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Abstract 11 

The Scientific Committee (SC) reconfirms that the benchmark dose (BMD) approach is a scientifically 12 
more advanced method compared to the NOAEL approach for deriving a Reference Point (RP). The 13 
major change compared to the previous SC guidance (EFSA, 2017) concerns the section 2.5, in which 14 

a change from the frequentist to the Bayesian paradigm is recommended. In the former, uncertainty 15 
about the unknown parameters is measured by confidence and significance levels, interpreted and 16 
calibrated under hypothetical repetition, while probability distributions are attached to the unknown 17 

parameters in the Bayesian approach, and the notion of probability is extended so that it reflects 18 
uncertainty of knowledge. Model averaging is again recommended as the preferred method for 19 
estimating the BMD and calculating its credible interval. The set of default models to be used for BMD 20 

analysis has been reviewed and amended so that there is now a single set of models for both quantal 21 
and continuous data. The flow chart guiding the reader step-by-step when performing a BMD analysis 22 
has also been updated, and a chapter comparing the frequentist to the Bayesian paradigm inserted. 23 

Also, when using Bayesian BMD modelling, the lower bound (BMDL) is to be considered as potential RP, 24 
and the upper bound (BMDU) is needed for establishing the BMDU/BMDL ratio reflecting the uncertainty 25 

in the BMD estimate. This updated guidance does not call for a general re-evaluation of previous 26 
assessments where the NOAEL approach or the BMD approach as described in the 2009 or 2017 SC 27 
guidance was used, in particular when the exposure is clearly smaller (e.g. more than one order of 28 

magnitude) than the health-based guidance value. Finally, the SC firmly reiterates to reconsider test 29 
guidelines given the wide application of the BMD approach. 30 

Keywords 31 

Benchmark dose, BMD, BMDL, benchmark response, NOAEL, dose-response modelling, BMD software 32 
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Summary 33 

Considering the need for transparent and scientifically justifiable approaches to be used when risks are 34 
assessed by the Scientific Committee (SC) and the Scientific Panels of EFSA, the SC was requested in 35 
2005 by EFSA i) to assess the existing information on the utility of the benchmark dose (BMD) approach, 36 
as an alternative to the traditionally used NOAEL approach, ii) to provide guidance on how to use the 37 
BMD approach for analysing dose-response data from experimental animal studies, and iii) to look at 38 
the possible application of this approach to data from observational epidemiological studies.  39 

A guidance document on the use of the benchmark dose approach in risk assessment was published in 40 
2009. In 2015, the SC reviewed the implementation of the BMD approach in EFSA’s work, the experience 41 
gained with its application and the latest methodological developments in regulatory risk assessment, 42 
and concluded that an update of its guidance from 2009 was necessary. As a consequence, an updated 43 
guidance document was published in 2017. Most of the modifications made at the time concerned the 44 
section providing guidance on how to apply the BMD approach in practice. Model averaging was 45 
recommended as the preferred method for calculating the BMD confidence interval,  while 46 
acknowledging that the respective tools were still under development.  47 

Following a workshop organised by EFSA in March 2017 to discuss commonalities and divergences in 48 
the various approaches for BMD analysis worldwide, and the update of the Chapter 5 on dose response 49 
assessment of WHO/IPCS Environmental Health Criteria 240 (WHO, 2020), the Scientific Committee 50 
decided to update again its guidance in order to align the content of the document with internationally 51 
agreed concepts related to benchmark dose analysis, and therefore harmonise further EFSA’s approach 52 
with those of its partners. The major change to the update of the SC Guidance of 2017 concerns the 53 
Section 2.5, in which a change from the frequentist to the Bayesian paradigm is recommended. In the 54 
former, uncertainty about the unknown parameters was measured by confidence and significance levels, 55 
interpreted and calibrated under hypothetical repetition, while probability distributions are attached to 56 
the unknown parameters in the Bayesian approach, and the notion of probability is extended so that it 57 
reflects uncertainty of knowledge. Model averaging is again recommended as the preferred method for 58 
calculating the BMD credible interval. The set of default models to be used for BMD analysis has been 59 
reviewed and amended so that there is now a single set of models for both quantal and continuous 60 
data. The flow chart guiding the reader step-by-step when performing a BMD analysis has also been 61 
updated, and a chapter comparing the frequentist to the Bayesian paradigm inserted. Also, when using 62 
Bayesian BMD modelling, the potential Reference Point (RP) is provided by the lower bound (BMDL) of 63 
the credible interval, and the upper bound (BMDU) is needed for establishing the BMDU/BMDL ratio, 64 
which reflects the uncertainty around the BMD estimate.  65 

The SC reconfirms in the present updated guidance that the BMD approach, and more specifically model 66 
averaging, should be used for deriving a RP from the critical dose-response data to establish health-67 
based guidance values (HBGVs) and margins of exposure. This updated guidance does not call for a 68 
general re-evaluation of previous assessments where the NOAEL approach or the BMD approach as 69 
described in the 2009 or 2017 SC Guidance was used, in particular when the exposure is clearly smaller 70 
(e.g. more than one order of magnitude) than the HBGV. The application of this updated guidance to 71 
previous risk assessments where the 2009 or 2017 guidance was used might result in different RPs, in 72 
particular in the case of continuous response data where informative priors are used.  73 

The SC recommends that training in dose-response modelling and the use of the BMD application hosted 74 
in the R4EU servers continues to be offered to experts in the Scientific Panels and EFSA Units. 75 
Furthermore, the option for the Cross-Cutting Working Group on BMD analysis to be consulted by EFSA 76 
experts and staff if needed, should be maintained.  77 

Finally, the SC firmly reiterates the need for current toxicity test guidelines to be reconsidered given the 78 
wide application of the BMD approach, as well as the need for a specific guidance on the use of the 79 
BMD approach to analyse human data. 80 
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1. Background  118 

As per EFSA’s Founding Regulation (EC) No 178/2002 of the European Parliament and of the Council, 119 
“the EFSA Scientific Committee shall be responsible for the general coordination necessary to ensure 120 
the consistency of the scientific opinion procedure, in particular with regard to the adoption of working 121 
procedures and harmonisation of working methods”. Strategic objective 2 of the EFSA Strategy 2027 122 
regarding ensuring preparedness for future risk analysis needs echoes this key responsibility of the 123 
Scientific Committee, putting the emphasis on the development of a harmonised risk assessment culture 124 
and the improvement of the assessment methodologies to address future challenges.  125 

In May 2009, the Scientific Committee adopted its guidance on the use of the benchmark dose (BMD) 126 
approach in risk assessment (EFSA Scientific Committee, 2009a). The guidance document recommends 127 
using the BMD approach instead of the traditionally used NOAEL approach to identify a Reference Point, 128 
since it makes a more extended use of dose-response data and it allows for a quantification of the 129 
uncertainties in the dose-response data. The BMD approach is applicable to all chemicals, irrespective 130 
of their category (e.g. pesticide, food additive, contaminant) or origin (chemically synthesised or from 131 
natural sources). Within the remit of EFSA, this guidance document addresses the assessment of 132 
substances in food. The guidance was further updated in 2017 (EFSA Scientific Committee, 2017), 133 
recommending model averaging as the preferred approach for BMD analysis; the set of mathematical 134 
models to be fitted to the data by default was updated, and a flow chart, guiding step-by-step the 135 
reader when performing BMD analysis was added. 136 

Following a workshop organised by EFSA in March 2017 to discuss commonalities and divergences in 137 
the various approaches for BMD analysis worldwide1, WHO convened a group of experts from all over 138 
the world to update the Chapter 5 on dose response assessment of WHO/IPCS Environmental Health 139 
Criteria 240 (WHO, 2020). This work resulted in a consensus on a number of concepts related to 140 
benchmark dose analysis.  141 

The purpose of the present update of the EFSA Guidance on the use of the benchmark dose approach 142 
in risk assessment is to align the content of the document with the above-mentioned agreed concepts, 143 
and therefore harmonise further EFSA’s approach with those of its partners. 144 

 

1.1. Terms of Reference as provided by EFSA 145 

The European Food Safety Authority requests the Scientific Committee to align the Guidance on the use 146 
of the benchmark dose approach in risk assessment with the principles for dose-response assessment 147 
described in chapter 5 of FAO/WHO IPCS EHC2402. EFSA Partners (US EPA, US NIOSH, US FDA, Health 148 
Canada, EU Member States competent authorities, EFSA Sister Agencies and other international 149 
partners) will be involved/consulted during the drafting phase.  150 

EFSA is requesting its Assessment Methodology (AMU) Unit to update its Platform for BMD analysis so 151 
that it implements the above-mentioned updated guidance on BMD3. When doing so, harmonisation 152 
with other existing BMD tools (US EPA BMDS and PROAST) will be sought. 153 

 

1.2. Interpretation of Terms of Reference 154 

To address the mandate received, the following modifications have been made to the 2017 SC Guidance 155 
on the use of the benchmark dose approach in risk assessment: 156 

• The extension and unification of the suite of models for continuous and quantal endpoints 157 
(sections 2.5.1 and 2.5.2),  158 

• Introduction of the normal distribution, next to the Log-normal distribution default assumption 159 
of the response at a specified dose level for continuous endpoints (Section 2.5.1) 160 

 
1 See https://www.efsa.europa.eu/en/events/event/170301-0 
2 https://www.who.int/docs/default-source/food-safety/publications/chapter5-dose-response.pdf?sfvrsn=32edc2c6_5  
3 Following EFSA’s reorganisation of 1 January 2022, this responsibility has been transferred to the Methodology & Scientific Support 

(MESE) Unit. 
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• The introduction of the Bayesian inferential paradigm and the rationale for replacing the 161 
Frequentist BMD model averaging by the Bayesian model averaging as the recommended 162 
preferred approach to estimate the BMD and calculate its credible4 interval (Section 2.5.3) 163 

• Guidance on how to select the Benchmark Response (Section 2.6.2) 164 

• Guidance on how to decide whether experimental data are worth modelling and if not, 165 
recommendation on how to use these data for the assessment (Section 2.6.3) 166 

• Guidance on how to construct informative priors (Section 2.6.4) 167 

• Guidance on how to deal with data leading to unpractical BMDLs and/or large BMDL-BMDU 168 
confidence intervals (Section 2.6.5)  169 

• Guidance on how to perform BMD analysis on datasets with no non-exposed controls (Section 170 
2.6.3) 171 

• Guidance on how to handle high dose impact (Section 2.6.3) 172 

  173 

 
4 The term “confidence interval” is used in the context of frequentist statistics while the term "credible interval” is used in  a Bayesian 

paradigm, see Section 2.5.3 
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2. Assessment 174 

2.1. Introduction 175 

This Guidance is an update and modification of the version released in 2017 (EFSA SC, 2017). The 176 
purpose of this update is to further support the implementation of dose-response modelling in EFSA’s 177 
work and to harmonise the statistical background and theoretical insights between EFSA and other 178 
national and international organisations such as WHO (EHC240 Chapter 5 (WHO, 2020)) and US EPA 179 
(2012). 180 

This document addresses the analysis of dose-response data from toxicity studies in experimental 181 
animals. Toxicity studies are conducted to identify and characterize potential adverse effects of a 182 
substance. The data obtained in these studies may be further analysed to identify a dose that can be 183 
used as a starting point for risk assessment. The dose used for this purpose, however derived, is referred 184 
to in this opinion as the Reference Point (RP). This term, adopted by the EFSA Scientific Committee in 185 
2005 (EFSA SC, 2005) is preferred to the equivalent term Point of Departure (PoD), used by others such 186 
as US EPA.  187 

The No-Observed-Adverse-Effect-Level (NOAEL) has been used historically as the RP for establishing 188 
health-based guidance values (HBGVs) in risk assessment of non-genotoxic substances. EFSA (2005) 189 
and the Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2006a) have proposed the use of 190 
the benchmark dose (BMD) approach for deriving RPs used to calculate the margins of exposure (MOEs) 191 
for substances that are both genotoxic and carcinogenic, since for such substances it is conventionally 192 
considered inappropriate to identify NOAELs for use as RPs. 193 

The SC concluded in 2009 that the BMD approach is the preferred approach for identifying a RP; not 194 
only for substances that are both genotoxic and carcinogenic, but also for non-genotoxic substances 195 
(EFSA, 2009a, 2017). The methodology discussed in the 2009 guidance document and its update from 196 
2017 has increasingly been applied by EFSA for identifying RPs (i.e. BMDLs) for various types of 197 
chemicals (e.g. pesticide, additives, and contaminants).  198 

In Sections 2.3.1 to 2.3.2 of this guidance document, the concepts underlying both the NOAEL and BMD 199 
approaches are discussed, and it is outlined why the SC considers the BMD approach a more powerful 200 
approach. Section 2.4 discusses the potential impact of using the BMD approach for hazard/risk 201 
characterisation and risk communication. Within EFSA, the main application of the BMD approach is to 202 
identify a RP for hazard and subsequently risk characterisation of chemicals. The SC notes that the BMD 203 
approach has also been used for other purposes such as for evaluating the plausibility of non-204 
monotonicity in a dose-response curve (parameter d is a measure of the steepness of the curve, 205 
Beausoleil et al., 2016) or for estimating relative potencies of chemicals (e.g. organophosphates, Bosgra 206 
et al., 2009 or Zeilmaker et al., 2018). However, these applications of the BMD approach are outside 207 
the scope of the present Guidance. 208 

Further, the set of default models to be used for BMD analysis has been revised; they are described in 209 
Sections 2.5.1 and 2.5.2. The Bayesian model averaging procedure, recommended as the preferred 210 
approach for BMD analysis, is described in Section 2.5.3 and later possible extensions to include 211 
covariates and deal with cluster data. In Appendix C – and Appendix D –, examples based on continuous 212 
and quantal data are provided to illustrate the application of the BMD approach in practice and a 213 
discussion of the results is presented. A template for BMD analysis reporting has been inserted in 214 
Appendix E –. 215 

Section 2.6, which provides guidance on how to apply the BMD approach in practice, has been 216 
significantly modified compared to the 2009a and 2017 versions of the guidance document: Bayesian 217 
model averaging has been introduced as the preferred method for estimating the BMD and calculating 218 
its credible interval. The problem formulation step has been particularly expanded, providing further 219 
guidance on key decisions to be taken before starting to model the data: specification of the BMR, data 220 
suitability to estimate the BMD using dose-response modelling, consideration of prior information for 221 
the endpoint(s) considered.  222 

 

The principles outlined in this guidance document may also apply to data from (observational) 223 
epidemiological studies. However, such studies have their own peculiarities with respect to study design 224 
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and interpretation of data and for this reason the application of dose-response analysis of 225 
epidemiological data will be addressed in a separate future guidance document. 226 

The present guidance is primarily aimed at EFSA Units and Panels and other stakeholders, for example 227 
applicants, performing dose-response analyses. The SC considers that the use of the BMD approach is 228 
the preferred approach compared to the NOAEL approach to identify a RP; therefore, the application of 229 
this guidance document is unconditional for EFSA and is strongly recommended for all parties submitting 230 
assessments to EFSA for peer-review or dossiers for authorisation purposes (see EFSA Scientific 231 
Committee, 2015).  232 

 

2.2. Hazard identification: selection of potential critical endpoints 233 

Toxicity studies are designed to identify adverse effects produced by a substance, and to characterize 234 
the dose-response relationships for the adverse effects detected. While human dose-response data are 235 
occasionally available, most risk assessments rely on data from animal studies. The aim of hazard 236 
identification is to identify potential critical endpoints that may be of relevance for human health. An 237 
important component in hazard identification is the consideration of dose dependency of observed 238 
effects. Traditionally this is done by visual inspection together with conventional statistical tools. The 239 
SC recommends using dose-response modelling approaches (see section 2.5). When no statistical 240 
evidence for a treatment-related change is observed, the dataset for the endpoint under consideration 241 
would normally not be used for identifying an RP. However, the selection of any critical adverse effect 242 
should not solely be based on statistical procedures. Importantly, additional toxicological considerations 243 
should be taken into account in the evaluation of a toxicological data package. Use of the BMD approach 244 
does not remove the need for a critical evaluation of the response data5 and an assessment of the 245 
relevance of the effect to human health. 246 

 

2.3. Using dose-response data in hazard characterisation 247 

In the hazard characterisation, the nature of the dose-response relationships is explored in detail. The 248 
overall aim of the process is to identify a dose (the Reference Point; RP) from the toxicity studies that 249 
will then be used to establish a level of human intake at which it is confidently expected that there 250 
would be no appreciable adverse health effects, taking into account uncertainty and variability such as 251 
inter- and intra-species differences, suboptimal study characteristics or missing data.  252 

Hazard characterisation in risk assessment requires the use of a range of dose levels in toxicity studies. 253 
Doses are needed that produce different effect sizes providing information on both the lower and higher 254 
part of the dose-response relationship to characterise this in full.  255 

Experimental and biological variations affect response measurements; in consequence, the mean 256 
response at each dose level will include sampling error. Therefore, dose-response data need to be 257 
analysed by statistical methods to prevent inappropriate biological conclusions being drawn. Currently, 258 
there are two statistical approaches available for identifying a RP: the NOAEL approach, and the BMD 259 
approach. This section reviews in brief these two approaches, and summarizes the strengths and 260 
limitations of each method.  261 

 

2.3.1. The NOAEL approach 262 

The NOAEL approach is applicable to all toxicological effects considered to act via a thresholded mode 263 
of action. 264 

The study NOAEL is the highest dose tested in a study without evidence of an adverse effect in the 265 
particular experiment and the next higher dose showing a statistically significant adverse effect is the 266 
lowest-observed-adverse-effect-level (LOAEL). The NOAEL is affected by the dose range selection and 267 
by the (statistical) power of the study. Studies with low power (e.g. small group sizes; insensitive 268 

 
5 In this opinion, “response” is used as a generic term that refers to both quantal and continuous data.  
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methods, large biological or methodological spread) usually tend to provide higher NOAELs than studies 269 
with high power. If there is a statistically significant effect at all dose levels, the lowest dose used in the 270 
study (i.e. the LOAEL) may be selected as the RP. Conversely, if no statistically significant effect is 271 
observed at any of the dose levels, the highest dose is selected as the NOAEL. 272 

It should be noted that in general, identification of a NOAEL is not always a purely statistically-based 273 
decision. Expert judgement is also part of the decision-making process and different assessors may 274 
reach different decisions. 275 

 

2.3.2. The BMD approach 276 

The Benchmark Dose (BMD) is a dose level, estimated from the fitted dose-response curve, associated 277 
with a specified change in response, the Benchmark Response (BMR), (see Section 2.6.2). The BMDL is 278 
the BMD’s lower confidence bound, and this value is normally used as the RP. The BMD approach is 279 
applicable to all toxicological effects and makes use of all the dose-response data to estimate the shape 280 
of the overall dose-response relationship for a particular endpoint. 281 

The key concepts in the BMD approach are illustrated in Figure 1 and its caption. More details are 282 
provided in Appendix B. Figure 1 shows that a BMDL that is calculated for a BMR of x%, can be 283 
interpreted as follows:  284 

BMDLx  =  dose below which the change in response is likely to be smaller than x% 285 

where the term “likely” is defined by the statistical confidence level, usually 95%-confidence.  286 

 287 

 288 

Figure 1:  Key concepts for the BMD approach. The observed mean responses plus or minus the 289 
observed standard deviation are plotted as vertical lines. The dashed curve is a fitted dose-290 
response model, either one of the 16 individual dose response models (see Section 2.5.1) 291 
or the averaged model. This curve determines the point estimate of the BMD, which is 292 
generally defined as a dose that corresponds to a low but biologically relevant6 change in 293 
response, denoted the benchmark response (BMR). The density shows the posterior 294 
distribution of the BMD and the green interval indicates the boundaries of the two-sided 295 
90% credible interval of the BMD (defined by the 5% left and right tail probabilities of that 296 
posterior distribution. The BMDL is the 95% one-sided lower bound of the 90% credible 297 

 
6 The word “biologically relevant” is preferred to “adverse” to allow e.g. for the use of the BMD approach with biomarkers of effect that 

are not necessarily adverse. 
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interval for the BMD. Likewise, the BMDU is the upper bound of the 95% credible interval 298 
for the BMD. It should be noted that the predicted background response does not necessarily 299 
coincide with the observed background response. The BMR is defined as a change with 300 
regard to the background response predicted by the fitted model.  301 

The essential steps involved in identifying the BMDL for a particular study are: 302 

• Specification of a response level, e.g. a 5% or 10% increase or decrease in response compared 303 
with the background response. This is called the BMR (see Section 2.6.2).  304 

• Perform Bayesian model averaging using a set of pre-defined dose-response models (Section 305 
2.6.5), and calculation of the BMD credible interval for the averaged model, for each of the 306 
critical endpoints.  307 

• An overall study BMDL, i.e. the critical BMDL of the study, is selected from the obtained set of 308 
BMD credible intervals for the different potentially critical endpoints (see Section 2.6.5). 309 

The BMD credible interval should be calculated for all datasets considered relevant (the 310 
respective BMDL potentially leading to the RP), resulting in a set of credible intervals indicating 311 
the uncertainty ranges around the true BMD for the endpoints considered. One way to proceed 312 
is to simply select the endpoint with the lowest BMDL and use that value as the RP. However, 313 
this procedure may not be optimal in all cases, and the risk assessor might decide to use a more 314 
holistic approach, where all relevant aspects are taken into account, such as the width of the 315 
BMD credible intervals (rather than just the BMDLs), the biological meaning of the relevant 316 
endpoints. This process will differ from case to case, needs expert judgement and it is the risk 317 
assessor’s responsibility to make a substantiated decision on what BMDL will be used as the RP 318 
(see ‘Determining the RP for a given substance’ in Section 2.6.5).  319 

 320 

The advantage of the BMD approach over the NOAEL approach relates to the fact that the selection of 321 
the RP takes into account the complete set of BMD confidence intervals for the endpoints considered 322 
and combines the information on uncertainties in the data (see Section 2.6.5), whereas in the NOAEL 323 
approach experimental uncertainties, resulting from low study power, are not adequately covered and 324 
may result in an RP that is too high (see also Section 2.3.1). In comparison with the NOAEL approach, 325 
the BMD approach has the advantage that it provides a formal quantitative evaluation of data quality, 326 
by taking into account all aspects of the specific data. Data containing little information on the dose 327 
response may result in a BMDL that is far lower than the true BMD, but still, the meaning of the BMDL 328 
value remains as it was defined: it reflects a dose level where the associated effect size is unlikely to be 329 
larger than the BMR used.  330 

Nonetheless, it might happen that the data are so poor that using the associated BMDL as a potential 331 
RP appears unwarranted. This might be decided when the BMD confidence interval is wide, i.e. when 332 
there is large uncertainty in the BMD estimate. This issue is further discussed in Section 2.6.5. 333 

For the derivation of a BMDL for a given set of data, several statistical software are available. The tools 334 
most frequently used are BMDS (www.epa.gov/bmds), PROAST (www.rivm.nl/proast) and the EFSA 335 
webtool for Dose-Response modelling, which combines statistical techniques from BDMS and PROAST 336 
in one platform (https://r4eu.efsa.europa.eu/).  337 

 

2.3.3. Interpretation and properties of the NOAEL and the BMDL 338 

The NOAEL is a dose level where no statistically significant differences in adverse response were 339 
observed, compared with the background response in a study. This implies that the NOAEL reflects a 340 
dose level where effects are too small to be detected in that particular study, and therefore the size of 341 
the possible effect at the NOAEL remains unknown. A straightforward way of gaining insight into this is 342 
by calculating the upper bound of the confidence interval for the observed change in response between 343 
the control group and the NOAEL dose group. In Appendix A this has been done for several substances 344 
both for continuous and quantal endpoints. For quantal endpoints (undetected) effect sizes at the 345 
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NOAEL may be higher than 10%, while for continuous endpoints the undetected effect size may be 346 
substantially higher, depending on the endpoint. 347 

The NOAEL is therefore not necessarily a “no adverse effect” dose but a dose where effects were not 348 
observable by statistical means and therefore dependent strongly on the experimental design. On 349 
average, over a number of studies, the size of the estimated effect at the NOAEL is close to 10% 350 
(quantal responses) or 5% (continuous responses) (see also Section 2.6.2). 351 

 

Contrary to the NOAEL approach, the BMD approach uses the information in the complete dataset, 352 
rather than making pair-wise comparisons using subsets of the data (i.e. between control groups and 353 
dose groups). In addition, the BMD approach can interpolate between applied doses, while the NOAEL 354 
approach is restricted to preselected doses from the study design. A BMDL is always associated with a 355 
predefined effect size (the BMR) for which the corresponding dose has been calculated, while a NOAEL 356 
represents a predefined dose and the corresponding potential effect size is mostly not calculated.  357 

An inherent property of the BMD approach is the evaluation of the uncertainty in the BMD, which is 358 
reflected by the BMD credible interval (BMDL-BMDU) and is related to a known and predefined potential 359 
effect size (i.e. the benchmark response, BMR). This is a difference with the NOAEL approach where 360 
the uncertainty associated with the NOAEL cannot be evaluated from a single dataset and the confidence 361 
interval of the effect size at the NOAEL is generally not reported in current applications.  362 

Although the current international guidelines for study design (e.g. OECD guidelines for the testing of 363 
chemicals) have been developed with the NOAEL approach in mind, they offer no obstacle to the 364 
application of the BMD approach. While in the NOAEL approach, the utility of the data is based to a 365 
considerable extent on a priori considerations such as study design (number of dose groups, group size, 366 
dose levels, variability), a BMD analysis is less constrained by these factors. In a BMD analysis, the data 367 
are evaluated taking the specifics of the particular dataset into account (e.g. the scatter in the data, 368 
dose-response information) and the resulting BMD credible interval accounts for the limitations of the 369 
particular dataset, so that data limitations (e.g. sample size) is a less crucial issue than it is for the 370 
NOAEL. By using model averaging (see Section 2.6.5), the uncertainty related to the mathematical 371 
models fitted to the data are also taken into account. 372 

 

2.4. Consequences for hazard/risk characterisation 373 

In the previous section, the BMD approach has been introduced in the context of identifying a RP. This 374 
RP will be used in hazard characterisation for establishing HBGVs, such as acceptable daily intakes 375 
(ADIs) for food additives and pesticide residues, tolerable daily intakes (TDIs) or tolerable weekly intakes 376 
(TWIs) for contaminants.   377 

In establishing an HBGV, uncertainty factors are applied to the RP (WHO, 1987; WHO, 2020 Chapter 378 
5.4.2). In the previous version of this Guidance (EFSA, 2017) it has already been reasoned that 379 
irrespective of whether an HBGV is based on a NOAEL or a BMDL as the RP, the same uncertainty 380 
factors should be applied. The values for uncertainty factors (be it the default factors or chemical-381 
specific adjustment factors) are equally applicable to the BMDL and to the NOAEL.  382 

The BMD approach provides a higher level of confidence in the conclusions in any individual case since 383 
the BMDL takes into account all the data from the dose-response curve and handles the statistical 384 
limitations of the data better than the NOAEL. Thus, an HBGV based on the BMD approach provides a 385 
better basis to quantify the risk. Over the past 15 years dose-response modelling has been applied by 386 
EFSA, e.g. for food contaminants and flavouring substances, and the results of this approach have been 387 
accepted by risk managers as a basis for their decision making. 388 

It is important to realize that HBGVs represent levels to which humans may be exposed without 389 
appreciable health risk, and this definition does not change when the HBGV is derived from a BMDL 390 
instead of a NOAEL. For further details and guidance on how to establish HBGV, see WHO (2020), 391 
Chapter 5.4. 392 

There are situations where the data are considered inadequate for establishing a HBGV but allow 393 
identification of a RP and thus the MOE approach may be applied. The MOE is the ratio of the RP (e.g. 394 
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BMDL or NOAEL) to the theoretical, predicted or estimated exposure dose or concentration. Such a 395 
situation occurs for example when the risk assessor considers the available database as insufficient to 396 
establish a HBGV because of data gaps. Another situation is when dealing with substances that are both 397 
genotoxic (via a DNA-reactive mode of action) and carcinogenic, for which it is widely assumed that any 398 
exposure is undesirable (EFSA, 2005).  399 

 

2.5. Statistical methodology 400 

This section provides basic information about the statistical methodology; the components of a single 401 
dose-response model; multi-model estimation accounting for model uncertainty and frequentist and 402 
Bayesian inferential paradigms to obtain the BMD, the BMDL and the BMDU.  403 

Response data may be of various types, including continuous, quantal or ordinal. The distinction 404 
between data types is important for statistical reasons because the type of data determines the 405 
statistical model employed, and also for the interpretation of the BMR. See Section 2.6.2 for the 406 
interpretation of the BMR in continuous and in quantal data. 407 

Ordinal data may be regarded as an intermediate data type: they arise when a severity category 408 
(minimal, mild, moderate, etc.) is assigned to each individual (as often used in histopathological 409 
observations). Ordinal data can be reduced to quantal data but, depending on the definition of BMD 410 
applied, this transformation may result in a loss of information, which is not recommended (WHO, 411 
2020). Models for analysing ordinal data are available in different software packages, e.g. in PROAST 412 
or CatReg in BMDS (US EPA, 2016). Model averaging for ordinal data is not considered in this guidance 413 
document. 414 

Ideally, the relationship between dose and response would be described by model(s) that describe the 415 
essential toxicokinetic and toxicodynamic processes related to the specific compound. However, for 416 
most compounds, such models are not available, and therefore the BMD approach uses fairly simple 417 
models that do not intend to describe the underlying biological process, but should be treated as purely 418 
statistical models. These models can be considered as simplified mathematical expressions that could 419 
be used to describe the potential relationship between the response under consideration and the dose 420 
administered/received/exposed.  421 

The statistical models introduced in the next sections are considered suitable for analysing toxicological 422 
datasets in general. The following notation will be used throughout this section: 423 

• 𝑥  denotes the dose, on the original scale (not on a log-scale); for optimizing the visualization 424 
of the data and of the graphs of the fitted models, the x-axis will often be transformed to the 425 
log-scale (but the model was fit with dose 𝑥 on the original scale). 426 

• 𝑦  denotes the response, regardless of its nature (continuous or quantal); the response at a 427 
specified dose level  𝑥 is denoted as 𝑦|𝑥; for optimizing the visualization of the data of a 428 
continuous endpoint and of the graphs of the fitted models, the y-axis might be transformed to 429 
the log-scale (but the model was fit to the endpoint 𝑦 on the original scale). 430 

 

2.5.1. Specification of a dose-response model for a single continuous 431 
endpoint 432 

The statistical model 433 

 434 

The statistical model is defined by the following components:  435 

i) the distribution of the response at a specified dose level (i.e., describing the “within-436 
group variation”, the variability between individual observations at a specified dose). Two 437 
“within-group” distributions are considered: 438 
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• the normal distribution (as the most important representative of the family  of all 439 
symmetric distributions), 440 

• the log-normal distribution (as the most important representative of the family of all 441 
right-skewed distributions). 442 

It is assumed that left-skewed distributions are very unlikely in the field of benchmark dose 443 
determination and risk assessment. 444 

ii) the description of the effect of dose on this distribution (i.e., how does the distribution of 445 
the endpoint change across different dose levels).  446 

It is assumed that dose does not affect the type of distribution of the response, but only 447 
the parameter determining the centre of the distribution.  448 

Only two parametric distributions, which are fully characterized by their functional form and two 449 
parameters (central location and spread around the centre) are considered in this document: the normal 450 
distribution and the log-normal distribution. The normal distribution is symmetric, whereas the log-451 
normal is a right-skewed distribution. They both share theoretical and computational advantages and 452 
have been proven to fit well to many biological endpoints. As endpoints are assumed to be positive-453 
valued, a left-skewed distribution is not considered. If empirical or biological evidence necessitates, 454 
other distributions (e.g., the inverse Gaussian distribution, the gamma distribution) may be considered 455 
suitable as well, but the extension of the statistical modelling framework, as described in this section, 456 
to other distributions is not straightforward, nor is its implementation in the BMD application hosted in 457 
the R4EU servers. 458 

Before modelling the central location of the normal and log-normal distribution as a function of dose, 459 
the relevant characteristics of both distributions are summarised below. 460 

 

Modelling the distribution of the response 461 

It is assumed that the observations of 𝑦, given a specified dose (denoted as |𝑥), vary according to the 462 
normal distribution: 463 

𝑦|𝑥 ~N(𝜇(𝑥), 𝜎2)  

 

where 𝜇(𝑥) represents the mean and 𝜎2 the variance of the response at dose 𝑥. The normal distribution 464 
is a symmetric distribution (implying that 𝜇(𝑥) is the median as well). The true distribution of the 465 
response 𝑦 is unknown, but the normal distribution is known to often be a good approximation for that 466 
true distribution, especially if it is a symmetric distribution, even if the endpoint is restricted to be 467 
positive. The distribution only shifts up or down according to the value of the mean 𝜇(𝑥), but the 468 
variance 𝜎2 and the typical symmetric “bell shape’’ of the distribution remains invariant to changes in 469 
dose.  470 

 471 

In addition to the normal distribution, also the log-normal distribution can be considered:  472 

𝑦|𝑥 ~LOGN(𝜇(𝑥),𝜎2), 473 

This distribution is automatically restricted to positive values and is skewed to the right. Typically, the 474 
notation of the two parameters is identical to that of the two parameters of the normal distribution, but 475 
the interpretation is different. It holds that 476 

𝑦|𝑥 ~LOGN(𝜇(𝑥), 𝜎2) ↔ log(𝑦|𝑥) ~N(𝜇(𝑥),𝜎2), 477 

implying that 𝜇(𝑥) and 𝜎2 do not refer to the mean and the variance of the response itself but to the 478 
mean and the variance of the log-transformed response. Again, it is assumed that the parameter 𝜎2 479 
does not depend on dose.  The characteristics on the original scale are shown in Table 1 for both 480 
distributions. Note that, although the parameter 𝜎2 does not depend on dose, the variance of a log-481 
normally distributed response does depend on dose, as it depends on the parameter 𝜇(𝑥) as well. For 482 
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a log-normally distributed response the coefficient of variation (standard deviation divided by mean) is 483 

however not depending on dose (constant, with value  √𝑒𝜎
2
−1). 484 

 

Table 1: Characteristics of the normal and the log-normal dose-response model 485 

 𝑦|𝑥 ~N(𝜇(𝑥), 𝜎2) 𝑦|𝑥 ~LOGN(𝜇(𝑥),𝜎2) 

mean response 𝜇(𝑥) 𝑒𝜇(𝑥)+𝜎
2/2 

median response  Med(𝑥) 𝜇(𝑥) 𝑒𝜇(𝑥) 

variance response 𝜎2 (𝑒𝜎
2
−1)𝑒2𝜇(𝑥)+𝜎

2
 

 486 

The focus is on the median response Med(𝑥) at dose 𝑥, which is determined by 𝜇(𝑥) for both 487 
distributions: Med(𝑥) = 𝜇(𝑥) is the median of the normal distribution and Med(𝑥) = 𝑒𝜇(𝑥) is the median 488 
of the log-normal distribution.  489 

 

Modelling the central location of the distribution as a function of dose 490 

 491 

Next to the specification of the distribution (normal or log-normal), a suite of 8 candidate models for 492 
𝜇(𝑥) is used, as shown in Table 2.  All candidate models 𝜇(𝑥) share some basic properties P1-P4:  493 

• P1: the median can only take positive values (e.g. a median organ weight cannot be ≤ 0), so 494 

o 𝜇(𝑥) > 0 if a normally distributed endpoint is considered; 495 

o no constraint on values of 𝜇(𝑥) for a log-normally distributed endpoint; 496 

• P2: they are monotone increasing or decreasing, for both distributions; 497 

• P3: they are continuous functions of dose 𝑥, for both distributions; 498 

• P4: they reach a horizontal asymptote for very high dose levels (mathematically 𝑥 → ∞), for 499 
both distributions, such that they are suitable for data that level off to a maximum response. 500 

 

In the next paragraphs, three families of models (1a, 1b and 2) are introduced. All members of these 501 
families are flexible 4-parameter non-linear models, and all share the basic properties P1-P4. The above-502 
mentioned 8 candidate models have been selected from these three families. This selection incorporates 503 
the familiar exponential and Hill model from the previous guidance (EFSA SC, 2017), and extends it with 504 
alternative flexible models leading to a unification of models across both type of endpoints, continuous 505 
or quantal.   506 

The model structure of Family 1a/b and Family 2 is fundamentally different. The general structure of 507 
Family 1a and 1b with the central role of the median background response and the maximum change 508 
in median response (parameter a and c) is identical, but the two other parameters b and d operate 509 
functionally differently in both subfamilies.  510 

 

• Family 1a and 1b: all models for 𝜇(𝑥) have the following structure 511 

 512 

𝜇(𝑥)  =  𝑎(1 + (𝑐 − 1)𝐹(𝑥;𝑏, 𝑑)), 𝑏,𝑑 > 0,  513 

 514 

for some particular but known function 𝐹, having the properties: 515 

o defined for 𝑥 ≥ 0; 516 
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o monotone increasing; 517 

o 𝐹(0; 𝑏,𝑑) = 0 and 𝐹(∞;𝑏, 𝑑) = 1 regardless the values of 𝑏 and 𝑑. 518 

For all members of Family 1a, the parameter 𝑑 acts as a power 𝑥𝑑, whereas it operates 519 
differently in Family 1b (see Table 2). The parameters 𝑎,𝑏, 𝑐, 𝑑 have a particular 520 
interpretation: 521 

o 𝑎 = 𝜇(0) is linked to the median background response; 522 

o 𝑐 =  𝜇(∞)/𝜇(0) is linked to the maximum change in median response, as 523 
compared to the background response; for 𝑐 > 1 (resp. 𝑐 < 1) the median response 524 
is monotone increasing (resp. decreasing) as a function of dose 𝑥; 525 

o 𝑏 and 𝑑 characterize the shape of change in response from median 526 
background response to maximum change in median response, via the 527 
identity: 528 

 𝐹(𝑥; 𝑏,𝑑) =
𝜇(𝑥) − 𝜇(0)

𝜇(∞)−𝜇(0)
 , 529 

o the model is reparametrized in terms of the parameter 𝑎, 𝑐 (representing the 530 
background response and the maximum change in response), the BMD (the potency, 531 
see Table 2, and replacing the parameter 𝑏) and the parameter 𝑑. 532 

 533 

• Family 2 increasing: increasing models for 𝜇(𝑥) from this family have the following 534 
structure 535 

 536 

𝜇(𝑥)  =  𝑐𝐹(𝑎 + 𝑏𝑥𝑑),     𝑏,𝑑 > 0 537 

 538 

for some particular but known function 𝐹, having the properties: 539 

o defined for any value of 𝑎 +𝑏𝑥𝑑; 540 

o monotone increasing; 541 

o 𝐹(−∞;𝑏,𝑑) = 0 and 𝐹(∞;𝑏, 𝑑) = 1 regardless the values of 𝑏 and 𝑑. 542 

The parameters 𝑎, 𝑏, 𝑐,𝑑 have a particular interpretation: 543 

o 𝑐 =  𝜇(∞) and 𝑎 = 𝐹−1(𝜇(0)/𝜇(∞))  and determine the median background 544 
response and the maximum change in median response, as compared to the 545 
background response; 546 

o 𝑏 and 𝑑 characterize the shape of change in response from median 547 
background response to maximum change in median response, via the 548 
identity: 549 

𝑏𝑥𝑑  = 𝐹−1(𝜇(𝑥)/𝜇(∞))  −  𝐹−1(𝜇(0)/𝜇(∞)) , 550 

o the model is reparametrized in terms of the parameter 𝑎, 𝑐 (representing the 551 
background response and the maximum change in response), the BMD (the potency, 552 
see Table 2, and replacing the parameter 𝑏) and the parameter 𝑑. 553 

 554 

 555 

• Family 2 decreasing: decreasing models for 𝜇(𝑥) from this family have the following 556 
structure 557 

𝜇(𝑥)  =  𝑎((1+𝐹(𝑐))−  𝐹(𝑐 + 𝑏𝑥𝑑)),     𝑏,𝑑 > 0 558 

 559 
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for some particular but known function 𝐹, having the properties: 560 

o defined for all values of c and all values of 𝑐 + 𝑏𝑥𝑑; 561 

o monotone increasing; 562 

o 𝐹(−∞;𝑏,𝑑) = 0 and 𝐹(∞;𝑏, 𝑑) = 1 regardless the values of 𝑏 and 𝑑. 563 

The parameters 𝑎, 𝑏, 𝑐,𝑑 have a particular interpretation: 564 

o 𝑎 =  𝜇(0) and 𝑐 =𝐹−1(𝜇(∞)/𝜇(0))  determine the median background response 565 
and the maximum change in median response, as compared to the background 566 
response; 567 

o 𝑏 and 𝑑 characterize the shape of change in response from median 568 
background response to maximum change in median response, via the 569 
identity: 570 

𝑏𝑥𝑑  = 𝐹−1(𝜇(∞)/𝜇(0) − (𝜇(𝑥) − 𝜇(0))/𝜇(0))  −  𝐹−1(𝜇(∞)/𝜇(0)) , 571 

o the model is reparametrized in terms of the parameter 𝑎, 𝑐 (representing the 572 
background response and the maximum change in response), the BMD (the potency, 573 
see Table 2, and replacing the parameter 𝑏) and the parameter 𝑑. 574 

 

Table 2: Candidate models for both distributional assumptions . 575 

Family Model 

𝑦|𝑥 ~N(𝜇(𝑥),𝜎2) 𝑦|𝑥 ~LOGN(𝜇(𝑥),𝜎2) 

Dose response function (𝜇(𝑥)) Dose response function (𝑒𝜇(𝑥)) 

1a 
Exponential(i) 𝑎 ∙ (1 + (𝑐− 1) ∙ (1 − 𝑒−𝑏∙𝑥

𝑑

)) 
𝑒
𝑎∙(1+(𝑐−1)∙(1−𝑒−𝑏∙𝑥

𝑑
))

 

Inverse Exponential 𝑎 ∙ (1+ (𝑐 − 1) ∙ 𝑒−𝑏∙𝑥
−𝑑

) 𝑒
𝑎∙(1+(𝑐−1)∙𝑒−𝑏∙𝑥

−𝑑
)
 

Hill(ii) 𝑎 ∙ (1 + (𝑐− 1) ∙ (1 −
𝑏

𝑏 + 𝑥𝑑
)) 

𝑒
𝑎∙(1+(𝑐−1)∙(1−

𝑏

𝑏+𝑥𝑑
))

 

Log-Normal 𝑎 ∙ (1 + (𝑐 − 1) ∙ Φ(𝑙𝑜𝑔(𝑏) + 𝑑 ∙ 𝑙𝑜𝑔(𝑥))) 𝑒
𝑎∙(1+(𝑐−1)∙Φ(𝑙𝑜𝑔(𝑏)+𝑑∙𝑙𝑜𝑔(𝑥)))

 

1b 
Gamma 𝑎 ∙ (1 + (𝑐− 1) ∙

𝛾(𝑑, 𝑏 ∙ 𝑥)

Γ(𝑑)
) 𝑒

𝑎∙(1+(𝑐−1)∙
𝛾(𝑑,𝑏∙𝑥)

Γ(𝑑)
)
 

LMS-two stage 𝑎 ∙ (1 + (𝑐− 1) ∙ (1 − 𝑒−𝑏∙𝑥−𝑑∙𝑥
2

)) 
𝑒
𝑎∙(1+(𝑐−1)∙(1−𝑒−𝑏∙𝑥−𝑑∙𝑥

2
))

 

2 Probit increasing 𝑎 ∙ Φ(𝑐+ 𝑏 ∙ 𝑥𝑑) 𝑒𝑎∙Φ(𝑐+𝑏∙𝑥
𝑑) 

Probit decreasing 𝑎 ∙ (1+ Φ(c))− 𝑎 ∙ Φ(𝑐+ 𝑏 ∙ 𝑥𝑑) 𝑒𝑎∙(1+Φ(c))−𝑎∙Φ(𝑐+𝑏∙𝑥
𝑑) 

Logistic increasing  𝑎 ∙
𝑒𝑐+𝑏∙𝑥

𝑑

1 + 𝑒𝑐+𝑏∙𝑥
𝑑  𝑒

𝑎∙
𝑒𝑐+𝑏∙𝑥

𝑑

1+𝑒𝑐+𝑏∙𝑥
𝑑
 

Logistic decreasing 𝑎 ∙ (1 +
𝑒𝑐

1+ 𝑒𝑐
)− 𝑎 ∙

𝑒𝑐+𝑏∙𝑥
𝑑

1 + 𝑒𝑐+𝑏∙𝑥
𝑑 𝑒

𝑎∙(1+
𝑒𝑐

1+𝑒𝑐
)−𝑎∙

𝑒𝑐+𝑏∙𝑥
𝑑

1+𝑒𝑐+𝑏∙𝑥
𝑑
 

(i): This model is identical to the 4-parameter Exponential model in Table 3 of the 2017 SC guidance. 576 

(ii): After a reparameterization, this model is identical to the 4-parameter Hill model in Table 3 of the 577 
2017 SC guidance. 578 
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With two candidate distributions and 8 candidate models for 𝜇(𝑥), a total of 16 candidate models can 579 
be fitted to the same data. All 16 candidate models have 5 parameters (4 parameters for 𝜇(𝑥) and the 580 
variance parameter 𝜎2) and all models are non-nested (none of the models can be seen as a 581 
simplification of another model). Graphs of all different models, illustrating their similarities and 582 
differences, are shown in Appendix B. 583 

 

The EPA BMDS guidance includes also the family of the NULL and the FULL model, as well as the linear, 584 
quadratic and power models.  585 

• The null model  586 

𝜇(𝑥)  =  𝜇. 587 

• The full model  588 

𝜇(𝑥𝑖)  = 𝜇𝑖 , 𝑖 =  1, …, 𝑁. 589 

• The linear model  590 

𝜇(𝑥)  =  𝑎 + 𝑏𝑥, 591 

 592 

• The quadratic model 593 

𝜇(𝑥)  =  𝑎 + 𝑏𝑥+ 𝑐𝑥2, 594 

 595 

• The power model 596 

𝜇(𝑥)  =  𝑎 + 𝑏𝑥𝑐 . 597 

 598 

The null and the full models used previously in EFSA, 2017 to assess the presence of dose response 599 
and the goodness of fit of the models are not needed anymore for the recommended Bayesian modelling 600 

The family of polynomial and power models are included in the US EPA BMDS software for continuous 601 
data. These families of models, typically applied to epidemiological data, have quite different 602 
characteristics and additional statistical complexities: they have less parameters and are rather limited 603 
in their flexibility; moreover, they do not comply with all 4 properties P1-P4. 604 

 

Further considerations regarding the statistical model 605 

 

Individual responses 𝑦 (e.g., individual organ weights) are guaranteed to be positive for the log-606 
normal distribution. Although 𝜇(𝑥) > 0, there is a (typically very small) theoretical probability that an 607 
individual normally distributed response value 𝑦 becomes negative. In a similar vein, the log-normal 608 
distribution being a one-sided heavy-tailed distribution, there is a (typically very small) theoretical 609 
probability that an individual log-normally distributed response variable 𝑦 becomes extremely large, 610 
both completely unrealistic for the endpoint at hand.  These theoretical disadvantages of both 611 
distributions are, in most practical cases, not an issue, as: 612 

• both distributions have been proven to approximate the unknown data generating distribution 613 
of positive random variables very well in a variety of practical instances, despite their 614 
theoretical disadvantages; 615 

• the model is not developed for prediction of individual response values, but for the estimation 616 
of the BMD. 617 

By default, both distributions will be included in the analysis of the data. Nevertheless, one of the two 618 
distributions might be discarded from further analysis during the process of evaluation, based on 619 
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biological or statistical arguments for the data at hand. For statistical techniques to reject (or not 620 
reject) the normal or log-normal distribution, see further under heading “The data” below. 621 

For both distributions (normal and log-normal) it is assumed that the parameter 𝜎2 is constant and does 622 
not depend on dose. When there is evidence that 𝜎2 does change with dose, an adjusted analysis or an 623 
extended model could be applied. Ignoring that dependency (while in reality it exists) might affect the 624 
standard errors of the parameter estimates as well as the confidence bounds for the BMD (BMDL and 625 
BMDU), although the fitted dose-response model for the mean and the BMD estimate are in general 626 
expected to be still appropriate. For statistical techniques to reject (or not reject) the parameter 𝜎2 to 627 
be independent of dose, see further under heading “The data”. 628 

 

The data 629 

For continuous data, the individual observations should ideally serve as the input for a BMD analysis. 630 
When no individual but only summary data are available, the BMD analysis may be based on the 631 
combination of the mean, the standard deviation (or standard error of the mean), and the sample size 632 
for each treatment group. Using summary data may lead to slightly different results compared with 633 
using individual data, depending on the type of summary data and the selected distribution. The use of 634 
individual data is equivalent to the use of arithmetic summary data (arithmetic mean, arithmetic 635 
standard deviation, and sample size per treatment group) when applying the normal distribution, and 636 
the use of individual data is equivalent to the use of geometric summary data (geometric mean, 637 
geometric standard deviation, and sample size per treatment group) when using the log-normal 638 
distribution. This is related to the statistical concept of “sufficiency” of summary statistics (Fisher, 1922; 639 
Stigler, 1974 and Lehmann and Casella, 1998). It should be emphasized that when using arithmetic 640 
(geometric) summary data to be converted to geometric (arithmetic) summary data when using the 641 
log-normal (normal) distribution, it holds only approximately, meaning that results might slightly differ 642 
from those that would be obtained if individual observations were used.  643 

When individual data are available, well-established formal statistical tests can be performed to test the 644 
particular distributional assumption, e.g. the Shapiro-Wilk test for testing normality and log-normalitiy 645 
(Shapiro and Wilks, 1965). When only summary data are available, one is very limited in checking the 646 
validity of the distributional part of the statistical model: the normal or log-normal distribution with 647 
parameter 𝜎2 not depending on dose. With summary data, it is recommended to check the specific 648 
nature of the relation between the observed dose specific arithmetic averages and standard deviations: 649 

the (homoscedastic) normal distribution 𝑦|𝑥 ~N(𝜇(𝑥),𝜎2) implies a constant standard deviation, i.e. the 650 
standard deviation does not depend on the dose x (homoscedasticity on the original scale of the 651 
response). the log-normal distribution 𝑦|𝑥 ~LOGN(𝜇(𝑥), 𝜎2) implies a constant coefficient of variation, 652 
i.e. the ratio of the (standard deviation)/mean does not depend on the dose x; or equivalently, the 653 
variance of the log-transformed response is constant (homoscedasticity on the transformed log-scale of 654 
the response). The homoscedasticity assumption on the original and on the log-response scale can be 655 
formally test with the summary statistics using the Bartlett test (Bartlett, 1937). Considering that most 656 
of the time the information available are summary statistics, the Bartlett test is the only option that can 657 
be used to assess homogeneity of variances when response is assumed to be Normally distributed, and 658 
similarly this can be done when the response is assumed to be log-normal. The BMD analysis should 659 
report the results of these tests for both distributional assumptions (see Appendix C – where the Bartlett 660 
test is reported for the continuous examples). In case of violations, it is advised to perform the analysis, 661 
and additionally consider the analysis using for all dose groups the smallest and largest standard 662 
deviations to study the impact on the estimation of the BMD. 663 

Instead of examining these characteristics by formal Bayesian hypothesis testing, the posterior 664 
probabilities (see section on model averaging below) for the normal and the corresponding log-normal 665 
candidate model with the same choice for 𝜇(𝑥) will reflect which distribution fits best to the (summary) 666 
data. If the summary data support the constant standard deviation, the normal candidate model will 667 
get the higher posterior probability, and the log-normal model the lower posterior probability, and hence 668 
the normal model will dominantly determine the BMD. If the summary data support the constant 669 
coefficient of variation, it is the other way around. Model averaging (see further) deals with this issue 670 
automatically.  671 
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In case neither the standard deviation nor the coefficient of variation is constant (as a function of the 672 
dose x), both distributions, the normal nor the log-normal distribution, are not fully optimal. Individual 673 
data are needed to investigate this properly. It is assumed (and expected) however that either the 674 
normal or the log-normal distribution is a sufficiently appropriate distribution.  675 

Occasionally, dose-response data may be reported such that they include negative values, which may 676 
necessitate data scaling or normalisation, for instance body weight gains decreasing from positive to 677 
negative values at high doses. In those cases, the recommended models that are strictly positive are 678 
no longer valid and models with an additive background parameter would be needed. 679 

 

2.5.2. Specification of a dose-response model for a single quantal endpoint 680 

The statistical model 681 

A quantal endpoint refers to a binary measurement: yes/no (typically coded as 1/0) according to the 682 
occurrence of a particular adverse event. As for a continuous endpoint, the statistical model for a quantal 683 
endpoint is defined by two components:  684 

i) the specification of the distribution of the endpoint at a specified dose 𝑥.  Only one distribution 685 
is possible (Bernoulli distribution). 686 

ii) the description of the effect of dose on this distribution. Dose is affecting the probability on the 687 
adverse event. 688 

 

Modelling the distribution 689 

The main difference with a continuous outcome is that there is only one possible distribution for a 690 
quantal endpoint, the Bernoulli distribution; it has a single parameter, being the probability on the 691 
(adverse) event of interest.  So, the first model component is uniquely defined as 692 

𝑦|𝑥 ~Bernoulli(𝜋(𝑥)), 693 

with 𝜋(𝑥) being the probability on the adverse event at dose 𝑥. Note that 𝜋(𝑥) is also the mean of the 694 
response.   695 

 

Modelling the probability of an event 696 

 

The dose acts on the probability 𝜋(𝑥) of an event, typically considered as adverse. The same suite of 697 
candidate models as for the parameter 𝜇(𝑥) for a continuous endpoint is considered, with the restrictions 698 
that: 699 

• they are only monotone increasing (as we expect the probability on the adverse event to 700 
increase with dose); contrary to continuous data, monotone decreasing data should be 701 
converted into increasing data, e.g. decreased survival could be transformed into increased 702 
mortality.  703 

• the parameter representing the horizontal asymptote (c) is set such that this asymptote equals 704 
the value of 1 at infinite dose.  705 

The three subfamilies of models for 𝜋(𝑥) are:  706 

• Family 1a and 1b: all models for 𝜇(𝑥) with 𝑐 = 1/𝑎, or 707 

 708 

𝜋(𝑥)  =  𝑎 + (1−𝑎)𝐹(𝑥; 𝑏,𝑑), 𝑏,𝑑 > 0,  709 

 710 
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for the same functions 𝐹 as for Family 1a and 1b for continuous endpoints.  711 

The parameters 𝑎, 𝑏, 𝑑 have a particular interpretation: 712 

o 𝑎 = 𝜋(0) determines the background probability on the adverse event; 713 

o 𝑏 and 𝑑 characterize the shape of change in the probability on the adverse 714 
event, via the identity: 715 

 𝐹(𝑥;𝑏, 𝑑) =
𝜋(𝑥) −𝜋(0)

1 −𝜋(0)
 , 716 

o the model is reparametrized in terms of the parameter 𝑎 (representing the 717 
background incidence), the BMD (the potency, see Table 3, and replacing the 718 
parameter 𝑏) and the parameter 𝑑. 719 

 720 

• Family 2: all increasing models for 𝜇(𝑥) with 𝑐 = 1, or 721 

 722 

𝜋(𝑥)  =  𝐹(𝑎 + 𝑏𝑥𝑑),     𝑏,𝑑 > 0 723 

 724 

for the same functions 𝐹 as for Family 2 for continuous endpoints. d 𝑑. 725 

The parameters 𝑏, 𝑐, 𝑑 have a particular interpretation: 726 

o 𝑎 = 𝐹−1(𝜋(0)) determines the background probability on the adverse event; 727 

o 𝑏 and 𝑑 characterize the shape of change in the probability on the adverse 728 
event, via the identity: 729 

𝑏𝑥𝑑  = 𝐹−1(𝜋(𝑥)) −  𝐹−1(𝜋(0)) , 730 

o the model is reparametrized in terms of the parameter 𝑐 (representing the 731 
background incidence), the BMD (the potency, see Table 3, and replacing the 732 
parameter 𝑏) and the parameter 𝑑. 733 

 734 

Table 3: Candidate models for quantal endpoints . 735 

 736 

Family Model 

𝑦|𝑥 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋(𝑥)) 

Dose response function (𝜇(𝑥)) 

1a 
Exponential 𝑎 + (1 −𝑎) ∙ (1 − 𝑒−𝑏∙𝑥

𝑑
) 

Inverse Exponential 𝑎 + (1 −𝑎) ∙ 𝑒−𝑏∙𝑥
−𝑑

 

Hill 𝑎 + (1 −𝑎) ∙ (1 −
𝑏

𝑏 + 𝑥𝑑
) 

Log-Normal 𝑎 + (1 −𝑎) ∙ Φ(𝑙𝑜𝑔(𝑏)+𝑑 ∙ 𝑙𝑜𝑔(𝑥)) 

1b 
Gamma 𝑎 + (1 −𝑎) ∙

𝛾(𝑑, 𝑏 ∙ 𝑥)

Γ(𝑑)
 

LMS-two stage 𝑎 + (1 −𝑎) ∙ (1− 𝑒−𝑏∙𝑥−𝑑∙𝑥
2
) 

2 
Probit increasing Φ(𝑎 +𝑏 ∙ 𝑥𝑑) 
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Probit decreasing (1+ Φ(a)) −Φ(𝑎 +𝑏 ∙ 𝑥𝑑) 

Logistic increasing  
𝑒𝑎+𝑏∙𝑥

𝑑

1 + 𝑒𝑎+𝑏∙𝑥
𝑑
 

Logistic decreasing (1 +
𝑒𝑎

1 + 𝑒𝑎
)−

𝑒𝑎+𝑏∙𝑥
𝑑

1 + 𝑒𝑎+𝑏∙𝑥
𝑑
 

 737 

With only one distribution and again 8 candidate models for 𝜋(𝑥), a total of 8 candidate models can be 738 
fitted to the data. All models (Logistic, probit, log-logistic, log-probit, Weibull, gamma, LMS (two-stage) 739 
model), except the latent variable models, are covered. These latter LVM models are considered to be 740 
no longer necessary, given the suite of 8 flexible candidate models. All 8 models have 3 parameters (for 741 
the probability 𝜋(𝑥)) and all models are non-nested (none of the models can be seen as a special 742 
case/simplification of another model). Also note that there are two parameters less to be estimated for 743 
quantal data models: no parameter c and no variance parameter 𝜎2. 744 

  745 

The EPA BMDS guidance includes also the family of the NULL and the FULL model, as well as the family 746 
of polynomial and power models.  747 

• The null model  748 

𝜋(𝑥)  =  𝜋 749 

• The full model  750 

𝜇(𝑥𝑖)  = 𝜋𝑖 , 𝑖 =  1,… ,𝑁. 751 

• The linear model  752 

𝜇(𝑥)  =  𝑎 + 𝑏𝑥, 753 

• The quadratic model 754 

𝜇(𝑥)  =  𝑎 + 𝑏𝑥+ 𝑐𝑥2, 755 

• The power model 756 

𝜇(𝑥)  =  𝑎 + 𝑏𝑥𝑐 . 757 

 758 

The null and the full models used previously in EFSA, 2017 to assess the presence of dose response 759 
and the goodness of fit of the models are not needed anymore for the recommended Bayesian 760 
modelling. 761 

The family of polynomial and power models is not considered for quantal data as it does not respect 762 
the natural bounds of a probability 0 ≤ 𝜋(𝑥) ≤ 1. 763 

 

The data 764 

For quantal data the number of affected individuals and the sample size are needed for each dose 765 
group. Again, some models will fit better to the data than others and some models might fit equally 766 
well. The reader is referred to Section 2.5.3 on multi-model inference, where the technique of model 767 
averaging, which effectively accounts for model uncertainty for quantal data, is described. 768 

 

2.5.3. Frequentist or Bayesian inferential paradigm 769 

Introduction 770 

The most commonly employed statistical philosophies are the frequentist and Bayesian approaches. In 771 
the frequentist approach, probability is used to represent a long-run frequency. Uncertainty about the 772 
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unknown parameters is measured by confidence and significance levels (p-values), interpreted and 773 
calibrated under hypothetical repetition. In the Bayesian approach, probability distributions are attached 774 
to the unknown parameters, and the notion of probability is extended so that it reflects uncertainty of 775 
knowledge (Cox, 2006). The central idea of the Bayesian approach is to combine the data (through the 776 
likelihood, expressing the plausibility of the observed data as a function of the parameters of a stochastic 777 
model, Fisher, 1922) with prior knowledge (prior probability) to obtain the posterior probability as a 778 
revised, updated probability. In EFSA’s setting, a discrete prior distribution is chosen on the level of the 779 
suite of candidate models (default is the uniform distribution expressing that all candidate models are 780 
equally likely). For each individual model, continuous prior distributions are formulated on the 781 
background response, the maximum (or minimum) response at very high dose, and on the BMD. These 782 
latter prior distributions are translated to distributions on the parameters a, b, c (see Table 2 and 3), 783 
and finally a prior distribution is defined on the parameter d and the variance parameter. It is reminded 784 
that for quantal data, no priors are needed for the parameter c and the variance parameter, as these 785 
parameters are not existing for models for quantal data. For more details see Section 2.5.2. 786 

The data-based “updating” of prior to posterior distributions is accomplished by Bayes theorem. The 787 
explicit analytical calculation of the posterior probability and posterior summary measures (direct 788 
calculation of integrals involved) is often not feasible and numerical techniques are required:  789 

i) numerical integration and approximation such as the Laplace approximation,  790 

ii) sampling from the posterior using Markov chain Monte Carlo (MCMC) methods. 791 

Both paradigms, frequentist and Bayesian, have a great deal to contribute to statistical practice. There 792 
are useful connections between both paradigms when no other external information, other than the 793 
data, is introduced in the analysis (Bayarri and Berger, 2004). An uninformative, or diffuse, or objective 794 
or flat prior expresses only general, vague, objective information and follows the principle to assign 795 
equal probabilities to all possibilities (indifference, ignorance). Using such objective prior typically leads 796 
to results similar to those of a frequentist analysis. The full strength of the Bayesian approach is utilized 797 
when applying informative priors, encapsulating all relevant information apart from that in the data 798 
under analysis, merging such external information seamlessly with the data by including such 799 
information quantitatively by a probability distribution.  800 

 

Bayesian versus frequentist BMD estimation 801 

In the frequentist approach, the true BMD is a single specific and unknown value, and interpretation of 802 
the estimation of that unknown true BMD is in terms of an abundant number of “repeated samples”. 803 
These repeated samples are not observed but are assumed to be “similar’’ to the observed one (similar 804 
to be interpreted as: taken from the same population with the same random/probabilistic sampling 805 
plan). The 95% confidence interval has to be interpreted in terms of repeated samples: if for each of 806 
these unobserved repeated samples a 95% CI would be computed, it is expected that 95% of these CIs 807 
contain the true unknown BMD. So, one is “confident” that the CI based on the single observed sample 808 
contains the true BMD, but one does not know, and there is no probability attached to the event that 809 
the CI of the observed sample contains the true BMD. The 5% BMDL and 95% BMDU are defined as 810 
the lower and respectively upper bound of a 90% CI for the BMD. 811 

In the Bayesian approach, the BMD is not a single specific value but a random variable with a particular 812 
distribution (the prior and posterior distribution). That distribution expresses the knowledge about the 813 
BMD. More probability (area under the density) in certain region(s) expresses that the values in these 814 
region(s) are more likely. The mode of the distribution is the most likely value for the BMD. The spread 815 
(the standard deviation) of the BMD distribution expresses the uncertainty about the knowledge of BMD. 816 
A larger standard deviation expresses more uncertainty. The distribution of the BMD, prior to having 817 
used the data or even having set up the experiment, is called the prior distribution. In case there is no 818 
“prior knowledge”, one uses a vague, flat prior. Suppose your experiment has a range of dose values 819 
(0,100), the prior distribution of the BMD could then be taken as the uniform prior, taking the constant 820 
value 1/100 on the interval (0,100): no mode, maximal spread. In case there is prior knowledge, from 821 
the literature or from experts, that the BMD is expected to be around the most likely value 5.25 (the 822 
mode), and to be within a minimum 4.5 and maximum value 5.8, one could use a particular unimodal 823 
prior distribution with mode 5.25, minimum 4.5 and maximum 5.8 (see Section 2.6.4). With the data 824 
and a model, and based on Bayes’ theorem, the prior distribution for the BMD is revised, updated to 825 

http://www.efsa.europa.eu/efsajournal


Draft Guidance on BMD approach in risk assessment  
 

 

 
www.efsa.europa.eu/efsajournal  22 EFSA Journal xxxx;volume(issue):xxxx 

 

the so-called posterior distribution (post factum using the data and the model), based on the equation 826 
(with ∝ denoting “is proportional to”) 827 

 828 

                                                                                                                           (*)                             829 

 830 

with the likelihood expressing the plausibility of the observed data as a function of the model 831 
parameters. The frequentist maximum likelihood (ML) estimate is that value of the model parameter 832 
that maximizes the likelihood. The identity (*) connects frequentist ML estimation and Bayesian 833 
estimation. When using a flat uninformative prior, the prior has “no effect”, and maximizing the posterior 834 
distribution, leading to the posterior mode as a Bayesian estimate, coincides essentially with maximizing 835 
the likelihood, and in that case the Bayesian estimate and the ML estimate are essentially the same. So 836 
(with ≡ denoting equivalent, being essentially identical up to e.g. minor differences due to numerical 837 
approximations), this implies: 838 

 839 

 840 

 841 

In this sense, Bayesian estimation can be viewed as an extension of ML estimation, as it combines data 842 
information (through the likelihood) with other historical or expert knowledge (through the prior 843 
distribution). When a series of independent experiments are performed over time, equation (*) can be 844 
applied sequentially: the posterior of a parameter (such as the BMD) in experiment j can be used as a 845 
prior for the parameter when analysing the data of experiment j+1. The Bayesian approach can mimic 846 
a learning process and reflect the accumulation of knowledge over time, and is therefore proposed as 847 
the recommended approach for BMD modelling in EFSA 848 

Despite the close connection between ML and Bayesian estimation, terminology and interpretation is 849 
different. The 95% credible interval (or credibility, CrI) for the BMD is determined as an interval that 850 
covers 95% of likely values of the BMD (probability area 0.95 under the posterior distribution). The 851 
interpretation of the CrI is more natural than that of the frequentist CI: the probability that the BMD is 852 
within the limits of the CrI is 0.95. Turning to the BMDL and the BMDU: the 95% BMDL is the lower 853 
bound of a 90% CI or CrI (with 5% at the left side and 5% at the right side). For the frequentist CI the 854 
interpretation is again that: 5% of similarly constructed CIs for all theoretical repeated samples would 855 
have a lower limit above the true unknown specific BMD. For the Bayesian CrI the interpretation is: the 856 
probability that the BMD is below the BMDL is 0.05. A similar interpretation holds for the BMDU. 857 

In case an (highly) informative prior has been used, and this prior is in line with the data, the obtained 858 
Bayesian CrI will be (much) narrower. However, if the informative prior and the data are in conflict (e.g. 859 
the center of the prior is quite different from that given by the data through the model applied), the 860 
resulting posterior BMD distribution might have a larger spread, and the Bayesian CrI may be wider 861 
than the frequentist CI. A relevant question is then: why is the prior distribution not in line with the 862 
data? Many reasons may apply: the data come from an experiment with different characteristics than 863 
those (historical experiments) behind the prior distribution, such as different experimental units 864 
(animals), different methods used to obtain the measured endpoints, or even (slightly) differently 865 
defined endpoints, etc. This type of considerations is highly relevant in order to decide about using this 866 
informative prior, or rather the uninformative prior.  Does one prefer to take the additional uncertainty 867 
caused by heterogeneous experimental conditions into account, or does one consider the historical ones 868 
as inappropriate or outdated in current times. In conclusion, the Bayesian approach allows to combine 869 
data with prior information, which is very appealing as science is based on the accumulation of 870 
knowledge over time, but it poses several challenges as well:  871 

• Different prior distributions can be used to represent the same historical prior information. A 872 
sensitivity analysis across different sensible choices for the prior distribution would then be 873 
required. Such analysis may be time and (computational) resource demanding.  874 

• The choice whether to use an informative prior (when available) or not should be taken prior 875 
to the analysis, and not based on a comparison of the prior and posterior distribution (which 876 
would be assimilated to data snooping).  One should therefore know and reflect on the relevant 877 

frequentist BMD(L/U)   ≡   Bayesian BMD(L/U) with uninformative prior 

posterior distribution     ∝     likelihood × prior distribution                    
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conditions behind the prior knowledge and the details of the experiment behind the data to be 878 
used, and decide on whether heterogeneity in such conditions is relevant or important to include 879 
or not. “Is the accumulation of knowledge by the Bayesian engine “informative prior + data = 880 
posterior” scientifically justified?” is a central question.  881 

For further reading and more information on the Bayesian paradigm and Bayesian modelling, see e.g. 882 
Lesaffre and Lawson (2012), Kruschke (2014), Bolstad and Curran (2016).  883 

 

Model averaging 884 

Different dose-response models for a particular response are to be considered as different mathematical 885 
approximations of the true unknown dose-response model. Some models might approximate the true 886 
model very well and others less, but the suite of models should contain a sufficient number of models 887 
(preferably as diverse as possible), which should be flexible enough, to ensure that at least one model 888 
approximates the true model sufficiently well. It is not required to add more and more (similar or nested) 889 
models to the suite of candidate models, as such additional models do not improve the analysis, and 890 
will slow down the already computationally intensive analysis. The suite of 16 models for a continuous 891 
endpoint and the suite of 8 models for a quantal endpoint (Section 2.5.1 and 2.5.2) are considered to 892 
be rich enough to include at least one well-fitting model. 893 

It is generally accepted that a multi-model approach, reflecting data driven model selection and 894 
accounting for model uncertainty, outperforms the single-best-model approach (Burnham and 895 
Anderson, 2002; 2004; Stoica et al., 2004). The rationale behind multi-model inference is to “combine” 896 
all model-specific analyses by averaging across models while assigning higher weights to those models 897 
that fit the data better.  Equally well-fitting models contribute equally to the multi-model analysis. This 898 
rationale is common to both inferential paradigms, frequentist or Bayesian, but the implementation is 899 
different. 900 

The frequentist approach follows the frequentist thinking about a particular parameter of interest (such 901 
as the BMD) as a deterministic specific value. Each model provides a point estimate for that parameter 902 
and the model averaged estimate is a weighted average of the model specific estimates, assigning 903 
higher weights to better fitting models. A common choice of such weights is based on Akaike’s 904 
Information Criterion (AIC), a statistical measure that rewards goodness of fit of the model to the data 905 
while penalizing for complexity. Confidence intervals can then be constructed based on estimates of the 906 
standard error of that model averaged estimate, but in general, one prefers the construction of 907 
simulation-based intervals (bootstrap), at the cost of computing time.  This bootstrap simulation method 908 
reflects the frequentist repeated sampling of other unobserved samples in order to construct the 909 
sampling distribution of the BMD point estimate, and left and right quantiles of this simulated distribution 910 
can then be taken to obtain a confidence interval. There are two approaches to construct a model 911 
averaged point estimate and confidence interval. A “direct method” averages the model specific  BMD 912 
estimates (without the need to construct an averaged dose response model). The “indirect method” 913 
first averages the dose response models to obtain an averaged dose response model and applies that 914 
single averaged model to get the model averaged BMD estimate. Both approaches of model averaging 915 
and both approaches of building confidence intervals are presented and illustrated in Aerts et al. (2020). 916 
The indirect method has been implemented in current frequentist model averaged BMD software 917 
(PROAST and EFSA platform). 918 

Similarly, the Bayesian approach follows the Bayesian philosophy that the BMD has a (uncertainty) 919 
distribution. The data and the model allow to update the prior BMD distribution resulting in model-920 
specific posterior BMD distributions. Using weights these model-specific distributions are mixed into a 921 
single “averaged” posterior BMD distribution. The Bayesian approach does not need to distinguish the 922 
direct and indirect method. The left and right quantiles of the averaged posterior BMD distribution 923 
provide the posterior credible interval.  Not only model parameters get a distribution, but also the 924 
(candidate) models get a prior probability, expressing the prior knowledge about the “correctness” of 925 
the individual models. Most often, all models are equally likely, prior to the data. The weights used to 926 
construct the averaged posterior distribution are then, given the data, the posterior probabilities for the 927 
individual models. The difficulty of obtaining these posterior probabilities is the determination of certain 928 
integrals (so-called marginal likelihood), which are not analytically tractable and must be approximated 929 
using numerical methods (Markov chain Monte Carlo (MCMC) methods, Bridge sampling, Laplace 930 
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approximation).  For more details, see e.g. Hoeting et al (1999), Morales et al (2006). In most cases 931 
the Laplace approximation provides reliable results, similar to the most accurate method of Bridge 932 
sampling (being more computationally demanding). Considering this, the Laplace approximation method 933 
would be the default approach given the differences in computational speed, but Bridge sampling can 934 
be requested in case of clear indications of estimation failures. 935 

In the setting of regression models (as in our case), application of model averaging has focused on 936 
averaging across different regression models (dose response models in our case) for one specific 937 
distribution (normal or log-normal in our case).  More recently model averaging has been extended to 938 
incorporate averaging across distributions as well (Wheeler et al., 2022).  939 

Model averaging performs well if at least one of the candidate models fits well. To check this, the best 940 
fitting candidate model is contrasted to the “full model”, perfectly fitting the observed means (the full 941 
model is defined in section 2.5.1 for continuous and in section 2.5.2 for quantal endpoints). Testing 942 
whether the best fitting model fits sufficiently well, as compared to the full model, is based on the Bayes 943 
factor (used for hypothesis testing in the Bayesian paradigm, see e.g., section 3.8.2 in Lesaffre and 944 
Lawson, 2012). In case none of the candidate models fits well, it is recommended to examine the 945 
possible cause by checking the plot of the fit of the best fitting model together with the observed data 946 
(does it not fit well to the data in a particular dose range, are the data showing a non-monotone pattern 947 
whereas the models are monotone by definition). 948 

2.5.4. Extensions 949 

Covariates 950 

Besides fitting dose-response models to single datasets, it is possible to fit a given model to a 951 
combination of datasets which differ in a specific aspect, such as sex, species, or exposure duration, 952 
but are similar otherwise. In particular, the response parameter (endpoint) needs to be the same. By 953 
fitting the dose-response model to the combined dataset, with the specific aspect included in the 954 
analysis as a so-called covariate, it can be examined in what sense the dose-responses in the subgroups 955 
differ from each other, based on statistical principles (e.g. goodness-of-fit measures). In principle, the 956 
covariate can play its role on each component of the statistical model. It is however general practice in 957 
statistical modelling that the covariate does not affect the distribution of the response at a specified 958 
dose but may affect a subset of the parameters 𝑎, 𝑏,𝑐, 𝑑 or, after parameterization of the background 959 
and maximum response, the BMD and the parameter d of the model for 𝜇(𝑥) or 𝜋(𝑥). Fitting different 960 
models with or without a covariate effect and comparing these models within the Bayesian framework, 961 
may lead to  962 

• the use of a common BMD and resulting in a unique BMD(L/U) across subgroups; 963 

• the use of subgroup-specific (covariate-specific) BMD parameters and resulting in subgroup 964 
specific BMD(L/U)s. 965 

Combining datasets with similar design characteristics in a dose-response analysis with covariate(s) is 966 
more powerful (i.e. narrower credible intervals), as compared to analysing each single dataset 967 
separately. Covariate analysis is particularly relevant when the subgroups datasets provide relatively 968 
poor dose-response information (Slob and Setzer, 2014). It also allows for examining and quantifying 969 
potential differences between the subgroups. For instance, the problem formulation might indicate that 970 
the assessment should specifically focus on sex differences, in which case it would be important to have 971 
a precise estimate of the difference in BMDs between male and female animals.  972 

All models in Tables 2 and 3 allow for incorporating covariates in a toxicologically meaningful way.  973 

 

Hierarchical/Nested response data 974 

When data are nested (multi-levelled - repeated measure designs in which the same subject is measured 975 
repeatedly over time, or in the cases in which observations are correlated, e.g. existence of litter 976 
effects), this hierarchical structure needs to be taken into account. Ignoring multivariate nature of such 977 
data will result in underestimation of standard errors as well as too narrow confidence intervals. There 978 
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are several statistical methods to account for hierarchical data: Teunis, Evers and Slob (1999) proposed 979 
the use of Beta-Binomial models to deal with such situations. 980 

 

2.6. Guidance to apply the BMD approach  981 

This section provides an overview of how to estimate the BMD and calculate its credible interval from 982 
dose-response data, and recommendations are given on particular choices to be made. The guidance 983 
refers not only to in vivo data but could be applied also to other types of data (e.g. in vitro data). 984 
Although currently available software allows for the application of the BMD approach without detailed 985 
knowledge of computational technicalities, a conceptual understanding of the method, as described in 986 
this Guidance, is a prerequisite for correct interpretation of the results. 987 

As shown in Figure 2, the application of the BMD approach may be summarized as a process involving 988 
the following steps 989 

1. Specification of type of dose-response data (Section 2.6.1) 990 

2. Selection of the BMR (Section 2.6.2) 991 

3. Consideration of suitability of data for dose-response modelling (Section 2.6.3) 992 

4. Consideration of prior information for the parameter(s) considered (Section 2.6.4) 993 

5. Perform Bayesian model averaging to estimate the BMD and calculate its credible interval 994 
(Section 2.6.5) 995 

6. Decide on the overall BMDL (all endpoints considered) to be used as Reference Point to establish 996 
the HBGV or calculate a MOE 997 

 998 
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 999 

Figure 2 Flowchart to derive a Reference Point (RP) from a dose-response dataset of a specified 1000 
endpoint, using BMD analysis  1001 
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2.6.1. Structure of the dose-response data  1002 

The basic structure of most dose-response data is a matrix, with each row providing the summary 1003 
statistics of a particular dose, with columns: 1004 

• For continuous endpoints: dose, number of observations, arithmetic mean, arithmetic standard 1005 
deviation or variance. 1006 

• For quantal endpoints: dose, number of observations, number of adverse events. 1007 

Possible variations on this basic structure include: 1008 

• Individual data, in a matrix, with each row referring to an individual unit and with two columns: 1009 
the dose used, and the individual outcome (continuous or adverse event indicator). 1010 

• Summary data, as in the basic structure, but with, for continuous endpoints, the geometric 1011 
mean and geometric standard deviation or variance. 1012 

• The basic structure extended with an additional column with the values of a covariate for that 1013 
dose group, such as gender, age group. In this setting, the same dose value will appear in 1014 
multiple rows, as often as there are covariate values. For instance, in the case of the covariate 1015 
gender, there will be two rows with the same dose level (first column), possibly the same 1016 
number of observations in the second column (in case of a balanced design), likely different 1017 
values for mean and standard deviation (or variance) in the third and fourth column, and 1018 
different gender indicators in the fifth column.  1019 

• In the case of clustered quantal data (e.g. litters), there are multiple rows with the same dose 1020 
level (in the first column), each of them referring to a different cluster; the other columns are 1021 
again the number of observations (likely different for different clusters), number of adverse 1022 
events.  1023 

There are specific conditions in which a covariate analysis can be used when performing a BMD 1024 
estimation (see Section 2.5.4). The first one could be when in the problem formulation there might be 1025 
indications that sex, or other population characteristics differences, such as age groups, need 1026 
evaluations. In such case, if groups can be pooled, parameter estimation might increase accuracy and 1027 
result in a narrower credible interval for the BMD. Another condition is when considering several studies 1028 
having similar experimental conditions (e.g. same animal species, comparable experimental design, 1029 
etc): these studies could be combined in a covariate analysis (in which study indicator would be 1030 
considered as a covariate); the studies might provide different dose ranges and with this a better 1031 
indication about the potential dose-response relationship. This specific condition might increase 1032 
accuracy when estimating model parameters and result, after pooling the studies, in a narrower BMD 1033 
credible interval.  1034 

 

2.6.2. Selection of the BMR  1035 

The BMR is a degree of change that defines a level of response in a specific endpoint that is measurable, 1036 
considered relevant to humans or to the model species, and that is used for estimating the associated 1037 
dose (the “true” BMD). Before thinking about what value may be specified for the BMR, it is necessary 1038 
to make clear in what terms the BMR is defined, i.e. what metric is used for reflecting the magnitude of 1039 
the effect. Both for continuous and for quantal data there are various options, and the most important 1040 
ones will be discussed below. For both quantal and continuous endpoints, the rationale for the decision 1041 
made on the BMR and associated uncertainties should be explained and documented. 1042 

 1043 

Quantal data 1044 

For quantal data, the BMR is defined in terms of an increase in the incidence of the lesion/response 1045 
scored, compared with the background incidence. In toxicology, the two common metrics for reflecting 1046 
such an increase are the additional risk (incidence at a given dose minus incidence in the controls), and 1047 
the extra risk (the additional risk divided by (1 minus the incidence in the controls), i.e. the additional 1048 
risk divided by the non-affected fraction of the control group) (see section 2.3.3, footnote 5). The BMR 1049 
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needs to be a value within the observed range of experimental response and near the lower end of this 1050 
range.   1051 

For quantal response data observed in experimental animals, BMR values of 1%, 5% or 10% (extra or 1052 
additional risk) were initially proposed (Crump, 1984). In its 2005 opinion, the EFSA Scientific Committee 1053 
concluded that the use of the BMDL, calculated for a BMR of 10% (BMDL10), is an appropriate reference 1054 
point for substances that are both genotoxic and carcinogenic, because such a value is the lowest 1055 
statistically significant increased incidence that can be measured in most studies, and would normally 1056 
require little or no extrapolation outside the observed experimental data (EFSA SC, 2005). At that time, 1057 
the conclusion was in the context of data carcinogenicity studies in experimental animals. Further 1058 
evaluation of the BMR for quantal data in a more general context was provided in the previous EFSA SC 1059 
guidance on benchmark dose modelling, which noted that various studies estimated that the median of 1060 
the upper bounds of extra risk at the NOAEL was close to 10%, suggesting that the BMDL 10 might in 1061 
many cases be appropriate (Allen at al., 1994; Fowles et al., 1999; Sand et al., 2011).  1062 

Any decision to deviate from this default should be explained and documented. 1063 

 1064 

Continuous data 1065 

For continuous data, the BMR should reflect the dose where an effect becomes adverse and, therefore, 1066 
depends on the type of endpoint selected. Whether or not various effects occur at similar doses might 1067 
modulate the overall adversity associated with a BMD for a particular effect (Sand, 2021), and may thus 1068 
potentially be relevant to consider in the process of selecting the BMR (for the critical effect). Ideally, 1069 
the BMR is set numerically so that it reflects the onset of a human-relevant adverse effect, meaning 1070 
that a response above the BMR is considered adverse.  When choosing a BMR for continuous data, EFSA 1071 
recommends a tiered approach:  1072 

Tier 1: consider whether a biologically relevant BMR is already established for the endpoint considered. 1073 
Discussion, including challenges and guiding information, related to the derivation of such BMR values 1074 
can be found in publications of Dekkers, de Heer & Rennen (2001) and WHO (2020).  1075 

Tier 2: in the absence of an already established BMR, experts should consider whether it is possible to 1076 
define quantitatively “biologically relevant” to inform the selection of a BMR for the endpoint considered. 1077 
The BMR may be defined using any of the methods that are available in the literature (e.g. Expert 1078 
Knowledge Elicitation), taking biological relevance into account. This tier assumes that a level of 1079 
adversity can be identified, even though the minimal degree of adversity may not be known. Thus, 1080 
biologically relevant BMRs may also be represented by a range rather than by a point.   1081 

If it is not possible to provide an argument for a specific biologically relevant BMR (or range of 1082 
biologically relevant BMRs) for the endpoint considered, this endpoint should not be used to establish a 1083 
HBGV. In the absence of endpoints with biologically relevant BMRs, the full set of doses used in the 1084 
experiment could still be used in a sensitivity analysis to investigate the probability that, for several BMR 1085 
chosen a priori, the BMD value associated to them would be below or above the doses tested. This 1086 
information could then be further considered in calculation of a range of MOEs. Another possibility could 1087 
be to use each of the dose tested and calculate the fold change compared to the background response, 1088 
and then use these fold changes as BMRs to estimate the BMD distribution. This would aid defining the 1089 
uncertainty associated to each BMD distribution, which in turn would provide insights on the information 1090 
contained in the dose-response fitted. 1091 

 

2.6.3. Data suitability to estimate the BMD using dose-response modelling  1092 

Using dose-response models for estimating the BMD and constructing its credible interval ensures an 1093 
efficient use of all doses tested in the experiment. It is known that the selection of the doses when 1094 
designing the experiment, is essential for the optimum retrieval of information regarding the BMD from 1095 
the experimental outcome. In order to evaluate whether the data at hand (the doses used and the 1096 
responses observed in the study) contain sufficient information to characterize the dose-response curve 1097 
and at the same time enough information on the low dose range to estimate the BMD and its credible 1098 
interval, the following procedure is proposed: 1099 
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1. Consider all pairwise comparisons between dose groups tested. 1100 

2. Use a one-sided hypothesis testing procedure for each pairwise comparison to account for 1101 
monotonicity. The test to use for each pairwise comparison should account for: 1102 

- Potentially different variances between dose groups, 1103 

- Potentially different number of observations between dose groups. 1104 

3. Select only significant differences: 1105 

- When at least 3 groups of responses are found to be significantly different from each 1106 
other (see Figure 3.1 as an example illustrating this for increasing responses), the data 1107 
is expected to provide enough information to estimate with a certain level of reliability 1108 
a dose-response curve (from the pairwise comparison we have at least three groups of 1109 
responses: one related to the control group (green circle), the maximum response 1110 
group (blue circle) and a third group (red circle) for which the responses are in between 1111 
these two groups). In this case it is expected that the study contains enough 1112 
information to characterize the dose-response relationship and it might contain enough 1113 
information as well about the parameter of interest, the BMD. The data is said to be 1114 
suitable for modelling and estimation of BMD. 1115 

 1116 

Figure 3.1: Representation of a study design that would have at least three groups of 1117 
responses statistically significantly different 1118 

 1119 

- In case of only two groups of responses are found to be significantly different, then we 1120 
can say that the data does not provide enough information to describe accurately the 1121 
dose-response relationship and two situations could be encountered: 1122 

i. If the lowest/largest (increasing or decreasing relationship) response group 1123 
contain only the control (see green circle in Figure 3.2 as an example illustrating 1124 
this for increasing responses), the study might have enough information to 1125 
define a dose-response curve, but it is expected that the study does not contain 1126 
enough information for BMD estimation, in general it is expected to produce 1127 
small BMDL values as not enough small doses have been tested in the 1128 
experiment conducted, and the BMD will certainly be estimated to be below the 1129 
first dose tested and wide confidence interval. Although the data could be 1130 
modelled, the available information might not be sufficient for 1131 
estimating the BMD. 1132 
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 1133 

Figure 3.2: Representation of a study design that would have only two 1134 
groups of responses statistically significantly different, where the control 1135 
group is the only one having a different response to the rest of the doses. 1136 

 1137 

ii. If the lowest (largest) increasing (decreasing) relationship response groups 1138 
contain not only the control, but also other dose groups (see green circle Figure 1139 
3.3 as an example illustrating this for increasing responses), the study might 1140 
have enough information to estimate reliably the dose-response curve at low 1141 
dose levels, and it is expected that the study does contain enough information 1142 
for BMD estimation (meaning that the lower bound of the credible interval is 1143 
expected to be close to the estimated BMD) as enough low dose responses are 1144 
observed. The data can be modelled, and estimation of BMD would 1145 
produce BMDL values that can be considered suitable to identify a 1146 
reference point. 1147 

 1148 

Figure 3.3: Representation of a study design that would have only two 1149 
groups of responses statistically significantly different, where the control is 1150 
not the only one having a different response to the highest response 1151 
observed. 1152 
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 1153 
The generic examples here presented to illustrate the process to assess data suitability to estimate the 1154 
BMD are used to simulate data following the principles described in Figures 3.1, 3.2 and 3.3. The results 1155 
of the dose-response models are presented in Appendix C – and it is clearly highlighted that for data 1156 
presenting configurations as shown in Figures 3.1 and 3.3, the estimation of BMD can be done with 1157 
reliable precision as the data contain enough information to be able to build the dose-response and as 1158 
well of enough low doses to increase BMD estimation precision. For the cases in which all doses tested 1159 
provide information about the maximum response the modeling does not provide reliable estimation 1160 
(low estimation precision), only when informative priors can be considered, the Bayesian BMD model 1161 
averaging paradigm provide more reliable estimates, with the drawback that could also bias the 1162 
estimation if the priors are set to be in the region not containing the true BMD. 1163 

 

High dose impact 1164 

In some instances, the shape of the dose response relationship for one endpoint is affected by a different 1165 
endpoint. For example, in the carcinogenicity studies of the pyrrolizidine alkaloids, riddelliine and 1166 
lasocarpine, there was a dose-related decrease in survival, particularly in the lasiocarpine study. All 1167 
female rats dosed with the highest dose of lasiocarpine had died by week 69. The number of tumours 1168 
in the high dose group was lower than in the low and mid-dose groups presumably due to the shorter 1169 
duration of dosing. The CONTAM Panel noted that the BMD calculations indicated a low confidence in 1170 
the results, and concluded that the high mortality rate impaired the dose response analysis (EFSA 1171 
CONTAM Panel, 2011). Since parameter c relates to the maximum response, limitations on the high 1172 
dose might have an impact on the BMD and BMDL. Where high dose data are available for the effect of 1173 
interest, but they are clearly influenced by another type of effect or mode of action, then it may be 1174 
justifiable (on biological basis) to exclude the high dose data. If there is no indication of an overlying 1175 
mode of action, then any deviation from the dose response relationship could be related to variability 1176 
and the data should not be excluded.  1177 

If the maximum response is not reached at the highest dose, then the assessor should consider whether 1178 
it is possible to use an informed prior on parameter c. However, this approach introduces uncertainty 1179 
with respect to the dose at which the maximum response would be reached.  1180 

Decision to exclude one (or several) point(s) from the dose response modelling should always be 1181 
justified and documented. 1182 

 

Absence of non-exposed controls 1183 

In strict terms, model fits are valid only for the range of data used to estimate the model. For new 1184 
substances this condition can be ensured by the presence of unexposed controls. In the case of naturally 1185 
occurring substances or contaminants, the condition of unexposed controls may not always be met and 1186 
the estimated value for the background response parameter may become very uncertain. This is of 1187 
particular concern for observational studies in humans where exposure conditions are not controlled. 1188 
This may equally apply to animal studies depending on how difficult it is to eliminate or minimize the 1189 
presence of the substance under consideration from the experimental setting. In general, the greater 1190 
the difference between the zero dose and exposure among controls the higher the uncertainty. If the 1191 
dose response-function has become asymptotic at the lower dose range the uncertainty associated with 1192 
extrapolation is generally small. However, in all other cases extrapolation to zero dose becomes more 1193 
uncertain, depending on the steepness of the dose response at lower doses. In cases where this has 1194 
occurred, such studies have often been referred to as uncertain or even poorly conducted despite being 1195 
replicated in an independent setting. It is however important to distinguish between experimental 1196 
uncertainty and model uncertainty.   1197 

To address the uncertainty that may arise due to extrapolation towards zero below the observed 1198 
exposure range some assumptions may be needed for dose response curves that are non-asymptotic. 1199 
One way to address this uncertainty is to make assumptions on the expected value of the outcome 1200 
under consideration at zero exposure. The variability in the lower dose groups may be used as proxy 1201 
for the zero dose in such cases. Based on other experiments (e.g. variation in historical controls), one 1202 
can constrain the model fit with plausible values for the background response parameter a observed in 1203 
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different settings. Despite associated uncertainty, such assumptions are often more credible than 1204 
derived values for the background response from BMD modelling that fall well outside biological variation 1205 
or values that have not been associated with risk in other studies.   1206 

Another practical example would be modelling of dose response data for nutrients to establish HBGVs. 1207 
In this case zero exposure does not exist and regardless of the outcome under consideration both high 1208 
and low exposure is at the extremes associated with increased risk of adversity. In the special case of 1209 
nutrients where a certain exposure level is required to remain healthy, one would need to use a 1210 
“background” response value around a pre-defined exposure level. Further experience in benchmark 1211 
dose modelling in the area of nutrition is required before guidance can be developed. It may also occur 1212 
due to model uncertainty that the BMDL falls below the physiological requirements simply because the 1213 
margin between physiological needs and toxicity is smaller than the combined experimental and model 1214 
uncertainty. Such a situation requires special modelling considerations, should the BMD approach be 1215 
applied.   1216 

To date, few practical examples of application of BMD modelling in the absence of non-exposed controls 1217 
exist. The more widespread use of the BMD methodology may highlight the need to update this guidance 1218 
in this respect. 1219 

2.6.4. Consideration of prior information for the endpoint(s) considered 1220 

Two types of prior distributions are used: 1221 

• PERT distributions for the parameters: background and maximum response, and the BMD 1222 
(Johnson et al., 1995). 1223 

• Normal distributions for the “technical” parameters: transformations of the parameters  1224 

The distinction between both types of prior distributions for both type of parameters is based on their 1225 
different role and usage: 1226 

• Uninformative (the default) and informative (as recommended option) priors can be assigned 1227 
to the natural parameters. 1228 

• No prior information can be assigned to the technical parameters 1229 

o The parameter d, which is acting differently in the different models and has direct link 1230 
to any natural characteristic of the endpoint. Moreover, the presence of this fourth 1231 
parameter enhances the flexibility of each of the models, but at the cost of 1232 
computational stability. For that reason, a particular normal prior distribution is assigned 1233 
to this parameter (or a transformed parameter, such as log(d)) in order to technically 1234 
stabilize the fitting of the model.  1235 

o The variance parameter 𝜎2 depends on characteristics of the endpoint and of the 1236 
experiment. Across all models the same uninformative normal prior is attached to this 1237 
variance parameter (on the log scale). 1238 

 1239 

The models proposed are built based on four parameters, which implies that to apply them without 1240 
considering informative priors for the parameters, at least 4 doses including the control would be 1241 
needed. In case that the study provides information for two active doses and a control, informative 1242 
priors would be needed for some of the parameters in the model to make the model identifiable. 1243 

 1244 

This section focuses on the parameters background, maximum response and BMD, and the use of the 1245 
PERT distribution. The PERT distribution can be characterised by the minimum, mode, maximum, and 1246 
a shape parameter. The smaller the shape parameter the less informative the distribution is around its 1247 
mode. Figure 4 shows the density of three PERT differences, all with minimum 0, maximum 20 (red 1248 
vertical lines) and mode 5, but with different shape parameter (4 for solid, 1 for dashed, and 0 for 1249 
dotted line).  For the uninformative version of the prior, the 4 parameters get default values ensuring a 1250 
wide range and shape parameter 0 (implying the mode is not relevant).  For the informative version 1251 
any and ideally all four parameters of the PERT distribution get a value based on a particular source 1252 
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(other historical data, literature, expert judgement). The shape parameter is the most difficult to specify; 1253 
It can range on a continuous scale, but the user will be offered the possibility to choose between the 1254 
values illustrated in Figure 4: shape value 0 reflecting that there is no knowledge about the mode, shape 1255 
value 1 reflecting that there is a mode but its value is uncertain, and shape value 4 reflecting that the 1256 
particular mode is really the most likely value. 1257 

 1258 
Figure 4: PERT densities with minimum=0, mode=5, maximum=20 (vertical red lines) and shape  1259 

varying from 0 (dotted line), 1 (dashed line) to 4 (solid line).  1260 
 1261 

The degree of informativeness of the PERT distribution, for a fixed mode, can be governed by adapting 1262 
the minimum, the maximum and the shape parameter; the degree diminishes with choosing a smaller 1263 
minimum, a higher maximum or a smaller shape parameter. In Appendix C – Example generated based 1264 
on Figure 3.2 the role of priors is explored. The data analysed contain scarce information on how the 1265 
response depends on the dose to move from the response at the control group to the maximum 1266 
response trigger by the experimental dose used. The model results considering uninformative priors 1267 
provide uncertain estimates of the BMD (ratio between BMDU and BMDL larger than 70, and for the 1268 
Laplace approximation very large values) with lower bounds that in general are very close to the control 1269 
group. Then several informative priors were considered, first restricting the range in which the BMD 1270 
should be and later including information on where the most likely value would be. The results clearly 1271 
indicate gaining precision on BMD estimation, but as well that it should be used with caution, since a 1272 
misspecification of the location of the BMD when using informative priors might induce bias in the 1273 
estimation of the BMD. 1274 

 

2.6.5. Using Bayesian model averaging to estimate the BMD and calculate its 1275 
credible interval  1276 

In Appendix C – The Body Weight Example in the 2017 EFSA Guidance Update, and Appendix D – 1277 
Thyroid epithelial cell vacuolisation data in the 2017 EFSA Guidance Update, the results of Bayesian 1278 
model averaging for previously analysed continuous and quantal data are presented. The results 1279 
obtained are compared to the previously reported results considering the frequentist approach provided 1280 
by PROAST. The resulting credible interval for the Bayesian model averaging produced similar results 1281 
to those obtained using a frequentist paradigm. For the continuous example the results obtained 1282 
considering both procedures are the same, while for quantal data, a slightly more precise estimate of 1283 
the BMD is obtained when Bayesian model averaging is used, especially if the estimation is done using 1284 
Bridge sampling. 1285 

The BMDL as RP and alternative solutions 1286 
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Although a given dataset was considered suitable for/worth modelling during the problem formulation 1287 
step (see Section 2.6.3), in some instances the outcome of the Bayesian model averaging will result in 1288 
a BMD credible interval considered as too broad (too much uncertainty around the most likely BMD) for 1289 
the purpose of the risk assessment. Advice to judge the modelling outcome has been given manifold in 1290 
statistical, toxicological and regulatory literature since the beginning of the use of the BMD approach 1291 
for risk assessment, see e.g. Davis et al. (2011) or Wignall et al. (2014); see also documents published 1292 
by regulatory agencies, in particular US EPA (2020) from August 19, 2020.  1293 

In most cases, the uncertainty of the BMD estimation has been characterized by the BMDU/BMDL ratio 1294 
or by the ratio between the estimated BMD (the median of the posterior distribution of the BMD in 1295 
Bayesian model averaging) and the BMDL. These ratios were suggested by US EPA to judge the 1296 
appropriateness of models when the BMD/BMDLs differ between models, see also Haber et al. (2018). 1297 
Although this difference is no more an issue in model averaging, the following set of criteria, based on 1298 
those proposed by US EPA to judge the width of the BMD credible interval should be considered by the 1299 
risk assessor. 1300 

Alternatives to the BMDL as a reference point, as described below, are recommended when: 1301 

• None of the candidate models fit the data sufficiently well (see section 2.5.3) 1302 

• BMD/BMDL > 20, or 1303 

• The BMD is 10 times lower than the lowest non-zero dose7, or 1304 

• BMDU/BMDL > 50 1305 

It should be noted that the above qualitative categorization depends on several cut-off values proposed 1306 
by US EPA as “default logic assumptions”). Although plausible, they lack a theoretical statistical basis 1307 
and they have so far not been tested empirically, e.g. in systematic reviews of risk assessment practice. 1308 
Developed for single model fitting, their suitability for judging a BMD credible interval obtained with 1309 
model averaging should be further evaluated. As such, the above criteria should be used as “indicators” 1310 
on when the outcome of the modelling requires Experts consideration on the appropriateness of using 1311 
the BMDL as reference point. The cut-off values for these criteria may be reconsidered after further 1312 
experience with their use has been accumulated. 1313 

Post-hoc modification of some parameters of the modelling (e.g. increasing the BMR, use of informative 1314 
priors for some of the model parameters) as possible solutions to reduce the uncertainty around the 1315 
BMD and obtain a more suitable BMDL are not recommended. In case the risk assessor decides not to 1316 
use the BMDL as RP (such decision should be explained and documented), two alternative solutions are 1317 
proposed: 1318 

The first preferred option is making use of the probability distribution of the BMD resulting from the 1319 
Bayesian model averaging. This probability distribution can be used to compare the most likely BMD 1320 
with the various experimental doses tested. Examples of cases where such an approach would be 1321 
appropriate is when the most likely BMD is lower than the N(L)OAEL. If the most likely BMD is higher 1322 
than the N(L)OAEL, the risk assessor may consider to use the N(L)OAEL as a more conservative RP. 1323 
Obviously, the previously mentioned criteria that the most likely BMD should not be lower than 10 times 1324 
the lowest non-zero dose still apply. The advantage of this approach is the quantification of the 1325 
uncertainty around the decision made to use the most likely BMD as RP.  1326 

If the use of the most likely BMD is considered unreliable, the last alternative is to use a N(L)OAEL as 1327 
the Reference Point, despite the associated limitations (see Section 2.3.1). In view of these limitations, 1328 
caution should be used when applying the N(L)OAEL approach for the derivation of a RP, in particular 1329 
in cases where there are indications that the NOAEL may overestimate the true NAEL. Should the 1330 
decision be made to use the N(L)OAEL as a RP, the BMD credible interval should be communicated 1331 
together with the value selected for the RP. 1332 

Assessment of the overall Uncertainty characterisation 1333 

As described in the SC guidance on uncertainty analysis in scientific assessment (2018), all EFSA 1334 
scientific assessments must include consideration of uncertainties. As mentioned in section 2.3.3, the 1335 

 
7 If the BMD is lower than 10 times the lowest non-zero dose, the only possible alternative is using the N(L)OAEL see further down.  
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BMD approach allows for a quantitative characterisation of the uncertainty around the RP (represented 1336 
by the BMDL-BMDU credible interval and/or other quantiles of the BMD posterior distribution) for the 1337 
critical endpoint under consideration. The selection of the N(L)OAEL as reference point does not include 1338 
a characterisation of the uncertainty around the RP; still the uncertainty around the RP needs to be 1339 
taken into account when describing the overall uncertainty associated with the assessment.  1340 

The identified sources of uncertainty should be listed, and their overall impact on the assessment 1341 
conclusion characterised (EFSA 2018). The BMD credible interval will therefore be one of the factors to 1342 
be considered in the overall uncertainty analysis required by EFSA as part of the risk assessment. 1343 

 1344 

Determining the RP for a given substance 1345 

The procedure outlined in Figure 2 results in a final BMD credible interval for a given dose-response 1346 
dataset related to a specific endpoint. The BMD credible interval should be calculated for all datasets 1347 
considered relevant (the respective BMDL potentially leading to the RP), resulting in a set of credible 1348 
intervals indicating the uncertainty ranges around the true BMD for the endpoints considered. This set 1349 
of BMD credible intervals concisely reflects the information provided by the available data and provides 1350 
the starting point for the risk assessor to identify a RP. It is anticipated that the credible intervals 1351 
resulting from modelling different endpoints elicited by a given substance will sometimes overlap and 1352 
the width of these credible intervals might vary. This raises the question of which BMDL to select as the 1353 
RP. One way to proceed is to simply select the endpoint with the lowest BMDL and use that value as 1354 
the RP. However, this procedure may not be optimal in all cases, and the risk assessor might decide to 1355 
use a more holistic approach, where all relevant aspects are taken into account, such as the width of 1356 
the BMD credible intervals (rather than just the BMDLs), the biological meaning of the relevant 1357 
endpoints, and the consequences for the HBGV or the MOE. This process will differ from case to case, 1358 
requires expert judgement and it is the risk assessor’s responsibility to make a substantiated decision 1359 
on what BMDL will be used as the RP. The following aspects may be considered:  1360 

• If the HBGV is based on a BMDL with a wide credible interval, and is much higher than the 1361 
exposure estimate, or the MOE is much larger than the minimal value considered necessary, 1362 
then the high uncertainty in the RP has no consequence for the risk characterization. It should 1363 
be however kept in mind that an exposure estimate is not a fixed value (it may well change in 1364 
the future). 1365 

• In some cases, the selected RP may not be the lowest BMDL, for example when this lowest 1366 
BMDL concerns an effect that is also reflected by, or linked to other endpoints (e.g. liver necrosis 1367 
vs serum enzymes) that resulted in much smaller credible intervals but with higher BMDLs 1368 
(scenario I and II). In that case it might be argued that the true BMDs for those analogous 1369 
endpoints would probably be similar, but one of them resulted in a much wider credible interval 1370 
(e.g. due to large measurement errors).  1371 

• In case two endpoints are not related to each other, and their biological consequences differ, 1372 
the risk assessor may give preference to the endpoint considered to be more “severe” (e.g. 1373 
nephrotoxicity vs body weight), irrespective of the width of the credible interval (scenario III 1374 
and IV). The following is meant to illustrate the scenarios mentioned above: 1375 
 1376 

Endpoint A:        BMDL-A I---------------------------------------------I BMDU-A 1377 

Endpoint B:                     BMDL-B I---------------I BMDU-B 1378 

Dose:              ----------------------------------------------------------> 1379 
  1380 

Scenario Endpoint A Endpoint B Consider as RP  
I Serum enzymes   liver necrosis BMDL-B 

II Relative liver weight Body weight BMDL-B 

III Body weight Nephrotoxicity BMDL-B 

IV Serum enzymes Neurotoxicity  BMDL-B 

 1381 
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As stated above, it is the risk assessor’s responsibility to make a substantiated decision on what BMDL 1382 
will be used as the RP and the rationale for this decision needs to be documented. 1383 

 1384 

2.6.6. Reporting of the BMD analysis 1385 

The results of a BMD analysis should be reported in such a way that others are able to follow the 1386 
process.  1387 

In reporting a BMD analysis for a particular study, it is not necessary to provide information on all the 1388 
endpoints analysed but only for the critical one(s) in that study. It should be made clear in a narrative 1389 
why this (these) endpoint(s) was (were) selected. 1390 

The following information should be provided: 1391 

A. A summary table of the data for the endpoint(s) for which the BMD analysis is reported. For 1392 
quantal endpoints both the number of responding animals and the total number of animals 1393 
should be given for each dose level; for continuous endpoints the mean responses and the 1394 
associated SDs (or SEMs) and sample sizes should be given for each dose level. 1395 

B. The value of the BMR chosen, and the biologically-based rationale for such a choice 1396 

C. The software used, including version number 1397 

D. Settings and statistical assumptions in the model fitting procedure when they deviate from the 1398 
recommended defaults in this opinion, together with the rationale for doing so.  1399 

E. A table presenting the models used (preferably in the order of Tables 2 and 3), and the priors 1400 
used for the endpoint(s) considered; 1401 

F. The BMD estimate(s) and its/their BMDL-BMDU credible interval(s); values should be reported 1402 
with two significant figures.  1403 

G. Plots of the fitted models (see figure F.1).  1404 

H. Conclusion regarding the selected BMDL to be used as a RP. 1405 

 1406 

A template is annexed to ensure a standardised reporting of the above-mentioned information 1407 
(Appendix E). This template is automatically implemented in the EFSA Platform when retrieving the 1408 
results of the BMD analysis. 1409 

 1410 

3. Conclusions  1411 

This revised guidance takes account of the experience accumulated in BMD analysis over the last 1412 
thirteen years. 1413 

The SC confirms that the BMD approach is a scientifically more advanced method compared to the 1414 
NOAEL approach for identifying a RP, since it makes extended use of dose-response data and it provides 1415 
a quantification of the uncertainty in the estimated RP resulting from the statistical limitations in the 1416 
dose-response data. Using the BMD approach results in a more consistent RP, as a consequence of the 1417 
specified BMR. Establishing HBGVs based on the BMD approach can be expected to be as protective as 1418 
those based on the NOAEL approach, i.e. on average over a large number of risk assessments. 1419 
Therefore, the default values for uncertainty factors currently applied are equally applicable.  1420 

Bayesian model averaging is recommended as the preferred approach, as it brings the following main 1421 
advantages compared to the frequentist model averaging approach recommended in the previous 1422 
version of this guidance: 1423 

• Possible use of existing prior information (e.g. on background response) next to the information 1424 
provided by the dataset considered. Accumulation of knowledge over time for the endpoint 1425 
considered (the outcome of the BMD modelling for the endpoint can be used in the future as 1426 
prior information for a new BMD modelling of that same endpoint) 1427 
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• Bayesian model averaging allows a more flexible way to constrain model parameters by 1428 
including weakly informative priors 1429 

• Probabilistic interpretation of the results of the BMD analysis (credible interval). 1430 

• Computational efficiency improved compared to the frequentist model averaging using 1431 
bootstraps 1432 

The SC does not consider it necessary to repeat all previous risk assessments that used the 2009 or 1433 
2017 version of the BMD guidance, given the modifications proposed in the updated version of the 1434 
guidance. The BMD approaches (frequentist or Bayesian if no informative priors are used), as well as 1435 
the NOAEL approach, will result in comparable RPs. However, in individual cases where prior information 1436 
is available for the critical endpoint, the resulting RP may differ substantially (e.g. by one order of 1437 
magnitude) between the approaches. If a possible risk for human/animal health has been identified, 1438 
e.g. when the estimated exposure to the compound was evaluated to be close (e.g. within one order of 1439 
magnitude) to the HBGV (and similarly for the MOE), then a re-evaluation might be considered. In such 1440 
cases, the BMD approach as described in this guidance should be applied. 1441 

The BMD approach is applicable to all chemicals in food, independently of their category or origin, e.g. 1442 
pesticides, additives or contaminants, for identifying RPs to establish HBGVs or to calculate MOEs. The 1443 
BMD approach can also be used for dose response assessment of epidemiological data, although it is 1444 
not addressed in this guidance document and will be subject to a separate guidance of the EFSA SC.  1445 

 1446 

4. Recommendations: 1447 

• The SC strongly recommends that the BMD approach, and more specifically Bayesian model 1448 
averaging, is used for identifying RPs for establishing HBGVs and for calculating MOEs. The 1449 
application of this guidance is mandatory for EFSA Panels and Units;  1450 

• The SC recommends that training in dose-response modelling and the use of BMD software 1451 
continues to be offered to experts in the Scientific Panels, working groups and EFSA Units.  1452 

• The SC reiterates that, given the frequent use of the BMD approach, current toxicity test 1453 
guidelines should be reconsidered with the purpose of optimising the study design for the 1454 
application of the BMD approach to identify a RP for establishing the HBGV, e.g. increase the 1455 
number of dose levels without changing the total number of animals used in the experiment. 1456 
The models proposed are built based on four parameters, which implies that to apply them 1457 
without considering informative priors for the parameters, at least 4 doses including the control 1458 
would be needed. In case that the study provides information for two active doses and a control, 1459 
informative priors would be needed for some of the parameters in the model to make the model 1460 
identifiable. 1461 

• The SC recommends maintaining the cross-cutting working group on BMD already established 1462 
to assist EFSA Units and Panels in applying this guidance. 1463 

• The SC reiterates the need for a specific guidance on the use of the BMD approach to analyse 1464 
epidemiological data.  1465 

 1466 

 1467 

 1468 

  1469 
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Abbreviations 1471 

 1472 

ADI Acceptable Daily Intake 

AIC Akaike Information Criterion 

BMD Benchmark Dose  

BMDL Lower confidence limit of the benchmark dose (equivalent term: CEDL) 

BMDU Upper confidence limit of the benchmark dose (equivalent term: CEDU) 

BMR Benchmark Response 

CEDL See BMDL 

CEDU See BMDU 

FAO Food and Agriculture Organization of the United Nations 

GUI Graphical User Interface 

HBGV Health-Based Guidance Value 

IPCS WHO International Programme on Chemical Safety 

JECFA Joint FAO/WHO Expert Committee on Food Additives 

JMPR Joint FAO/WHO Meeting on Pesticide Residues 

LOAEL Lowest-Observed-Adverse-Effect-Level 

MOE Margin Of Exposure 

NOAEL No-Observed-Adverse-Effect Level 

OECD Organisation for Economic Co-operation and Development 

PoD Point of Departure 

RP Reference Point 

SD Standard Deviation 

SEM Standard Error of the Mean 

TDI Tolerable Daily Intake 

TEF Toxic Equivalency Factor 

WHO World Health Organization 
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Appendix A – Upper bounds(a) of effect at NOAELs related to 10 substances evaluated previously by JMPR or EFSA. 
Substance  

(source +year) 
Endpoint Quantal data Continuous data 

  
Upper bound extra risk 

(%)(b) 

Upper bound  

percent change (%)(c) 

Thiodicarb (JMPR, 2000) splenic extramedullary haematopoiesis 21  

Carbaryl (JMPR, 2001) vascular tumours 15  

Spinosad (JMPR, 2001) thyroid epithelial cell vacuolation 2.7  

Flutolanil (JMPR, 2002) erythrocyte volume fraction  9 

 haemoglobin concentration  9.7 

 mean corpuscular haemoglobin  3 

 decreased cellular elements in the spleen  30  

Metalaxyl (JMPR, 2002) serum alkaline phosphatase activity   260 

 serum AST  100 

Cyprodinil (JMPR, 2003) spongiosis hepatis 5.1  

Famoxadone (JMPR, 2003) cataracts 29  

 microscopic lenticular degeneration 29  

Tributyltin (EFSA, 2004) testis weight  9.1 

Fumonisin (EFSA, 2005) nephrosis 8.6  

Deoxynivalenol (EFSA, 

2004) 
body weight  10.5 

Ethyl lauroyl arginate 

(EFSA, 2007) 
white blood cell counts  23 

(a) As calculated by the Scientific Committee. 1473 
(b) two-sided 90%-confidence interval for extra risk was calculated by the likelihood profile method. 1474 
(c) Two-sided 90%-confidence interval was calculated for the difference on log-scale, and then transformed back, resulting in the confidence interval for percent change (see Slob (2002) 1475 

for further statistical assumptions). 1476 

 1477 
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Appendix B – Statistical methodology 1478 

Interpretation of parameters in terms of characteristics of the median response 1479 

Table B.1 shows how each of the parameters 𝑎,𝑏, 𝑐, 𝑑 play their role in determining the median response 1480 
at dose 𝑥 for the models of Family 1. 1481 
 

Table B.1: Interpretation of parameters for Family 1: 𝒂 determines the median background response; 𝒄 

determines the maximum change in median response, 𝒃 and 𝒅 characterize the shape of change in median 
response with changing dose 𝒙. 

median 

response 

𝑦|𝑥 ~N(𝜇(𝑥),𝜎2) 𝑦|𝑥 ~LOGN(𝜇(𝑥), 𝜎2) 

Med(0) 𝑎 𝑒𝑎 

Med(∞) 𝑐 Med(0) Med(0)𝑐  

Med(𝑥) Med(0)+𝐹(𝑥;𝑏, 𝑑) (Med(∞)−Med(0)) Med(0)(Med(∞)−Med(0))𝐹(𝑥;𝑏,𝑑)  

 1482 

Table B.2 shows how each of the parameters 𝑎,𝑏, 𝑐, 𝑑 play their role in determining the median response 1483 
at dose 𝑥 for the increasing models of Family 2. 1484 
 

Table B.2: Interpretation of parameters for increasing models of Family 2: 𝒂 and 𝒄 determine the median 

background response and the maximum change in median response, 𝒃 and 𝒅 characterize the shape of change in 
median response with changing dose 𝒙. 

median 

response 

𝑦|𝑥 ~N(𝜇(𝑥),𝜎2) 𝑦|𝑥 ~LOGN(𝜇(𝑥), 𝜎2) 

Med(0) 𝑀𝑒𝑑(∞)𝐹(𝑎) 𝑀𝑒𝑑(∞)𝐹(𝑎) 

Med(∞) 𝑐 𝑒𝑐   

Med(𝑥) Med(∞)𝐹(𝐹−1(
Med(0)

Med(∞)
)+ 𝑏𝑥𝑑) Med(∞)

𝐹(𝐹−1(
log Med(0)

log Med(∞)
)+𝑏𝑥𝑑) 

 

 1485 

Table B.3 shows how each of the parameters 𝑎,𝑏, 𝑐, 𝑑 play their role in determining the median response 1486 
at dose 𝑥 for the decreasing models of Family 2. 1487 
 

Table B.3: Interpretation of parameters for decreasing models of Family 2: 𝒂 and 𝒄 determine the median 
background response and the maximum change in median response, 𝒃 and 𝒅 characterize the shape of change in 
median response with changing dose 𝒙. 

median 

response 

𝑦|𝑥 ~N(𝜇(𝑥),𝜎2) 𝑦|𝑥 ~LOGN(𝜇(𝑥), 𝜎2) 

Med(0) 𝑎 𝑒𝑎   

Med(∞) 𝑀𝑒𝑑(0)𝐹(𝑐) 𝑀𝑒𝑑(0)𝐹(𝑐)  
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Med(𝑥) 

{
 
 

 
 
𝑀𝑒𝑑(0)(1+ 𝐹(𝐹−1(

𝑀𝑒𝑑(∞)

𝑀𝑒𝑑(0)
)))−

𝑀𝑒𝑑(0)𝐹(𝐹−1(
𝑀𝑒𝑑(∞)

𝑀𝑒𝑑(0)
)+ 𝑏𝑥𝑑)

 

 

𝑀𝑒𝑑(0)
(1+𝐹(𝐹−1(

𝑀𝑒𝑑(∞)

𝑀𝑒𝑑(0)
)))

𝑀𝑒𝑑(0)
𝐹(𝐹−1(

𝑀𝑒𝑑(∞)

𝑀𝑒𝑑(0)
)+𝑏𝑥𝑑)

 

 1488 

Visualisation of the models 1489 

Considering the models 𝑦|𝑥 ~N(𝜇(𝑥), 𝜎2) for a normally distributed response and with increasing median 1490 
response 𝜇(𝑥) from Family 1a, Figure 1 shows four panels with graphs of 𝜇(𝑥)  1491 

• for the exponential model (solid curve) and the Hill model (dashed curve), 1492 

• with always 𝑎 = 10 and 𝑐 = 2, implying a background response of 10 and a maximum response 1493 
of 20, 1494 

• with two choices for 𝑏 = 0.25 or 2 and two choices for 𝑑 = 1 or 2; each panel referring to one 1495 
of the four combinations. 1496 

As shown in Figure B.1, even if all parameters 𝑎, 𝑏,𝑐, 𝑑 are identical, the functional form of the 1497 
exponential and the Hill model are different, as are the corresponding BMD values corresponding to the 1498 
same BMR.   1499 

 1500 

Figure B.1 1501 
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 1502 

Figure B.2 1503 

Figure B.2 provides some further insights in the exponential and the Hill model after reparameterization 1504 
in terms of the parameters 𝑎, 𝐵𝑀𝐷,𝑐, 𝑑 (parameter 𝑏 interchanged with potency parameter 𝐵𝑀𝐷). 1505 
Again, for all models, 𝑎 = 10 and 𝑐 = 2. The BMR was chosen to be 0.05, so that the BMD corresponds 1506 
to a response of 10.5 (5% above the background response of 10). For the black curves BMD=25 and 1507 
for the dark red curves BMD=50. All solid curves refer to the exponential model, and the dashed ones 1508 
to the Hill model. For each choice of the BMD, two choices  𝑑 = 1 𝑜𝑟 2 were considered. Figure B.2 1509 
shows again the difference between the exponential and the Hill model with identical parameters  1510 
𝑎, 𝐵𝑀𝐷,𝑐,𝑑, and the impact of changing only parameter 𝑑. 1511 

Figure B.3 depicts the dose response curves for all members of Family 1a, 1b and 2, with identical 1512 

values for the background response, maximum response and the BMD, and all with the fourth 1513 

parameter 𝑑=2.  The precise parameter values are: 1514 

• Family 1a & b:  a=10, c=2, BMD=50, 𝑑 = 2 1515 

• Family 2:  a=0, c=20, BMD=50, 𝑑 = 2 1516 

Parameters a and c are linked to background and maximum response in a different way, and parameter 1517 

d is playing its own role in each model (see Figure B.2).  The corresponding values for the parameter b 1518 

are: 1519 

                        a BMD  c d            b 1520 
 Exponential           10  50  2 2     0.000021 1521 
 Inverse exponential   10  50  2 2  7489.330684 1522 
 Hill                  10  50  2 2 47500.000000 1523 
 Log-normal            10  50  2 2     0.000077 1524 
 Gamma                 10  50  2 2     0.007084 1525 
 Quadratic exponential 10  50  2 2     0.000134 1526 
 Probit                 0  50 20 2     0.000025 1527 
 Logit                  0  50 20 2     0.000040 1528 
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Figure B.4 provides further insight in the comparison of the different models.  Supposing “perfect” 1529 
data generated by the exponential model with a=10, c=2, BMD=50, 𝑑 = 2, with a very dense design of 1530 
dose levels according to a grid [0, max dose] in steps of 0.01, and with no noise (normal distribution 1531 
with variance equal to 0.  All other models are fitted to those “perfect exponential data”, shown in 1532 
Figure B.4 by the green solid curve.  These other models were informed with a perfect prior (exact 1533 
correct center, and variance equal to 0) on the parameters a, c, BMD, and only the parameter 𝑑 is 1534 
optimized to approximate the exponential model as close as possible, but optimization is depending 1535 
on the choice of the maximum dose in the design. These choices 100, 250, 500 and 10000 correspond 1536 
to the four panels of Figure B.4.  The four panels show that the other models deviate more from the 1537 
exponential model with increasing maximum dose.  This shows the impact of the maximum dose or 1538 
the dose range. The higher the maximum dose, the more the different models will deviate, the more 1539 
likely the correct model gets the higher weights for model averaging, and the more accurately the 1540 
BMD(L/U) can be determined.   1541 

 1542 

 1543 

Figure B.3 1544 

 1545 
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 1546 

Figure B.4 1547 

 1548 

The values of the parameter 𝑑 bringing a particular model as close as possible to the exponential 1549 

model over the range [0, max dose] are given by:  1550 

                     max dose  a BMD c          d 1551 
Exponential                100 10  50 2   2.000000 1552 
Inverse exponential        100 10  50 2   0.784360 1553 
Hill                       100 10  50 2   2.098259 1554 
Log-normal                 100 10  50 2   1.051192 1555 
Gamma                      100 10  50 2   2.364008 1556 
Quadratic exponential      100 10  50 2 -25.179574 1557 
Probit                     100 20  50 0   1.914032 1558 
Logit                      100 20  50 0   1.916656 1559 
                      max dose  a BMD c           d 1560 
Exponential                250 10  50 2    2.000000 1561 
Inverse exponential        250 10  50 2    1.125619 1562 
Hill                       250 10  50 2    2.286339 1563 
Log-normal                 250 10  50 2    1.275715 1564 
Gamma                      250 10  50 2    2.616310 1565 
Quadratic exponential      250 10  50 2 -198.000000 1566 
Probit                     250 20  50 0    1.808274 1567 
Logit                      250 20  50 0    1.830456 1568 
                      max dose  a BMD c           d 1569 
Exponential                500 10  50 2    2.000000 1570 
Inverse exponential        500 10  50 2    1.397181 1571 
Hill                       500 10  50 2    2.464058 1572 
Log-normal                 500 10  50 2    1.404980 1573 
Gamma                      500 10  50 2    2.753478 1574 
Quadratic exponential      500 10  50 2 -198.000000 1575 
Probit                     500 20  50 0    1.766660 1576 
Logit                      500 20  50 0    1.805983 1577 
                      max dose  a BMD c           d 1578 
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Exponential              10000 10  50 2    2.000000 1579 
Inverse exponential      10000 10  50 2    1.516266 1580 
Hill                     10000 10  50 2    2.501481 1581 
Log-normal               10000 10  50 2    1.421107 1582 
Gamma                    10000 10  50 2    2.758485 1583 
Quadratic exponential    10000 10  50 2 -198.000000 1584 
Probit                   10000 20  50 0    1.766652 1585 
Logit                    10000 20  50 0    1.805941   1586 
 1587 

This table show that, while the parameters  a, c, BMD  are fixed to make sure that background response, 1588 
maximum response and BMD are 10, 20, and 50 respectively, the value of the parameter d  that brings 1589 
the models closest to each other, varies across the different models, and depends on the experimental 1590 
dose range. 1591 

Addressing finally the question of how different or how similar are the median responses 𝜇(𝑥) and 𝑒𝜇(𝑥) 1592 
for a same endpoint, but assuming different distributions (normal and log-normal respectively); Figure 1593 
B.5 shows a matrix plot with, for all 8 models, the median responses 𝜇(𝑥) (type and colour according 1594 
to legend in right lower figure) and 𝑒𝜇(𝑥) (solid line in orange) overlaid, with 1595 

• All parameters a and c such that the 1596 

o background response equals 10; 1597 

o maximum response equals 20; 1598 

• The parameter b always such that BMD equals 50; 1599 

• The model-specific parameter d  such that 1600 

o the models 𝜇(𝑥) for the normal case 𝑦|𝑥 ~N(𝜇(𝑥),𝜎2) are closest to the exponential 1601 
model with d=2 (left upper panel in Figure 5). 1602 

o the models 𝑒𝜇(𝑥) for the log-normal case 𝑦|𝑥 ~LOGN(𝜇(𝑥),𝜎2) are closest to their 1603 
normal counterpart 𝜇(𝑥). 1604 

Figure B.5 shows that, although the functional form of the two median responses 𝜇(𝑥) and 𝑒𝜇(𝑥) is 1605 
different, the resulting curves with the model-specific choices of d are essentially identical. The model-1606 
specific values of d are shown in the following table 1607 

                         d normal   d log-normal 1608 
Exponential              2.000000     1.893664 1609 
Inverse exponential      1.397181     1.504560 1610 
Hill                     2.464058     2.446903 1611 
Log-normal               1.404980     1.419891 1612 
Gamma                    2.753478     2.636557 1613 
Quadratic exponential -198.000000     2.448653 1614 
Probit                   1.766660     1.746467 1615 
Logit                    1.805983     1.818089 1616 
 1617 
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 1618 

Figure B.5 1619 

 1620 

Non-linear models 1621 

Nonlinear models need more attention during the implementation and estimation process, as compared 1622 
to linear models. Nonlinear model components typically complicate identifiability, reduce precision of 1623 
parameter estimation and lead to delayed convergence in iterative frequentist estimation procedures 1624 
and Bayesian MCMC sampling. Estimates of nonlinear parameters may be highly correlated with each 1625 
other, hindering simultaneous estimation of the parameters. It needs careful selection of starting values 1626 
and it might be required to use particular constraints in the frequentist setting and (weakly) informative 1627 
priors to stabilize the estimation process in a Bayesian application setting (see e.g. Chapter 10 in 1628 
Congdon, 2006).  1629 

All 16 candidate models for the mean function 𝜇(𝑥) in case of a continuous endpoint, and all 8 candidate 1630 
models for the probability function 𝜋(𝑥) are non-linear models. 1631 

 1632 

 1633 

  1634 
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Appendix C –  Data Examples: Continuous Endpoints 

 1635 
The appendix contains simulated examples based on the description in Section 2.6.3 to produce the 1636 
generic figures 3.1, 3.2 and 3.3 as well as the example analysed in the previous update of the guidance. 1637 

  1638 

Example generated based on Figure 3.1 1639 

The Data 1640 

This example concerns a simulated dataset, generated as a log-normal exponential models with 1641 
parameters a=2.015, b=1.5, c=1.344 and d=1.8, with dose levels 0,0.5,1,2,3 and a constant group size 1642 
of 20.  With a BMR=0.10, the true BMD equals 0.2287. 1643 

 1644 

The Bartlett test did reject the assumption of constant variance (normal distribution) with a p-value of 1645 
0.00; and did not the assumption of constant coefficient of variation (lognormal distribution), with p-1646 
values 0.46. These findings are to be expected as the data are generated according to the log-normal 1647 
distribution. 1648 

Results 1649 

PROAST. The EFSA BMD WEB app produce the following results of BMD modelling, using the 1650 
exponential, inverse exponential, Hill and lognormal model, considering model averaging based on 1000 1651 
bootstraps, by means of PROAST 70.0.  The BMR was selected at 10 %. For the exponential model the 1652 
BMD was estimated as 0.184 with BMDL=0.149 and BMDU=0.220; for the inverse exponential model 1653 
the BMD estimate was 0.103 with BMDL=0.085 and BMDU=0.121; for the Hill model the BMD estimate 1654 
was 0.241 with BMDL=0.203 and BMDU=0.277 and for the lognormal model the BMD estimate was 1655 
0.171 with BMDL=0.156 and BMDU=0.185. The model averaging results produced BMDL=0.172 and 1656 

BMDU=0.253. The ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
= 1.47, indicating the precision of the estimation of the BMD. 1657 

Using Laplace approximation. The model specific results (BML,BMD,BMDU,weight) are given in 1658 
Table C1. This table shows that i) the model specific BMDL’s vary from 0.11 to 0.29,  ii) all normal 1659 
models get weight 0.0000 (as to be expected), iii) the weights for the log-normal models vary from 0.10 1660 
to 0.17, with the highest weight 0.17 for the gamma model, and weight 0.11 for the true exponential 1661 
model, and iv) the model-specific CI’s do differ substantially; some of them are even not overlapping.   1662 

More information for the log-normal gamma model is depicted in Figure C1, with, for the background 1663 
and minimum median response, and the BMD, the flat uninformative PERT prior distributions (in blue) 1664 
and the final posterior distributions (in orange).  The fourth parameter d (left lower panel) gets a log-1665 
normal prior distribution (in blue), which is moderately informative with median at 1, in order to stabilize 1666 
the fitting computationally. Similar plots can be made for all other 15 models. 1667 

 1668 
 1669 
 1670 
 1671 
 1672 
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Table C1.  The 3.1 Example. Model specific values for BMDL, BMD, and BMDU; and the posterior weights of each 1673 
model (used for constructing the model average). 1674 

 1675 

 1676 
 1677 

 1678 

Figure C1: The 3.1 Example: prior and posterior densities (pink and orange coloured respectively) for the background response, 1679 
the maximum response, the BMD, and the parameter d, for the normal-quadratic exponential model. The vertical dashed lines in 1680 
the upper panels are the observed values for the background and maximum response. 1681 
 1682 

Using the weights of Table C1 (last column), the final model averaged BMD estimate equals 0.224, very 1683 
close to the true value of 0.2288, with 90% CI (0.154,0.329). Based on the Laplace approximation 1684 

results, the ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
 is slightly larger (2.1), the estimation of the BMD is slightly more uncertain. Figure 1685 

C2 shows, on the log-scale, the summary data together with the model-specific fitted dose-response 1686 
models, together with the CI (in green), the BMD estimate (red bullet point), and the posterior 1687 
distribution of the BMD, with the 90 % CI (in green) and the BMD estimate (red bullet point). Note how 1688 
the fitted models vary substantially in the range from dose 0 to the first dose level; also, the posterior 1689 
density of the BMD (in the lower right panel) shows some different peaks coming from mixing quite 1690 
different posterior densities of the individual models (see also the quite different CI’s in Table C1).  1691 
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Using MCMC. Using MCMC (hybrid and Bridge sampling), the results are quite similar. The final model 1692 
averaged BMD estimate, obtained with Bridge sampling, equals 0.238 with 90% CI (0.158,0.334).  The 1693 
estimates for the hybrid method are 0.223 for the point estimate, and (0.154,0,327) for the credible 1694 
interval. 1695 

 1696 

  

  

Figure C2. The 3.1 Example: based on the Laplace approximation: fitted normal dose-response models (upper left), fitted log-1697 
normal dose-response models (upper right), all fitted models (lower left), averaged model with posterior density of the BMD, with 1698 
90% confidence interval (in green) and BMD point estimate (in red). 1699 
 1700 

Example generated based on Figure 3.2 1701 

The Data 1702 

This example concerns a simulated dataset, generated as a log-normal exponential models with 1703 
parameters a=2.015, b=1.5, c=1.344 and d=1.8, with dose levels 0,3,6,8,10 and a constant group size 1704 
of 20.  With a BMR=0.10, the true BMD equals 0.2287. 1705 

 1706 

The Bartlett test did reject the assumption of constant variance (normal distribution) with a p-value of 1707 
0.00; and did not reject the assumption of constant coefficient of variation (lognormal distribution), with 1708 
p-values 0.46. These findings are to be expected as the data are generated according to the log-normal 1709 
distribution. 1710 
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Results 1711 

PROAST. The EFSA BMD WEB app produce the following results of BMD modelling, using the 1712 
exponential, inverse exponential, Hill and lognormal model, considering model averaging based on 1000 1713 
bootstraps, by means of PROAST 70.0.  The BMR was selected at 10 %. For the exponential model the 1714 
BMD was estimated as 0.04, not providing confidence limits; for the inverse exponential model the BMD 1715 
estimate was 0.000001, not providing confidence limits; for the Hill model the BMD estimate was 1716 
0.000001, not providing confidence limits and for the lognormal model the BMD estimate was 0.002, 1717 
not providing confidence limits. The model averaging results produced BMDL=0.000001 and 1718 

BMDU=0.018. The ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
= 18000, indicating the uncertainty range of the estimation of the BMD. 1719 

Using Laplace approximation.  Not unexpectedly, as the response at the first active dose is already 1720 
at its maximum and consequently the data contain no information about the dose-response pattern 1721 
from the background to the maximum response, the model individual and the model averaged intervals 1722 
are very wide and the BMDL are all essentially equal to or very close to 0. The model averaged BMD 1723 
estimate is 0.0033, and the CI is (0.0000,10).  The CI is the full experimental dose range, turning the 1724 
BMDL not useful. As the MCMC results are more precise and useful, we report more details about this 1725 
approach. 1726 

Using MCM. All models converged. The model specific results (BML,BMD,BMDU,weight) are given in 1727 
Table C2, showing a quite large difference between the Laplace and the MCMC based weights (see last 1728 
two columns), indicating instability and/or inappropriateness of the Laplace approximation. This table 1729 
shows that i) the model specific BMDL’s vary from 0.007 to 0.033, ii) all normal models get weight 1730 
0.0000 (as to be expected as the data are log-normal), iii) the weights for the log-normal models vary 1731 
from 0.07 to 0.19, with the highest weight 0.19 for the probit model, followed by the logit model and 1732 
the log-normal model (weight 0.17), and the true exponential model (weight 0.16), and iv) the model-1733 
specific CI’s do differ substantially and are quite wide.  In general, there is an overestimation of the true 1734 
BMD=0.229 (model-specific point estimates tend to be larger than this true value). 1735 

More information for the probit model is depicted in Figure C3, with, for the background and minimum 1736 
median response, and the BMD, the flat uninformative PERT prior distributions (in blue) and the final 1737 
posterior distributions (in orange).  The fourth parameter d (left lower panel) gets a log-normal prior 1738 
distribution (in blue), which is moderately informative with median at 1, in order to stabilize the fitting 1739 
computationally. Similar plots can be made for all other 15 models. 1740 

Table C2.  The X2 Example. Model specific values for BMDL, BMD, and BMDU; and the posterior weights of each 1741 
model (used for constructing the model average). 1742 

 1743 

 1744 
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 1745 
Figure C3: The 3.2 Example: prior and posterior densities (pink and orange coloured respectively) for the background response, 1746 
the maximum response, the BMD, and the parameter d, for the normal-quadratic exponential model. The vertical dashed lines in 1747 
the upper panels are the observed values for the background and maximum response. 1748 
 1749 

Using the weights of Table C2 (last column) and based on Bridge sampling, the final model averaged 1750 
BMD estimate equals 0.353, somewhat larger than the true value of 0.229, with 90% CI (0.021, 1.487). 1751 

The ratio of 
𝐵𝑀𝐷

𝐵𝑀𝐷𝐿
 is equal to 16.8 and for 

𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
 is around 74, indicating uncertainty in the estimation of 1752 

the BMD, but it is already improved in comparison to the results obtained when using the frequentist 1753 
approach (PROAST). Note that the BMDL is about 10 times smaller than the true BMD and that the CrI 1754 
covers almost have of the range (0,3) (3 being the first active dose). Figure C4 shows, on the log-scale, 1755 
the summary data together with the model-specific fitted dose-response models, together with the CrI 1756 
(in green), the BMD estimate (red bullet point), and the posterior distribution of the BMD, with the 90 1757 
% CrI (in green) and the BMD estimate (red bullet point). Note how the fitted models vary substantially 1758 
in the range from dose 0 to the first dose level, resulting in very different BMD estimates. As no data 1759 
are available in the range (0,3) (covering the range 0 to more than 10 times the true BMD), no model 1760 
can be informed by such data, and the different models adapt optimally to the available data on the 1761 
higher dose levels, with the consequence that the fits deviate a lot in the dose range of interest.  1762 

 1763 
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Figure C4. The 3.2 Example: based on the Bridge sampling: fitted normal dose-response models (upper left), fitted log-normal 1764 
dose-response models (upper right), all fitted models (lower left), averaged model with posterior density of the BMD, with 90% 1765 
confidence interval (in green) and BMD point estimate (in red). 1766 
 1767 
Using informative priors. We fit the same data again but with different informative priors on the 1768 
BMD. Remember that the true value of the BMD=0.229. The table below shows the impact of using 1769 

informative priors in comparison to uninformative ones. When no mode is used to inform the prior 1770 
distribution of the BMD, the estimation procedures does not improve the precision in estimation, being 1771 
very large if Laplace approximation is used and larger than 70 when Bridge sampling is used. It is clear 1772 

that if the range in which the BMD should be located is restricted and a most likely value is provided, 1773 
the estimation precision improves drastically with a ratio for Laplace approximation smaller than 20 for 1774 
Laplace and less than 10 for Bridge sampling. It is also worth noting that if the informative prior is 1775 

misspecified, then the resulting BMD estimation might be as well biased. 1776 
 1777 

Informative prior on BMD Laplace 
approximation 
BMD and CrI 

Bridge sampling 
BMD and CrI 

Uninformative prior  0.003  (0.000, 10) 0.229  (0.021, 1.487) 
Uniform PERT prior on (0,3) 0.000  (0.000, 10) 0.345  (0.020, 1.481) 
PERT prior on (0,3) with mode 1 0.552  (0.104, 1.952)   0.669  (0.151, 1.533) 
PERT prior on (0,0.5) with mode 0.2 0.166  (0.058, 0.488) 0.053  (0.173, 0.352) 
PERT prior on (0.199,0.259) with mode 0.229 0.228  (0.205, 0.254) 0.228  (0.210, 0.247) 
PERT prior on (0.109,0.169) with mode 0.139 0.138  (0.115, 0.165) 0.138  (0.120,0.157) 

 1778 
We observe that, for this dataset: 1779 

• The Laplace approximation acts poorly unless the BMD priors is informative enough. 1780 
• Bridge sampling outperforms the Laplace approximation, especially for less informative priors. 1781 

• The Bridge CrI’s are narrower than the Laplace CrI’s. 1782 
• An informative prior affects the BMDU more than the BMDL (reflecting the gain in accuracy). 1783 
• Flat informative priors have less effect than focused priors on the same range (as expected). 1784 

• A very informative incorrect prior affects the BMD adversely. 1785 
 1786 

Example generated based on Figure 3.3 1787 

The Data 1788 

This example concerns a simulated dataset, generated as a log-normal exponential models with 1789 
parameters a=2.015, b=1.5, c=1.344 and d=1.8, with dose levels 0,0.025,0.05,0.15,0.4 and a constant 1790 
group size of 20.  With a BMR=0.10, the true BMD equals 0.2287. 1791 
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 1792 

The Bartlett test did not reject the assumption of constant variance (normal distribution) with a p-value 1793 
of 0.25; and did not reject the assumption of constant coefficient of variation (lognormal distribution), 1794 
with p-values 0.46. 1795 

Results 1796 

PROAST. The EFSA BMD WEB app produce the following results of BMD modelling, using the 1797 
exponential, inverse exponential, Hill and lognormal model, considering model averaging based on 1000 1798 
bootstraps, by means of PROAST 70.0.  The BMR was selected at 10 %. For the exponential model the 1799 
BMD was estimated as 0.226 with BMDL=0.18 and BMDU=0.275; for the inverse exponential model the 1800 
BMD estimate was 0.223 with BMDL=0.182 and BMDU=0.265; for the Hill model the BMD estimate was 1801 
0.226 with BMDL=0.18 and BMDU=0.275 and for the lognormal model the BMD estimate was 0.225 1802 
with BMDL=0.181 and BMDU=0.269. The model averaging results produced BMDL=0.175 and 1803 

BMDU=0.272. The ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
= 1.55, indicating the precision of the estimation of the BMD. 1804 

Using Laplace approximation.  The model specific results (BML,BMD,BMDU,weight) are given in 1805 
Table 6, showing that i) the model specific BMDL’s vary from 0.170 to 0.182,  ii) the weights vary across 1806 
all 16 models, but with higher weights for the log-normal models iii) the highest weight is for the log-1807 
normal quadratic exponential model (0.19), and weights about 0.08 for all other log-normal models.  1808 
The normal models have weights about 0.02, except for the normal quadratic exponential model with 1809 
weight 0.05. 1810 

More information for the log-normal quadratic exponential model is depicted in Figure C5, with, for the 1811 
background and minimum median response, and the BMD, the flat uninformative PERT prior 1812 
distributions (in blue) and the final posterior distributions (in orange).  The fourth parameter d (left 1813 
lower panel) gets a log-normal prior distribution (in blue), which is moderately informative with median 1814 
at 1, in order to stabilize the fitting computationally. Similar plots can be made for all other 15 models. 1815 

1816 
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Table C3.  The 3.3 Example. Model specific values for BMDL, BMD, and BMDU; and the posterior weights 1817 
of each model (used for constructing the model average). 1818 

 1819 

 1820 
 1821 
 1822 

 1823 

Figure C5: The 3.3 Example: prior and posterior densities (pink and orange coloured respectively) for the background response, 1824 
the maximum response, the BMD, and the parameter d, for the normal-quadratic exponential model. The vertical dashed lines in 1825 
the upper panels are the observed values for the background and maximum response. 1826 
 1827 

Using the weights of Table C3 (last column), the final model averaged BMD estimate equals 0.217, quite 1828 
close to the true value of 0.229, with 90% CrI (0.176,0. 259). Note that this CrI includes the true value 1829 

0.229. Based on the Laplace approximation results, the ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
 is slightly smaller (1.47), the 1830 

estimation of the BMD is slightly more precise. Figure C6 shows, on the log-scale, the summary data 1831 
together with the model-specific fitted dose-response models, together with the CrI (in green), the BMD 1832 
estimate (red bullet point), and the posterior distribution of the BMD, with the 90 % CrI (in green) and 1833 
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the BMD estimate (red bullet point). Note how the fitted models vary substantially in the range from 1834 
dose 0 to the first dose level, resulting in very different BMD estimates.  1835 

 1836 

  

  

Figure C6. The 3.3 Example: based on the Bridge sampling: fitted normal dose-response models (upper left), fitted log-normal 1837 
dose-response models (upper right), all fitted models (lower left), averaged model with posterior density of the BMD, with 90% 1838 
confidence interval (in green) and BMD point estimate (in red). 1839 
 1840 

The Body Weight Example in the 2017 EFSA Guidance Update 1841 

The Data 1842 

See Example 1 in Section 2.5.9 of EFSA SC (2017). The data in this example relate to a 2-year study in 1843 
male mice. A dose-related decrease in body weight was observed. This endpoint is assumed to be the 1844 
critical effect and the BMR considered is 5%.   1845 

 1846 

The Bartlett test did not reject the assumption of constant variance (normal distribution) nor the 1847 
assumption of constant coefficient of variation (lognormal distribution), with p-values 0.76 and 0.59 1848 
respectively. 1849 

Results 1850 

PROAST. Using PROAST v. 61.6 with the default BMR of 5% and applying the Exponential and the Hill 1851 
model, the BMDL in EFSA SC (2017) was determined to be 0.20 mg/kg, with BMDU=0.41 mg/kg. The 1852 
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EFSA BMD WEB app produce the following results of BMD modelling, using the exponential, inverse 1853 
exponential, Hill and lognormal model, considering model averaging based on 1000 bootstraps, by 1854 
means of PROAST 70.0.  The BMR was selected at 5 %. For the exponential model the BMD was 1855 
estimated as 0.297 with BMDL=0.198 and BMDU=0.41; for the inverse exponential model the BMD 1856 
estimate was 0.316 with BMDL=0.219 and BMDU=0.422; for the Hill model the BMD estimate was 0.297 1857 
with BMDL=0.198 and BMDU=0.41 and for the lognormal model the BMD estimate was 0.308 with 1858 
BMDL=0.21 and BMDU=0.416. The model averaging results produced BMDL=0.216 and BMDU=0.419. 1859 

The ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
= 1.94, indicating the precision of the estimation of the BMD. 1860 

Here, all 16 models are used, with equal prior probabilities 1/16 and with uninformative priors on the 1861 
model parameters, again with BMR=5%. 1862 

Using Laplace approximation. The model specific results (BML,BMD,BMDU,weight) are given in 1863 
Table C4. 1864 

Table C4.  The Body Weight Example in the 2017 EFSA Guidance Update. Model specific values for BMDL, BMD, 1865 
and BMDU; and the posterior weights of each model (used for constructing the model average). 1866 

 1867 

 1868 

 1869 
Table C4 shows that i) the model specific BMDL’s vary from 0.205 to 0.282, ii) weights are quite evenly 1870 
distributed across all models, iii) the highest weights are assigned to the quadratic exponential models, 1871 
with weight 0.148 and 0.176 for the normal and log-normal version respectively   1872 

More information for the log-normal quadratic exponential model is depicted in Figure C7, with, for the 1873 
background and maximum median response (in this case a negative decreasing response), and the 1874 
BMD, the flat uninformative PERT prior distributions (in pink) and the final posterior distributions (in 1875 
orange).  Actually, the prior for the maximum response is weakly informative. Reason for that is that 1876 
the maximum response is not reached at the end of the experimental dose range (see Figure C8). The 1877 
prior for the maximum response is therefore centered at half of the observed mean response at the 1878 
highest dose (35.09/2=17.545), with a considerably large uncertainty range. As there is little or no 1879 
information in the data about this maximum response, the posterior density remains close to the pr ior 1880 
density (right upper panel of Figure C7). Finally, for the fourth parameter d (left lower panel), the log-1881 
normal prior distribution (in pink) is moderately informative with median at the value of 1, in order to 1882 
stabilize the fitting computationally. The orange posterior distribution is shifted somewhat to the left.  1883 
Similar plots can be made for all other 15 models. 1884 

 1885 
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 1886 

 1887 

Figure C7: The Body Weight Example in the 2017 EFSA Guidance Update: prior and posterior densities (blue and orange coloured 1888 
respectively) for the background response, the maximum response, the BMD, and the parameter d, for the log-normal quadratic 1889 
exponential model. The vertical dashed lines in the upper panels are the observed values for the background and maximum 1890 
response. 1891 
 1892 

Using the weights of Table C4 (last column), the final model averaged BMD estimate equals 0.308 with 1893 
90% CI (0.219,0.419). So, the BMDL=0.219 mg/kg, with BMDU=0.419 mg/kg, quite similar to the 1894 
results in EFSA SC (2017) and the same if we would have analysed it using the EFSA WEB app. 1895 

Figure C8 shows, on the log-scale, the summary data together with the model-specific fitted dose-1896 
response models, together with the CI (in green) and the BMD estimate (red bullet point). The lower 1897 
right panel shows the posterior density of the BMD. 1898 

Using MCMC. Using MCMC (hybrid and Bridge sampling), the results are very similar. The final model 1899 
averaged BMD estimate, obtained with Bridge sampling, equals 0.317 with 90% CI (0.224,0.423).  1900 

 1901 

  



 

 
www.efsa.europa.eu/publications 63 EFSA Journal xxxx;volume(issue):xxxx 

 

 

 
 

Figure C8. The Body Weight Example in the 2017 EFSA Guidance Update: based on the Laplace approximation, model-specific 1902 
fitted dose-response models, together with the CI (in green) and the BMD estimate (red bullet point). Upper left: normal models; 1903 
upper right: log-normal models; Lower left: all models; Lower right: model-averaged fitted dose-response model, together with  1904 
the posterior distribution of the BMD. 1905 
 1906 

  1907 
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Appendix D – Data Examples: Quantal Endpoints 

Thyroid epithelial cell vacuolisation data in the 2017 EFSA Guidance Update 1908 

The Data 1909 

This example relates to a 2-year study in rats, where three doses of a substance were administered to 1910 
the animals. Dose-related changes in thyroid epithelial cell vacuolisation were found, and these data 1911 
were used for a BMD analysis.  1912 

 1913 

Results 1914 

PROAST. Using PROAST v 62.3 together with the MADr-BMD program, as described in Wheeler and 1915 
Bailer (2008), using the default BMR of 10% extra risk, using all 8 models except the exponential model, 1916 
and using the bootstrap, the BMDL in EFSA SC (2017) was determined to be 1.5 mg/kg (a BMDU was 1917 
not calculated). Using the EFSA BMD WEB app (based on PROAST 70.0) the model average BMDL=1.65 1918 

and BMDU=5.86. The ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
=3.55, indicating the precision of the estimation of the BMD 1919 

Using Laplace approximation.  The model specific results (BML,BMD,BMDU,weight) are given in 1920 
Table D1, showing that i) the model specific BMDL’s vary from 0.808 to 2.588,  ii) the weights vary 1921 
substantially across all 8 models iii) the highest weight 0.65 is for the inverse exponential model, 1922 
followed by the Hill model with weight 0.14, and all other models with weights below 0.06. 1923 

More information for the inverse exponential model is depicted in Figure D1, for the background and 1924 
the BMD, the flat uninformative PERT prior distributions (in blue) and the final posterior distributions (in 1925 
orange).  The fourth parameter d (left lower panel) gets a log-normal prior distribution (in blue), which 1926 
is moderately informative with median at 1, in order to stabilize the fitting computationally. Similar plots 1927 
can be made for all other 7 models. 1928 

 1929 
  1930 



 

 
www.efsa.europa.eu/publications 65 EFSA Journal xxxx;volume(issue):xxxx 

 

 

Table D1. The thyroid epithelial cell vacuolisation data. Model specific values for BMDL, BMD, and BMDU; and the 1931 
posterior weights of each model (used for constructing the model average). 1932 

 1933 

 1934 
 1935 

 1936 

Figure D1: The thyroid epithelial cell vacuolisation data: prior and posterior densities (pink and orange coloured respectively) for 1937 
the background response, the BMD, and the parameter d, for the inverse exponential model. The vertical dashed line in the upper 1938 
right panel is the observed background proportion. 1939 
 1940 

Using the weights of Table D1 (last column), the final model averaged BMD estimate equals 3.567 with 1941 

90% CrI (1.832, 5.562). Based on the Laplace approximation results, the ratio 
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
 is slightly smaller 1942 

(3.04), the estimation of the BMD is slightly more precise. Although it can be said that these results are 1943 
quite close to the PROAST results. Figure D2 shows, on the log-scale, the summary data together with 1944 
the model-specific fitted dose-response models, together with the CrI (in green), the BMD estimate (red 1945 
bullet point), and the posterior distribution of the BMD, with the 90 % CrI (in green) and the BMD 1946 
estimate (red bullet point). Note how the fitted models vary substantially close the first active dose 1947 
level, resulting in quite different BMD estimates.  1948 

Using MCMC.  The results are quite similar, but the inverse exponential model receives an even higher 1949 
weight of 0.784, implying the averaged version to be pulled somewhat in the direction of the model 1950 
specific values for the inverse exponential. The averaged BMD estimate is 4.008 with CrI (2.180, 6.126), 1951 

achieving an even higher precision (
𝐵𝑀𝐷𝑈

𝐵𝑀𝐷𝐿
= 2.81). 1952 
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Figure D2. The thyroid epithelial cell vacuolisation data: based on Laplace: fitted normal dose-response models (left), averaged 1953 
model with posterior density of the BMD, with 90% confidence interval (in green) and BMD point estimate in red (right). 1954 
 1955 
 1956 

  1957 
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Appendix E – Template for reporting a BMD analysis 

A Data description 1958 

Brief general description of the data. This section should include a table summarizing the data. In case 1959 
that raw data is available, resulting in a too large table, summary statistics may be given instead8. For 1960 
quantal endpoints both the number of responding animals and the total number of animals should be 1961 
given for each dose level; for continuous endpoints either the individual responses or the mean 1962 
responses and the associated SDs (or SEMs) and sample sizes should be given for each dose level.  1963 

Table E.1:  Example of table for continuous dose-response data 1964 

Dose Endpoint mean SD N Covariates (gender) 

0 43.85 2.69 37 M 

0.1 43.51 2.86 35 M 

0.5 40.04 3.00 43 M 

1.1 35.09 2.56 42 M 

0 41.54 6.26 36 F 

0.1 38.71 4.73 42 F 

0.5 33.76 3.92 37 F 

1.1 28.55 2.08 38 F 

 1965 

In case that several control groups are reported in the publication or provided by the applicant, they 1966 
should all be presented in the table. How these will be handled in the analysis needs a case-by-case 1967 
consideration. 1968 

Table E.2:  Example of table for quantal dose-response data 1969 

Dose 
Number of animals with 

event of interest 
N Covariates (gender) 

0 2 50 M 

3 4 50 M 

12 32 49 M 

30 45 50 M 

0 6 50 F 

3 6 50 F 

12 34 50 F 

30 42 50 F 

 1970 

In case different endpoints are to be analysed, they should be described in different subsections, 1971 
containing information pertaining to each endpoint. 1972 

 1973 

The following steps apply for each endpoint considered. 1974 

 1975 

 
8 Note that, when the individual data were used in the original analysis, slightly different results may be obtained using the summary data 
in the analysis. 
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B Selection of the BMR 1976 

The value of the BMR used in the analysis. The rationale behind the choice made (the biological 1977 
relevance in the case of a continuous endpoint) should be described. 1978 
 1979 

C Software used 1980 

The software used, including version number should be reported. In case another non-publicly available 1981 
software was used, the script for the BMD analysis should be provided as an appendix. 1982 

 1983 

D Justification of any deviation from the procedure and assumptions 1984 

• In case another approach than Bayesian model averaging was used, the rationale and details for 1985 
deviating from the recommended approach should be provided. 1986 

• Assumptions made when deviating from the recommended defaults in this guidance document (e.g. 1987 
gamma distributional assumption instead of normal and log-normal, heteroscedasticity instead of 1988 
homoscedasticity).  1989 

• Other models than the recommended ones listed in Tables 2 and 3 of this guidance document that 1990 
were fitted should be listed, with the reasons to include them. 1991 

• Description of any deviation from the procedure described in the flow chart (Figure 2) to obtain the 1992 
final BMD credible interval. 1993 

 1994 

E Results 1995 

The results of the BMD analysis should contain: 1996 

• In case where individual data are available, the results of the distributional assumption test. 1997 

• Results of the Bartlett test (see Section 2.5.1) 1998 

• A table presenting the results of the models fitted, BMD, BMDL, BMDU and model weight (see 1999 
Table E.3.) 2000 

• Report whenever convergence issues were encountered  2001 

• Report whether none of the candidate models fit sufficiently well to the data (see Section 2.5.3).  2002 

Table E.3:  Result table for continuous/quantal data. 2003 

Model  BMDL   BMD   BMDU Model Weights 

Exponential (E4)     

Inverse Exponential (IE4)     

Hill (H4)     

Log-normal (LN4)     

Gamma (G4)  
    

Two-Stage (QE4)     

Probit (P4)     

Logit (L4)     

 2004 

 2005 
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F Plots of fitted models 2006 

Show the plot of the data with confidence intervals for the responses, together with the resulting models 2007 
as well as the model average fit (Figure E.1.).  2008 

 2009 

  

  

 2010 

Figure F.1:  Plot of the models from each model family in the case of continuous data (plots shown here are 2011 
  from Bayesian prototype package). 2012 
 2013 

 2014 
 2015 
 2016 

G Conclusions 2017 

This section should summarize the results for each endpoint (dataset) that was analysed and provide a 2018 
discussion of the rationale behind selecting the critical endpoint.  2019 

The BMD confidence interval of the critical endpoint (and the BMDL selected as RP) should be reported 2020 
and discussed. 2021 

 2022 




