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5.1 Introduction 

 For a given chemical, a health-based guidance value (HBGV) 
represents a range of exposures (either acute or chronic) that are 
expected to be without appreciable health risk. As EHC 240 focuses 
on risk assessment of chemicals in food, the derivation of HBGVs for 
oral (dietary) exposures is discussed in this chapter. A key step in 
establishing an HBGV is determining a point of departure (POD), 
which is a reference point or range on a dose–response curve that is 
derived from experimental or observational data. This reference point 
is the lower bound on dose (upper bound on response) that 
corresponds to an estimated or predetermined low-effect level or no-
effect level of the dose–response curve. There are a variety of 
techniques that can be employed to derive a POD, all of which fit 
under the umbrella of dose–response assessment.  

 Historically, rather simple approaches were followed to derive a 
POD when utilizing dose–response methodology for risk assessment, 
such as using the no-observed-adverse-effect level (NOAEL) or 
lowest-observed-adverse-effect level (LOAEL) of the observed 
dose–response curve. This approach, hereinafter referred to as the 
NOAEL approach, is mostly based on stepwise statistical 
comparisons of responses between the control group and the different 
dose groups and can be considered to be a simple conceptual model 
that describes the (mean) response by a mathematical step function, 
where the steps correspond to the sequence of the experimental doses.  

 Towards the end of the last century, a more advanced modelling 
approach, the so-called benchmark dose (BMD) approach, was 
introduced for dose–response assessment (Crump, 1984). This 
approach considers all available dose–response data together in a 
comprehensive data analysis that allows interpolation between tested 
doses to estimate a BMD. The BMD is a dose associated with a 
specified incidence of risk for a health effect or a specified change in 
biological response, which is defined as the benchmark response 
(BMR). The BMD and, more importantly, its statistically derived 
95% lower confidence limit, known as the BMDL, can be derived 
from dose–response modelling (DRM). The BMDL is then usually 
used as the POD for establishing an HBGV.  

 The BMD approach, rather than the NOAEL approach, is the 
approach now preferred by the Joint Food and Agriculture 
Organization of the United Nations (FAO)/World Health 
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Organization (WHO) Expert Committee on Food Additives (JECFA) 
and the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) for 
deriving a POD.  

 In what follows, generally accepted practices for dose–response 
assessment are outlined, and the derivation of the POD from each of 
the two methods mentioned above is considered. The process of 
establishing HBGVs to protect against toxic effects is described. In 
instances where an HBGV cannot be established, the POD can also 
serve as a starting point to estimate the margin of exposure (MOE), 
which is the ratio of the POD for the critical effect to the theoretical, 
predicted or estimated dietary exposure. Application of the MOE 
approach is described in section 5.5. 

5.2  Dose–response assessment 

5.2.1  Basic concepts of dose–response assessment 

 Hazard characterization is one of the four basic steps in risk 
assessment. In this chapter, the term dose–response assessment refers 
to a key step in the process of hazard characterization (see Chapter 2, 
section 2.4). It is used as a general term to include the entire procedure 
for establishing HBGVs (as described in section 5.4), including data 
selection, developing a POD (whether by modelling or using other 
approaches) and application of uncertainty factors, if appropriate. The 
term dose–response modelling or DRM refers specifically to 
modelling approaches. 

 Dose–response assessments establish relationships between 
exposure and the adverse health outcomes under study. They are used 
to link a database of adverse effects to target human populations that 
are exposed and at risk and for which an HBGV should be 
established. This section gives a short overview of current practices 
in dose–response assessment, including generic issues regarding the 
two basic components, dose and response. 

  One of the primary steps when performing a risk assessment is 
the determination of the presence or absence of a dose–response 
relationship. This is facilitated by using biochemical, toxicological 
and (if appropriate) pharmacological information from the hazard 
identification step (the first step in risk assessment) and the outcome 
of a statistical analysis of available and relevant dose–response data. 
The existence of a dose–response relationship is usually supported by 
statistically significant differences in response between dosed and 
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control groups or dose-dependent trends in response. In cases where 
the response is not statistically significant, it may be considered that 
the level of exposure is without biologically significant adverse 
health effects. However, it should also be borne in mind that the 
power of the study to detect an adverse effect might be too low.  

 Dose–response data, which usually provide the basis for risk 
characterization (the fourth step in risk assessment), may come from 
in vivo experimental studies in laboratory animals, experimental 
studies in humans or epidemiological studies in humans. These types 
of data have been used in dose–response assessments by JECFA and 
JMPR in three main ways: 

1) establishment of an HBGV, such as an acceptable daily intake 
(ADI), tolerable daily intake (TDI) or acute reference dose 
(ARfD); 

2) estimation of the MOE between a defined POD and the level of 
human exposure; and  

3) quantification of the magnitude of the risk at specified levels of 
human exposure.  

These approaches and variants of them are discussed below, based on 
EHC 239, Principles for modelling dose–response for the risk 
assessment of chemicals (IPCS, 2009), together with more recent 
considerations and practical experience in JECFA and JMPR.  

Whereas the focus has traditionally been primarily on 
experimental animal studies, dose–response relationships are also 
critical in the assessment of in vitro data and for studies that attempt 
to define the relationships of different steps in a postulated mode of 
action (MOA). Owing in part to governmental mandates and a desire 
to reduce experimental animal testing and be more efficient and 
human relevant in toxicological assessment, dose–response data from 
in vitro studies are increasingly being considered in risk assessment 
(Thomas et al., 2019). In vitro data can be subject to DRM using the 
BMD approach described in this chapter (Sand et al., 2017). To date, 
uses of in vitro data in risk assessment include MOA investigations 
(Li et al., 2017) and comparative biological potency assessment (Bhat 
et al., 2017).  

One unique consideration when modelling in vitro data is the 
manner or scale in which the data are generated. Relative to in vivo 
data or single end-point in vitro data, high-throughput in vitro data, 
such as those generated by the USA’s Toxicology Testing in the 21st 
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Century (Tox21) collaboration (Tice et al., 2013) and the United 
States Environmental Protection Agency’s (USEPA) Toxicity 
Forecaster (ToxCast) programme (Judson et al., 2010), contain 
additional complexities that are a by-product of experimental design 
and data pre-processing and that must be accounted for prior to 
modelling. It is therefore recommended that an expert be consulted 
when modelling high-throughput in vitro data.  

There are a number of inherent challenges to the use of in vitro 
data in risk assessment that have been discussed elsewhere (Crump, 
Chen & Louis, 2010). One significant challenge that is central to risk-
associated BMD modelling is the establishment of a BMR that 
reflects a level of change that is considered adverse. Not only is the 
qualitative relationship between in vitro effects and adverse in vivo 
effects often unknown, but even when a qualitative relationship to 
adversity can be established, the level of change in an in vitro system 
that reflects an adverse change is also often unknown. Because of this 
challenge, in vitro data modelling has employed BMR values that are 
based on statistical thresholds as opposed to toxicologically derived 
response thresholds.  

While scientific efforts are ongoing to address the challenges of 
in vitro toxicity testing, it is likely that, in the future, risk assessors 
will encounter greater quantities of in vitro data. Risk assessors are 
encouraged to consider the use of in vitro data within appropriate 
contexts and to engage with scientific researchers to clarify their 
needs and facilitate use of the data. Guidance on DRM of in vitro data 
is not included in this chapter at this time, as the methodology is still 
evolving. 

5.2.1.1 Dose  

 In this chapter, the term “dose” is used exclusively to describe 
any type of chemical exposure. This includes experimental dose as 
well as what is typically called external concentration or incidental 
exposure.  

 For both laboratory animal and human studies, it is critical, when 
performing dose–response analyses for food risk assessment, to have 
a clear concept of what type of dose has been used in the study that 
produced the available dose–response data. There are different types 
of dose that arise from scientific investigations, and these have 
different interpretations and should be distinguished. Although highly 
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interrelated, each of them can be used to express a relevant dose–
response relationship.  

 There are primarily three types of dose that exist simultaneously 
in the exposed organism: 

1)  the administered dose or external dose;  
2)  the absorbed dose or internal dose; and 
3)  the target or tissue dose. 

The administered or external dose denotes the amount of a chemical 
administered to experimental animals or humans in a controlled 
experimental setting by some specific route at some specific 
frequency or through incidental exposure in occupational or 
epidemiological studies. In the terminology used by JECFA and 
JMPR, the external dose is often referred to as exposure or intake (see 
Chapter 6). Oral administration is the most relevant route in the 
context of food risk assessment, and, as such, this chapter focuses on 
oral exposure. Data from other routes of exposure would need 
appropriate conversions requiring special consideration, in particular 
data comparing toxicokinetics following different routes of exposure. 

 The absorbed or internal dose is the amount of chemical that is 
systemically available and can be regarded as the fraction of the 
external dose that is absorbed and enters the general circulation. It is 
affected by the absorption, distribution, metabolism and excretion 
(ADME) of the chemical and can be derived from suitable 
toxicokinetic mass balance studies. The analytical method used in the 
toxicokinetic studies will determine whether the dose refers to the 
parent compound alone or to the parent compound plus its active 
metabolites (see Chapter 4, section 4.2). Biomarkers of body burden, 
such as concentrations in whole blood, plasma or urine, are 
sometimes available in epidemiological studies and can be used as 
the internal dose and for the dose–response assessment of human 
data.  

 The target or tissue dose is the amount of chemical present in a 
specific tissue of interest. This type of dose is relevant when a 
response at the target tissue of interest is selected as the critical effect 
for the risk characterization (e.g. total mercury and methylmercury 
concentrations in umbilical cord tissue were used by JECFA as 
biomarkers of fetal exposure to methylmercury; FAO/WHO, 2007). 
As for the absorbed or internal dose, the analytical method used in 
toxicokinetic studies will determine whether the tissue dose refers to 
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the parent compound, to active metabolites alone or to the parent 
compound plus metabolites (see Chapter 4, section 4.2).  

 The description of dose should reflect the magnitude, frequency 
and duration over which it applies. The aim and the overall type of 
the study that provides the dose–response data should be recognized: 
was it an acute, short-term or long-term experimental study or an 
observational study? Acute and short-term studies are typically the 
first choice for the establishment of an HBGV for acute exposure (e.g. 
an ARfD). Long-term (and sometimes short-term) studies are usually 
the first choice for an HBGV for chronic exposure (e.g. an ADI or 
TDI). The three types of dose identified above can apply to any of 
these studies, and the principles of dose–response assessment apply 
to all three forms. Considering frequency of dosing, one may 
differentiate between a daily bolus (oral gavage) administration and 
repeated administration (in food or feed), which will affect the 
absorption and toxicokinetics of the chemical under examination. It 
is well known that the gavage dose needs to be adjusted when 
laboratory animals are dosed for less than 7 days per week (e.g. it was 
common in the past to dose laboratory animals for only 5 working 
days per week). It should also be noted that controlled experiments in 
laboratory animals often adjust the dosing to account for the 
contemporary (often the weekly average) body weight. 
 
 The dose metric for internal and tissue doses is typically a 
concentration at a specific time point or total concentration integrated 
over time, such as the area under the plasma concentration–time curve 
(AUC). Internal and tissue doses can also be expressed as peak body 
burdens or body burdens averaged over a given period of time (e.g. 
nanograms per kilogram of body weight) or tissue concentration (e.g. 
nanograms per kilogram of tissue). 
 
 External dose can be expressed using a variety of metrics, 
including a simple single dose (e.g. milligrams per kilogram of body 
weight when establishing an HBGV for acute exposure) or a daily 
intake or daily exposure (e.g. milligrams per kilogram of body weight 
per day when establishing an HBGV for long-term exposure). When 
the chemical is administered via food, feed or drinking-water, 
concentrations (e.g. milligrams per kilogram of food or feed or 
milligrams per litre of drinking-water) are the original dose metric. In 
such cases, the concentrations in food, feed or drinking-water can be 
converted into an external dose, either before DRM or after DRM but 
before an HBGV is established. Conversions are preferably made by 
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using measured intakes of food, feed or drinking-water together with 
contemporaneous body weight measurements to calculate the actual 
exposure, which is then expressed as “X mg/kg food/feed or X mg/L 
water, equal to Y mg/kg body weight per day”. Alternatively, if such 
measurements are not available, default conversion factors (see Table 
1 in WHO, 2015, which is an updated version of the dose conversion 
table in Annex 2) are used to estimate exposure, which is then 
expressed as “equivalent to” rather than “equal to”.  

 External dose or external exposure is frequently the dose metric 
that is used in observational epidemiological studies where the actual 
exposure is rarely known precisely. Its estimation often requires 
various assumptions, such as when dietary exposure is estimated 
retrospectively from dietary survey data, using either individual and 
subject-specific data or aggregated data from subjects grouped into a 
single exposure group. In general, these exposures are less precise 
than those obtained in controlled experiments. Sometimes exposure 
is measured by the biomonitoring of blood or tissue concentrations. 
Dose–response assessment for such data usually raises the issue of 
conversion of the biomarker of internal exposure into an external 
dose. An additional problem that has arisen (e.g. with the dioxin 
database) is that measurements of the biomarker were made many 
years after what was believed to be the period of highest exposure 
(FAO/WHO, 2002a); in such cases, concentrations in blood or tissue 
at the time of the original exposure were back-calculated using, for 
example, half-lives of the chemicals or physiologically based 
toxicokinetic (PBTK) modelling. 

 PBTK models (or physiologically based pharmacokinetic 
[PBPK] models, as they are often termed) quantitatively describe the 
ADME of the chemical of interest (and, to the degree needed, of its 
metabolites). IPCS (2010) provides guidance for developing and 
documenting PBPK models and applying them in risk assessment 
contexts. A key part of that guidance is that the design and testing of 
the model should be tied to the needs for the use of the model in the 
risk assessment. These needs, and the specifics of the chemical’s 
ADME and MOA, determine what should be included in the model, 
such as the specific tissues described by the model and the level of 
detail needed for the description of metabolite kinetics. IPCS (2010) 
notes a variety of potential uses for PBPK modelling in risk 
assessment, including estimating internal dose metrics, extrapolating 
across species, evaluating human pharmacokinetic variability, route-
to-route extrapolation and cumulative risk assessment. MOA 
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evaluation is integral to PBPK/PBTK modelling, with the MOA 
determining the appropriate dose metric for the model and PBPK/
PBTK modelling having the potential to help in identifying the 
appropriate dose metric from different alternatives. Development and 
application of PBPK/PBTK models can be data and labour intensive, 
but their use in risk assessment is growing as more experience is 
acquired. In addition, the development of standard methods and 
documentation, such as described by the IPCS (2010) guidance, is 
providing greater confidence in the results. 

 Sometimes the doses used in an experimental animal study are 
transformed to the equivalent human exposures prior to DRM. A 
basic approach for such transformation is allometric scaling, based on 
proportional differences in body size between the experimental 
animal species and humans (USEPA, 2011; Nair & Jacob, 2016; 
IPCS, 2018 [section 4.4.1]). Information about the relationship 
between external dose and internal dose (e.g. based on AUC in blood) 
derived from chemical-specific toxicokinetic data can be 
incorporated into chemical-specific adjustment factors (CSAFs; see 
section 5.4.2 and IPCS, 1994, 2005). Although CSAFs are usually 
thought of as a replacement for uncertainty factors, they can also be 
considered to be an adjustment to dose based on relative internal 
doses. Regardless of the approach used to adjust dose, it is preferable 
to make such interspecies adjustments prior to conducting DRM. 
When the adjustment is the same regardless of dose, the ultimate 
result is the same regardless of whether it is made prior to or after 
modelling. However, if the adjustment varies with dose (e.g. if the 
experimental animal body weight varies with dose or if nonlinear 
toxicokinetics are captured in a PBPK/PBTK model), then 
conducting the adjustments prior to the modelling can often improve 
the overall fit of the models to the data. Regardless of when 
adjustments are made for interspecies differences, application of 
uncertainty factors related to database deficiencies should be 
conducted after DRM. 

 When quantitative information is also available on a chemical’s 
toxicodynamics, such information can be used to develop a 
biologically based dose–response (BBDR) model. A BBDR model 
includes a quantitative description of the chemical’s toxicokinetics 
and toxicodynamics and thus describes the dose–response 
relationship from the external dose to the internal dose to the tissue 
response. The toxicodynamic part of the model may be relatively 
simple or may be as complicated as a fully elaborated stochastic 
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model for carcinogenesis. Owing to the large amount of data and 
effort needed to develop and verify BBDR models, their use in risk 
assessment is much rarer than that of PBPK/PBTK models. BBDR 
models can be thought of as a quantitative expression of a set of 
biological hypotheses that, when rigorously tested against critical 
experiments, becomes a credible tool for extrapolating from 
experimental results into exposure realms that are difficult or 
expensive to reproduce in controlled experiments. To date, BBDR 
models have mainly been used in research contexts, such as for 
evaluating mechanisms of toxicity, interspecies extrapolation and 
identification of data gaps, but they have also found limited 
application in a regulatory context (reviewed by Andersen & 
Dennison, 2001; Crump, Chen & Louis, 2010). BBDR models are 
currently quite expensive to construct in terms of both resources and 
time and thus would be expected to be developed fully only for 
exposures and toxicities of the highest concern. 

5.2.1.2  Response  

 Toxicological, pharmacological and microbiological responses 
generally relate to an observation or effect seen following exposure 
in vivo or in vitro. Possible end-points cover a broad range of 
observations, from early responses, such as biochemical alterations, 
to more apical responses, such as cancer and developmental defects. 
The discussions in the rest of this section are focused on toxicological 
responses, whereas pharmacological and microbiological responses 
used in establishing HBGVs primarily for veterinary drugs will be 
discussed in sections 5.4.3.2 and 5.4.3.3, respectively. 

 For the purpose of determining a POD, it is important to consider 
the entire hazard identification data set and to identify the critical 
toxicological effects considered to be treatment-related adverse 
responses. Adverse responses are defined as a change in the 
morphology, physiology, growth, development, reproduction or 
lifespan of an organism or subsystem (e.g. subpopulation of cells) that 
results in an impairment of functional capacity, an impairment of the 
capacity to compensate for additional stress or an increase in 
susceptibility to other influences (IPCS, 2004). To discriminate 
between adverse and non-adverse effects, consideration should be 
given to whether the observed effect is an adaptive or local response, 
transient or reversible, of minor magnitude or frequency, a specific 
response of an organ or system, or a response secondary to general 
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toxicity (WHO, 2015). A more detailed discussion on adversity can 
be found in Chapter 4.  

 When establishing HBGVs, only effects that link to adverse 
responses should be chosen for dose–response assessment. In other 
words, PODs should be based on effects linked to adverse responses. 
Such responses are sometimes species or tissue specific and have 
different degrees of variation across individuals. When identifying 
the critical adverse effect, it is also important to consider whether an 
adverse effect observed in experimental animals is relevant to 
humans and whether it is caused by the parent compound or its 
metabolites.  

 Most observed responses of interest fall into one of the following 
categories: 

1) Continuous responses: These generally relate to a measurement 
that is associated with each individual subject and can take on 
any value within a defined range of outcomes (e.g. changes in 
body weight). These types of data can be reported as either 
individual values or summary statistics (i.e. typically the 
arithmetic mean, some measure of variability, most often the 
arithmetic standard error or standard deviation, and the number 
of subjects per dose group).  

2) Quantal responses: Also referred to as binary or dichotomous 
responses, these generally relate to an effect that is either 
observed or not observed in each individual subject (laboratory 
animal or human). For each dose, the number of subjects 
responding out of the number of subjects available is recorded, 
and the proportion of subjects experiencing the event is reported 
(e.g. the proportion of animals with a tumour in a cancer 
bioassay). 

3) Counts: These generally relate to a discrete number of items 
measured in a single experimental unit (e.g. number of 
papillomas on the skin). Count data arise in a variety of contexts, 
especially in epidemiological studies. In some situations, count 
data can be handled as continuous measurements (e.g. when the 
count is large); however, in these situations, it is recommended 
that a variance stabilizing transformation technique be used (e.g. 
the Box-Cox transformation; Sakia, 1992). 
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4) Ordinal categorical responses: These generally take on one 
value from a small set of ordered values (e.g. severity grades of 
histopathology). Ordinal data are an intermediate type of data 
and reflect (ordered) severity categories – that is, they are 
qualitative data but with a rank order. When the categories are 
non-ordered, they are called nominal data, but these are rare for 
response data and are often aggregated to quantal data on 
presence or absence of a defined outcome.  

5) Hierarchically nested responses: Nested (e.g. clustered) data 
occur when the observation is nested within a larger group. 
Results from developmental toxicity studies are a common 
example of this type of data: here, units (i.e. fetuses or pups) are 
nested within litters. Nested data require the estimation of 
correlation within the clusters. 

6) Multivariate responses: These occur when multiple end-points 
are measured for a single experimental unit, such as when 
genomic data consist of thousands of gene responses over 
different concentrations. Modelling each gene independently 
would ignore correlations and other features in the data. 
Multivariate data require more observations than univariate ones, 
and the underlying model assumptions should be carefully 
considered and explicated. For example, the model should be 
validated on a wide variety of end-points and describe the data 
in a toxicologically meaningful way.  

Although most data usually fall into one of the above categories, 
it is possible for data to fall into multiple categories. For example, 
multivariate responses may have both quantal and continuous 
measurements, categorical measures may have been categorized by 
grouping a continuous measurement into bins and, as noted above, 
counts can be treated as continuous in some situations. Additionally, 
any type of response may be nested. When using dose–response data, 
it is important to understand the type of data and whether any 
simplifying assumptions have been used that may result in a large loss 
of information (e.g. continuous responses that have been 
dichotomized into simple, quantal measures). 

 There are some differences in the way in which each of these 
different types of data are handled in DRM. However, as a general 
rule, the goal of DRM is to describe the distribution of the response 
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by modelling the mean and variance of the response as a function of 
dose, possibly incorporating covariates.  

5.2.1.3  Use of dose–response assessment to develop risk assessment 
advice 

 Dose–response assessment may be used to develop risk 
assessment advice in two main ways, as summarized in Fig. 5.1: 

1) The BMD approach: In this approach, DRM is performed by 
fitting a suite of mathematical models to the data in order to 
define the dose–response relationship, typically between the zero 
dose and the maximum tested/observed dose. In this setting, 
DRM is used to determine a dose with a specified response (the 
BMR). For a given BMR, the dose associated with that response, 
the BMD, and its 95% lower confidence limit, the BMDL, are 
estimated. The BMDL is then used as a POD for establishing an 
HBGV or for calculating an MOE. This approach is preferred by 
JECFA and JMPR, as the BMD approach takes all of the dose–
response data into account and quantifies the uncertainty in the 
data. 

2) The NOAEL approach: There will be situations in which 
multiple pairwise comparisons of the data for different doses can 
be used to identify the NOAEL or sometimes the LOAEL, which 
is used as a POD for the observed dose–response data. In the past, 
this approach was used routinely by JECFA and JMPR to 
establish HBGVs in order to protect against effects that are 
considered to show a threshold and for substances that can be 
controlled and are intentionally added to food. Today, however, 
the NOAEL approach should be used only in very limited 
circumstances, typically related to a very small number of dose 
groups or a lack of a dose–response relationship. For example, 
when there is only one dose group and a control group or when 
there is no adverse effect, even at the highest dose tested, this 
approach can be used. The uncertainty around the NOAEL or 
LOAEL should always be described. The disadvantages of the 
NOAEL approach are discussed below (see section 5.3.2) and 
have also been discussed elsewhere (Haber et al., 2018).  
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Fig. 5.1. Flow chart for the dose–response assessment processes used 
to develop risk assessment advice described in this chapter  

 

BMD: benchmark dose; BMR: benchmark response; DRM: dose–response modelling; 
HBGV: health-based guidance value; LOAEL: lowest-observed-adverse-effect level; 
MOE: margin of exposure; NOAEL: no-observed-adverse-effect level; POD: point of 
departure 
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5.2.2  DRM for the BMD approach 

 Before modelling can be conducted, the data need to be evaluated 
as described in Chapter 4, including consideration of study quality, 
biological relevance, relevance to humans and the existence or 
absence of a dose–response relationship. The data should then be 
evaluated for their suitability for modelling (e.g. whether there is a 
dose–response trend and identifying the end-points to focus on for 
modelling), as described below in section 5.2.2.2(a). 

 Note that the step-by-step discussion here for DRM describes the 
modelling for a single data set, and the same process needs to be 
followed for each data set considered. Once a data set is selected for 
modelling, the family of models is chosen based on the data type (as 
described in sections 5.2.1.2 and 5.2.2.2(c)). The appropriate degree 
of change (the BMR) that is the basis for the POD is also determined, 
based on the nature of the data and the biology of the end-point. 
Specialized software is then used with a variety of flexible 
mathematical models to optimize parameters, fit the data and estimate 
the BMD and the confidence interval (BMDL–BMDU, where BMDL 
and BMDU are the 95% lower and upper confidence limits on the 
BMD, respectively). Finally, the results are documented, and 
uncertainty is characterized. 

 Covariates may be needed in DRM to account for sources of 
variation other than dose, such as sex and time. In such cases, the 
dose–response relationship is dependent upon the covariate and 
results in a range of PODs. Covariates are often important when 
accounting for variability, and inclusion in the model can improve the 
estimate of the DRM. For example, at its eighty-third meeting, 
JECFA noted that there was a difference between the incidence of 
liver cancer in hepatitis B–positive and hepatitis B–negative subjects 
who were exposed to aflatoxin. As a result, the model used reflected 
the potencies for both groups (FAO/WHO, 2017a).  

 The most sensitive relevant effect level is identified, based on the 
results of the modelling. The dose–response assessment then 
considers the totality of the data, including study quality and human 
relevance, to derive the overall POD for establishing the HBGV or 
estimating the MOE (IPCS, 2009). 

 For all the key decision points in the process, the rationale for the 
decisions should be explained and documented, including 
information on the underlying assumptions and uncertainties.  
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5.2.2.1  Software for BMD modelling 

 Many of the dose–response models require specialized software 
to fit the models to the data. There is no single preferred software 
package for dose–response analyses. It is important that the software 
used for dose–response estimation be thoroughly tested, and the 
source code should be made publicly available to allow for 
reproducibility and transparency. The version of any particular 
software used for the analyses should be clearly stated. For most 
BMD analyses, the software packages known as PROAST 
(https://proastweb.rivm.nl/) and Benchmark Dose Software (BMDS) 
(https://www.epa.gov/sites/production/files/2020-08/bmds320.zip) 
meet these requirements. For more detailed guidance on the use of 
these two publicly available software packages, the reader is referred 
to the application guides at https://www.rivm.nl/en/proast for 
PROAST and https://www.epa.gov/sites/production/files/2020-09/
documents/bmds_3.2_user_guide.pdf (USEPA, 2020) for BMDS. 
The European Food Safety Authority (EFSA) also provides a 
platform for a web-based application of PROAST (https://shiny-
efsa.openanalytics.eu/app/bmd); the EFSA platform is freely 
available but does require an account sign-in for access. 

5.2.2.2  Key steps in DRM 

 DRM can be performed following the process summarized in 
Fig. 5.1. The following describes the steps of this process for 
evaluating a single data set.  

(a) Suitability of data for modelling 

 The first step is to consider whether the data are suitable for 
modelling. These considerations include the following: 

 Are there sufficient dose groups (e.g. there may be only one dose 
group plus a control group)? 

 Is there a biologically or statistically significant trend in the end-
point? 

 Is there a clear dose–response relationship (e.g. there may be no 
adverse effect, even at the highest dose tested, or there may be a 
non-monotonic dose–response relationship)? 

 Is the response at the first non-zero dose in the range of the BMR? 
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If the answer to any of the above questions is no, then the 
criterion for suitability of the data is not met. Further guidance on 
whether data sets are suitable for modelling is provided in section 
5.3.1 and elsewhere (USEPA, 2012; Edler et al., 2014). 

(b) Selection of a BMR  

 The second step requires the selection of a degree of change, 
known as the BMR, that defines a level of response that is 
measurable, considered adverse and relevant to humans or to the 
model species (i.e. extra risk). The breaking point between adverse 
and non-adverse is called the critical effect size (Dekkers, de Heer & 
Rennen, 2001), and this can also be used in DRM instead of a clearly 
adverse BMR (Slob, 1999, 2017).  

 For quantal data, the BMR needs to be a value within the 
observed range of experimental response and near the lower end of
this range. For example, the first dose might exhibit a 0% increase in 
response, and the second dose might exhibit a 7% increase; the BMR 
should be close to the second dose. The chosen BMR should allow 
the BMD to be associated with a low level of exposure-related effects. 
When the BMD is based upon experimental animal data (e.g. tumour 
incidence), an extra risk level of 10% is often used as a default, on 
the basis of typical sample sizes in most experimental animal studies. 
However, there may be reasons to deviate from this default, and other 
BMR values may be used with a sound scientific rationale provided 
(Haber et al., 2018). Various studies have estimated that the median 
of the upper bounds of extra risk at the NOAEL is close to 10%, 
suggesting that the BMDL for a 10% response, or BMDL10, may be 
an appropriate default for quantal data (Allen et al., 1994; Fowles, 
Alexeeff & Dodge, 1999; Sand, Portier & Krewski, 2011).  

 For continuous data, a biologically meaningful BMR depends on 
the type of end-point and therefore varies. Ideally, it is set numerically 
so that the BMR reflects the onset of a human-relevant adverse effect, 
meaning that a response above the BMR is considered adverse. A 
default value of 5% is sometimes used. A reanalysis of a large number 
of studies from the United States National Toxicology Program 
involving continuous data showed that the BMDL for a BMR of 5% 
(the BMDL05) was, on average, close to the NOAEL derived from the 
same data set, whereas in most individual data sets, the BMDL05 and 
NOAEL differed within one order of magnitude (Bokkers & Slob, 
2007). Similar observations have been made in studies of fetal weight 
data (Kavlock et al., 1995). 
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A tiered approach should be followed in the order given below 
when setting the BMR for continuous data (see Fig. 5.1):  

• Tier 1: Does a biologically relevant BMR already exist for the 
end-point considered? 
If a biologically relevant BMR is already established based on 
prior consensus for the end-point considered, then it should be 
used. Sources for BMR values considered adverse include 
Dekkers, de Heer & Rennen (2001) and WHO (2015). 

• Tier 2: Can an expert decision be made for an adversity-based 
BMR? 
If a biologically relevant BMR does not already exist, then it 
should be considered whether an expert decision can be made 
(involving the collaboration of risk assessors, statisticians, 
toxicologists and clinicians) to determine the quantitative 
definition of adverse, considering the type and severity of the 
effect, the background variability and the MOA leading to the 
effect. The BMR may be defined using any of the methods that 
are available in the literature, taking biological relevance into 
account. The nature of the value determines the appropriate 
definition of the BMR (e.g. critical effect, relative deviation, 
standard deviation, point or hybrid approaches). If it is a per cent 
change from background, this methodology defines a BMR using 
the relative deviation definition (USEPA, 2020). In cases in 
which the adverse effect size is defined as a cut-point, this 
methodology defines a BMD using the point or hybrid definition 
of the BMR (USEPA, 2020). For example, JECFA used a β2-
microglobulin cut-point to determine a provisional tolerable 
monthly intake (PTMI) for cadmium (FAO/WHO, 2011b). Note 
that this tier assumes that a level of adversity can be identified, 
even though the minimal degree of adversity may not be known. 
Thus, BMRs may also be represented by a range rather than by a 
point; the corresponding BMD confidence intervals require case-
by-case consideration when choosing uncertainty factors.  

• Tier 3: Use the MOE or other approach outside of the BMD 
framework 
The BMD framework is predicated on the assumption that the 
response poses some known adverse outcome; if no definite 
BMR can be established based on adversity, the assessment 
should be viewed as falling outside of the scope of the BMD 
framework. However, this does not prevent dose–response 
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assessment, which may include DRM. The toxicologist or the 
risk assessor can then choose quantitative values of response that 
may be considered from this assessment; these may include, but 
are not limited to, investigating fold changes, looking at 
differences from background and estimating response from a 
dose–response curve. Although this analysis may produce a 
range of plausible values (i.e. lead to MOE calculations), it is 
stressed that these values should not be used for establishing an 
HBGV. 

 In all cases, the rationale for the decision made on the BMR and 
associated uncertainties should be explained and documented.  

(c) Model selection 

The third step consists of selecting a set of models to fit to the 
data. Although biological considerations may motivate the choice of
one or several empirical models (e.g. mathematical models from the 
general suite of models described below), the level of biological detail 
in such models is minimal. Thus, their credibility for interpolating 
and extrapolating a data set derives mainly from their fit to the data, 
as evaluated statistically. 

When selecting a set of models, appropriate software should be 
used. For quantal (dichotomous) and continuous outcomes, standard 
suites of models are available in the PROAST/EFSA and USEPA 
BMDS software programs, and these models should be used as a 
default set (see Appendix 5.1 for more details). In cases where these 
models fail to describe the data, alternative models may be 
considered, but the justification for the use of these alternative models 
must be provided.  

For other types of outcome data – for example, count, 
multivariate, ordinal and nested (e.g. litter) data – there is not a 
standard set of models. When applicable, models should be selected 
from the literature; in some cases, however, the model may not have 
been applied in a risk context. Regardless of how a set of models is 
developed, all model choices should be clearly documented, and a 
rationale should be given for the models included, as well as for 
potentially relevant models excluded. Some of the criteria to consider 
include, but are not limited to, the confidence interval width for 
parameters of interest, evaluation of residuals with regard to fit and 
dispersion, and visual fit.  
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When a model is used that is not part of the standard packages, 
copies of the software should be made available for download, and 
the source code should be provided and properly documented, for 
archival purposes; this ensures that the analysis can be reproduced 
even if the software changes in the future.  

Further guidance on the models to be used, depending on the data 
types to be modelled, is provided below.  

 Dose–response models that do not imply an underlying biology. 
A general family of dose–response models, for quantal and 
continuous data, is specified as 

µ(dose) = a · {1 + (c – 1) · F(dosed, b)} 
 

where parameters a, b, c and d refer to the background response, 
potency of the substance, maximum response and steepness (i.e. 
influences the slope), respectively. Further, the function F(dosed, b) 
is an increasing function that goes from 0 to 1 over the dose range. 
For more information on this modelling strategy, the reader is 
referred to Aerts, Wheeler & Cortinas Abrahantes (2020). 

 Dose–response models for continuous data. The dose–response 
model for continuous data describes how the magnitude of response 
changes with dose and is typically defined as the central tendency of 
the observed data in relation to dose. The dose–response model may 
be linked to other summary statistics related to the data (e.g. response 
quantiles). For an example of these other approaches, the reader 
should refer to Wheeler, Shao & Bailer (2015), who use dose–
response models to describe the quantiles of the data.  

 The models below describe the relationship between dose and 
the magnitude of a response. When linked to a statistical distribution 
(see below), these equations describe the relationship between dose 
and the central tendency in a population. 

As an example, for continuous data, a common dose–response 
model is the exponential model; by setting F(dosed, b) = 1 – e−b·dosed, 
one arrives at  

 
µ(dose)F = a ·  {c – (c – 1) · e−b·dosed} 

which is described in Slob (2002). Slob & Setzer (2014) found that 
most continuous dose–response data were adequately described by 
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the exponential model or the Hill model. In what follows, we assume 
that only models contained within the general family of dose–
response models that includes the exponential and Hill models are 
used. Use of models outside of this family should be well justified. 

 When modelling continuous data and considering the 
background response at zero dose, the appropriate approach is to 
account for the background in the model with a parameter that needs 
to be estimated from the data (IPCS, 2009). In some cases, dose–
response data are adjusted by subtracting the (mean) control value 
from each individual observation before modelling and removing the 
background parameter from the dose–response model. However, this 
procedure does not account for the fact that the background response 
level is also not known with certainty, and it should not be used.  

 Dose–response models for quantal data. To model quantal data, 
one is interested in modelling the observed frequency of the response. 
As with the case for continuous data, DRM estimates the central 
tendency of these frequencies, which can be interpreted as the 
probability that the outcome will be observed in a population.  

 Like the continuous data case in the example above, the family 
of models can be used with  

 µ(dose) = a + (1 – a) ·  F(dosed, b)  

The maximum response for quantal end-points is 1; it is considered 
that if the dose is large enough, the response will reach the value 1. 
As for the case of continuous data end-points, the function F(dosed, 
b) is in principle a function going from 0 to 1 over the dose range. For 
example, the log-probit model is obtained by considering the function 
F(dosed, b) = Φ(ln(b) + ln(dosed)). This implies 

 µ(dose)F = a + (1 – a) ·  Φ(ln(b) + d ·  ln(dose)) 

where Φ(·) is the cumulative distribution function for the standard 
normal distribution.

Dose–response models for counts. Count data most frequently 
occur in observational epidemiological studies in which the number 
of adverse events in each group is the outcome of interest (Breslow 
& Day, 1980). For example, one may count the number of cancers 
observed in a given population (often expressed as a rate per 100 000) 
that is grouped by exposure. When modelling count dose–response 
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data, the statistical expectation of the count is modelled relative to 
some unit (e.g. time). For example, in Poisson models, a dose–
response model can be used to describe the rate of cancer from 
exposure to aflatoxin per person-year. This rate, which is defined in 
all count models, is termed R; as R varies over exposed dose, R is 
defined as a dose–response model in this context (Frome, 1983). For 
example, at its eighty-third meeting, JECFA estimated the rate, R, of 
liver cancer in populations exposed to aflatoxin (FAO/WHO, 2017a).  

For count data, there is an increased need for collaboration 
between the subject matter experts and the modeller. Typically, 
models come in two forms: additive models and relative rate models. 
Additive models assume covariates, and the dose–response function 
enters the model as a linear combination; that is, 

Ra (dose, X) = fa(dose) + ga(X) 

where fa(dose) and ga(X) are the functions of dose and covariates X, 
respectively. Relative rate models assume that dose and covariates 
affect the rate multiplicatively; that is, 

 Rm (dose, X) = fm(dose) × gm(X)  

where fm(dose) and gm(X) are the functions of dose and covariates X, 
respectively.  

In many cases, models used for counts are not the same as those 
preferred in the continuous and quantal data setting. For count 
modelling, as generic software does not exist, the model forms should 
be supported by the literature or scientific understanding. For 
example, at the eighty-third meeting of JECFA, for aflatoxin, all 
evaluated models were based upon the peer-reviewed literature 
(FAO/WHO, 2017a). 

Dose–response models for ordinal categorical measures. In 
some circumstances, the response is grouped into distinct outcomes. 
For example, a pathologist may give a non-neoplastic lesion a grade 
from 1 to 5, based on an assessment of severity. Modelling such data 
using dose–response models is complex; consequently, the dose–
response models used are often specific to the given circumstances. 
However, some general considerations should be taken into account. 
For a full discussion of these considerations, the reader should refer 
to Agresti (2013). Many different dose–response models are available 
and can be represented by an extension of the logit, complementary 
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log-log or probit link functions (USEPA, 2020; PROAST: 
https://proastweb.rivm.nl); other dose–response models may be 
considered. Chen & Chen (2014) describe DRM for ordinal 
categorical responses. 

Dose–response models for nested data. For nested data, 
complex assumptions are necessary, and individual animal data are 
needed to allow for the application of modified models that handle 
the cluster effect. For example, in developmental toxicity studies, 
because the dam is the unit of treatment, one expects greater 
similarity in the response within a litter than across litters. One aspect 
of the cluster effect is the intra-cluster correlation, which varies 
among dose groups and conceptually represents the degree of 
correlation in effect due to treatment condition or experimental 
variability or error. This value must be accounted for to accurately 
represent the dose–response model.  

Dose–response models for multivariate responses. As 
multivariate responses are often situation specific, modelling should 
be done on a case-by-case basis, referring to models available and 
accepted in the literature. For example, for clustered developmental 
toxicity studies with multiple end-points, Geys, Molenberghs & Ryan 
(1999) and Molenberghs & Ryan (1999) developed models that 
consider multiple malformation end-points, and Budtz-Jørgensen 
(2006) and Mbah et al. (2014) developed general latent structural 
equation dose–response models to establish BMDs for families of 
chemicals and for sets of end-points. Another example of this data 
type arises when utilizing toxicogenomic data. Although such data 
have not been used for risk assessment purposes to date, such 
developments can be expected in future. As further developments 
with dose–response models for multivariate responses are ongoing, it 
is anticipated that these models will be used increasingly.  

(d)  Model assumptions, model fitting and estimation of parameters 

  Model fitting makes statistical assumptions about the data and 
the selection of a dose–response model. Before fitting a model to the 
data, a distribution for the response should be assumed. Appropriate 
distributional assumptions accounting for the data type should be 
used. For example, continuous response data are usually assumed to 
be normally or log-normally distributed; if the data exhibit right 
skew, a log-normal assumption may be more appropriate than a 
normal assumption. For all data types, assumptions, such as 
distributional assumptions, should be reviewed prior to the analysis, 
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and the rationale for the choices made should be clearly 
communicated. Given those assumptions, modelling finds parameter 
values (see section 5.2.2.2(c)) for the dose–response model that are 
optimal. In those situations in which one distribution is not preferred, 
model averaging over all distributions (described below in section 
5.2.2.2(e)) may be an alternative.  

Two methodologies available for model fitting are the frequentist 
and the Bayesian approaches (see Appendix 5.1 for further details). 
Historically, software designed for DRM used frequentist 
methodologies; however, recent advances in numerical mathematics 
and software development (Shao & Shapiro, 2018; USEPA, 2020) 
allow the use of Bayesian methods for DRM. Regardless of the type 
of analysis, both methodologies require an understanding of some 
basic principles of modelling before outputs from the analysis can be 
properly interpreted. Although a full description of the methodologies 
is beyond the scope of this chapter, some basic remarks may be 
helpful here.  

 Given a specific dose–response model, the general objective of 
model fitting is to best describe the dose–response data. Therefore, 
one would search those parameter values (e.g. a, b, c and d described 
in section 5.2.2.2(c)) that lead to a function or curve that describes the 
data well, using some statistical criterion that defines a good fit. 
Parameter estimation can proceed using either Bayesian or frequentist 
methods. For Bayesian analyses, the prior 1  should be reasonably 
diffuse over values of the target parameter considered relevant to the 
analysis (described in more detail in Appendix 5.1). To mitigate 
against possible biases, a sensitivity analysis of the effect of the priors 
should be clearly documented. When frequentist methods are used, 
care should be taken that the parameters are estimable given the data. 
In many cases, the data provide little information on the parameter. 
For example, for continuous data, the Hill model is sigmoidal, and 
some data may not suggest a sigmoidal shape; in these cases, the data 
give no information on the steepness parameter d. When the data do 
not inform the value of the parameter, parameter bounds add 
information and should be considered in order to mitigate the 
possibility of biologically implausible responses. 

                                                           
1 In Bayesian analysis, a prior is information included in the analysis that 

explicitly encapsulates information outside of the experiment. Prior 
information may include information that prevents models from unrealistic 
sharp changes in the DRM. 
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 Parameter constraints are not necessary when using model 
averaging or Bayesian methods in general. However, fitting should 
always be with regard to the biological plausibility. Here, biological 
plausibility is defined in relation to the end-point of interest – that is, 
the BMD and the dose–response curve estimate; when using model 
averaging (see section 5.2.2.2(e)), estimates are generally more stable 
and thus plausible. When the fit or its corresponding bounds result in 
biologically implausible estimates of the target parameter (e.g. the 
POD being a very small number of molecules), alternative 
approaches should be investigated, or data should be considered too 
poor in quality to allow the derivation of a POD.  

 For either approach (frequentist or Bayesian), the optimal 
parameter estimates can be thought of as the “best guess” of the 
model’s parameters for the observed data (see Appendix 5.1 for more 
information). Using those estimates, a “best-fitting” dose–response 
curve can be calculated. Although the estimate is optimal in relation 
to the observed data, it does not reflect the statistical uncertainty in 
the data – that is, the scatter typically observed in experimental 
studies. To reflect this, confidence intervals are computed on the 
model parameters, including the BMD. These intervals can be used 
as a bound to plausible dose–response curves that are consistent with 
the observed data – that is, lower and upper bounds on the dose–
response model. The upper-bound curve allows the visualization of 
the BMDL for a given BMR. This reflects the statistical uncertainty 
(sampling error) associated with the data. In most cases, both 
frequentist and Bayesian methods are fit for purpose. Although 
Bayesian methods are generally preferred in this guidance, 
frequentist methods can be used if deemed appropriate. Discussion of 
the strengths and weaknesses of these approaches is provided in 
Appendix 5.1. 

(e) Model uncertainty and model averaging 

 Historically, one or more dose–response models were fitted to 
the data, but a single model was chosen, based upon some criterion 
(e.g. lowest BMDL), to estimate the POD. Although sampling error 
is accounted for in individual model fits and is quantified by 
confidence bounds, additional uncertainty arises from the fact that 
estimates from dose–response models may differ. That is, many of 
these models may reasonably reflect the observed data but produce 
different BMD estimates. As no model is assumed to be the true 
model, this variance over model estimates is known as model 
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uncertainty. Model averaging is an appropriate method to address 
model uncertainty in DRM.  

 Model averaging allows estimation of the dose–response 
relationship and derived statistics, such as the BMD and derived 
confidence interval, using all model fits through a weighted average 
(see Kang, Kodell & Chen, 2000; Wheeler & Bailer, 2007; Shao & 
Gift, 2014; and references therein). Weights are computed using 
Bayesian or frequentist methods based upon a criterion of fit (e.g. 
Akaike information criterion [AIC] for frequentist approaches and 
posterior1 model probabilities for Bayesian methods).  

(f) Model parameter constraints 

 In certain situations – for example, when it is deemed 
biologically appropriate – parameters a, b, c and d in the dose–
response model family (described in section 5.2.2.2(c)) may be 
constrained. The effects of constraints on parameters a, b and c are 
often minimal for BMD modelling. For example, b is often 
constrained to be greater than zero to reflect the assumed positive 
response in the dose–response curve, which is a prerequisite for 
modelling most data; this is an example of a constraint that is 
necessary to make when modelling data. However, in other situations, 
the use of constraints is subject to rigorous debate and may not be 
necessary in practice. For example, a constraint on the steepness 
parameter d, a key parameter for describing the effect of dose on the 
outcome, can have a substantial impact on estimates. The parameter 
d can be unconstrained, which may reduce bias in BMD estimation, 
but this may lead to unreasonable BMDL estimates (e.g. equal to 
zero). This guidance supports an approach that should be used when 
there is an absence of other biological knowledge. 

 For a parameter such as d, the following strategy is 
recommended to minimize the impact of this decision on constraining 
the dose–response model’s parameters for estimation of the BMD and 
the respective confidence interval:  
 

                                                           
1 The posterior distribution is a probability distribution that describes the 

uncertainty of the dose–response model given the data.  
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● Bayesian model averaging, which penalizes estimates of d that 
approach the constraint. For example, BMDS does such a 
penalization.  

 Bayesian fitting of a single model with a soft constraint on d (i.e. 
prior over the parameter that places low probability on regions 
normally constrained). Note that in this case, the steepness 
parameter is not constrained.  

As noted previously, model averaging is recommended. It has an 
additional advantage specific to this issue, because unconstrained 
models are used. It often mitigates the need to choose between 
options, because it gives near zero weight to the problematic curves 
with infinite slope. In the few cases where model averaging results 
are deemed inappropriate, a Bayesian unconstrained model with soft 
constraints can be considered. 

(g) Evaluation of DRM 

 There is a variety of methodologies applicable to determining 
whether the dose–response model adequately describes the data and 
whether there is an adequate fit of the model to the data. Although an 
individual technique cannot be recommended for every case, it is 
important that known model fit criteria be used and documented (see 
Appendix 5.1). For example, commonly applied criteria for model fits 
for model averaging include examination of visual fit, bootstrap 
goodness-of-fit statistics (for frequentist model averaging) or Bayes 
factors comparing the model-averaged posterior probability to the 
null mean model with diffuse beta priors. For individual models, one 
can compare models using the AIC or Bayesian information criterion 
(BIC) and evaluate them using analysis of deviance and Pearson χ2 
goodness-of-fit tests. The goodness of fit can also be evaluated by 
comparing a meaningful difference of the AIC of the fitted models 
with suitable reference models, such as the null model, to ascertain 
the existence of a dose–response trend, and the full model, which just 
consists of the data points to ascertain the general goodness of fit. 
Care should be taken to investigate the fit in the low-dose region, as 
this region is more relevant to estimating the BMD. 

(h) Reporting of results of BMD modelling 

 In reporting the summary results of BMD modelling in JECFA 
and JMPR reports, the BMRs and software packages used should be 
stated, and the effects selected for modelling and the ranges of 



Dose–Response Assessment and Health-based Guidance Values 

 

5-33 

BMDLs and BMDUs estimated by the different acceptable fits should 
be given. When using model averaging or Bayesian approaches, the 
individual model weights and Bayes factors should also be reported.  

 In the detailed JECFA and JMPR monographs, the following 
should be reported: 

 a summary table of the data for the end-points considered and the 
BMD analysis. For quantal end-points, both the number of 
responding animals and the total number of animals should be 
given for each dose. For continuous end-points, the mean or 
individual responses, associated standard deviations or standard 
errors, and sample sizes should be given at each dose;  

 the value of the BMR chosen, and the rationale for the choice; 
 the software used, including the version number; 
 all assumptions in the model-fitting procedure. If the 

assumptions deviate from the recommended guidance, the 
rationale for deviating should be provided, as well as the results 
using the recommended defaults; 

 a table presenting the models used in the model averaging, 
including each model’s weight and individual BMDL and 
BMDU. Values should be reported with two significant figures. 
If model averaging was not used, a table with the individual 
models used (including the null model and the full model) should 
be provided; for Bayesian analyses, Bayes factors, and for 
frequentist analyses, P-values and AICs, or the values of the log-
likelihoods of the models and the values of the AICs, should be 
reported. If applicable, supplementary information (e.g. software 
outputs) should be given; 

 a plot of the fitted average model or, if model averaging was not 
used, a plot of all the models fitted to the data for the critical end-
points. In the case of nested families – that is, models whose 
parameters are supersets of other simpler models – a plot of the 
selected model for each family should be provided; and 

 a conclusion regarding the selected BMDL (or BMD confidence 
interval) to be used as a POD. 

5.2.3 Modelling observational data from epidemiological studies  

 Observational studies in humans refer to those studies in which 
treatment or exposure is not under the control of the investigator. 
Experimental studies refer to those studies in which assignment to 
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treatment or exposure is under the control of the investigator. This 
section focuses on observational epidemiological studies.  

 Observational data derived from epidemiological studies may 
provide quantitative information on dose–response relationships used 
in risk assessment. Two advantages of using human epidemiological 
data are that no extrapolation between species is required and that 
exposure scenarios represent the real world.  

 Major designs in observational epidemiological studies include 
the cohort design and the case–control design. In the cohort design, 
exposure is assessed over time, and the study population is followed 
over time to ascertain information on outcomes possibly depending 
on the exposure. In the case–control design, two groups differ in an 
outcome of interest but are otherwise comparable. These two groups 
are compared with respect to a supposed cause of the outcome (e.g. 
an exposure to a specific substance). Exposure is either assessed 
contemporaneously or reconstructed for some earlier period. For the 
purposes of this chapter, when using such data, it is assumed that a 
judgement on the causal association and suitability for analysis has 
been made; however, it should be noted that the association observed 
may not always be causal.  

5.2.3.1  Study design  

The focus of the discussion on observational epidemiological 
study design is on three key conditions: exchangeability, positivity 
and consistency. 

(a)  Exchangeability 

Exchangeability of treatment groups under comparison with 
respect to an outcome measure means that the groups’ outcomes 
would be the same whenever they were subjected to the identical 
exposure history (Hernan & Robins, 2006). In experimental 
epidemiological study designs (e.g. intervention studies with 
vitamins or other dietary supplements), comparability of exposed and 
unexposed subjects is obtained through random assignment to 
exposure or treatment groups. Randomization leads (in expectation) 
to balance between exposure groups in other factors that affect risk 
of disease. However, in observational epidemiological studies, people 
are not randomly assigned to an exposure group. Without the benefit 
of randomization, exposure groups may differ with respect to factors 
other than the agent of primary interest. If these factors are also 
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related to the disease of interest, then the observed effect of the agent 
on disease risk may be mixed with the effects of these other disease 
risk factors. This is referred to as confounding. Failure to account for 
confounding can lead to bias in an estimate of association between 
exposure and disease. Confounding may be controlled through 
restriction, matching, standardization or conditioning in a regression 
model. Exchangeability also implies no selection bias, which may 
occur if other factors that affect risk of the disease of interest are 
correlated with exposure status in the study sample owing to the way 
in which the sample was collected. If selection into a study (e.g. 
through self-selection of participants) is related to exposure and the 
disease of interest, then an association may be induced in the study 
sample where it did not exist in the underlying total population. In 
practice, it is useful to explore exchangeability by assessing the 
sensitivity of the results to a variety of potential confounders and 
functional forms; we note that here, unlike in experimental settings, 
as discussed in section 5.2.2.2(e), model averaging is unable to solve 
the problem of omitting confounders.  

 
(b)  Positivity 

Positivity, also termed the experimental treatment assignment 
assumption, means that there is a non-zero probability of exposure or 
treatment at each level under comparison across levels of the 
covariates in the population under study (Hernan, 2012). 
Experimental studies involve settings where exposure is under the 
control of the investigator. If the investigator administers doses of an 
agent in a controlled experimental setting, then the investigator can 
ensure non-zero probability of exposure by design. In observational 
studies, this is not ensured. It is possible that exposure or treatment 
assignment is fully determined by some of the confounders. For 
example, in a clinical setting, patients who receive treatment may 
differ from those who do not; and treatment assignment may be fully 
determined by some of the confounders. Yet epidemiologists need to 
have variation in exposure across covariates if they wish to estimate 
the effect of the exposure. In observational studies, there may not be 
positivity across confounders, and there may be a need to make some 
interpolation or smoothing over regions of non-positivity. 

 
(c)  Consistency 

Consistency refers to an unambiguous description of how 
contrasting levels of exposure would be assigned (Cole & Frangakis, 
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2009). This is needed to clearly specify the causal contrast of interest. 
A well-defined exposure is a necessary condition for causal inference. 
In a controlled experimental setting in which the investigator 
administers doses of an agent, there is, for example, less measurement 
error than in observational studies and a clear definition of the 
exposure or dose administration regime. In observational studies, 
however, there are often obstacles to assessment and estimation of 
exposure that may relate to uncertainty of times of exposure, 
measurement and quantification of magnitudes of exposure. Thus, in 
observational studies, exposure should be defined as unambiguously 
as possible to ensure consistency of the estimated effect.  

The determination that a given study or studies are suitable for 
analysis of dose–response relationships that may be used for setting 
HBGVs involves expert judgement regarding these conditions. 

5.2.3.2  Analyses 

Although most of the methodology described in this chapter can 
in principle be applied to estimating the BMD and corresponding 
confidence interval using observational data from epidemiological 
studies, there are important methodological considerations that may 
require adaptations. These relate to the fact that DRM has, to a large 
extent, been designed around the use of data from controlled 
laboratory animal experiments. The types of information available 
from observational epidemiological studies often differ from the 
types of information derived from experimental animal studies.  

For BMD modelling, the lack of a controlled experimental 
setting is the most important difference between observational studies 
and controlled experimental studies. The observational setting means 
that adjustment for several covariates is often needed when doing a 
BMD analysis. PROAST/EFSA BMD software does allow analysis 
of covariates. If the currently existing BMD software is not designed 
to deal with such multivariable modelling requirements, this is not 
problematic, as many existing statistical packages (STATA, SAS and 
R, to name a few) can be used for such purposes. Even if existing 
BMD software were to be updated to allow for the handling of several 
covariates, another issue is that access to individual participant data 
from human studies is severely restricted by data protection 
requirements – that is, sending or sharing individual participant data 
containing sensitive health and sociodemographic information is 
often not compatible with data protection regulations. 
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Although these are important concerns, the problem of data 
sharing can be overcome by modelling aggregated (or quantile) data. 
For that purpose, confounder-adjusted summary statistics that reflect 
the underlying dose–response curve must be generated. This can be 
done by dividing the exposure variable into enough quantiles 
(quartiles, quintiles, deciles or finer subdivision) and then, using 
multivariable analyses, generating the expected confounder-adjusted 
response in each quantile using the lowest quantile of exposure as the 
point of comparison (Wheeler et al., 2017). Such an approach is 
compatible with how epidemiological data are frequently analysed 
and reported. The loss of information when using aggregated quantile 
data is generally considered non-substantial if the numbers of 
quantiles generated are sufficiently large to allow for proper 
evaluation of the underlying dose–response curve. The only 
specifications needed for such an approach are that, for each quantile, 
the authors report the response (e.g. mean response, proportional 
hazard or excess risk), its standard error, the number of subjects and 
the median exposure. For quantal outcomes where relative risk 
estimates are used, it is also important for authors to provide 
information that allows for the extraction of the absolute risk in each 
quantile. This approach is essentially comparable to how controlled 
animal experiments are analysed, where the use of summary 
statistics, not individual data, is accepted.  

Another difference between modelling data from human 
observational studies and modelling data from experimental studies 
is the lack of a well-defined control group, or “zero dose”. For human 
observational studies, the equivalent of a zero dose would be the 
lowest quantile that is used as the point of comparison. The exposure 
level and the background response for that point depend on the 
number of quantiles generated to describe the dose–response curve. 
The exposure level for that point may also differ across study 
populations, which highlights the need to model more than one study, 
if possible, to establish whether consistent results can be obtained. 
Extrapolation beyond the observed data should generally not be done 
without clear justification.  

In human observational studies, the exposure range is often 
narrower than that which can be created in experimental settings (i.e. 
laboratory animal studies often use much higher doses than those to 
which humans would normally be exposed); in contrast, the sample 
size is usually much larger. A narrow exposure range has the 
implication that the full theoretical (e.g. sigmoidal) dose–response 
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curve is often not observed. Instead, the dose–response curve depends 
on the level and range of exposure in the observed population, and it 
can be either nonlinear (at the two extremes of the sigmoidal curve) 
or approximately linear. The use of linear models can therefore in 
some cases be justified at the expense of using more complex 
nonlinear models. In such cases, the benefit of using BMD analyses 
is confined to determining the BMD and corresponding confidence 
intervals based on a predefined response that is considered 
biologically relevant (the BMR). Furthermore, the high variability in 
human observational studies, relative to the controlled settings in an 
experimental animal study, means that the same default BMR 
frequently applied in laboratory animal studies is not necessarily 
applicable. The BMR used in human settings should be based on what 
is considered normal or abnormal from a clinical point of view or 
acceptable or unacceptable from a public health point of view. 

5.3  Determining the POD: NOAEL/LOAEL or BMDL 

A thorough review of the entire hazard data set is a prerequisite 
for determining an appropriate POD. The NOAEL and BMD 
approaches allow estimation of the response of an organism given an 
exposure, but do not implicitly define a methodology by which a POD 
can be determined. For that, additional considerations are necessary. 
As the POD is used to define a dose associated with an estimable risk, 
this risk level must be defined a priori to estimate the POD. What 
level of risk may be estimable is determined by the quality of the data 
set.  

5.3.1  Data selection  

Regardless of which of the two approaches is used, NOAEL or 
BMD, data selection is central to both. In section 5.2, the types of 
dose–response data one may encounter in dose–response assessment 
were discussed without consideration of the appropriateness of a 
given data set for use in risk assessment. In this section, 
considerations on selecting appropriate experimental animal data, 
experimental human data and human observational data are given. In 
selecting data for use in risk assessment, due consideration needs to 
be given to matching, as far as is possible, the pattern of potential 
human exposure – that is, the route and duration of exposure (as a 
fraction of a lifetime) and the pattern of exposure (e.g. intermittent 
bolus dosing or dietary administration). Further, converting 
administered laboratory animal doses to estimated human equivalent 
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doses by allometric scaling prior to modelling may also be 
appropriate. 

 When considering which data to use from a set of available 
toxicity studies on a substance, it is not necessary to undertake DRM 
for each observed end-point in each study. Whether the NOAEL or 
BMD approach is used for risk assessment, the aim is to determine 
the lowest levels of exposure producing an adverse effect that is 
relevant to humans. Therefore, a first step would be to exclude studies 
in which the onset of adverse effects occurs at much higher doses than 
those from the other studies (assuming these other studies are of good 
quality) on end-points that are not markedly different in severity. In 
certain cases, even though an end-point is appreciably less sensitive 
than the most sensitive one, it might still be desirable to determine its 
BMDL/NOAEL (e.g. if irreversible neurotoxicity occurred at a 
higher dose than for a more sensitive end-point, such as an effect on 
acetylcholinesterase), to enable its risk characterization. End-points 
clearly not showing a dose–response relationship on visual inspection 
of the data can also be omitted. If the existence of a dose–response 
relationship is unclear, the EFSA platform (https://shiny-
efsa.openanalytics.eu/app/bmd) allows DRM for multiple parameters 
in one run. Although the run is time-consuming, it provides a better 
scientific basis to identify those end-points for which a dose–response 
relationship is present and those for which it is not. Then, based on 
the toxicological impact together with the apparent magnitude of the 
response, a selection of end-points as candidates for DRM can be 
made. After selecting the potentially relevant end-points, the 
suitability of each dose–response data set for dose–response analysis 
is considered.  

 For DRM, it is recommended to have at least three or four 
different doses (including controls) and different levels of effect 
associated with the different doses. Even when these data 
requirements are not met, the BMD approach retains the advantages 
outlined in section 5.2. The BMD approach can also be used for 
combined analysis of two or more similar studies – for example, two 
studies of a chemical with the same design from the same laboratory 
that tested different portions of the dose–response curve (Allen et al., 
1996). However, if the BMD approach is not deemed appropriate, the 
NOAEL approach (see section 5.3.2) can sometimes be used for the 
combined analysis of studies that meet strict criteria, in order to 
derive an overall NOAEL (see, for example, FAO/WHO, 2004).  



EHC 240: Principles for Risk Assessment of Chemicals in Food 

5-40 

 In some experimental animal studies, it may be difficult to derive 
a POD when the number of animals per dose group is very small – 
for example, when the critical effect is seen in an experimental animal 
such as the dog, with only four animals of each sex per dose group. 
In such cases, the uncertainty around the NOAEL is likely to be high 
because of the insensitivity of the test. The BMD approach is better 
for evaluating sparse dose–response data, and a high level of 
uncertainty would be clear from a very wide BMDL–BMDU interval, 
indicating that the study data do not provide sufficient information to 
derive a reliable BMD. In such cases, if the data are used to derive a 
POD, the high level of uncertainty should be made clear in the 
narrative. 

 It is also important to recognize that there may be some useful 
data sets for which BMD modelling may not apply. For example, it 
may not be possible to fit an acceptable model to the data. In other 
cases, insufficient data may be available for modelling, but the data 
are reported in such a manner that a NOAEL can be identified, albeit 
with some uncertainty. In such cases, the risk assessor may need to 
weigh the utility of the study against the associated uncertainties.  

 Data on effects on humans following exposure to a substance can 
be extremely valuable in setting the laboratory animal data into 
context and, when available, should always be evaluated, even if they 
are not used to establish an HBGV. Not only may a human study 
sometimes allow identification of end-points (PODs) for use in risk 
assessment, but other important information may be gained, such as 
the nature of the adverse effect, its pattern of onset and duration, and 
individual variability in sensitivity. Even if the human data are 
insufficient to be used quantitatively, they may identify important 
data gaps not addressed by the laboratory animal data. 

 Human data may be available from several sources, including 
epidemiological studies of effects in human populations exposed to 
the chemical, direct administration to volunteers (e.g. of a food 
additive), monitoring of those exposed following normal use of the 
chemical, exposures from accidental or deliberate poisonings, and 
exposures from use of the same substances as human 
pharmaceuticals. Such studies often involve single or short-term 
exposures that can be particularly relevant, directly or indirectly, for 
establishing ARfDs.  
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5.3.2  The NOAEL approach for deriving a POD 

 The reliability of the NOAEL approach is dependent on the 
sensitivity of the test method. The statistical linkage determines 
whether there is a statistically significant effect (e.g. at the 5% level) 
compared with background (e.g. the control group) for each dose 
separately. Also of importance to establishing statistical significance 
is the application of the appropriate statistical test. This entails 
consideration of the data type (e.g. continuous versus quantal) and the 
distribution characteristics of the data (OECD, 2012; Hamada, 2018). 

 Establishing statistical significance can be in the form of trend 
analysis or in the more typical manner of a pairwise analysis between 
treated and control groups. The no-statistical-significance-of-trend 
test (Tukey, Ciminera & Heyse, 1985) is often used for trend analysis 
for continuous data, whereas the Cochrane-Armitage test is 
commonly used for quantal data (Hothorn, 2016). When the response 
is not statistically significant, it may be considered that this level of 
exposure is without biologically significant adverse health effects, 
although whether the power of the study to detect an adverse effect 
might be too low should also be considered. Therefore, decision-
making solely based on statistical hypothesis testing should take 
account of the sample sizes, the statistical error probabilities and the 
problem of multiple comparisons. Given the typical laboratory 
animal studies used in toxicology, the minimum effect size that can 
be detected by a statistical test may be larger than 10% (extra risk), 
or even much higher, particularly in the presence of high background 
response or when sample sizes are of the order of 10 per group or 
smaller. Thus, in general, a NOAEL should be regarded as a dose at 
which the effect is somewhere between 0% and an upper bound of 
10% or more. The upper bound for the effect size at the NOAEL can 
also be calculated (EFSA, 2017). The selection of the NOAEL 
identifies the highest dose that does not produce a statistically 
significant effect compared with the control. The NOAEL approach 
tends to give lower HBGVs for studies that have a higher power to 
detect adverse effects, which in effect “penalizes” better-designed 
studies. This emphasizes the importance of adherence to testing 
guidelines in order to ensure that the data are suitable for risk 
assessment purposes. 

 If a NOAEL is not apparent from the data (e.g. in cases where 
the lowest dose tested produces a small but measurable response), 
then the LOAEL may be used. Derivation of an HBGV from a 
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LOAEL requires the application of an additional uncertainty factor 
(see section 5.4.2). 

 The NOAEL approach is limited by the following characteristics 
of the study design:  

• Group size: The power to detect a NOAEL at some dose is 
directly dependent on the sample size chosen at that dose. The 
larger the group size, the more power there is to detect a small 
effect. 

 Dose selection: The NOAEL must be one of the doses in the 
study. If the true NOAEL is higher than the NOAEL indicated in 
the experimental study, the distance between the two can be 
expected to be limited (related to the dose spacing used). In 
contrast, if the true NOAEL is lower than the NOAEL indicated 
in the study, the distance between the two is dependent on the 
magnitude of the first test dose. 

 Experimental variation: Experimental variation comprises 
biological (e.g. genetic) and other uncontrollable variation 
between subjects, experimental conditions (e.g. time of feeding, 
location in room in which the animals are housed, time of 
sacrifice or interim measurements) and measurements. Larger 
experimental variation will result in decreased statistical power 
and a higher NOAEL derived from the study, regardless of the 
location of the true NOAEL. 

 It is for the above reasons – together with the fact that the 
NOAEL approach does not take account of all the available data, 
allow for variability in the estimate of the dose–response relationship, 
take account of the slope of the dose–response curve or allow 
quantitative characterization of the uncertainties – that the BMD 
approach is preferred over the NOAEL approach. 

5.3.3 The BMD approach for deriving a POD 

The detailed steps involved in DRM to develop a POD have been 
set out in section 5.2.2.2. The use of model averaging without 
constraining parameters is recommended for calculating the BMD 
and its confidence interval (BMDL–BMDU). For laboratory animal 
data sets, the BMDL is generally used as the POD. Using the lower 
bound accounts for the experimental variability inherent in a given 
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study and ensures (with 95% confidence for the experimental 
context) that the selected BMR is not exceeded at the BMDL.  

In some cases, the entire BMD confidence interval (BMDL–
BMDU) can serve as the POD (IPCS, 2018). For human data sets, the 
BMD may be used as a POD instead of the BMDL in some cases, but 
this may underestimate the risk. When the POD for risk assessment 
of a chemical could be based on more than one data set, the DRM 
process needs to be reiterated for each relevant data set, the results 
need to be summarized and the most appropriate POD needs to be 
identified. 

5.4  Establishing HBGVs 

5.4.1  Introduction 

 HBGVs provide quantitative information from risk assessment, 
which, together with information on exposure, enables risk managers 
to make decisions concerning the protection of human health. 
HBGVs developed by JECFA and JMPR for substances found in food 
are the quantitative expression of the range of oral exposure (either 
acute or chronic) that would be expected to be without appreciable 
health risk. In general, HBGVs would not be established for 
substances that produce effects for which there is concern that there 
may be no biological threshold – for example, directly DNA-reactive 
substances that are mutagenic and carcinogenic. In such cases, an 
MOE approach could be used (see section 5.5). 

It should be noted that in this chapter, the terms “margin of 
safety” and “margin of exposure” are both used. They are not 
synonymous. A margin of safety is defined as the margin between an 
HBGV and the actual or estimated exposure dose or concentration. 
An MOE is defined as the ratio of the NOAEL or BMDL for the 
critical effect to the theoretical, predicted or estimated exposure dose 
or concentration. 

 For substances intentionally added to food, such as food 
additives, and for residues of pesticides and veterinary drugs in food, 
the HBGVs are the ADI for chronic (lifetime) exposure and the ARfD 
for acute exposure. A range of exposure scenarios can be developed 
to compare with an ADI or ARfD, so that risk managers can assess 
whether the general population and more highly exposed subgroups 
are protected. JECFA and JMPR establish ADIs and ARfDs based on 
all the known facts at the time of their evaluations. 
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 Data packages should include metabolism and excretion studies 
designed to provide information on the potential bioaccumulative 
properties of the substances under consideration. Substances that 
have long half-lives and accumulate in the body are not suitable for 
use as food additives (FAO/WHO, 1962) and may require additional 
considerations when establishing HBGVs if they occur in food (e.g. 
contaminants).  

 At the time of its first meeting, JECFA recognized that the 
amount of an additive used in food should be established with due 
attention to “an adequate margin of safety to reduce to a minimum 
any hazard to health in all groups of consumers” (FAO/WHO, 1957). 
The second JECFA meeting (FAO/WHO, 1958), in outlining 
procedures for the testing of intentional food additives to establish 
their safety for use, concluded that the results of laboratory animal 
studies could be extrapolated to humans and that: 

some margin of safety is desirable to allow for any species difference in 
susceptibility, the numerical differences between the test animals and 
the human population exposed to the hazard, the greater variety of 
complicating disease processes in the human population, the difficulty 
of estimating the human intake, and the possibility of synergistic action 
among food additives.  

These conclusions formed the basis for establishing the ADI, not only 
for food additives, but also for residues of pesticides and of veterinary 
drugs.  

 The ADI is defined as an estimate of the amount of a food 
additive or residue, expressed on a body weight basis, that can be 
ingested daily over a lifetime without appreciable health risk. It is 
expressed in amount (e.g. milligrams) per kilogram of body weight 
and as a numerical range from 0 to an upper limit, which is considered 
to be the range of acceptability of the substance. This is done in order 
to encourage the lowest level of use that is technologically feasible. 
ADIs are normally expressed numerically using only one significant 
figure. The use of more than one significant figure might be taken to 
imply a greater degree of precision than that which can be achieved 
when assessing the hazard from the wide range of factors that 
influence toxicity. 

 When appropriate, JMPR and JECFA establish ARfDs (see 
section 5.4.6 for more detail). The ARfD is defined as (FAO/WHO, 
2002b): 
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The estimate of the amount of a substance in food or drinking-water, 
normally expressed on a body-weight basis, that can be ingested in a 
period of 24 h or less, without appreciable health risk to the consumer.  

The ARfD is expressed as a single value, in milligrams of the 
chemical per kilogram of body weight. ARfDs are normally 
expressed numerically using only one significant figure, for the same 
reasons as for the ADI. 

 For food contaminants that are generally unavoidable, JECFA 
has used the term “tolerable” for HBGVs. “Tolerable” was 
considered more appropriate than “acceptable”, as it signifies 
permissibility for the dietary exposure to contaminants associated 
with the consumption of otherwise wholesome and nutritious food. 
The terms used have included TDI, provisional maximum tolerable 
daily intake (PMTDI), provisional tolerable weekly intake (PTWI) 
and PTMI, the unit of time being that most appropriate to the half-life 
of the substance. Historically, JECFA has used the term 
“provisional”, as there is often a paucity of reliable data on the 
consequences of human exposure at low levels, and new data may 
result in a change to the tolerable level. However, as any HBGV 
would be revisited if new data indicated the need for a change, and as 
the word maximum is redundant, it is recommended that the terms 
“provisional” and “maximum” no longer be used – that is, using only 
the terms TDI, tolerable weekly intake (TWI) and tolerable monthly 
intake (TMI), as appropriate. Tolerable intake values are expressed 
as an amount (often in micrograms) per kilogram of body weight, as 
a single value and not a range, and normally using only one 
significant figure. 

 JECFA and JMPR establish HBGVs based on the most 
appropriate BMDL or NOAEL/LOAEL. In general, this will be the 
lowest relevant BMDL or NOAEL/LOAEL in the most sensitive 
species. The entire database is reviewed to identify those effects 
relevant to the exposure duration of concern – that is, a single 
exposure, exposure over a lifetime or repeated exposure that may be 
less than lifetime (see section 5.4.6 for further information on effects 
associated with acute exposure). Only those effects that are adverse 
or clear indicators of adversity (e.g. a clinical chemistry measurement) 
are used to establish HBGVs (see section 5.2.1.2). If an effect is 
clearly not relevant to humans, based on the weight of the evidence, 
as described in the International Programme on Chemical Safety 
(IPCS) guidance on the MOA human relevance framework (IPCS, 
2007; Meek et al., 2014), it is not used to establish an HBGV. When 
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relevance cannot be excluded, it is assumed. When there are unique 
species- or strain-specific differences in biology, it may be concluded 
that the BMDL/NOAEL in a particular species or strain should not be 
used to establish an HBGV (e.g. developmental toxicity of 
emamectin in CF-1 mice, which is a consequence of a strain-specific 
deficiency of the adenosine triphosphate–binding cassette transporter 
p-glycoprotein; WHO, 2012). The relevant effect with the lowest 
BMDL/NOAEL for the most relevant sex, species and strain is 
considered the “critical effect”, and the BMDL or NOAEL (or, in 
exceptional cases, the LOAEL) for the critical effect is usually used 
as the POD to establish an HBGV.  

  Calculation of the HBGV is as follows:  

HBGV = 
POD 
UF 

where UF is the uncertainty factor and POD is a BMDL, NOAEL or 
LOAEL. 

 Occasionally, an adverse effect with a higher BMDL/NOAEL 
than the effect with the lowest BMDL/NOAEL may need to be 
considered if, for example, it is a severe effect that may require use 
of a higher uncertainty factor. 

5.4.2  Uncertainty factors 

In the past, the term “safety factor” rather than “uncertainty 
factor” was often used, particularly in the establishment of ADIs. The 
term “uncertainty factor” is now preferred. Comparable terms used 
by other bodies are “adjustment factor” and “assessment factor”, 
although some reserve the use of “adjustment factor” for data-derived 
factors. Application of the factors is intended to provide an adequate 
margin of safety for the consumer, considering sensitive human 
population subgroups, including infants (above 12 weeks of age) and 
young children. 

Extrapolation is a necessary part of all risk assessments, except 
in rare cases where it is possible to determine a POD from adequate 
human data representative of the potentially exposed population 
(including sensitive subgroups) that has had a level of exposure 
similar to that which is of concern. Otherwise, the POD needs to be 
extrapolated, where possible, to a human-equivalent exposure, ideally 
using quantitative species- and chemical-specific information. Where 
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possible, chemical-specific data on interspecies or intraspecies 
(interindividual) differences in toxicokinetics and toxicodynamics 
should be used to derive CSAFs to use in the overall uncertainty 
factor. In practice, suitable data for this purpose should be identified; 
however, if, as is often the case, such data are not available, default 
factors can be used to establish an HBGV (e.g. ADI, TDI, ARfD). 

In the absence of quantitative species-specific toxicokinetic or 
toxicodynamic information on a particular substance, an overall 
default uncertainty factor of 100 is used to convert a POD from a 
study in experimental animals into an HBGV for human exposure 
(IPCS, 1999). The default 100-fold uncertainty factor represents the 
product of two separate 10-fold factors: a factor of 10 to cover 
interspecies differences between the experimental animal species and 
humans and a factor of 10 to cover intraspecies (interindividual) 
differences between humans. Each of the default factors of 10 takes 
into account differences in toxicodynamics (the effect of the chemical 
on the body) and in toxicokinetics (the fate of the chemical in the 
body). The interspecies uncertainty factor for toxicodynamics is 
designed to cover differences between the average responses in the 
experimental animals used in the study identified to derive the POD 
and those in average humans. The intraspecies (interindividual) 
uncertainty factor for toxicodynamics is designed to cover the 
differences in responses in humans between those who are least 
sensitive to the substance and those who are the most sensitive. 
Similarly, the interspecies uncertainty factor for toxicokinetics is 
designed to cover the variability in kinetics between that observed in 
the experimental animal species and that in average humans, and the 
intraspecies (interindividual) uncertainty factor for toxicokinetics 
covers the variability in kinetics between individual humans (IPCS, 
1999). If the POD is derived from a human study, precluding the need 
for interspecies extrapolation, a default 10-fold uncertainty factor can 
be considered. For example, when establishing an ARfD for 
chlorpyrifos, JMPR used an uncertainty factor of 10, as the ARfD was 
based on inhibition of acetylcholinesterase in humans (FAO/WHO, 
1999a). These default uncertainty factors were to some degree 
initially selected arbitrarily, but subsequently they have been 
validated by scientific data and practical experience. If allometric 
scaling has been carried out at the dose adjustment stage (see section 
5.2.1.1), then remaining uncertainties for interspecies differences 
should be accounted for by a smaller uncertainty factor of 2.5, applied 
in addition to the allometric scaling factor. 
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In addition to the 10-fold default uncertainty factors to account 
for interspecies and intraspecies differences in toxicodynamics and 
toxicokinetics, other uncertainty factors may also be used, for 
example, 1) to allow for deficiencies in the database, such as poor 
data quality or absence of a particular type of study, 2) to account for 
the use of a shorter-duration study in the absence of a long-term study 
or 3) to account for the use of a LOAEL rather than a NOAEL for the 
POD. Selection of the size of the additional uncertainty factors to 
account for these situations is a matter for expert judgement, but these 
uncertainty factors are generally in the range of 2–10. 

 Some basic principles for applying appropriate uncertainty 
factors and their associated numerical values for HBGV derivation 
(adapted from IPCS, 1990, 2005; WHO, 2015) include (but are not 
limited to) the following: 

 When relevant human data serve as the basis of the POD, the 
interspecies uncertainty factor to extrapolate from laboratory 
animals to humans is not applied.  

 If the POD from human data is from a subpopulation that does 
not adequately characterize the population of interest or there are 
no data to examine human variability in toxicokinetics or 
toxicodynamics, then the default uncertainty factor of 10 for 
intraspecies differences should be applied. 

 If the available data are of sufficient quality for risk assessment, 
but the data are for a less-than-lifetime exposure duration, then 
an additional uncertainty factor can be applied. The actual value 
of the uncertainty factor is a matter of expert judgement and 
depends on the available data (WHO, 2015).  

 The steepness of the dose–response curve may warrant an 
increased uncertainty factor, particularly if the effect is severe. 
For example, an additional uncertainty factor of 5 was applied by 
JMPR (WHO, 2012) in establishing an ADI for emamectin 
benzoate to take account of the steep dose–response curves in 
animal studies and the irreversible histopathological effects in 
neural tissue at the LOAEL.  

 If in vitro data are considered for the derivation of a POD, the 
uncertainty around a number of factors should be considered, 
including the relevance of the model to human biology and in 
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vitro–to–in vivo extrapolation modelling to account for 
toxicokinetic considerations. 

The choice of the numerical value of an uncertainty factor 
depends on the quantity and quality of relevant data. When adequate 
data exist, derivation of CSAFs (IPCS, 2005) to describe interspecies 
differences or human variability in either toxicokinetics or 
toxicodynamics is preferred to reliance on the default 10-fold 
uncertainty factor for each. CSAF derivation can include PBPK/
PBTK modelling (IPCS, 2010; as discussed previously in section 
5.2.1.1). One or more of the four default subfactors can be replaced 
by the appropriate CSAF (Table 5.1).  

Table 5.1. Values for default uncertainty subfactors that can be replaced 
by CSAFs to derive composite uncertainty factors  

Source of 
uncertainty 

Default subfactor 

Combined Toxicokinetics Toxicodynamics 

Interspecies variation 4.0 2.5 10 

Human interindividual 
variation 

3.16 3.16 10 

Source: IPCS (2005) 

For example, JECFA used comparative body burden data rather 
than external dose data in its calculation of a PTMI (now called TMI)
for dioxin-like substances; this allowed the usual 100-fold uncertainty 
factor to be subdivided and replaced by chemical-specific values, as 
there was no need to include a factor for interspecies differences in 
toxicokinetics or toxicodynamics (FAO/WHO, 2002a). Detailed 
guidance on the derivation and application of CSAFs in risk 
assessment is given elsewhere (Meek et al., 2002; IPCS, 2005; Bhat 
et al., 2017). Many factors should be considered in deriving a CSAF, 
some of which depend on the respective subfactor, such as 
identification of the active chemical moiety (i.e. parent compound or 
a metabolite), knowledge of the relevant dose metric, relevance of the 
study population and route of exposure, and adequacy of the study 
design. For CSAFs for interspecies toxicodynamic differences, key 
data also include comparative potency data on the MOA for the 
critical effect, a causal late key event or a surrogate indicator effect.  

If data are insufficient to derive a CSAF, the broader concept of 
data-derived extrapolation factors (DDEFs), which include 
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categorical factors (Dorne & Renwick, 2005), should also be 
considered. DDEF methodology and examples are described 
elsewhere (USEPA, 2014). JMPR has used such categorical DDEFs 
in the derivation of HBGVs for several carbamate insecticides that 
inhibit acetylcholinesterase (FAO/WHO, 2009a). These compounds 
do not require metabolic activation, their reaction with the 
pharmacological target (acetylcholinesterase) is rapidly reversible, 
the magnitude of the pharmacological effect is proportional to peak 
plasma concentration (Cmax) rather than to plasma concentration 
integrated over time (AUC) and excretion is rapid. Cmax has lower 
variability than clearance, as it depends mainly on the rate and extent 
of gastrointestinal absorption. This reduced variability in 
toxicokinetics would justify a 2-fold reduction in the respective 
subfactors, leading to an overall composite factor of 25 (5 × 5), 
derived from subfactors of 2 × 2.5 for extrapolation from laboratory 
animal studies and 1.58 × 3.16 for interindividual differences (for 
details, see section 2.6 of FAO/WHO, 2009a).  

If data are inadequate to derive a CSAF or DDEF, the default 
interspecies and intraspecies uncertainty factors can be applied. 
Regardless of whether a CSAF, DDEF or default uncertainty factor 
is applied, the supporting data and rationale should be clearly stated. 

5.4.3  ADIs 

5.4.3.1 General considerations 

 The primary aim of toxicological assessments of food additives 
and residues of veterinary drugs or pesticides is to determine the 
amount of substance to which humans can be exposed daily, for up to 
a lifetime, without adverse health effects. This is achieved by 
comparing predicted dietary exposure with the ADI. In establishing 
the ADI, an uncertainty factor (see section 5.4.2) is applied to the 
POD to provide a conservative margin of safety to account for the 
inherent uncertainties in extrapolating from experimental animals to 
humans and for variability in human populations. When results from 
two or more laboratory animal species are available, the ADI is based 
on the most sensitive relevant animal species – that is, the species that 
displayed toxicity at the lowest dose – unless metabolic, toxicokinetic 
or toxicodynamic data are available establishing that data in the other 
species are more appropriate for humans.  

 The ADI is established based on toxicological, pharmacological 
or microbiological information, as appropriate. Evaluations depend 
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on studies performed with a chemical substance of defined identity, 
purity and physical form. In particular, the ADI is valid only for 
substances that do not differ significantly in identity and quality from 
the material used to generate the data on which JECFA’s or JMPR’s 
decision is based (see Chapter 3). For food additives, JECFA 
establishes specifications for the product in commerce, and these 
need to be compared with those for the product tested toxicologically. 
When specifications have been previously established – for example, 
by the Joint FAO/WHO Meeting on Pesticide Specifications – these 
should form the basis of consideration for the evaluation.  

 In order to establish an ADI, the following information should 
be available: 

 Information on the metabolism and toxicokinetics of the 
substance in species used for toxicity testing. At a minimum, data 
should be provided in the rat, in other species, such as the dog, 
when possible, and in humans, when available. The information 
should include rate and extent of absorption by the oral route, 
distribution to and any accumulation in tissues, rates and routes 
of elimination, extent of metabolism, any information on 
enzymes involved, saturation of toxicokinetic processes, and any 
auto-induction or auto-inhibition. 

 The chemical nature of the substance in the diet. For example, 
pesticides and veterinary drugs may undergo chemical changes 
and are frequently metabolized by the tissues of plants or animals 
that have been treated with them. Even when a single chemical 
has been used, the residues may consist of a number of 
derivatives with different toxicological effects, the exact nature 
of the residues varying among animals and plants and in different 
crops and products. It is also possible that processing and 
cooking of food can change the chemical nature of the substance 
of concern. This is regularly considered when assessing pesticide 
residues (FAO, 2016), but only occasionally (e.g. diflubenzuron; 
FAO/WHO, 2016a) when considering residues of veterinary 
drugs (Boobis et al., 2017). Stability and generation of reaction 
and breakdown products during food processing may also need 
to be considered for food additives.  

 Information on the toxicity or pharmacology, as appropriate, of 
the substance and any of its derivatives (e.g. those occurring as 
residues) that might occur in the diet. This includes data from 
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acute, short-term, long-term, reproductive and developmental 
toxicity studies in laboratory animals and data on their possible 
genotoxicity and carcinogenicity, together with information on 
MOA, as appropriate. When specific information on a relevant 
metabolite is not available, a reasoned case for its toxicological 
effects should be presented (see WHO, 2015). 

 Information on any effects of chemical forms to which 
consumers are exposed via the diet (parent compound and
relevant metabolites) on the intestinal microbiota of humans. 

5.4.3.2  Metabolite considerations 

 There may be occasions when the specific effects of concern for 
a compound are due entirely to a metabolite (or degradation product). 
In this situation, the activity of the parent compound would be 
discounted in establishing the ADI; the ADI would instead be based 
on the toxicological properties of the metabolite (or degradation 
product), with application of an appropriate uncertainty factor. 

 JMPR considers that metabolites of pesticides would, under 
certain conditions, be included in the ADI for the parent compound. 
Generally, if the metabolites in food commodities are qualitatively 
the same as and quantitatively similar to those observed in laboratory 
test species, the ADI would apply to such metabolites as well as to 
the parent compound. If the metabolites are not identical or not 
present at the same order of magnitude, separate studies on the 
metabolites may be necessary. When one or several pesticides are 
degradation products of another pesticide, a group ADI may be 
appropriate for the pesticide and its metabolites (e.g. oxydemeton-
methyl, demeton-S-methyl sulfone and demeton-S-methyl; FAO/
WHO, 1989). 

 The toxicological ADI for a veterinary drug established by 
JECFA is usually based on the toxicity of the parent drug, assuming 
that all metabolites have similar or lower potency. However, it may 
sometimes be necessary to calculate an ADI for individual 
metabolites. Although most compounds have been evaluated as 
individual substances, there are instances (e.g. streptomycin/
dihydrostreptomycin; FAO/WHO, 2002c) where an ADI has been 
established as a group ADI (see section 5.4.5) using relative potency 
factors as necessary.  
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5.4.3.3  Toxicological and pharmacological ADIs 

 The majority of ADIs are established based on toxicological 
effects. If pharmacological effects (i.e. effects on the target 
pharmacological system) are relevant and occur at doses in the same 
range as or lower than those at which the toxicological effects occur, 
the ADI may need to be established based on the pharmacological 
effect. This is relevant primarily to veterinary drugs and has been 
discussed elsewhere (EMA, 2012; Boobis et al., 2017). 

 Calculation of a toxicological or pharmacological ADI uses the 
same formula, as follows: 

ADI = 
POD 
UF 

where UF is the uncertainty factor and POD is the BMDL, NOAEL 
or LOAEL for a toxicological or pharmacological effect appropriate 
for assessing risk from lifetime exposure. 

5.4.3.4  Microbiological ADIs 

 Antimicrobial risks associated with residues of veterinary drugs 
have been systematically evaluated by JECFA for several years, and, 
where appropriate, the ADI is established based on a microbiological 
end-point (e.g. spiramycin and spectinomycin; FAO/WHO, 1998, 
1999b). At its 2017 meeting, JMPR agreed that it should consider, as 
part of its toxicological assessment of residues of pesticides, their 
possible effects on the human intestinal microbiota, using the 
approach developed by JECFA (FAO/WHO, 2017b). There will also 
be occasions when this is relevant to the evaluation of food additives 
(Roca-Saavedra et al., 2018). 

 A decision-tree approach that complies with Guideline 36 of the 
International Cooperation on Harmonisation of Technical 
Requirements for Registration of Veterinary Medicinal Products 
(EMA, 2019; VICH, 2019) has been developed by JECFA for 
assessing the effects of residues of veterinary drugs on the microbiota 
of the human intestinal tract. The same decision-tree is now also 
being applied to residues of pesticides by JMPR. The decision-tree is 
used to determine the need to establish a microbiological ADI for the 
substance under review.  
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 The decision-tree approach starts by determining whether there 
may be microbiologically active residues entering the human colon. 
This is done in three steps, in which the questions are: 

1) Step 1: Are residues of the substance, and (or) its metabolites, 
microbiologically active against representatives of the human 
intestinal flora? 

2) Step 2: Do residues enter the human colon? 

3) Step 3: Do the residues entering the human colon remain 
microbiologically active? 

If the answer is “no” to any of these three questions, then no 
microbiological ADI would be necessary, and the toxicological ADI 
would be used.  

 However, should such residues be present, then two end-points 
of public health concern – i) disruption of the colonization barrier and 
ii) an increase in the populations of resistant bacteria – need to be 
considered: 

4) Is it possible to provide scientific justification to eliminate testing 
(i.e. eliminate the need for a microbiological ADI) for either one 
or both end-points of concern? 

5) If the answer to question 4 is “no” for either end-point, the 
reference point for the end-point(s) of concern as established in 
question 4 should be identified. The most appropriate reference 
point should be used as the POD to determine the 
microbiological ADI. 

A microbiological ADI, based on either of the two end-points 
mentioned above (i.e. disruption of the colonization barrier or 
increase in populations of resistant bacteria), is established using 
either in vitro or in vivo data (see VICH, 2019, for details). The 
typical situation is that the microbiological ADI is derived from in 
vitro minimum inhibitory concentration (MIC) data that are obtained 
by exposing pure or mixed cultures of microorganisms from human 
faeces to the veterinary drug. In vivo data can be derived from germ-
free rodents implanted with human faecal flora (human flora–
associated rodents), from conventional laboratory animals or from 
studies on human volunteers.  
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The following formula is used to derive a microbiological ADI 
(mADI) from in vitro MIC data: 

Upper bound of mADI =  
MICcalc × Volume of colon content 

Fraction of oral dose available to 
microorganisms × 60 kg 

where: 

 The MICcalc represents the 90% lower confidence limit for 
the mean MIC50 (the minimum inhibitory concentration for 
50% of strains of the most sensitive relevant organism) of 
the relevant genera for which the substance is active. 

 The volume of colon content value of 500 mL is based on 
the volume of colon content measured in humans. 
Previously, this factor in the equation was “Mass of colon 
content” (220 g/day), but “Volume of colon content” (500 
mL) is now considered more appropriate (FAO/WHO, 
2016a, 2018). 

 The fraction of an oral dose available to microorganisms is 
ideally based on in vivo measurements for the substance 
administered orally. Alternatively, if sufficient data are 
available, the fraction of the dose available for colonic 
microorganisms can be calculated as 1 minus the fraction of 
an oral dose excreted in urine. Human data are preferred; in 
their absence, non-ruminant animal data are recommended. 
In the absence of data to the contrary, it should be assumed 
that metabolites have antimicrobial activity equal to that of 
the parent compound. The fraction may be lowered if there 
are quantitative in vitro or in vivo data to show that the 
compound is inactivated during transit through the intestine.  

 60 kg is the standard human body weight.  

The following formula is used to derive a microbiological ADI 
(mADI) from in vivo data: 

Upper bound of mADI =  
POD 

UF 
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In these cases, the uncertainty factor (UF) is used in an entirely 
different way than when applied to an ADI based on toxicological or 
pharmacological data. When determining a microbiologically based 
ADI, the uncertainty factor is used to account for uncertainty about 
the amount and relevance of the data available for review. For 
example, where microbiological effects are studied directly in 
humans, an uncertainty factor of 1 may be used. Generally, 
uncertainty factors considered appropriate for microbiological end-
points are in the range of 1–10, depending on the quantity and quality 
of the data. 

In establishing a microbiological ADI based on in vivo data, the 
following need to be considered, and the value of the microbiological 
ADI needs to be adjusted accordingly: 

 Uncertainty factors for in vivo studies should be applied as 
appropriate, taking into consideration the class of substance, the 
protocol, the numbers of donors and the sensitivity of the 
measured outcome variables. 

 As microbiological end-points used in in vivo evaluations reflect 
the reference point for impacts on the intestinal ecosystem, and 
not the host species itself, it is not necessary to include an 
uncertainty factor for interspecies differences. 

 Where both toxicological (or pharmacological) and 
microbiological ADIs have been determined, these are compared, and 
the lower is established as the ADI for the substance. 

5.4.3.5  Numerical ADI not needed 

There are occasions when the establishment of an ADI in 
numerical terms is not considered to be appropriate. This occurs most 
commonly when JECFA is assessing food additives, but it can occur 
occasionally in the assessment of residues of veterinary drugs by 
JECFA or of pesticides by JMPR. The situation arises when the 
estimated dietary exposure to or toxicity of the substance is so low 
that maximum anticipated exposure would be well below any 
numerical value that would ordinarily be assigned to the upper bound 
of the ADI. Under such circumstances, the term “ADI ‘not specified’” 
is used by JECFA for food additives. This term is defined to mean 
that, on the basis of the available data (chemical, biochemical, 
toxicological and other), the total daily dietary exposure to the 
substance arising from its use at the levels necessary to achieve the 
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desired technical effect (e.g. according to Good Manufacturing 
Practice for food additives, Good Practice in the Use of Veterinary 
Drugs for veterinary drugs or Good Agricultural Practice for 
pesticides) and from its acceptable background in food does not, in 
the opinion of JECFA or JMPR, represent a hazard to health. For that 
reason, and for the reasons stated in the individual evaluations, the 
establishment of an ADI in numerical form is not deemed necessary.  

A food additive meeting this criterion must be used within the 
bounds of Good Manufacturing Practice – that is, it should be 
technologically efficacious and should be used at the lowest level 
necessary to achieve this effect, it should not conceal inferior food 
quality or adulteration, and it should not create a nutritional 
imbalance (FAO/WHO, 1974). That the background occurrence of 
the chemical must be taken into account in the evaluation of its safety 
was articulated by the WHO Scientific Group on Procedures for 
Investigating Intentional and Unintentional Food Additives (WHO, 
1967). 

 The thirty-second JECFA recognized that in some instances it 
might be inappropriate to establish an ADI for residues of a veterinary 
drug. When it has been determined that establishing an ADI is 
unnecessary because of a large margin of safety, the recommendation 
of a maximum residue limit (MRL) is also unnecessary. For example, 
at the fortieth meeting of JECFA, an ADI “not specified” was 
established for bovine somatotropin and its analogues (FAO/WHO, 
1993). JECFA noted the lack of activity of the recombinant 
somatotropins and insulin-like growth factor-1 after oral dosing as 
well as the low amounts and non-toxic nature of the residues of these 
substances, even at exaggerated doses. JECFA concluded that these 
results provided an extremely large margin of safety for humans 
consuming dairy products from animals treated with the recombinant 
somatotropins and therefore warranted the establishment of an ADI 
“not specified”. This was reconfirmed at the seventy-eighth meeting 
of JECFA (FAO/WHO, 2014a). 

 JMPR also recognizes that in some instances it might be 
inappropriate to establish an ADI. When it has been determined that 
establishing an ADI is unnecessary because of a large margin of 
safety, the recommendation of an MRL is also unnecessary. Although 
it is rare that the toxicological profile of a pesticide is such that an 
ADI is unnecessary, the situation has arisen at least once (e.g. the 
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2012 JMPR concluded that an ADI for ametoctradin was 
unnecessary; WHO, 2013). 

5.4.3.6  Temporary ADIs and temporary MRLs 

Temporary ADIs are occasionally established by JECFA in two 
situations. One situation is when the safety data for a new substance 
are deemed adequate to establish an ADI, but some non-toxicological 
information (e.g. some chemical specification information) is 
missing. For example, temporary ADIs were established for the food 
additives lutein esters from Tagetes erecta and spirulina extract 
because the chemical specifications were tentative (FAO/WHO, 
2014b, 2019). The other situation is when the key safety data are 
adequate to establish an ADI, yet there are minor deficiencies in 
toxicological information. An example of the latter situation is the 
temporary ADI established for the food additive 
polydimethylsiloxane, pending results of studies to elucidate the 
mechanism and relevance of the ocular toxicity observed in the 
submitted toxicology studies (FAO/WHO, 2009b). In both situations, 
there is confidence that the use of the substance is safe over the 
relatively short period of time until the missing information is 
provided. A temporary ADI thus may be established pending the 
submission of appropriate data to resolve the corresponding issue or 
data limitation on a predetermined timetable established by JECFA. 
When establishing a temporary (numerical) ADI, JECFA always uses 
a higher than usual uncertainty factor, usually by a factor of 2. 

JECFA and JMPR may also recommend temporary MRLs for 
residues of veterinary drugs or residues of pesticides. This may be 
done for reasons similar to those given above in relation to temporary 
ADIs or for additional reasons, such as the lack of availability of 
reliable analytical methods or the need for additional information on 
the nature or quantification of residues.  

In both cases (temporary ADI or temporary MRL), the additional 
data required for the establishment of an ADI or for recommendation 
of an MRL are clearly stated in the JECFA and JMPR reports. The 
additional data required must be submitted by the date specified in 
the report and should be evaluated by the relevant committee (JECFA  
or JMPR) at its next meeting. 

At the reassessment of a substance with a temporary ADI, the 
options are as follows: 1) to establish a full ADI, 2) to extend the 
temporary ADI or 3) to not extend the temporary ADI (i.e. the ADI 
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is withdrawn). The same options are available with temporary MRLs. 
For example, the thirty-sixth JECFA established a temporary ADI 
and temporary MRLs for the veterinary drug levamisole and 
requested additional toxicological and residue data for re-evaluation 
by JECFA (FAO/WHO, 1990). Based on the additional data 
provided, the forty-second JECFA established an ADI. However, 
JECFA withdrew the temporary MRL for levamisole in milk, as no 
additional data were made available. Similarly, JECFA withdrew the 
MRL in eggs because of high amounts of residues (FAO/WHO, 
1995).  

5.4.3.7  Short-term studies as basis for ADI 

 When no adverse health effects are seen in long-term studies, an 
uncertainty factor of 100 may be applied to the POD derived from 
short-term studies in which higher doses have been used at which an 
effect has been noted, to establish an ADI (e.g. Brilliant black; 
FAO/WHO, 1981). Typically, acceptable short-term studies need to 
be at least 3 months in duration. 

 Occasionally, short-term toxicity studies have been used as the 
basis to establish an ADI in cases in which no long-term studies were 
available. In such cases, the evaluation is not based solely on short-
term studies, but is supported by other data, such as biochemical and 
genotoxicity studies and possibly reproductive or developmental 
toxicity studies. An example is rosemary extract, for which JECFA 
established an ADI based on the highest NOAEL from five 90-day 
studies (FAO/WHO, 2016b). An additional uncertainty factor in 
respect of the lack of long-term studies may or may not be applied, 
depending on the nature of the substance and the weight of evidence 
from the supporting data. 

5.4.3.8  Special consideration: allergenicity 

 There have been a limited number of veterinary drugs for which 
no numerical value or range could be determined for the toxicological 
ADI. For example, in the case of ampicillin, based on considerations 
of allergenicity, the most sensitive toxicological end-point, JECFA 
did not establish an ADI, as there were insufficient data with which 
to identify a toxicological NOAEL (FAO/WHO, 2018). However, 
JECFA had previously concluded that the risk of allergenicity from 
the structurally related antibiotic benzylpenicillin would be minimal 
if daily intake in the diet was kept below 0.03 mg per person (0.0005 
mg/kg body weight for a 60 kg adult) (FAO/WHO, 1999b). This was 
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referred to as a toxicological guidance value. JECFA concluded that 
because ampicillin is much less allergenic than benzylpenicillin, the 
microbiological ADI of 0–0.002 mg/kg body weight should be 
protective of potential allergenicity from residues of ampicillin in the 
diet. Further details can be found in the IPCS guidance on assessing 
immunotoxicity, including allergenicity (IPCS, 2012). 

5.4.4  Tolerable intakes 

 The principles for establishing tolerable intakes, such as TDIs, 
TWIs (formerly PTWIs) and TMIs (formerly PTMIs), are the same 
as for acceptable intakes, as described in section 5.4.3. JECFA has 
considered the presence of food contaminants on many occasions 
since 1972, when mercury, lead and cadmium were first assessed 
(FAO/WHO, 1972). These food contaminants have included, in 
addition to heavy metals, environmental contaminants such as 
dioxins, mycotoxins, impurities arising in food additives, solvents 
used in food processing, packaging material migrants and residues 
arising from the use of animal feed additives or the non-active 
components of veterinary drug formulations. Each of these classes of 
food contaminants possesses its own unique characteristics and 
evaluation requirements. In addition, JECFA has considered 
substances that are no longer approved as veterinary drugs, but which 
might be used illegally and hence should be considered as 
adulteration of food (e.g. malachite green; FAO/WHO, 2009c). 
JMPR has on occasion considered metabolites or degradation 
products that can also occur as contaminants (e.g. aniline; 
FAO/WHO, 2015) as well as substances no longer approved for 
pesticidal use (e.g. aldrin/dieldrin; FAO/WHO, 1994), but where 
previous or illegal use can lead to contamination of food. Thus, the 
principles for the evaluation of such chemicals should pertain to 
classes or groups of contaminants rather than to food contaminants as 
a whole. Guidelines for the evaluation of classes of contaminants are 
provided in various sections of this EHC monograph.  

 For contaminants, epidemiological studies are often available 
that can form the basis for establishing tolerable intakes. If sufficient 
information is available to perform a dose–response assessment, the 
POD can be defined from epidemiological studies, and uncertainty 
factors can then be applied according to the principles outlined in 
section 5.4.2. JECFA often applies the concept of CSAFs when 
establishing tolerable intakes for contaminants, particularly in 
assessing interspecies and interindividual differences in 
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toxicokinetics. JECFA may also use PBTK modelling for this 
purpose (e.g. acrylamide; FAO/WHO, 2011a,b). 

 For contaminants that accumulate in the body over time, 
consumption of food containing above-average levels of a 
contaminant on any day may exceed the proportionate share of its 
weekly (TWI) or monthly (TMI) tolerable intake. JECFA’s 
assessment considers such daily variations, but its real concern is 
prolonged exposure to the contaminant, because of its accumulation.  

5.4.5 Group ADIs/tolerable intakes  

If several substances that produce similar toxic effects are to be 
considered for use as food additives, pesticides or veterinary drugs, 
or occur as contaminants (e.g. dioxins), it may be appropriate to 
consider the group of substances together in establishing an ADI or 
tolerable intake (TDI, TWI, TMI), to limit their overall dietary
exposure. For this to be feasible, the substances should produce the 
same adverse outcome, by a similar MOA. Either a common ADI or 
tolerable intake is established for the group or one member of the 
group is identified as the index compound, and exposure to each 
member of the group is adjusted according to its potency relative to 
that of the index compound.  

When establishing a group ADI or tolerable intake, flexibility 
should be used in determining which POD to select. As a conservative 
approach, a group ADI or tolerable intake could be based on the 
substance with the lowest POD. The relative quality and duration of 
studies on the various substances should be considered when 
establishing the group ADI or tolerable intake or when choosing an 
index compound. In addition, choice of index compound should 
include consideration of the extensiveness of the toxicological 
database. Relative potency can be based on the POD, but other DRM 
techniques could also be used for this purpose. In the case of dioxins 
and dioxin-like substances, toxic equivalents (TEQs) are agreed by 
international consensus (FAO/WHO, 2002a). When the POD for one 
of the substances differs appreciably from the others in the group, that 
substance may need to be treated separately.  

 When considering a substance that is a member of a series of 
substances that are very closely related chemically (e.g. fatty acids, 
acids and their simple salts, or structurally related metabolites of a 
known toxic parent compound), but for which toxicological 
information is limited, it may be possible to base its evaluation on the 
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group ADI or tolerable intake established for the series of substances 
or, in the case of a pesticide metabolite, on the ADI for the parent 
compound. This procedure can be followed only if a great deal of 
toxicological information is available on at least one member of the 
series. Confidence in the procedure is enhanced when the known 
toxic properties of the various substances in a series fall along a well-
defined continuum. Interpolation, but not extrapolation, can be 
performed. The use of this procedure represents one of the few 
situations in which structure–activity relationships have been used in 
safety assessments by JECFA and JMPR for chemicals in food.  

 In some instances, group ADIs can be established primarily 
based on metabolic information. For example, the safety of esters 
used as food flavouring agents can be assessed based on toxicological 
information on their constituent acids and alcohols, provided it is 
shown that the esters are quantitatively hydrolysed in the gut. 

5.4.6  ARfDs 

5.4.6.1  General considerations 

JMPR routinely evaluates the acute, in addition to the chronic, 
effects of exposure to pesticide residues in food and has developed a 
proposed test guideline for a single-dose oral toxicity study 
(FAO/WHO, 2001a) and guidance on establishing ARfDs for 
pesticides (FAO/WHO, 1999a, 2001b, 2002d, 2004; Solecki et al., 
2005). The guidance provided in these documents for agricultural 
pesticides should be of value in general considerations of the 
necessity of establishing an ARfD, as well as in the specific end-point 
considerations in establishing an ARfD. JECFA has also developed 
guidance on the need and process for establishing ARfDs for residues 
of veterinary drugs, for both toxicological and microbiological end-
points (WHO, 2017). The text that follows relates mainly to residues 
(of pesticides or veterinary drugs), but JECFA uses similar principles 
for other types of substances (e.g. deoxynivalenol: FAO/WHO, 
2011a; cyanogenic glycosides: FAO/WHO, 2011c) when the 
establishment of an ARfD is considered necessary.  

 The ARfD of a chemical refers to the amount of a substance that 
can be ingested in a period of 24 hours or less with reasonable 
certainty of no harm (see section 5.4.1). Because the ARfD is 
compared with dietary exposure data for a 24-hour period, this will 
provide a conservative risk assessment for rapidly reversible effects 
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(e.g. acetylcholinesterase inhibition by carbamates) where the ARfD 
would be applicable to a single eating occasion. 

 The decision as to whether the establishment of an ARfD is 
necessary should be based on the hazard profile of a substance, as 
well as on specific end-points that may be particularly relevant to 
effects resulting from acute exposure. Most of the scientific concepts 
applying to the establishment of ADIs or tolerable intakes apply 
equally to the establishment of ARfDs (e.g. consideration of the 
scientific quality of studies, selection of the critical effect). When 
assessing the need for an ARfD, the entire database should be 
reviewed, including all available information on the effects of human 
exposure (Solecki et al., 2005), using a weight-of-evidence approach 
to determine whether adverse effects seen in repeated-dose toxicity 
studies might be relevant to single exposures.  

 Usually a single ARfD is established for the whole population. 
However, in exceptional cases, two values may be required (e.g. one 
for the general population and one for a subgroup of the population); 
this most often occurs when the critical effect is developmental 
toxicity, and only the developing fetus is at risk, in which case an 
ARfD would be set for women of childbearing age. In some cases, it 
may also be necessary to establish an additional ARfD for significant 
metabolites if they occur on crops and are therefore included in the 
residue definition (e.g. if these metabolites are likely to show an acute 
toxicity profile that is different from that of the parent compound) or 
when metabolites formed in plants or animals are not observed in 
experimental animal metabolism studies.  

 If, during the establishment of an ARfD, it becomes apparent that 
a previously established ADI or tolerable intake is higher than the 
ARfD, the ADI or tolerable intake should be reconsidered. Such a 
situation can occur for a number of reasons (e.g. the availability of 
additional studies, or substances producing more severe effects when 
given by gavage than in the diet) (FAO/WHO, 2001b). In such a case, 
even when there is no obvious basis to revise the ADI or tolerable 
intake, it is recommended that the lower value (i.e. the ARfD) be used 
as the ADI or tolerable intake. 

A different approach is used for the establishment of an ARfD 
based on an effect on the human gut microflora, which closely 
follows the approach outlined in section 5.4.3.4 for establishing a 
microbiological ADI. Of the two potential microbiological end-points 
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of concern, JECFA considers disruption of the colonization barrier to 
be the more relevant for acute exposure. It is considered that a single 
exposure to a substance is unlikely to provide the selective pressure 
necessary to change the susceptibility of the bacterial population 
within the microbiome (i.e. antimicrobial resistance).  

The key difference between establishing a microbiological ARfD 
and establishing a microbiological ADI is the estimate of 
concentration of the substance in the lumen of the colon. In acute 
dietary exposure to a microbiologically active substance, the dose is 
ingested as a one-mealtime event and transits down the 
gastrointestinal tract into the colon, which would contain no other 
amount of the same substance. In the case of chronic dietary exposure 
to a microbiologically active substance, there is an assumption of 
ingestion of the substance every day – that is, each day the substance 
ingested in a meal enters the gastrointestinal tract, which already 
contains the same substance as a result of ingestion in a meal from 
the day before. It can be considered to be present at a “steady state” 
over a lifetime. Thus, the exposure of intestinal bacteria to a 
microbiologically active substance in vivo from a single exposure 
will be lower than that occurring as a result of regular ingestion of the 
same substance. In addition, available data show that a meal does not 
transit through the gastrointestinal tract as an intact bolus as is 
conservatively assumed in calculations of a microbiological ADI. 
There is a sequential process of stomach and small intestine loading, 
transit and emptying, leading to a colonic entry that occurs as a series 
of small pulsed doses over time. Hence, substances contained within 
a single meal will not enter the colon as a single bolus dose but in a 
gradient, suggesting that the use of a dilution correction factor in the 
numerator of the equation for determining the ARfD for 
microbiological effects would be appropriate, conservatively a factor 
of 3 (three meals per day). 

5.4.6.2  Practical cut-off value for ARfDs 

 Bearing in mind practical considerations, such as the maximum 
quantity of a particular food likely to be consumed in a single sitting, 
a value above which the formal establishment of an ARfD is 
unnecessary can be proposed (comparable to ADI “not specified”). 
Hence, when the acute toxicity of a substance is so low that maximum 
anticipated exposure would be well below any numerical value that 
would ordinarily be assigned to the ARfD, an ARfD is considered 
“unnecessary”. This practical cut-off value (upper limit) for an ARfD 
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should be considered with reference to the potential range of dietary 
exposures to an acutely toxic substance. JMPR has estimated that an 
ARfD of 5 mg/kg body weight would serve as a conservative value 
to cover all eventualities for agricultural pesticides, based on practical 
considerations on consumption and maximum residue levels in foods. 
JECFA has estimated that a lower ARfD would be adequate for this 
purpose, but in the interests of harmonization decided to adopt the 
cut-off proposed by JMPR. An ARfD cut-off at 5 mg/kg body weight 
would equate to a POD of 500 mg/kg body weight per day in a 
laboratory animal study, when default uncertainty factors are applied. 
Thus, if no acute toxicity is seen at doses below 500 mg/kg body 
weight, then there would be no necessity to establish an ARfD. 

5.4.6.3  Biological and toxicological considerations 

JMPR has given detailed consideration to the use of particular 
toxicological end-points that are most relevant to establishing ARfDs 
(reviewed by Solecki et al., 2005), with a focus on interpreting effects 
that have been problematic when deciding whether an effect is 
relevant to an acute exposure to residues of agricultural pesticides in 
foods. More recently, JECFA has published guidance on the 
establishment of ARfDs for residues of veterinary drugs, covering 
toxicological, pharmacological and microbiological effects (WHO, 
2017). Much of this guidance is relevant to residues of pesticides and 
possibly to other chemicals found in food. The following are key 
points for consideration when evaluating the database regarding the 
potential for acute toxicity:  

 In the absence of data to the contrary, all indications of acute 
toxicity observed in repeated-dose toxicity studies should be 
considered as potentially relevant to establishing an ARfD. 

 Weight should be given to observations and investigations at the 
beginning of repeated-dose toxicity studies.  

 The BMDL/NOAEL/LOAEL from the most sensitive species 
should be used as the POD for acute effects unless there is 
evidence to demonstrate that it is not appropriate for a human 
risk assessment. 

 Isolated findings showing no specificity or clear pattern are not 
necessarily indications of acute toxicity.  
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In determining the appropriateness of using doses and end-points 
from short- or long-term toxicity studies to establish an ARfD, a 
weight-of-evidence evaluation should be conducted that considers all 
relevant data. This evaluation includes what is known about the MOA 
for toxicity and the pertinent biology of the system that is affected. 
One of the main challenges is to evaluate whether those effects are 
also likely to occur at the same doses following an acute exposure. A 
conservative assumption would be that this is the case. 

Toxicological information from interim results or consideration 
of progression of a lesion in repeated-dose toxicity studies may 
provide insights into the relevance of end-points for establishing 
ARfDs. For example, if interim data indicate that the response is 
minimal and becomes pronounced or severe after increasing exposure 
duration, then repeated exposures are probably the determining factor 
in the response. Interpretation of the relevance of end-points should 
also consider toxicokinetic information that would raise concern for 
acute toxicity, such as slow elimination kinetics or toxicities 
dependent on the maximum plasma concentrations (Cmax) achieved, 
as well as information on the acute toxicity of chemicals with a 
similar structure. If structure–activity considerations, such as 
compound class, suggest the likelihood of acute effects but adequate 
data supporting such effects are not available, then consideration 
should be given to using the upper bound of the ADI or the tolerable 
intake as a conservative surrogate for a health-protective acute 
guidance value.  

5.4.6.4  Stepwise process for establishing ARfDs  

The following stepwise process for establishing ARfDs is 
recommended: 

 Step 1: Evaluate the total database for the substance, and 
establish a toxicological (and, if relevant, pharmacological) and 
antimicrobial profile for the active substance. 

 Step 2: Consider the principles for not needing to establish an 
ARfD: 
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– No findings indicative of effects elicited by an acute 
exposure are observed at doses up to 500 mg/kg body 
weight; and/or 

– The substance is not an antimicrobial, or the substance is an 
antimicrobial, but the answer to step 1, 2 or 3 of the decision-
tree described in section 5.4.3.4 is “no”; and/or 

– No substance-related mortalities are observed at doses up to 
1000 mg/kg body weight in single-dose oral studies; and/or 

– If single-dose mortality is the only trigger, the cause of death 
is confirmed as not being relevant to human exposures 
(although this will rarely be possible); and/or 

– For veterinary drugs, dietary exposure to residues through 
consumption of an injection site does not exceed 5 mg/kg 
body weight, when they are used in accordance with Good 
Practice in the Use of Veterinary Drugs – that is, at the 
established regulatory withdrawal period according to the 
approved label use. 

 Step 3: If a decision is taken at this stage not to establish an ARfD, 
an explicit statement should be provided that “it was unnecessary 
to establish an ARfD” and the reasons clearly explained.  

 Step 4: If the above criteria indicate the need to establish an 
ARfD, then the most appropriate data and end-point should be 
selected, and the BMDL/NOAEL/LOAEL for that end-point 
should be identified and used as the POD. 

 Step 5: An ARfD should be derived by application of appropriate 
uncertainty factors to the POD. 

 For substances with a toxicological or pharmacological POD for 
acute effects below the cut-off of 500 mg/kg body weight per day, a 
toxicological ARfD should be determined. For substances with 
antimicrobial effects, a microbiological ARfD should be determined.  

For veterinary drugs, when there could be high exposure from 
the injection site, the database should be assessed for potential acute 
effects at doses above the cut-off value of 500 mg/kg body weight per 
day. This may necessitate establishing a particularly high ARfD, to 
ensure protection from exposure to injection site residues. 
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An end-point from a repeated-dose toxicity study should be used 
if the critical effect of the substance has not been adequately 
evaluated in a single-dose study. Guidance on potentially relevant 
end-points can be found in Solecki et al. (2005). This is likely to be a 
more conservative approach and should be stated as such. This does 
not mean that an uncertainty factor other than the default value should 
be applied in establishing the ARfD. A refinement of such a POD 
(e.g. in a special single-dose study) may be considered if the acute 
exposure estimation exceeds such a potentially conservatively 
established ARfD. This will be necessary for only a very limited 
number of substances, according to a retrospective analysis (Solecki 
et al., 2010). The Organisation for Economic Co-operation and 
Development (OECD) has developed guidance for the establishment 
of an ARfD that includes, as Annex II, “Guidance for conducting a 
single exposure toxicity study” (OECD, 2010), based on the guidance 
developed by JMPR, to inform investigators should a specific study 
be considered necessary as a basis for refinement of the ARfD. 

 Some veterinary drugs designed to act on the physiology of target 
animals (e.g. mammals) are likely to have an MOA that is also 
relevant for humans, producing effects that would not be desirable in 
the consumer. Therefore, pharmacological effects (i.e. those effects 
caused by the pharmacological MOA of the molecule) are relevant 
for consumer safety and, hence, for the establishment of an ARfD. 

 Pharmacological effects (i.e. interaction with molecular targets 
such as receptors) were not considered in the context of the ARfD by 
Solecki et al. (2005) or OECD (2010). Such effects do not 
automatically raise an acute health concern, but need to be considered 
for acute and chronic health effects in the same way as for 
toxicological effects. In practice, this may lead to the same numerical 
value for the ADI and ARfD. For the evaluation of pharmacological 
effects, careful consideration should be given to the MOA of the 
substance. In some cases, the MOA can involve several different 
effects on physiological systems. For example, stimulation of 
adrenergic receptors can have acute effects on airways, blood 
pressure and heart rate. In such cases, studies may be needed with 
observations at appropriate time points to cover the range of effects 
arising from the MOA. Particular attention should be paid to the 
appropriateness of the observation times, as they may not be the same 
as for other toxicological end-points. For example, if the plasma 
levels peak at 2 hours after oral administration, then it would make 
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no sense to take measurements of acute pharmacological effects at 
24 hours after dosing.  

5.4.6.5  Uncertainty factors for ARfDs 

 The process of determining a toxicological ARfD is essentially 
the same as that for determining a toxicological ADI or tolerable 
intake (see sections 5.4.3 and 5.4.4, respectively), involving the 
identification of the appropriate POD and application of an 
uncertainty factor. As explained above, when the effect under 
consideration is due to reversible short-term interaction of the 
substance with a pharmacological target (e.g. a receptor or ion 
channel), then the concentration of the substance rather than total 
exposure usually determines the magnitude of the effect (i.e. the Cmax 
is likely to be more relevant than the AUC). Similarly, if the effect of 
concern is due to a topical effect, such as direct irritation, then the 
local concentration at the site of action is more relevant than the total 
exposure expressed on a body weight basis. In such cases, there will 
be less interspecies and interindividual variation in toxicokinetics, 
which should be taken into consideration in the choice of uncertainty 
factor (see section 5.4.2).  

 If human data are available but are not sufficient to be used 
directly to establish the ARfD, they might nevertheless be of value in 
determining quantitative differences in the toxicokinetics or 
toxicodynamics of the substance (e.g. data on the production and 
degradation of a toxic metabolite) between experimental animals and 
humans, enabling the calculation of data-derived CSAFs. 

 The use of uncertainty factors that are lower than the default 
values (see section 5.4.2) might be appropriate if the end-point used 
to establish the ARfD is of minimal adversity and the POD is from a 
repeated-dose toxicity study (e.g. increased organ weight with 
minimal pathological change, or reduced feed consumption and body 
weight gain observed in the first days of dosing), as the use of such 
an end-point to establish an ARfD is very likely to be conservative. 
Again, the choice of uncertainty factor used must be fully justified. 

 Situations where additional uncertainty factors might be used are 
the same as those when establishing an ADI or tolerable intake. 
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5.4.6.6  ARfD calculation 

 When a toxicological or pharmacological effect serves as the 
basis of the POD, the ARfD is determined as follows: 

ARfD = 
POD 
UF 

where: 

 POD is the BMDL, NOAEL or LOAEL; 
 UF is the default uncertainty factor of 100 when 

extrapolating from data in experimental animals to humans 
or 10 when using data from a human study, a CSAF, a DDEF 
or some other combination of factors, as justified in the 
assessment. 

 When a microbiological effect based on in vitro data (e.g. MIC, 
no-observed-adverse-effect concentration [NOAEC]) is used to 
determine the microbiological ARfD (mARfD), the following 
equation is used: 

mARfD =  

(MICcalc or other POD) × Correction factors × 
Volume of colon content 

Fraction of oral dose available to microorganisms 
× 60 kg 

where: 

 Correction factors (where appropriate) take into account 
considerations that are not used for the microbiological ADI, 
but may be appropriate for the microbiological ARfD. These 
include a factor of 3 to allow for temporal dilution during 
gastrointestinal transit and for dilution by consumption of 
additional meals, as explained above (see section 5.4.6.1). 
Additional factors may be considered to take into account 
the inoculum effect on MIC determinations, pH effects on 
MIC and possibly other physicochemical-specific factors of 
the growth conditions used in testing (e.g. incubation 
atmosphere, growth substrates/factors that affect growth and 
metabolism of the tested organisms; Cerniglia & Kotarski, 
1999, 2005; Maurer et al., 2015). When data from 
continuous or semi-continuous culture and batch-fed culture 
are used, the effects of an acute dose (one-time exposure) of 
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the substance on the intestinal microbiota should be 
evaluated; however, if this information is not available, then 
studies of repeated doses or continuous exposure to the 
substance (i.e. after 1 or a few days of substance added to 
the test systems) may yield a POD for acute exposure or may 
provide sufficient information to derive a correction factor.

 Other terms are explained in section 5.4.3.4. 

 When a microbiological end-point based on a POD from in vivo 
data is used to establish the microbiological ARfD (mARfD), the 
following equation applies: 

mARfD = 
POD 
UF 

 In establishing an ARfD based on a microbiological end-point, 
the following need to be considered, in addition to the factors 
described in section 5.4.3.4 for microbiological ADIs, and the value 
of the microbiological ARfD needs to be adjusted accordingly: 

 Were the assumptions and uncertainty factors used in 
determining the microbiological ADI applicable for a single 
exposure? For example, were multiple doses administered to the 
animals? 

 If the experimental design used repeated dosing to determine a 
microbiological ADI for chronic exposure, particular attention 
should be paid to observations and investigations at the 
beginning of the studies (i.e. after 1 or a few days) as the basis to 
establish an ARfD, or as the basis for a correction factor. 

 Where both toxicological (or pharmacological) and 
microbiological ARfDs have been determined, these are compared, 
and the lower is established as the ARfD for the substance. 

5.4.6.7  Different ARfDs for population subgroups  

 It is preferable, especially for clarity of subsequent risk 
management and enforcement, to establish a single ARfD to cover 
the whole population. It is important to ensure that any ARfDs 
established are adequate to protect the embryo or fetus from possible 
in utero effects. Although an ARfD based on developmental 
(embryo/fetal) effects would necessarily apply to pregnant women 
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(or, more pragmatically, women of childbearing age), it is recognized 
that such an ARfD would not be relevant to other population 
subgroups and hence may be very conservative for these groups. This 
will be the case, for example, for children 1–6 years of age for whom 
specific acute consumption data are available and who can therefore 
be modelled separately with respect to acute dietary exposure to a 
substance. Thus, in those situations in which a developmental end-
point drives an ARfD for a substance exhibiting no other toxicity at 
the POD determined for the developmental effect, consideration 
could be given to establishing a second ARfD for the rest of the 
population. This second ARfD would be based on another, non-
developmental, end-point and would give a higher ARfD for the rest 
of the population than that for pregnant women. Alternatively, a 
conclusion might be reached that an ARfD is not necessary for the 
rest of the population.  

5.4.6.8  Dietary exposure considerations in relation to ARfDs 

 For risk characterization purposes, the ARfD of a substance is 
compared with the estimated acute dietary exposure to the substance 
from various foods. This allows risk managers to identify for which 
food commodities and substance uses regulatory actions may be 
necessary for public health protection. The methodology for 
estimating acute dietary exposures is described in detail in Chapter 6. 

5.5  MOE approach  

There are three general cases where the MOE approach is 
applied: 1) when assessing a presumed DNA-reactive mutagenic 
carcinogen, 2) when there are insufficient data for deriving an HBGV 
and 3) for additives used in infant formula at relatively high inclusion 
levels. 

The MOE is defined as the ratio of the POD (e.g. BMDL or 
NOAEL) to the theoretical, predicted or estimated exposure dose or 
concentration (ED):  

MOE = 
POD 
ED 

MOEs should be rounded to, at most, two significant figures to avoid 
spurious precision.  
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It is important to note that an MOE is not an absolute value but 
rather a relative comparison of human exposure to a POD derived 
from laboratory animal or human studies. There are also strengths and 
weaknesses inherent in the data used for its calculation.  

The MOE approach is intended to provide some indication to risk 
managers as to the level of concern and to help in assessing the need 
for, and urgency of, further action. The approach provides advice to 
inform risk managers of how close human exposures are to those 
anticipated to produce a measurable effect in laboratory animals or 
humans. In addition, MOEs for different substances or for different 
risk mitigation strategies can be compared to assist risk managers in 
prioritizing or assessing risk management actions (Benford et al., 
2010). 

5.5.1  MOE for DNA-reactive mutagenic carcinogens 

JECFA has used the MOE approach most often for substances 
that are (presumed to be) DNA-reactive mutagenic carcinogens (see 
Chapter 4, section 4.5). For such substances, it is generally not 
considered appropriate to establish an HBGV. JECFA has typically 
used the BMDL10 for carcinogenicity derived from laboratory animal 
studies as the POD for this purpose (e.g. ethyl carbamate: 
FAO/WHO, 2006; acrylamide: FAO/WHO, 2011a,b). There are 
some situations in which it has been possible to calculate the potency 
for a mutagenic carcinogen directly from epidemiological data. For 
example, at its eighty-third meeting, JECFA (FAO/WHO, 2017a) 
evaluated the risk of aflatoxin, a known mutagenic carcinogen, and 
used epidemiological data from Yeh et al. (1989) to derive potency 
estimates. However, for most such substances, although 
epidemiological data may exist, they do not often enable 
determination of potency. Hence, in order to provide risk managers 
with some indication of the level of health concern, the MOE 
approach is applied.  

Note that the MOE approach is used in these situations in 
preference to linear extrapolation from a BMDL. At its sixty-fourth 
meeting (FAO/WHO, 2006), JECFA considered the use of linear 
extrapolation from the BMDL to estimate the risk of cancer at 
relevant levels of human exposure and concluded that  

calculation of the intake associated with an incidence of 1 in 1 million 
from the BMDL for a 10% incidence using linear extrapolation is simply 
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equivalent to dividing the BMDL by 100 000, and this approach is 
therefore no more informative than calculation of an MOE.  

There is not a strict single criterion to decide whether the size of 
the calculated MOE for a DNA-reactive mutagenic carcinogen is 
indicative of a human health concern. The following uncertainties 
need to be considered when interpreting such an MOE: 1) 
uncertainties regarding human exposure (i.e. whether the exposure is 
theoretical, predicted or estimated), 2) uncertainties in extrapolating 
from laboratory animals to humans (i.e. accounting for interspecies 
differences and human variability), 3) uncertainties related to the 
quality of the study and 4) additional uncertainties in the process of 
carcinogenesis (e.g. human variability in DNA repair or cell cycle 
control). These factors need to be considered when interpreting the 
MOE with respect to health concerns and need to be clearly described 
in the report.

5.5.2  MOE for substances with insufficient data 

The MOE approach may be needed for contaminants for which 
an HBGV cannot be established because there are only limited data 
available. For example, advice may be needed because contamination 
can be minimized but not eliminated. Similarly, the MOE approach 
may be appropriate for advice on whole foods and flavouring agents. 
In contrast, it is possible to request additional data for regulated or 
registered food additives and pesticides. In order to provide risk 
managers with some indication of the level of health concern, JECFA 
has, since its sixty-fourth meeting (FAO/WHO, 2006), applied the 
MOE approach. On occasion, JMPR has also used this approach.  

When interpreting MOEs for substances with insufficient data, 
consideration needs to be given to the same factors that are used in 
describing the uncertainties around HBGVs. These include human 
variability, extrapolation from laboratory animal data to humans, 
nature of the effect that is the basis of the POD, the assumptions made 
regarding dietary exposure and database uncertainties (e.g. the extent 
to which potentially relevant end-points have been assessed). These 
factors need to be considered when interpreting the MOE with respect 
to health concerns and should be clearly described in the report.  

JECFA has used the MOE approach for contaminants for end-
points other than carcinogenicity by a presumed DNA-reactive 
mutagenic MOA – for example, for polybrominated diphenyl ethers 
(PBDEs). An HBGV could not be proposed for PBDEs because of 
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multiple considerations. These included (but were not limited to) the 
following: 1) the fact that PBDEs represent a complex group of 
related chemicals, and the pattern of PBDE congeners in food is not 
clearly defined by a single commercial mixture; 2) data were 
inadequate to establish a common mechanism of action that would 
allow a single congener to be used as a surrogate for total exposure 
or, alternatively, as the basis for establishing toxic equivalency 
factors; and 3) the lack of a systematic database on toxicity, including 
long-term studies on the main congeners present in the diet, using 
standardized testing protocols, that defined dose–response 
relationships for individual PBDEs of importance (FAO/WHO, 
2006).  

In the evaluation of flavouring agents, JECFA applies the MOE 
approach to substances that exceed their respective threshold of 
toxicological concern values (see Chapter 9). 

5.5.3  MOE for additives used in infant formula 

The MOE approach is used by JECFA in the evaluation of food 
additives for use in infant formula, as the ADI concept does not apply 
to infants up to the age of 12 weeks because they might be at risk at 
lower levels of exposure compared with older age groups. This is due 
to special considerations, such as their immature metabolic 
capacities, the greater permeability of the immature gut, and their 
rapid growth and development. Therefore, risk characterization for 
very young infants has to be considered on a case-by-case basis 
(FAO/WHO, 2014b).  

Toxicological testing strategies for food additives to be used in 
infant formula require approaches that differ from those generally 
adopted for food additives. For example, evaluation of food additives 
to be used in infant formula requires consideration of safety studies 
involving exposure of very young animals. The reproductive and 
developmental toxicity studies commonly available for evaluations 
of chemicals in food address the possible impact on neonatal animals 
arising through in utero and lactational exposure. However, they 
usually do not include direct oral administration to neonatal animals, 
and such studies are required for the evaluation of food additives in 
infant formula. If the food additive is proposed for use in infant 
formula at relatively high levels (e.g. 0.1% or greater), then 
conducting toxicological studies in neonatal animals at doses 2 or 
more orders of magnitude greater than the anticipated human 
exposure, which is the approach commonly taken for food additives, 
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may not be feasible. Studies on the effects of direct administration of 
the food additive to neonatal animals may, therefore, involve use of 
doses that are only small multiples of human infant exposure. For this 
reason, the MOEs for some food additives proposed for use in infant 
formula can be quite low, in the range of 1–10 for infants.  

Interpretation of the MOE needs to consider uncertainties or 
conservatism that may exist in the toxicological POD or in the 
exposure estimates, as described above. Considerations of particular 
relevance to infants include:  

 the relative maturity of the ADME processes;  
 the potential effects of exposure during life stages in 

experimental animals of relevance to human infants;  
 the relevance of the neonatal animal models used in toxicological 

testing for the human infant;  
 the design and outcome of any clinical studies conducted with 

infants (e.g. total number and age of infants tested, growth, 
tolerance, types of adverse reaction examined); and  

 reports of adverse reactions in post-marketing surveillance, 
where the infant formula is already in use in some countries.  

 Specific factors related to the dietary exposure assessments that 
should be considered for the interpretation of an MOE include the 
following:  

 Formula is the only source of nutrition for the first 12 weeks of 
life.  

 Variability of exposure among infants is small.  

 Duration of exposure is for a limited time, and exposure 
decreases on a body weight basis during the exposure period.  

 JECFA has concluded that when the above issues are considered, 
an MOE, based upon appropriate experimental animal studies, in the 
region of 1–10 could be interpreted as indicating low concern for the 
health of infants aged 0–12 weeks consuming the food additive in 
infant formula. 

5.6  Conclusions 

 Chapter 5 outlines how dose–response assessment for various 
types of data should be performed and how the HBGV or MOE is 
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established. Several approaches are described. The BMD approach is 
preferred, as it makes use of all the dose–response data, there is 
scientific agreement on the models that can be used and there are 
software platforms available for use in risk assessment. Moreover, 
model averaging is preferred to single-model selection to account for 
the uncertainties in data and modelling. In the few cases in which 
insufficient underlying data are available for modelling, but a 
NOAEL is reported, the NOAEL can be used as a POD to derive an 
HBGV. It is a prerequisite that each assessment has to be carefully 
documented. It has to be transparent, comprehensible and 
reproducible. A rationale should be given for the chosen approach, 
especially for the selected critical effect and applied uncertainty 
factors. 
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Appendix 5.1: Dose–response modelling for risk 
assessment 

 

A5.1.1 Statistical modelling 

Experimental dose–response data are expected to exhibit random 
variation around the responses. This means that slight differences in 
the responses are expected if the same experiment is repeated several 
times at the same dose. Nevertheless, we expect the emergence of 
similar behaviour across experiments. We assume that this behaviour 
can be described by dose–response functions. Mathematical models 
are needed that capture the dose–response relationship as well as the 
random part of the response. This leads to statistical models. 
Statistical modelling usually includes the assumption of a statistical 
distribution about the errors or random components of the model (e.g. 
normal and binomial distributions for continuous and quantal 
responses, respectively). There are several functions that are typically 
used to describe dose–response relationships, such as the Hill, logistic 
and probit functions, among others. There is a consensus on most of 
the suitable functions for DRM (e.g. the Hill function), but not on all 
functions (e.g. the use of polynomials). 

The properties of statistical model estimates (also known as 
asymptotic behaviour) are studied for large samples. This is done by 
computing expectations, variances and covariances for model-
derived estimates (e.g. the BMD is one such model-derived estimate). 
Uncertainty is introduced into estimation because of the observed 
randomness in the data; this implies that the estimates are not 
deterministic, but would change slightly from data set to data set (e.g. 
the number of observations or the number of groups). The properties 
of this estimation are studied asymptotically by imagining that some 
aspect of the data increases without bound. 

A5.1.2 Model components 

The model represents the data-generating mechanism and is 
defined by its components. Each component in the model must be 
correctly specified to sufficiently describe the data-generating 
mechanism. Model selection, diagnosis and discrimination are 
important steps in the model-building process. In this process, the 
first important step is to formulate knowledge about the data-
generating mechanism and to express the real observed phenomenon, 
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which describes the distribution of the response, as a mathematical 
model. In many cases, the model description takes the form of a 
model with additive error structure that has two components: 

response = mean + error 

where the mean term represents the deterministic component and the 
error term specifies a stochastic component. If an additive error model 
is not appropriate, then one may use a multiplicative model to 
describe the data-generating mechanism. Models for such data 
require a more elaborate formulation involving statistical 
distributions. However, for illustrative purposes, we consider only the 
additive formulation, noting that the descriptions could easily be 
extended to other model formulations describing more complex data-
generating mechanisms.  

From this perspective, the model components can be defined by:  

 the mean term, describing the tendency of the response variable(s) 
to vary with the predictor/covariate(s) in a systematic fashion; 
and 

 the error term, denoting the statistical variation around the mean 
term, which includes distributional assumptions of the response 
variable(s) that we are modelling (it could be considered 
univariate or multivariate), as well as assumptions related to its 
variability around the mean term. Embedded in the error term is 
the variability of the response around the mean structure, which 
could be a constant regardless of the values of the covariate(s) or 
could also be a function of them. 

The distributional assumptions and each of the model components 
described above are essential when performing inference using a 
selected model.  

A5.1.2.1 Describing the mean  

As described in the main text of Chapter 5, one can assume a 
family of models to estimate the mean, µ, of the response as a 
function of dose. In what follows, µ(dose) defines the dose–response 
curve. Table A5.1 gives five functions that can be considered when 
modelling dose–response data and can be used in the general family 
defined in the main text. For many of the simpler models, d = 1 in 
Table A5.1 (see also Table A5.2 below). These parameters are 
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included for a consistency across all models. The unknown 
parameters are represented in the vector ϴ = (a, b, d, θ). 

Table A5.1. Five models that are included in the general family of modelsa  

Functional family Functional form 

Gamma model function 

F(b,dosed,θ) = 
∫ xθ‐1∙e-xdx

b∙dosed

0

Γ(θ)
 

 

Lomax model function 
F(b,dosed,θ) = 1 - (

b

b + dosed)
θ

 

 

Logistic model function F(a,b,dosed
) = 

1

e‐a‐b∙dosed 

 

Probit model function F(a,b,dosed
) = Φ(a + b∙dosed

) 

 

Monotonic polynomial functionsb F(a,b,dosed) = a + b∙dosed 
 

a  Here Γ(θ) is the gamma function and Φ(x) is the standard normal cumulative distribution 
function.  

b  Any monotonic polynomial function can be thought of as being in this suite.  

 

These functions are by no means exhaustive, but represent 
plausible smooth shapes that are useful dose–response curves. These 
functions can generate all the model forms found in standard software 
packages, such as PROAST and BMDS. For example, noting that 
Γ(θ) = ∫ x θ ‐ 1e-xdx

∞

0
 and Γ(θ) = (θ – 1)! for integral values θ, using 

the gamma family one can derive the exponential family of models 
for continuous data and the Weibull model for quantal outcomes by 
setting θ = 1. That is,  

F(b,dosed,θ) =
∫ xθ - 1 ∙ 𝑒-𝑥dx

b∙dosed

0

Γ(θ)
 

 = 1‐ exp(b⋅dosed) 

Using the general family of models µ(dose) = a ·  {1 + (c – 1) 
F(b,dosed)}, one arrives at the Exponential 5 model by direct 
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substitution of the above expression and the Weibull model by setting 
c = 1/a. Other common model forms are given in Table A5.2.  

Table A5.2. Common choices for the model parameters 𝛉, d and a for 
DRM 

Model Distribution used  

Continuous response 

Exponential 5 model Gamma with θ = 1 

Hill model Lomax with θ = 1  

Quantal response (setting c = 1/a) 

Log-logistic Lomax with θ = 1  

Log-probit Probit with dose = log(dose) 

d = 1 

Gamma Gamma with d = 1 

Logistic Logistic with d = 1  

Probit Probit with d = 1 

a = 1 

 

A5.1.2.2 Describing the variability 

Distributional assumptions describe the nature of the scatter – 
that is, variability of the response – that may be observed in an 
experiment. For example, a normal distribution assumes symmetric 
scatter around the mean and has relatively light tails when compared 
with other distributions. Alternatively, the log-normal distribution is 
an asymmetric distribution with heavy right tails. The former 
distribution is applicable for many analyses where the variability is 
symmetric around the mean, whereas the latter is useful in situations 
where observations exhibit strong right skew. Once the distributional 
assumptions are made and the form of the mean function is chosen, 
one can then fit the model to the given data.  

A5.1.3 Statistical model fitting 

For our purposes, statistical model fitting refers to estimating a 
BMD from the data. There is a vast literature on statistical model 
fitting for any purpose, and the review below is by no means 
comprehensive. For textbook treatments on frequentist maximum 
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likelihood estimation, see Millar (2011); for Bayesian inference, see 
Gelman et al. (2013). In our case, we restrict our discussion to DRM 
for BMD estimation using a dose–response function. As shorthand, 
we summarize all unknowns for a specific dose–response function 
using the vector ϴ.  

A5.1.3.1 Frequentist 

Frequentist parametric methodologies assume that all 
information relevant for inference is encapsulated through a statistical 
distribution and the dose–response function; they further assume that 
no information, other than the observed data, will be included in 
formal inference. For example, when studying the effects of lead on 
cognitive function, one may assume that intelligence quotient (IQ) is 
distributed normally, which is the only distributional assumption used 
in the analysis. In this case, the mean and variance of the distribution 
specify all information about the scatter of IQs in a population, and 
one would be interested in estimating the dose–response relationship 
and standard deviation that best describe the observed data, which can 
be used for inference.  

Assume that one observes the data vector Y. To perform 
frequentist inference, one constructs a likelihood, L(ϴ, Y), which is 
the product of the observed data distribution with vector of the 
parameters ϴ and finds the values of the mean and standard deviation 
that are most probable given the data. That is, one finds the value ϴ̂ 
that maximizes L(ϴ, Y), which is known as the maximum likelihood 
estimate. Continuing the IQ example with the assumption of 
normality, assume that one observes three individuals with IQs = 95, 
110 and 102; then 

L(ϴ = {μ,σ}, Y = {95,110,102}) = 

1

(2πσ2)
3

2⁄
exp(‐ 1

2σ2⁄ [{95‐µ}2 + {110‐μ}2 + {102‐µ}2]) 

which is the product of three normal distributions with observations 
at 95, 110 and 102. In this example, the maximum likelihood 
estimation of µ is the sample mean, and σ is proportional to the 
sample standard deviation. Some methodologies, such as least 
squared estimation, can be framed as maximum likelihood estimation 
– that is, inference for least squares models is equivalent to 
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maximizing a normal likelihood – and we discuss only maximum 
likelihood estimation in what follows.  

A5.1.3.2 Bayesian 

Like frequentist inference, Bayesian inference encapsulates 
information into the analysis through the likelihood function L(ϴ, Y), 
but assumes additional information on ϴ through a prior probability 
distribution, p(ϴ), on this parameter. This information may take the 
form of empirical information from previous studies, expert opinion 
on plausible values of ϴ that are elicited before the analysis, as well 
as flat uniform priors (these are sometimes referred to as non-
informative priors, depending on the limits of integration). To 
illustrate this point, continuing the IQ example above, it is reasonable 
to assume that µ should be near the population average of 100; 
however, as there may be other effects due to lead, one places a priori 
a variance of 25 on this value, which is reasonably diffuse given that 
the population average is 100. Assuming an approximate normal 
distribution over µ, one encapsulates the prior information using this 
distribution. 

In Bayesian analysis, inference takes place using Bayes’ rule, 
which is a conditional probability statement relating the observed 
data and the prior information to posterior inference. That is, the 
posterior probability of ϴ given the data vector Y is expressed as 

P(ϴ|Y) =
L(ϴ,Y)P(ϴ)

∫L(ϴ,Y)P(ϴ)dϴ 
 

As the posterior is often not analytically tractable, inference on 
this quantity is done through approximation, which is traditionally 
done using Markov Chain Monte Carlo, but can be done using 
simpler approximations, such as maximum a posteriori estimation. 
The latter relies on optimization and asymptotic approximations to 
the posterior.  

The choice of the prior impacts the posterior distribution; 
however, inference between the Bayesian approach and the 
frequentist approach is often qualitatively similar for large samples.  

Bayesian analyses require prior assumptions on the dose–
response function in the form of prior distributions on the parameters. 
Such priors can be constructed using historical data or could be based 
on expert knowledge. One can also employ priors on the parameters 
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that will lead to no or the lowest bias on the final outcome of the value 
of the BMD. Such priors are commonly called objective or 
uninformative priors. Note that objective and uninformative are terms 
that are often used synonymously in the literature. As priors may 
influence inference, they should be carefully considered. Specifically, 
for BMD estimation, the choice of the prior distributions on the model 
parameters ϴ results in a second prior distribution on the BMD. So, 
one is mainly concerned about the prior distribution of the BMD 
when choosing the prior distributions on the parameters ϴ, because 
the prior distribution of the BMD depends on the choices one makes 
for the prior distributions of the model parameters. The prior 
distribution of the BMD is the quantity of interest. This is especially 
true when the model is a mathematical model and has no biological 
basis (i.e. the model is empirical). Consequently, if using priors 
outside of the default of either PROAST or BMDS, some analysis 
should be conducted on the priors’ effect on the BMD. 

As an example, one can compare the priors used in BMDS 
version 3.1 against the priors used in the Bayesian Benchmark Dose 
System (BBMDS; Shao & Shapiro, 2018) for the Weibull model. 
Here, an initial assumption may be to use a flat uniform prior, such 
as a prior that assumes that all values of the parameter are equally like 
a flat uniform prior, which is the case of the BBMDS as of this 
writing; however, this may imply a prior on the BMD that is not 
realistic. To illustrate this, Fig. A5.1 gives the BBMDS and BMDS 
priors on the BMD for a 10% response (BMD10) as a percentage of 
the maximum dose tested (MD). In this figure, for the BBMDS, the 
default flat uniform prior is used for all parameters, and d, the 
steepness term above, is given a flat uniform prior over the interval 
(0,15), which represents an option in the BBMDS and the 
unconstrained default position of Chapter 5. The choice of a flat 
uniform prior on the parameters results in a highly biased prior 
distribution for the BMD, as is shown in the upper graph of Fig. A5.1. 
It displays the probability density function/probability mass function 
of the prior distribution on the BMD that results from the choice of 
flat prior distributions from the parameters. 

Many toxicology experiments test doses at geometric titrations 
of the MD (e.g. MD/2, MD/4). Fig. A5.1 highlights why uniform 
priors may unintentionally bias the analysis to arbitrarily high or low 
doses. The upper graph shows that the priors for the BBMDS place a 
high prior probability on doses greater than the MD/2 as well as very 
low doses, which are often well outside of the doses tested. In fact, 
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approximately 75% of the prior probability for the BMD10 is placed 
on values outside of the range of 10–50% of the MD. In contrast, the 
BMDS version 3.1 software priors imply a prior distribution of the 
BMD (shown in Fig. A5.1 lower graph) that places approximately 
76% of the prior probability within this range (10–50% of the MD), 
which is consistent with a large body of literature linking the observed 
POD to titrations of the MD (e.g. see Krewski et al., 1993). In fact, if 
one were to make the priors even more diffuse (i.e. raise the upper 
limit from 15 to a larger number), the problem becomes exacerbated. 
As this value gets arbitrarily large, the prior probability for the 
BMD10 concentrates on the MD. Note that biases due to priors 
typically occur only when there are limited data. For large samples, 
the data overwhelm the priors for both the BBMDS and BMDS 
version 3.1.  

Fig. A5.1. Induced default prior for the BMD10 for the BBMDS (top) and the 
default settings for BMDS version 3.1 (bottom) as a fraction of the MD 
based upon the actual priors defined for ϴa 

 
a For example, the parameters a, b and d place equal prior probability on all outcomes 

(within a defined range) for the parameters. This results in an implied density over the 
BMD shown in the top pane. This prior density is plotted as a relative frequency of 
occurrence against the percentage of MD and does not result in an equal probability of 
BMD values. 

A5.1.3.3 Model averaging 

Once the model components have been defined, a model 
selection phase is undertaken, and several models can be fitted to the 
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data at hand. Common strategies involve comparing the fitted model 
to a full model to determine if the model fits the data, comparing the 
AIC (Akaike, 1973) to the other fitted models, examining the visual 
fit of the model and looking at goodness-of-fit statistics such as the 
Pearson χ2 statistic to determine the appropriateness of the “best 
model” to use in a risk assessment (EFSA, 2017). It is known that this 
process might suffer from model selection bias and that any single 
estimate from an individual model ignores model uncertainty; this is 
true with any model selection strategy. For example, choosing the 
model with the best P-value, or AIC, which has been the default 
procedure for risk assessment, will lead to model uncertainty that is 
not encapsulated in the final estimate.  

In BMD estimation for risk assessment, the recommended 
method is model averaging (Kass & Raftery, 1995), and the previous 
methods (e.g. selecting the best model) should be used only when 
model averaging is not available. Hoeting et al. (1999) wrote a tutorial 
on Bayesian model averaging and showed how the uncertainty in 
model selection leads to overconfident inferences when one model is 
chosen.  

Several frequentist approaches for model averaging have been 
presented in the literature. Buckland, Burnham & Augustin (1997) 
proposed model averaging to deal with model selection bias in the 
case of regression models. Hjort & Claeskens (2003) studied these 
frequentist approaches, giving several asymptotic results on such 
estimators. 

The model-averaging approach assumes a model from the 
general model family (i.e. the F() defined above) and considers the 
model m, being one model out of the total of R models, described in 
the Fs above (see Table A5.1). The AIC is calculated for each model, 
and the difference between the AIC for each model and the minimum 
AIC over all possible models is computed: 

Δm = AICm – AICmin 

To calculate the new average model over R models, the weights 
are constructed using the following formula for weight wm: 

𝑤𝑚 =
𝑒−

∆𝑚
2

∑ 𝑒−
∆𝑟
2𝑅

𝑟=1
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Burnham & Anderson (2004) argued that where a model-
averaged estimator can be used, it often has reduced bias and better 
precision compared with the best model. For Bayesian models, 
weights are computed similarly, but can be interpreted as the posterior 
probability that the given model is the correct model. For more 
information on Bayesian model averaging, see Hoeting et al. (1999). 

Currently, the BMDS version 3.1 system implements Bayesian 
model averaging as described in Hoeting et al. (1999). PROAST 
implements frequentist model averaging using the AIC as the basis 
for the weighting scheme. Although both approaches may give 
different weights, final inference on the BMD is typically 
qualitatively the same. In practice, either approach can be used, and 
the focus on the analysis should be the quantities of interest, which 
are the BMD and BMDL. 

The frequentist and Bayesian model-averaging approaches result 
in averages of probability distributions for the BMD. This is 
distinguished from alternatives that involve taking averages of the 
BMD values themselves under different models. Averages taken over 
BMD or BMDL values will be more sensitive to high than to low 
model results, and such approaches may be at risk of overestimating 
the true BMD. For example, the PROAST frequentist model 
averaging, which uses methods similar to those of Wheeler & Bailer 
(2007), uses averages of distributions rather than averages of BMD 
values. 

A5.1.4 Dose–response modelling and weight of the evidence 

Dose–response models are quantitative expressions of 
relationships in pharmacology and toxicology that are thought to 
encapsulate causation (e.g. the effect of an exposure to a hazard). 
However, even when it is expressed mathematically, the validity of 
the expression of causality ultimately depends on a judgement that is 
not mathematical (Illari & Russo, 2015). In the fields of medicine and 
physiology, perhaps the best evidence of this comes from the fact that 
when Hill (1965) gave his widely known lecture on causality before 
a group of statisticians, he used no mathematical equations 
whatsoever. 

Weight-of-evidence approaches have been used for dose–
response modelling by both JECFA (e.g. for lead: WHO, 2000, 2011) 
and JMPR, as well as elsewhere (e.g. Morgan, Henrion & Morris, 
1980; Evans et al., 1994). Using weight of the evidence to address 
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dose–response model uncertainties is largely the same as when 
Bayesian methods are used. There is still a need to identify a finite 
set of alternative models or hypotheses, and the models are still either 
directly fit to data or designed to be consistent with the empirical 
record. Furthermore, both approaches utilize expert opinion, and at 
the end of the process, probabilities are assigned to each alternative 
model so that they all add up to 1. There are, however, important 
differences: 

1) Bayesian methodology uses expert opinion prior to curve fitting 
and then “updates” the probabilities initially assigned by the 
experts as part of the curve-fitting process to yield the final 
model probabilities. In contrast, a weight-of-evidence approach 
does not assign model probabilities until after curve fitting has 
taken place; experts may use information about how well each 
model describes the data, but they also use other theoretical and 
experiential criteria as well. Because the Bayesian approach 
alters expert opinion after it is expressed, it has the potential of 
yielding final model probabilities that contradict what experts 
believe.  

2) Because it is amenable to automation, Bayesian methodology is 
far more reproducible than a methodology that depends solely on 
expert opinion. Model probabilities assigned by experts may 
vary among experts or even for a single expert over time. That 
fact perhaps makes the Bayesian methodology preferable when 
a standardized approach is desirable and there is no strongly held 
expert opinion.  

3) Because it is thought of as a mathematical exercise, calculating 
Bayesian probabilities requires the use of analytically tractable 
models. If this is not possible, consulting expert opinion may be 
the only option.  

Although the Hill criteria have been used for other purposes (e.g. 
Suter & Cormier, 2011), a formal process of the same ilk as the Hill 
criteria (Hill, 1965) is not typically implemented for quantitative 
dose–response modelling. A process for weighing evidence could 
temper differences of opinion among experts regarding dose–
response model form without eliminating expert opinion altogether. 
Assigning probabilities by committee would also help. In place of the 
“associations” that concerned Hill (1965), one or more numerical 
goodness-of-fit measures could be used to argue for or against 
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specific models. The Hill criterion that is directly relevant to dose–
response modelling is the requirement for a “biological gradient”. 
Quite simply, a dose–response model ought to look like what a dose–
response relationship is supposed to look like. That criterion could 
perhaps be subdivided into theoretical and experiential components. 
As an example of the former, a dose–response relationship cannot be 
supralinear; this is argued based on the fact that when the dose 
approaches zero, the supralinear dose–response relationship will 
violate the generally accepted biochemical law of mass action 
(Tallarida, Laskin & Jacob, 1976). An experiential argument would 
reflect the experience of toxicologists with other analogous dose–
response relationships.  

A5.1.5 Examples 

A5.1.5.1 Quantal data 

In the case of quantal data, PROAST and BMDS are most alike 
with respect to the suite of models applied to such data and default 
statistical assumptions (e.g. binomial distributions). However, 
although both software platforms implement model averaging for 
quantal end-points, the methods they use differ: PROAST uses a 
frequentist approach to model averaging, whereas BMDS uses 
Bayesian model averaging with informative priors. 

Consider the data set for hepatocellular hyperplasia given in 
Table A5.3. 

Table A5.3. Example of a quantal data set 

Dose (mg/kg 
body weight 
per day) 

Number of animals 
with hepatocellular 
hyperplasia 

Number of 
animals per 
dose group Sex 

0 1 50 Male 

100 2 50 Male 

200 5 50 Male 

400 30 50 Male 

800 48 50 Male 

 

Using PROAST (desktop version, https://www.rivm.nl/en/
proast; PROASTweb, https://proastweb.rivm.nl/; or EFSA Open 
Analytics version, https://shiny-efsa.openanalytics.eu/app/bmd), 
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model averaging utilizes information from all fitted models to derive 
the 95% lower confidence limit on the BMD (the BMDL). 

In this example, EFSA’s PROAST web tool is used. This 
requires importing data as a .csv file. After loading the data in the 
Data tab, users can choose the end-point of response and the type of 
data for modelling (Fig. A5.2), a quantal response in this case. Using 
the Fit Models tab, additional modelling details (e.g. Max. difference 
in AIC for acceptance, Value for the BMR, BMD confidence level) 
can be set (Fig. A5.3). The result of fitting all available quantal 
models is presented in Table A5.4 and Fig. A5.4, together with the 
statistical details and the visual fits.  

Fig. A5.2. Data tab in EFSA PROAST web tool 

 

When using frequentist model averaging for quantal data, 
available in PROAST, a bootstrap approach with multiple iterations 
is used. Users can specify the number of bootstrap iterations on the 
Fit Models tab (200 iterations were selected by default for this 
example). PROAST’s model averaging averages the results of the 
models using weights based on the individual model AIC values 
(Table A5.5). In this case, the log-logistic, log-probit, gamma
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Fig. A5.3. Fit Models tab in EFSA PROAST web tool 
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Table A5.4. PROAST quantal model fits to hepatocellular hyperplasia 
data set 

 

and logistic models and a latent variable Hill model with three 
parameters (LVM-Hill3) consume approximately 80% of the weight 
used for calculating the model-averaged BMD as well as the BMDL 
and BMDU.  

From the full set of bootstrap BMD estimates, BMDL and 
BMDU values are obtained as the 5th and 95th percentile values of 
the BMD posterior distribution. The averaged BMD interval 
(BMDL–BMDU) is calculated as 152–243 mg/kg body weight per 
day. Given that the model-averaging approach implemented in 
PROAST uses random bootstrap iterations, this result (i.e. BMD 
interval) may differ slightly when different users analyse the same 
data set. Increasing the number of iterations should produce results 
that are closer to unity, but small (perhaps inconsequential) 
differences will always persist. However, increasing the number of 
iterations will also increase the analysis time. Therefore, it is 
important that users of this method determine, prior to the analysis, 
the most efficient trade-off between number of iterations (more 
precise estimation of the BMD interval) and analysis time. Another 
option is to run the analysis with different numbers of iterations as a 
sensitivity analysis to objectively report the effect that this choice has 
on the final results.  
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Fig. A5.4. PROAST quantal visual model fits to hepatocellular hyperplasia 
data seta 

 
a Given are the modelled dose–response curves for the nine applied models (solid line) 

and the BMR/BMD (dotted line). Here, all models are considered for the analysis. 
Models showing poor fit (e.g. P-values < 0.1) are effectively removed by having low 
weights. 

Table A5.5. Model weights based on AIC used in PROAST model-
averaging analysis of hepatocellular hyperplasia 

 

When performing BMD analyses using the USEPA’s BMDS 
(available at https://www.epa.gov/bmds), users can utilize a model-
averaging approach for quantal end-points. The version of BMDS 
used for this analysis (version 3.1) is available as a desktop Excel 
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workbook. Users can easily enter the data they are modelling on the 
Data tab (Fig. A5.5) and then parameterize their analysis to their 
needs on the Main tab (Fig. A5.6).  

Fig. A5.5. Data entry in BMDS version 3.1 

 

When using BMDS’s Bayesian model-averaging approach to 
model the hepatocellular hyperplasia data in Table A5.3, the BMD 
(BMDL–BMDU) is 184 mg/kg body weight per day (143–233 mg/kg 
body weight per day). Remember that the Bayesian method used in 
BMDS uses prior information on the distribution of the BMD and that 
prior information along with the Laplace approximation determines 
the posterior distribution of the BMD (see main text of Chapter 5 and 
Hoeting et al., 1999). Hence, although the model-averaging results 
are very similar between PROAST and BMDS, even though the two 
software platforms use different averaging approaches, the weights 
of the frequentist approach in PROAST are quite different from the 
posterior probabilities estimated in BMDS. Users can generally 
expect results to be similar between the two software platforms when
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Fig. A5.6. Analysis setup in BMDS version 3.1 
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modelling data-rich dose–response data sets (i.e. high number of 
animals per dose group, large number of dose groups); results will 
most likely differ the most in information-poor data sets (i.e. few dose 
groups, low number of animals per dose group). Table A5.6 lists the 
modelling fits of the individual Bayesian quantal models along with 
the posterior probabilities.  

Table A5.6. BMDS Bayesian model fits to the hepatocellular hyperplasia 
data 

 

A5.1.5.2 Continuous data 

In the case of continuous data, PROAST and BMDS differ 
substantially in several aspects: default options for modelling, 
assumed distributions and recommended choice of the BMRs. 
Additionally, only PROAST offers continuous model averaging (as 
of May 2020). As with quantal data, PROAST uses a frequentist 
approach to model averaging, whereas BMDS plans to implement a 
Bayesian model averaging with informative priors. As model 
averaging is not available at present for BMDS, only results obtained 
in PROAST are presented here. 

Consider the data set for body weight given in Table A5.7. 
Loading and parameterizing the BMD analysis is the same as for 
quantal data. The resulting model fits are shown in Table A5.8. Note 
that PROAST assumes by default a log-normal distribution for 
responses – that is, constant variance of the log-transformed response 
data over the dose groups (including controls). The relative deviation 
definition of risk was used in this example, with a BMR of 5%. 
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Table A5.7. Example of a continuous end-point 

Dose (mg/kg body 
weight per day) 

Body weight, 
group mean (g) SD 

Number of animals 
per dose group 

0 43.85 2.69 37 

0.1 43.51 2.86 35 

0.5 40.04 3.00 43 

1.1 35.09 2.56 42 

SD: standard deviation 

Table A5.8. PROAST continuous model fits to hepatocellular hyperplasia 
data set 

                                                              
 

Although PROAST implements continuous model averaging, 
given that all the continuous models are nested within four families 
(exponential, Hill, inverse exponential and log-normal), the 
representative model for averaging (either model 3 or model 5) must 
first be selected from each family based on the lowest AIC (see Table 
A5.8). In this example, model 3 from all four families is selected. 
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Using continuous model averaging and 200 bootstrap iterations (as 
described above in section A5.1.5.1) and selecting model 3 from each 
nested continuous model family give similar results of about 25% 
(0.24–0.26) model-averaging weights for the four models (Table 
A5.9). 

Table A5.9. Model weights based on AIC used in PROAST model-
averaging analysis of body weight 

 

The final BMDL and BMDU values for this model-averaging 
analysis of body weights are 0.231 mg/kg body weight per day and 
0.397 mg/kg body weight per day, respectively.  

A5.1.5.3 Epidemiological data example 

To give an example of human BMD modelling for continuous 
outcome, the association between serum concentration of 
perfluorooctanoic acid (PFOA) and total cholesterol is modelled. 
This association was observed in a cross-sectional study of 46 294 
participants from the PFOA cohort summarized in Table A5.10 (for 
more information on this cohort and study, see Steenland et al., 2009). 
Subjects in this cohort were exposed to relatively high levels of PFOA 
through contaminated drinking-water. The reasons for selecting this 
example are that 1) there is a relatively clear dose–response 
relationship; 2) the results were presented as summary statistics that 
could be extracted from the publication; and 3) the number of 
participants was large enough to allow for relatively precise 
quantification of the BMD and its confidence interval (BMDL–
BMDU). 

This same study was used as the basis for deriving an HBGV for 
PFOA in the 2018 EFSA Opinion (EFSA, 2018a). For modelling, 
median PFOA serum concentrations, mean serum cholesterol 
concentrations and 95% confidence intervals around the mean were 
extracted by digitizing the results from Fig. 1 in the paper by 
Steenland et al. (2009). As the results were presented by dividing 
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PFOA into deciles, the number of subjects can be assumed to be about 
4629 (without any meaningful loss of precision). 

Table A5.10. The cross-sectional association between median serum 
PFOA and mean serum cholesterol concentrations as extracted from the 
study by Steenland et al. (2009) 

Deciles 

Median PFOA 
concentration 

(ng/mL)  

Mean 
cholesterol 

concentration 
(mg/dL) 

Number 
of 

subjects SD 

1 5.5 199 4629 60 

2 9.6 202 4629 60 

3 13.5 204 4629 60 

4 18.2 205 4629 60 

5 24.1 206 4629 60 

6 33.5 206 4629 60 

7 48.3 208 4629 60 

8 70.9 207 4629 60 

9 117 209 4629 60 

10 344 210 4629 60 

PFOA: perfluorooctanoic acid; SD: standard deviation 

Concerning the selection of this example, it should be noted that 
the causality of the association between PFOA and total cholesterol 
is subject to some uncertainty (EFSA, 2018b). The selection of this 
example should by no means reflect any judgement of whether this
association may be causal or coincidental.  

A5.1.5.3.1 Selection of BMR 

Despite a clear dose–response relationship, the mean increase in 
total cholesterol is small (~5%), at least compared with effect sizes 
often observed in controlled laboratory animal experiments. In 
contrast, it is important to keep in mind that variability in response 
among free-living humans is usually much larger than variability in 
response among homogeneous experimental animals. In Steenland et 
al. (2009), the mean increase in cholesterol was approximately 8% 
when comparing subjects with normal weight compared with those 
who were overweight or obese. The maximum mean increase in total 
cholesterol across age categories (18–80+ years) in this study was 
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approximately 16%. With age and body mass index being two of the 
strongest determinants of total cholesterol, a BMR of 4% may be 
justified. 

A5.1.5.3.2 “Zero dose” as point of comparison 

When the data are modelled with dose divided into deciles, BMD 
estimates are computed by extrapolating beyond the observed (or 
reported) dose range down to “zero dose”, which may be unrealistic 
in this case – that is, PFOA is environmentally persistent, and there 
is no true zero dose. As the dose–response curve monotonically 
increases from the lowest decile (5.5 ng/mL), the resulting BMD/
BMDL may be suspect. That is, if individual data had been available, 
the curve would be expected to level off and stabilize at 
concentrations below 5.5 ng/mL. Similar situations may also occur in 
controlled toxicological experiments in cases where the dose–
response curve is steep at the lower end of the dose range and well-
defined zero dose does not exist (e.g. for environmental contaminants 
or due to cross-contamination).  

To analyse these data, PROAST version 67.0 (online version 
available on the RIVM homepage; https://proastweb.rivm.nl/) is used 
to fit the data. The reported BMDU and BMDL are derived on the 
basis of the five-parameter exponential model and the five-parameter 
Hill model, as illustrated in Fig. A5.7. 

Fig. A5.7. Model output from PROAST version 67.0, online RIVM version 
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For these data, there is significant uncertainty in the shape of the 
dose–response curve below 5.5 ng/mL, which is caused by a mixture 
of the model chosen and the fact that the data do not contain enough 
information to estimate background response (e.g. 0 ng/mL); 
consequently, the choice of the given BMR may not be appropriate.  

As PFOA is environmentally persistent and thus ubiquitous in 
the environment, there is no reason to assume that 0 ng/mL is a 
realistic dose. A more realistic alternative would be to use the lowest 
reported dose (5.5 ng/mL) as referent. This can be justified, as there 
is some indication from other studies that the dose–response curve 
starts to level off somewhere between 2 and 3 ng/mL (Eriksen et al., 
2013; Skúladóttir et al., 2015). Thus, assuming 5.5 ng/mL as a 
referent may only modestly overestimate the BMD. To analyse the 
data in this manner and to avoid the extrapolation problem, we 
subtract the lowest dose (5.5 ng/mL) from all dose groups.  

Using PROAST version 67.0 and the lowest reported exposure 
quantile (5.5 ng/mL) as the referent group, the BMDL–BMDU range 
is given as 13–108 ng/mL. 

If one does not want to accept the underestimation of the BMD 
using zero dose as the point of comparison and the slight 
overestimation when using the lowest reported exposure decile as the 
point of comparison, the third option would be to restrict the dose–
response curve somewhere below 5.5 ng/mL based on a priori 
information from other studies. As mentioned previously, there is 
some empirical information that the curve is levelling off around 2–3 
ng/mL (Eriksen et al., 2013; Skúladóttir et al., 2015). Such restriction 
would give an estimate somewhere in between the results of the two 
examples shown in Fig. A5.8. In any case, the differences in the BMD 
estimates observed between BMDS and PROAST are somewhat 
larger than the uncertainty associated with extrapolation to zero or 
using the lowest decile as the point of comparison. 
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