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Abstract

The Scientific Committee (SC) reconfirms that the benchmark dose (BMD) approach is a scientifically
more advanced method compared to the no-observed-adverse-effect-level (NOAEL) approach for
deriving a Reference Point (RP). The major change compared to the previous Guidance (EFSA SC,
2017) concerns the Section 2.5, in which a change from the frequentist to the Bayesian paradigm is
recommended. In the former, uncertainty about the unknown parameters is measured by confidence
and significance levels, interpreted and calibrated under hypothetical repetition, while probability
distributions are attached to the unknown parameters in the Bayesian approach, and the notion of
probability is extended to reflect uncertainty of knowledge. In addition, the Bayesian approach can
mimic a learning process and reflects the accumulation of knowledge over time. Model averaging is
again recommended as the preferred method for estimating the BMD and calculating its credible
interval. The set of default models to be used for BMD analysis has been reviewed and amended so
that there is now a single set of models for quantal and continuous data. The flow chart guiding the
reader step-by-step when performing a BMD analysis has also been updated, and a chapter comparing
the frequentist to the Bayesian paradigm inserted. Also, when using Bayesian BMD modelling, the
lower bound (BMDL) is to be considered as potential RP, and the upper bound (BMDU) is needed for
establishing the BMDU/BMDL ratio reflecting the uncertainty in the BMD estimate. This updated
guidance does not call for a general re-evaluation of previous assessments where the NOAEL approach
or the BMD approach as described in the 2009 or 2017 Guidance was used, in particular when the
exposure is clearly lower (e.g. more than one order of magnitude) than the health-based guidance
value. Finally, the SC firmly reiterates to reconsider test guidelines given the wide application of the
BMD approach.
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Summary

Considering the need for transparent and scientifically justifiable approaches to be used when risks
are assessed by the Scientific Committee (SC) and the Scientific Panels of EFSA, the SC was requested
in 2005 by EFSA (i) to assess the existing information on the utility of the benchmark dose (BMD)
approach, as an alternative to the traditionally used no-observed-adverse-effect-level (NOAEL)
approach; (ii) to provide guidance on how to use the BMD approach for analysing dose-response data
from experimental animal studies; and (iii) to look at the possible application of this approach to data
from observational epidemiological studies.

A guidance document on the use of the benchmark dose approach in risk assessment was
published in 2009. In 2015, the SC reviewed the implementation of the BMD approach in EFSA's work,
the experience gained with its application and the latest methodological developments in regulatory
risk assessment and concluded that an update of its guidance from 2009 was necessary. As a
consequence, an updated guidance document was published in 2017. Most of the modifications made
at the time concerned the section providing guidance on how to apply the BMD approach in practice.
Model averaging was recommended as the preferred method for calculating the BMD confidence
interval, while acknowledging that the respective tools were still under development.

Following a workshop organised by EFSA in March 2017 to discuss commonalities and divergences
in the various approaches for BMD analysis worldwide, and the update of the Chapter 5 on dose-
response assessment of WHO/IPCS Environmental Health Criteria 240 (WHO, 2020), the SC decided to
update again its guidance in order to align the content of the document with internationally agreed
concepts related to benchmark dose analysis, and therefore harmonise further EFSA’'s approach with
those of its partners. The major change to the update of the SC Guidance of 2017 concerns the
Section 2.5, in which a change from the frequentist to the Bayesian paradigm is recommended. In the
former, uncertainty about the unknown parameters was measured by confidence and significance
levels, interpreted and calibrated under hypothetical repetition, while probability distributions are
attached to the unknown parameters in the Bayesian approach, and the notion of probability is
extended so that it reflects uncertainty of knowledge. In addition, the Bayesian approach can mimic a
learning process and reflects the accumulation of knowledge over time. Model averaging is again
recommended as the preferred method for calculating the BMD credible interval. The set of default
models to be used for BMD analysis has been reviewed and amended so that there is now a single set
of models for both quantal and continuous data. The flow chart guiding the reader step-by-step when
performing a BMD analysis has also been updated, and a chapter comparing the frequentist to the
Bayesian paradigm inserted. Also, when using Bayesian BMD modelling, the potential Reference Point
(RP) is provided by the lower bound (BMDL) of the credible interval, and the upper bound (BMDU) is
needed for establishing the BMDU/BMDL ratio, which reflects the uncertainty around the BMD
estimate.

The SC reconfirms in the present updated guidance that the BMD approach, and more specifically
model averaging, should be used for deriving a RP from the critical dose-response data to establish
health-based guidance values (HBGVs) and margins of exposure. This updated guidance does not call
for a general re-evaluation of previous assessments where the NOAEL approach or the BMD approach
as described in the 2009 or 2017 SC Guidance was used, in particular when the exposure is clearly
smaller (e.g. more than one order of magnitude) than the HBGV. The application of this updated
guidance to previous risk assessments where the 2009 or 2017 guidance was used might result in
different RPs, in particular in the case of continuous response data where informative priors are used.

The SC recommends that training in dose-response modelling and the use of the BMD application
hosted in the R4EU servers continues to be offered to experts in the Scientific Panels and EFSA Units.
Furthermore, the option for the Cross-Cutting Working Group on BMD analysis to be consulted by
EFSA experts and staff if needed, should be maintained.

Finally, the SC firmly reiterates the need for current toxicity test guidelines to be reconsidered given
the wide application of the BMD approach, as well as the need for a specific guidance on the use of
the BMD approach to analyse human data.
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1. Background

As per EFSA’s Founding Regulation (EC) No 178/2002 of the European Parliament and of the
Council, ‘the EFSA Scientific Committee shall be responsible for the general coordination necessary to
ensure the consistency of the scientific opinion procedure, in particular with regard to the adoption of
working procedures and harmonisation of working methods'’. Strategic objective 2 of the EFSA Strategy
2027 regarding ensuring preparedness for future risk analysis needs echoes this key responsibility of
the Scientific Committee, putting the emphasis on the development of a harmonised risk assessment
culture and the improvement of the assessment methodologies to address future challenges.

In May 2009, the Scientific Committee adopted its guidance on the use of the benchmark dose
(BMD) approach in risk assessment (EFSA, 2009). The guidance document recommends using the
BMD approach instead of the traditionally used NOAEL approach to identify a Reference Point, since it
makes a more extended use of dose-response data and allows for a quantification of the uncertainties
in the dose-response data. In principle, the BMD approach is applicable to all chemicals for which a
dose-response relationship exists for at least one endpoint, irrespective of their category (e.g.
pesticide, food additive, contaminant) or origin (chemically synthesised or from natural sources).
Within the remit of EFSA, this guidance document addresses the assessment of substances in food.
The guidance was further updated in 2017 (EFSA Scientific Committee, 2017), recommending model
averaging as the preferred approach for BMD analysis; the set of mathematical models to be fitted to
the data by default was updated, and a flow chart, guiding step-by-step the reader when performing
BMD analysis was added.

Following a workshop organised by EFSA in March 2017 to discuss commonalities and divergences
in the various approaches for BMD analysis worldwide,® WHO convened a group of experts from all
over the world to update Chapter 5 on dose-response assessment of WHQO/IPCS Environmental Health
Criteria 240 (WHO, 2020). This work resulted in a consensus on a number of concepts related to
benchmark dose analysis.

The purpose of the present update of the EFSA Guidance on the use of the benchmark dose
approach in risk assessment is to align the content of the document with the above-mentioned agreed
concepts, and therefore harmonise further EFSA's approach with those of its partners.

The European Food Safety Authority requests the Scientific Committee to align the Guidance on the
use of the benchmark dose approach in risk assessment with the principles for dose-response
assessment described in chapter 5 of FAO/WHO IPCS EHC2402. EFSA Partners (US EPA, US NIOSH, US
FDA, Health Canada, EU Member States competent authorities, EFSA Sister Agencies and other
international partners) will be involved/consulted during the drafting phase.>

EFSA is requesting its Assessment Methodology (AMU) Unit to update its Platform for BMD analysis
so that it implements the above-mentioned updated guidance on BMD.* When doing so, harmonisation
with other existing BMD tools (US EPA BMDS and PROAST) will be sought.

To address the mandate received, the following modifications have been made to the 2017 SC
Guidance on the use of the benchmark dose approach in risk assessment:

e The extension and unification of the suite of models for continuous and quantal endpoints
(Sections 2.5.1 and 2.5.2),

e Introduction of the normal distribution, next to the Log-normal distribution default assumption
of the response at a specified dose level for continuous endpoints (Section 2.5.1).

e The introduction of the Bayesian inferential paradigm and the rationale for replacing the
Frequentist BMD model averaging by the Bayesian model averaging as the recommended
preferred approach to estimate the BMD and calculate its credible® interval (Section 2.5.3).

! See https://www.efsa.europa.eu/en/events/event/170301-0

2 https://www.who.int/docs/default-source/food-safety/publications/chapter5-dose-response. pdf ?sfvrsn=32edc2c6_5

3 The outcome of the public consultation is published as a stand-alone technical report (EFSA-Q-2020-00139).

4 Following EFSA's reorganisation of 1 January 2022, this responsibility has been transferred to the Methodology & Scientific
Support (MESE) Unit.

5 The term ‘confidence interval’ is used in the context of frequentist statistics while the term ‘credible interval’ is used in a
Bayesian paradigm, see Section 2.5.3.
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Guidance on how to select the Benchmark Response (Section 2.6.2).
Guidance on how to decide whether experimental data are worth modelling and if not,
recommendation on how to use these data for the assessment (Section 2.6.3).
Guidance on how to construct informative priors (Section 2.6.4).
Guidance on how to deal with data leading to unpractical BMDLs and/or large BMDL-BMDU
credible intervals (Section 2.6.5).

e Guidance on how to perform BMD analysis on data sets with no non-exposed controls
(Section 2.6.3).

e Guidance on how to handle high dose impact (Section 2.6.3).

This document updates the methodology used by EFSA to perform BMD analysis; an online
application is being developed that aligns with this guidance. A separate technical report® describing in
detail the framework, as well as a user guide for the application, are being developed.

2. Assessment

This Guidance is an update and modification of the version released in 2017 (EFSA SC, 2017). The
purpose of this update is to further support the implementation of dose-response modelling in EFSA’s
work and to harmonise the statistical background and theoretical insights between EFSA and other
national and international organisations such as WHO (EHC240 Chapter 5 (WHO, 2020)) and US
EPA (2012).

This document addresses the analysis of dose-response data from toxicity studies in experimental
animals. Toxicity studies are conducted to identify and characterise potential adverse effects of a
substance. The data obtained in these studies may be further analysed to identify a dose that can be
used as a starting point for risk assessment. The dose used for this purpose, however derived, is
referred to in this opinion as the Reference Point (RP). This term, adopted by the EFSA in 2005 (EFSA,
2005a) is preferred to the equivalent term Point of Departure (PoD), used by others such as US EPA.

The no-observed-adverse-effect-level (NOAEL) has been used historically as the RP for establishing
health-based guidance values (HBGVSs) in risk assessment of non-genotoxic substances. EFSA (2005a)
and the Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2006a) have proposed the use of
the benchmark dose (BMD) approach for deriving RPs used to calculate the margins of exposure
(MOEs) for substances that are both genotoxic and carcinogenic, since for such substances it is
conventionally considered inappropriate to identify NOAELs for use as RPs.

The SC concluded in 2009 that the BMD approach is the preferred approach for identifying a RP;
not only for substances that are both genotoxic and carcinogenic, but also for non-genotoxic
substances (EFSA, 2009; EFSA SC, 2017). The methodology discussed in the 2009 guidance document
and its update from 2017 has increasingly been applied by EFSA for identifying RPs (i.e. BMDLs) for
various types of chemicals (e.g. pesticide, additives and contaminants).

In Sections 2.3.1 and 2.3.2 of this guidance document, the concepts underlying both the NOAEL
and BMD approaches are briefly discussed (see EFSA, 2009 for more details), and it is outlined why
the SC considers the BMD approach a more powerful approach. Section 2.4 discusses the potential
impact of using the BMD approach for hazard/risk characterisation and risk communication. Within
EFSA, the main application of the BMD approach is to identify a RP for a chemical hazard (hazard
characterisation) and subsequently — based on exposure data — characterise the chemical risk (risk
characterisation). The SC notes that the BMD approach has also been used for other purposes such as
for evaluating the plausibility of non-monotonicity in a dose-response curve (parameter d is a measure
of the steepness of the curve, Beausoleil et al., 2016) or for estimating relative potencies of chemicals
(e.g. organophosphates, Bosgra et al., 2009 or Zeilmaker et al., 2018). However, these applications of
the BMD approach are outside the scope of the present Guidance.

Further, the set of default models to be used for BMD analysis has been revised; they are described
in Sections 2.5.1 and 2.5.2. The Bayesian model averaging procedure, recommended as the preferred
approach for BMD analysis, is described in Section 2.5.3 and in later sections possible extensions on
how to incorporate covariates and deal with cluster data in the analysis are covered. In Appendces C
and D, examples based on continuous and quantal data are provided to illustrate the application of the

6 In this regard, two external technical reports will be published https://open.efsa.europa.eu/questions/EFSA-Q-2020-00138?
search=EFSA-Q-2020-00138 and https://open.efsa.europa.eu/questions/EFSA-Q-2019-00417?search=EFSA-Q-2019-00417
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BMD approach in practice and a discussion of the results is presented. A template for BMD analysis
reporting has been inserted in Appendix E.

Section 2.6, which provides guidance on how to apply the BMD approach in practice, has been
significantly modified compared to the 2009 and 2017 versions of the guidance document: Bayesian
model averaging has been introduced as the preferred method for estimating the BMD and calculating
its credible interval. The problem formulation step has been particularly expanded, providing further
guidance on key decisions to be taken before starting to model the data: specification of the BMR,
data suitability to estimate the BMD using dose-response modelling, consideration of prior information
for the endpoint(s) considered.

The principles outlined in this guidance document may also apply to data from (observational)
epidemiological studies. However, such studies have their own peculiarities with respect to study design and
interpretation of data and for these reasons, the application of dose-response analysis of epidemiological
data will be addressed in a separate future guidance document. Furthermore, this Guidance has not been
developed for application to ecotoxicological studies/data. However, the method is sufficiently generic that it
could reasonably be applied to other areas, as long as the dose-response is monotonic and a critical effect is
defined in terms of relative change compared to the background response.

The present guidance is primarily aimed at EFSA Units and Panels and other stakeholders, for
example applicants, performing dose-response analyses. The SC considers that the use of the BMD
approach is the preferred approach compared to the NOAEL approach to identify a RP; therefore, the
application of this guidance document is unconditional for EFSA and is strongly recommended for all
parties submitting assessments to EFSA for peer-review or dossiers for authorisation purposes (see
EFSA Scientific Committee, 2015).

Toxicity studies are designed to identify adverse effects produced by a substance, and to
characterise the dose-response relationships for the adverse effects detected. While human dose-
response data are occasionally available, most risk assessments rely on data from animal studies. The
aim of hazard identification is to identify potential critical endpoints that may be of relevance for
human health. An important component in hazard identification is the consideration of dose
dependency of observed effects. Traditionally this is done by visual inspection together with
conventional statistical tools. Dose-response modelling approaches (see Section 2.5) can also be used
to support the evaluation. When no statistical evidence for a treatment-related change is observed, the
data set for the endpoint under consideration would normally not be used for identifying an RP. The
selection of any critical adverse effect should not solely be based on statistical procedures and
considerations of its biological relevance for human risk assessment are key (see also Section 2.6.2).
Importantly, additional toxicological considerations should be taken into account in the evaluation of a
toxicological data package. Use of the BMD approach does not remove the need for a critical
evaluation of the response data’ and an assessment of the relevance of the effect to human health.

In the hazard characterisation, the nature of the dose-response® relationships is explored in detail.
The overall aim of the process is to identify a dose (the RP) from the toxicity studies that will then be
used to establish a level of human intake at which it is confidently expected that there would be no
appreciable adverse health effects, taking into account uncertainty and variability such as inter- and
intraspecies differences, suboptimal study characteristics or missing data.

Hazard characterisation in risk assessment requires the use of a range of dose levels in toxicity
studies. Doses are needed that produce different effect sizes providing information on both the lower
and higher part of the dose-response relationship to characterise this in full.

Experimental and biological variations affect response measurements; in consequence, the mean
response at each dose level will include sampling error. Therefore, dose-response data need to be
analysed by statistical methods to prevent inappropriate biological conclusions being drawn. Currently,
there are two statistical approaches available for identifying a RP: the NOAEL approach and the BMD
approach. This section reviews in brief these two approaches and summarises the strengths and
limitations of each method.

7 In this opinion, ‘response’ is used as a generic term that refers to both quantal and continuous data.
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The study NOAEL is the highest dose tested in a study without evidence of an adverse effect in the
particular experiment and the next higher dose showing a (statistically) significant adverse effect is the
lowest-observed-adverse-effect-level (LOAEL). The NOAEL is affected by the dose range selection and by the
(statistical) power of the study. Studies with low power (e.g. small group sizes; insensitive methods, large
biological or methodological spread) usually tend to provide higher NOAELs than studies with high power. If
there is a statistically significant effect at all dose levels, the lowest dose used in the study (i.e. the LOAEL)
may be selected as the RP, although a lower dose could still cause an adverse effect. Conversely, if no
statistically significant effect is observed at any of the dose levels, the highest dose is selected as the NOAEL.

It should be noted that in general, identification of a NOAEL is not a purely statistically-based
decision. Expert judgement is also part of the decision-making process and different assessors may
reach different decisions.

The benchmark dose (BMD) is a dose level, estimated from the fitted dose-response curve,
associated with a specified change in response relative to the control group (background response),
the benchmark response (BMR) (see Section 2.6.2). The BMDL is the lower bound of the BMD’s
credible interval, and this value is normally used as the RP. The BMD approach is applicable to all
toxicological effects and makes use of all the dose-response data to estimate the shape of the overall
dose-response relationship for a particular endpoint.

The key concepts in the BMD approach are illustrated in Figure 1 and its caption. More details are
provided in Appendix B. Figure 1 shows that a BMDL that is calculated for a BMR of x%, can be
interpreted as follows:

BMDL, = dose below which the change in response is likely to be smaller than x%.

where the term ‘likely’ is defined by the statistical credible level, usually 95%-level.
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Figure 1: Key concepts for the BMD approach. The observed mean responses plus or minus the
observed standard deviation are plotted as vertical lines. The dashed curve is a fitted dose—
response model, either one of the 16 individual dose-response models (see Section 2.5.1)
or the averaged model. This curve determines the point estimate of the BMD, which is
generally defined as a dose that corresponds to a low but biologically relevant® change in
response, denoted the benchmark response (BMR). The density shows the posterior
distribution of the BMD and the green line at the bottom of the density indicates the
boundaries of the two-sided 90% credible interval of the BMD (defined by the 5% left and
right tail probabilities of that posterior distribution). The BMDL is the 95% one-sided lower
bound of the 90% credible interval for the BMD. Likewise, the BMDU is the 95% one-sided
upper bound of the 90% credible interval for the BMD. It should be noted that the
estimated background response (the median response of the control group) does not
necessarily coincide with the observed background response. The BMR is defined as a
change with regard to the background response predicted by the fitted model

8 The word ‘biologically relevant’ is preferred to ‘adverse’ to allow, e.g. for the use of the BMD approach with biomarkers of
effect that are not necessarily adverse.
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The essential steps involved in identifying the BMDL for a particular study are:

e Specification of a response level, a percentage increase or decrease in response compared with
the background response. This is called the BMR (see Section 2.6.2).

e Perform Bayesian model averaging using a set of predefined dose-response models
(Section 2.6.5), and calculation of the BMD credible interval for the averaged model, for each
of the critical endpoints.

e An overall study BMDL, i.e. the critical BMDL of the study, is selected from the obtained set of
BMD credible intervals for the different potentially critical endpoints (see Section 2.6.5).

The BMD credible interval should be calculated for all data sets considered relevant (the respective
BMDL potentially leading to the RP), resulting in a set of credible intervals indicating the uncertainty
ranges around the ‘true BMD” for the endpoints considered. One way to proceed is to simply select
the endpoint with the lowest BMDL and use that value as the RP. However, this procedure may not be
optimal in all cases, and the risk assessor might decide to use a more holistic approach, where all
relevant aspects are taken into account, such as the width of the BMD credible intervals (rather than
just the BMDLs) and/or the biological meaning of the relevant endpoints. This process will differ from
case to case, needs expert judgement and it is the risk assessor’s responsibility to make a
substantiated decision on what BMDL will be used as the RP (see ‘Determining the RP for a given
substance’ in Section 2.6.5).

The advantage of the BMD approach over the NOAEL approach relates to the fact that the selection
of the RP takes into account the complete set of BMD credible (confidence) intervals for the endpoints
considered and combines the information on uncertainties in the data (see Section 2.6.5), whereas in
the NOAEL approach, experimental uncertainties resulting from, e.g. low study power, are not
adequately covered and may result in an RP that is significantly higher than the actual RP (see also
Section 2.3.1). In comparison with the NOAEL approach, the BMD approach has the advantage that it
provides a formal quantitative evaluation of data quality, by taking into account all aspects of the
specific data. Data containing little information on the dose response may result in a BMDL that is far
lower than the true unknown BMD, but still, the meaning of the BMDL value remains as it was defined:
it reflects a dose level where the associated effect size is unlikely to be larger than the BMR used.

Nonetheless, it might happen that the data are poor, indicated by, e.g. a wide credible (confidence)
interval of the BMD estimate, which means there is large uncertainty in the BMD estimate. In this
case, the use of the associated BMDL as a potential RP might appear unwarranted. This issue is
further discussed in Section 2.6.5.

For the estimation of the BMD and its confidence/credible interval (BMDL-BMDU) for a given set of
data, several statistical software packages are available. The tools most frequently used are BMDS
(www.epa.gov/bmds), PROAST (www.rivm.nl/proast) and the EFSA webtool for Dose-Response
modelling (https://r4eu.efsa.europa.eu/app/bmd). As stated in WHO EHC240, ‘Many of the dose-
response models require specialized software to fit the models to the data. There is no single preferred
software package for dose-response analyses. It is important that the software used for dose-
response estimation be thoroughly tested, and the source code should be made publicly available to
allow for reproducibility and transparency. The version of any particular software used for the analyses
should be clearly stated’.

The NOAEL is the highest dose tested level where no statistically significant differences in adverse
response were observed, compared with the background response (the response observed for the
control group in the study) in a study. This implies that the NOAEL reflects a dose level where effects
are too small to be detected in that particular study, and therefore, the size of the possible effect at
the NOAEL remains unknown. A straightforward way of gaining insight into this is by calculating the
upper bound of the credible (confidence) interval for the observed change in response between the
control group and the NOAEL dose group. In Appendix A, this has been done for several substances
both for continuous and quantal endpoints. For quantal endpoints (undetected) effect sizes at the
NOAEL may be higher than 10%, while for continuous endpoints the undetected effect size may be
substantially higher, depending on the endpoint.

% For any endpoint in a given test species, there is a true value for the BMD parameter, and any study provides information
about this true value.
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The NOAEL is therefore not necessarily a ‘no adverse effect’” dose but a dose where effects were
not observable by statistical testing and therefore dependent strongly on the experimental design. On
average, over a number of studies, the size of the estimated effect at the NOAEL is close to 10%
(quantal responses) or 5% (continuous responses) (see also Section 2.6.2).

Contrary to the NOAEL approach, the BMD approach uses the information in the complete data set,
rather than making pair-wise comparisons using subsets of the data (i.e. between control groups and
dose groups). In addition, the BMD approach can interpolate between applied doses, while the NOAEL
approach is restricted to preselected doses from the study design. A BMDL is always associated with a
predefined effect size (the BMR) for which the corresponding dose has been calculated, while a NOAEL
represents a predefined dose and the corresponding potential effect size is mostly not calculated, but
should be a matter of expert judgement.

An inherent property of the BMD approach is the evaluation of the uncertainty in the BMD, which is
reflected by the BMD credible interval (BMDL-BMDU) and is related to a known and predefined
potential effect size (i.e. the benchmark response, BMR). This is a difference with the NOAEL approach
where the uncertainty associated with the NOAEL cannot be evaluated from a single data set and the
credible interval of the effect size at the NOAEL is generally not reported in current applications.

Although the current international guidelines for study design (e.g. OECD guidelines for the testing
of chemicals) have been developed with the NOAEL approach in mind, they offer no obstacle to the
application of the BMD approach. While in the NOAEL approach, the utility of the data is based to a
considerable extent on a priori considerations such as study design (number of dose groups, group
size, dose levels, variability), a BMD analysis is less constrained by these factors. In a BMD analysis,
the data are evaluated taking the specifics of the particular data set into account (e.g. the scatter in
the data, dose-response information) and the resulting BMD credible interval accounts for the
limitations of the particular data set, so that data limitations (e.g. sample size) is a less crucial issue
than it is for the NOAEL. By using model averaging (see Section 2.6.5), the uncertainty related to the
mathematical models fitted to the data are also taken into account.

In the previous section, the BMD approach has been introduced in the context of identifying a RP.
This RP will be used in hazard characterisation for establishing HBGVs, such as acceptable daily intakes
(ADIs) for food additives and pesticide residues, tolerable daily intakes (TDIs) or tolerable weekly
intakes (TWIs) for contaminants.

In establishing an HBGV, uncertainty factors are applied to the RP (WHO, 1987; WHO, 2020
Chapter 5.4.2). In the previous version of this Guidance (EFSA SC, 2017) it has already been reasoned
that irrespective of whether an HBGV is based on a NOAEL or a BMDL as the RP, the same uncertainty
factors (be it the default factors or chemical-specific adjustment factors) are equally applicable to the
BMDL and to the NOAEL.

The BMD approach provides a higher level of confidence in the conclusions in any individual case
since the BMDL takes into account all the data from the dose-response curve and handles the
statistical limitations of the data better than the NOAEL. Thus, an HBGV based on the BMD approach
provides a better basis to quantify the risk. Over the past 15 years, dose-response modelling has been
applied by EFSA, e.g. for food contaminants and flavouring substances, and the results of this
approach have been accepted by risk managers as a basis for their decision making.

It is important to realise that HBGVs represent levels to which humans may be exposed without
appreciable health risk, and this definition does not change when the HBGV is derived from a BMDL
instead of a NOAEL. For further details and guidance on how to establish HBGV, see WHO (2020),
Chapter 5.4.

There are situations where the data are considered inadequate for establishing a HBGV but allow
identification of a RP and thus the MOE approach may be applied. The MOE is the ratio of the RP (e.g.
BMDL or NOAEL) to the theoretical, predicted or estimated exposure dose or concentration. Such a
situation occurs, for example when the risk assessor considers the available database as insufficient to
establish a HBGV because of data gaps. Another situation is when dealing with substances that are
both genotoxic (via a DNA-reactive mode of action) and carcinogenic, for which it is widely assumed
that any exposure is undesirable (EFSA, 2005a).
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This section provides basic information about the statistical methodology; the components of a
single dose-response model; multi-model estimation accounting for model uncertainty and frequentist
and Bayesian inferential paradigms to obtain the BMD, the BMDL and the BMDU.

Response data may be of various types, including continuous, quantal or ordinal. The distinction
between data types is important for statistical reasons because the type of data determines the
statistical model employed, and also for the interpretation of the BMR. See Section 2.6.2 for the
interpretation of the BMR in continuous and in quantal data.

Ordinal data may be regarded as an intermediate data type: they arise when a severity category
(minimal, mild, moderate, etc.) is assigned to each individual (as often used in histopathological
observations). Ordinal data can be reduced to quantal data but, depending on the definition of BMD
applied, this transformation may result in a loss of information, which is not recommended
(WHO, 2020). Models for analysing ordinal data are available in different software packages, e.g. in
PROAST (https://www.rivm.nl/en/proast) or CatReg which can be downloaded from the EPA BMDS
website (US EPA, 2016). Model averaging for ordinal data is not considered in this guidance document.

Ideally, the relationship between dose and response would be described by model(s) that describe
the essential toxicokinetic and toxicodynamic processes related to the specific compound. However, for
most compounds, such models are not available, and therefore the BMD approach uses fairly simple
models that do not intend to describe the underlying biological process, but should be treated as
purely statistical models. These models can be considered as simplified mathematical expressions that
could be used to describe the potential relationship between the response under consideration and the
dose administered/received/exposed.

The statistical models introduced in the next sections are considered suitable for analysing
toxicological data sets in general. The following notation will be used throughout this section:

e X denotes the dose, on the original scale (not on a log-scale); for optimising the visualisation of
the data and of the graphs of the fitted models, the x-axis will often be transformed to the log-
scale (but the model was fit with dose x on the original scale).

e Yy denotes the response, regardless of its nature (continuous or quantal); the response at a
specified dose level x is denoted as y|x; for optimising the visualisation of the data of a
continuous endpoint and of the graphs of the fitted models, the y-axis might be transformed to
the log-scale (but the model was fit to the endpoint y on the original scale).

The statistical model
The statistical model is defined by the following components:

i) the distribution of the response at a specified dose level (i.e. describing the ‘within-group
variation’, the variability between individual observations at a specified dose). Two ‘within-
group’ distributions are considered:

e the normal distribution (as a convenient representative of the family of all symmetric
distributions),

e the log-normal distribution (as a convenient representative of the family of all right-
skewed distributions).

It is assumed that left-skewed distributions are rare for toxicological data.

i) the description of the effect of dose on this distribution (i.e. how does the distribution of the
endpoint change across different dose levels).
It is assumed that dose does not affect the type of distribution of the response, but only the
parameter determining the centre of the distribution, i.e. homogeneity of
variance/coefficient of variation across the dose groups is assumed for the normal/Log-
normal distribution respectively.

Only two parametric distributions, which are fully characterised by their functional form and two
parameters (central location and spread around the centre) are considered in this document: the
normal distribution and the log-normal distribution. The normal distribution is symmetric, whereas the
log-normal is a right-skewed distribution. They both share theoretical and computational advantages
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and have been proven to fit well to many biological endpoints (Johnson et al., 1994). As endpoints are
assumed to be positive-valued, a left-skewed distribution is not considered. If empirical or biological
evidence necessitates, other distributions (e.g., the inverse Gaussian distribution, the gamma
distribution) may be considered suitable as well, but the extension of the statistical modelling
framework, as described in this section, to other distributions is not straightforward, nor is its
implementation in the BMD application hosted in the R4EU servers.

Before modelling the central location of the normal and log-normal distribution as a function of
dose, the relevant characteristics of both distributions are summarised below.

Modelling the distribution of the response

It is assumed that the observations of y, given a specified dose (denoted as | x), vary according to
the normal distribution:

y X~ N(n(x), 6%)

where p(x) represents the mean and o® the variance of the response at dose x. The normal
distribution is a symmetric distribution (implying that p(x) is the median as well). The true distribution
of the response y is unknown, but the normal distribution is known to often be a good approximation
for that true distribution, especially if it is a symmetric distribution, even if the endpoint is restricted to
be positive. The distribution only shifts up or down according to the value of the mean p(x), but the
variance o and the typical symmetric ‘bell shape’ of the distribution remains invariant to changes in
dose.
In addition to the normal distribution, also the log-normal distribution can be considered:

y|X ~ LOGN (p(x), o?),

This distribution is automatically restricted to positive values and is skewed to the right. Typically, the
notation of the two parameters is identical to that of the two parameters of the normal distribution,
but the interpretation is different. It holds that

yIX ~ LOGN (1(x), 62) < log(y[x) ~ N((x), 62),

implying that p(x) and o? do not refer to the mean and the variance of the response itself but to the
mean and the variance of the log-transformed response. Again, it is assumed that the parameter o?
does not depend on dose. The characteristics on the original scale are shown in Table 1 for both
distributions. Note that, although the parameter 2 does not depend on dose, the variance of a log-
normally distributed response does depend on dose, as it depends on the parameter p(x) as well. For
a log-normally distributed response, the coefficient of variation (standard deviation divided by mean)
does not depend on dose (constant, with value ves*—1).

Table 1: Characteristics of the normal and the log-normal dose-response model

y|x ~ N(p(x), 62) y|x ~ LOGN(p(x), 62)
Mean response p(x) gh(x)+0%/2
Median response Med(x) u(x) en®)
Variance response 2 (ecz_1> Q2u(x)+0

The focus is on the median response Med(x) at dose x, which is determined by u(x) for both
distributions: Med(x) = p(x) is the median of the normal distribution and Med(x) = e*® is the median
of the log-normal distribution.

Modelling the central location of the distribution as a function of dose

Next to the specification of the distribution (normal or log-normal), a suite of eight candidate
models for p(x) is used, as shown in Table 2. All candidate models u(x) share some basic properties
P1-P4:
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P1: the median can only take positive values (e.g. a median organ weight cannot be < 0), so.

o p(x)>0 if a normally distributed endpoint is considered;
o no constraint on values of pu(x) for a log-normally distributed endpoint;

P2: they are monotone increasing or decreasing, for both distributions;

P3: they are continuous functions of dose x, for both distributions;

P4: they reach a horizontal asymptote for very high dose levels (mathematically x — o), for
both distributions, such that they are suitable for data that level off to a maximum response.

the next paragraphs, three families of models (1a, 1b and 2) are introduced. All members of

these families are flexible four-parameter non-linear models, and all share the basic properties P1-P4.
The above-mentioned eight candidate models have been selected from these three families. This
selection incorporates the familiar exponential and Hill model from the previous guidance (EFSA
SC, 2017), and extends it with alternative flexible models leading to a unification of models across
both type of endpoints, continuous or quantal.

The model structure of Family 1a/b and Family 2 is fundamentally different. The general structure
of Family 1la and 1b with the central role of the median background response and the maximum
change in median response (parameters a and c) is identical, but the two other parameters b and d
operate functionally differently in both subfamilies.

Family 1a and 1b: all models for u(x) have the following structure
k(X) = a(1 + (c~1)F(x; b,d)), b,d>0,
for some particular but known function F, having the properties:

o defined for x > 0;
o monotone increasing;
F(0; b,d) =0 and F(oo; b, d) = 1 regardless the values of b and d.

For all members of Family 1a, the parameter d acts as a power x9 whereas it operates
differently in Family 1b (see Table 2). The parameters a, b, ¢, d have a particular interpretation:

o a=p(0) is linked to the median background response;

o €= p(o0)/p(0) is linked to the maximum change in median response, as compared to
the background response; for c¢>1 (resp. c<1) the median response is monotone
increasing (resp. decreasing) as a function of dose x;

o b and d characterise the shape of change in response from median background
response to maximum change in median response, via the identity:

b d) = FX)—r(0)
O e )

the model is reparametrised in terms of the parameter a,c (representing the background
response and the maximum change in response), the BMD (the potency, see Table 2, and
replacing the parameter b) and the parameter d.

Family 2 increasing: increasing models for p(x) from this family have the following structure

p(x) = cF(a + bxd>, b,d>0

for some particular but known function F, having the properties:

o defined for any value of a + bxd;
o monotone increasing;

o F(—o0;b,d) =0and F(co; b, d) = 1 regardless the values of b and d.

The parameters a, b, ¢, d have a particular interpretation:

o c=p(w)and a=F1(u0)/u(w)) and determine the median background response
and the maximum change in median response, as compared to the background
response;
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o b and d characterise the shape of change in response from median background
response to maximum change in median response, via the identity:

bx? = F4 (u(x)/p(00))—F 4 (1(0) /u(e0),

the model is reparametrised in terms of the parameter a,c (representing the background
response and the maximum change in response), the BMD (the potency, see Table 2, and
replacing the parameter b) and the parameter d.

Family 2 decreasing: decreasing models for p(x) from this family have the following structure

n(x) = a((1 + F(c))—F(ch bxd)), b,d>0
for some particular but known function F, having the properties:

o defined for all values of c and all values of ¢ + bx%;
o monotone increasing;
o F(—o0;b,d) =0and F(eo; b,d) = 1 regardless the values of b and d.

The parameters a, b, ¢, d have a particular interpretation:

o a=p(0) and c = F(u(c0)/p(0)) determine the median background response and the
maximum change in median response, as compared to the background response;

o b and d characterise the shape of change in response from median background
response to maximum change in median response, via the identity:

bx? = F~ ((c0) /1(0)— (1(X) ~1(0))/n(0)—F " ((c0) /(0)),

o the model is reparametrised in terms of the parameter a, c (representing the background
response and the maximum change in response), the BMD (the potency, see Table 2, and
replacing the parameter b) and the parameter d.

Table 2: Candidate models for both distributional assumptions

Famil Model y|x ~ N(p(x), 62) y|x ~ LOGN(p(x), 62)
ami ode
y Dose-response function (j(x)) Dose-response function (e*)
la Exponential® a. (1 +(c-1)- (1_e7bvxd>) o (11 (1))
Inverse Exponential . (1 1 (c-1).e X ) ea.(lﬂc,l),e,bvx %)
Q)
Hil a- <1 +(c-1) ( bfxd» ea-<1+(c—1) <1’W)>
Log-Normal a-(1 ( ®(log(b) +d-log(x)))  g&(l+(c-1)-®(log(b)+d-og(x)))
@
1b Gamma™" a- < 1¢b X>> ea-<1+<c71).v<g<,g;))
LMS-two stage a. <1 +(c-1) ( _ebx- dxz>> ea_(H(c,l)_(l,efbx,dxz))
2 Probit increasing a- (c +b- Xd) @@ (c+bx?)
Probit decreasing a-(1+@(c)-a - o(c+b-x9) g2 (1+0(c)—a0(c+bx’)
Logistic increasing | ectbxd erbxd
a 1+ ecAb»xd e 1+ec+b.xd
isti i c+bxd eC eCH xd
Logistic decreasing 5. (1 n 1+ec> _a. &eﬁ & () -a L

(i): This model is identical to the 4-parameter Exponential model in Table 3 of the 2017 SC guidance.

(ii): After

a reparameterisation, this model is identical to the 4-parameter Hill model in Table 3 of the 2017 SC guidance.

(iii): y(d, b - x) denotes the two-parameter gamma distribution (Johnson et al., 1994)
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With 2 candidate distributions and 8 candidate models for p(x), a total of 16 candidate models can
be fitted to the same data. All 16 candidate models have 5 parameters (4 parameters for p(x) and the
variance parameter ¢%) and all models are non-nested (none of the models can be seen as a
simplification of another model). Graphs of all different models, illustrating their similarities and
differences, are shown in Appendix B.

The NULL and the FULL model,

e The null model

u(X) = p.
e The full model

H(Xi):Hiri:]-r N

are not used in the model averaging procedure. The null model is still used to assess if there is any
dose-response effect as it was previously in EFSA Scientific Committee (2017). Also, the full model is
still used to assess if any of the candidate models fits sufficiently well to the data.

Further considerations regarding the statistical model

Individual responses y (e.g. individual organ weights) are guaranteed to be positive for the log-
normal distribution. Although p(x) >0, there is a (typically very small) theoretical probability that an
individual normally distributed response value y becomes negative. In a similar vein, the log-normal
distribution being a one-sided heavy-tailed distribution, there is a (typically very small) theoretical
probability that an individual log-normally distributed response variable y becomes extremely large,
both completely unrealistic for the endpoint at hand. These theoretical disadvantages of both
distributions are, in most practical cases, not an issue, as:

e both distributions have been proven to approximate the unknown data generating distribution
of positive random variables very well in a variety of practical instances, despite their
theoretical disadvantages;

e the model is not developed for prediction of individual response values, but for the estimation
of the BMD.

By default, both distributions will be included in the analysis of the data. Nevertheless, one of the
two distributions might not be further analysed during the process of evaluation, based on biological or
statistical arguments for the data at hand. For statistical techniques to reject (or not reject), the
normal or log-normal distribution, see the information given under the heading ‘The data’.

For both distributions (normal and log-normal), it is assumed that the parameter 2 is constant and does
not depend on dose. When there is evidence that 2 does change with dose, an adjusted analysis or an
extended model could be applied. Ignoring that dependency (while in reality it exists) might affect the
standard errors of the parameter estimates as well as the credible bounds for the BMD (BMDL and BMDU),
although the fitted dose-response model for the mean and the BMD estimate are in general expected to be
still appropriate. For statistical techniques to reject (or not reject), the parameter o2 to be independent of
dose as well as options on how to deal with it, see the information given under heading ‘The data’.

The data

For continuous data, the individual observations should ideally serve as the input for a BMD analysis.
When no individual but only summary data are available, the BMD analysis may be based on the
combination of the mean, the standard deviation (or standard error of the mean) and the sample size for
each treatment group. Using summary data may lead to slightly different results compared with using
individual data, depending on the type of summary data and the selected distribution. The use of
individual data is equivalent to the use of arithmetic summary data (arithmetic mean, arithmetic standard
deviation and sample size per treatment group) when applying the normal distribution, and the use of
individual data is equivalent to the use of geometric summary data (geometric mean, geometric standard
deviation and sample size per treatment group) when using the log-normal distribution. This is related to
the statistical concept of ‘sufficiency’ of summary statistics (Fisher, 1922; Stigler, 1973 and Lehmann and
Casella, 1998). It should be emphasised that when using arithmetic (geometric) summary data to be
converted to geometric (arithmetic) summary data when using the log-normal (normal) distribution, it
holds only approximately, meaning that results might slightly differ from those that would be obtained if
individual observations were used (see an illustration in Appendix C).
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When individual data are available, well-established formal statistical tests can be performed to test
the particular distributional assumption, e.g. the Shapiro-Wilk test for testing normality and log-
normality (Shapiro and Wilk, 1965). When only summary data are available, one is very limited in
checking the validity of the distributional part of the statistical model: the normal or log-normal
distribution with parameter ¢ not depending on dose. With summary data, it is recommended to
check the specific nature of the relation between the observed dose specific arithmetic averages and
standard deviations:

the (homoscedastic) normal distribution y|x ~ N(p(X),GZ) implies a constant standard deviation, i.e.
the standard deviation does not depend on the dose x (homoscedasticity on the original scale of the
response). The log-normal distribution y|x ~ LOGN(p(X),GZ) implies a constant coefficient of variation,
i.e. the ratio of the (standard deviation)/mean does not depend on the dose x; or equivalently, the
variance of the log-transformed response is constant (homoscedasticity on the transformed log-scale
of the response). The homoscedasticity assumption on the original and on the log-response scale can
be formally tested with the summary statistics using the Bartlett test (Bartlett, 1937). In case that
individual data is available, other test could be used (Levene’s test (Levene, 1960), Brown-Forsythe
test (Brown and Forsythe, 1974) or others). Note that when only summary data is available, the
Bartlett test can be used. Considering that most of the time the information available are summary
statistics, the Bartlett test is the only option that can be used to assess homogeneity of variances
when response is assumed to be normally distributed, and similarly this can be done when the
response is assumed to be log-normal, for which the coefficient of variation (CV) is assumed to be
constant. The BMD analysis should report the results of these tests for both distributional assumptions
(see Appendix C — where the Bartlett test is reported for the continuous examples). In case of
violations, it is advised to perform the analysis, and additionally consider the analysis using for all dose
groups the smallest and largest standard deviations to study the impact on the estimation of the BMD.

Instead of examining these characteristics by formal Bayesian hypothesis testing, the posterior
probabilities (see section on model averaging below) for the normal and the corresponding log-normal
candidate model with the same choice for p(x) will reflect which distribution fits best to the (summary)
data. If the summary data support the constant standard deviation, the normal candidate model will get
the higher posterior probability, and the log-normal model the lower posterior probability, and hence the
normal model will dominantly determine the BMD. If the summary data support the constant coefficient
of variation, it is the other way around. Model averaging (see further) deals with this issue automatically.

In case neither the standard deviation nor the coefficient of variation is constant (as a function of
the dose x), both distributions, the normal nor the log-normal distribution, are not fully optimal.
Individual data are needed to investigate this properly. It is assumed (and expected) however that
either the normal or the log-normal distribution is a sufficiently appropriate distribution.

The statistical model

A quantal endpoint refers to a binary measurement: yes/no (typically coded as 1/0) according to
the occurrence of a particular adverse event. As for a continuous endpoint, the statistical model for a
qguantal endpoint is defined by two components:

i) the specification of the distribution of the endpoint at a specified dose x. Only one
distribution is possible (Bernoulli distribution'®).

i) the description of the effect of dose on this distribution. Dose is affecting the probability on
the adverse event.

Modelling the distribution

The main difference with a continuous outcome is that there is only one possible distribution for a
quantal endpoint, the Bernoulli distribution; it has a single parameter, being the probability on the
(adverse) event of interest. So, the first model component is uniquely defined as.

y|x ~ Bernoulli(z(x)),

with =(x) being the probability on the adverse event at dose x. Note that =(x) is also the mean of the
response.

10 The total number of events is then binomially distributed.
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Modelling the probability of an event

The dose acts on the probability n(x) of an event, typically considered as adverse. The same suite
of candidate models as for the parameter p(x) for a continuous endpoint is considered, with the
restrictions that:

e they are only monotone increasing (as we expect the probability on the adverse event to
increase with dose); contrary to continuous data, monotone decreasing data should be
converted into increasing data, e.g. decreased survival could be transformed into increased
mortality.

o the parameter representing the horizontal asymptote (c) is set such that this asymptote equals
the value of 1 at infinite dose.

The three subfamilies of models for =(x) are:
e Family 1a and 1b: all models for p(x) with c = 1/a, or
n(X) =a+ (1-a)F(x; b,d), b,d>0,
for the same functions F as for Family 1a and 1b for continuous endpoints.
The parameters a, b, d have a particular interpretation:

o a=xn(0) determines the background probability on the adverse event;
o b and d characterise the shape of change in the probability on the adverse event,
via the identity:

Fx;b, d) = 09 %0) ;2‘0(? ),

o the model is reparametrised in terms of the parameter a (representing the background
incidence), the BMD (the potency, see Table 3, and replacing the parameter b) and the
parameter d.

e Family 2: all increasing models for p(x) with c =1, or
n(x) = F(a + bxd), b,d>0

for the same functions F as for Family 2 for continuous endpoints.
The parameters b, ¢, d have a particular interpretation:

o a= Ffl(n(O)) determines the background probability on the adverse event;
o b and d characterise the shape of change in the probability on the adverse event,
via the identity:
bx! = F*(x(x))—F*(x(0)),

o the model is reparametrised in terms of the parameter ¢ (representing the background
incidence), the BMD (the potency, see Table 3, and replacing the parameter b) and the
parameter d.

Table 3: Candidate models for quantal endpoints

y|x ~ Bernoulli(z(x))

Family Model .
Dose-response function (p(x))
1a Exponential a+(l1-a)- (1—e*b>‘d)
Inverse Exponential a+(1-a)-ebx’
Hill
a+(l-a)- (1—%%,)
Log-Normal a—+ (1-a) - ®(log(b) +d - log(x))
d,b:
1b Gamma a+(1-a) .ﬂr(d)X)
LMS-two stage a+(1-a)- (1 e bx-d x2>
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y|x ~ Bernoulli(z(x))

Family Model i
Dose-response function (p(x))
2 Probit increasing ®(a+b-x9)
Logistic increasing eatbx

1eatb xd

With only one distribution and again eight candidate models for =n(x), a total of eight candidate
models can be fitted to the data. All models (Logistic, probit, log-logistic, log-probit, Weibull, gamma,
LMS (linear multi stage, in this case two-stage) model), except the latent variable models, are covered.
These latter LVM models are considered to be no longer necessary, given the suite of 8 flexible
candidate models. All eight models have three parameters (for the probability =(x)) and all models are
non-nested (none of the models can be seen as a special case/simplification of another model). Also
note that there are two parameters less to be estimated for quantal data models: no parameter ¢ and
no variance parameter o2

The NULL and the FULL model:

e The null model
n(X) ==
e The full model
px) =m,i=1,...,N

are not used in the model averaging procedure. The null model is still used to assess if there is any
dose-response effect as it was previously in EFSA Scientific Committee (2017). Also, the full model is
still used to assess if any of the candidate models fits sufficiently well to the data.

The data

For quantal data, the number of affected individuals and the sample size are needed for each dose
group. Again, some models will fit better to the data than others and some models might fit equally
well. The reader is referred to Section 2.5.3 on multi-model inference, where the technique of model
averaging, which effectively accounts for model uncertainty for quantal data, is described.

Introduction

The most commonly employed statistical philosophies are the frequentist and Bayesian approaches.
In the frequentist approach, probability is used to represent a long-run frequency. Uncertainty about
the unknown parameters is measured by confidence and significance levels (p-values), interpreted and
calibrated under hypothetical repetition. In the Bayesian approach, probability distributions are
attached to the unknown parameters, and the notion of probability is extended so that it reflects
uncertainty of knowledge (Cox, 2006). The central idea of the Bayesian approach is to combine the
data (through the likelihood, expressing the plausibility of the observed data as a function of the
parameters of a stochastic model, Fisher, 1922) with prior knowledge (prior probability) to obtain the
posterior probability as a revised, updated probability. In EFSA's setting, a discrete prior distribution is
chosen on the level of the suite of candidate models (default is the uniform distribution expressing that
all candidate models are equally likely, but unequal prior weights could be used as well if the choices
are justified and documented). For each individual model, continuous prior distributions are formulated
on the background response, the maximum (or minimum) response at very high dose and on the
BMD. These latter prior distributions are translated to distributions on the parameters a, b, c (see
Tables 2 and 3), and finally a prior distribution is defined on the parameter d and the variance
parameter. Remember that for quantal data, no priors are needed for the maximum response and the
variance parameter, as these parameters do not exist for models for quantal data. For more details,
see Section 2.5.2.
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The data-based ‘updating’ of prior to posterior distributions is accomplished by Bayes theorem. The
explicit analytical calculation of the posterior probability and posterior summary measures (direct
calculation of integrals involved) is often not feasible and numerical techniques are required:

i) numerical integration and approximation such as the Laplace approximation,
i) sampling from the posterior using Markov chain Monte Carlo (MCMC) methods.

Both paradigms, frequentist and Bayesian, have a great deal to contribute to statistical practice.
There are useful connections between both paradigms when no other external information, other than
the data, is introduced in the analysis (Bayarri and Berger, 2004). An uninformative prior expresses
only general, vague, objective information and follows the principle to assign equal probabilities to all
possibilities (indifference, ignorance). Using such objective prior typically leads to results similar to
those of a frequentist analysis. The full strength of the Bayesian approach is utilised when applying
informative priors, encapsulating all relevant information apart from that in the data under analysis,
merging such external information seamlessly with the data by including such information
quantitatively by a probability distribution.

Bayesian vs frequentist BMD estimation

In the frequentist approach, the true BMD is a single specific and unknown value, and
interpretation of the estimation of that unknown true BMD is in terms of an abundant number of
‘repeated samples’. These repeated samples are not observed but are assumed to be ‘similar’ to the
observed one (similar to be interpreted as: taken from the same population with the same random/
probabilistic sampling plan). The 95% confidence interval (CI) must be interpreted in terms of
repeated samples: if for each of these unobserved repeated samples a 95% CI would be computed, it
is expected that 95% of these CIs contain the unknown BMD. So, one is ‘confident’ that the CI based
on the single observed sample contains the unknown BMD, but there is no probability attached to the
event that the CI of the observed sample contains the unknown BMD. The 5% BMDL and 95% BMDU
are defined as the lower and respectively upper bound of a 90% CI for the BMD.

In the Bayesian approach, the BMD parameter in the model is not a single specific and unknown
value but a random variable with a particular distribution (the prior and posterior distribution
characterising the degree of uncertainty about the unknown BMD). That distribution expresses the
knowledge about the BMD. More probability (area under the density) in certain region(s) expresses
that the values in these region(s) are more likely. The mode of the distribution is the most likely value
for the BMD. The spread (typically measured by the standard deviation) of the BMD distribution
expresses the uncertainty about the knowledge of BMD. A larger standard deviation expresses more
uncertainty. The distribution of the BMD, prior to having used the data or even having set up the
experiment, is called the prior distribution. In case there is no ‘prior knowledge’, one uses a vague, flat
prior. Suppose your experiment has a range of dose values (0,100), the prior distribution of the BMD
could then be taken as the uniform prior, taking the constant value 1/100 on the interval (0,100): no
mode, maximal spread. In case there is prior knowledge, from the literature or from experts, that the
BMD is expected to be around the most likely value 5.25 (the mode), and to be within a minimum 4.5
and maximum value 5.8, one could use a particular unimodal prior distribution with mode 5.25,
minimum 4.5 and maximum 5.8 (see Section 2.6.4). With the data and a model, and based on Bayes’
theorem, the prior distribution for the BMD is revised, updated to the so-called posterior distribution
(post factum using the data and the model), based on the equation (with o denoting ‘is proportional
to")

posterior distribution  likelihood x prior distribution (%)

with the likelihood expressing the plausibility of the observed data as a function of the model
parameters. The frequentist maximum likelihood (ML) estimate is that value of the model parameter
that maximises the likelihood. The identity (*) connects frequentist ML estimation and Bayesian
estimation. When using a flat uninformative prior, the prior has ‘no effect, and maximising the
posterior distribution, leading to the posterior mode as a Bayesian estimate, coincides essentially with
maximising the likelihood, and in that case the Bayesian estimate and the ML estimate are essentially
the same. So (with =denoting comparable, being essentially identical up to, e.g. minor differences due
to numerical approximations), this implies:
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frequentist BMD(L/U) =~Bayesian BMD(L/U) with uninformative prior

In this sense, Bayesian estimation can be viewed as an extension of ML estimation, as it combines
data information (through the likelihood) with other historical or expert knowledge (through the prior
distribution). When a series of independent experiments are performed over time, equation (*) can be
applied sequentially: the posterior of a parameter (such as the BMD) in experiment j can be used as a
prior for the parameter when analysing the data of experiment j + 1. The Bayesian approach can
mimic a learning process and reflect the accumulation of knowledge over time, and is therefore
proposed as the recommended approach for BMD modelling in EFSA.

Despite the close connection between ML and Bayesian estimation, terminology and interpretation
is different. The 95% credible interval (or credibility, CrI) for the BMD is determined as an interval that
covers 95% of likely values of the BMD (probability area 0.95 under the posterior distribution). The
interpretation of the CrI is more natural than that of the frequentist CI: the probability that the BMD is
within the limits of the CrI is 0.95. Turning to the BMDL and the BMDU: the 95% BMDL is the lower
bound of a 90% CI or CrI (with 5% at the left side and 5% at the right side). For the frequentist CI,
the interpretation is again that: 5% of similarly constructed CIs for all theoretical repeated samples
would have a lower limit above the true unknown specific BMD. For the Bayesian CrI, the
interpretation is: the probability that the BMD is below the BMDL is 0.05. A similar interpretation holds
for the BMDU.

In case an (highly) informative prior has been used, and this prior is in line with the data, the
obtained Bayesian CrI will be (much) narrower. However, if the informative prior and the data are in
conflict (e.g. the centre of the prior is quite different from that given by the data through the model
applied), the resulting posterior BMD distribution might have a larger spread, and the Bayesian Crl
may be wider than the frequentist CI. A relevant question is then: why is the prior distribution not in
line with the data? Many reasons may apply: the data may come from an experiment with different
characteristics than those (historical experiments) behind the prior distribution, such as different
experimental units (animals), different methods used to obtain the measured endpoints, or even
(slightly) differently defined endpoints, etc. This type of considerations is highly relevant in order to
decide about using this informative prior, or rather the uninformative prior. Does one prefer to take the
additional uncertainty caused by heterogeneous experimental conditions into account, or does one
consider the historical ones as inappropriate or outdated in current times. The Bayesian approach
allows to combine data with prior information, which is very appealing as science is based on the
accumulation of knowledge over time, but it poses several challenges as well:

e The choice whether to use an informative prior (when available) or not should be taken prior to
the analysis, and not based on a comparison of the prior and posterior distribution (which could
be considered as data snooping).

e One should therefore know and reflect on the relevant conditions (experimental design and
conditions, species used, etc.) behind the prior knowledge and the details of the experiment
that will be modelled. This will inform the decision on whether or not to use the historical
information to derive informative priors.

o Different prior distributions can be used to represent the same historical prior information. A
sensitivity analysis across different sensible choices for the prior distribution would then be
required. Such analysis may be time and (computational) resource demanding.

For further reading and more information on the Bayesian paradigm and Bayesian modelling, see
e.g. Lesaffre and Lawson (2012), Kruschke (2014), Bolstad and Curran (2016).

Model averaging

Different dose-response models for a particular response are to be considered as different
mathematical approximations of the true unknown dose-response model. Some models might
approximate the true model very well and others less, but the suite of models should contain a
sufficient number of models (preferably as diverse as possible), which should be flexible enough, to
ensure that at least one model approximates the true model sufficiently well. It is not required to add
more and more (similar or nested) models to the suite of candidate models, as such additional models
do not improve the analysis, and will slow down the already computationally intensive analysis. The
suite of 16 models for a continuous endpoint and the suite of 8 models for a quantal endpoint
(Sections 2.5.1 and 2.5.2) are considered to be rich enough to include at least one well-fitting model.
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The addition of a richer suite of models in the model-averaged ‘competition” is a safeguard to be
sufficiently scientifically critical and open for other models which might be better approximations of the
true model (despite the fact that biological interpretation might be less obvious).

It is generally accepted that a multi-model approach, reflecting data driven model selection and
accounting for model uncertainty, outperforms the single-best-model approach (Burnham and
Anderson, 2002, 2004; Stoica et al., 2004). The rationale behind multi-model inference is to ‘combine’
all model-specific analyses by averaging across models while assigning higher weights to those models
that fit the data better. Equally well-fitting models contribute equally to the multi-model analysis. This
rationale is common to both inferential paradigms, frequentist or Bayesian, but the implementation is
different.

The frequentist approach follows the frequentist thinking about a particular parameter of interest
(e.g. the BMD parameter) as a deterministic specific value. Each model provides a point estimate for
that parameter and the model-averaged estimate is a weighted average of the model-specific
estimates, assigning higher weights to better fitting models. A common choice of such weights is
based on Akaike information criterion (AIC), a statistical measure that rewards goodness of fit of the
model to the data while penalising for complexity. CIs can then be constructed based on estimates of
the standard error of that model-averaged estimate, but in general, one prefers the construction of
simulation-based intervals (bootstrap), at the cost of computing time. This bootstrap simulation
method reflects the frequentist repeated sampling of other unobserved samples in order to construct
the sampling distribution of the BMD point estimate, and left and right quantiles of this simulated
distribution can then be taken to obtain a CI. There are two approaches to construct a model-
averaged point estimate and CI. A ‘direct method’ averages the model-specific BMD estimates (without
the need to construct an averaged dose-response model). The ‘indirect method’ first averages the
dose-response models to obtain an averaged dose-response model and applies that single averaged
model to get the model-averaged BMD estimate. Both approaches of model averaging and both
approaches of building CIs are presented and illustrated in Aerts et al. (2020). The indirect method
has been implemented in current frequentist model-averaged BMD software (PROAST and EFSA
platform (https://doi.org/10.5281/zenodo.3760370)) as it has been demonstrated to outperform the
direct method, which might be more sensitive to extremes when calculating the weighted average.

Similarly, the Bayesian approach follows the Bayesian philosophy that the BMD has a (uncertainty)
distribution as it has been implemented in EPA BMDS software for quantal responses. The data and
the model allow to update the prior BMD distribution resulting in model-specific posterior BMD
distributions. Using weights these model-specific distributions are mixed into a single ‘averaged’
posterior BMD distribution. The Bayesian approach does not need to distinguish the direct and indirect
method. The left and right quantiles of the averaged posterior BMD distribution provide the posterior
credible interval. Not only model parameters get a distribution, but also the (candidate) models get a
prior probability, expressing the prior knowledge about the ‘correctness’ of the individual models. Most
often, all models are equally likely, prior to the data. The weights used to construct the averaged
posterior distribution are then, given the data, the posterior probabilities for the individual models. The
difficulty of obtaining these posterior probabilities is the determination of certain integrals (so-called
marginal likelihood), which are not analytically tractable and must be approximated using numerical
methods (MCMC) methods, Bridge sampling, Laplace approximation. For more details, see e.g. Hoeting
et al. (1999), Morales et al. (2006). In most cases the Laplace approximation provides reliable results,
similar to the most accurate method of Bridge sampling (being more computationally demanding).
Considering this, the Laplace approximation method would be the default approach given the
differences in computational speed, but Bridge sampling can be requested in case of clear indications
of estimation failures (visual checks of the fitting curve, extremely wide CrI, convergence issues
reported for some models, etc., see illustration provided in Appendix C, example generated based on
Figure 3.2).

In the setting of regression models (as in our case), application of model averaging has focused on
averaging across different regression models (dose-response models in our case) for one specific
distribution (normal or log-normal in our case). More recently, model averaging has been extended to
incorporate averaging across distributions as well (Wheeler et al., 2022).

Model averaging performs well if at least one of the candidate models fits well. To check this, the
best fitting candidate model is contrasted to the *full model’, perfectly fitting the observed means (the
full model is defined in Section 2.5.1 for continuous and in Section 2.5.2 for quantal endpoints).
Testing whether the best fitting model fits sufficiently well, as compared to the full model, is based on
the Bayes factor (used for hypothesis testing in the Bayesian paradigm, see e.g. section 3.8.2 in
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Lesaffre and Lawson, 2012). In case none of the candidate models fits well, it is recommended to
examine the possible cause by checking the plot of the fit of the best fitting model together with the
observed data (does it not fit well to the data in a particular dose range, are the data showing a non-
monotone pattern whereas the models are monotone by definition).

In summary, the advantages of the Bayesian approach are:

e Possible use of existing prior information (e.g. on background response) next to the information
provided by the data set considered. Accumulation of knowledge over time for the endpoint
considered (the outcome of the BMD modelling for the endpoint can be used in the future as
prior information for a new BMD modelling of that same endpoint).

e Bayesian model averaging allows a more flexible way to constrain model parameters by
including weakly informative priors.

Probabilistic interpretation of the results of the BMD analysis (credible interval).
Computational efficiency improved compared to the frequentist model averaging using bootstraps.

Covariates

Covariate analyses are performed based on biological considerations, for instance to assess the
differences in dose response between male and females, and also based on statistical considerations in
order to gain power, or more precise estimation of model parameters when combining subgroups. As
such, rather than fitting dose-response models to single comparable data sets, it is preferable to fit a
given model to a combination of these data sets which might differ in a specific aspect, such as sex,
species, or exposure duration, but are similar otherwise. In particular, the response parameter
(endpoint) needs to be the same. By fitting the dose-response model to the combined data set, with
the specific aspect included in the analysis as a so-called covariate, it can be examined in what sense
the dose-responses in the subgroups differ from each other, based on statistical principles (e.g.
goodness-of-fit measures). In principle, the covariate can play its role on each component of the
statistical model. It is, however, general practice in statistical modelling that the covariate does not
affect the distribution of the response at a specified dose but may affect a subset of the natural
parameters, the background and maximum response, the BMD and the parameter d of the model for
n(x) and additionally also o? for u(x). Fitting different models with or without a covariate effect and
comparing these models within the Bayesian framework, may lead to.

e the use of a common BMD and resulting in a unique BMD(L/U) across subgroups;
e the use of subgroup-specific (covariate-specific) BMD parameters and resulting in subgroup
specific BMD(L/U)s.

Combining data sets with similar design characteristics in a dose-response analysis with covariate
(s) is more powerful (i.e. narrower credible intervals), as compared to analysing each single data set
separately. Covariate analysis is particularly relevant when the subgroups data sets provide relatively
poor dose-response information (Slob and Setzer, 2014). It also allows for examining and quantifying
potential differences between the subgroups. For instance, the problem formulation might indicate that
the assessment should specifically focus on sex differences, in which case it would be important to
have a precise estimate of the difference in BMDs between male and female animals.

All models in Tables 2 and 3 allow for incorporating covariates in a toxicologically meaningful way.

Hierarchical/nested response data

When data are nested (multi-levelled - repeated measure designs in which the same subject is
measured repeatedly over time, or in the cases in which observations are correlated, e.g. existence of
litter effects), this hierarchical structure needs to be taken into account. Ignoring multivariate nature of
such data will result in underestimation of standard errors as well as too narrow credible intervals.
There are several statistical methods to account for hierarchical data, see e.g. Aerts et al. (2002). The
following methods are well established and appropriate for most BMD applications.

Continuous data

For clustered continuous data, typically the individual data are available. For that case, the cluster-
(say litter-) specific individual values are assumed to be multivariate normally distributed (on the
original or on the log scale, as before), with a so-called exchangeable correlation structure, implying

www.efsa.europa.eu/efsajournal 22 EFSA Journal 2022;20(10):7584

85U8017 SUOWILIOD aAIIe8ID 8|aedljdde au Aq peusenob ase seoile O ‘8sn Jo se|n Joj Aeiq 1 8uluQ A8]IA\ UO (SUONIPUOD-PUR-SWRIW0Y A3 1M Alelq Ul |UO//:Sdny) SUONIPUOD pue slwe | 8y 8eS *[220z/0T/Gz] uo Areiqiauluo Ae|iM ‘ueder sueiyooD Aq ¥8S/ 2202 e’ [/£062 0T/10p/wod Ao |1 Arelg 1 jpuluoes jo//:sdny Wwouy pepeojumoq ‘0T ‘2202 ‘2ELYTEST



‘ Jt EFSA Journal

Guidance on BMD approach in risk assessment

the same correlation p between any two observations from the same cluster (the so-called intracluster
correlation). Observations from different clusters are assumed independent. The same suite of
candidate models is fit to the data, but each model now contains two parameters related to the
variance: the variance parameter o as before and the correlation parameter p. The introduction of the
intracluster correlation parameter p accounts for the correlated nature of the data, and this parameter
is estimated from the data.

Quantal data

For quantal data, the individual cluster-specific data are equivalent to the cluster-specific summary
data (the number of adverse events within the cluster and the cluster size). It is assumed that the
number of adverse events in a cluster (litter) is distributed according to the beta-binomial distribution.
This is an extension of the binomial distribution accommodating the intracluster correlation parameter
p. As in the continuous case, an exchangeable correlation structure is assumed. The same suite of
candidate models is fit to the data, and for each model an estimate for the intracluster correlation p is
obtained.

Also Teunis, Evers and Slob (1999) proposed the use of the beta-binomial models to deal with
correlated quantal data and that is why has been also proposed in the Bayesian context.

This section provides an overview of how to estimate the BMD and calculate its credible interval
from dose-response data, and recommendations are given on particular choices to be made. The
guidance refers not only to in vivo data but could be applied also to other types of data (e.g. in vitro
data). Although currently available software allows for the application of the BMD approach without
detailed knowledge of computational technicalities, a conceptual understanding of the method, as
described in this Guidance, is a prerequisite for correct interpretation of the results.

As shown in Figure 2, the application of the BMD approach may be summarised as a process
involving the following steps.

1) Specification of type of dose-response data (Section 2.6.1).

2) Selection of the BMR (Section 2.6.2).

3) Consideration of suitability of data for dose-response modelling (Section 2.6.3).

4) Consideration of prior information for the parameter(s) considered (Section 2.6.4).

5) Perform Bayesian model averaging to estimate the BMD and calculate its credible interval
(Section 2.6.5).

6) Decide on the overall BMDL (all endpoints considered) to be used as a RP to establish a
HBGV or calculate a MOE (Section 2.6.6).

7) Reporting BMD analysis (Section 2.6.7).
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Figure 2: Flow chart to derive a Reference Point (RP) from a dose-response data set of a specified
endpoint, using BMD analysis
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The basic structure of most dose-response data is a matrix, with each row providing the summary
statistics of a particular dose, with columns:

e For continuous endpoints: dose, number of observations, arithmetic mean, arithmetic standard
deviation or variance.
e For quantal endpoints: dose, number of observations, number of adverse events.

Possible variations on this basic structure include:

e Individual data, in a matrix, with each row referring to an individual unit and with two columns:
the dose used, and the individual outcome (continuous or adverse event indicator).

e Summary data, as in the basic structure, but with, for continuous endpoints, the geometric
mean and geometric standard deviation or variance.

e The basic structure extended with an additional column with the values of a covariate for that
dose group, such as gender, age group. In this setting, the same dose value will appear in
multiple rows, as often as there are covariate values. For instance, in the case of the covariate
gender, there will be two rows with the same dose level (first column), possibly the same
number of observations in the second column (in case of a balanced design), likely different
values for mean and standard deviation (or variance) in the third and fourth column, and
different gender indicators in the fifth column.

e In the case of clustered quantal data (e.g. litters), there are multiple rows with the same dose level
(in the first column), each of them referring to a different cluster; the other columns are again the
number of observations (likely different for different clusters), number of adverse events.

There are specific conditions in which a covariate analysis can be used when performing a BMD
estimation (see Section 2.5.4). The first one could be when in the problem formulation there might be
indications that sex, or other population characteristics differences, such as age groups, need
evaluations. In such case, if groups (referring to covariate groups) can be pooled, parameter
estimation might increase accuracy and result in a narrower credible interval for the BMD. Another
condition is when considering several studies having similar experimental conditions (e.g. same animal
species, comparable experimental design, etc.): these studies could be combined in a covariate
analysis (in which study indicator would be considered as a covariate); the studies might provide
different dose ranges and with this a better indication about the potential dose-response relationship.
This specific condition might increase accuracy when estimating model parameters and result, after
pooling the studies, in a narrower BMD credible interval.

The BMR is a degree of change that defines a level of response in a specific endpoint that is
measurable, considered relevant to humans or to the model species, and that is used for estimating
the associated dose (the ‘true’ BMD). Before thinking about what value may be specified for the BMR,
it is necessary to make clear in what terms the BMR is defined, i.e. what metric is used for reflecting
the magnitude of the effect. Both for continuous and for quantal data there are various options, and
the most important ones will be discussed below. For both, continuous and quantal endpoints, the
rationale for the decision made on the BMR and associated uncertainties should be explained and
documented.

Continuous data

For continuous data, the BMR should reflect the dose where an effect becomes adverse and,
therefore, depends on the nature of the endpoint selected (including apical and non-apical endpoints)
and the relation to the BMD (also called relative deviations) is expressed as follow:

h(BMD) —p(0)
W0)

Whether or not various effects occur at similar doses might modulate the overall adversity associated
with a BMD for a particular effect (Sand, 2021), and may thus potentially be relevant to consider in the
process of selecting the BMR (for the critical effect). Ideally, the BMR is set numerically so that it
reflects the onset of a human-relevant adverse effect, meaning that a response above the BMR is

BMR =
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considered adverse. The increase/decrease defined by the BMR should preferably be a value within the
observed range of experimental response to avoid extrapolation. In case the increase defined by the
BMR is outside the observed response range, considerations must be made whether the study is
suitable to derive a RP. When choosing a BMR for continuous data, EFSA recommends a tiered
approach:

Tier 1: consider whether a biologically relevant BMR is already established (e.g. internationally
agreed, previously used by EFSA, etc.) for the endpoint considered and whether the value is still
appropriate. Discussion, including challenges and guiding information, related to the derivation of such
BMR values can be found in publications of Dekkers, de Heer & Rennen (2001) and WHO (2020).

Tier 2: in the absence of an already established BMR, experts should consider whether it is possible
to define quantitatively ‘biologically relevant’ to inform the selection of a BMR for the endpoint
considered. The BMR may be defined using any of the methods that are available in the literature (e.g.
expert knowledge elicitation (EKE), which could be informed by, e.g. the effect size theory
(Slob, 2017), 1SD of the background response (US-EPA, 2012), hybrid approach or other definitions),
taking biological relevance into account. This tier assumes that a level of adversity can be identified,
even though the minimal degree of adversity may not be known. Thus, biologically relevant BMRs may
also be represented by a range rather than by a single point.

If it is not possible to provide an argument for a specific biologically relevant BMR (or range of
biologically relevant BMRs) for the endpoint considered, this endpoint should not be used to establish a
HBGV (see also, WHO 2020). In the absence of endpoints with biologically relevant BMRs, the full set
of doses used in the experiment could still be used in a sensitivity analysis to investigate the
probability that, for several BMR chosen a priori, the BMD value associated to them would be below or
above the doses tested. This information could then be further considered in calculation of a range of
MOEs. Another possibility could be to use each of the dose tested and calculate the relative change
compared to the background response, and then use these relative changes as BMRs to estimate the
BMD distribution. This would aid defining the uncertainty associated to each BMD distribution, which in
turn would provide insights on the information contained in the dose-response fitted.

Quantal data

For quantal data, the BMR is defined in terms of an increase in the incidence of the lesion/response
scored, compared with the background incidence. In toxicology, the two common metrics for reflecting
such an increase are the additional risk (incidence at a given dose minus incidence in the controls), and
the extra risk (the additional risk divided by (1 minus the incidence in the controls), i.e. the additional risk
divided by the non-affected fraction of the control group) (see Section 2.3.3). The extra risk is the
preferred option and it is defined in terms of the BMR and its relation to the BMD is given by:

_ n(BMD)—-=(0)
BMR = im0

The increase defined by the BMR should preferably be a value within the observed range of
experimental response to avoid extrapolation (further details can be found in Section 2.6.5). Although
unlikely for quantal data, in case the increase defined by the BMR is outside the observed response
range, considerations must be made whether the study is suitable to identify a RP.

In its 2005 opinion, the EFSA Scientific Committee concluded that the use of the BMDL, calculated
for a BMR of 10% (BMDL10), is an appropriate reference point for substances that are both genotoxic
and carcinogenic, because such a value is the lowest statistically significant increased incidence that
can be measured in most studies, and would normally require little or no extrapolation outside the
observed experimental data (EFSA, 2005). Further evaluation of the BMR for quantal data in a more
general context was provided in the previous EFSA SC guidance on benchmark dose modelling, which
noted that various studies estimated that the median of the upper bounds of extra risk at the NOAEL
was close to 10%, suggesting that the BMDL;, might in many cases be appropriate (Allen et al., 1994;
Fowles et al., 1999; Sand et al., 2011). Any decision to deviate from this proposed value should be
explained and documented.

Using dose-response models for estimating the BMD and constructing its credible interval ensures
an efficient use of all doses tested in the experiment. It is known that the selection of the doses when
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designing the experiment, is essential for the optimum retrieval of information regarding the BMD from
the experimental outcome. In order to evaluate whether the data at hand (the doses used and the
responses observed in the study) contain sufficient information to characterise the dose-response
curve and at the same time enough information on the low dose range to estimate the BMD and its
credible interval. The following procedure is proposed to flag when the study might contain insufficient
information to estimate the BMD with a certain level of accuracy:

Consider all pairwise comparisons between dose groups tested.

1) Use a one-sided hypothesis testing procedure for each pairwise comparison to account for
monotonicity. The test to use for each pairwise comparison should account for:

—  Potentially different variances between dose groups,
—  Potentially different number of observations between dose groups.

2) Select only significant differences:

—  When at least three groups of responses are found to be significantly different from
each other (see Figure 3.1 as an example illustrating this for increasing responses), the
data is expected to provide enough information to estimate with a certain level of
reliability a dose-response curve (from the pairwise comparison we have at least three
groups of responses: one related to the control group (green circle), the maximum
response group (blue circle) and a third group (red circle) for which the responses are
in between these two groups). In this case it is expected that the study contains
enough information to characterise the dose-response relationship and it might contain
enough information as well about the parameter of interest, the BMD. The data are
said to be suitable for modelling and estimation of BMD.

Response
h

Control 1
Dose 1
Dose 2
Dose 3 -
Dose 4

Figure 3.1: Representation of a study design that would have at least three groups of responses
statistically significantly different

— In case of only two groups of responses are found to be significantly different, then we
can say that the data does not provide enough information to describe accurately the
dose-response relationship and two situations could be encountered:

i) If the lowest/largest (increasing or decreasing relationship) response group
contains only the control (see green circle in Figure 3.2 as an example illustrating
this for increasing responses), the study might have enough information to define
a dose-response curve, but it is expected that the study does not contain enough
information for BMD estimation. In general, it is expected to produce small BMDL
values as not enough small doses have been tested in the experiment conducted,
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and the BMD will certainly be estimated to be below the first dose tested with a
wide credible interval. Although the data could be modelled, the available
information might not be sufficient for estimating the BMD.

Response

Control : ¢ anmD o )

Dose 1
Dose 2
Dose 3
Dose 4

Figure 3.2: Representation of a study design that would have only two groups of responses
statistically significantly different, where the control group is the only one having a
different response to the rest of the doses

i) If the lowest (largest) increasing (decreasing) relationship response groups contain
not only the control, but also other dose groups (see green circle Figure 3.3 as an
example illustrating this for increasing responses), the study might have enough
information to estimate reliably the dose-response curve at low dose levels, and it is
expected that the study does contain enough information for BMD estimation
(meaning that the lower bound of the credible interval is expected to be close to the
estimated BMD) as enough low dose responses are observed. The data can be
modelled, and estimation of BMD would produce BMDL values that may
be considered suitable to identify a reference point.

Response

se 1
Dose 2
Dose 3
Dose 4

Control
Dx

Figure 3.3: Representation of a study design that would have only two groups of responses
statistically significantly different, where the control is not the only one having a different
response to the highest response observed

The generic examples here are presented to illustrate the process to assess data suitability to
estimate the BMD. The results of the dose-response modelling of these data are presented in
Appendix C — where it is clearly highlighted that for data representing configurations as shown in
Figures 3.1 and 3.3, the estimation of BMD can be done with reliable precision as the data contain
enough information to be able to build the dose-response and as well of enough low doses to increase
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BMD estimation precision. For the cases in which all doses tested provide information about the
maximum response, the modelling does not provide reliable estimation (low estimation precision). Only
when informative priors can be considered, the Bayesian BMD model averaging paradigm provide
more reliable estimates, with the drawback that could also bias the estimation if the priors are set to
be in the region not containing the true BMD.

High dose impact

In some instances, the shape of the dose-response relationship for one endpoint is affected by a
different endpoint. For example, in the carcinogenicity studies of the pyrrolizidine alkaloids, riddelliine
and lasocarpine, there was a dose-related decrease in survival, particularly in the lasiocarpine study. All
female rats dosed with the highest dose of lasiocarpine had died by week 69. The number of tumours
in the high-dose group was lower than in the low- and mid-dose groups presumably due to the shorter
duration of dosing. The CONTAM Panel noted that the BMD calculations indicated a low confidence in
the results, and concluded that the high mortality rate impaired the dose-response analysis (EFSA
CONTAM Panel, 2011). Since parameter c relates to the maximum response, limitations on the high
dose might have an impact on the BMD and BMDL. Where high dose data are available for the effect
of interest, but they are clearly influenced by another type of effect or mode of action, then it may be
justifiable (on biological basis) to exclude the high dose data. If there is no indication of an overlying
mode of action, data should not be excluded, unless detailed justification is provided.

If the maximum response is not reached at the highest dose, then the assessor should consider
whether it is possible to use an informed prior on the maximum response. However, this approach
introduces uncertainty with respect to the dose at which the maximum response would be reached.

Decision to exclude one (or several) point(s) from the dose-response modelling should always be
justified and documented.

Absence of non-exposed controls

In strict terms, model fits are valid only for the range of data used to estimate the model. For new
substances, this condition can be ensured by the presence of unexposed controls. In the case of
naturally occurring substances or contaminants, the condition of unexposed controls may not always
be met and the estimated value for the background response parameter may become very uncertain.
This is of particular concern for observational studies in humans where exposure conditions are not
controlled. This may equally apply to animal studies depending on how difficult it is to eliminate or
minimise the presence of the substance under consideration from the experimental setting. In general,
the greater the difference between the zero dose and exposure among controls the higher the
uncertainty. If the dose-response function has become asymptotic at the lower dose range the
uncertainty associated with extrapolation is generally small. However, in all other cases, extrapolation
to zero dose becomes more uncertain, depending on the steepness of the dose response at lower
doses. In cases where this has occurred, such studies have often been referred to as uncertain or
even poorly conducted despite being replicated in an independent setting. It is, however, important to
distinguish between experimental uncertainty and model uncertainty.

To address the uncertainty that may arise due to extrapolation towards zero below the observed
exposure range, some assumptions may be needed for dose-response curves that are non-asymptotic.
One way to address this uncertainty is to make assumptions on the expected value of the outcome
under consideration at zero exposure. The variability in the lower dose groups may be used as proxy
for the zero dose in such cases. Based on other experiments (e.g. variation in historical controls), one
can constrain the model fit with plausible values for the background response parameter observed in
different settings. Despite associated uncertainty, such assumptions are often more credible than
derived values for the background response from BMD modelling that fall well outside biological
variation or values that have not been associated with risk in other studies.

Another practical example would be modelling of dose-response data for nutrients to establish
HBGVs. In this case, zero exposure does not exist and regardless of the outcome under consideration
both high and low exposure is at the extremes associated with increased risk of adversity. In the
special case of nutrients where a certain exposure level is required to remain healthy, one would need
to use a ‘background’ response value around a predefined exposure level. Further experience in
benchmark dose modelling in the area of nutrition is required before guidance can be developed. It
may also occur due to model uncertainty, that the BMDL falls below the physiological requirements
simply because the margin between physiological needs and toxicity is smaller than the combined
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experimental and model uncertainty. Such a situation requires special modelling considerations (e.g.
Milton et al., 2017), should the BMD approach be applied.

To date, few practical examples of application of BMD modelling in the absence of non-exposed
controls exist. The more widespread use of the BMD methodology may highlight the need to update
this guidance in this respect.

Two types of prior distributions are used:

e PERT distributions (Johnson et al., 1995) for the so-called natural parameters: background and
maximum response, and the BMD with well-defined biological meanings.

e Log normal distributions for transformations of the technical parameters (d and o2 (only for
continuous data)).

The distinction between both types of prior distributions for both type of parameters is based on
their different role and usage:

e Uninformative (the default) and informative (as recommended option) priors can be assigned to
the natural parameters.
e Appropriate uninformative priors have been assigned to technical parameters:

o The parameter d, which is acting differently in the different models and has a direct link to any
natural characteristic of the endpoint. Moreover, the presence of this fourth parameter
enhances the flexibility of each of the models, but at the cost of computational stability. For
that reason, a particular normal prior distribution is assigned to this parameter (or a
transformed parameter, such as log(d)) in order to technically stabilise the fitting of the model.

o The variance parameter o> depends on characteristics of the endpoint and of the
experiment. Across all models, the same uninformative normal prior is attached to this
variance parameter (on the log scale).

The PERT prior is defined considering the two-parameter Beta distribution which is defined for
x€|0,1], with parameters o and p. By adding two parameters, | and u, a four-parameter Beta
distribution is obtained, and it is defined for y € [I, u], where y =x < (u—I) + |, with density function

f(y;aB) _ (y=D*" e (u—y)"*

flyi o Bl u) === T (U= B, B)

where x = ﬁ—:'l A transformation of this four-parameter Beta distribution leads to a PERT distribution

with parameters |, m and u, defined by the PDF above, where

4em+u-5-¢lI
u—|
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B u—|

B

!

m is the mode, | is the lower bound and u is the upper bound. The above specification results in a
distribution with its peak at the mode m. The ‘flatness’ of the distribution can be controlled by
including an additional parameter y. This leads to the modified-PERT distribution, with parameters

m—I
= 1 L)
o +v '
u—m
= 1 Ld
=14y

A lower value for y results in a distribution that is flatter, with y = 0.0001 corresponding to a
uniform distribution on |l, u].

Using the modified-PERT distribution, priors can be constructed for the natural parameters
(background response, maximum response and BMD) of the models by specifying a lower bound (1),
mode (m) and upper bound (u) for these parameters.
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The models proposed are built based on four parameters, which implies that to apply them without
considering informative priors for the parameters, at least four doses including the control would be
needed. In case that the study provides information for two active doses and a control, informative
priors would be needed for some of the parameters in the model to make the model identifiable.

This section focuses on the parameters background, maximum response and BMD, and the use of the
PERT distribution. The PERT distribution can be characterised by the minimum, mode, maximum and a
shape parameter. The smaller the shape parameter the less informative the distribution is around its
mode. Figure 4 shows the differences between density of three PERT distributions, all with minimum 0,
maximum 20 (red vertical lines) and mode 5, but with different shape parameter (4 for solid, 1 for dashed
and 0 for dotted line). Figure 4 is just presenting an example and does not represent all situations that
could be encountered in practice. For the uninformative version of the prior, the 4 parameters get default
values ensuring a wide range and shape parameter 0 (implying the mode is not relevant). For the
informative version any and ideally all four parameters of the PERT distribution get a value based on a
particular source (other historical data, literature, expert judgement).

The proposed framework includes default priors for the natural parameters mentioned above, they
are based on the data at hand to define broad enough ranges for the different parameters for which
the priors can be considered weakly informative or uninformative. The procedure to establish
informative priors is still a subject of research. Here are some procedures that could be used when
setting informative priors. For the natural parameters (background, maximum response and BMD),
EKEs following the principles stated in the EFSA guidance (EFSA, 2014) can be conducted to define the
ranges and most likely value for the specific endpoint under study. Another possibility is to consider
historical control data to inform the prior distribution for the background response using the historical
ranges observed to set the boundary values of the PERT distribution as well as the most likely value
(mode) observed in the historical control data. In case that assessment for the endpoint and
substances would have been previously conducted, the posterior distributions could be used to inform
the current assessment. The full posterior distribution could be used to estimate the parameters
characterising the PERT distribution that best fit the posterior distribution, to provide a parametric
representation of the prior in the current Bayesian implementation. In case that previous assessments
have not been reviewed and accepted, the analysis can be performed not only with the informative
priors following the procedure described above, but also with the default priors proposed, in order to
have all elements to be able to evaluate the assessment performed.

The user must justify and document the prior distribution, based on all information that could contribute
to the definition of that informative prior, and should not be subjectively selective in this process.

The shape parameter is the most difficult to specify; It can range on a continuous scale, but the
user will be offered the possibility to choose between the values illustrated in Figure 4: shape value 0
reflecting that there is no knowledge about the mode, shape value 1 reflecting that there is a mode
but its value is uncertain, and shape value 4 reflecting that the particular mode is really the most likely
value.

0.04
1

0.02
|
e e e T R e

Parameter

Figure 4: PERT densities with minimum = 0, mode =5, maximum = 20 (vertical red lines) and
shape.Varying from 0 (dotted line), 1 (dashed line) to 4 (solid line)
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The degree of informativeness of the PERT distribution, for a fixed mode, can be governed by
adapting the minimum, the maximum and the shape parameter; the degree diminishes with choosing
a smaller minimum, a higher maximum or a smaller shape parameter. In Appendix C — Example
generated based on Figure 3.2 — the role of priors is explored. The data analysed contain scarce
information on how the response depends on the dose to move from the response at the control
group to the maximum response trigger by the experimental dose used. The model results considering
uninformative priors provide uncertain estimates of the BMD (ratio between BMDU and BMDL larger
than 70, and for the Laplace approximation very large values) with lower bounds that in general are
very close to the control group. Then several informative priors were considered, first restricting the
range in which the BMD should be and later including information on where the most likely value
would be. The results clearly indicate gaining precision on BMD estimation, but as well that it should
be used with caution, since a misspecification of the location of the BMD when using informative priors
might induce bias in the estimation of the BMD. Critical appraisal procedures as the one defined in
EFSA (2015) can be used in the process of defining informative priors in order to ensure that the
methodological quality of the study used to set the informative priors is assessed.

In Appendix C — The Body Weight Example in the 2017 EFSA Guidance Update - and Appendix D -
Thyroid epithelial cell vacuolisation data in the 2017 EFSA Guidance Update — the results of Bayesian
model averaging for previously analysed continuous and quantal data are presented. The results
obtained are compared to the previously reported results considering the frequentist approach
provided by PROAST. The resulting credible interval for the Bayesian model averaging produced similar
results to those obtained using a frequentist paradigm. For the continuous example, the results
obtained considering both procedures are the same, while for quantal data, a slightly more precise
estimate of the BMD is obtained when Bayesian model averaging is used, especially if the estimation is
done using Bridge sampling.

The BMDL as RP and alternative solutions

Although a given data set was considered suitable for/worth modelling during the problem
formulation step (see Section 2.6.3), in some instances the outcome of the Bayesian model averaging
will result in @ BMD credible interval considered as too broad (too much uncertainty around the most
likely BMD) for the purpose of the risk assessment. Advice to judge the modelling outcome has been
given manifold in statistical, toxicological and regulatory literature since the beginning of the use of the
BMD approach for risk assessment, see e.g. Davis et al. (2011) or Wignall et al. (2014); see also
documents published by regulatory agencies, in particular US EPA (2020) from 19 August 2020.

In most cases, the uncertainty of the BMD estimation has been characterised by the BMDU/BMDL
ratio or by the ratio between the estimated BMD (the median of the posterior distribution of the BMD
in Bayesian model averaging) and the BMDL. These ratios were suggested by US EPA to judge the
appropriateness of models when the BMD/BMDLs differ between models, see also Haber et al. (2018).
Although this difference is no more an issue in model averaging, the following set of criteria, based on
those proposed by US EPA to judge the width of the BMD credible interval should be considered by the
risk assessor.

Alternatives to the BMDL as a reference point, as described below, are recommended when:

None of the candidate models fit the data sufficiently well (see Section 2.5.3).
BMD/BMDL > 20, or.

The BMD is 10 times lower than the lowest non-zero dose,*! or.

BMDU/BMDL > 50.

It should be noted that the above qualitative categorisation depends on several cut-off values
inspired by those proposed by US EPA as ‘default logic assumptions’. Although plausible, they lack a
theoretical statistical basis and they have so far not been tested empirically, e.g. in systematic reviews
of risk assessment practice. Developed for single model fitting, their suitability for judging a BMD
credible interval obtained with model averaging should be further evaluated. As such, the above
criteria should be used as ‘indicators’ on when the outcome of the modelling requires Experts

1 If the BMD is lower than 10 times the lowest non-zero dose, a possible alternative is using the N(L)OAEL see further down.
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consideration on the appropriateness of using the BMDL as reference point. The cut-off values for
these criteria may be reconsidered after further experience with their use has been accumulated.

Post hoc modification of some parameters of the modelling (e.g. increasing the BMR, use of
informative priors for some of the model parameters) as possible solutions to reduce the uncertainty
around the BMD and obtain a more suitable BMDL are not recommended. In case the risk assessor
decides not to use the BMDL as RP (such decision should be explained and documented), two
alternative solutions are proposed:

The first preferred option is making use of the probability distribution of the BMD resulting from the
Bayesian model averaging. This probability distribution can be used to compare the most likely BMD
(mode of the posterior distribution) with the various experimental doses tested. Examples of cases
where such an approach would be appropriate is when the most likely BMD is lower than the N(L)
OAEL. If the most likely BMD is higher than the N(L)OAEL, the risk assessor may consider using the N
(L)OAEL as a more conservative RP. Obviously, the previously mentioned criteria that the most likely
BMD should not be lower than 10 times the lowest non-zero dose still apply. The advantage of this
approach is the quantification of the uncertainty around the decision made to use the most likely BMD
as RP.

If the data are considered suitable for BMD modelling and the use of the most likely BMD is
considered unreliable, the last option is to use a N(L)OAEL as the Reference Point, despite the
associated limitations (see Section 2.3.1). In view of these limitations, caution should be used when
applying the N(L)OAEL approach for the derivation of a RP.

Should the decision be made to use the most likely BMD, or the N(L)OAEL as a RP, the BMD
credible interval should be communicated together with the value selected for the RP.

Assessment of the overall Uncertainty characterisation

As described in the SC guidance on uncertainty analysis in scientific assessment (2018), all EFSA
scientific assessments must include consideration of uncertainties. As mentioned in Section 2.3.3, the
BMD approach allows for a quantitative characterisation of the uncertainty around the RP (represented
by the BMDL-BMDU credible interval and/or other quantiles of the BMD posterior distribution) for the
critical endpoint under consideration. The selection of the N(L)OAEL as a reference point does not
include a characterisation of the uncertainty around the RP; still the uncertainty around the RP needs
to be taken into account when describing the overall uncertainty associated with the assessment (see
WHO/IPCS, 2018).

The identified sources of uncertainty should be listed, and their overall impact on the assessment
conclusion characterised (EFSA Scientific Committee, 2018). The BMD credible interval will therefore be
one of the factors to be considered in the overall uncertainty analysis required by EFSA as part of the
risk assessment.

The procedure outlined in Figure 2 results in a final BMD credible interval for a given dose-
response data set related to a specific endpoint. The BMD credible interval should be calculated for
all data sets considered relevant (the respective BMDL potentially leading to the RP), resulting in a
set of credible intervals indicating the uncertainty ranges around the true BMD for the endpoints
considered. This set of BMD credible intervals concisely reflects the information provided by the
available data and provides the starting point for the risk assessor to identify a RP. It is anticipated
that the credible intervals resulting from modelling different endpoints elicited by a given substance
will sometimes overlap and the width of these credible intervals might vary. This raises the question
of which BMDL to select as the RP. One way to proceed is to simply select the endpoint with the
lowest BMDL and use that value as the RP. However, this procedure may not be optimal in all cases,
and the risk assessor might decide to use a more holistic approach, where all relevant aspects are
taken into account, such as the width of the BMD credible intervals (rather than just the BMDLs),
the biological meaning of the relevant endpoints, and the consequences for the HBGV or the MOE.
This process will differ from case to case, requires expert judgement and it is the risk assessor’s
responsibility to make a substantiated decision on what BMDL will be used as the RP. The following
aspects may be considered:

e If the HBGV is based on a BMDL with a wide credible interval, and is much higher than the
exposure estimate, or the MOE is much larger than the minimal value considered necessary,
then the high uncertainty in the RP has no consequence for the risk characterisation. It should
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be however kept in mind that an exposure estimate is not a fixed value (it may well change in
the future).

e In some cases, the selected RP may not be the lowest BMDL, for example when this lowest
BMDL concerns an effect that is also reflected by, or linked to other endpoints (e.g. liver
necrosis vs serum enzymes) that resulted in much smaller credible intervals but with higher
BMDLs (scenario I and II). In that case it might be argued that the true BMDs for those
analogous endpoints would probably be similar, but one of them resulted in a much wider
credible interval (e.g. due to large measurement errors).

e In case two endpoints are not related to each other, and their biological consequences differs,
the risk assessor may give preference to one endpoint rather than another to establish a HBGVY,
considering, e.g. the type of endpoint, the BMR used for these endpoints, irrespective of the
width of the credible interval (scenario III and IV). The following is meant to illustrate the
scenarios mentioned above:

Endpoint A: BMDL-A 1 I BMDU-A.
Endpoint B: BMDL-B I--------------- I BMDU-B.
Dose: >
Scenario Endpoint A Endpoint B Consider as RP
I Serum enzymes Liver necrosis BMDL-B
II Relative liver weight Body weight BMDL-B
III Body weight Nephrotoxicity BMDL-B
v Serum enzymes Neurotoxicity BMDL-B

As stated above, it is the risk assessor’s responsibility to make a substantiated decision on what
BMDL will be used as the RP and the rationale for this decision needs to be documented.

The results of a BMD analysis should be reported in such a way that others are able to follow the
process.

In reporting a BMD analysis for a particular study, it is not necessary to provide information on all
the endpoints analysed but only for the critical one(s) in that study. It should be made clear in a
narrative why this (these) endpoint(s) was (were) selected.

The following information should be provided:

A) A summary table of the data for the endpoint(s) for which the BMD analysis is reported. For
quantal endpoints, both the number of responding animals and the total number of animals
should be given for each dose level; for continuous endpoints, the mean responses and the
associated SDs (or SEMs) and sample sizes should be given for each dose level (whenever
possible, raw data should be reported as an Annex of the BMD analysis report).

B) The value of the BMR chosen, and the biologically-based rationale for such a choice.

C) The software used, including version number.

D) Settings and statistical assumptions in the model fitting procedure when they deviate from
the recommended defaults in this opinion, together with the rationale for doing so.

E) A table presenting the models used (preferably in the order of Tables 2 and 3), and the
priors used for the endpoint(s) considered;

F) The BMD estimate(s) and its/their BMDL-BMDU credible interval(s); values should be
reported with two significant figures.

G) Plots of the fitted models (see Figure E.1).

H) Conclusion regarding the selected BMDL to be used as a RP.

A template is annexed to ensure a standardised reporting of the above-mentioned information
(Appendix E). This template is automatically implemented in the EFSA Platform when retrieving the
results of the BMD analysis.
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3. Conclusions

This revised guidance takes account of the experience accumulated in BMD analysis over the last
13 years.

The SC confirms that the BMD approach is a scientifically more advanced method compared to the
NOAEL approach for identifying a RP, since it makes extended use of dose-response data, and it
provides a quantification of the uncertainty in the estimated RP. Establishing HBGVs based on the BMD
approach can be expected to be as protective as those based on the NOAEL approach, i.e. on average
over a large number of risk assessments. Therefore, the default values for uncertainty factors currently
applied are equally applicable.

Bayesian model averaging is recommended as the preferred approach, as it brings the following
main advantages compared to the frequentist model averaging approach recommended in the
previous version of this guidance:

e Possible use of existing prior information (e.g. on background response) next to the information
provided by the data set considered. Accumulation of knowledge over time for the endpoint
considered (the outcome of the BMD modelling for the endpoint can be used in the future as
prior information for a new BMD modelling of that same endpoint).

e Bayesian model averaging allows a more flexible way to constrain model parameters by
including weakly informative priors.

Probabilistic interpretation of the results of the BMD analysis (credible interval).
Computational efficiency improved compared to the frequentist model averaging using
bootstraps.

The SC does not consider it necessary to repeat all previous risk assessments that used the 2009 or
2017 version of the BMD guidance, given the modifications proposed in the updated version of the
guidance. The BMD approaches (frequentist or Bayesian if no informative priors are used), as well as
the NOAEL approach, will result in general in comparable RPs. However, in individual cases for example
where prior information is available for the critical endpoint, the resulting RP may differ substantially
(e.g. by one order of magnitude) between the approaches. If a possible risk for human/animal health
has been identified, e.g. when the estimated exposure to the compound was evaluated to be close
(e.g. within one order of magnitude) to the HBGV (and similarly for the MOE), then a re-evaluation
might be considered. In such cases, the BMD approach as described in this guidance should be
applied.

The BMD approach is applicable to all chemicals in food, independently of their category or origin, e.g.
pesticides, additives or contaminants, for identifying RPs to establish HBGVs or to calculate MOEs. The
BMD approach can also be used for dose-response assessment of epidemiological data, although it is not
addressed in this guidance document and will be subject to a separate guidance of the EFSA SC.

4, Recommendations

e The SC strongly recommends that the BMD approach, and more specifically Bayesian model
averaging, is used for identifying RPs for establishing HBGVs and for calculating MOEs. The
application of this guidance is mandatory for EFSA Panels and Units.

e The SC recommends that training in dose-response modelling and the use of BMD software
continues to be offered to experts in the Scientific Panels, working groups and EFSA Units.

e The SC reiterates that, given the frequent use of the BMD approach, current toxicity test
guidelines should be reconsidered with the purpose of optimising the study design for the
application of the BMD approach to identify a RP for establishing the HBGV, e.g. increase the
number of dose levels without changing the total number of animals used in the experiment.
The models proposed are built based on four parameters, which implies that to apply them
without considering informative priors for the parameters, at least four doses including the
control would be needed. In case that the study provides information for two active doses and
a control, informative priors would be needed for some of the parameters in the model to make
the model identifiable.

e The SC recommends maintaining the cross-cutting working group on BMD already established
to assist EFSA Units and Panels in applying this guidance.

e The SC reiterates the need for a specific guidance on the use of the BMD approach to analyse
epidemiological data.
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BMR benchmark response

CEDL See BMDL

CEDU See BMDU

FAO Food and Agriculture Organization of the United Nations
GUI graphical user interface

HBGV health-based guidance value

IPCS WHO International Programme on Chemical Safety
JECFA Joint FAO/WHO Expert Committee on Food Additives
JMPR Joint FAO/WHO Meeting on Pesticide Residues

LOAEL lowest-observed-adverse-effect-level

MOE margin of exposure

NOAEL no-observed-adverse-effect level

OECD Organisation for Economic Co-operation and Development
PERT Program Evaluation Review Technique

PoD point of departure

RP Reference Point

SD standard deviation

SEM standard error of the mean

TDI tolerable daily intake

TEF toxic equivalency factor

WHO World Health Organization
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Appendix A — Upper bounds® of effect at NOAELs related to 11 substances evaluated previously by JMPR or EFSA

Substance (source + year)

Endpoint

Quantal data
Upper bound extra risk (%)®

Continuous data
Upper bound percent change (%)©

Thiodicarb (JMPR, 2000)

Carbaryl (JMPR, 2001a)

Spinosad (JMPR, 2001b)
Flutolanil (JMPR, 2002a)

Metalaxyl (JMPR, 2002b)

Cyprodinil (JMPR, 2003a)
Famoxadone (JMPR, 2003b)

Tributyltin (EFSA, 2004a)
Fumonisin (EFSA, 2005b)
Deoxynivalenol (EFSA, 2004b)
Ethyl lauroy! arginate (EFSA, 2007)

Splenic extramedullary haematopoiesis
Vascular tumours

Thyroid epithelial cell vacuolation
Erythrocyte volume fraction
Haemoglobin concentration

Mean corpuscular haemoglobin
Decreased cellular elements in the spleen
Serum alkaline phosphatase activity
Serum ast

Spongiosis hepatis

Cataracts

Microscopic lenticular degeneration
Testis weight

Nephrosis

Body weight

White blood cell counts

21
15
2.7

30

5.1
29
29

8.6

9.7

260
100

9.1

10.5
23

(a): As calculated by the Scientific Committee.

(b): Two-sided 90%-confidence interval for extra risk was calculated by the likelihood profile method.

(c): Two-sided 90%-confidence interval was calculated for the difference on log-scale, and then transformed back, resulting in the confidence interval for percent change (see Slob (2002) for

further statistical assumptions).
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Interpretation of parameters in terms of characteristics of the median

response

Table B.1 shows how each of the parameters a, b, c,d play their role in determining the median

response at dose x for the models of Family 1.

Table B.1: Interpretation of parameters for Family 1: a determines the median background
response; ¢ determines the maximum change in median response, b and d characterise
the shape of change in median response with changing dose x

median response y[x ~ N(p(x), 62)

y|x ~ LOGN (p(x), 62)

Med(0) a
Med(o0) ¢ Med(0)
Med(x) Med(0) + F(x; b, d) (Med(c0)—Med(0))

ea
Med(0)°
Med(O)(Med(oo)_Med(O))F(x; b,d)

Table B.2 shows how each of the parameters a, b, c,d play their role in determining the median

response at dose x for the increasing models of Family 2.

Table B.2: Interpretation of parameters for increasing models of Family 2: a and ¢ determine the
median background response and the maximum change in median response, b and d
characterise the shape of change in median response with changing dose x

median response y[x ~ N(p(x), 62)

y|x ~ LOGN (p(x), 62)

Med(0) Med(oo)F(a)
Med (o) o
Med (x) Med(oo)F(F~* (efie) ) +bx?)

Med (c0)™@
eC

F<F—1 (\og Med(0)>+bxd>
Med(oo) log Med(0)

Table B.3 shows how each of the parameters a, b, c,d play their role in determining the median

response at dose x for the decreasing models of Family 2.

Table B.3: Interpretation of parameters for decreasing models of Family 2: a and ¢ determine the
median background response and the maximum change in median response, b and d
characterise the shape of change in median response with changing dose x

median response y|x ~ N(p(x), 62)

y|x ~ LOGN (p(x), 62)

Med(0) a

Med(oo) Med(0)F(c)

Med(x) Med(0) (1 +F (F’l ('\I:'/I‘Z‘jj(g))) ) ) _
Med(O)F(F*l (%(S’))) + bxd)

ea

Med(0)"©

Med(0) (”F(Fil <T“e:’(<o‘§>)) > )
1 Med(eo) )

Med(O)F<F 1(Med(0)) bd)

Visualisation of the models

Considering the models y|x ~ N(p(x), 5?) for a normally distributed response and with increasing
median response p(x) from Family 1a, Figure 1 shows four panels with graphs of p(x)

o for the exponential model (solid curve) and the Hill model (dashed curve),
e with always a=10 and c=2, implying a background response of 10 and a maximum

response of 20,

e with two choices for b = 0.25 or 2 and two choices for d = 1 or 2; each panel referring to one

of the four combinations.

As shown in Figure B.1, even if all parameters a,b, c,d are identical, the functional form of the
exponential and the Hill model are different, as are the corresponding BMD values corresponding to

the same BMR.
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Response
Response

Response
Response

Dose

Figure B.1: Exponential and Hill models curves

Figure B.2 provides some further insights in the exponential and the Hill model after
reparameterisation in terms of the parameters a, BMD, c,d (parameter b interchanged with potency
parameter BMD). Again, for all models, a = 10 and c = 2. The BMR was chosen to be 0.05, so that the
BMD corresponds to a response of 10.5 (5% above the background response of 10). For the black
curves BMD = 25 and for the dark red curves BMD = 50. All solid curves refer to the exponential
model, and the dashed ones to the Hill model. For each choice of the BMD, two choices d =1 or 2
were considered. Figure B.2 shows again the difference between the exponential and the Hill model
with identical parameters a, BMD, ¢, d, and the impact of changing only parameter d.
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Figure B.2: Illustration of the role of parameter d in each model
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Figure B.3 depicts the dose-response curves for all members of Family 1a, 1b and 2, with identical
values for the background response, maximum response and the BMD, and all with the fourth
parameter d = 2. The precise parameter values are:

e Family la& b:a=10,c=2,BMD=50,d=2
e Family2:a=0,c=20,BMD =50,d=2
Parameters a and c are linked to background and maximum response in a different way, and

parameter d is playing its own role in each model (see Figure B.2). The corresponding values for the
parameter b are:

aBMwD cd b
Exponential 10 50 2 2 0.000021
Inverse exponential 10 50 2 2 7489.330684
Hill 10 50 2 2 47500.000000
Log-normal 106 50 2 2 0.000077
Gamma 106 50 2 2 0.007084
Quadratic exponential 10 50 2 2 0.000134
Probit 0 50 20 2 0.000025
Logit 0 50 20 2 0.000040

’

Figure B.4 provides further insight in the comparison of the different models. Supposing ‘perfect
data generated by the exponential model with a = 10, ¢ = 2, BMD = 50, d = 2, with a very dense
design of dose levels according to a grid [0, max dose] in steps of 0.01, and with no noise (normal
distribution with variance equal to 0). All other models are fitted to those ‘perfect exponential data’,
shown in Figure B.4 by the green solid curve. These other models were informed with a perfect prior
(exact correct centre, and variance equal to 0) on the parameters a, ¢, BMD, and only the parameter d
is optimised to approximate the exponential model as close as possible, but optimisation is depending
on the choice of the maximum dose in the design. These choices 100, 250, 500 and 10,000
correspond to the four panels of Figure B.4. The four panels show that the other models deviate more
from the exponential model with increasing maximum dose. This shows the impact of the maximum
dose or the dose range. The higher the maximum dose, the more the different models will deviate, the
more likely the correct model gets the higher weights for model averaging, and the more accurately
the BMD (L/U) can be determined.
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Figure B.3: Illustration of the model curves considering equal background, maximum, BMD and d
parameter for all models
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Figure B.4: Best fitting parameters for all models to get as closer as possible to the exponential

model used to generate the green curve

The values of the parameter d bringing a particular model as close as possible to the exponential

model over the range [0, max dose] are given by:
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max dose a BMD c d
Exponential 100 10 50 2 2.000000
Inverse exponential 100 10 50 2 0.784360
Hill 100 10 50 2 2.098259
Log-normal 100 10 50 2 1.051192
Gamma 100 10 50 2 2.364008
Quadratic exponential 100 10 50 2 -25.179574
Probit 100 20 50 O 1.914032
Logit 100 20 50 O 1.916656
max dose a BMD c d
Exponential 250 10 50 2 2.000000
Inverse exponential 250 10 50 2 1.125619
Hill 250 10 50 2 2.286339
Log-normal 250 10 50 2 1.275715
Gamma 250 10 50 2 2.616310
Quadratic exponential 250 10 50 2 -198.000000
Probit 250 20 50 0 1.808274
Logit 250 20 50 0 1.830456
max dose a BMD c d
Exponential 500 10 50 2 2.000000
Inverse exponential 500 10 50 2 1.397181
Hill 500 10 50 2 2.464058
Log-normal 500 10 50 2 1.404980
Gamma 500 10 50 2 2.753478
Quadratic exponential 500 10 50 2 -198.000000
Probit 500 20 50 O 1.766660
Logit 500 20 50 O 1.805983
max dose a BMD c d
Exponential 10000 10 50 2 2.000000
Inverse exponential 10000 10 50 2 1.516266
Hill 10000 10 50 2 2.501481
Log-normal 10000 10 50 2 1.421107
Gamma 10000 10 50 2 2.758485
Quadratic exponential 10000 10 50 2 -198.000000
Probit 10000 20 50 O 1.766652
Logit 10000 20 50 O 1.805941

This table show that, while the parameters a, ¢, BMD are fixed to make sure that background
response, maximum response and BMD are 10, 20, and 50 respectively, the value of the parameter d
that brings the models closest to each other, varies across the different models, and depends on the
experimental dose range.

Addressing finally the question of how different or how similar are the median responses p(x) and
e"™ for a same endpoint, but assuming different distributions (normal and log-normal respectively);
Figure B.5 shows a matrix plot with, for all 8 models, the median responses p(x) (type and colour
according to legend in right lower figure) and e*® (solid line in orange) overlaid, with.

All parameters a and c such that the.

background response equals 10;

maximum response equals 20;

The parameter b always such that BMD equals 50;

The model-specific parameter d such that.

the models p(x) for the normal case y|x ~ N(u(x),c?) are closest to the exponential model with
d = 2 (left upper panel in Figure B.5).

the models e*® for the log-normal case y|x ~LOGN(p(x),c?) are closest to their normal
counterpart p(x).

Figure B.5 shows that, although the functional form of the two median responses p(x) and e*® is
different, the resulting curves with the model-specific choices of d are essentially identical. The model-
specific values of d are shown in the following table.
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d normal d log-normal
Exponential 2.000000 1.893664
Inverse exponential 1.397181 1.504560
Hill 2.464058 2.446903
Log-normal 1.404980 1.419891
Gamma 2.753478 2.636557
Quadratic exponential -198.000000 2.448653
Probit 1.766660 1.746467
Logit 1.805983 1.818089
Exponential Inverse exponential Hill Log-normal
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Figure B.5: Illustration of the similarities between models used for the assumption of normality and
the ones when log-normality is assumed, for which the d value is then estimated to get

the best fitting curve

Non-linear models

Non-linear models need more attention during the implementation and estimation process, as

compared to linear models. Non-linear model components typically complicate identifiability, reduce
precision of parameter estimation and lead to delayed convergence in iterative frequentist estimation
procedures and Bayesian MCMC sampling. Estimates of non-linear parameters may be highly
correlated with each other, hindering simultaneous estimation of the parameters. It needs careful
selection of starting values and it might be required to use particular constraints in the frequentist
setting and (weakly) informative priors to stabilise the estimation process in a Bayesian application
setting (see e.g. Chapter 10 in Congdon, 2006).

All 16 candidate models for the mean function p(x) in case of a continuous endpoint, and all 8
candidate models for the probability function =(x) are non-linear models.
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Appendix C — Data Examples: Continuous Endpoints

The appendix contains simulated examples based on the description in Section 2.6.3 to produce the
generic Figures 3.1, 3.2 and 3.3 as well as the example analysed in the previous update of the
guidance.

Example generated based on Figure 3.1

The Data

This example concerns a simulated data set, generated as a log-normal exponential models with
parameters a = 2.015, b = 1.5, ¢ = 1.344 and d = 1.8, with dose levels 0,0.5,1,2,3 and a constant
group size of 20. With a BMR = 0.10, the true BMD equals 0.2287.

-
v

n
7.534954 0.3131743

10.500018 0.6299896

13.886423 0.8874875

15.192057 0.8709575

15.331456 0.8501652

The Bartlett test did reject the assumption of constant variance (normal distribution) with a p-value
of 0.00; and did not reject the assumption of constant coefficient of variation (lognormal distribution),
with p-values 0.46. These findings are to be expected as the data are generated according to the log-
normal distribution.

Results

PROAST. The EFSA BMD WEB app (https://doi.org/10.5281/zenodo.3760370) produce the
following results of BMD modelling, using the exponential, inverse exponential, Hill and lognormal
model, considering model averaging based on 1,000 bootstraps, by means of PROAST 70.0. The BMR
was selected at 10%. For the exponential model the BMD was estimated as 0.184 with BMDL = 0.149
and BMDU = 0.220; for the inverse exponential model the BMD estimate was 0.103 with
BMDL = 0.085 and BMDU = 0.121; for the Hill model the BMD estimate was 0.241 with BMDL = 0.203
and BMDU = 0.277; and for the lognormal model the BMD estimate was 0.171 with BMDL = 0.156
and BMDU = 0.185. The model averaging results produced BMDL = 0.172 and BMDU = 0.253. The
ratio 8XBY — 1.47, indicating the precision of the estimation of the BMD.

Using Laplace approximation. First of all, the Bayes factor comparing the best model with the
saturated model equals 9.41, indicating limited evidence against the best fitting model and
consequently we can assume at least one candidate model fits reasonably well to the data.

The model-specific results (BMDL, BMD, BMDU, weight) are given in Table C.1. This table shows
that (i) the model-specific BMDL's vary from 0.12 to 0.30, (ii) all normal models get weight close to
0.0000 (as to be expected), (iii) the weights for the log-normal models vary from 0.08 to 0.23, with
the highest weight 0.23 for the gamma model, and weight 0.096 for the true exponential model, and
(iv) the model-specific CrI's do differ substantially; some of them are even not overlapping.

More information for the log-normal gamma model is depicted in Figure C.1, with, for the
background and minimum median response, and the BMD, the flat uninformative PERT prior
distributions (in blue) and the final posterior distributions (in orange). The fourth parameter d (left
lower panel) gets a log-normal prior distribution (in blue), which is moderately informative with median
at exp(1) = 2.72, in order to stabilise the fitting computationally. Similar plots can be made for all
other 15 models.
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Table C.1: The 3.1 Example. Model-specific values for BMDL, BMD and BMDU; and the posterior
weights of each model (used for constructing the model average)

Model BMDI ™MD BMDU| LP_Weights

.1754082 . 214499; . 2616653 0.0000139

. 2997619 . 3328158 . 3701580 0.0000189

.2293330 . 267096 . 3115832 0.0000204

. 2460377 - 09 . 3229684 0.0000166

. 2016675 . 2438900 . 2937460 0.0000314

.1202164 .1565299 . 2047988 0. 0000059

. 1478677 .1871044| 0.2364847 0.0000113

. 1581041 . 1968502 . 0.0000130

LN .1748528 . 2060665 | 0.24276 0.0957399
4_LN . 2963536 . 3260698 . 358 0.1362393
H4_LN . 234489 . 2671874 . 3041228 .1426473
LN4_LN . 2416612 . 272463 . 3067030 .1135973
G4_LN . 1974447 .2326739 .2740627 . 2259622
QE4_LN 0.1319963| 0.1623817 5 L 7 .1116405
P4_LN 0.1558: D.1864691 .2 .0813161
L4_LN D.167658 .1989455| 0. .0927261

Gamma Lognormal
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Figure C.1: The 3.1 Example: prior and posterior densities (pink and orange coloured respectively)
for the background response, the maximum response, the BMD, and the parameter d, for
the normal-quadratic exponential model. The vertical dashed lines in the upper panels
are the observed values for the background and maximum response
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Using the weights of Table C.1 (last column), the final model-averaged BMD estimate equals 0.245,
close to the true value of 0.2349, with 90% CrI (0.1572, 0.3329), similar to the results obtained using
the EFSA BMD WEB App. Based on the Laplace approximation results, the ratio 88U is slightly larger
(2.1), the estimation of the BMD is slightly more uncertain. Figure C.2 shows, on the log-scale, the
summary data together with the model-specific fitted dose-response models, together with the CrI (in
green), the BMD estimate (red bullet point), and the posterior distribution of the BMD, with the 90%
CrI (in green) and the BMD estimate (red bullet point). Note how the fitted models vary substantially
in the range from dose 0 to the first dose level; also, the posterior density of the BMD (in the lower
right panel) shows some different peaks coming from mixing quite different posterior densities of the
individual models (see also the quite different CrI’s in Table C.1).

Using MCMC. Using MCMC (hybrid and Bridge sampling), the results are quite similar. The final
model-averaged BMD estimate, obtained with Bridge sampling, equals 0.247 with 90% CrI (0.1640,
0.3380). The estimates for the hybrid method are 0.234 for the point estimate, and (0.1571, 0.3315)
for the credible interval.

Normal distribution LogNormal distribution

vvvvvv

Exp W Gamma
Model Model
Loghtomat Logisto

Response
Response
-~
—a—
=

0.5 1 0.5
Dose Dose
data and vertical bars based on arithmetic sample means and standard deviations data and vertical bars based on geometric sample means and standard deviations

odel Averaged

Response
,(usu;q pajedsay -

Response

Dose

Figure C.2: The 3.1 Example: based on the Laplace approximation: fitted normal dose-response
models (upper left), fitted log-normal dose-response models (upper right), all fitted
models (lower left), averaged model with posterior density of the BMD, with 90%
credible interval (in green) and BMD point estimate (in red)

Results using individual data instead of summary data

As the data are simulated, the individual data are available as well. In this section, we illustrate
how individual data can be further tested for distributional assumptions and how the use of summary
data versus individual data affects the results of the analysis. The individual data are shown in
Figure C.3.
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Figure C.3: The 3.1 Example: individual data with the summary arithmetic means (in red)

Distributional assumptions

Based on the summary data, the Bartlett test did reject the assumption of constant variance
(normal distribution) and did not reject the assumption of constant coefficient of variation (log-normal
distribution) at the level of 5%. These findings are to be expected as the data are generated according
to the log-normal distribution. The Bartlett test focuses on the spread in the distribution and how it
changes or not across the dose range. With the Shapiro-Wilk test, the normality and log-normality
assumption can be tested in more detail, at each dose level separately or across doses using the
residuals of an ANOVA model. The test at each dose level separately looks most genuinely into the
distributional model assumptions, but typically only based on a small sample size (20 in this case) and
therefore might lack power. The global test on the ANOVA residuals is more powerful, as the sample
size is much larger, but it assumes the distribution of the response data does not change across dose
(except for the central location), such that centred residuals can be pooled.

Table C.2: The 3.1 Example. Results of Shapiro’s test for normality and log-normality (normality on
log scale), at each dose level separately and globally, across all dose levels

p-value Shapiro normality test reject at 5% reject at 10%
0.93678653
0.35653379
0.47999850
0.66937548
0.07948016
0.45620085

p-value Shapiro log-normality test reject at 5% reject at 10%
0.91602084 0
0.30882131
0.34929311
0.62252062
0.09372633
0.14323037

The results in Table C.2 show that there is little evidence against normality, and against log-normality.
We do not expect to detect evidence against log-normality, but we might have hoped to find evidence
against normality. Locally, there seems to only be some limited evidence at the highest dose level, but
some slight evidence also holds against the log-normal distribution for that highest dose. Limited power
is very likely an issue. Figure C.3 does not show very skewed (to the right) scatters of the data.
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The Bartlett test and the Shapiro-Wilk test complement each other quite well in checking
distributional assumptions. Whereas the Bartlett test focuses on the pattern of the dispersion, the
spread of the distribution, across the dose levels, the Shapiro-Wilk test focuses on how the location of
the individual data is in line with the expected location but has little power when applied locally at
each dose level because of too limited sample size. For this data set, the Bartlett test is able to lead us
to the right conclusion.

How does approximating the geometric summary data affect the analysis?

The geometric mean and standard deviation (on the original scale) approximated from the
arithmetic mean and standard deviation, as well as the exact geometric mean and standard deviation
(directly computed from the individual data) are shown in Table C.3. For this particular data set, the
approximation works very well, such that the differences are negligible, and the final BMD estimates
are almost identical. Using the individual data and the exact geometric summary data, the model-
averaged BMD (using the Laplace approximation) equals 0.2351 with BMDL = 0.1564 and
BMDU = 0.3325, very close to those based on the approximate geometric means and standard
deviations.

Table C.3: The 3.1 Example. Geometric means and standard deviations: approximately using the
arithmetic versions, in the first two columns; exactly as computed from the individual
data in the last two columns

approx geo-mean approx geo-sd exact geo-mean exact geo-sd

7.528454 1.042420 7.528749 .042578
10.481170 1.061778 10.481904 .062312
13.858149 1.065928 13.858990 .066993
15.167153 1.058955 15.168239 .059243
15.307938 1.056974 15.309379 .056432

Example generated based on Figure 3.2

The Data

This example concerns a simulated data set, generated as a log-normal exponential models with
parameters a = 2.015, b = 1.5, ¢ = 1.344 and d = 1.8, with dose levels 0,3,6,8,10 and a constant
group size of 20. With a BMR = 0.10, the true BMD equals 0.2287.

7.53495 0.3131743
15.33241 0.9199283
15.108938 0.9656190

15.198939 0.8713520

15.331459 0.8501653

The Bartlett test did reject the assumption of constant variance (normal distribution) with a p-value
of 0.00; and did not reject the assumption of constant coefficient of variation (lognormal distribution),
with p-values 0.46. These findings are to be expected as the data are generated according to the log-
normal distribution.

Results

PROAST. The EFSA BMD WEB app produce the following results of BMD modelling, using the
exponential, inverse exponential, Hill and lognormal model, considering model averaging based on
1,000 bootstraps, by means of PROAST 70.0. The BMR was selected at 10%. For the exponential model
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the BMD was estimated as 0.04, not providing confidence limits; for the inverse exponential model the
BMD estimate was 0.000001, not providing confidence limits; for the Hill model the BMD estimate was
0.000001, not providing confidence limits and for the lognormal model the BMD estimate was 0.002, not
providing confidence limits. The model averaging results produced BMDL = 0.000001 and
BMDU = 0.018. The ratio B2 = 18000, indicating the uncertainty range of the estimation of the BMD.

Using Laplace approximation. The Bayes factor comparing the best model with the saturated
model equals 5.86, indicating limited evidence against the best fitting model, and consequently we can
assume at least one candidate model fits reasonably well to the data.

Not unexpectedly, as the response at the first active dose is already at its maximum and
consequently the data contain no information about the dose-response pattern from the background
to the maximum response, the individual model and the model-averaged intervals are very wide and
the BMDL are all essentially equal to or very close to 0. In addition, the estimation procedure leads to
an infinite value of the BMDU. As the MCMC results are more precise and useful, we report more
details about this approach.

Using MCMC. The Bayes factor BF = 6.33, indicating at least one candidate model fits reasonably
well to the data. All models except for the (gamma, normal) model converged. The model-specific
results (BML, BMD, BMDU, weight) are given in Table C.4, showing quite a large difference between
the Laplace and the MCMC based weights (see last two columns), indicating instability and/or
inappropriateness of the Laplace approximation. This table shows that (i) the model-specific BMDL's
vary from 0.006 to 0.06, (ii) all normal models get weight close to 0.0000 (as to be expected as the
data are log-normal), (iii) the weights for the log-normal models vary from 0.001 to 0.56, with the
highest weight 0.56 for the probit model, followed by the logit model (weight 0.24). The true
exponential model gets a low weight 0.02, and (iv) the model-specific Crl's do differ substantially and
are quite wide. In general, there is an overestimation of the true BMD = 0.229 (model-specific point
estimates tend to be larger than this true value).

More information for the (probit, log-normal) model is depicted in Figure C.4, with, for the
background and maximum median response, and the BMD, the un—/weakly informative PERT prior
distributions (in blue) and the final posterior distributions (in orange). The fourth parameter d (left
lower panel) gets a log-normal prior distribution (in blue), which is moderately informative with median
at exp(1) = 2.72, in order to stabilise the fitting computationally. Similar plots can be made for all
other 15 models.

Table C.4: The 3.2 Example. Model-specific values for BMDL, BMD and BMDU; and the posterior
weights of each model (used for constructing the model average)
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Probit Lognormal

Density
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Figure C.4: The 3.2 Example: prior and posterior densities (pink and orange coloured respectively)
for the background response, the maximum response, the BMD, and the parameter d, for
the normal-quadratic exponential model. The vertical dashed lines in the upper panels
are the observed values for the background and maximum response

Using the weights of Table C.2 (last column) and based on Bridge sampling, the final model-
averaged BMD estimate equals 0.597, larger than the true value of 0.229, with 90% CrI (0.041,
1.887). The ratio of B> is equal to 14.6 and for BXU is around 46, indicating uncertainty in the
estimation of the BMD, but it is already improved in comparison to the results obtained when using the
frequentist approach (PROAST). Note that the BMDL is about 6 times smaller than the true BMD and
that the CrlI covers slightly more than half of the range (0,3) (3 being the first active dose). Figure C.5
shows, on the log-scale, the summary data together with the model-specific fitted dose-response
models, together with the CrI (in green), the BMD estimate (red bullet point), and the posterior
distribution of the BMD, with the 90% CrI (in green) and the BMD estimate (red bullet point). Note
how the fitted models vary substantially in the range from dose 0 to the first dose level, resulting in
very different BMD estimates. As no data are available in the range (0,3) (covering the range 0 to
more than 10 times the true BMD), no model can be informed by such data, and the different models
adapt optimally to the available data on the higher dose levels, with the consequence that the fits
deviate a lot in the dose range of interest.
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Figure C.5: The 3.2 Example: based on the Bridge sampling: fitted normal dose-response models
(upper left), fitted log-normal dose-response models (upper right), all fitted models
(lower left), averaged model with posterior density of the BMD, with 90% credible
interval (in green) and BMD point estimate (in red)

Using informative priors. We fit the same data again but with different informative priors on the
BMD. Remember that the true value of the BMD = 0.229. The table below shows the impact of using
informative priors in comparison to uninformative ones. When no mode is used to inform the prior
distribution of the BMD, the estimation procedures does not improve the precision in estimation, being
very large if Laplace approximation is used and around 50 when Bridge sampling is used. It is clear
that if the range in which the BMD should be located is restricted and a most likely value is provided,
the estimation precision improves drastically with a ratio for Laplace approximation smaller than 12 for
Laplace and less than 8 for Bridge sampling. It is also worth noting that if the informative prior is
misspecified, then the resulting BMD estimation might be as well biased.
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Table C.5: The 3.2 Example. BMD estimates for different choices of priors for the BMD parameter

Laplace approximation
BMD and Crl

Bridge sampling

Informative prior on BMD BMD and CrI

Uninformative prior

Uniform PERT prior on (0,3)

PERT prior on (0,3) with mode 1
Uniform PERT prior on (0,1)

PERT prior on (0,1) with mode 0.5
Uniform PERT prior on (0,0.5)

PERT prior on (0,0.5) with mode 0.2

PERT prior on (0.199,0.259) with mode 0.229
PERT prior on (0.109,0.169) with mode 0.139

(0.000, Inf)
0.100 (0.000, Inf)
0.813 (0.215, 2.498)
0.121 (0.000, Inf)
0.480 (0.196, 1.107)
0.015 (0.000, Inf)
0.191 (0.069, 0.539)
0.229 (0.206, 0.255)
0.139 (0.116, 0.166)

0.597 (0.041, 1.887)
0.601 (0.042, 2.085)
0.812 (0.218, 1.716)
0.389 (0.029, 0.924)
0.467 (0.165, 0.785)
0.213 (0.019, 0.467)
0.198 (0.059, 0.368)
0.229 (0.210, 0.248)
0.139 (0.120, 0.158)

We observe that (Table C.5), for this data set:

The Laplace approximation acts poorly unless the BMD priors is informative enough.

Bridge sampling outperforms the Laplace approximation, especially for less informative priors.
The Bridge CrI's are narrower than the Laplace CrI’s.

An informative prior affects the BMDU more than the BMDL (reflecting the gain in accuracy).

Flat informative priors have less effect than focused priors on the same range (as expected).

A very informative incorrect prior affects the BMD estimation and biases the results.

When using informative prior, is important to base its definition on data that can be verifiable and if
very informative priors are used (see the two last rows of the table), the posterior is fully determined
by the prior distribution. This could produce biased results in case that misspecified priors are used
(see last row of the table).

Example generated based on Figure 3.3

The Data

This example concerns a simulated data set, generated as a log-normal exponential models with
parameters a = 2.015, b = 1.5, ¢ = 1.344 and d = 1.8, with dose levels 0, 0.025, 0.05, 0.15, 0.4 and
a constant group size of 20. With a BMR = 0.10, the true BMD equals 0.2287.

7.534954 0.3131743
7.680831 0.4608415

7.604586 0.4860125

7.960201 0.4563567
9.654912 0.5353875

The Bartlett test did not reject the assumption of constant variance (normal distribution) with a
p-value of 0.25; and did not reject the assumption of constant coefficient of variation (lognormal
distribution), with p-values 0.46.

Results

PROAST. The EFSA BMD WEB app produce the following results of BMD modelling, using the
exponential, inverse exponential, Hill and lognormal model, considering model averaging based on
1,000 bootstraps, by means of PROAST 70.0. The BMR was selected at 10%. For the exponential
model the BMD was estimated as 0.226 with BMDL = 0.18 and BMDU = 0.275; for the inverse
exponential model the BMD estimate was 0.223 with BMDL = 0.182 and BMDU = 0.265; for the Hill
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model the BMD estimate was 0.226 with BMDL = 0.18 and BMDU = 0.275 and for the lognormal
model the BMD estimate was 0.225 with BMDL = 0.181 and BMDU = 0.269. The model averaging
results produced BMDL = 0.175 and BMDU = 0.272. The ratio 8iBY = 1.55, indicating the precision of
the estimation of the BMD.

Using Laplace approximation. The Bayes factor comparing the best model with the saturated
model equals 4.82, indicating limited evidence against the best fitting model, and consequently we can
assume at least one candidate model fits reasonably well to the data.

The model-specific results (BML, BMD, BMDU, weight) are given in Table C.6, showing that (i) the
model-specific BMDL's vary from 0.172 to 0.290, (ii) the weights vary across all 16 models, but with
higher weights for the log-normal models iii) the highest weight is for the (quadratic exponential, log-
normal) model (0.21) and weights vary from 0.04 to 0.12 for all other log-normal models. The normal
models have weights about 0.001 to 0.06.

More information for the log-normal quadratic exponential model is depicted in Figure C.6, with, for
the background and maximum median response, and the BMD, the un—/weakly informative PERT prior
distributions (in blue) and the final posterior distributions (in orange). For this particular example, since
the highest experimental dose is smaller than 1 (i.e. 0.4), the PERT prior for the BMD is set as
approximately uniform on the interval [0, 400]. For clarity, the range in the plot is set to the interval
[0, 0.4], resulting in a seemingly peaked prior due to some variability in the simulated prior values.
The fourth parameter d (left lower panel) gets a log-normal prior distribution (in blue), which is
moderately informative with median at exp(1) = 2.72, in order to stabilise the fitting computationally.
Similar plots can be made for all other 15 models.

Table C.6: The 3.3 Example. Model-specific values for BMDL, BMD and BMDU; and the posterior
weights of each model (used for constructing the model average)

Model BMDIL BMD P_Weights

. 1840610 . 2256553 27712° . 0269676
. 2898412 . 3549026 434226 . 0005156
1837243 . 2248747 . 2756608 0275335
. 1861885 2232231 . d 5419 0157705
. 1840778 . 2241926 = 7 4 : . 0344023
1722731 . 2034995 . 2405555 0587094
. 1848155 . 2274349 . 2800166 .0260847
. 1850229 ). 2282276 . 2819521 . 0260082
1863559 . 2273487 . 2781557 0877938
1857433 .2176612 2543952 .0D425833
. 1855986 . 2251901 . 2738652 .0912621
. 1876625 . 2233440 . 2660093 557014
.1866992 255403 ;
.1768588 915
. 1862005 6
.1864926
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Figure C.6: The 3.3 Example: prior and posterior densities (pink and orange coloured respectively)
for the background response, the maximum response, the BMD and the parameter d, for
the normal-quadratic exponential model. The vertical dashed lines in the upper panels
are the observed values for the background and maximum response

Using the weights of Table C.6 (last column), the final model-averaged BMD estimate equals
0.2202, quite close to the true value of 0.229, with 90% CrI (0.1818, 0.2701), similar to the results
obtained using the EFSA BMD WEB App. Note that this CrI includes the true value 0.229. Based on the
Laplace approximation results, the ratio {2V is slightly smaller (1.48), the estimation of the BMD is
slightly more precise. Figure C.7 shows, on the log-scale, the summary data together with the model-
specific fitted dose-response models, together with the CrI (in green), the BMD estimate (red bullet
point), and the posterior distribution of the BMD, with the 90% CrI (in green) and the BMD estimate
(red bullet point). Note how the fitted models vary substantially in the range from dose 0 to the first
dose level, resulting in very different BMD estimates.

Using MCMC. Using MCMC (hybrid and Bridge sampling), the results are similar. The Bayes factor
equals 5.40. The final model-averaged BMD estimate, obtained with Bridge sampling, equals 0.2225
with 90% CrI (0.1786, 0.2763). The estimates for the hybrid method are 0.2216 for the point
estimate, and (0.1781, 0.2750) for the credible interval.
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Figure C.7: The 3.3 Example: based on the Bridge sampling: fitted normal dose-response models
(upper left), fitted log-normal dose-response models (upper right), all fitted models
(lower left), averaged model with posterior density of the BMD, with 90% credible
interval (in green) and BMD point estimate (in red)

The Body Weight Example in the 2017 EFSA Guidance Update
The Data

See Example 1 in Section 2.5.9 of EFSA SC (2017). The data in this example relate to a 2-year
study in male mice. A dose-related decrease in body weight was observed. This endpoint is assumed
to be the critical effect and the BMR considered is 5%.

Dose (mg /kg bw per day) Body weight, group mean (g) SD n
0 43.85 2.69 37
0.1 43.51 2.86 35
0.5 40.04 3 43
1.1 35.09 2.56 42

bw: body weight; SD: Standard deviation.

The Bartlett test did not reject the assumption of constant variance (normal distribution) nor the
assumption of constant coefficient of variation (lognormal distribution), with p-values 0.76 and 0.59
respectively.

Results

PROAST. Using PROAST v. 61.6 with the default BMR of 5% and applying the Exponential and the
Hill model, the BMDL in EFSA SC (2017) was determined to be 0.20 mg/kg, with BMDU = 0.41 mg/kg.
The EFSA BMD WEB app produce the following results of BMD modelling, using the exponential,
inverse exponential, Hill and lognormal model, considering model averaging based on 1,000
bootstraps, by means of PROAST 70.0. The BMR was selected at 5%. For the exponential model the
BMD was estimated as 0.297 with BMDL = 0.198 and BMDU = 0.41; for the inverse exponential model
the BMD estimate was 0.316 with BMDL = 0.219 and BMDU = 0.422; for the Hill model the BMD
estimate was 0.297 with BMDL = 0.198 and BMDU = 0.41 and for the lognormal model the BMD
estimate was 0.308 with BMDL = 0.21 and BMDU = 0.416. The model averaging results produced
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BMDL = 0.216 and BMDU = 0.419. The ratio 22 = 1.94, indicating the precision of the estimation of
the BMD.

Here, all 16 models are used, with equal prior probabilities 1/16 and with uninformative priors on
the model parameters, again with BMR = 5%.

Using Laplace approximation. First of all, the Bayes factor comparing the best model with the
saturated model equals 0.94, indicating the best fitting model and consequently at least one candidate
model fits well to the data. The model-specific results (BML, BMD, BMDU, weight) are given in
Table C.7. The table shows that (i) the model-specific BMDL's vary from 0.216 to 0.297, (ii) the highest
weights are assigned to the quadratic exponential models, with weight 0.187 and 0.224 for the normal
and log-normal version respectively, (iii) weights are quite evenly distributed across the remaining
models.

Table C.7: The Body Weight Example in the 2017 EFSA Guidance Update. Model-specific values for
BMDL, BMD and BMDU; and the posterior weights of each model (used for constructing
the model average)

BMDU| LP_Weights

.0401777
.0261770
.0485722
.0306414
0.0599610
.1869225
.0316367
.0321463
.0479110
.0259132|
.0544803
41074| 0.4551001 .0321337
. 3165900 . 4403600 .0675560
2155163 . 2916500 . 3942847 .2243133
. 2196973 . 3085744 4329560 . 0451431
0.2216184 . 3090596| 0.4337; .0463146
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More information for the log-normal quadratic exponential model is depicted in Figure C.7 with
uninformative PERT prior distributions (in blue) for the background and maximum median response (in
this case a negative decreasing response), and a flat uninformative PERT prior distribution for (in blue)
the BMD, and the final posterior distributions (in orange). Actually, the prior for the maximum response
is weakly informative. The reason for that is that the maximum response is not reached at the end of
the experimental dose range (see Figure C.8). The prior for the minimum response is therefore
centred at half of the observed mean response at the highest dose (35.09/2 = 17.545), with a
considerably large uncertainty range. As there is little or no information in the data about this
minimum response, the posterior density remains close to the prior density (right upper panel of
Figure C.7). Finally, for the fourth parameter d (left lower panel), the log-normal prior distribution (in
blue) is moderately informative with median at the value of exp(1) = 2.72, in order to stabilise the
fitting computationally. The orange posterior distribution peaks around the median of the prior
distribution, shifted somewhat to the right. Similar plots can be made for all other 15 models.
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Figure C.7: The Body Weight Example in the 2017 EFSA Guidance Update: prior and posterior
densities (blue and orange coloured respectively) for the background response, the
maximum response, the BMD and the parameter d, for the log-normal quadratic
exponential model. The vertical dashed lines in the upper panels are the observed values
for the background and maximum response

Using the weights of Table C.4 (last column), the final model-averaged BMD estimate equals 0.310
with 90% CrI (0.225,0.428). So, the BMDL = 0.225 mg/kg, with BMDU = 0.428 mg/kg, quite similar to
the results in EFSA SC (2017) and the very similar if we would have analysed it using the EFSA WEB
app.

Figure C.8 shows, on the log-scale, the summary data together with the model-specific fitted dose—
response models, together with the CrI (in green) and the BMD estimate (red bullet point). The lower
right panel shows the posterior density of the BMD.

Using MCMC. Using MCMC (hybrid and Bridge sampling), the results are very similar. The final
model-averaged BMD estimate, obtained with Bridge sampling, equals 0.318 with 90% Crl
(0.227,0.430).
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Figure C.8: The Body Weight Example in the 2017 EFSA Guidance Update: based on the Laplace
approximation, model-specific fitted dose-response models, together with the CrI (in
green) and the BMD estimate (red bullet point). Upper left: normal models; upper right:
log-normal models; Lower left: all models; Lower right: model-averaged fitted dose-
response model, together with the posterior distribution of the BMD
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Appendix D — Data Examples: Quantal Endpoints

Thyroid epithelial cell vacuolisation data in the 2017 EFSA Guidance
Update

The Data

This example relates to a 2-year study in rats, where three doses of a substance were administered
to the animals. Dose-related changes in thyroid epithelial cell vacuolisation were found, and these data
were used for a BMD analysis.

No of animals with thyroid epithelial

- No of animals in dose group
vacuolisation

Dose (mg/kg day)

6 50
3 6 50
12 34 50
30 42 50

Results

PROAST. Using PROAST v 62.3 together with the MADr-BMD program, as described in Wheeler
and Bailer (2008), using the default BMR of 10% extra risk, using all 8 models except the exponential
model, and using the bootstrap, the BMDL in EFSA SC (2017) was determined to be 1.5 mg/kg (a
BMDU was not calculated). Using the EFSA BMD WEB app (based on PROAST 70.0), the model-
averaged BMDL = 1.65 and BMDU = 5.86. The ratio 8XBU — 355, indicating the precision of the
estimation of the BMD

Using Laplace approximation. The model-specific results (BML, BMD, BMDU, weight) are given
in Table D.1, showing that (i) the model-specific BMDL's vary from 1.467 to 2.709, (ii) the weights vary
substantially across all 8 models, (iii) the highest weight 0.40 is given to the inverse exponential
model, followed by the Hill model with weight 0.17, and all other models with weights below 0.1
except for log-normal and gamma models. The Bayes factor is 13.76 in favour of the inverse
exponential model over the saturated model.

More information for the inverse exponential model is depicted in Figure D.1, for the background
and the BMD, the un—/weakly informative PERT prior distributions (in blue) and the final posterior
distributions (in orange). The third parameter d (right upper panel) gets a log-normal prior distribution
(in blue) which is moderately informative with median at exp(1) = 2.72, in order to stabilise the fitting
computationally. Similar plots can be made for all other 7 models.

Table D.1: The thyroid epithelial cell vacuolisation data. Model-specific values for BMDL, BMD and
BMDU; and the posterior weights of each model (used for constructing the model
average)

BMDU| LP_Weights|
-------- :| | : | -
.174435 .564594
.457253| 4.927146|
.610916| 4.241630]|
.709112| 4.359597|
-448662| 3.966760 |
.467545| 2.464483|
.739777| 3.044495|
.868542| 3.210163|

- 2
.863848| .0405952|
.867443| .4040872 |
.929103| .1663441|
.001131] .1382721|
.414635| .1337442|
.138870]| .0906312|
.340807| .0110022|
.544394| .0153237]
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Figure D.1: The thyroid epithelial cell vacuolisation data: prior and posterior densities (pink and
orange coloured respectively) for the background response, the BMD and the parameter
d, for the inverse exponential model. The vertical dashed line in the upper right panel is
the observed background proportion

Using the weights of Table D.1 (last column), the final model-averaged BMD estimate equals 4.207
with 90% CrI (2.149, 8.314). These results are quite close to the PROAST results. Based on the
Laplace approximation results, the ratio 2M2Y is slightly larger (3.87). Although it can be said that these
results are quite close to the PROAST results. Figure D.2 shows, on the log-scale, the summary data
together with the model-specific fitted dose-response models, together with the CrI (in green), the
BMD estimate (red bullet point), and the posterior distribution of the BMD, with the 90% CrI (in green)
and the BMD estimate (red bullet point). Note how the fitted models vary substantially close the first
active dose level, resulting in quite different BMD estimates.

Using MCMC. The results are quite similar with the inverse exponential model receiving a similar
weight (0.417) as that obtained from Laplace, implying the averaged version to be pulled somewhat in
the direction of the model-specific values for the inverse exponential. The model-averaged BMD
estimate is 4.682 with 90% Crl (2.184, 7.667), achieving a higher precision (% =3.51).
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Figure D.2: The thyroid epithelial cell vacuolisation data: based on Laplace: fitted normal dose-
response models (left), averaged model with posterior density of the BMD, with 90%
credible interval (in green) and BMD point estimate in red (right)
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Appendix E — Template for reporting a BMD analysis
A Data description

Brief general description of the data. This section should include a table summarising the data. In
case that raw data is available, resulting in a too large table, summary statistics may be given instead.'?
For quantal endpoints both the number of responding animals and the total number of animals should be
given for each dose level; for continuous endpoints either the individual responses or the mean
responses and the associated SDs (or SEMs) and sample sizes should be given for each dose level.

Example of table for continuous dose-response data

Dose Endpoint mean SD N Covariates (gender)
0 43.85 2.69 37 M
0.1 43.51 2.86 35 M
0.5 40.04 3.00 43 M
1.1 35.09 2.56 42 M
0 41.54 6.26 36 F
0.1 38.71 473 42 F
0.5 33.76 3.92 37 F
1.1 28.55 2.08 38 F

In case that several control groups are reported in the publication or provided by the applicant,
they should all be presented in the table. How these will be handled in the analysis needs a case-by-
case consideration.

Example of table for quantal dose-response data

Dose Number of animals with event of interest N Covariates (gender)
0 2 50 M
3 4 50 M
12 32 49 M
30 45 50 M
6 50 F
3 6 50 F
12 34 50 F
30 42 50 F

In case different endpoints are to be analysed, they should be described in different subsections,
containing information pertaining to each endpoint.
The following steps apply for each endpoint considered.

B Selection of the BMR

The value of the BMR used in the analysis. The rationale behind the choice made (the biological
relevance in the case of a continuous endpoint) should be described.

C Software used

The software used, including version number should be reported. In case another non-publicly
available software was used, the script for the BMD analysis should be provided as an appendix.

D Justification of any deviation from the procedure and assumptions

e In case another approach than Bayesian model averaging was used, the rationale and details
for deviating from the recommended approach should be provided.

e Assumptions made when deviating from the recommended defaults in this guidance document
(e.g. gamma distributional assumption instead of normal and log-normal, heteroscedasticity
instead of homoscedasticity).

12 Note that, when the individual data were used in the original analysis, slightly different results may be obtained using the
summary data in the analysis.
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e Other models than the recommended ones listed in Tables 2 and 3 of this guidance document
that were fitted should be listed, with the reasons to include them.

e Description of any deviation from the procedure described in the flow chart (Figure 2) to obtain
the final BMD credible interval.

E Results
The results of the BMD analysis should contain:

In case where individual data are available, the results of the distributional assumption test.

Results of the Bartlett test (see Section 2.5.1).

A table presenting the results of the models fitted, BMD, BMDL, BMDU and model weight (see
Table below).

Report whenever convergence issues were encountered.

Report whether none of the candidate models fit sufficiently well to the data (see Section 2.5.3).

Result table for continuous/quantal data.

Model BMDL BMD BMDU Model Weights
Exponential (E4)

Inverse Exponential (IE4)

Hill (H4)

Log-normal (LN4)

Gamma (G4)

Two-Stage (QE4)

Probit (P4)

Logit (L4)

F Plots of fitted models

Show the plot of the data with credible intervals for the responses, together with the resulting
models as well as the model average fit (Figure E.1).
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Figure E.1: Plot of the models from each model family in the case of continuous data (plots shown
here are from Bayesian prototype package)
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G Conclusions

This section should summarise the results for each endpoint (data set) that was analysed and
provide a discussion of the rationale behind selecting the critical endpoint.

The BMD credible interval of the critical endpoint (and the BMDL selected as RP) should be
reported and discussed.
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