は認められなかった。

本試験において、100 mg/kg 体重/日以上投与群の母動物で体重増加抑制及び摂餌量減少が認められたので、最小毒性量は母動物で 100 mg/kg 体重/日であると考えられた。 300 mg/kg 体重/日投与群の胎児で第7頸椎横突孔の開存が認められ、全投与群の出生児で検体投与に起因した影響が認められなかったので、無毒性量は胎児で 100 mg/kg 体重/日、出生児で 1000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照 44)

(3)発生毒性試験(ラット、妊娠前~妊娠初期投与)

SD ラット(一群雌雄各 24 匹)を用いて、妊娠前及び妊娠初期に強制経口(原体: 0、100、300、500 及び 1000 mg/kg 体重/日、溶媒:コーンオイル)投与して発生毒性試験が実施された。

投与期間は、雄は同居開始の9週間前より交配期間終了までの12週間、雌は同居開始の2週間前より交配期間を含め妊娠7日までとした。

各投与群で認められた主な所見は表25に示されている。

1000 mg/kg 体重/日投与群の24例中2例の雌動物が死亡し、剖検の結果、肝臓のうっ血及び腫大、胸腺及び脾臓の萎縮、副腎の腫大、胃粘膜の潰瘍が認められた。

胎児では、1000 mg/kg 体重/日投与群で黄体数が有意な低値を示したが、背景データ

の範囲内であることから検体投与による影響ではないと考えられた。その他、着床数、 生存胎児数の有意な低値、胎児体重の高値を示したが、軽度な変動で、かつ用量依存性 がなかったことから、検体投与による影響ではないと考えられた。

本試験において、100 mg/kg 体重/日以上投与群の雄で肝、腎及び副腎絶対重量等の増加、100 mg/kg 体重/日以上投与群の雌で腎絶対重量の増加が認められたので、最小毒性量は親動物で 100 mg/kg 体重/日であると考えられた。全投与群の胎児で検体投与による影響が認められなかったので、無毒性量は胎児で 1000 mg/kg 体重/日であると考えられた。繁殖能に対する影響、催奇形性は認められなかった。(参照 46)

投与群	親(雄)	親(雌)	胎児
1000 mg/kg 体	・摂餌量減少	・削痩、自発運動減少	毒性所見なし
重/日		・副腎、胸腺、脾絶対	
		重量増加	
500 mg/kg 体重/	・軟便、下痢便、肛門	・摂餌量減少	
日以上	部の発赤・腫脹		
300 mg/kg 体重/	・体重増加抑制	・軟便、下痢便、肛門	
日以上	・肝、腎、副腎の腫大	部の発赤・腫脹	
	・胸腺萎縮、絶対重量	・体重増加抑制、摂水	
	減少	量増加	
100 mg/kg 体重/	・摂水量増加	・腎絶対重量増加	
日以上	・肝、腎、副腎絶対重		
	量増加		

表 25 ラット発生毒性試験で認められた毒性所見

(4)発生毒性試験(ラット、妊娠~分娩期(周産期及び授乳期)投与)

SD ラット(一群雌 $23 \sim 24$ 匹)を用いて、妊娠 17 日から分娩後 20 日まで強制経口(原体: 0、30、100、300 及び 500 mg/kg 体重/日、溶媒: コーンオイル) 投与して発生毒性試験が実施された。

各投与群で認められた主な所見は表26に示されている。

母動物では、500 mg/kg 体重/日投与群で軟便・下痢便、肛門部発赤・腫脹、自発運動の減少、粗毛、体温低下、流涙等が認められ、少数例に一過性の流涎が観察された。300 mg/kg 体重/日投与群では、軟便・下痢便が散見され、一過性の流涎が観察された。300 mg/kg 体重/日以上投与群で体重増加抑制、摂餌量減少、摂水量増加、肝絶対・比重量増加が認められた。また、剖検において、500 mg/kg 体重/日投与群で少数例に肝臓の肥大が認められ、死亡例及び中毒症状が比較的重度に発現した例では脾臓の萎縮、副腎の腫大、胸腺の萎縮、肝臓の鬱血ないし胃底腺部の潰瘍が観察された。

出生児では、500 mg/kg 体重/日投与群で死産児増加に伴う出生率の低下が認められ、 軽度ではあるが授乳期間中の生存率の低下がみられた。300 mg/kg 体重/日以上投与群で 体重増加抑制、成長分化の遅延(耳介の開展、腹部被毛の発生、眼瞼開裂及び下切歯萌 出の所要日数の延長)が観察された。生殖器分化では、300 mg/kg 体重/日投与群で精巣下降、500 mg/kg 体重/日投与群で膣開口に至る日齢の遅延が認められた。出生児の感覚機能の発達、情動性・運動協調性、学習能及び繁殖能については検体投与による影響は見られなかった。

本試験において、300 mg/kg 体重/日以上投与群で母動物及び出生児に体重増加抑制等が認められたので、無毒性量は母動物及び出生児とも 100 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 47)

投与群	母動物	出生児
500 mg/kg 体重/日	・脾萎縮、副腎腫大、胸腺萎縮、	・出生率、生存率低下
	肝鬱血ないし胃底腺部の潰	・膀胱壁肥厚・充血
	瘍(重篤例・死亡例)	・膣開口の遅延
	・肛門部発赤・腫脹	
	・自発運動減少、粗毛、体温低	
	下、流淚等	
	・肝肥大	
300 mg/kg 体重/日	・軟便・下痢便、流涎	・体重増加抑制
以上	・体重増加抑制、摂餌量減少、	・成長分化及び精巣下降の遅
	摂水量増加	延
	・肝絶対・比重量増加	・腎盂腔拡張
100 mg/kg 体重/日	毒性所見なし	毒性所見なし
以下		

表 26 ラット発生毒性試験で認められた毒性所見

(5)発生毒性試験(ウサギ)

JW-NIBS ウサギ (一群雌 15~18 匹)の妊娠 6~18 日に強制経口 (原体: 0、100、300 及び 1000 mg/kg 体重/日) 投与して発生毒性試験が実施された。

母動物では、300 mg/kg 体重/日以上投与群で軟便、削痩、被毛光沢不良、自発運動減少及び呼吸緩徐あるいは呼吸深大等の症状が発現し、流・早産がみられた。1000 mg/kg 体重/日投与群では体重及び摂餌量の減少が認められ、死亡例がみられたので、評価を行う上で十分な数の生存胎児を得られなかった。300 mg/kg 体重/日以上投与群の流・早産、死亡及び衰弱のため強制と殺した母動物の剖検所見として、胃の内出血痕、盲腸の内出血痕、うっ血、内容物の状態(性状、色及び粘張度)の変化等がみられ、摂餌不良との関連性が疑われた。

胎児では、1000 mg/kg 体重/日投与群に流・早産による生存胎児数の減少がみられた以外、検体投与による影響は認められなかった。

本試験において、母動物で 300 mg/kg 体重/日以上投与群において自発運動減少、流・早産等が認められたので、無毒性量は 100 mg/kg 体重/日と考えられた。胎児の無毒性量は胎児発育及び生存性に影響の認められなかった 300 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 45)

13.遺伝毒性試験

ピリプロキシフェン(原体)の細菌を用いた DNA 修復試験及び復帰突然変異試験、チャイニーズハムスターの卵巣由来細胞(CHO-K1)を用いた染色体異常試験及びマウスの骨髄細胞を用いた小核試験が実施された。試験結果は全て陰性であった。

ピリプロキシフェンに遺伝毒性はないものと考えられた(表27)。(参照48~52)

	試験	対象	処理濃度・投与量	結果
in vitro	DNA 修復試験	B. subtilis	673 ~ 21500 µ g/ディスク	陰性
	(参照 48)	H17,M45 株	(+/-S9)	法注
	復帰突然変異試	S. typhimurium	10~5000 µg/プレート	
	験	TA98,TA100,TA1535,TA	(+/-S9)	陰性
	(参照 49)	1537,TA1538 株		法社
		E. coli WP2 uvrA 株		
	染色体異常試験	チャイニーズハムスター	$3 \times 10^{-5} \sim 1 \times 10^{-3} \text{ M}$	
	(参照 50、51)	卵巣由来細胞(CHO-K1)	(+/-S9)	陰性
			$10 \sim 100 \mu \text{g/mL} (-S9)$	法 工
			$30 \sim 300 \mu \text{g/mL} (+\text{S}9)$	
in vivo	小核試験	ICR マウス骨髄細胞	5000 mg/kg 体重	陰性
	(参照 52)	(一群雌雄各 5 匹)	(強制経口投与)	法社

表 27 遺伝毒性試験結果概要(原体)

注)+/-S9:代謝活性化系存在下及び非存在下

ピリプロキシフェンの原体混在物〔メチル異性体:4-フェノキシフェニル(*RS*)-1-メチル-2-(2-ピリジルオキシ)エチルエーテル〕及び代謝物(4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr、POPA 及び PYPAC)の細菌を用いた復帰突然変異試験が実施された。試験結果は全て陰性であった(表 28)。(参照 53~54)

农 20				
化合物	試験	対象	処理濃度・投与量	結果
メチル異性体	復帰突然変異	S. typhimurium	156 ~ 5000 μg/プレート	
	試験	TA98,TA100,TA1535,TA	(+/-S9)	陰性
	(参照 53)	1537 株		一片
		E. coli WP2 uvrA 株		
4'-OH-Pyr	復帰突然変異	S. typhimurium	2.5~5000 µg/プレート	
	試験	TA98,TA100,TA1535,TA	(-S9)	陰性
	(参照 54)	1537 株	5 ~ 5000 μg/プレート	
		E. coli WP2 uvrA 株	(+S9)	

表 28 遺伝毒性試験結果概要(原体混在物及び代謝物)

5"-OH-Pyr	2.5 ~ 5000 μg/プレート	
	(-S9)	7会計4
	5 ~ 5000 μg/プレート	陰性
	(+S9)	
DPH-Pyr	62.5 ~ 2000 μg/プレート	陰性
	(+/-S9)	ᅜᅑᆝᄑ
POPA	15.6~500 μg/プレート	陰性
	(+/-S9)	宏 工
PYPAC	156~5000 µg/プレート	陰性
	(+/-S9)	l 즈 Iエ

注)+/-S9:代謝活性化系存在下及び非存在下

. 総合評価

参照に挙げた資料を用いて農薬「ピリプロキシフェン」の食品健康影響評価を実施した。 ラットを用いた動物体内運命試験において、単回経口投与後の血中濃度の T_{max} は低用量 投与群で投与 4 ~ 8 時間、高用量投与群で 8 時間後であり、半減期は低用量投与群で 10 ~ 14 時間、高用量投与群で 12 時間であった。単回投与における主要組織内の残留放射能濃 度は、T_{max} 付近では肝臓で最も高く、投与 7 日後の残留放射能の総和は約 0.3%TAR 以下 であった。主要代謝物は末端フェニル基 4 位が水酸化された 4'-OH-Pyr であり、尿及び糞 から排泄された。体内への残留性・蓄積性はないと考えられた。

キュウリ、トマト及びオレンジを用いた植物体内運命試験が実施された。ピリプロキシフェンを葉面処理されたキュウリでは、ピリプロキシフェンの半減期は 12.5~18.4 日、果実処理されたキュウリでは半減期は 1.9~2.0 日であった。主な代謝経路は、エーテル結合の開裂、フェニル基及びピリジル基の水酸化であり、主要代謝物は 4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr 及び POPA であった。土壌処理されたキュウリでは、処理後 7 日目の残留放射能は Phe-14C-ピリプロキシフェンの場合 0.1%TAR 未満であった。Py-14C-ピリプロキシフェンの場合 0.8%TAR が検出され、そのうち果実に 0.5%TAR、茎葉部に 0.3%TAR であったが、ピリプロキシフェンは検出されず、大部分は PYPAC であった。トマト及びオレンジにおける主要代謝経路は、末端フェニル基の水酸化及びエーテル結合の開裂であった。

土壌中運命試験において、好気的条件下でピリプロキシフェンの半減期は 6.3 日であった。分解経路は、ピリプロキシフェンの末端フェニル基の水酸化による 4'-OH-Pyr の生成、さらにエーテル結合の開裂による 4'-OH-POPA の生成、または、ピリプロキシフェン及び 4'-OH-Pyr のジフェニルエーテル結合の開裂による DPH-Pyr の生成、さらにアルキル基とフェニル基のエーテル結合の開裂による PYPA の生成で、最終的に二酸化炭素にまで分解されると考えられた。土壌表面光分解試験では、ピリプロキシフェンの半減期は 11~13 週であった。主な分解経路は、エーテル結合の開裂の後、環開裂等を受けて最終的に二酸化炭素まで分解される経路と考えられた。

水中運命試験において、pH 4.0、7.0 及び 9.0 の緩衝液中、 50 ± 0.1 、暗条件下において加水分解に対し安定であると考えられた。また、蒸留水及び河川水において、太陽光暴露により分解が促進され、半減期はそれぞれ 17.5 日及び 21 日であった。

火山灰軽埴土及び沖積埴壌土を用いて、ピリプロキシフェンを分析対象とした土壌残留 試験(容器内及び圃場)が実施された。容器内における半減期は21~26日、圃場における 半減期は4~6日であった。

野菜及び茶を用いて、ピリプロキシフェンを分析対象化合物とした作物残留試験が実施された。最高値はピーマン(果実)の散布後1日目における1.42 mg/kg であった。

ラットにおけるピリプロキシフェンの急性経口 LD_{50} は雌雄で 5000~mg/kg 体重超、経皮 LD_{50} は雌雄で 2000~mg/kg 体重超、吸入 LC_{50} は雌雄で 1.3~mg/L 超であった。マウスの急性経口 LD_{50} は雌雄で 5000~mg/kg 体重超、経皮 LD_{50} は雌雄で 2000~mg/kg 体重超であった。

ウサギを用いて、ピリプロキシフェンの眼刺激性試験及び皮膚刺激性試験が実施された。 非常に軽度の眼刺激性が認められたが、皮膚刺激性は認められなかった。また、モルモットを用いたピリプロキシフェンの皮膚感作性試験では皮膚感作性は認められなかった。 亜急性毒性試験で得られた無毒性量は、マウスで 28.2 mg/kg 体重/日、ラットで 23.5 mg/kg 体重/日、イヌで 100 mg/kg 体重/日であった。

慢性毒性試験で得られた無毒性量は、イヌで 10 mg/kg 体重/日であった。

ラットの慢性毒性/発がん性併合試験、マウスの発がん性試験で得られた無毒性量は、それでれ 27.3 mg/kg 体重/日、16.4 mg/kg 体重/日であった。発がん性は認められなかった。 2 世代繁殖試験で得られた無毒性量は、ラットの親動物で 15.5 mg/kg 体重/日、児動物で76.4 mg/kg 体重/日であった。繁殖能に対する影響は認められなかった。

発生毒性試験で得られた無毒性量は、ラットの親動物で 100 mg/kg 体重/日未満、胎児及び出生児で 100 mg/kg 体重/日、ウサギの母動物で 100 mg/kg 体重/日、胎児で 300 mg/kg 体重/日であった。催奇形性は認められなかった。

検体投与による影響は、主に肝(ラット及びイヌ)及び腎(マウス)に認められた。

遺伝毒性試験として、ピリプロキシフェンの細菌を用いた DNA 修復試験、復帰突然変異試験、チャイニーズハムスターの卵巣由来細胞 (CHO-K1)を用いた *in vitro* 染色体異常試験及びマウスの骨髄細胞を用いた小核試験が実施された。試験結果は全て陰性であり、ピリプロキシフェンに遺伝毒性はないものと考えられた。

各種試験結果から、農産物中の暴露評価対象物質をピリプロキシフェン(親化合物のみ) と設定した。

各試験における無毒性量及び最小毒性量は表29に示されている。

試験 無毒性量 最小毒性量 備考2 動物種 (mg/kg 体重/日) (mg/kg 体重/日) ラット 90 日間亜急性 | 雄:23.5 雄:118 雌雄:肝細胞肥大等 毒性試験 雌:27.7 雌:141 雄:138 2年間慢性毒性 雄:27.3 雌雄:体重増加抑制、摂餌量減少、 /発がん性併合 雌:183 雌:35.1 血中 T.Chol 增加等 試験 (発がん性は認められない) 2世代繁殖試験 親動物 親動物 親動物 P雄:15.5 P雄:76.4 雄:肝比重量、腎比重量増加 P雌:87.3 P雌:442 雌:体重增加抑制、摂餌量減少等 F₁雄:19.4 F₁雄:97.3 児動物 F₁雌:105 F₁雌:554 雌雄:体重增加抑制 児動物 児動物 (繁殖能に対する影響は認められ P雄:76.4 P雄:386 ない) P雌:87.3 P雌:442 F1雄:97.3 F1雄:519 F₁雌:554 F₁雌:105

表 29 各試験における無毒性量及び最小毒性量

_

² 備考に最小毒性量で認められた所見の概要を示す。

	発生毒性試験	母動物: -	母動物:100	母動物:体重増加抑制等
		胎児:100	胎児:300	胎児:第7頸椎横突孔開存
		出生児:1000	出生児: -	出生児:影響なし
				(催奇形性は認められない)
	発生毒性試験	親動物	親動物	 親動物
		雄: -	雄:100	雌雄:腎絶対重量増加等
		雌: -	雌:100	胎児:影響なし
		胎児:1000	胎児:-	(催奇形性は認められない)
	発生毒性試験	母動物:100	母動物:300	母動物:体重増加抑制等
		出生児:100	出生児:300	出生児:体重増加抑制等
				(催奇形性は認められない)
マウス	90 日間亜急性	雄:28.2	雄:149	雄:MCH 減少
	毒性試験	雌:37.9	雌:197	雌:T.Chol 増加
	18 カ月間発が	雄:16.4	雄:81.3	雌雄:生存率低下、全身性アミロイド
	ん性試験	雌:107	雌:533	-シス増加等
				(発がん性は認められない)
ウサギ	発生毒性試験	母動物:100	母動物:300	母動物:自発運動量減少等
		胎児:300	胎児:1000	胎児:生存胎児数減少
				(催奇形性は認められない)
イヌ	90 日間亜急性	雄:100	雄:300	雄:肝絶対・比重量増加
	毒性試験	雌:100	雌:300	雌:肝細胞肥大等
	1年間慢性毒性	雄: -	雄:30	雄:T.Chol、肝比重量増加
	試験	雌:30	雌:100	雌:T.Chol 増加等
	1年間慢性毒	雄:10	雄: -	影響なし(試験 の30 mg/kg 体
	性試験 (の	雌:10	雌: -	重/日投与群でみられた毒性所見
	追加試験)			は認められなかった)

- : 無毒性量又は最小毒性量は認められなかった。

食品安全委員会は、各試験の無毒性量の最小値が、イヌを用いた1年間慢性毒性試験の10 mg/kg 体重/日であったので、これを根拠として安全係数100で除した0.1mg/kg 体重/日を一日摂取許容量(ADI)と設定した。

ADI 0.1 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)(期間)1年間

(投与方法)強制経口投与(無毒性量)10 mg/kg 体重/日

(安全係数) 100

< 別紙 1:代謝物/分解物略称 >

略称	化学名
4'-OH-Pyr	4-(4-ヒドロキシフェノキシ)フェニル(<i>RS</i>)-2-(2-ピリジルオキシ)プロピルエ ーテル
2'-OH-Pyr	4-(2-ヒドロキシフェノキシ)フェニル(RS)-2-(2-ピリジルオキシ)プロピルエーテル
5"-OH-Pyr	(<i>RS</i>)-5-ヒドロキシ-2-{1-メチル-2-(4-フェノキシフェノキシ)エトキシル}ピリ ジン
5",4'-OH-Pyr	4-(4-ヒドロキシフェノキシ)フェニル(<i>RS</i>)-2-(5-ヒドロキシピリジル-2-オキシ)プロピルエーテル
DPH-Pyr	4-ヒドロキシフェニル(<i>RS</i>)-2-(2-ピリジルオキシ)プロピルエーテル
4'-OH-POPA	4-(4-ヒドロキシフェノキシ)フェニル(<i>RS</i>)-2-ヒドロキシプロピルエーテル
POPA	4-フェノキシフェニル(<i>RS</i>)-2-ヒドロキシプロピルエーテル
4'-OH-POP	4-4'-オキシジフェノール
DPH-POPA	4-ヒドロキシフェニル(<i>RS</i>)-2-ヒドロキシプロピルエーテル
POP	4-フェノキシフェノール
PYPA	(<i>RS</i>)-2-(2-ピリジルオキシ)プロピルアルコール
PYPAC	(<i>RS</i>)-2-(2-ピリジルオキシ)プロピオン酸
2-OH-PY	2-ヒドロキシピリジン

< 別紙 2: 検査値等略称 >

略称	名称
ai	有効成分量
ALP	アルカリフォスファターゼ
ALT	アラニンアミノトランスフェラーゼ
AST	アスパルテートアミノトランスフェラーゼ
C_{max}	最高濃度
Hb	ヘモグロビン (血色素量)
HPLC	高速液体クロマトグラフィー
Ht	ヘマトクリット値
LC ₅₀	50%致死濃度
LD_{50}	50%致死量
MCH	平均赤血球血色素量
MCV	平均赤血球容積
PHI	最終使用から収穫までの日数
PLT	血小板数
RBC	赤血球数
TAR	総処理(投与)放射能
T.Chol	総コレステロール
TLC	薄層クロマトグラフィー
T _{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
$T_{1/2}$	半減期

< 別紙 3:作物残留試験成績 >

作物名 実施年	試験 圃場数	使用量 (g ai/ha)	回数 (回)	PHI (日)	残留值(mg/kg)		
> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					最高値	平均值	
トマト (施設・果実) 1995年度	2	250 EC	2	1 3	0.29 0.23	0.12 0.12	
			4	1 3	0.33 0.15	0.23 0.08	
ピーマン (施設・果実) 1991年度	2	250 EC	2	1 3 7	1.42 1.08 0.78	1.10 0.87 0.55	
なす (施設・果実) 1993年度	2	250~404 EC	2	1 3 7	0.21 0.16 0.14	0.14 0.11 0.06	
			4	1 3 7	0.29 0.19 0.08	0.18 0.12 0.04	
ししとう (施設・果実) 2003年度	2	300 EC	2	1 3 7	0.79 0.84 0.71	0.60 0.68 0.53	
きゅうり (施設・果実) 1993年度	2	250 ^{EC}	2	1 3 7	0.03 0.02 0.01	0.02 0.01* 0.01*	
			4	1 3 7	0.03 0.02 <0.01	0.02 0.01* <0.01	
メロン (施設・果実) 1996年度	2	250 EC	4	1 3 7	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	
茶 (露地・荒茶) 2004年度	2	90мс	1	45 60	0.07 0.03	0.05 0.02*	
茶 (露地・荒茶) 2005年度 注)・数をにに	1	90 MC	1	45 60	0.02 0.01	0.02 0.01	

注)・散布にはEC:乳剤、MC:マイクロカプセル剤を使用した。

[・]一部に検出限界未満を含むデータの平均を計算する場合は検出限界値を検出したものとして計算し、*印を付した。

[・]全てのデータが検出限界未満の場合は検出限界値の平均に<を付して記載した。

<別紙4:推定摂取量>

作物名	残留値 (mg/kg)	国民平均 (体重:53.3 kg)		小児(1 (体重:1	-	妊婦 (体重:55.6 kg)		高齢者(65 歳以上) (体重:54.2 kg)	
		ff (g/人日)	摂取量 (µg/人日)	ff (g人日)	摂取量 (µg/人日)	ff (g/人日)	摂取量 (µg/人日)	ff (g/人日)	摂取量 (μg/人日)
トマト	0.23	24.3	5.59	16.9	3.89	24.5	5.64	18.9	4.35
ピーマン	1.10	4.4	4.84	2	2.20	1.9	2.09	3.7	4.07
ナス	0.18	4	0.72	0.9	0.16	3.3	0.59	5.7	1.03
その他のなす科 野菜	0.68	0.2	0.14	0.1	0.07	0.1	0.07	0.3	0.20
きゅうり	0.02	16.3	0.33	8.2	0.16	10.1	0.20	16.6	0.33
茶	0.05	3	0.15	1.4	0.07	3.5	0.18	4.3	0.22
合 計			11.8		6.55		8.77		10.2

- 注)・残留値は、申請されている使用時期・回数のうち最大の残留を示す各試験区の平均残留値を用いた(参照 別紙3)。
 - ・ff: 平成 10 年~12 年の国民栄養調査 (参照 66~68) の結果に基づく農産物摂取量 (g/人/日)
 - ・摂取量:残留値及び農産物摂取量から求めたピリプロキシフェンの推定摂取量(µg/人/日)
 - ・メロンは全データが検出限界未満であったため摂取量の計算に用いなかった。

<参照>

- 1 食品安全委員会に対し意見を求められた案件 / 清涼飲料水: (URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-bunsyo-20.pdf)
- 2 7月1日付けで厚生労働大臣から食品安全委員会委員長へ食品健康影響評価を依頼した事項 : 食品安全委員会 第 3 回会合資料(URL:http://www.fsc.go.jp/iinkai/i-dai3/dai3kai-kouseisyousiryou.pdf)
- 3 7月1日に厚生労働省より意見の聴取要請のあった、清涼飲料水の規格基準の改正について: 食品安全委員会農薬専門調査会第1回会合資料6(URL: http://www.fsc.go.jp/senmon/nouyaku/n-dai1/nou1-siryou6.pdf)
- 4 食品安全委員会農薬専門調査会第 1 回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/n-dai1/index.html)
- 5 食品安全委員会農薬専門調査会第 6 回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/n-dai6/index.html)
- 6 食品安全委員会農薬専門調査会第 22 回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/n-dai22/index.html)
- 7 農薬抄録ピリプロキシフェン(殺虫剤) (平成 17 年 9 月 1 日改訂): 住友化学株式会社、2005年、一部公表予定(URL: http://www.fsc.go.jp/hyouka/iken.html#02)
- 8 ピリプロキシフェンのラットにおける代謝(吸収・排泄): 住友化学工業株式会社、1988年、 未公表
- 9 ピリプロキシフェンのラットにおける代謝(吸収・排泄): 住友化学工業株式会社、1993年、未公表
- 10 ピリプロキシフェンのラットにおける代謝 (分布): 住友化学工業株式会社、1988 年、未公表
- 11 ピリプロキシフェンのラットにおける代謝(高用量、組織中 ¹⁴C 濃度測定): 住友化学工業株式会社、1993 年、未公表
- 12 ピリプロキシフェンのキュウリにおける代謝試験:住友化学工業株式会社、1992年、未公表
- 13 ピリプロキシフェンの土壌からキュウリへの吸収移行および代謝:住友化学工業株式会社、1993年、未公表
- 14 ピリプロキシフェンのトマトにおける代謝試験 (GLP 対応): Ricerca、1997 年、未公表
- 15 ピリプロキシフェンのかんきつにおける代謝 (GLP 対応): Ricerca、2004 年、未公表
- 16 畑土壌における代謝:住友化学工業株式会社、1990年、未公表
- 17 ピリプロキシフェンの土壌表面光分解試験:住友化学工業株式会社、1988年、未公表
- 18 水/土壌混濁系におけるピリプロキシフェンの吸・脱着性:住友化学工業株式会社、1989、未公表
- 19 ピリプロキシフェン土壌溶脱性試験:住友化学工業株式会社、1988年、未公表
- 20 ピリプロキシフェンの 50 緩衝液中における加水分解: 住友化学工業株式会社、1989 年、未 公表
- 21 ピリプロキシフェンの水中における光分解:住友化学工業株式会社、1988年、未公表
- 22 ピリプロキシフェン 土壌残留試験成績:住友化学株式会社、2005年、未公表
- 23 ピリプロキシフェン 作物残留試験成績:住友化学株式会社、2005年、未公表
- 24 ピリプロキシフェン原体の一般薬理試験:住友化学工業株式会社、1993年、未公表

- 25 ピリプロキシフェン原体のマウスにおける急性経口毒性試験(GLP対応): 住友化学工業株式会社、1987年、未公表
- 26 ピリプロキシフェン原体のラットにおける急性経口毒性試験(GLP対応): 住友化学工業株式会社、1987年、未公表
- 27 ピリプロキシフェン原体のマウスにおける急性経皮毒性試験 (GLP 対応): 住友化学工業株式会社、1987 年、未公表
- 28 ピリプロキシフェン原体のラットにおける急性経皮毒性試験(GLP対応): 住友化学工業株式会社、1987年、未公表
- 29 ピリプロキシフェン原体のラットにおける急性吸入毒性試験(GLP対応): 住友化学工業株式会社、1987年、未公表
- 30 ピリプロキシフェン原体混在物 [4-フェノキシフェニル(*RS*)-1-メチル-2-(2-ピリジルオキシ)エチルエーテル] のマウスにおける急性経口毒性試験: 住友化学工業株式会社、1993 年、未公表
- 31 ピリプロキシフェン代謝物 4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr、POPA 及び PYPAC のマウスに おける急性経口毒性試験:住友化学工業株式会社、1993 年、未公表
- 32 ピリプロキシフェンの急性神経毒性試験の省略理由:住友化学株式会社、2005年、未公表
- 33 ピリプロキシフェン原体のウサギの眼および皮膚に対する刺激性試験(GLP対応):住友化学工業株式会社、1987年、未公表
- 34 ピリプロキシフェン原体のモルモットにおける皮膚感作性試験 (GLP 対応): 住友化学工業株式 会社、1987 年、未公表
- 35 ピリプロキシフェンのマウスにおける亜急性経口毒性試験(GLP 対応): Hazleton Laboratories America, Inc.、1990年、未公表
- 36 ピリプロキシフェン原体のラットにおける亜急性毒性試験(GLP 対応): Hazleton Laboratories America, Inc.、1989 年、未公表
- 37 ピリプロキシフェン原体のイヌを用いた強制経口投与による亜急性毒性試験(GLP対応): 住友化学工業株式会社、1988年、未公表
- 38 ピリプロキシフェンの反復経口投与神経毒性試験の省略理由:住友化学株式会社、2005 年、 未公表
- 39 ピリプロキシフェン原体のビーグル犬における 52 週間経口 (カプセル)試験 (GLP 対応): Life Science Research Limited、1991 年、未公表
- 40 ピリプロキシフェン原体のビーグル犬における 52 週間経口(カプセル)投与試験[追加試験] (GLP対応): Life Science Research Limited、1993年、未公表
- 41 ピリプロキシフェン原体のラットにおける慢毒・発癌性試験(GLP 対応): Hazleton Laboratories America, Inc.、1991 年、未公表
- 42 ピリプロキシフェン原体のマウスにおける発癌性試験 (GLP 対応): Hazleton Laboratories America, Inc.、1991 年、未公表
- 43 ピリプロキシフェン原体のラットにおける 2 世代繁殖性試験 (GLP 対応): Bio-Research Laboratories Ltd.、1991 年、未公表
- 44 ピリプロキシフェン原体のラットにおける催奇形性試験(GLP対応): (株)生物科学技術研究所、1988年、未公表
- 45 ピリプロキシフェン原体のウサギを用いた催奇形性試験 (GLP 対応) : 住友化学工業株式会

- 社、1988年、未公表
- 46 ピリプロキシフェン原体のラットにおける妊娠前および妊娠初期投与試験(GLP対応):株式会社生物科学技術研究所、1988年、未公表
- 47 ピリプロキシフェン原体のラットにおける周産期および授乳期投与試験(GLP対応):株式会社生物科学技術研究所、1988年、未公表
- 48 ピリプロキシフェン原体の細菌を用いた DNA 修復試験(GLP 対応):住友化学工業株式会社、1992年、未公表
- 49 ピリプロキシフェン原体の細菌を用いた復帰変異試験(GLP対応):住友化学工業株式会社、1988年、未公表
- 50 ピリプロキシフェン原体のチャイニーズハムスター卵巣由来の培養細胞(CHO-K1)を用いた in vitro 染色体異常試験(GLP対応):住友化学工業株式会社、1988年、未公表
- 51 ピリプロキシフェン原体のチャイニーズハムスター卵巣由来の培養細胞(CHO-K1)を用いた *in vitro* 染色体異常試験(GLP対応):住友化学工業株式会社、1989年、未公表
- 52 マウスを用いた小核試験 (GLP 対応): Huntingdon Research Centre Ltd.、1991 年、未公表
- 53 ピリプロキシフェン原体混在物 [4-フェノキシフェニル(*RS*)-1-メチル-2-(2-ピリジルオキシ)エチルエーテル]の細菌を用いる復帰変異原性試験(GLP対応): 住友化学工業株式会社、1993年、未公表
- 54 ピリプロキシフェン代謝物 4'-OH-Pyr、5"-OH-Pyr、DPH-Pyr、POPA 及び PYPAC の細菌を 用いる復帰変異原性試験(GLP 対応): 住友化学工業株式会社、1993 年、未公表
- 55 ピリプロキシフェンの安全性評価資料の追加資料について:住友化学株式会社、2005 年、未公表
- 56 食品健康影響評価について:食品安全委員会第 119 回会合資料 1-1 (URL: http://www.fsc.go.jp/iinkai/i-dai119/dai119kai-siryou1-1.pdf)
- 57 「ピリプロキシフェン」の食品衛生法(昭和22年法律第233号)第11条第1項の規定に基づく、食品中の残留基準設定に係る食品健康影響評価について: 食品安全委員会第119回会合資料1-2(URL: http://www.fsc.go.jp/iinkai/i-dai119/dai119kai-siryou1-2.pdf)
- 58 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 17 年 11 月 29 日付、平成 17 年厚生労働省告示第 499 号)
- 59 食品健康影響評価について:食品安全委員会第 153 回会合資料 1-1-b (URL: http://www.fsc.go.jp/iinkai/i-dai153/dai153kai-siryou1-1-b.pdf)
- 60 食品安全委員会農薬専門調査会総合評価第一部会第2回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/sougou1_dai2/index.html)
- 61 暫定基準を設定した農薬等に係る食品安全基本法第 24 条第 2 項の規定に基づく食品健康影響 評価について: 食品安全委員会第 153 回会合資料 1-4 (URL: http://www.fsc.go.jp/iinkai/i-dai153/dai153kai-siryou1-4.pdf)
- 62 食品安全委員会農薬専門調査会総合評価第一部会第3回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/sougou1_dai3/index.html)
- 63 ピリプロキシフェンの食品健康影響評価資料の追加提出について:住友化学株式会社、2006年、未公表

- 64 食品安全委員会農薬専門調査会総合評価第一部会第 10 回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/sougou1_dai10/index.html)
- 65 食品安全委員会農薬専門調査会幹事会第 17 回会合(URL: http://www.fsc.go.jp/senmon/nouyaku/kannjikai_dai17/index.html)
- 66 国民栄養の現状 平成 10 年国民栄養調査結果 : 健康・栄養情報研究会編、2000 年
- 67 国民栄養の現状 平成 11 年国民栄養調査結果 : 健康・栄養情報研究会編、2001 年
- 68 国民栄養の現状 平成 12 年国民栄養調査結果 : 健康・栄養情報研究会編、2002 年