動物用医薬品評価書

クラブラン酸

2010年6月

食品安全委員会

目次

																																頁	
0	審	議	の	経	禕																											. ;	3
O	食	品	安	全	委員	至	⋛委	員	名	簿																						. ;	3
	要														•••					•••	• • • •											. ,	4
	- 1																																
Ι		評	価	対	象重	力牝	勿用	医	薬	品	のオ	概引	要											• • • •								. į	5
	5		分	子	量				•••	•••	••••	•••	• • •	• • •	•••	•••	• • •		•••	• • • •		••••	•••		• • • •	• • • •		• • • •				• {	5
				造:																													
	7		使	用	目的	勺及	々ひ	使	用	状	況	等		• • •	•••	•••	• • •		•••		• • • •	• • • •	• • • •		• • • •	• • • •		• • • •	• • • •	• • • • •		• {	5
Π																															••••		
	1.		薬	物	動怠	討		į (吸	収		分者	乍、	f	七割	射、	扌	非壯	<u>†</u>)	及	び	残旨	智言	式験	į	• • • •		• • • •		• • • • •		- (6
	(1)	薬	物重	力怠	話記	;験	(=	ラツ	<i>i</i> ト	, ,	1	ヌ	及	び	牛)	•••	•••	• • • •	•••	••••	• • • •	•••	••••	• • • •	• • • •	• • • •	• • • • •		. (6
	(2)	薬	物重	力怠	話記	;験	(4	F.	豚	及	び	羊	.)	••	•••	• • •	• • • •	•••	• • • •	•••	••••	• • • •	•••	••••	• • • •	• • • •	• • • •	• • • • •		. (6
	(3)	薬	物重	力怠	話記	;験	(t	: h	•)	••	• • •	• • •	• • • •	• • •	•••	• • •	• • • •	•••	• • • •	•••	••••	• • • •	•••	••••	• • • •	• • • •	• • • •	• • • • •		• ′	7
		4)	薬!	物重	勆怠	態訪	圠験	į ((分	·布	及	び	代	謝	物)		• • • •	• • •		• • • •	• • • •		••••	• • • •		• • • • •	• • • •	• • • •		• ′	7
	(5)	残	留言	式斯	奂(<i>*</i>	‡)	•	• • • •	•••	••••	• • •	• • •	• • • •	• • •	•••	• • •	• • • •	•••	• • • •	•••	••••	• • • •	•••	••••	• • • •	• • • •	• • • •	• • • • •		• ′	7
					留詞																												_
	(7)	残	留詞	式縣)美	丰)	•	• • •	• • • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	•••	• • • •	•••	••••	• • • •	• • •	••••	• • • •	• • • •	• • • • •	• • • • •		•10	0
	(8)	配	合角	刊を	₽用	い	た	残	留	試具	験(4	及	び	豚)	•••	•••		•••	• • • •	• • • •	• • • •	• • • •	• • • •					•10	0
					毒性																												
	(1)	28	日	間.	及で) (3 4	ケ丿	目間	引垂	急	性	:毒	性	試	験	(-	ラ `	ソト	•)			•••	••••	• • • •	• • • • •	• • • •	• • • • •		•13	3
	(2)	28	日	間.	及で) (3 4	ケ丿	目間	引垂	急	性	:毒	性	試	験	(-	1 3	ヌ)		•••		•••	••••	• • • •	• • • • •	• • • •	• • • • •		•13	3
	(:	参	考) i	配台	合育	刊 ())経		₽投	:与	試	験	(ラ	ツ	۲	及	び・	1:	ヌ)			• • • •	••••	•••		• • • •	••••	• • • •		• 1	4
	4		発	がん	ん性	ŧ訪		į	•••	•••	••••	•••	•••	• • •	• • • •	•••	• • • •	• • •	• • •	• • • •	• • • •	••••	••••	• • • •	•••	••••	••••	• • • •	• • • •	• • • • •		•1	4
	5		生	殖	発生	E書	≨性	:試	験		••••	•••	•••	• • •	• • • •	•••	• • • •	• • •	• • •	• • • •	• • • •	••••	••••	• • • •	•••	••••	••••	• • • •	• • • •	• • • • •	••••	•1	4
	(1)	1 :	世化	じ舞	終殖	試	験	(ラ	ツ	ト)	•	•••	•••	• • • •	• • • •	•••	• • •	• • • •	••••	•••	• • • •	••••	• • • •	• • • •	• • • •		• • • • •		•1	4
	(2)	催	奇册	纟性	主討	.験	(マ	ウン	ス)		•	•••	•••	• • • •	• • •	•••	• • • •	• • • •	••••	••••	• • • •	•••	••••	••••	••••	• • • •	••••		•1	5
	(3)	催	奇册	纟性	主討	.験	(ラ	ツ	卜)	•	• • •	• • • •	•••	• • • •	• • •	• • •	• • • •	• • • •	••••	••••	• • • •	•••	••••	••••	• • • •	• • • •	• • • • •		•1	5
	(4)	周月	産其	月万	とひ	授	乳	期	投-	与言	式馬	倹	(=	ラ ::	ソ l	-)		•••	• • • •	••••	••••	• • • •	•••	• • • •	••••	• • • •	• • • •	• • • • •		•1	5
	6		遺	伝	毒性	ŧ訪	忒験	į	•••	•••	• • • •	•••	• • •	• • •	• • • •	•••	• • • •		• • •	• • • •		••••	••••		•••	• • • •	• • • •	• • • •		• • • • •		.10	6
	7		微	生物	物学	白白	勺影	;響	に	関	すん	る言	式馬	倹	•	•••	• • • •	• • •	• • •	• • • •	• • • •	••••	••••	••••	•••	• • • •	••••	• • • •			•••••	•1′	7
				のイ																													
	(1)	皮厂	青厄	ダイ	F討	験	(Ŧ.	ル-	ŧΥ	ソ	ト)		• •	• • • •		• • •	• • • •	• • • •	••••	••••	••••	•••	• • • •	••••	• • • •				•18	8
	(2)	皮	下找	支 <i>生</i>	テ討	鮧	(ウ.	サ <i>:</i>	ギ)		•	• • • •	•••	• • • •		• • •	• • • •	• • • •	• • • •	• • • •	• • • • •	• • •	• • • •	••••	• • • •				•18	8
	(3)	Η	LI :	= #	31	- る	知	見																						-12	8

Ⅲ. 食品健康影響評価	18
1. EMEA における評価 ····································	18
2. ADI の設定について	19
3. 食品健康影響評価について	20
·表 11 ·································	21
• 別紙 1	22
· 参照 ······	23

〈審議の経緯〉

 2005年 11月 29日 暫定基準告示(参照 1)

 2007年 3月 5日 厚生労働大臣より残留基準設定に係る食品健康影響評価につ

いて要請(厚生労働省発食安第0305030号)

2007年 3月 8日 第181回食品安全委員会(要請事項説明)

2009 年 12 月 25 日 第 34 回肥料·飼料等専門調査会 2010 年 5 月 13 日 第 331 回食品安全委員会(報告)

2010年 5月 13日 から 6月11日 国民からの御意見・情報の募集

2010年 6月 21日 肥料・飼料等専門調査会座長から食品安全委員会委員長へ報告

2010年 6月 24日 第377回食品安全委員会(報告)

(同日付けで厚生労働大臣に通知)

〈食品安全委員会委員名簿〉

(2009年6月30日まで) (2009年7月1日から)

見上 彪 (委員長) 小泉 直子 (委員長)

小泉 直子 (委員長代理*) 見上 彪 (委員長代理*)

 長尾
 拓

 野村
 一正

 畑江
 敬子

 廣瀬
 雅雄**

 本間
 清一

 長尾
 拓

 野村
 一正

 畑江
 敬子

 廣瀬
 雅雄

 村田
 容常

*:2007年2月1日から *2009年7月9日から

**: 2007年4月1日から

〈食品安全委員会肥料·飼料等専門調査会専門委員名簿〉

(2009年10月1日から)

唐木 英明 (座長)

酒井 健夫 (座長代理)

青木 宙 高橋 和彦

秋葉 征夫 舘田 一博

池 康嘉 津田 修治今井 俊夫 戸塚 恭一

江馬 眞 細川 正清

桑形 麻樹子 宮島 敦子

下位 香代子 元井 葭子

高木 篤也 吉田 敏則

要約

 β -ラクタマーゼ阻害薬である「クラブラン酸」(CAS No.58001-44-8)について、 各種評価書等(EMEA レポート等)を用いて食品健康影響評価を実施した。

評価に供した試験成績は、薬物動態試験(ラット、イヌ、豚、羊、牛及びヒト)、 残留試験(牛、豚及び羊)、急性毒性試験(マウス及びラット)、亜急性及び慢性毒性 試験(ラット及びイヌ)、生殖発生毒性試験(マウス及びラット)、遺伝毒性試験、微 生物学的影響に関する試験等である。

クラブラン酸は、発がん性試験は実施されていないが、遺伝毒性試験の結果から生体にとって問題となる遺伝毒性を示さないと考えられることから、遺伝毒性発がん物質ではないと考えられ、ADIを設定することが可能であると判断された。

毒性試験において、最も用量の低いところで投与の影響が認められたと考えられる指標は、ラットの 1 世代繁殖毒性試験及びマウスの催奇形性試験における黄体数及び着床数の減少並びにラットの催奇形性試験における F_1 児動物の離乳時の体重減少であり、LOAEL は 10 mg/kg 体重/日であった。

毒性学的 ADI の設定に当たっては、この LOAEL に安全係数として、種差 10、個体差 10、LOAEL を用いること並びに慢性毒性試験及び発がん性試験が実施されていないことによる追加の 10 の 1,000 を適用し、ADI を 0.01 mg/kg 体重/日と設定することが適当と考えられた。

なお、この値は、EMEA において算出された微生物学的 ADI 0.09 mg/kg 体重/日よりも十分小さい値である。

以上より、クラブラン酸の食品健康影響評価については、ADI として 0.01 mg/kg 体重/日を設定した。

I. 評価対象動物用医薬品の概要

1. 用途

β-ラクタマーゼ阻害薬

2. 有効成分の一般名

和名: クラブラン酸 英名: Clavulanic acid

3. 化学名

CAS(No.58001-44-8)

英名:[2R- $(2\alpha, 3Z,5\alpha)]$ -3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo [3.2.0]heptane-2-carboxylic acid

4. 分子式

C₈H₉NO₅

5. 分子量

199.16

6. 構造式

7. 使用目的及び使用状況等

クラブラン酸は構造的にペニシリン類に関連した化合物で、Streptomyces clavigulerus によって産生される。特異的、不可逆的 β - ラクタマーゼ阻害薬で、本物質自体の抗菌活性はほとんどなく、アモキシシリンとの配合剤として用いることにより、アモキシシリンに通常耐性を有する細菌に対する抗菌性が強化される。クラブラン酸の活性は完全形の β - ラクタム構造と関連している。(参照 2、3)

日本では、クラブラン酸を有効成分とする動物用医薬品は承認されていない。ヒ ト用医薬品では、アモキシシリンとの配合剤として使用されている。

EUでは、クラブラン酸は、アモキシシリンとの配合剤として使用することによりヒト及び動物用医薬品として広く使用されている。動物用医薬品として、クラブラン酸(通常はクラブラン酸カリウムとして)及びアモキシシリン三水和物が1:4

の割合で、牛、豚及び羊の筋肉内注射剤($1.75 \, \mathrm{mg/kg}$ 体重を $1 \, \mathrm{H} \, \mathrm{ID} \, 5 \, \mathrm{H}$ 間)、搾乳牛の乳房内注入剤($50 \, \mathrm{mg/hg}$ 、 $0.4 \, \mathrm{mg/kg}$ 体重を $1 \, \mathrm{H} \, \mathrm{2}$ 回($0.8 \, \mathrm{mg/kg}$ 体重/日)3日間)又は離乳前の子牛の経口投与剤($2.5 \, \mathrm{mg/kg}$ 体重を $1 \, \mathrm{H} \, \mathrm{2}$ 回($5 \, \mathrm{mg/kg}$ 体重/日)3日間)として用いられる。(参照2、3)

なお、クラブラン酸はポジティブリスト制度の導入に伴う残留基準値¹が設定されている。

Ⅱ. 安全性に係る知見の概要

本評価書は EMEA レポート及びオーストラリア評価書等をもとに、毒性に関する主な知見を整理したものである。

1. 薬物動態試験(吸収、分布、代謝、排泄)及び残留試験

(1)薬物動態試験(ラット、イヌ及び牛)

ラット及びイヌを用いた ¹⁴C-標識クラブラン酸の経口投与試験が実施された。投 与後、かなりの量が吸収され、ラット及びイヌにおいてそれぞれ投与量の 42 及び 52 %が尿中に排泄された。また、呼気中に投与量の 17 %が排泄された。

ラット及びイヌの尿からは、未変化体(ラット及びイヌの尿からの回収はそれぞれ $16\sim23$ 及び $14\sim38$ %)及び代謝物 A (1-アミノ-4-ヒドロキシブタン-2-オン)が検出された。代謝物 A のラット及びイヌの尿からの回収はそれぞれ $21\sim35$ 及び $10\sim20$ %であった。代謝物 A はラット、イヌ及び子牛肝ホモジネートを用いた *in vitro* においても主要な代謝物として検出された。(参照 2、3)

(2)薬物動態試験(牛、豚及び羊)

巡乳牛、子牛、若齢豚及び羊を用いた 5 日間筋肉内投与(1.75 mg/kg 体重)及び離乳前子牛を用いたクラブラン酸の単回経口投与(2.5 mg/kg 体重)による血清中薬物動態試験が実施された。(表 1)

子牛では単回経口投与後、投与量の34%が吸収された。

主要な排泄経路は、子牛及び豚ともに尿中であった。(参照2、3)

表 1 各動物種の血清中クラブラン酸薬物動態パラメータ

動物種	投与方法	用量	T_{max}	C_{max}	$T_{1/2}$
		(mg/kg 体重)	(時間)	$(\mu g/mL)$	(時間)
泌乳牛			1	2 未満	2
子牛	筋肉内	1 75	0.5 未満	2~3	1
若齢豚	(5 日間)	1.75	0.5 未満	2~3	1
羊 (成獣)			0.5	4~8	0.76
離乳前子牛	経口(単回)	2.5	3~4 以内	0.8	2.0

¹ 平成 17 年厚生労働省告示第 499 号によって新たに定められた残留基準値

(3)薬物動態試験(ヒト)

ヒトにおいて 14 C-標識クラブラン酸カリウムの経口投与による薬物動態試験 (in vivo) が実施された。

主要な排泄経路は尿中で、投与量の 73 %が排泄された。尿中の放射活性の大半が投与後 24 時間に排泄された(投与量の 68 %)。放射活性は、投与量の 17 %が呼気から排泄され、糞からの回収はわずか 8 %であった。クラブラン酸は経口投与後に未変化体として投与量の 23 %が尿中に認められた。尿中の主要な代謝物は、代謝物 A 及び代謝物 B (2,5-ジヒドロ-4-(2-ヒドロキシル)-5-オキソ-1 水素-ピロル-3-カルボキシル酸)でそれぞれ投与量の 8.8 及び 15.6 %であった。経口投与後の血漿中の主要物質はクラブラン酸及び代謝物 A であった。クラブラン酸の血漿 $T_{1/2}$ は 0.8 時間であった。代謝物は β -ラクタム構造を有しておらず、抗菌活性は未変化体のみに認められるものと考えられる。(参照 2、3)

(4)薬物動態試験(分布及び代謝物)

クラブラン酸及び代謝物 A は、放射標識化合物による試験で得られた組織中において、放射 TLC により検出された。クラブラン酸の検出濃度が、分析した早い時点においても非常に低かったことは、放射活性物質を用いない試験で得られた結果と同様であった。早い時点で生成される代謝物又は分解物である代謝物 A は、調査した可食組織においても一貫して認められた。代謝物 A は、未変化体とほぼ同等かそれ以上の濃度で存在した。未変化体及び代謝物 A の両方とも、調査したほとんどの組織において、総残留量に対して比較的少量であった。得られたデータから、未変化体の総残留に対する割合は、試験期間の早い時点で約 10 %と概算された。クラブラン酸及び代謝物 A が総放射活性に対し比較的少量であるという結果は、クラブラン酸及び代謝物 A が総放射活性に対し比較的少量であるという結果は、クラブラン酸が極性の高い物質に速やかに代謝されるという知見と一致した。(参照 3)

牛及び豚を用いた放射標識化合物による試験が実施され、可食部組織における総放射活性は、投与後 24 時間以内に速やかに減少することが示された。6 日間経口投与 (1 日 1 回) された子牛の最終投与 24 時間後の可食部位における放射活性は、他の動物や別の経路で投与された子牛よりも高く、腎臓、肝臓、筋肉及び脂肪で、それぞれ 12,000、6,500、1,500 及び 1,800 μ g eq ℓ kg であった。しかし、クラブラン酸は速やかに代謝され、早期に総残留の 10 %となることから、クラブラン酸濃度は腎臓、肝臓、筋肉及び脂肪においてそれぞれ 1,200、650、150 及び 180 μ g eq ℓ kg と推定される。(参照 3)

(5)残留試験(牛)

①泌乳牛

巡乳牛(4頭)を用いた ¹⁴C-標識クラブラン酸の乳房内投与(45 mg、3回)

による組織残留試験が実施された。各組織中の経時的な放射活性を表 2 に示した。 (参照 3)

表 2 泌乳牛の各組織中クラブラン酸濃度の推移<乳房内投与> (µg eq/kg)

組織	投与方法	用量		投与後時間 (時間)				
		(mg)	12	24	36	48		
腎臓			936	519	201	276		
肝臓	乳房内	45	316	297	299	344		
筋肉		(3回)	58	41	16	41		
脂肪			51	15	6	14		

巡乳牛を用いたクラブラン酸の乳房内投与(125 mg/分房、全分房)及び5 日間筋肉内投与(1.75 mg/kg 体重/日)試験が実施され、経時的な乳汁中クラブラン酸濃度が微生物学的定量法によって検査された。

結果は表 3 に示すとおりで、乳汁中のクラブラン酸濃度は、乳房内投与では投与 72 時間後、筋肉内投与では投与 24 時間後において、検出限界 $(0.004\,\mu\text{g/mL})$ 未満となった。 (参照 2、3)

表3 泌乳牛の乳汁中クラブラン酸濃度の推移<乳房内投与>

(微生物学的定量法)(µg/mL)

							10			
投与	用量	最終投与後時間								
方法	川 里	8	24	32	48	56	72			
乳房内	125 mg/分房	30	3.5	0.86	0.07	0.02	< 0.004			
	全分房投与									
筋肉内	1.75 mg/kg 体	0.02 ~	< 0.004							
	重/日(5日間)	0.04								

検出限界: 0.004 μg/mL

巡乳牛 (4 頭) を用いた 14 C-標識クラブラン酸の乳房内投与 (45 mg/分房、12 時間毎3回) 試験が実施された。

1,2,3及び 4 回目の搾乳における乳汁中 14 C 総残留最高濃度はそれぞれ 11.4、 0.937、0.192 及び 0.119 μg eq/g であった。クラブラン酸及び代謝物 A は $1\sim3$ 回目の搾乳時に検出され、それぞれ 14 C 総放射活性の $41\sim33$ %及び $45\sim23$ %であった。この結果から、クラブラン酸は、乳汁中の残留マーカーになりうると考えられた。(参照 3)

②子牛

子牛(4頭)を用いた ¹⁴C-標識クラブラン酸の筋肉内投与(1.7 mg/kg 体重、5回)による組織中残留試験が実施された。各組織中の放射活性の推移を表 4 に示した。(参照 3)

五 1 1	X 1 1 1 ° > 1 / Link () / > / V IX IX IX () X							
組織	投与方法	用量	寺間 (時間))				
		(mg/kg 体重)	8	24	32	48		
腎臓	效内山		5,910	4,660				
肝臓		1.7 (5 回)	2,480	1,910				
筋肉	筋肉内		619	264				
脂肪			283	180				
注射部位			16.300	4.060	1.960	3.420		

表 4 子牛の各組織中クラブラン酸濃度の推移<筋肉内投与> (μg eq/kg)

子牛(4頭)を用いた 14 C-クラブラン酸の 6日間経口投与(3.1~3.4 mg/kg 体重/日) 試験が実施された。各組織中の放射活性の推移を表 5 に示した。(参照 3)

20 11	No 1 1 2 1 mm/k 1 2 2 2 2 4 km/k/2 2 1 km/s (Mg od mg)								
組織	投与方法	用量	最終投与後時間 (時間)						
		(mg/kg 体重)	8	24					
腎臓	経口		10,900	12,600					
肝臓		3.1~3.4	5,400	6,770					
筋肉		(6 日間)	1,310	1,430					
脂肪			3,140	1,810					

表5 子牛の各組織中クラブラン酸濃度の推移<経口投与> (ug eg/kg)

子牛を用いたクラブラン酸の3日間経口投与(8 mg/kg 体重/日)試験が実施され、最終投与3日後以降にと殺し、各組織を微生物学的定量法(検出限界:10 μg/kg)により検査した。また、肥育子牛を用いた5日間筋肉内投与(1.75 mg/kg 体重/日)試験が実施され、投与10日後以降に、注射部位も含めて各組織を微生物学的定量法により検査した。

これらの試験では、検出可能な残留は認められなかった。(参照2、3)

(6)残留試験(豚)

豚(4 頭)を用いた 14 C-標識クラブラン酸の単回筋肉内投与($1.5\sim1.8$ mg/kg 体重)試験が実施された。各組織中の放射活性濃度の推移を表 6 に示した。(参照 3)

組織	投与方法	用量	投与後時間 (時間)							
		(mg/kg)	8	24	32	48				
腎臓			3,110	1,940						
肝臓	筋肉	1.5~1.8 (単回)	2,160	1,870						
筋肉	加约		390	310						
脂肪+皮膚			462	361						
注射部位			1,520	926	656	796				

表 6 豚の各組織中クラブラン酸濃度の推移<筋肉内投与> (µg eq/kg)

豚を用いたクラブラン酸の 5 日間筋肉内投与(1.75 mg/kg 体重/日)試験が実施され、それぞれ投与 7 日後以降に、注射部位も含めて各組織を微生物学的定量法(検出限界: $10~\mu g/kg$) により検査した。

本試験では、検出可能な残留は認められなかった。(参照2、3)

(7)残留試験(羊)

泌乳羊を用いたクラブラン酸の 5 日間筋肉内投与(1.75 mg/kg 体重/日)試験が実施された。

最終投与 8 時間後の乳汁中に $0.02~\mu g/mL$ の残留が認められたが、24 時間後には 検出されなかった。 (参照 2、3)

羊を用いたクラブラン酸の 5 日間筋肉内投与(1.75 mg/kg 体重)試験が実施され、投与 14 日後以降に、注射部位も含めて各組織を微生物学的定量法(検出限界: 10 μg/kg)により検査した。

本試験では、検出可能な残留は認められなかった。(参照2、3)

(8)配合剤を用いた残留試験(牛及び豚)

①クラブラン酸/アモキシシリン/プレドニゾロン配合剤を用いた残留試験(牛)

乳牛(20頭)を用いた非放射標識クラブラン酸/アモキシシリン/プレドニゾロン配合剤の3日間乳房内投与(1シリンジ(クラブラン酸50 mg)/分房、1日 2回)試験が実施され、クラブラン酸の組織中濃度が HPLC を用いて測定された。

その結果、腎臓試料 1 例において、投与 48 時間後に 258 μ g/kg の濃度が認められた。その他の組織については、クラブラン酸残留濃度は、投与 12 時間後以降にはそれぞれの定量限界($50\sim200~\mu$ g/kg)未満となった。(参照 3)

巡乳牛(フリージアン種、7頭)を用いたクラブラン酸/アモキシシリン/プレドニゾロン配合剤の乳房内投与(クラブラン酸 125 mg/分房、全分房、24

時間毎2回、総計:クラブラン酸として1,000 mg/頭)試験が実施され、血清及び組織中残留について検査された。血清は投与前及び最終投与74 時間後に採取、分析された(検出限界:0.004 μ g/mL)。最終投与7及び14日後にそれぞれ3頭ずつと殺され、肝臓、腎臓、筋肉、脂肪及び乳房中のクラブラン酸について分析された(検出限界:10 μ g/kg)。

血清中クラブラン酸は 7 頭のうち 4 頭からは検出されなかったが、他の 3 頭では最終投与 $0.5\sim25$ 時間後に $0.005\sim0.04$ $\mu g/mL$ が検出された。バルク乳からは、最終投与 96 時間後まで検出された。投与 7 及び 14 日後にはいずれの組織にも残留は認められなかった。(参照 4)

泌乳牛 (8 頭) を用いた前述の試験と同じ製剤の乳房内投与 (クラブラン酸 125 mg/分房、12 時間毎 3 回、全分房、総計: クラブラン酸として 1,500 mg/ 頭) 試験が実施され、投与 4 及び 7 日後(各 4 頭)におけるクラブラン酸の組織中残留について検査された(定量限界: $10 \mu \text{g/kg}$)。

試験期間中においてどの被験動物にも、疼痛、腫脹等の異常所見は認められなかった。クラブラン酸は、いずれの時点においても、どの組織からも検出されなかった。(参照 4)

泌乳牛 (8 頭) を用いたクラブラン酸/アモキシシリン/プレドニゾロン配合剤の乳房内投与 (50 mg/分房、12 時間毎 3 回) による乳汁中の残留試験が実施された。

クラブラン酸濃度は最終投与 36 時間後(3 回目搾乳時)まで測定可能であった。最高濃度は最終投与 12 時間後の 16.7 μ g/mL で、24 時間後では 2.14 μ g/mL、36 時間後には 0.379 μ g/mL であった。最終投与 48 時間後以降は、定量限界 (0.05 μ g/mL) 未満(HPLC により測定。)であった。(参照 3)

巡乳牛(6頭、平均乳量 18~22 L/日)を用いたクラブラン酸/アモキシシリン/プレドニゾロン配合剤の乳房内投与(クラブラン酸として 125 mg/分房、12 時間毎3回2分房(右前及び左後))試験が実施された。投与分房のバルク乳、非投与分房の貯乳、4分房すべてからの貯乳を第2回投与10時間後及び最終投与後は活性が認められなくなるまですべての搾乳時に採取した。

乳汁中のクラブラン酸濃度は、投与分房では投与 48 時間後までに $0.01 \, \mu g/mL$ 未満に、非投与分房では 34 時間後までに $0.01 \, \mu g/mL$ 以下に、4 分房すべてからの貯乳では投与 48 時間後までに $0.01 \, \mu g/mL$ 未満に低下した。クラブラン酸は最終投与 48 時間後には分房の 58 %、58 時間後にはすべてから検出されなかった(微生物学的定量法により測定、検出限界: $0.004 \, \mu g/mL$)。(参照 4)

②クラブラン酸/アモキシシリン配合剤を用いた残留試験(牛及び豚)

子牛(22 頭)を用いた非放射標識クラブラン酸/アモキシシリン配合剤の 3 日間経口投与(クラブラン酸として $2.5\sim3.3$ mg/kg 体重、1 日 2 回)及び 5 日間乳房内投与(クラブラン酸として 1.75 mg/kg 体重/日)試験、豚(30 頭)を用いた非放射標識クラブラン酸/アモキシシリン配合剤の 5 日間筋肉内投与(クラブラン酸として 1.75 mg/kg 体重/日)試験が実施され、クラブラン酸は HPLC を用いて測定された。

泌乳牛(フリージアン種、 $3.5\sim10$ 歳齢、5 頭;低泌乳牛(12 L/日)1 頭・低/中泌乳牛($15.7\sim18.7$ L/日)3 頭・中泌乳牛(22.8 L/日)1 頭)を用いたクラブラン酸/アモキシシリン配合剤(クラブラン酸 50 mg/シリンジ(3 g))の乳房内投与(全分房に投与、12 時間毎 3 回、総計:クラブラン酸として 0.6 g/頭)試験が実施された。最終投与 7 日後に被験動物はと殺され、試料(筋肉、肝臓、腎臓、脂肪(腎臓周囲))が採取され、クラブラン酸は HPLC を用いて測定された。

最終投与7日後の可食部組織におけるクラブラン酸の残留は、すべての組織において定量限界($5 \mu g/kg$)未満となった。(参照5)

泌乳牛を用いたクラブラン酸/アモキシシリン配合剤の乳房内投与試験では、乳汁中のクラブラン酸最高濃度は 12 時間後の 11.9 μ g/mL で、24 時間後では 0.645 μ g/mL、36 時間後では 0.058 μ g/mL、48 時間後では検出限界(0.018 μ g/mL)未満(HPLC により測定。)であり、ブレドニゾロンを含む剤と同じような範囲であった。(参照 3)

泌乳牛(フリージアン種、 $4\sim7$ 歳齢、9 頭)を用いたクラブラン酸/アモキシシリン配合剤(クラブラン酸 50 mg/シリンジ(3g))の乳房内投与(全分房、総計:クラブラン酸として 0.6 g/頭、12 時間毎 3 回)試験が実施された。乳汁試料は投与前、最終投与 0、10、24、34、48、58、72、82、96、106、120、130 及び 144 時間後に採取され、クラブラン酸は HPLC を用いて測定された。

乳房内投与後の乳汁中クラブラン酸濃度を表 7 にまとめた。乳汁中クラブラン酸濃度は、最終投与 58 時間後(5 回目搾乳時)において、 $<0.01\sim0.072~\mu g/g$ の範囲で、7 回目搾乳時(最終投与 82 時間後)までに定量限界($0.01~\mu g/g$)未満に低下した。(参照 5)

表 7 乳汁中クラブラン酸濃度の推移<乳房内投与>

The state of the s							
試料採取時間	クラブラン酸	残留(μg/g)					
(最終投与後時間)	範囲	${ m Mean} \pm { m SD}$					
10	$9.27 \sim 35.8$	$25.4 \!\pm\! 10.4$					
24	$1.08 \sim 5.55$	3.02 ± 1.48					
34	$0.066 \sim 4.50$	1.19 ± 1.41					
48	<0.01~0.679	$0.125\!\pm\!0.214$					
58	< 0.01 ~ 0.072	$0.017\!\pm\!0.021$					
72	<0.01~0.022	0.011 ± 0.004					
82 時間以降	< 0.01	<0.01±0					

定量限界: 0.01 μg/g

2. 急性毒性試験

ラット及びマウスの成獣に対するクラブラン酸の経口急性毒性は弱く、 LD_{50} は $2,000 \, mg/kg$ 体重以上であった。しかし、離乳前ラットの単回投与試験での毒性は強く、最低投与量($125 \, mg/kg$ 体重)においても消化管に対する影響や死亡例が認められた。(参照 2、3)

3. 亜急性毒性試験

(1) 28 日間及び 6 ヶ月間亜急性毒性試験(ラット)2

ラットを用いたクラブラン酸カリウムの 4 週間経口投与 (0、30、90 及び 270 mg/kg 体重/日)及び 6 ヶ月間経口投与 (0、10、20、50 及び 400 mg/kg 体重/日)による亜急性毒性試験が実施された。

クラブラン酸投与による最も感受性の高い影響は、尿量減少、尿浸透圧及び白血球数増加で、NOAEL は 6 ヶ月間経口投与における 20 mg/kg 体重/日であった。この他に、盲腸腫大がより低い用量レベルで観察された。(参照 2、3)

上記の盲腸腫大の観察に関しては、病理組織学的所見が認められたとの報告はなく、抗菌性物質の投与による腸内細菌叢の変動に伴う変化であり、げっ歯類等の盲腸の特異性を考慮すると、毒性学的意義に乏しい変化と判断された。

(2) 28 日間及び6ヶ月間亜急性毒性試験(イヌ)2

イヌを用いたクラブラン酸カリウムの 4 週間経口投与 (0,30,90 及び 270 mg/kg 体重/日)及び 6 ヶ月間経口投与 (0,5,10,20 及び 50 mg/kg 体重/日)による亜急性毒性試験が実施された。

臨床症状(嘔吐、流涎)及び肝細胞の水腫性変化が認められ、NOAEL は 6 γ 月間経口投与試験における 20 mg/kg 体重/日であった。(参照 2、3)

² 用量及び投与期間等については、EMEA に確認して記載した。

(参考) 配合剤の経口投与試験(ラット及びイヌ)

ラット及びイヌを用いたクラブラン酸カリウム及びクラブラン酸/アモキシシリン配合剤 (1:2) の経口毒性試験が数種実施された。全般的には、クラブラン酸/アモキシシリン配合剤の方がクラブラン酸カリウムよりわずかに毒性が強かった。反復投与試験では、クラブラン酸/アモキシシリン配合剤を投与されたラット及びイヌで最低投与量(それぞれ 30 及び 15 mg/kg 体重/日)においても消化管に刺激が認められ、最も感受性の高い影響はイヌにおける尿細管の空胞化であった(NOAEL 15 mg 活性物質/kg 体重/日;クラブラン酸としては 5 mg/kg 体重/日)。しかし、これらの配合剤を用いた試験の結果からは、クラブラン酸の毒性学的影響を考える上でアモキシシリンによる干渉は無視できないため、ADI を設定するために使用することはできなかった。(参照 2、3)

4. 発がん性試験

クラブラン酸は遺伝毒性がないという観点から、発がん性試験は行われていない。 (参照 2、3)

5. 生殖発生毒性試験3

EMEA では、クラブラン酸の経口投与による以下の試験において、全身性又は 母体毒性をわずかに誘発する用量レベルにおいて、雌の受胎能、胎児の成長及び生 存率の中程度の低下が認められたことを考慮し、総合的に判断を行い、NOAEL を 10 mg/kg 体重/日と設定している。(参考資料 2、3)

(1)1世代繁殖毒性試験(ラット)

ラットを用いたクラブラン酸カリウムの強制経口投与(0,10,50 及び400 mg/kg体重/日)による 1 世代繁殖毒性試験が実施された。

投与は、雄では交配前 63 日から F_1 児の出生直後まで、雌では交配前 14 日から 妊娠 19 日又は分娩 21 日後まで行った。 F_1 世代は非投与で交配させ、妊娠 20 日に F_2 胎児を検査した。

400 mg/kg 体重/日投与群の雄で投与第2週から軟便、流涎及び赤褐色尿の発現頻度が増加するとともにわずかな体重増加抑制が認められたが、雌では毒性徴候は認められなかった。

400 mg/kg 体重/日投与群において、黄体数、着床数及び生存胎児数の有意な減少が、50 及び 10 mg/kg 体重/日投与群において、用量依存的な黄体数及び着床数の減少傾向が認められた。400 mg/kg 体重/日投与群において、生後 21 日の F_1 雌雄児ともに体重がわずかに減少し、雄では離乳後においても体重減少が認められた。 F_2 児では影響は認められなかった。しかしながら、50 mg/kg 体重/日以上投与群に

-

³ 用量及び投与期間等については、EMEA に確認して記載した。

おいて、 F_1 母動物のわずかな体重減少が認められた。 本試験の LOAEL は、10 mg/kg 体重/日と考えられた。(参照 2、3)

(2)催奇形性試験(マウス)

マウスの妊娠 $6\sim15$ 日にクラブラン酸カリウムを強制経口投与(0、10、50 及び 400 mg/kg 体重/日)した催奇形性試験では母体及び胎児に対する毒性は認められず、フォローアップ群(投与方法は上記と同じ)において、 F_1 児の成長及び発育について離乳まで観察し、その後、雌雄各 10 匹/群について非投与で交配させ、妊娠 20 日に F_2 胎児を検査した。

離乳期及び離乳後の期間を通して、400 mg/kg 体重/日投与群において、雌雄ともに体重がわずかに減少した。全投与群の母動物(F_1)において黄体数及び着床数の減少が認められたが、明らかな用量依存性は認められなかった。本試験におけるLOAEL は 10 mg/kg 体重/日と考えられた。

上記と同様の試験がクラブラン酸/アモキシシリン配合剤(1:2)を用いて実施された。クラブラン酸の投与量は、上記試験と同じであった。

母体毒性は認められなかった。投与に関連する唯一の所見は、400 mg/kg 体重/日投与群の F_1 雌における着床前及び着床後胚死亡のわずかな増加であった。(参照 2、3)

(3)催奇形性試験(ラット)

ラットの妊娠 $6\sim15$ 日にクラブラン酸カリウムを強制経口投与(0,10,50 及び400 mg/kg 体重/日)して催奇形性試験が実施された。

母動物では、400 mg/kg 体重/日投与群において、投与期間中の体重増加抑制及び摂餌量の減少、脱毛及び軟便の発生頻度の増加が認められた。妊娠 20 日の着床所見及び胎児に投与に関連する異常は認められなかった。

フォローアップ群(投与方法は上記と同じ。)において、 F_1 児の成長及び発育について離乳まで観察し、その後、雌雄 10 匹/群について、非投与で交配させ、妊娠 20 日に F_2 胎児を検査した。 F_1 世代では、全投与群の雌雄ともに、離乳時の体重が有意に減少したが、明らかな用量依存性は認められなかった。50 mg/kg 体重/日以上投与群において、出生後の死亡率のわずかな増加が認められた。

本試験における LOAEL は 10 mg/kg 体重/日と考えられた。(参照 2、3)

(4) 周産期及び授乳期投与試験(ラット)

ラットの妊娠 15 日から出産 21 日後にクラブラン酸カリウムを強制経口投与(0、10、50 及び 400 mg/kg 体重/日)して周産期及び授乳期投与試験が実施された。 F_1 児は非投与で交配し、妊娠 20 日に F_2 胎児について検査した。

母動物については、50 mg/kg 体重/日以上投与群において、投与 3~5 日後に体

重増加抑制及び摂餌量の減少が、400 mg/kg 体重/日投与群で脱毛の発現率の増加が認められた。児動物については、400 mg/kg 体重/日投与群において、出生時及び離乳時の体重減少が雌雄ともに認められた。

 F_1 世代の交尾行動及び F_2 世代に影響は認められなかった。

本試験の NOAEL は、母動物で 10 mg/kg 体重/日、児動物で 50 mg/kg 体重/日と考えられた。(参照 2、3)

6. 遺伝毒性試験4

遺伝毒性に関する各種の $in\ vitro$ 及び $in\ vivo$ の試験結果を表 8 及び 9 にまとめた。 (参照 2、3)

表 8 in vitro 試験

試験系	試験対象	用量	結果
復帰突然変異試	Salmonella	5~50 μg/plate	陰性
験	typhimurium	クラブラン酸カリウム	
	TA100、TA98	(±S9)	
		0.5 \sim 30 μg/plate	陰性
		クラブラン酸:アモキシシリン(1:2)	
		(±S9)	
	S.typhimurium	$100{\sim}350$ μg/plate	陰性
	TA1535, TA1537,	クラブラン酸カリウム(±S9)	
	TA1538	6~11 μg/plate	陰性
	Escherichia coli	クラブラン酸:アモキシシリン (1:2)	
	WP2	(±S9)	
遺伝子変換試験	Saccharomyces	0、1,000、3,000、9,000 μg/ml	陰性
	cerevisiae	クラブラン酸:アモキシシリン(1:4)	
前進突然変異試	マウスリンパ腫細	0、2,000、4,000、6,000、8,000、9,000	陽性 1)
験	胞(L5178Y)	μg/ml	
		クラブラン酸:アモキシシリン (1:4)	
		(±S9)	
		600、1,200、1,800、2,400、3,600、	陽性
		4,400 μg/ml	
		クラブラン酸:アモキシシリン(1:4)	
		(-S9)	

1): 突然変異率の有意な増加は、S9 非存在下で認められ、S9 存在下ではより低い

⁴ 用量、試験対象等については、EMEA に確認して記載した。

程度で認められた。S9 存在下では $4,000 \mu g/mL$ 、S9 非存在下では $8,000 \mu g/mL$ の 用量で陽性となり、細胞毒性も同時に認められた。

表 9 in vivo 試験

試験系	試験対象	用量	結果
優性致死試験	マウス	0、500、1,500 mg/kg 体重	陰性
		クラブラン酸カリウム	
		単回強制経口投与	
優性致死試験	マウス	0、1,500、4,500 mg/kg 体重	陰性
		クラブラン酸:アモキシシリン(1:4)	
		単回強制経口投与	
小核試験	マウス	0、750、1,500、3,000 mg/kg 体重	陰性
		クラブラン酸カリウム	
		単回強制経口投与	
小核試験	マウス	0、800、3,200 mg/kg 体重	陰性
		クラブラン酸:アモキシシリン(1:4)	
		強制経口投与(試料採取24及び48時	
		間前の2回)	
小核試験	マウス	~9,000 mg/kg 体重	陰性
		経口投与	

上記のように、in vitro の前進突然変異試験では細胞毒性が見られる高用量において陽性の結果が得られているが、in vitro の復帰突然変異試験及び遺伝子変換試験、in vivo の優性致死試験及び小核試験では陰性であり、クラブラン酸は生体にとって問題となる遺伝毒性はないものと考えられた。

7. 微生物学的影響に関する試験

ヒトの腸内細菌由来の細菌(約 100 株)の MIC について調査された。MIC₅₀ は、表 10 に示すとおりであった。(参照 3)

表 10 主要なヒト腸内細菌の MIC₅₀

菌種	MIC_{50} (µg/mL)
Eubacterium	128
Proteus	32
Escherichia	32
Lactobacillus	32

Peptostreptococcus	8
Enterococcus	512
Bifidobacterium	12
Bacteroides	8
Clostridium	8
Fusobacterium	2

8. その他

(1)皮膚感作試験(モルモット)

Magnusson – Kligman 法による試験を実施した結果、クラブラン酸はモルモットに対して皮膚感作性は示さなかった。(参照 2、3)

(2) 皮下投与試験(ウサギ)

ウサギにクラブラン酸/アモキシシリン配合剤を皮下投与(クラブラン酸として25.5 mg以上) したところ、抗体価がわずかに低下した。(参照2、3)

(3) ヒトにおける知見

クラブラン酸/アモキシシリンの配合剤はヒトの医薬品として長年の間広く用いられてきた。動物用医薬品としては、クラブラン酸だけを使用するのではなく、必ずアモキシシリンと併用する。したがって、クラブラン酸の影響とアモキシシリンの影響とを区別するのは容易ではない。ヒトの患者では、 $250\sim875~mg$ のアモキシシリンと 125~mgのクラブラン酸の経口用錠剤が使用される。過敏症と副作用(ほとんどが消化管)が他の β -ラクタム系物質と同様の割合及び重篤度で生じると報告されている。

ヒトボランティア (男性) の投与試験 (経口 125 mg/ヒト;通常のヒトの抗菌剤 治療に用いられるクラブラン酸用量) により、クラブラン酸を直接投与した場合の データが得られている。多くの臨床薬理学的パラメータについて検討した結果、血 行動態 (脈拍、血圧)、血液学的所見、臨床化学的所見及び尿所見に関して薬理学 的変化は認められなかった。(参照 2、3)

Ⅲ. 食品健康影響評価

1. EMEA における評価

EMEA では、ラット及びマウスの生殖発生毒性試験において得られた NOEL 10 mg/kg 体重/日をもとに、この投与量で認められたラット及びマウスの繁殖能への影響を考慮して、安全係数 200 を適用し、ADI は 0.05 mg/kg 体重/日と設定した。(参照 2、3)

微生物学的評価については、CVMP の算出式に基づき、 $in\ vitro$ の MIC_{50} の値を用いて微生物学的 ADI を算出している。検査した全ての属の MIC_{50} の幾何平均の 10% 信頼限界の下限値として $8.84~\mu g/mL$ 、1 日糞便量として 150~mL、微生物が利用可能な経口用量の分画として 10%、ヒト体重に 60~kg を適用して次式により算出された。 (参照 3)

微生物学的ADI(mg/kg体重/日) =
$$\frac{0.00884 \times 2^{*1}}{5^{*2} \times 150} = 0.0884 \text{ mg/kg体重/日}$$

 $0.1^{*3} \times 60$

- *1: 生体への換算係数:細菌濃度の増加に伴い MIC 値が上昇すること及びクラブラン酸の擬似消化管通過後において MIC 値が有意に上昇することから 2 とする。
- *2: クラブラン酸により阻害を受けない染色体及びプラスミド性のβ--ラクタマーゼが存在することから5とする。
- *3: 微生物が利用可能な経口用量の分画: ヒトにおける ¹⁴C-標識クラブラン酸の経口投与試験のデータから 0.1 とする。

毒性学的 ADI (0.05 mg/kg 体重/日) は微生物学的 ADI (0.09 mg/kg 体重/日) に 比べると小さい値であることから、毒性学的 ADI が消費者のリスクを評価するため の ADI として適切であるとされた。(参照 3)

2. ADI の設定について

クラブラン酸は、発がん性試験は実施されていないが、遺伝毒性試験の結果から生体にとって問題となる遺伝毒性を示さないと考えられることから、遺伝毒性発がん物質ではないと考えられ、ADIを設定することが可能であると判断された。

毒性試験において、最も用量の低いところで投与の影響が認められたと考えられる指標は、ラットの1世代繁殖毒性試験及びマウスの催奇形性試験における黄体数及び着床数の減少並びにラットの催奇形性試験における \mathbf{F}_1 児動物の離乳時の体重の減少であり、LOAEL は $\mathbf{10}$ mg/kg 体重/日であった。

毒性学的 ADI の設定に当たっては、この LOAEL に安全係数として、種差 10、個体差 10、LOAEL を用いること並びに慢性毒性試験及び発がん性試験が実施されていないことによる追加の 10 の 1,000 を適用することが適当と考えられた。

したがって、クラブラン酸の毒性学的 ADI としては、LOAEL 10 mg/kg 体重/日に安全係数 1,000 を適用し、0.01 mg/kg 体重/日と設定することが適当と考えられた。

なお、この値は、EMEA において算出された微生物学的 ADI 0.09 mg/kg 体重/日よりも十分小さい値である。

3. 食品健康影響評価について

以上より、クラブラン酸の食品健康影響評価については、ADI として次の値を採用することが適当であると考えられる。

クラブラン酸 0.01 mg/kg 体重/日

暴露量については、当評価結果を踏まえ暫定基準値の見直しを行う際に確認することとする。

表 11 EMEA における各試験の無毒性量

動物種	試験	投与量	無毒性量等	
->- >-		(mg/kg 体重/日)	(mg/kg 体重/日)	
マウス	催奇形性試験	0, 10, 50, 400	10	
	12.470 124 000	(経口投与)	¹⁰ 母体毒性及び胎児毒性	
	1世代繁殖試験	0, 10, 50, 400		
	, , , , , , , , , , , , , , , , , , , ,	(経口投与)		
	催奇形性試験	0, 10, 50, 400		
		(経口投与)		
	周産期及び授乳	0, 10, 50, 400		
ラット	期投与試験	(経口投与)		
	28 日間亜急性	0, 30, 90, 270	_	
	毒性試験	(経口投与)		
	6 ヶ月間亜急性	0, 10, 20, 50, 400	20	
	毒性試験	(経口投与)	尿量減少、尿浸透圧及び白血球数増加	
			盲腸腫大に関する無毒性量は 10	
	28 日間亜急性	0, 30, 90, 270	_	
イヌ	毒性試験	(経口投与)		
1 1	6 ヶ月間亜急性	0, 10, 20, 50, 400	20	
	毒性試験	(経口投与)	嘔吐、流涎及び肝細胞の水腫性変化	
毒性学的	ADI	0.05 mg/kg 体重/日		
		SF: 200 (この用量で認められたマウス及びラットの繁殖能へ		
		の影響を考慮)		
毒性学的 ADI 設定根拠資		マウス及びラットの生殖発生毒性試験		
料		10 mg/kg 体重/日		
微生物学的 ADI		0.09 mg/kg 体重/日		
微生物学的 ADI 設定根拠		ヒト腸内細菌由来菌 10 属の幾何平均 MIC50 8.84 μg/mL		
資料		(CVMP の算出式)		
ADI 0.		0.05 mg/kg 体重/日		

<別紙1:検査値等略称>

略称	名称
ADI	一日摂取許容量
C_{max}	最高濃度
CVMP	欧州医薬品審査庁動物用医薬品委員会
EMEA	欧州医薬品庁
HPLC	高速液体クロマトグラフィー
LD_{50}	半数致死量
LOAEL	最小毒性量
MIC	最小発育阻止濃度
NOAEL	無毒性量
NOEL	無作用量
$T_{1/2}$	消失半減期
TLC	薄層クロマトグラフィー
T_{max}	最高濃度到達時間

<参照>

- 1 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 17 年 11 月 29 日付、平成 17 年厚生労働省告示第 499 号)
- 2 EMEA, COMMITTEE FOR VETERINARY MEDICAL PRODUCTS :CLAVULANIC ACID SUMMARY REPORT (1), 1996
- 3 EMEA, COMMITTEE FOR VETERINARY MEDICAL PRODUCTS :CLAVULANIC ACID SUMMARY REPORT (2), 2001
- 4 NRA, CHEMICAL RESIDUES SECTION EVALUATION REPORT (Amoxycillin and Clavulanic acid), 1996
- 5 APVMA, RESIDUES EVALUATION REPORT (Amoxycillin (200mg/syringe;present as the trihydrate) and clavulanic acid (50mg/syringe;present as the potassium salt)), 2004