

Output metadata		
Output category	Guidance	
Date endorsement	9 February 2022 at the 107 th Scientific Committee plenary meeting	
Date approved	/	
Author list	EFSA Scientific Committee, Simon John More, Vasileios Bampidis, Diane Benford, Claude Bragard, Thorhallur Ingi Halldorsson, Antonio F. Hernández-Jerez, Susanne Hougaard Bennekou, Kostas Koutsoumanis, Claude Lambré, Kyriaki Machera, Ewen Mullins, Søren Saxmose Nielsen, Dieter Schrenk, Dominique Turck, Maged Younes, Marc Aerts, Lutz Edler, Salomon Sand, Matthew Wright, Marco Binaglia, Bernard Bottex, Jose Cortiñas Abrahantes and Josef Schlatter	
DOI	xx.xxxx/j.efsa.2022.xxxx	
Requestor	EFSA	
Output number	ON-xxxx	
Question number(s)	EFSA-Q-2020-00137	
Correspondence	MESE@efsa.europa.eu	
Short title	Draft Guidance on BMD approach in risk assessment	
Panel members	Simon John More, Vasileios Bampidis, Diane Benford, Claude Bragard, Thorhallur Ingi Halldorsson, Antonio F. Hernández-Jerez, Susanne Hougaard Bennekou, Kostas Koutsoumanis, Claude Lambré, Kyriaki Machera, Ewen Mullins, Søren Saxmose Nielsen, Josef Schlatter, Dieter Schrenk, Dominique Turck, Maged Younes	
Copyright for non-EFSA content	1	
Acknowledgments	The Scientific Committee wishes to thank Maria Chiara Astuto and Hans Steinkellner for the support provided to this scientific output.	
Minority opinion	/	
Competing interests	/	
Waiver	1	
Note		
Legal notice		
Disclaimer		

Draft Guidance on the use of the Benchmark Dose approach in risk assessment

EFSA Scientific Committee, Simon John More, Vasileios Bampidis, Diane Benford, Claude
Bragard, Thorhallur Ingi Halldorsson, Antonio F. Hernández-Jerez, Susanne Hougaard
Bennekou, Kostas Koutsoumanis, Claude Lambré, Kyriaki Machera, Ewen Mullins, Søren
Saxmose Nielsen, Dieter Schrenk, Dominique Turck, Maged Younes, Marc Aerts, Lutz Edler,
Salomon Sand, Matthew Wright, Marco Binaglia, Bernard Bottex, Jose Cortiñas Abrahantes
and Josef Schlatter

10

11 Abstract

The Scientific Committee (SC) reconfirms that the benchmark dose (BMD) approach is a scientifically 12 more advanced method compared to the NOAEL approach for deriving a Reference Point (RP). The 13 major change compared to the previous SC guidance (EFSA, 2017) concerns the section 2.5, in which 14 15 a change from the frequentist to the Bayesian paradigm is recommended. In the former, uncertainty about the unknown parameters is measured by confidence and significance levels, interpreted and 16 17 calibrated under hypothetical repetition, while probability distributions are attached to the unknown parameters in the Bayesian approach, and the notion of probability is extended so that it reflects 18 19 uncertainty of knowledge. Model averaging is again recommended as the preferred method for estimating the BMD and calculating its credible interval. The set of default models to be used for BMD 20 analysis has been reviewed and amended so that there is now a single set of models for both quantal 21 22 and continuous data. The flow chart guiding the reader step-by-step when performing a BMD analysis 23 has also been updated, and a chapter comparing the frequentist to the Bayesian paradigm inserted. 24 Also, when using Bayesian BMD modelling, the lower bound (BMDL) is to be considered as potential RP, 25 and the upper bound (BMDU) is needed for establishing the BMDU/BMDL ratio reflecting the uncertainty 26 in the BMD estimate. This updated guidance does not call for a general re-evaluation of previous 27 assessments where the NOAEL approach or the BMD approach as described in the 2009 or 2017 SC guidance was used, in particular when the exposure is clearly smaller (e.g. more than one order of 28 29 magnitude) than the health-based guidance value. Finally, the SC firmly reiterates to reconsider test guidelines given the wide application of the BMD approach. 30

31 Keywords

32 Benchmark dose, BMD, BMDL, benchmark response, NOAEL, dose-response modelling, BMD software

33 Summary

Considering the need for transparent and scientifically justifiable approaches to be used when risks are assessed by the Scientific Committee (SC) and the Scientific Panels of EFSA, the SC was requested in 2005 by EFSA i) to assess the existing information on the utility of the benchmark dose (BMD) approach,

as an alternative to the traditionally used NOAEL approach, ii) to provide guidance on how to use the

BMD approach for analysing dose-response data from experimental animal studies, and iii) to look at

39 the possible application of this approach to data from observational epidemiological studies.

A guidance document on the use of the benchmark dose approach in risk assessment was published in 2009. In 2015, the SC reviewed the implementation of the BMD approach in EFSA's work, the experience gained with its application and the latest methodological developments in regulatory risk assessment, and concluded that an update of its guidance from 2009 was necessary. As a consequence, an updated guidance document was published in 2017. Most of the modifications made at the time concerned the section providing guidance on how to apply the BMD approach in practice. Model averaging was recommended as the preferred method for calculating the BMD confidence interval, while

47 acknowledging that the respective tools were still under development.

48 Following a workshop organised by EFSA in March 2017 to discuss commonalities and divergences in 49 the various approaches for BMD analysis worldwide, and the update of the Chapter 5 on dose response assessment of WHO/IPCS Environmental Health Criteria 240 (WHO, 2020), the Scientific Committee 50 51 decided to update again its guidance in order to align the content of the document with internationally agreed concepts related to benchmark dose analysis, and therefore harmonise further EFSA's approach 52 with those of its partners. The major change to the update of the SC Guidance of 2017 concerns the 53 54 Section 2.5, in which a change from the frequentist to the Bayesian paradigm is recommended. In the 55 former, uncertainty about the unknown parameters was measured by confidence and significance levels, interpreted and calibrated under hypothetical repetition, while probability distributions are attached to 56 57 the unknown parameters in the Bayesian approach, and the notion of probability is extended so that it reflects uncertainty of knowledge. Model averaging is again recommended as the preferred method for 58 59 calculating the BMD credible interval. The set of default models to be used for BMD analysis has been 60 reviewed and amended so that there is now a single set of models for both guantal and continuous data. The flow chart guiding the reader step-by-step when performing a BMD analysis has also been 61 updated, and a chapter comparing the frequentist to the Bayesian paradigm inserted. Also, when using 62 Bayesian BMD modelling, the potential Reference Point (RP) is provided by the lower bound (BMDL) of 63 64 the credible interval, and the upper bound (BMDU) is needed for establishing the BMDU/BMDL ratio, which reflects the uncertainty around the BMD estimate. 65

The SC reconfirms in the present updated guidance that the BMD approach, and more specifically model averaging, should be used for deriving a RP from the critical dose-response data to establish healthbased guidance values (HBGVs) and margins of exposure. This updated guidance does not call for a general re-evaluation of previous assessments where the NOAEL approach or the BMD approach as described in the 2009 or 2017 SC Guidance was used, in particular when the exposure is clearly smaller (e.g. more than one order of magnitude) than the HBGV. The application of this updated guidance to previous risk assessments where the 2009 or 2017 guidance was used might result in different RPs, in

73 particular in the case of continuous response data where informative priors are used.

74 The SC recommends that training in dose-response modelling and the use of the BMD application hosted

in the R4EU servers continues to be offered to experts in the Scientific Panels and EFSA Units.
 Furthermore, the option for the Cross-Cutting Working Group on BMD analysis to be consulted by EFSA

- 77 experts and staff if needed, should be maintained.
- Finally, the SC firmly reiterates the need for current toxicity test guidelines to be reconsidered given the
- 79 wide application of the BMD approach, as well as the need for a specific guidance on the use of the
- 80 BMD approach to analyse human data.

81 Table of contents

82 83	1	Background	4
83 84	1.1.	Terms of Reference as provided by FESA	
85	1.2.	Interpretation of Terms of Reference	4
86	2.	Assessment	6
87	2.1.	Introduction	6
88	2.2.	Hazard identification: selection of potential critical endpoints	7
89	2.3.	Using dose-response data in hazard characterisation.	7
90	2.3.1.	The NOAEL approach	7
91	2.3.2.	The BMD approach	8
92	2.3.3.	Interpretation and properties of the NOAEL and the BMDL	9
93	2.4.	Consequences for hazard/risk characterisation	10
94	2.5.	Statistical methodology	11
95	2.5.1.	Specification of a dose-response model for a single continuous endpoint	11
96	2.5.2.	Specification of a dose-response model for a single quantal endpoint	18
97	2.5.3.	Frequentist or Bayesian inferential paradigm	20
98	2.5.4.	Extensions	24
99	2.6.	Guidance to apply the BMD approach	25
100	2.6.1.	Structure of the dose-response data	27
101	2.6.2.	Selection of the BMR	27
102	2.6.3.	Data suitability to estimate the BMD using dose-response modelling	28
103	2.6.4.	Consideration of prior information for the endpoint(s) considered	32
104	2.6.5.	Using Bayesian model averaging to estimate the BMD and calculate its credible interval	33
105	2.6.6.	Reporting of the BMD analysis	36
106	3.	Conclusions	36
107	4.	Recommendations:	37
108	Referen	1œs	38
109	Abbrev	iations	43
110	Append	Jix A – Upper bounds(a) of effect at NOAELs related to 10 substances evaluated previously	Y .
111	_	by JMPR or EFSA	44
112	Append	Jix B – Statistical methodology	45
113	Append	Jix C – Data Examples: Continuous Endpoints	52
114	Append	Jix D – Data Examples: Quantal Endpoints	64
115	Append	JIX E – I emplate for reporting a BMD analysis	6/
116			

117

118**1.Background**

As per EFSA's Founding Regulation (EC) No 178/2002 of the European Parliament and of the Council, "the EFSA Scientific Committee shall be responsible for the general coordination necessary to ensure the consistency of the scientific opinion procedure, in particular with regard to the adoption of working procedures and harmonisation of working methods". Strategic objective 2 of the EFSA Strategy 2027 regarding ensuring preparedness for future risk analysis needs echoes this key responsibility of the Scientific Committee, putting the emphasis on the development of a harmonised risk assessment culture and the improvement of the assessment methodologies to address future challenges.

In May 2009, the Scientific Committee adopted its guidance on the use of the benchmark dose (BMD) 126 approach in risk assessment (EFSA Scientific Committee, 2009a). The guidance document recommends 127 128 using the BMD approach instead of the traditionally used NOAEL approach to identify a Reference Point, since it makes a more extended use of dose-response data and it allows for a quantification of the 129 130 uncertainties in the dose-response data. The BMD approach is applicable to all chemicals, irrespective of their category (e.g. pesticide, food additive, contaminant) or origin (chemically synthesised or from 131 natural sources). Within the remit of EFSA, this guidance document addresses the assessment of 132 substances in food. The guidance was further updated in 2017 (EFSA Scientific Committee, 2017), 133 134 recommending model averaging as the preferred approach for BMD analysis; the set of mathematical models to be fitted to the data by default was updated, and a flow chart, guiding step-by-step the 135 reader when performing BMD analysis was added. 136

Following a workshop organised by EFSA in March 2017 to discuss commonalities and divergences in the various approaches for BMD analysis worldwide¹, WHO convened a group of experts from all over the world to update the Chapter 5 on dose response assessment of WHO/IPCS Environmental Health Criteria 240 (WHO, 2020). This work resulted in a consensus on a number of concepts related to

141 benchmark dose analysis.

142 The purpose of the present update of the EFSA Guidance on the use of the benchmark dose approach

- 143 in risk assessment is to align the content of the document with the above-mentioned agreed concepts,
- and therefore harmonise further EFSA's approach with those of its partners.

145 **1.1.** Terms of Reference as provided by EFSA

The European Food Safety Authority requests the Scientific Committee to align the Guidance on the use of the benchmark dose approach in risk assessment with the principles for dose-response assessment described in chapter 5 of FAO/WHO IPCS EHC240². EFSA Partners (US EPA, US NIOSH, US FDA, Health Canada, EU Member States competent authorities, EFSA Sister Agencies and other international partners) will be involved/consulted during the drafting phase

150 partners) will be involved/consulted during the drafting phase.

151 EFSA is requesting its Assessment Methodology (AMU) Unit to update its Platform for BMD analysis so

that it implements the above-mentioned updated guidance on BMD³. When doing so, harmonisation with other existing BMD tools (US EPA BMDS and PROAST) will be sought.

154 1.2. Interpretation of Terms of Reference

- To address the mandate received, the following modifications have been made to the 2017 SC Guidance on the use of the benchmark dose approach in risk assessment:
- The extension and unification of the suite of models for continuous and quantal endpoints (sections 2.5.1 and 2.5.2),
- Introduction of the normal distribution, next to the Log-normal distribution default assumption
 of the response at a specified dose level for continuous endpoints (Section 2.5.1)

¹ See https://www.efsa.europa.eu/en/events/event/170301-0

² https://www.who.int/docs/default-source/food-safety/publications/chapter5-dose-response.pdf?sfvrsn=32edc2c6_5

³ Following EFSA's reorganisation of 1 January 2022, this responsibility has been transferred to the Methodology & Scientific Support (MESE) Unit.

- The introduction of the Bayesian inferential paradigm and the rationale for replacing the
 Frequentist BMD model averaging by the Bayesian model averaging as the recommended
 preferred approach to estimate the BMD and calculate its credible⁴ interval (Section 2.5.3)
- Guidance on how to select the Benchmark Response (Section 2.6.2)
- Guidance on how to decide whether experimental data are worth modelling and if not, recommendation on how to use these data for the assessment (Section 2.6.3)
- Guidance on how to construct informative priors (Section 2.6.4)
- Guidance on how to deal with data leading to unpractical BMDLs and/or large BMDL-BMDU confidence intervals (Section 2.6.5)
- Guidance on how to perform BMD analysis on datasets with no non-exposed controls (Section 2.6.3)
- Guidance on how to handle high dose impact (Section 2.6.3)
- 173

⁴ The term "confidence interval" is used in the context of frequentist statistics while the term "credible interval" is used in a Bayesian paradigm, see Section 2.5.3

174 **2. Assessment**

175 **2.1. Introduction**

This Guidance is an update and modification of the version released in 2017 (EFSA SC, 2017). The purpose of this update is to further support the implementation of dose-response modelling in EFSA's work and to harmonise the statistical background and theoretical insights between EFSA and other national and international organisations such as WHO (EHC240 Chapter 5 (WHO, 2020)) and US EPA (2012).

This document addresses the analysis of dose-response data from toxicity studies in experimental animals. Toxicity studies are conducted to identify and characterize potential adverse effects of a substance. The data obtained in these studies may be further analysed to identify a dose that can be used as a starting point for risk assessment. The dose used for this purpose, however derived, is referred to in this opinion as the Reference Point (RP). This term, adopted by the EFSA Scientific Committee in 2005 (EFSA SC, 2005) is preferred to the equivalent term Point of Departure (PoD), used by others such

- 187 as US EPA.
- 188 The No-Observed-Adverse-Effect-Level (NOAEL) has been used historically as the RP for establishing 189 health-based guidance values (HBGVs) in risk assessment of non-genotoxic substances. EFSA (2005)
- and the Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2006a) have proposed the use of
- the benchmark dose (BMD) approach for deriving RPs used to calculate the margins of exposure (MOEs)
- for substances that are both genotoxic and carcinogenic, since for such substances it is conventionally
- 193 considered inappropriate to identify NOAELs for use as RPs.
- The SC concluded in 2009 that the BMD approach is the preferred approach for identifying a RP; not only for substances that are both genotoxic and carcinogenic, but also for non-genotoxic substances (EFSA, 2009a, 2017). The methodology discussed in the 2009 guidance document and its update from 2017 has increasingly been applied by EFSA for identifying RPs (i.e. BMDLs) for various types of chamicals (a.g. posticide, additives, and contaminants)
- 198 chemicals (e.g. pesticide, additives, and contaminants).
- 199 In Sections 2.3.1 to 2.3.2 of this guidance document, the concepts underlying both the NOAEL and BMD approaches are discussed, and it is outlined why the SC considers the BMD approach a more powerful 200 approach. Section 2.4 discusses the potential impact of using the BMD approach for hazard/risk 201 characterisation and risk communication. Within EFSA, the main application of the BMD approach is to 202 203 identify a RP for hazard and subsequently risk characterisation of chemicals. The SC notes that the BMD approach has also been used for other purposes such as for evaluating the plausibility of non-204 monotonicity in a dose-response curve (parameter d is a measure of the steepness of the curve, 205 Beausoleil et al., 2016) or for estimating relative potencies of chemicals (e.g. organophosphates, Bosgra 206 207 et al., 2009 or Zeilmaker et al., 2018). However, these applications of the BMD approach are outside 208 the scope of the present Guidance.
- Further, the set of default models to be used for BMD analysis has been revised; they are described in Sections 2.5.1 and 2.5.2. The Bayesian model averaging procedure, recommended as the preferred approach for BMD analysis, is described in Section 2.5.3 and later possible extensions to include covariates and deal with cluster data. In Appendix C – and Appendix D –, examples based on continuous and quantal data are provided to illustrate the application of the BMD approach in practice and a discussion of the results is presented. A template for BMD analysis reporting has been inserted in Appendix E –.
- Section 2.6, which provides guidance on how to apply the BMD approach in practice, has been significantly modified compared to the 2009a and 2017 versions of the guidance document: Bayesian model averaging has been introduced as the preferred method for estimating the BMD and calculating its credible interval. The problem formulation step has been particularly expanded, providing further guidance on key decisions to be taken before starting to model the data: specification of the BMR, data suitability to estimate the BMD using dose-response modelling, consideration of prior information for the endpoint(s) considered.
- The principles outlined in this guidance document may also apply to data from (observational) epidemiological studies. However, such studies have their own peculiarities with respect to study design

and interpretation of data and for this reason the application of dose-response analysis of epidemiological data will be addressed in a separate future guidance document.

The present guidance is primarily aimed at EFSA Units and Panels and other stakeholders, for example applicants, performing dose-response analyses. The SC considers that the use of the BMD approach is the preferred approach compared to the NOAEL approach to identify a RP; therefore, the application of this guidance document is unconditional for EFSA and is strongly recommended for all parties submitting assessments to EFSA for peer-review or dossiers for authorisation purposes (see EFSA Scientific Committee, 2015).

233 **2.2.** Hazard identification: selection of potential critical endpoints

Toxicity studies are designed to identify adverse effects produced by a substance, and to characterize 234 the dose-response relationships for the adverse effects detected. While human dose-response data are 235 occasionally available, most risk assessments rely on data from animal studies. The aim of hazard 236 identification is to identify potential critical endpoints that may be of relevance for human health. An 237 important component in hazard identification is the consideration of dose dependency of observed 238 239 effects. Traditionally this is done by visual inspection together with conventional statistical tools. The SC recommends using dose-response modelling approaches (see section 2.5). When no statistical 240 241 evidence for a treatment-related change is observed, the dataset for the endpoint under consideration would normally not be used for identifying an RP. However, the selection of any critical adverse effect 242 should not solely be based on statistical procedures. Importantly, additional toxicological considerations 243 should be taken into account in the evaluation of a toxicological data package. Use of the BMD approach 244 does not remove the need for a critical evaluation of the response data⁵ and an assessment of the 245 246 relevance of the effect to human health.

247 **2.3.** Using dose-response data in hazard characterisation

In the hazard characterisation, the nature of the dose-response relationships is explored in detail. The overall aim of the process is to identify a dose (the Reference Point; RP) from the toxicity studies that will then be used to establish a level of human intake at which it is confidently expected that there would be no appreciable adverse health effects, taking into account uncertainty and variability such as inter- and intra-species differences, suboptimal study characteristics or missing data.

Hazard characterisation in risk assessment requires the use of a range of dose levels in toxicity studies.
 Doses are needed that produce different effect sizes providing information on both the lower and higher
 part of the dose-response relationship to characterise this in full.

Experimental and biological variations affect response measurements; in consequence, the mean response at each dose level will include sampling error. Therefore, dose-response data need to be analysed by statistical methods to prevent inappropriate biological conclusions being drawn. Currently, there are two statistical approaches available for identifying a RP: the NOAEL approach, and the BMD approach. This section reviews in brief these two approaches, and summarizes the strengths and limitations of each method.

262 **2.3.1.** The NOAEL approach

The NOAEL approach is applicable to all toxicological effects considered to act via a thresholded mode of action.

265 The study NOAEL is the highest dose tested in a study without evidence of an adverse effect in the

266 particular experiment and the next higher dose showing a statistically significant adverse effect is the

267 lowest-observed-adverse-effect-level (LOAEL). The NOAEL is affected by the dose range selection and

by the (statistical) power of the study. Studies with low power (e.g. small group sizes; insensitive

⁵ In this opinion, "response" is used as a generic term that refers to both quantal and continuous data.

269 methods, large biological or methodological spread) usually tend to provide higher NOAELs than studies 270 with high power. If there is a statistically significant effect at all dose levels, the lowest dose used in the 271 study (i.e. the LOAEL) may be selected as the RP. Conversely, if no statistically significant effect is 272 observed at any of the dose levels, the highest dose is selected as the NOAEL.

273 It should be noted that in general, identification of a NOAEL is not always a purely statistically-based

decision. Expert judgement is also part of the decision-making process and different assessors may

275 reach different decisions.

276 2.3.2. The BMD approach

The Benchmark Dose (BMD) is a dose level, estimated from the fitted dose-response curve, associated with a specified change in response, the Benchmark Response (BMR), (see Section 2.6.2). The BMDL is the BMD's lower confidence bound, and this value is normally used as the RP. The BMD approach is applicable to all toxicological effects and makes use of all the dose-response data to estimate the shape of the overall dose-response relationship for a particular endpoint.

The key concepts in the BMD approach are illustrated in Figure 1 and its caption. More details are provided in Appendix B. Figure 1 shows that a BMDL that is calculated for a BMR of x%, can be

- 284 interpreted as follows:
- BMDL_x = dose below which the change in response is likely to be smaller than x%
- where the term "likely" is defined by the statistical confidence level, usually 95%-confidence.

287

288

Figure 1: Key concepts for the BMD approach. The observed mean responses plus or minus the 289 observed standard deviation are plotted as vertical lines. The dashed curve is a fitted dose-290 291 response model, either one of the 16 individual dose response models (see Section 2.5.1) 292 or the averaged model. This curve determines the point estimate of the BMD, which is generally defined as a dose that corresponds to a low but biologically relevant⁶ change in 293 response, denoted the benchmark response (BMR). The density shows the posterior 294 distribution of the BMD and the green interval indicates the boundaries of the two-sided 295 296 90% credible interval of the BMD (defined by the 5% left and right tail probabilities of that posterior distribution. The BMDL is the 95% one-sided lower bound of the 90% credible 297

⁶ The word "biologically relevant" is preferred to "adverse" to allow e.g. for the use of the BMD approach with biomarkers of effect that are not necessarily adverse.

interval for the BMD. Likewise, the BMDU is the upper bound of the 95% credible interval 298 for the BMD. It should be noted that the predicted background response does not necessarily 299 300 coincide with the observed background response. The BMR is defined as a change with regard to the background response predicted by the fitted model. 301 The essential steps involved in identifying the BMDL for a particular study are: 302 Specification of a response level, e.g. a 5% or 10% increase or decrease in response compared 303 304 with the background response. This is called the BMR (see Section 2.6.2). Perform Bayesian model averaging using a set of pre-defined dose-response models (Section 305 • 2.6.5), and calculation of the BMD credible interval for the averaged model, for each of the 306 307 critical endpoints. 308 An overall study BMDL, i.e. the critical BMDL of the study, is selected from the obtained set of BMD credible intervals for the different potentially critical endpoints (see Section 2.6.5). 309 The BMD credible interval should be calculated for all datasets considered relevant (the 310 311 respective BMDL potentially leading to the RP), resulting in a set of credible intervals indicating the uncertainty ranges around the true BMD for the endpoints considered. One way to proceed 312 is to simply select the endpoint with the lowest BMDL and use that value as the RP. However, 313 this procedure may not be optimal in all cases, and the risk assessor might decide to use a more 314 315 holistic approach, where all relevant aspects are taken into account, such as the width of the BMD credible intervals (rather than just the BMDLs), the biological meaning of the relevant 316 endpoints. This process will differ from case to case, needs expert judgement and it is the risk 317 assessor's responsibility to make a substantiated decision on what BMDL will be used as the RP 318

- 319 (see 'Determining the RP for a given substance' in Section 2.6.5).
- 320

The advantage of the BMD approach over the NOAEL approach relates to the fact that the selection of 321 the RP takes into account the complete set of BMD confidence intervals for the endpoints considered 322 323 and combines the information on uncertainties in the data (see Section 2.6.5), whereas in the NOAEL approach experimental uncertainties, resulting from low study power, are not adequately covered and 324 may result in an RP that is too high (see also Section 2.3.1). In comparison with the NOAEL approach, 325 326 the BMD approach has the advantage that it provides a formal quantitative evaluation of data quality, 327 by taking into account all aspects of the specific data. Data containing little information on the dose response may result in a BMDL that is far lower than the true BMD, but still, the meaning of the BMDL 328 value remains as it was defined: it reflects a dose level where the associated effect size is unlikely to be 329 330 larger than the BMR used.

Nonetheless, it might happen that the data are so poor that using the associated BMDL as a potential
 RP appears unwarranted. This might be decided when the BMD confidence interval is wide, i.e. when
 there is large uncertainty in the BMD estimate. This issue is further discussed in Section 2.6.5.

For the derivation of a BMDL for a given set of data, several statistical software are available. The tools most frequently used are BMDS (<u>www.epa.gov/bmds</u>), PROAST (<u>www.rivm.nl/proast</u>) and the EFSA

336 webtool for Dose-Response modelling, which combines statistical techniques from BDMS and PROAST

in one platform (<u>https://r4eu.efsa.europa.eu/</u>).

338 2.3.3. Interpretation and properties of the NOAEL and the BMDL

The NOAEL is a dose level where no statistically significant differences in adverse response were observed, compared with the background response in a study. This implies that the NOAEL reflects a dose level where effects are too small to be detected in that particular study, and therefore the size of the possible effect at the NOAEL remains unknown. A straightforward way of gaining insight into this is by calculating the upper bound of the confidence interval for the observed change in response between the control group and the NOAEL dose group. In Appendix A this has been done for several substances both for continuous and quantal endpoints. For quantal endpoints (undetected) effect sizes at the

- NOAEL may be higher than 10%, while for continuous endpoints the undetected effect size may be 346 347 substantially higher, depending on the endpoint.
- The NOAEL is therefore not necessarily a "no adverse effect" dose but a dose where effects were not 348
- observable by statistical means and therefore dependent strongly on the experimental design. On 349
- average, over a number of studies, the size of the estimated effect at the NOAEL is close to 10% 350
- 351 (quantal responses) or 5% (continuous responses) (see also Section 2.6.2).
- 352 Contrary to the NOAEL approach, the BMD approach uses the information in the complete dataset. 353 rather than making pair-wise comparisons using subsets of the data (i.e. between control groups and dose groups). In addition, the BMD approach can interpolate between applied doses, while the NOAEL 354 approach is restricted to preselected doses from the study design. A BMDL is always associated with a 355 predefined effect size (the BMR) for which the corresponding dose has been calculated, while a NOAEL 356 357 represents a predefined dose and the corresponding potential effect size is mostly not calculated.
- An inherent property of the BMD approach is the evaluation of the uncertainty in the BMD, which is 358 359 reflected by the BMD credible interval (BMDL-BMDU) and is related to a known and predefined potential effect size (i.e. the benchmark response, BMR). This is a difference with the NOAEL approach where 360 the uncertainty associated with the NOAEL cannot be evaluated from a single dataset and the confidence 361 362 interval of the effect size at the NOAEL is generally not reported in current applications.
- Although the current international quidelines for study design (e.g. OECD guidelines for the testing of 363 chemicals) have been developed with the NOAEL approach in mind, they offer no obstacle to the 364 365 application of the BMD approach. While in the NOAEL approach, the utility of the data is based to a considerable extent on a priori considerations such as study design (number of dose groups, group size, 366 dose levels, variability), a BMD analysis is less constrained by these factors. In a BMD analysis, the data 367 are evaluated taking the specifics of the particular dataset into account (e.g. the scatter in the data, 368 dose-response information) and the resulting BMD credible interval accounts for the limitations of the 369 370 particular dataset, so that data limitations (e.g. sample size) is a less crucial issue than it is for the NOAEL. By using model averaging (see Section 2.6.5), the uncertainty related to the mathematical 371
- 372 models fitted to the data are also taken into account.

2.4. Consequences for hazard/risk characterisation 373

- In the previous section, the BMD approach has been introduced in the context of identifying a RP. This 374 RP will be used in hazard characterisation for establishing HBGVs, such as acceptable daily intakes 375 (ADIs) for food additives and pesticide residues, tolerable daily intakes (TDIs) or tolerable weekly intakes 376 (TWIs) for contaminants. 377
- 378 In establishing an HBGV, uncertainty factors are applied to the RP (WHO, 1987; WHO, 2020 Chapter 379 5.4.2). In the previous version of this Guidance (EFSA, 2017) it has already been reasoned that irrespective of whether an HBGV is based on a NOAEL or a BMDL as the RP, the same uncertainty 380 381 factors should be applied. The values for uncertainty factors (be it the default factors or chemicalspecific adjustment factors) are equally applicable to the BMDL and to the NOAEL. 382
- The BMD approach provides a higher level of confidence in the conclusions in any individual case since 383 384 the BMDL takes into account all the data from the dose-response curve and handles the statistical 385 limitations of the data better than the NOAEL. Thus, an HBGV based on the BMD approach provides a better basis to quantify the risk. Over the past 15 years dose-response modelling has been applied by 386 387 EFSA, e.g. for food contaminants and flavouring substances, and the results of this approach have been accepted by risk managers as a basis for their decision making. 388
- It is important to realize that HBGVs represent levels to which humans may be exposed without 389 appreciable health risk, and this definition does not change when the HBGV is derived from a BMDL 390 391 instead of a NOAEL. For further details and guidance on how to establish HBGV, see WHO (2020), 392 Chapter 5.4.
- 393 There are situations where the data are considered inadequate for establishing a HBGV but allow identification of a RP and thus the MOE approach may be applied. The MOE is the ratio of the RP (e.g. 394

BMDL or NOAEL) to the theoretical, predicted or estimated exposure dose or concentration. Such a situation occurs for example when the risk assessor considers the available database as insufficient to establish a HBGV because of data gaps. Another situation is when dealing with substances that are both genotoxic (via a DNA-reactive mode of action) and carcinogenic, for which it is widely assumed that any exposure is undesirable (EFSA, 2005).

400 **2.5.** Statistical methodology

This section provides basic information about the statistical methodology; the components of a single
 dose-response model; multi-model estimation accounting for model uncertainty and frequentist and
 Bayesian inferential paradigms to obtain the BMD, the BMDL and the BMDU.

Response data may be of various types, including continuous, quantal or ordinal. The distinction between data types is important for statistical reasons because the type of data determines the statistical model employed, and also for the interpretation of the BMR. See Section 2.6.2 for the interpretation of the BMR in continuous and in guantal data.

Ordinal data may be regarded as an intermediate data type: they arise when a severity category (minimal, mild, moderate, etc.) is assigned to each individual (as often used in histopathological observations). Ordinal data can be reduced to quantal data but, depending on the definition of BMD applied, this transformation may result in a loss of information, which is not recommended (WHO, 2020). Models for analysing ordinal data are available in different software packages, e.g. in PROAST or CatReg in BMDS (US EPA, 2016). Model averaging for ordinal data is not considered in this guidance document.

Ideally, the relationship between dose and response would be described by model(s) that describe the essential toxicokinetic and toxicodynamic processes related to the specific compound. However, for most compounds, such models are not available, and therefore the BMD approach uses fairly simple models that do not intend to describe the underlying biological process, but should be treated as purely statistical models. These models can be considered as simplified mathematical expressions that could be used to describe the potential relationship between the response under consideration and the dose

- 421 administered/received/exposed.
- The statistical models introduced in the next sections are considered suitable for analysing toxicological
 datasets in general. The following notation will be used throughout this section:
- 424
 x denotes the dose, on the original scale (not on a log-scale); for optimizing the visualization
 425
 426
 426
 427
 428
 429
 429
 429
 420
 420
 420
 420
 420
 420
 421
 421
 422
 422
 423
 424
 425
 425
 426
 426
 426
 427
 428
 429
 429
 420
 420
 420
 420
 420
 420
 421
 421
 422
 422
 423
 424
 425
 425
 426
 426
 426
 426
 427
 428
 429
 429
 420
 420
 420
 420
 420
 421
 421
 422
 425
 425
 426
 426
 426
 427
 428
 428
 429
 429
 429
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
 420
- y denotes the response, regardless of its nature (continuous or quantal); the response at a specified dose level x is denoted as y|x; for optimizing the visualization of the data of a continuous endpoint and of the graphs of the fitted models, the y-axis might be transformed to the log-scale (but the model was fit to the endpoint y on the original scale).
- 431 2.5.1. Specification of a dose-response model for a single continuous
 432 endpoint
- 433 The statistical model
- 434
- 435 The statistical model is defined by the following components:
- 436 i) the distribution of the response at a specified dose level (i.e., describing the "within 437 group variation", the variability between individual observations at a specified dose). Two
 438 "within-group" distributions are considered:

- the normal distribution (as the most important representative of the family of all symmetric distributions),
- the log-normal distribution (as the most important representative of the family of all right-skewed distributions).
- 443It is assumed that left-skewed distributions are very unlikely in the field of benchmark dose444determination and risk assessment.
- ii) the description of the effect of dose on this distribution (i.e., how does the distribution ofthe endpoint change across different dose levels).
- 447 It is assumed that dose does not affect the type of distribution of the response, but only 448 the parameter determining the centre of the distribution.

449 Only two parametric distributions, which are fully characterized by their functional form and two parameters (central location and spread around the centre) are considered in this document: the normal 450 distribution and the log-normal distribution. The normal distribution is symmetric, whereas the log-451 normal is a right-skewed distribution. They both share theoretical and computational advantages and 452 have been proven to fit well to many biological endpoints. As endpoints are assumed to be positive-453 454 valued, a left-skewed distribution is not considered. If empirical or biological evidence necessitates, other distributions (e.g., the inverse Gaussian distribution, the gamma distribution) may be considered 455 suitable as well, but the extension of the statistical modelling framework, as described in this section, 456 to other distributions is not straightforward, nor is its implementation in the BMD application hosted in 457 458 the R4EU servers.

459 Before modelling the central location of the normal and log-normal distribution as a function of dose, 460 the relevant characteristics of both distributions are summarised below.

461 Modelling the distribution of the response

- 462 It is assumed that the observations of y, given a specified dose (denoted as $|x\rangle$), vary according to the
- 463 **normal distribution**:

$$y|x \sim N(\mu(x), \sigma^2)$$

464 where $\mu(x)$ represents the mean and σ^2 the variance of the response at dose x. The normal distribution 465 is a symmetric distribution (implying that $\mu(x)$ is the median as well). The true distribution of the 466 response y is unknown, but the normal distribution is known to often be a good approximation for that 467 true distribution, especially if it is a symmetric distribution, even if the endpoint is restricted to be 468 positive. The distribution only shifts up or down according to the value of the mean $\mu(x)$, but the 469 variance σ^2 and the typical symmetric "bell shape" of the distribution remains invariant to changes in 470 dose.

471

472 In addition to the normal distribution, also the log-normal distribution can be considered:

473

$$y|x \sim \text{LOGN}(\mu(x), \sigma^2),$$

This distribution is automatically restricted to positive values and is skewed to the right. Typically, the notation of the two parameters is identical to that of the two parameters of the normal distribution, but the interpretation is different. It holds that

477 $y|x \sim \text{LOGN}(\mu(x), \sigma^2) \leftrightarrow \log(y|x) \sim \text{N}(\mu(x), \sigma^2),$

implying that $\mu(x)$ and σ^2 do not refer to the mean and the variance of the response itself but to the mean and the variance of the log-transformed response. Again, it is assumed that the parameter σ^2 does not depend on dose. The characteristics on the original scale are shown in Table 1 for both distributions. Note that, although the parameter σ^2 does not depend on dose, the variance of a lognormally distributed response does depend on dose, as it depends on the parameter $\mu(x)$ as well. For

a log-normally distributed response the coefficient of variation (standard deviation divided by mean) is however not depending on dose (constant, with value $\sqrt{e^{\sigma^2} - 1}$).

	$y x \sim N(\mu(x), \sigma^2)$	$y x \sim LOGN(\mu(x), \sigma^2)$
mean response	$\mu(x)$	$e^{\mu(x)+\sigma^2/2}$
median response $Med(x)$	$\mu(x)$	$e^{\mu(x)}$
variance response	σ^2	$(e^{\sigma^2}-1)e^{2\mu(x)+\sigma^2}$

485 **Table 1**: Characteristics of the normal and the log-normal dose-response model

486

487 The focus is on the median response Med(x) at dose x, which is determined by $\mu(x)$ for both 488 distributions: $Med(x) = \mu(x)$ is the median of the normal distribution and $Med(x) = e^{\mu(x)}$ is the median 489 of the log-normal distribution.

490 Modelling the central location of the distribution as a function of dose

491

495

496

492 Next to the specification of the distribution (normal or log-normal), a suite of 8 candidate models for 493 $\mu(x)$ is used, as shown in Table 2. All candidate models $\mu(x)$ share some basic properties P1-P4:

• P1: the median can only take positive values (e.g. a median organ weight cannot be ≤ 0), so

- $\mu(x) > 0$ if a normally distributed endpoint is considered;
- no constraint on values of $\mu(x)$ for a log-normally distributed endpoint;
- P2: they are monotone increasing or decreasing, for both distributions;
- P3: they are continuous functions of dose *x*, for both distributions;
- P4: they reach a horizontal asymptote for very high dose levels (mathematically $x \to \infty$), for 500 both distributions, such that they are suitable for data that level off to a maximum response.

501 In the next paragraphs, three families of models (1a, 1b and 2) are introduced. All members of these 502 families are flexible 4-parameter non-linear models, and all share the basic properties P1-P4. The above-503 mentioned 8 candidate models have been selected from these three families. This selection incorporates 504 the familiar exponential and Hill model from the previous guidance (EFSA SC, 2017), and extends it with 505 alternative flexible models leading to a unification of models across both type of endpoints, continuous 506 or quantal.

The model structure of Family 1a/b and Family 2 is fundamentally different. The general structure of Family 1a and 1b with the central role of the median background response and the maximum change in median response (parameter *a* and *c*) is identical, but the two other parameters *b* and *d* operate functionally differently in both subfamilies.

511• Family 1a and 1b: all models for $\mu(x)$ have the following structure512513513514515515516 \circ defined for $x \ge 0$;

517	 monotone increasing;
518	◦ $F(0; b, d) = 0$ and $F(∞; b, d) = 1$ regardless the values of b and d.
519 520 521	For all members of Family 1a, the parameter d acts as a power x^d , whereas it operates differently in Family 1b (see Table 2). The parameters a, b, c, d have a particular interpretation:
522	• $a = \mu(0)$ is linked to the median background response ;
523 524 525	• $c = \mu(\infty)/\mu(0)$ is linked to the maximum change in median response , as compared to the background response; for $c > 1$ (resp. $c < 1$) the median response is monotone increasing (resp. decreasing) as a function of dose <i>x</i> ;
526 527 528	 <i>b</i> and <i>d</i> characterize the shape of change in response from median background response to maximum change in median response, via the identity:
529	$F(x; b, d) = \frac{\mu(x) - \mu(0)}{\mu(\infty) - \mu(0)},$
530 531 532	 the model is reparametrized in terms of the parameter <i>a</i>, <i>c</i> (representing the background response and the maximum change in response), the BMD (the potency, see Table 2, and replacing the parameter <i>b</i>) and the parameter <i>d</i>.
533	
534 ● 535	Family 2 increasing: increasing models for $\mu(x)$ from this family have the following structure
536	
537	$\mu(x) = cF(a+bx^d), b,d>0$
538	
539	for some particular but known function F, having the properties:
540	• defined for any value of $a + bx^{d}$;
541	 monotone increasing;
542	$\circ F(-\infty; b, d) = 0$ and $F(\infty; b, d) = 1$ regardless the values of b and d.
543	The parameters a, b, c, d have a particular interpretation:
544 545 546	• $c = \mu(\infty)$ and $a = F^{-1}(\mu(0)/\mu(\infty))$ and determine the median background response and the maximum change in median response , as compared to the background response;
547 548 549	• <i>b</i> and <i>d</i> characterize the shape of change in response from median background response to maximum change in median response , via the identity:
550	$bx^d = F^{-1}(\mu(x)/\mu(\infty)) - F^{-1}(\mu(0)/\mu(\infty)),$
551 552 553	 the model is reparametrized in terms of the parameter <i>a</i>, <i>c</i> (representing the background response and the maximum change in response), the BMD (the potency, see Table 2, and replacing the parameter <i>b</i>) and the parameter <i>d</i>.
554	
555	
556 • 557	Family 2 decreasing : decreasing models for $\mu(x)$ from this family have the following structure
558	$\mu(x) = a((1+F(c)) - F(c+bx^{d})), b,d > 0$
559	

560	for some particular but known function F, having the properties:
561	• defined for all values of c and all values of $c + bx^d$;
562	 monotone increasing;
563	○ $F(-\infty; b, d) = 0$ and $F(\infty; b, d) = 1$ regardless the values of b and d.
564	The parameters a, b, c, d have a particular interpretation:
565 566 567	• $a = \mu(0)$ and $c = F^{-1}(\mu(\infty)/\mu(0))$ determine the median background response and the maximum change in median response , as compared to the background response;
568 569 570	 b and d characterize the shape of change in response from median background response to maximum change in median response, via the identity:
571	$bx^{d} = F^{-1}(\mu(\infty)/\mu(0) - (\mu(x) - \mu(0))/\mu(0)) - F^{-1}(\mu(\infty)/\mu(0)),$
572 573 574	 the model is reparametrized in terms of the parameter <i>a</i>, <i>c</i> (representing the background response and the maximum change in response), the BMD (the potency, see Table 2, and replacing the parameter <i>b</i>) and the parameter <i>d</i>.

575 **Table 2:** Candidate models for both distributional assumptions.

Family	Model	$y x \sim N(\mu(x), \sigma^2)$	$y x \sim LOGN(\mu(x), \sigma^2)$
i anny	Model	Dose response function $(\mu(x))$	Dose response function $(e^{\mu(x)})$
1a	Exponential ⁽ⁱ⁾	$a\cdot\left(1+(c-1)\cdot\left(1-e^{-b\cdot\chi^d}\right)\right)$	$e^{a\cdot\left(1+(c-1)\cdot\left(1-e^{-b\cdot x^{d}}\right)\right)}$
	Inverse Exponential	$a\cdot \left(1+(c-1)\cdot e^{-b\cdot x^{-d}}\right)$	$e^{a\cdot \left(1+(c-1)\cdot e^{-b\cdot x^{-d}}\right)}$
	Hill ⁽ⁱⁱ⁾	$a \cdot \left(1 + (c-1) \cdot \left(1 - \frac{b}{b+x^d}\right)\right)$	$e^{a\cdot\left(1+(c-1)\cdot\left(1-\frac{b}{b+x^d}\right)\right)}$
	Log-Normal	$a \cdot \left(1 + (c-1) \cdot \Phi(\log(b) + d \cdot \log(x))\right)$	$e^{a\cdot \left(1+(c-1)\cdot \Phi\left(\log(b)+d\cdot\log(x)\right)\right)}$
1b	Gamma	$a \cdot \left(1 + (c-1) \cdot \frac{\gamma(d, b \cdot x)}{\Gamma(d)}\right)$	$e^{a\cdot\left(1+(c-1)\cdot\frac{\gamma(d,b\cdot x)}{\Gamma(d)}\right)}$
	LMS-two stage	$a\cdot\left(1+(c-1)\cdot\left(1-e^{-b\cdot x-d\cdot x^2}\right)\right)$	$e^{a\cdot\left(1+(c-1)\cdot\left(1-e^{-b\cdot x-d\cdot x^2}\right)\right)}$
2	Probit increasing	$a \cdot \Phi(c + b \cdot x^d)$	$e^{a\cdot\Phi(c+b\cdot x^d)}$
	Probit decreasing	$a \cdot (1 + \Phi(c)) - a \cdot \Phi(c + b \cdot x^d)$	$e^{a\cdot(1+\Phi(c))-a\cdot\Phi(c+b\cdot x^d)}$
	Logistic increasing	$a \cdot \frac{e^{c+b \cdot x^d}}{1+e^{c+b \cdot x^d}}$	$e^{arac{e^{c+b\cdot x^d}}{1+e^{c+b\cdot x^d}}}$
	Logistic decreasing	$a \cdot \left(1 + \frac{e^c}{1 + e^c}\right) - a \cdot \frac{e^{c+b \cdot x^d}}{1 + e^{c+b \cdot x^d}}$	$e^{a \cdot \left(1 + \frac{e^c}{1 + e^c}\right) - a \cdot \frac{e^{c + b \cdot x^d}}{1 + e^{c + b \cdot x^d}}}$

576 (i): This model is identical to the 4-parameter Exponential model in Table 3 of the 2017 SC guidance.

577 (ii): After a reparameterization, this model is identical to the 4-parameter Hill model in Table 3 of the578 2017 SC guidance.

579 With two candidate distributions and 8 candidate models for $\mu(x)$, a total of 16 candidate models can 580 be fitted to the same data. All 16 candidate models have 5 parameters (4 parameters for $\mu(x)$ and the 581 variance parameter σ^2) and all models are non-nested (none of the models can be seen as a 582 simplification of another model). Graphs of all different models, illustrating their similarities and 583 differences, are shown in Appendix B.

584 The EPA BMDS guidance includes also the family of the NULL and the FULL model, as well as the linear, 585 quadratic and power models.

586	•	The null model	
587			$\mu(x) = \mu.$
588	•	The full model	
589			$\mu(x_i) = \mu_i, i = 1, \dots, N.$
590	•	The linear model	
591			$\mu(x) = a + bx,$
592			
593	•	The quadratic model	
594			$\mu(x) = a + bx + cx^2,$
595			
596	•	The power model	
597			$\mu(x) = a + bx^c.$
598			
F00	Thom	بالمعط المعرفين السعمط والمنبع مط	providually in EECA 2017 to account the processor

599 The null and the full models used previously in EFSA, 2017 to assess the presence of dose response 600 and the goodness of fit of the models are not needed anymore for the recommended Bayesian modelling

The family of polynomial and power models are included in the US EPA BMDS software for continuous data. These families of models, typically applied to epidemiological data, have quite different characteristics and additional statistical complexities: they have less parameters and are rather limited in their flexibility; moreover, they do not comply with all 4 properties P1-P4.

605 **Further considerations regarding the statistical model**

Individual responses y (e.g., individual organ weights) are guaranteed to be positive for the lognormal distribution. Although $\mu(x) > 0$, there is a (typically very small) theoretical probability that an individual normally distributed response value y becomes negative. In a similar vein, the log-normal distribution being a one-sided heavy-tailed distribution, there is a (typically very small) theoretical probability that an individual log-normally distributed response variable y becomes extremely large, both completely unrealistic for the endpoint at hand. These theoretical disadvantages of both distributions are, in most practical cases, not an issue, as:

- both distributions have been proven to approximate the unknown data generating distribution
 of positive random variables very well in a variety of practical instances, despite their
 theoretical disadvantages;
- the model is not developed for prediction of individual response values, but for the estimation
 of the BMD.
- 618 By default, both distributions will be included in the analysis of the data. Nevertheless, one of the two 619 distributions might be discarded from further analysis during the process of evaluation, based on

- biological or statistical arguments for the data at hand. For statistical techniques to reject (or not
- reject) the normal or log-normal distribution, see further under heading "The data" below.

For both distributions (normal and log-normal) it is assumed that the parameter σ^2 is constant and does

not depend on dose. When there is evidence that σ^2 does change with dose, an adjusted analysis or an

624 extended model could be applied. Ignoring that dependency (while in reality it exists) might affect the 625 standard errors of the parameter estimates as well as the confidence bounds for the BMD (BMDL and

standard errors of the parameter estimates as well as the confidence bounds for the BMD (BMDL and
 BMDU), although the fitted dose-response model for the mean and the BMD estimate are in general

expected to be still appropriate. For statistical techniques to reject (or not reject) the parameter σ^2 to

628 be independent of dose, see further under heading "The data".

629 **The data**

For continuous data, the individual observations should ideally serve as the input for a BMD analysis. 630 When no individual but only summary data are available, the BMD analysis may be based on the 631 combination of the mean, the standard deviation (or standard error of the mean), and the sample size 632 for each treatment group. Using summary data may lead to slightly different results compared with 633 634 using individual data, depending on the type of summary data and the selected distribution. The use of individual data is equivalent to the use of arithmetic summary data (arithmetic mean, arithmetic 635 standard deviation, and sample size per treatment group) when applying the normal distribution, and 636 the use of individual data is equivalent to the use of geometric summary data (geometric mean, 637 geometric standard deviation, and sample size per treatment group) when using the log-normal 638 639 distribution. This is related to the statistical concept of "sufficiency" of summary statistics (Fisher, 1922; Stigler, 1974 and Lehmann and Casella, 1998). It should be emphasized that when using arithmetic 640 (geometric) summary data to be converted to geometric (arithmetic) summary data when using the 641 642 log-normal (normal) distribution, it holds only approximately, meaning that results might slightly differ

from those that would be obtained if individual observations were used.

644 When individual data are available, well-established formal statistical tests can be performed to test the 645 particular distributional assumption, e.g. the Shapiro-Wilk test for testing normality and log-normality 646 (Shapiro and Wilks, 1965). When only summary data are available, one is very limited in checking the 647 validity of the distributional part of the statistical model: the normal or log-normal distribution with 648 parameter σ^2 not depending on dose. With summary data, it is recommended to check the specific 649 nature of the relation between the observed dose specific arithmetic averages and standard deviations:

the (homoscedastic) normal distribution $y | x \sim N(\mu(x), \sigma^2)$ implies a constant standard deviation, i.e. the 650 standard deviation does not depend on the dose x (homoscedasticity on the original scale of the 651 response). the log-normal distribution $y|x \sim LOGN(\mu(x), \sigma^2)$ implies a constant coefficient of variation, 652 653 i.e. the ratio of the (standard deviation)/mean does not depend on the dose x_i or equivalently, the 654 variance of the log-transformed response is constant (homoscedasticity on the transformed log-scale of 655 the response). The homoscedasticity assumption on the original and on the log-response scale can be formally test with the summary statistics using the Bartlett test (Bartlett, 1937). Considering that most 656 of the time the information available are summary statistics, the Bartlett test is the only option that can 657 be used to assess homogeneity of variances when response is assumed to be Normally distributed, and 658 659 similarly this can be done when the response is assumed to be log-normal. The BMD analysis should report the results of these tests for both distributional assumptions (see Appendix C - where the Bartlett 660 test is reported for the continuous examples). In case of violations, it is advised to perform the analysis, 661 and additionally consider the analysis using for all dose groups the smallest and largest standard 662 663 deviations to study the impact on the estimation of the BMD.

Instead of examining these characteristics by formal Bayesian hypothesis testing, the posterior 664 665 probabilities (see section on model averaging below) for the normal and the corresponding log-normal 666 candidate model with the same choice for $\mu(x)$ will reflect which distribution fits best to the (summary) data. If the summary data support the constant standard deviation, the normal candidate model will 667 aet the higher posterior probability, and the log-normal model the lower posterior probability, and hence 668 the normal model will dominantly determine the BMD. If the summary data support the constant 669 670 coefficient of variation, it is the other way around. Model averaging (see further) deals with this issue 671 automatically.

- In case neither the standard deviation nor the coefficient of variation is constant (as a function of the
- dose *x*), both distributions, the normal nor the log-normal distribution, are not fully optimal. Individual data are needed to investigate this properly. It is assumed (and expected) however that either the
- 675 normal or the log-normal distribution is a sufficiently appropriate distribution.

676 Occasionally, dose-response data may be reported such that they include negative values, which may 677 necessitate data scaling or normalisation, for instance body weight gains decreasing from positive to 678 negative values at high doses. In those cases, the recommended models that are strictly positive are

- 679 no longer valid and models with an additive background parameter would be needed.
- 680 2.5.2. Specification of a dose-response model for a single quantal endpoint

681 **The statistical model**

A quantal endpoint refers to a binary measurement: yes/no (typically coded as 1/0) according to the occurrence of a particular adverse event. As for a continuous endpoint, the statistical model for a quantal endpoint is defined by two components:

- i) the specification of the distribution of the endpoint at a specified dose *x*. Only one distribution
 is possible (Bernoulli distribution).
- 687 ii) the description of the effect of dose on this distribution. Dose is affecting the probability on the688 adverse event.

689 Modelling the distribution

The main difference with a continuous outcome is that there is only one possible distribution for a quantal endpoint, the Bernoulli distribution; it has a single parameter, being the probability on the (adverse) event of interest. So, the first model component is uniquely defined as

- 693 $y|x \sim \text{Bernoulli}(\pi(x)),$
- 694 with $\pi(x)$ being the probability on the adverse event at dose x. Note that $\pi(x)$ is also the mean of the 695 response.
- 696 Modelling the probability of an event

697 The dose acts on the probability $\pi(x)$ of an event, typically considered as adverse. The same suite of 698 candidate models as for the parameter $\mu(x)$ for a continuous endpoint is considered, with the restrictions 699 that:

- they are only monotone increasing (as we expect the probability on the adverse event to increase with dose); contrary to continuous data, monotone decreasing data should be converted into increasing data, e.g. decreased survival could be transformed into increased mortality.
- the parameter representing the horizontal asymptote (c) is set such that this asymptote equals 705 the value of 1 at infinite dose.
- The three subfamilies of models for $\pi(x)$ are:

• Family 1a and 1b: all models for
$$\mu(x)$$
 with $c = 1/a$, or
708
709 $\pi(x) = a + (1-a)F(x; b, d), \quad b, d > 0,$
710

711	for the s	same functions F as for Family 1a and 1b for continuous endpoints.
712	The par	ameters a, b, d have a particular interpretation:
713	0	$a = \pi(0)$ determines the background probability on the adverse event ;
714 715	0	<i>b</i> and <i>d</i> characterize the shape of change in the probability on the adverse event , via the identity:
716		$F(x;b,d) = \frac{\pi(x) - \pi(0)}{1 - \pi(0)},$
717 718 719	0	the model is reparametrized in terms of the parameter a (representing the background incidence), the BMD (the potency, see Table 3, and replacing the parameter b) and the parameter d .
720		
721	• Family	2 : all increasing models for $\mu(x)$ with $c = 1$, or
722		
723		$\pi(x) = F(a + bx^d), b, d > 0$
724		
725	for the s	same functions F as for Family 2 for continuous endpoints. d d .
726	The par	ameters b, c, d have a particular interpretation:
727	0	$a = F^{-1}(\pi(0))$ determines the background probability on the adverse event ;
728 729	0	<i>b</i> and <i>d</i> characterize the shape of change in the probability on the adverse event , via the identity:
730		$bx^d = F^{-1}(\pi(x)) - F^{-1}(\pi(0))$,
731 732 733	0	the model is reparametrized in terms of the parameter c (representing the background incidence), the BMD (the potency, see Table 3, and replacing the parameter b) and the parameter d .
734		
735	Table 3: Candida	te models for quantal endpoints.
736		$v x \sim Rernoulli(\pi(x))$

		$y x \sim Bernoulli(\pi(x))$
Family	Model	Dose response function $(\mu(x))$
1a	Exponential	$a + (1-a) \cdot \left(1 - e^{-b \cdot x^d}\right)$
	Inverse Exponential	$a + (1-a) \cdot e^{-b \cdot x^{-d}}$
	Hill	$a + (1-a) \cdot \left(1 - \frac{b}{b + x^d}\right)$
	Log-Normal	$a + (1 - a) \cdot \Phi(\log(b) + d \cdot \log(x))$
1b	Gamma	$a + (1-a) \cdot \frac{\gamma(d, b \cdot x)}{\Gamma(d)}$
_	LMS-two stage	$a + (1-a) \cdot \left(1 - e^{-b \cdot x - d \cdot x^2}\right)$
2	Probit increasing	$\Phi(a+b\cdot x^d)$

	Probit decreasing	$(1+\Phi(a))-\Phi(a+b\cdot x^d)$
	Logistic increasing	$\frac{e^{a+b\cdot x^d}}{1+e^{a+b\cdot x^d}}$
	Logistic decreasing	$\left(1+\frac{e^a}{1+e^a}\right)-\frac{e^{a+b\cdot x^d}}{1+e^{a+b\cdot x^d}}$
737		

With only one distribution and again 8 candidate models for $\pi(x)$, a total of 8 candidate models can be fitted to the data. All models (Logistic, probit, log-logistic, log-probit, Weibull, gamma, LMS (two-stage) model), except the latent variable models, are covered. These latter LVM models are considered to be no longer necessary, given the suite of 8 flexible candidate models. All 8 models have 3 parameters (for the probability $\pi(x)$) and all models are non-nested (none of the models can be seen as a special case/simplification of another model). Also note that there are two parameters less to be estimated for quantal data models: no parameter *c* and no variance parameter σ^2 .

745

The EPA BMDS guidance includes also the family of the NULL and the FULL model, as well as the familyof polynomial and power models.

748	The null model	
749		$\pi(x) = \pi$
750	The full model	
751		$\mu(x_i) = \pi_i, i = 1, \dots, N.$
752	The linear model	
753		$\mu(x) = a + bx,$
754	The quadratic model	
755		$\mu(x) = a + bx + cx^2,$
756	The power model	
757		$\mu(x) = a + bx^c.$
758		

The null and the full models used previously in EFSA, 2017 to assess the presence of dose response and the goodness of fit of the models are not needed anymore for the recommended Bayesian modelling.

The family of polynomial and power models is not considered for quantal data as it does not respect the natural bounds of a probability $0 \le \pi(x) \le 1$.

764 **The data**

For quantal data the number of affected individuals and the sample size are needed for each dose group. Again, some models will fit better to the data than others and some models might fit equally well. The reader is referred to Section 2.5.3 on multi-model inference, where the technique of model averaging, which effectively accounts for model uncertainty for quantal data, is described.

769 2.5.3. Frequentist or Bayesian inferential paradigm

770 Introduction

The most commonly employed statistical philosophies are the frequentist and Bayesian approaches. In the frequentist approach, probability is used to represent a long-run frequency. Uncertainty about the

773 unknown parameters is measured by confidence and significance levels (p-values), interpreted and calibrated under hypothetical repetition. In the Bayesian approach, probability distributions are attached 774 775 to the unknown parameters, and the notion of probability is extended so that it reflects uncertainty of knowledge (Cox, 2006). The central idea of the Bayesian approach is to combine the data (through the 776 *likelihood.* expressing the plausibility of the observed data as a function of the parameters of a stochastic 777 model, Fisher, 1922) with prior knowledge (*prior probability*) to obtain the *posterior probability* as a 778 779 revised, updated probability. In EFSA's setting, a discrete prior distribution is chosen on the level of the 780 suite of candidate models (default is the uniform distribution expressing that all candidate models are equally likely). For each individual model, continuous prior distributions are formulated on the 781 782 background response, the maximum (or minimum) response at very high dose, and on the BMD. These latter prior distributions are translated to distributions on the parameters a, b, c (see Table 2 and 3), 783 and finally a prior distribution is defined on the parameter d and the variance parameter. It is reminded 784 785 that for quantal data, no priors are needed for the parameter c and the variance parameter, as these parameters are not existing for models for guantal data. For more details see Section 2.5.2. 786

787 The data-based "updating" of prior to posterior distributions is accomplished by *Bayes theorem*. The 788 explicit analytical calculation of the posterior probability and posterior summary measures (direct 789 calculation of integrals involved) is often not feasible and numerical techniques are required:

- i) numerical integration and approximation such as the *Laplace approximation*,
- ii) sampling from the posterior using *Markov chain Monte Carlo* (MCMC) methods.

792 Both paradigms, frequentist and Bayesian, have a great deal to contribute to statistical practice. There 793 are useful connections between both paradigms when no other external information, other than the 794 data, is introduced in the analysis (Bayarri and Berger, 2004). An uninformative, or diffuse, or objective or flat prior expresses only general, vague, objective information and follows the principle to assign 795 796 equal probabilities to all possibilities (indifference, ignorance). Using such objective prior typically leads 797 to results similar to those of a frequentist analysis. The full strength of the Bayesian approach is utilized 798 when applying *informative priors*, encapsulating all relevant information apart from that in the data 799 under analysis, merging such external information seamlessly with the data by including such information quantitatively by a probability distribution. 800

801 **Bayesian versus frequentist BMD estimation**

In the frequentist approach, the true BMD is a single specific and unknown value, and interpretation of 802 the estimation of that unknown true BMD is in terms of an abundant number of "repeated samples". 803 804 These repeated samples are not observed but are assumed to be "similar" to the observed one (similar to be interpreted as: taken from the same population with the same random/probabilistic sampling 805 plan). The 95% confidence interval has to be interpreted in terms of repeated samples: if for each of 806 807 these unobserved repeated samples a 95% CI would be computed, it is expected that 95% of these CIs contain the true unknown BMD. So, one is "confident" that the CI based on the single observed sample 808 contains the true BMD, but one does not know, and there is no probability attached to the event that 809 the CI of the observed sample contains the true BMD. The 5% BMDL and 95% BMDU are defined as 810 the lower and respectively upper bound of a 90% CI for the BMD. 811

In the Bayesian approach, the BMD is not a single specific value but a random variable with a particular 812 813 distribution (the prior and posterior distribution). That distribution expresses the knowledge about the BMD. More probability (area under the density) in certain region(s) expresses that the values in these 814 region(s) are more likely. The mode of the distribution is the most likely value for the BMD. The spread 815 (the standard deviation) of the BMD distribution expresses the uncertainty about the knowledge of BMD. 816 817 A larger standard deviation expresses more uncertainty. The distribution of the BMD, prior to having used the data or even having set up the experiment, is called the *prior distribution*. In case there is no 818 819 "prior knowledge", one uses a vague, flat prior. Suppose your experiment has a range of dose values 820 (0,100), the prior distribution of the BMD could then be taken as the uniform prior, taking the constant value 1/100 on the interval (0,100): no mode, maximal spread. In case there is prior knowledge, from 821 the literature or from experts, that the BMD is expected to be around the most likely value 5.25 (the 822 mode), and to be within a minimum 4.5 and maximum value 5.8, one could use a particular unimodal 823 824 prior distribution with mode 5.25, minimum 4.5 and maximum 5.8 (see Section 2.6.4). With the data and a model, and based on Bayes' theorem, the prior distribution for the BMD is revised, updated to 825

the so-called posterior distribution (post factum using the data and the model), based on the equation (with \propto denoting "is proportional to")

828

829 830

posterior distribution \propto likelihood \times prior distribution

(*)

831 with the likelihood expressing the plausibility of the observed data as a function of the model parameters. The frequentist maximum likelihood (ML) estimate is that value of the model parameter 832 that maximizes the likelihood. The identity (*) connects frequentist ML estimation and Bayesian 833 estimation. When using a flat uninformative prior, the prior has "no effect", and maximizing the posterior 834 distribution, leading to the posterior mode as a Bayesian estimate, coincides essentially with maximizing 835 836 the likelihood, and in that case the Bayesian estimate and the ML estimate are essentially the same. So 837 (with \equiv denoting equivalent, being essentially identical up to e.g. minor differences due to numerical 838 approximations), this implies:

839

840

frequentist BMD(L/U) \equiv Bayesian BMD(L/U) with uninformative prior

841

In this sense, Bayesian estimation can be viewed as an extension of ML estimation, as it combines data information (through the likelihood) with other historical or expert knowledge (through the prior distribution). When a series of independent experiments are performed over time, equation (*) can be applied sequentially: the posterior of a parameter (such as the BMD) in experiment *j* can be used as a prior for the parameter when analysing the data of experiment j+1. The Bayesian approach can mimic a learning process and reflect the accumulation of knowledge over time, and is therefore proposed as the recommended approach for BMD modelling in EFSA

Despite the close connection between ML and Bayesian estimation, terminology and interpretation is 849 850 different. The 95% credible interval (or credibility, CrI) for the BMD is determined as an interval that covers 95% of likely values of the BMD (probability area 0.95 under the posterior distribution). The 851 interpretation of the CrI is more natural than that of the frequentist CI: the probability that the BMD is 852 853 within the limits of the CrI is 0.95. Turning to the BMDL and the BMDU: the 95% BMDL is the lower bound of a 90% CI or CrI (with 5% at the left side and 5% at the right side). For the frequentist CI the 854 interpretation is again that: 5% of similarly constructed CIs for all theoretical repeated samples would 855 have a lower limit above the true unknown specific BMD. For the Bayesian CrI the interpretation is: the 856 probability that the BMD is below the BMDL is 0.05. A similar interpretation holds for the BMDU. 857

858 In case an (highly) informative prior has been used, and this prior is in line with the data, the obtained 859 Bayesian CrI will be (much) narrower. However, if the informative prior and the data are in conflict (e.g. the center of the prior is quite different from that given by the data through the model applied), the 860 resulting posterior BMD distribution might have a larger spread, and the Bayesian CrI may be wider 861 than the frequentist CI. A relevant question is then: why is the prior distribution not in line with the 862 data? Many reasons may apply: the data come from an experiment with different characteristics than 863 864 those (historical experiments) behind the prior distribution, such as different experimental units (animals), different methods used to obtain the measured endpoints, or even (slightly) differently 865 defined endpoints, etc. This type of considerations is highly relevant in order to decide about using this 866 informative prior, or rather the uninformative prior. Does one prefer to take the additional uncertainty 867 caused by heterogeneous experimental conditions into account, or does one consider the historical ones 868 869 as inappropriate or outdated in current times. In conclusion, the Bayesian approach allows to combine 870 data with prior information, which is very appealing as science is based on the accumulation of 871 knowledge over time, but it poses several challenges as well:

- Different prior distributions can be used to represent the same historical prior information. A sensitivity analysis across different sensible choices for the prior distribution would then be required. Such analysis may be time and (computational) resource demanding.
- The choice whether to use an informative prior (when available) or not should be taken prior to the analysis, and not based on a comparison of the prior and posterior distribution (which would be assimilated to data snooping). One should therefore know and reflect on the relevant

conditions behind the prior knowledge and the details of the experiment behind the data to be 878 879 used, and decide on whether heterogeneity in such conditions is relevant or important to include 880 or not. "Is the accumulation of knowledge by the Bayesian engine "informative prior + data = posterior" scientifically justified?" is a central question. 881

882 For further reading and more information on the Bayesian paradigm and Bayesian modelling, see e.g. Lesaffre and Lawson (2012), Kruschke (2014), Bolstad and Curran (2016). 883

Model averaging 884

885 Different dose-response models for a particular response are to be considered as different mathematical approximations of the true unknown dose-response model. Some models might approximate the true 886 887 model very well and others less, but the suite of models should contain a sufficient number of models (preferably as diverse as possible), which should be flexible enough, to ensure that at least one model 888 approximates the true model sufficiently well. It is not required to add more and more (similar or nested) 889 models to the suite of candidate models, as such additional models do not improve the analysis, and 890 will slow down the already computationally intensive analysis. The suite of 16 models for a continuous 891 endpoint and the suite of 8 models for a quantal endpoint (Section 2.5.1 and 2.5.2) are considered to 892

be rich enough to include at least one well-fitting model. 893

894 It is generally accepted that a multi-model approach, reflecting data driven model selection and accounting for model uncertainty, outperforms the single-best-model approach (Burnham and 895 Anderson, 2002; 2004; Stoica et al., 2004). The rationale behind multi-model inference is to "combine" 896 all model-specific analyses by averaging across models while assigning higher weights to those models 897 that fit the data better. Equally well-fitting models contribute equally to the multi-model analysis. This 898 899 rationale is common to both inferential paradiams, frequentist or Bayesian, but the implementation is 900 different.

901 The frequentist approach follows the frequentist thinking about a particular parameter of interest (such as the BMD) as a deterministic specific value. Each model provides a point estimate for that parameter 902 903 and the model averaged estimate is a weighted average of the model specific estimates, assigning higher weights to better fitting models. A common choice of such weights is based on Akaike's 904 Information Criterion (AIC), a statistical measure that rewards goodness of fit of the model to the data 905 while penalizing for complexity. Confidence intervals can then be constructed based on estimates of the 906 standard error of that model averaged estimate, but in general, one prefers the construction of 907 simulation-based intervals (bootstrap), at the cost of computing time. This bootstrap simulation method 908 909 reflects the frequentist repeated sampling of other unobserved samples in order to construct the sampling distribution of the BMD point estimate, and left and right quantiles of this simulated distribution 910 can then be taken to obtain a confidence interval. There are two approaches to construct a model 911 averaged point estimate and confidence interval. A "direct method" averages the model specific BMD 912 913 estimates (without the need to construct an averaged dose response model). The "indirect method" 914 first averages the dose response models to obtain an averaged dose response model and applies that single averaged model to get the model averaged BMD estimate. Both approaches of model averaging 915 and both approaches of building confidence intervals are presented and illustrated in Aerts et al. (2020). 916 The indirect method has been implemented in current frequentist model averaged BMD software 917 918 (PROAST and EFSA platform).

Similarly, the Bayesian approach follows the Bayesian philosophy that the BMD has a (uncertainty) 919 distribution. The data and the model allow to update the prior BMD distribution resulting in model-920 specific posterior BMD distributions. Using weights these model-specific distributions are mixed into a 921 single "averaged" posterior BMD distribution. The Bayesian approach does not need to distinguish the 922 direct and indirect method. The left and right quantiles of the averaged posterior BMD distribution 923 924 provide the posterior credible interval. Not only model parameters get a distribution, but also the 925 (candidate) models get a prior probability, expressing the prior knowledge about the "correctness" of the individual models. Most often, all models are equally likely, prior to the data. The weights used to 926 construct the averaged posterior distribution are then, given the data, the posterior probabilities for the 927 individual models. The difficulty of obtaining these posterior probabilities is the determination of certain 928 929 integrals (so-called marginal likelihood), which are not analytically tractable and must be approximated using numerical methods (Markov chain Monte Carlo (MCMC) methods, Bridge sampling, Laplace 930

approximation). For more details, see e.g. Hoeting et al (1999), Morales et al (2006). In most cases
the Laplace approximation provides reliable results, similar to the most accurate method of Bridge
sampling (being more computationally demanding). Considering this, the Laplace approximation method
would be the default approach given the differences in computational speed, but Bridge sampling can
be requested in case of clear indications of estimation failures.

936 In the setting of regression models (as in our case), application of model averaging has focused on 937 averaging across different regression models (dose response models in our case) for one specific 938 distribution (normal or log-normal in our case). More recently model averaging has been extended to 939 incorporate averaging across distributions as well (Wheeler et al., 2022).

Model averaging performs well if at least one of the candidate models fits well. To check this, the best 940 941 fitting candidate model is contrasted to the "full model", perfectly fitting the observed means (the full 942 model is defined in section 2.5.1 for continuous and in section 2.5.2 for guantal endpoints). Testing whether the best fitting model fits sufficiently well, as compared to the full model, is based on the Bayes 943 factor (used for hypothesis testing in the Bayesian paradigm, see e.g., section 3.8.2 in Lesaffre and 944 Lawson, 2012). In case none of the candidate models fits well, it is recommended to examine the 945 946 possible cause by checking the plot of the fit of the best fitting model together with the observed data (does it not fit well to the data in a particular dose range, are the data showing a non-monotone pattern 947 whereas the models are monotone by definition). 948

949 **2.5.4**. Extensions

950 Covariates

Besides fitting dose-response models to single datasets, it is possible to fit a given model to a 951 combination of datasets which differ in a specific aspect, such as sex, species, or exposure duration, 952 953 but are similar otherwise. In particular, the response parameter (endpoint) needs to be the same. By fitting the dose-response model to the combined dataset, with the specific aspect included in the 954 955 analysis as a so-called covariate, it can be examined in what sense the dose-responses in the subgroups 956 differ from each other, based on statistical principles (e.g. goodness-of-fit measures). In principle, the covariate can play its role on each component of the statistical model. It is however general practice in 957 958 statistical modelling that the covariate does not affect the distribution of the response at a specified dose but may affect a subset of the parameters a, b, c, d or, after parameterization of the background 959 and maximum response, the BMD and the parameter d of the model for $\mu(x)$ or $\pi(x)$. Fitting different 960 961 models with or without a covariate effect and comparing these models within the Bayesian framework, 962 may lead to

- the use of a common BMD and resulting in a unique BMD(L/U) across subgroups;
- the use of subgroup-specific (covariate-specific) BMD parameters and resulting in subgroup specific BMD(L/U)s.

Combining datasets with similar design characteristics in a dose-response analysis with covariate(s) is more powerful (i.e. narrower credible intervals), as compared to analysing each single dataset separately. Covariate analysis is particularly relevant when the subgroups datasets provide relatively poor dose-response information (Slob and Setzer, 2014). It also allows for examining and quantifying potential differences between the subgroups. For instance, the problem formulation might indicate that the assessment should specifically focus on sex differences, in which case it would be important to have a precise estimate of the difference in BMDs between male and female animals.

All models in Tables 2 and 3 allow for incorporating covariates in a toxicologically meaningful way.

974 Hierarchical/Nested response data

When data are nested (multi-levelled - repeated measure designs in which the same subject is measured
 repeatedly over time, or in the cases in which observations are correlated, e.g. existence of litter
 effects), this hierarchical structure needs to be taken into account. Ignoring multivariate nature of such
 data will result in underestimation of standard errors as well as too narrow confidence intervals. There

are several statistical methods to account for hierarchical data: Teunis, Evers and Slob (1999) proposed
 the use of Beta-Binomial models to deal with such situations.

981 **2.6.** Guidance to apply the BMD approach

This section provides an overview of how to estimate the BMD and calculate its credible interval from dose-response data, and recommendations are given on particular choices to be made. The guidance refers not only to *in vivo* data but could be applied also to other types of data (e.g. *in vitro* data). Although currently available software allows for the application of the BMD approach without detailed knowledge of computational technicalities, a conceptual understanding of the method, as described in this Guidance, is a prerequisite for correct interpretation of the results.

- As shown in Figure 2, the application of the BMD approach may be summarized as a process involvingthe following steps
- 990 1. Specification of type of dose-response data (Section 2.6.1)
- 991 2. Selection of the BMR (Section 2.6.2)
- 3. Consideration of suitability of data for dose-response modelling (Section 2.6.3)
- 993 4. Consideration of prior information for the parameter(s) considered (Section 2.6.4)
- 9949595. Perform Bayesian model averaging to estimate the BMD and calculate its credible interval (Section 2.6.5)
- 996
 6. Decide on the overall BMDL (all endpoints considered) to be used as Reference Point to establish
 997
 the HBGV or calculate a MOE
- 998

1001

www.efsa.europa.eu/efsajournal

1002 2.6.1. Structure of the dose-response data

1003 The basic structure of most dose-response data is a matrix, with each row providing the summary 1004 statistics of a particular dose, with columns:

- For continuous endpoints: dose, number of observations, arithmetic mean, arithmetic standard deviation or variance.
- For quantal endpoints: dose, number of observations, number of adverse events.
- 1008 Possible variations on this basic structure include:
- Individual data, in a matrix, with each row referring to an individual unit and with two columns:
 the dose used, and the individual outcome (continuous or adverse event indicator).
- Summary data, as in the basic structure, but with, for continuous endpoints, the geometric mean and geometric standard deviation or variance.
- The basic structure extended with an additional column with the values of a covariate for that dose group, such as gender, age group. In this setting, the same dose value will appear in multiple rows, as often as there are covariate values. For instance, in the case of the covariate gender, there will be two rows with the same dose level (first column), possibly the same number of observations in the second column (in case of a balanced design), likely different values for mean and standard deviation (or variance) in the third and fourth column, and different gender indicators in the fifth column.
- In the case of clustered quantal data (e.g. litters), there are multiple rows with the same dose level (in the first column), each of them referring to a different cluster; the other columns are again the number of observations (likely different for different clusters), number of adverse events.

1024 There are specific conditions in which a covariate analysis can be used when performing a BMD estimation (see Section 2.5.4). The first one could be when in the problem formulation there might be 1025 indications that sex, or other population characteristics differences, such as age groups, need 1026 evaluations. In such case, if groups can be pooled, parameter estimation might increase accuracy and 1027 1028 result in a narrower credible interval for the BMD. Another condition is when considering several studies having similar experimental conditions (e.g. same animal species, comparable experimental design, 1029 etc): these studies could be combined in a covariate analysis (in which study indicator would be 1030 1031 considered as a covariate); the studies might provide different dose ranges and with this a better indication about the potential dose-response relationship. This specific condition might increase 1032 accuracy when estimating model parameters and result, after pooling the studies, in a narrower BMD 1033 1034 credible interval.

1035 **2.6.2.** Selection of the BMR

1036 The BMR is a degree of change that defines a level of response in a specific endpoint that is measurable, 1037 considered relevant to humans or to the model species, and that is used for estimating the associated 1038 dose (the "true" BMD). Before thinking about what value may be specified for the BMR, it is necessary 1039 to make clear in what terms the BMR is defined, i.e. what metric is used for reflecting the magnitude of 1040 the effect. Both for continuous and for quantal data there are various options, and the most important 1041 ones will be discussed below. For both quantal and continuous endpoints, the rationale for the decision 1042 made on the BMR and associated uncertainties should be explained and documented.

1043

1044 *Quantal data*

For quantal data, the BMR is defined in terms of an increase in the incidence of the lesion/response scored, compared with the background incidence. In toxicology, the two common metrics for reflecting such an increase are the additional risk (incidence at a given dose minus incidence in the controls), and the extra risk (the additional risk divided by (1 minus the incidence in the controls), i.e. the additional risk divided by the non-affected fraction of the control group) (see section 2.3.3, footnote 5). The BMR

needs to be a value within the observed range of experimental response and near the lower end of thisrange.

For quantal response data observed in experimental animals, BMR values of 1%, 5% or 10% (extra or 1052 additional risk) were initially proposed (Crump, 1984). In its 2005 opinion, the EFSA Scientific Committee 1053 concluded that the use of the BMDL, calculated for a BMR of 10% (BMDL10), is an appropriate reference 1054 1055 point for substances that are both genotoxic and carcinogenic, because such a value is the lowest 1056 statistically significant increased incidence that can be measured in most studies, and would normally require little or no extrapolation outside the observed experimental data (EFSA SC, 2005). At that time, 1057 1058 the conclusion was in the context of data carcinogenicity studies in experimental animals. Further 1059 evaluation of the BMR for guantal data in a more general context was provided in the previous EFSA SC guidance on benchmark dose modelling, which noted that various studies estimated that the median of 1060 the upper bounds of extra risk at the NOAEL was close to 10%, suggesting that the BMDL $_{10}$ might in 1061 many cases be appropriate (Allen at al., 1994; Fowles et al., 1999; Sand et al., 2011). 1062

- 1063 Any decision to deviate from this default should be explained and documented.
- 1064
- 1065 *Continuous data*

For continuous data, the BMR should reflect the dose where an effect becomes adverse and, therefore, depends on the type of endpoint selected. Whether or not various effects occur at similar doses might modulate the overall adversity associated with a BMD for a particular effect (Sand, 2021), and may thus potentially be relevant to consider in the process of selecting the BMR (for the critical effect). Ideally, the BMR is set numerically so that it reflects the onset of a human-relevant adverse effect, meaning that a response above the BMR is considered adverse. When choosing a BMR for continuous data, EFSA recommends a tiered approach:

1073 Tier 1: consider whether a biologically relevant BMR is already established for the endpoint considered.
1074 Discussion, including challenges and guiding information, related to the derivation of such BMR values
1075 can be found in publications of Dekkers, de Heer & Rennen (2001) and WHO (2020).

1076 Tier 2: in the absence of an already established BMR, experts should consider whether it is possible to 1077 define quantitatively "biologically relevant" to inform the selection of a BMR for the endpoint considered. 1078 The BMR may be defined using any of the methods that are available in the literature (e.g. Expert 1079 Knowledge Elicitation), taking biological relevance into account. This tier assumes that a level of 1080 adversity can be identified, even though the minimal degree of adversity may not be known. Thus, 1081 biologically relevant BMRs may also be represented by a range rather than by a point.

1082 If it is not possible to provide an argument for a specific biologically relevant BMR (or range of biologically relevant BMRs) for the endpoint considered, this endpoint should not be used to establish a 1083 1084 HBGV. In the absence of endpoints with biologically relevant BMRs, the full set of doses used in the experiment could still be used in a sensitivity analysis to investigate the probability that, for several BMR 1085 chosen a priori, the BMD value associated to them would be below or above the doses tested. This 1086 information could then be further considered in calculation of a range of MOEs. Another possibility could 1087 1088 be to use each of the dose tested and calculate the fold change compared to the background response, 1089 and then use these fold changes as BMRs to estimate the BMD distribution. This would aid defining the uncertainty associated to each BMD distribution, which in turn would provide insights on the information 1090 1091 contained in the dose-response fitted.

1092 2.6.3. Data suitability to estimate the BMD using dose-response modelling

Using dose-response models for estimating the BMD and constructing its credible interval ensures an efficient use of all doses tested in the experiment. It is known that the selection of the doses when designing the experiment, is essential for the optimum retrieval of information regarding the BMD from the experimental outcome. In order to evaluate whether the data at hand (the doses used and the responses observed in the study) contain sufficient information to characterize the dose-response curve and at the same time enough information on the low dose range to estimate the BMD and its credible interval, the following procedure is proposed:

- 1100 1. Consider all pairwise comparisons between dose groups tested.
- 1101 2. Use a one-sided hypothesis testing procedure for each pairwise comparison to account for 1102 monotonicity. The test to use for each pairwise comparison should account for:
 - Potentially different variances between dose groups,
 - Potentially different number of observations between dose groups.
- 1105 3. Select only significant differences:

1103

1104

1106 When at least 3 groups of responses are found to be significantly different from each 1107 other (see Figure 3.1 as an example illustrating this for increasing responses), the data is expected to provide enough information to estimate with a certain level of reliability 1108 a dose-response curve (from the pairwise comparison we have at least three groups of 1109 responses: one related to the control group (green circle), the maximum response 1110 group (blue circle) and a third group (red circle) for which the responses are in between 1111 these two groups). In this case it is expected that the study contains enough 1112 information to characterize the dose-response relationship and it might contain enough 1113 information as well about the parameter of interest, the BMD. The data is said to be 1114 1115 suitable for modelling and estimation of BMD.

1116 Figure 3.1: Representation of a study design that would have at least three groups of 1117 responses statistically significantly different 1118 1119 1120 In case of only two groups of responses are found to be significantly different, then we can say that the data does not provide enough information to describe accurately the 1121 dose-response relationship and two situations could be encountered: 1122 1123 i. If the lowest/largest (increasing or decreasing relationship) response group 1124 contain only the control (see green circle in Figure 3.2 as an example illustrating this for increasing responses), the study might have enough information to 1125 1126 define a dose-response curve, but it is expected that the study does not contain 1127 enough information for BMD estimation, in general it is expected to produce small BMDL values as not enough small doses have been tested in the 1128 experiment conducted, and the BMD will certainly be estimated to be below the 1129 first dose tested and wide confidence interval. Although the data could be 1130 modelled, the available information might not be sufficient for 1131 estimating the BMD. 1132

Figure 3.2: Representation of a study design that would have only two groups of responses statistically significantly different, where the control group is the only one having a different response to the rest of the doses.

ii. If the lowest (largest) increasing (decreasing) relationship response groups contain not only the control, but also other dose groups (see green circle Figure 3.3 as an example illustrating this for increasing responses), the study might have enough information to estimate reliably the dose-response curve at low dose levels, and it is expected that the study does contain enough information for BMD estimation (meaning that the lower bound of the credible interval is expected to be close to the estimated BMD) as enough low dose responses are observed. The data can be modelled, and estimation of BMD would produce BMDL values that can be considered suitable to identify a reference point.

Figure 3.3: Representation of a study design that would have only two groups of responses statistically significantly different, where the control is not the only one having a different response to the highest response observed.

1153

1154 The generic examples here presented to illustrate the process to assess data suitability to estimate the 1155 BMD are used to simulate data following the principles described in Figures 3.1, 3.2 and 3.3. The results of the dose-response models are presented in Appendix C - and it is clearly highlighted that for data 1156 presenting configurations as shown in Figures 3.1 and 3.3, the estimation of BMD can be done with 1157 reliable precision as the data contain enough information to be able to build the dose-response and as 1158 well of enough low doses to increase BMD estimation precision. For the cases in which all doses tested 1159 1160 provide information about the maximum response the modeling does not provide reliable estimation (low estimation precision), only when informative priors can be considered, the Bayesian BMD model 1161 averaging paradigm provide more reliable estimates, with the drawback that could also bias the 1162 1163 estimation if the priors are set to be in the region not containing the true BMD.

1164 *High dose impact*

In some instances, the shape of the dose response relationship for one endpoint is affected by a different 1165 1166 endpoint. For example, in the carcinogenicity studies of the pyrrolizidine alkaloids, riddelliine and lasocarpine, there was a dose-related decrease in survival, particularly in the lasiocarpine study. All 1167 female rats dosed with the highest dose of lasiocarpine had died by week 69. The number of tumours 1168 in the high dose group was lower than in the low and mid-dose groups presumably due to the shorter 1169 1170 duration of dosing. The CONTAM Panel noted that the BMD calculations indicated a low confidence in the results, and concluded that the high mortality rate impaired the dose response analysis (EFSA 1171 CONTAM Panel, 2011). Since parameter c relates to the maximum response, limitations on the high 1172 1173 dose might have an impact on the BMD and BMDL. Where high dose data are available for the effect of interest, but they are clearly influenced by another type of effect or mode of action, then it may be 1174 1175 iustifiable (on biological basis) to exclude the high dose data. If there is no indication of an overlying 1176 mode of action, then any deviation from the dose response relationship could be related to variability and the data should not be excluded. 1177

1178 If the maximum response is not reached at the highest dose, then the assessor should consider whether 1179 it is possible to use an informed prior on parameter c. However, this approach introduces uncertainty 1180 with respect to the dose at which the maximum response would be reached.

1181 Decision to exclude one (or several) point(s) from the dose response modelling should always be 1182 justified and documented.

1183 Absence of non-exposed controls

In strict terms, model fits are valid only for the range of data used to estimate the model. For new 1184 1185 substances this condition can be ensured by the presence of unexposed controls. In the case of naturally occurring substances or contaminants, the condition of unexposed controls may not always be met and 1186 the estimated value for the background response parameter may become very uncertain. This is of 1187 particular concern for observational studies in humans where exposure conditions are not controlled. 1188 This may equally apply to animal studies depending on how difficult it is to eliminate or minimize the 1189 presence of the substance under consideration from the experimental setting. In general, the greater 1190 the difference between the zero dose and exposure among controls the higher the uncertainty. If the 1191 1192 dose response-function has become asymptotic at the lower dose range the uncertainty associated with 1193 extrapolation is generally small. However, in all other cases extrapolation to zero dose becomes more uncertain, depending on the steepness of the dose response at lower doses. In cases where this has 1194 1195 occurred, such studies have often been referred to as uncertain or even poorly conducted despite being 1196 replicated in an independent setting. It is however important to distinguish between experimental uncertainty and model uncertainty. 1197

To address the uncertainty that may arise due to extrapolation towards zero below the observed exposure range some assumptions may be needed for dose response curves that are non-asymptotic. One way to address this uncertainty is to make assumptions on the expected value of the outcome under consideration at zero exposure. The variability in the lower dose groups may be used as proxy for the zero dose in such cases. Based on other experiments (e.g. variation in historical controls), one can constrain the model fit with plausible values for the background response parameter a observed in

different settings. Despite associated uncertainty, such assumptions are often more credible than
 derived values for the background response from BMD modelling that fall well outside biological variation
 or values that have not been associated with risk in other studies.

Another practical example would be modelling of dose response data for nutrients to establish HBGVs. 1207 In this case zero exposure does not exist and regardless of the outcome under consideration both high 1208 1209 and low exposure is at the extremes associated with increased risk of adversity. In the special case of 1210 nutrients where a certain exposure level is required to remain healthy, one would need to use a "background" response value around a pre-defined exposure level. Further experience in benchmark 1211 1212 dose modelling in the area of nutrition is required before guidance can be developed. It may also occur 1213 due to model uncertainty that the BMDL falls below the physiological requirements simply because the margin between physiological needs and toxicity is smaller than the combined experimental and model 1214 uncertainty. Such a situation requires special modelling considerations, should the BMD approach be 1215 1216 applied.

- 1217 To date, few practical examples of application of BMD modelling in the absence of non-exposed controls
- exist. The more widespread use of the BMD methodology may highlight the need to update this guidancein this respect.
- ____
- 1220 2.6.4. Consideration of prior information for the endpoint(s) considered
- 1221 Two types of prior distributions are used:
- PERT distributions for the parameters: background and maximum response, and the BMD (Johnson et al., 1995).
- Normal distributions for the "technical" parameters: transformations of the parameters

1225 The distinction between both types of prior distributions for both type of parameters is based on their 1226 different role and usage:

- Uninformative (the default) and informative (as recommended option) priors can be assigned to the natural parameters.
- No prior information can be assigned to the technical parameters
- 1230 The parameter *d*, which is acting differently in the different models and has direct link 1231 to any natural characteristic of the endpoint. Moreover, the presence of this fourth 1232 parameter enhances the flexibility of each of the models, but at the cost of 1233 computational stability. For that reason, a particular normal prior distribution is assigned 1234 to this parameter (or a transformed parameter, such as *log(d)*) in order to technically 1235 stabilize the fitting of the model.
- 1236 \circ The variance parameter σ^2 depends on characteristics of the endpoint and of the1237experiment. Across all models the same uninformative normal prior is attached to this1238variance parameter (on the log scale).
- 1239

1240 The models proposed are built based on four parameters, which implies that to apply them without 1241 considering informative priors for the parameters, at least 4 doses including the control would be 1242 needed. In case that the study provides information for two active doses and a control, informative 1243 priors would be needed for some of the parameters in the model to make the model identifiable.

1244

1245 This section focuses on the parameters background, maximum response and BMD, and the use of the PERT distribution. The PERT distribution can be characterised by the minimum, mode, maximum, and 1246 a shape parameter. The smaller the shape parameter the less informative the distribution is around its 1247 1248 mode. Figure 4 shows the density of three PERT differences, all with minimum 0, maximum 20 (red vertical lines) and mode 5, but with different shape parameter (4 for solid, 1 for dashed, and 0 for 1249 1250 dotted line). For the uninformative version of the prior, the 4 parameters get default values ensuring a 1251 wide range and shape parameter 0 (implying the mode is not relevant). For the informative version any and ideally all four parameters of the PERT distribution get a value based on a particular source 1252

(other historical data, literature, expert judgement). The shape parameter is the most difficult to specify;
It can range on a continuous scale, but the user will be offered the possibility to choose between the
values illustrated in Figure 4: shape value 0 reflecting that there is no knowledge about the mode, shape
value 1 reflecting that there is a mode but its value is uncertain, and shape value 4 reflecting that the
particular mode is really the most likely value.

1258 1259

1260

1261

Figure 4: PERT densities with minimum=0, mode=5, maximum=20 (vertical red lines) and shape varying from 0 (dotted line), 1 (dashed line) to 4 (solid line).

The degree of informativeness of the PERT distribution, for a fixed mode, can be governed by adapting 1262 the minimum, the maximum and the shape parameter; the degree diminishes with choosing a smaller 1263 minimum, a higher maximum or a smaller shape parameter. In Appendix C – Example generated based 1264 1265 on Figure 3.2 the role of priors is explored. The data analysed contain scarce information on how the response depends on the dose to move from the response at the control group to the maximum 1266 response trigger by the experimental dose used. The model results considering uninformative priors 1267 provide uncertain estimates of the BMD (ratio between BMDU and BMDL larger than 70, and for the 1268 Laplace approximation very large values) with lower bounds that in general are very close to the control 1269 1270 group. Then several informative priors were considered, first restricting the range in which the BMD should be and later including information on where the most likely value would be. The results clearly 1271 indicate gaining precision on BMD estimation, but as well that it should be used with caution, since a 1272 1273 misspecification of the location of the BMD when using informative priors might induce bias in the estimation of the BMD. 1274

1275 2.6.5. Using Bayesian model averaging to estimate the BMD and calculate its 1276 credible interval

1277 In Appendix C – The Body Weight Example in the 2017 EFSA Guidance Update, and Appendix D – Thyroid epithelial cell vacuolisation data in the 2017 EFSA Guidance Update, the results of Bayesian 1278 1279 model averaging for previously analysed continuous and quantal data are presented. The results obtained are compared to the previously reported results considering the frequentist approach provided 1280 by PROAST. The resulting credible interval for the Bayesian model averaging produced similar results 1281 to those obtained using a frequentist paradigm. For the continuous example the results obtained 1282 considering both procedures are the same, while for guantal data, a slightly more precise estimate of 1283 the BMD is obtained when Bayesian model averaging is used, especially if the estimation is done using 1284 Bridge sampling. 1285

1286 *The BMDL as RP and alternative solutions*

Although a given dataset was considered suitable for/worth modelling during the problem formulation step (see Section 2.6.3), in some instances the outcome of the Bayesian model averaging will result in a BMD credible interval considered as too broad (too much uncertainty around the most likely BMD) for the purpose of the risk assessment. Advice to judge the modelling outcome has been given manifold in statistical, toxicological and regulatory literature since the beginning of the use of the BMD approach for risk assessment, see e.g. Davis et al. (2011) or Wignall et al. (2014); see also documents published by regulatory agencies, in particular US EPA (2020) from August 19, 2020.

1294 In most cases, the uncertainty of the BMD estimation has been characterized by the BMDU/BMDL ratio 1295 or by the ratio between the estimated BMD (the median of the posterior distribution of the BMD in 1296 Bayesian model averaging) and the BMDL. These ratios were suggested by US EPA to judge the 1297 appropriateness of models when the BMD/BMDLs differ between models, see also Haber et al. (2018). 1298 Although this difference is no more an issue in model averaging, the following set of criteria, based on 1299 those proposed by US EPA to judge the width of the BMD credible interval should be considered by the 1300 risk assessor.

- 1301 Alternatives to the BMDL as a reference point, as described below, are recommended when:
- None of the candidate models fit the data sufficiently well (see section 2.5.3)
- 1303 BMD/BMDL > 20, or
- The BMD is 10 times lower than the lowest non-zero dose⁷, or
- 1305 BMDU/BMDL > 50

1306 It should be noted that the above qualitative categorization depends on several cut-off values proposed by US EPA as "default logic assumptions"). Although plausible, they lack a theoretical statistical basis 1307 and they have so far not been tested empirically, e.g. in systematic reviews of risk assessment practice. 1308 1309 Developed for single model fitting, their suitability for judging a BMD credible interval obtained with model averaging should be further evaluated. As such, the above criteria should be used as "indicators" 1310 1311 on when the outcome of the modelling requires Experts consideration on the appropriateness of using the BMDL as reference point. The cut-off values for these criteria may be reconsidered after further 1312 experience with their use has been accumulated. 1313

Post-hoc modification of some parameters of the modelling (e.g. increasing the BMR, use of informative priors for some of the model parameters) as possible solutions to reduce the uncertainty around the BMD and obtain a more suitable BMDL are not recommended. In case the risk assessor decides not to use the BMDL as RP (such decision should be explained and documented), two alternative solutions are proposed:

The first preferred option is making use of the probability distribution of the BMD resulting from the 1319 Bayesian model averaging. This probability distribution can be used to compare the most likely BMD 1320 1321 with the various experimental doses tested. Examples of cases where such an approach would be appropriate is when the most likely BMD is lower than the N(L)OAEL. If the most likely BMD is higher 1322 than the N(L)OAEL, the risk assessor may consider to use the N(L)OAEL as a more conservative RP. 1323 Obviously, the previously mentioned criteria that the most likely BMD should not be lower than 10 times 1324 the lowest non-zero dose still apply. The advantage of this approach is the quantification of the 1325 1326 uncertainty around the decision made to use the most likely BMD as RP.

1327 If the use of the most likely BMD is considered unreliable, the last alternative is to use a N(L)OAEL as 1328 the Reference Point, despite the associated limitations (see Section 2.3.1). In view of these limitations, 1329 caution should be used when applying the N(L)OAEL approach for the derivation of a RP, in particular 1330 in cases where there are indications that the NOAEL may overestimate the true NAEL. Should the 1331 decision be made to use the N(L)OAEL as a RP, the BMD credible interval should be communicated 1332 together with the value selected for the RP.

- 1333 Assessment of the overall Uncertainty characterisation
- As described in the SC guidance on uncertainty analysis in scientific assessment (2018), all EFSA scientific assessments must include consideration of uncertainties. As mentioned in section 2.3.3, the

⁷ If the BMD is lower than 10 times the lowest non-zero dose, the only possible alternative is using the N(L)OAEL see further down.

BMD approach allows for a quantitative characterisation of the uncertainty around the RP (represented by the BMDL-BMDU credible interval and/or other quantiles of the BMD posterior distribution) for the critical endpoint under consideration. The selection of the N(L)OAEL as reference point does not include a characterisation of the uncertainty around the RP; still the uncertainty around the RP needs to be taken into account when describing the overall uncertainty associated with the assessment.

1341 The identified sources of uncertainty should be listed, and their overall impact on the assessment 1342 conclusion characterised (EFSA 2018). The BMD credible interval will therefore be one of the factors to 1343 be considered in the overall uncertainty analysis required by EFSA as part of the risk assessment.

1344

1345 Determining the RP for a given substance

The procedure outlined in Figure 2 results in a final BMD credible interval for a given dose-response 1346 dataset related to a specific endpoint. The BMD credible interval should be calculated for all datasets 1347 considered relevant (the respective BMDL potentially leading to the RP), resulting in a set of credible 1348 intervals indicating the uncertainty ranges around the true BMD for the endpoints considered. This set 1349 1350 of BMD credible intervals concisely reflects the information provided by the available data and provides the starting point for the risk assessor to identify a RP. It is anticipated that the credible intervals 1351 resulting from modelling different endpoints elicited by a given substance will sometimes overlap and 1352 1353 the width of these credible intervals might vary. This raises the question of which BMDL to select as the RP. One way to proceed is to simply select the endpoint with the lowest BMDL and use that value as 1354 the RP. However, this procedure may not be optimal in all cases, and the risk assessor might decide to 1355 1356 use a more holistic approach, where all relevant aspects are taken into account, such as the width of the BMD credible intervals (rather than just the BMDLs), the biological meaning of the relevant 1357 endpoints, and the consequences for the HBGV or the MOE. This process will differ from case to case, 1358 1359 requires expert judgement and it is the risk assessor's responsibility to make a substantiated decision on what BMDL will be used as the RP. The following aspects may be considered: 1360

- If the HBGV is based on a BMDL with a wide credible interval, and is much higher than the exposure estimate, or the MOE is much larger than the minimal value considered necessary, then the high uncertainty in the RP has no consequence for the risk characterization. It should be however kept in mind that an exposure estimate is not a fixed value (it may well change in the future).
- In some cases, the selected RP may not be the lowest BMDL, for example when this lowest BMDL concerns an effect that is also reflected by, or linked to other endpoints (e.g. liver necrosis vs serum enzymes) that resulted in much smaller credible intervals but with higher BMDLs (scenario I and II). In that case it might be argued that the true BMDs for those analogous endpoints would probably be similar, but one of them resulted in a much wider credible interval (e.g. due to large measurement errors).
- In case two endpoints are not related to each other, and their biological consequences differ, the risk assessor may give preference to the endpoint considered to be more "severe" (e.g. nephrotoxicity vs body weight), irrespective of the width of the credible interval (scenario III and IV). The following is meant to illustrate the scenarios mentioned above:

1377	Endpoint A:	BMDL-A II BMDU-A
1378	Endpoint B:	BMDL-B II BMDU-B

1379 Dose:

Scenario	Endpoint A	Endpoint B	Consider as RP
Ι	Serum enzymes	liver necrosis	BMDL-B
П	Relative liver weight	Body weight	BMDL-B
111	Body weight	Nephrotoxicity	BMDL-B
IV	Serum enzymes	Neurotoxicity	BMDL-B

1381

1380

As stated above, it is the risk assessor's responsibility to make a substantiated decision on what BMDL will be used as the RP and the rationale for this decision needs to be documented.

1384

- 1385 **2.6.6.** Reporting of the BMD analysis
- 1386 The results of a BMD analysis should be reported in such a way that others are able to follow the 1387 process.
- 1388 In reporting a BMD analysis for a particular study, it is not necessary to provide information on all the 1389 endpoints analysed but only for the critical one(s) in that study. It should be made clear in a narrative 1390 why this (these) endpoint(s) was (were) selected.
- 1391 The following information should be provided:
- A. A summary table of the data for the endpoint(s) for which the BMD analysis is reported. For quantal endpoints both the number of responding animals and the total number of animals should be given for each dose level; for continuous endpoints the mean responses and the associated SDs (or SEMs) and sample sizes should be given for each dose level.
- 1396 B. The value of the BMR chosen, and the biologically-based rationale for such a choice
- 1397 C. The software used, including version number
- 1398D. Settings and statistical assumptions in the model fitting procedure when they deviate from the
recommended defaults in this opinion, together with the rationale for doing so.
- 1400 E. A table presenting the models used (preferably in the order of Tables 2 and 3), and the priors 1401 used for the endpoint(s) considered;
- F. The BMD estimate(s) and its/their BMDL-BMDU credible interval(s); values should be reported
 with two significant figures.
- 1404 G. Plots of the fitted models (see figure F.1).
- 1405 H. Conclusion regarding the selected BMDL to be used as a RP.
- 1406

1407 A template is annexed to ensure a standardised reporting of the above-mentioned information 1408 (Appendix E). This template is automatically implemented in the EFSA Platform when retrieving the 1409 results of the BMD analysis.

1410

1411 **3.** Conclusions

1412 This revised guidance takes account of the experience accumulated in BMD analysis over the last 1413 thirteen years.

The SC confirms that the BMD approach is a scientifically more advanced method compared to the NOAEL approach for identifying a RP, since it makes extended use of dose-response data and it provides a quantification of the uncertainty in the estimated RP resulting from the statistical limitations in the dose-response data. Using the BMD approach results in a more consistent RP, as a consequence of the specified BMR. Establishing HBGVs based on the BMD approach can be expected to be as protective as those based on the NOAEL approach, i.e. on average over a large number of risk assessments. Therefore, the default values for uncertainty factors currently applied are equally applicable.

- Bayesian model averaging is recommended as the preferred approach, as it brings the following main advantages compared to the frequentist model averaging approach recommended in the previous version of this guidance:
- Possible use of existing prior information (e.g. on background response) next to the information provided by the dataset considered. Accumulation of knowledge over time for the endpoint considered (the outcome of the BMD modelling for the endpoint can be used in the future as prior information for a new BMD modelling of that same endpoint)

- Bayesian model averaging allows a more flexible way to constrain model parameters by including weakly informative priors
- Probabilistic interpretation of the results of the BMD analysis (credible interval).
- Computational efficiency improved compared to the frequentist model averaging using bootstraps

The SC does not consider it necessary to repeat all previous risk assessments that used the 2009 or 1433 2017 version of the BMD guidance, given the modifications proposed in the updated version of the 1434 1435 auidance. The BMD approaches (frequentist or Bayesian if no informative priors are used), as well as 1436 the NOAEL approach, will result in comparable RPs. However, in individual cases where prior information is available for the critical endpoint, the resulting RP may differ substantially (e.g. by one order of 1437 magnitude) between the approaches. If a possible risk for human/animal health has been identified, 1438 1439 e.g. when the estimated exposure to the compound was evaluated to be close (e.g. within one order of magnitude) to the HBGV (and similarly for the MOE), then a re-evaluation might be considered. In such 1440 cases, the BMD approach as described in this guidance should be applied. 1441

The BMD approach is applicable to all chemicals in food, independently of their category or origin, e.g. pesticides, additives or contaminants, for identifying RPs to establish HBGVs or to calculate MOEs. The BMD approach can also be used for dose response assessment of epidemiological data, although it is not addressed in this guidance document and will be subject to a separate guidance of the EFSA SC.

1446

1447 **4. Recommendations:**

- The SC strongly recommends that the BMD approach, and more specifically Bayesian model averaging, is used for identifying RPs for establishing HBGVs and for calculating MOEs. The application of this guidance is mandatory for EFSA Panels and Units;
- The SC recommends that training in dose-response modelling and the use of BMD software continues to be offered to experts in the Scientific Panels, working groups and EFSA Units.
- The SC reiterates that, given the frequent use of the BMD approach, current toxicity test 1453 • guidelines should be reconsidered with the purpose of optimising the study design for the 1454 application of the BMD approach to identify a RP for establishing the HBGV, e.g. increase the 1455 number of dose levels without changing the total number of animals used in the experiment. 1456 The models proposed are built based on four parameters, which implies that to apply them 1457 1458 without considering informative priors for the parameters, at least 4 doses including the control would be needed. In case that the study provides information for two active doses and a control, 1459 informative priors would be needed for some of the parameters in the model to make the model 1460 1461 identifiable.
- The SC recommends maintaining the cross-cutting working group on BMD already established to assist EFSA Units and Panels in applying this guidance.
- The SC reiterates the need for a specific guidance on the use of the BMD approach to analyse epidemiological data.
- 1466
- 1467
- 1468
- 1469

1470 **References**

- Aerts M, Wheeler MW, and Cortinas Abrahantes J, 2020. An extended and unified modelling framework for benchmark dose estimation for both continuous and binary data. Environmetrics, 31:e2630. https://doi.org/10.1002/env.2630
- Allen BC, Kavlock, RJ, Kimmel CA and Faustman EM, 1994. Dose-response assessment for developmental toxicity. II. Comparison of generic Benchmark dose estimates with No Observed Adverse Effects Levels. Fundamental and Applied Toxicology, 23, 487-495.
- Baird SJS, Cohen JT, Graham JD, Shylakter AI and Evans JS, 1996. Noncancer risk assessment: A probabilistic alternative to current practice. Human and Ecological Risk Assessment, 2, 79–102.
- Bartlett MS, 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society, Series A 160, 268–282
- Bayarri MJ and Berger JO, 2004. The Interplay of Bayesian and Frequentist Analysis. Statistical Science, 19, 58-80.
- Beausoleil C, Beronius A, Bodin L, Bokkers BGH, Boon PE, Burger M, Cao Y, De Wit L, Fischer A, Hanberg A, Leander K, Litens-Karlsson S, Rousselle C, Slob W, Varret C, Wolterink G and Zilliacus J, 2016. Review of non-monotonic dose-responses of substances for human risk assessment. EFSA Supporting Publications, 13:1027E. doi: 10.2903/sp.efsa.2016.EN-1027
- Bemis JC, Wills JW, Bryce SM, Torous DK, Dertinger SD and Slob W, 2015. Comparison of In Vitro and In Vivo Clastogenic Potency Based on Benchmark Dose Analysis of Flow Cytometric Micronucleus Data. Mutagenesis, 31, 277-285.
- Bokkers BGH and Slob W, 2005. A Comparison of Ratio Distributions Based on the NOAEL and the Benchmark Approach for Subchronic-to-Chronic Extrapolation. Toxicological Sciences, 85, 1033-1040
- Bokkers BGH and Slob W 2007. Deriving a data-based interspecies assessment factor using the NOAEL and the Benchmark dose approach. Critical Review in Toxicology Journal, 37, 353-377.
- Bolstad WM and Curran JM 2016. Introduction to Bayesian Statistics, John Wiley & Sons, Incorporated, 2016. ProQuest Ebook Central,

https://ebookcentral.proquest.com/lib/ubhasselt/detail.action?docID=4658580.

- Bosgra S, van der Voet H, Boon PE and Slob W, 2009. An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food: An example with organophosphorus pesticides. Regulatory Toxicology and Pharmacology Journal, 54, 124-133.
- Burnham KP and Anderson DR, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretical. Approach. 2d ed. New York: Springer-Verlag.
- Burnham KP and Anderson DR, 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33, 261-304.
- Chiu WA and Slob W, 2015. A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects. Environmental Health Perspectives, 123, 1241-1254.
- Congdon P, 2006. Bayesian Statistical Modelling. (2a. ed.) Chichester: Wiley.
- Crump KS 1984. A New Method for Determining Allowable Daily Intakes. Fundamental and Applied Toxicology, 4, 854-871.
- Cox, D.R., 2006. Frequentist and Bayesian Statistics: A Critique. Transactions in Particle Physics, Astrophysics and Cosmology.
- Davis JA, Gift JS and Zhao QJ, 2011. Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1. Toxicol Appl Pharmacol, 254:181-191. doi: 10.1016/j.taap.2010.10.016
- Dekkers S, de Heer C and Rennen M, 2001. Critical effect sizes in toxicological risk assessment: a comprehensive and critical evaluation. Environmental toxicology and pharmacology, 10 1-2:33-52

- EFSA (European Food Safety Authority), 2005. Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. The EFSA Journal 2005, 282, 1-31
- EFSA (European Food Safety Authority), 2007. Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. The EFSA Journal 446, 1-127
- EFSA (European Food Safety Authority), 2009a. Guidance of the Scientific Committee on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA Journal 2009, 1150, 1-72.
- EFSA (European Food Safety Authority), 2009b. Safety evaluation of ractopamine. Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed. EFSA Journal 2009, 1041, 1-52.
- EFSA Panel on Contaminants in the Food Chain, 2004. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] to assess the health risks to consumers associated with exposure to organotins in foodstuffs, EFSA Journal 2004; 2(10):102, 119 pp. doi:10.2903/j.efsa.2004.102
- EFSA Panel on Contaminants in the Food Chain, 2004. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to Deoxynivalenol (DON) as undesirable substance in animal feed. EFSA Journal 2004; 2(6):73, 42 pp. doi:10.2903/j.efsa.2004.73
- EFSA Panel on Contaminants in the Food Chain, 2005. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to fumonisins as undesirable substances in animal feed. EFSA Journal 2005; 3(7):235, 32 pp. doi:10.2903/j.efsa.2005.235
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Pyrrolizidine alkaloids in food and feed. EFSA Journal 2011; 9(11):2406. [134 pp.] doi:10.2903/j.efsa.2011.2406.
- EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food, 2007. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to an application on the use of ethyl lauroyl arginate as a food additive. EFSA Journal 2007; 5(7):511, 27 pp. doi:10.2903/j.efsa.2007.511
- EFSA Scientific Committee, 2015. Scientific Opinion: Guidance on the review, revision and development of EFSA's Cross-cutting Guidance Documents. EFSA Journal 2015; 13(4):4080, 11 pp. doi:10.2903/j.efsa.2015.4080.
- EFSA Scientific Committee, Hardy, A, Benford, D, Halldorsson, T, Jeger, MJ, Knutsen, KH, More, S, Mortensen, A, Naegeli, H, Noteborn, H, Ockleford, C, Ricci, A, Rychen, G, Silano, V, Solecki, R, Turdk, D, Aerts, M, Bodin, L, Davis, A, Edler, L, Gundert-Remy, U, Sand, S, Slob, W, Bottex, B, Cortinas Abrahantes, J, Marques, DC, Kass, G and Schlatter, JR, 2017. Update: Guidance on the use of the benchmark dose approach in risk assessment. EFSA Journal 2017; 15(1):4658, 41 pp. doi:10.2903/j.efsa.2017.4658
- Fisher RA, 1922. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society A. 222 (594–604): 309–368.
- Fowles JR, Alexeeff GV and Dodge D, 1999. The use of benchmark dose methodology with acute inhalation lethality data. Regulatory Toxicology and Pharmacology 29, 262-278.
- Fryer M, Collins CD, Ferrier H, Colvile RN and Nieuwenhuijsen MJ, 2006. Human exposure modeling for chemical risk assessment: A review of current approaches and research and policy implications. Environmental Science & Policy, 9, 261–274.
- Gibney MJ and van der Voet H, 2003. Introduction to the Monte Carlo project and the approach to the validation of probabilistic models of dietary exposure to selected food chemicals. Food Additives and Contaminants, 20 (suppl. 1), S1–S7.
- Haber LT, Dourson ML, Allen BC, Hertzberg RC, Parker A, Vincent MJ, Maier A and Boobis AR, 2018. Benchmark dose (BMD) modeling: current practice, issues, and challenges. Critical Reviews in Toxicology, 48:387-415. doi: 10.1080/10408444.2018.1430121
- Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999). Bayesian model averaging: a tutorial. Statistical Science, 14, 382–417.

- IPCS (International Program on Chemical Safety), 2014. Guidance Document on Evaluating and Expressing Uncertainty in Hazard Characterization. World Health Organization, Geneva. Available at http://www.who.int/ipcs/methods/harmonization/areas/hazard_assessment/en/ [accessed 28 April 2015]
- Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2000. Pesticide residues in food 2000, Toxicological evaluations, Thiodicarb. First draft prepared by I. Dewhurst Pesticides Safety Directorate, Ministry of Agriculture, Fisheries and Food, Mallard House, Kings Pool, York, United Kingdom. Available at: www.inchem.org/documents/jmpr/jmpmono/v00pr09.htm
- Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2001. Pesticide residues in food 2001, Toxicological evaluations, Carbaryl (addendum). First draft prepared by M.E. van Apeldoorn, G. Wolterink, E. Turkstra, M.T.M. van Raaij, P.H. van Hoeven-Arentzen and J.G.M. van Engelen, Centre For Substances and Risk Assessment, National Institute of Public Health and the Environment, Bilthoven, The Netherlands. Available at: www.inchem.org/documents/jmpr/jmpmono/2001pr02.htm
- Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2001. Pesticide residues in food 2001, Toxicological evaluations, Spinosad. First draft prepared by A. Bartholomaeus, Chemicals and Non-prescription Medicines Branch, Therapeutic Goods Administration, Canberra ACT, Australia. Available at: www.inchem.org/documents/jmpr/jmpmono/2001pr12.htm
- Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2002. Pesticide residues in food 2002, Toxicological evaluations, Flutolanil. First draft prepared by I. Dewhurst, Pesticides Safety Directorate, Department for Environment, Food and Rural Affairs, Kings Pool, York, England. Available at: www.inchem.org/documents/jmpr/jmpmono/2002pr07.htm
- Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2002. Pesticide residues in food 2002, Toxicological evaluations, Metalaxyl and Metalaxyl-M. First draft prepared by C. Vleminckx, Scientific Institute of Public Health, Division Toxicology, Brussels, Belgium. Available at www.inchem.org/documents/jmpr/jmpmono/2002pr09.htm
- Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2003. Pesticide residues in food 2003, Toxicological evaluations, Cyprodinil. First draft prepared by P. V. Shah, United States Environmental Protection Agency, Office of Pesticide Programs, Washington DC, USA. Available at www.inchem.org/documents/jmpr/jmpmono/v2003pr03.htm
- Joint FAO/WHO Meeting on Pesticide Residues (JMPR), 2003. Pesticide residues in food 2003, Toxicological evaluations, Famoxadone. First draft prepared by D.B. McGregor, Toxicology Evaluation Consultants, Lyon, France. Available at: www.inchem.org/documents/jmpr/jmpmono/v2003pr05.htm
- Joint FAO (Food and Agriculture Organization of the United Nations) and WHO (World Health Organization). Expert committee on food Additives – JECFA (2006a), Sixty-fourth meeting, WHO/IPCS Safety evaluation of certain contaminants in food. WHO Food Additives Series 55.
- Joint FAO (Food and Agriculture Organization of the United Nations) and WHO (World Health Organization). Expert committee on food Additives – JECFA (2006b). WHO Technical Report Series. 939. Evaluation of certain veterinary drug residues in food. 66th report of the Joint FAO/WHO Expert Committee on food additives.
- Johnson NL, Kotz S, and Balakrishnan N, 1995. Continuous Univariate Distributions, Volume 2, 2nd Edition, Section 25.4.
- Kavlock RJ, Allen BC, Faustman EM and Kimmel CA, 1995. Dose-response assessments for developmental toxicity IV. Benchmark doses for fetal weight changes. Fundamental and Applied Toxicology, 26, 211-222.
- Kienhuis, AS, Slob W, Gremmer ER, Vermeulen JP and Ezendam J, 2015. A dose-response modelling approach shows that effects from mixture exposure to the skin sensitizers are in line with dose addition and not with synergism. Toxicological Sciences, 147, 68-74.
- Kruschke, J, 2014. Doing Bayesian Data Analysis: A Tutorial with R, JAGS and Stan. Elsevier Science & Technology. ProQuest Ebook Central, https://ebookcentral.proquest.com/lib/ubhasselt/detail.action?docID=5754481.

Lehmann EL and Casella G, 1998. Theory of Point Estimation (2nd ed.). Springer.

- Lesaffre E and Lawson AB, 2012. Bayesian Biostatistics. New York: John Wiley & Sons Ltd. 534 pages. ISBN 978-0-470-01823-1
- Morales KH, Ibrahim JG, Chen C-J and Ryan LM, 2006. Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water, Journal of the American Statistical Association, 101:473, 9-17, DOI: 10.1198/01621450500000961.
- Pieters MN, Bakker M and Slob W, 2004. Reduced intake of deoxynivalenol in The Netherlands: a risk assessment update. Toxicology Letters, 153, 145-153.
- Sand S, Falk Filipsson A and Victorin K, 2002. Evaluation of the benchmark dose method for dichotomous data: model dependence and model selection. Regulatory Toxicology and Pharmacology, 36, 184-197.
- Sand S, Portier CJ and Krewski D, 2011. A Signal-to-Noise Crossover Dose as the Point of Departure for Health Risk Assessment. Environmental Health Perspectives, 119, 1766-1774
- Sand S, 2021. A novel method for combining outcomes with different severities or gene-level classifications. ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2004212.
- Shao K, Gift JS and Setzer RW, 2013. Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation? Toxicology and Applied Pharmacology, 272, 767-779.
- Shapiro SS, Wilk MB, 1965. An analysis of variance test for normality (complete samples). Biometrika. 52 (3–4): 591–611.
- Slob W, 1994. Uncertainty Analysis in Multiplicative Models. Risk Analysis, 14: 571–576.
- Slob W and Pieters MN, 1998. A probabilistic approach for deriving acceptable human intake limits and human health risks from toxicological studies: general framework. Risk Analysis 18, 787-798.
- Slob W, 2002. Dose-response modelling of continuous endpoints. Toxicological Sciences, 66, 298-312.
- Slob W, Bakker MI, Biesebeek JDT and Bokkers BG, 2014. Exploring the Uncertainties in Cancer Risk Assessment Using the Integrated Probabilistic Risk Assessment (IPRA) Approach. Risk Analysis, 34, 1401-1422.
- Slob W, 2014. Benchmark dose and the three Rs. Part II. Reduction by getting the same information from fewer animals. Critical Reviews in Toxicology 44, 568-580.
- Slob W and Setzer RW, 2014. Shape and steepness of toxicological dose-response relationships of continuous endpoints. Critical Reviews in Toxicology 44, 270-297.
- Slob W, 2016. A general theory of effect size, and its consequences for defining the Benchmark response (BMR) for continuous endpoints. Critical Reviews in Toxicology (in the press).
- Soeteman-Hernández LG, Johnson GE and Slob W 2015a. Estimating the carcinogenic potency of chemicals from the in vivo micronucleus test. Mutagenesis, 31, 347-358.
- Soeteman-Hernández LG, Fellows MD, Johnson GE and Slob W, 2015b. Correlation of in vivo versus in vitro Benchmark doses (BMDs) derived from micronucleus test data: A proof of concept study. Toxicol Sci, 147, 355-367.
- Stigler S, 1973. Studies in the History of Probability and Statistics. XXXII: Laplace, Fisher and the Discovery of the Concept of Sufficiency. Biometrika. 60 (3): 439–445.
- Stoica P, Selén Y., Li J, 2004. Multi-model approach to model selection. Digital Signal Processing, 14(5): 399-412.
- Swartout JC, Price PS, Dourson ML, Carlson-Lynch HL and Keenan RE, 1998. A Probabilistic Framework for the Reference Dose (Probabilistic RfD). Risk Analysis, 18, 271-282.
- Teunis PFM, Evers EG and Slob W, 1999. Analysis of variable fractions resulting from microbial counts. Quant. Microbiol. 1 (1) 63-88.
- Tressou J, Leblanc JC, Feinberg M and Bertail P, 2004. Statistical methodology to evaluate food exposure to a contaminant and influence of sanitary limits: Application to Ochratoxin A. Regulatory Toxicology and Pharmacology, 40, 252–263.

- United States Environmental Protection Agency (US EPA), 2012. Benchmark Dose Technical Guidance. (EPA/100/R-12/001). Washington DC: Risk Assessment Forum. http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf
- United States Environmental Protection Agency (US EPA), 2016. Categorical Regression (CatReg) User Guide (Version 3.0.1.5). Available at: https://www.epa.gov/sites/production/files/2016-03/documents/catreg_user_guide.pdf
- United States Environmental Protection Agency (US EPA), 2020. Benchmark Dose Software (BMDS) Version 3.2, User Guide. EPA/600/R-20/216.
- Van der Voet H and Slob W, 2007. Integration of probabilistic exposure assessment and probabilistic hazard characterization. Risk Analysis, 27, 351-371.
- Welch, B. L., 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34: 28–35.
- Wignall JA, Shapiro AJ, Wright FA, Woodruff TJ, Chiu WA, Guyton KZ and Rusyn I, 2014. Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. Environ Health Perspect, 122:499-505. doi: 10.1289/ehp.1307539
- Wheeler MW and Bailer AJ, 2007. Properties of Model-Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation. Risk Analysis, 27, 659 670.
- Wheeler MW and Bailer AJ, 2008. Model averaging software for dichotomous dose response risk estimation. Journal of Statistical Software, 26, 1 15.
- Wheeler MW and Bailer AJ, 2009. Comparing model averaging with other model selection strategies for benchmark dose estimation. Environmental and Ecological Statistics, 16, 37-51.
- Wheeler MW, Cortinas Abrahantes J, Aerts M, Gift JS, and Davis JA, 2022. Continuous model averaging for benchmark dose analysis: averaging over distributional forms. Environmetrics, under revision.
- WHO (World Health Organization), 1987. Principles for the Safety Assessment of Food Additives and Contaminants in Food. Environmental Health Criteria 70, WHO/IPCS.
- WHO (World Health Organization), 2020. Chapter 5: Dose-Response Assessment and Derivation of Health-Based Guidance Values, Second Edition. Principles and methods for the risk assessment of chemicals in food. Environmental health criteria 240, WHO/IPCS.
- Wills JW, Johnson GE, Doak SH, Soeteman-Hernández LG, Slob W and White PA, 2015. Empirical Analysis of BMD Metrics in Genetic Toxicology Part I: In Vitro Analyses to Provide Robust Potency Rankings. Mutagenesis, 31, 255-263.
- Zeilmaker M, Fragki S, Verbruggen E, Bokkers B and Lijzen J, 2018. Mixture exposure to PFAS: A Relative Potency Factor approach. RIVM Report 2018-0070. National Institute for Public Health and the Environment, The Netherlands.

1471 Abbreviations

1472

ADI	Acceptable Daily Intake
AIC	Akaike Information Criterion
BMD	Benchmark Dose
BMDL	Lower confidence limit of the benchmark dose (equivalent term: CEDL)
BMDU	Upper confidence limit of the benchmark dose (equivalent term: CEDU)
BMR	Benchmark Response
CEDL	See BMDL
CEDU	See BMDU
FAO	Food and Agriculture Organization of the United Nations
GUI	Graphical User Interface
HBGV	Health-Based Guidance Value
IPCS	WHO International Programme on Chemical Safety
JECFA	Joint FAO/WHO Expert Committee on Food Additives
JMPR	Joint FAO/WHO Meeting on Pesticide Residues
LOAEL	Lowest-Observed-Adverse-Effect-Level
MOE	Margin Of Exposure
NOAEL	No-Observed-Adverse-Effect Level
OECD	Organisation for Economic Co-operation and Development
PoD	Point of Departure
RP	Reference Point
SD	Standard Deviation
SEM	Standard Error of the Mean
TDI	Tolerable Daily Intake
TEF	Toxic Equivalency Factor
WHO	World Health Organization

Appendix A – Upper bounds(a) of effect at NOAELs related to 10 substances evaluated previously by JMPR or EFSA.

Substance (source +year)	Endpoint	Quantal data	Continuous data
		Upper bound extra risk (%) ^(b)	Upper bound percent change (%) ^(c)
Thiodicarb (JMPR, 2000)	splenic extramedullary hae matopoies is	21	
Carbaryl (JMPR, 2001)	vascular tumours	15	
Spinosad (JMPR, 2001)	thyroid epithelial cell vacuolation	2.7	
Flutolanil (JMPR, 2002)	erythrocyte volume fraction		9
	haemoglobin concentration		9.7
	mean corpuscular hae moglobin		3
	decreased cellular elements in the spleen	30	
Metalaxyl (JMPR, 2002)	serum alkaline phosphatase activity		260
	serum AST		100
Cyprodinil (JMPR, 2003)	spongiosis hepatis	5.1	
Famoxadone (JMPR, 2003)	cataracts	29	
	microscopic lenticular degeneration	29	
Tributyltin (EFSA, 2004)	testis weight		9.1
Fumonisin (EFSA, 2005)	nephrosis	8.6	
Deoxynivalenol (EFSA,	bodywoight		10.5
2004)	body weight		10.5
Ethyl lauroyl arginate	white blood cell counts		22
(EFSA, 2007)	white blood cell counts		25

1473 (a) As calculated by the Scientific Committee.

1474 (b) two-sided 90%-confidence interval for extra risk was calculated by the likelihood profile method.

1475 (c) Two-sided 90%-confidence interval was calculated for the difference on log-scale, and then transformed back, resulting in the confidence interval for percent change (see Slob (2002) for further statistical assumptions).

1477

1478 Appendix B – Statistical methodology

1479 Interpretation of parameters in terms of characteristics of the median response

1480 Table B.1 shows how each of the parameters a, b, c, d play their role in determining the median response 1481 at dose x for the models of Family 1.

Table B.1: Interpretation of parameters for Family 1: a determines the median background response; c determines the maximum change in median response, b and d characterize the shape of change in median response with changing dose x.

median response	$y x \sim N(\mu(x), \sigma^2)$	$y x \sim \text{LOGN}(\mu(x), \sigma^2)$
Med(0)	а	e ^a
Med(∞)	<i>c</i> Med(0)	Med(0) ^c
Med(x)	$Med(0) + F(x; b, d) (Med(\infty) - Med(0))$	$Med(0)(Med(\infty) - Med(0))^{F(x;b,d)}$

1482

1483 Table B.2 shows how each of the parameters *a*, *b*, *c*, *d* play their role in determining the median response

1484 at dose *x* for the increasing models of Family 2.

Table B.2: Interpretation of parameters for increasing models of Family 2: a and c determine the median background response and the maximum change in median response, b and d characterize the shape of change in median response with changing dose x.

median response	$y x \sim N(\mu(x), \sigma^2)$	$y x \sim LOGN(\mu(x), \sigma^2)$
Med(0)	$Med(\infty)F(a)$	$Med(\infty)^{F(a)}$
Med(∞)	С	e ^c
Med(x)	$\operatorname{Med}(\infty)F(F^{-1}(\frac{\operatorname{Med}(0)}{\operatorname{Med}(\infty)})+bx^d)$	$\operatorname{Med}(\infty)^{F(F^{-1}(\frac{\log \operatorname{Med}(0)}{\log \operatorname{Med}(\infty)})+bx^d)}$

1485

1486 Table B.3 shows how each of the parameters *a*, *b*, *c*, *d* play their role in determining the median response

1487 at dose *x* for the decreasing models of Family 2.

Table B.3: Interpretation of parameters for decreasing models of Family 2: a and c determine the median background response and the maximum change in median response, b and d characterize the shape of change in median response with changing dose x.

median response	$y x \sim N(\mu(x), \sigma^2)$	$y x \sim LOGN(\mu(x), \sigma^2)$
Med(0)	а	e^a
Med(∞)	Med(0)F(c)	$Med(0)^{F(c)}$

$$Med(0)\left(1+F\left(F^{-1}\left(\frac{Med(\infty)}{Med(0)}\right)\right)\right)-Med(0)F\left(F^{-1}\left(\frac{Med(\infty)}{Med(0)}\right)+bx^{d}\right)$$

Me

1500 1501

Visualisation of the models 1489

- Considering the models $y|x \sim N(\mu(x), \sigma^2)$ for a normally distributed response and with increasing median 1490 response $\mu(x)$ from Family 1a, Figure 1 shows four panels with graphs of $\mu(x)$ 1491
- for the exponential model (solid curve) and the Hill model (dashed curve), 1492 •
- 1493 with always a = 10 and c = 2, implying a background response of 10 and a maximum response • 1494 of 20,
- with two choices for b = 0.25 or 2 and two choices for d = 1 or 2; each panel referring to one 1495 • of the four combinations. 1496

As shown in Figure B.1, even if all parameters *a*, *b*, *c*, *d* are identical, the functional form of the 1497 exponential and the Hill model are different, as are the corresponding BMD values corresponding to the 1498 1499 same BMR.

Med(0)

 $+bx^d$

Med(∞)

Med(0

Med(0)

1502

1503

Figure B.2 provides some further insights in the exponential and the Hill model after reparameterization 1504 1505 in terms of the parameters a, BMD, c, d (parameter b interchanged with potency parameter BMD). Again, for all models, a = 10 and c = 2. The BMR was chosen to be 0.05, so that the BMD corresponds 1506 to a response of 10.5 (5% above the background response of 10). For the black curves BMD=25 and 1507 for the dark red curves BMD=50. All solid curves refer to the exponential model, and the dashed ones 1508 to the Hill model. For each choice of the BMD, two choices d = 1 or 2 were considered. Figure B.2 1509 shows again the difference between the exponential and the Hill model with identical parameters 1510 a, BMD, c, d, and the impact of changing only parameter d. 1511

Figure B.3 depicts the dose response curves for all members of Family 1a, 1b and 2, with identical values for the background response, maximum response and the BMD, and all with the fourth parameter d=2. The precise parameter values are:

- Family 1a & b: *a=10, c=2, BMD=50, d = 2*
- Family 2: *a=0, c=20, BMD=50, d* = 2

Parameters *a* and *c* are linked to background and maximum response in a different way, and parameter *d* is playing its own role in each model (see Figure B.2). The corresponding values for the parameter b
are:

1520		а	BMD	С	d	b
1521	Exponential	10	50	2	2	0.000021
1522	Inverse exponential	10	50	2	2	7489.330684
1523	Hill	10	50	2	2	47500.000000
1524	Log-normal	10	50	2	2	0.000077
1525	Gamma	10	50	2	2	0.007084
1526	Quadratic exponential	10	50	2	2	0.000134
1527	Probit	0	50	20	2	0.000025
1528	Logit	0	50	20	2	0.000040

1529 Figure B.4 provides further insight in the comparison of the different models. Supposing "perfect" 1530 data generated by the exponential model with a=10, c=2, BMD=50, d=2, with a very dense design of dose levels according to a grid [0, max dose] in steps of 0.01, and with no noise (normal distribution 1531 1532 with variance equal to 0. All other models are fitted to those "perfect exponential data", shown in Figure B.4 by the green solid curve. These other models were informed with a perfect prior (exact 1533 1534 correct center, and variance equal to 0) on the parameters a, c, BMD, and only the parameter d is 1535 optimized to approximate the exponential model as close as possible, but optimization is depending on the choice of the maximum dose in the design. These choices 100, 250, 500 and 10000 correspond 1536 1537 to the four panels of Figure B.4. The four panels show that the other models deviate more from the 1538 exponential model with increasing maximum dose. This shows the impact of the maximum dose or the dose range. The higher the maximum dose, the more the different models will deviate, the more 1539 1540 likely the correct model gets the higher weights for model averaging, and the more accurately the 1541 BMD(L/U) can be determined.

1543 1544

1549 The values of the parameter *d* bringing a particular model as close as possible to the exponential

1550 model over the range [0, max dose] are given by:

1551		max	dose	al	BMD	C	d
1552	Exponential		100	10	50	2	2.000000
1553	Inverse exponential		100	10	50	2	0.784360
1554	Hill		100	10	50	2	2.098259
1555	Log-normal		100	10	50	2	1.051192
1556	Gamma		100	10	50	2	2.364008
1557	Quadratic exponential		100	10	50	2	-25.179574
1558	Probit		100	20	50	0	1.914032
1559	Logit		100	20	50	0	1.916656
1560		max	dose	а	BMD	С	d
1561	Exponential		250	10	50	2	2.00000
1562	Inverse exponential		250	10	50	2	1.125619
1563	Hill		250	10	50	2	2.286339
1564	Log-normal		250	10	50	2	1.275715
1565	Gamma		250	10	50	2	2.616310
1566	Quadratic exponential		250	10	50	2	-198.000000
1567	Probit		250	20	50	0	1.808274
1568	Logit		250	20	50	0	1.830456
1569		max	dose	а	BMD	С	d
1570	Exponential		500	10	50	2	2.00000
15/1	Inverse exponential		500	10	50	2	1.397181
15/2	Hill		500	10	50	2	2.464058
15/3	Log-normal		500	10	50	2	1.404980
15/4	Gamma		500	10	50	2	2.753478
15/5	Quadratic exponential		500	10	50	2	-198.000000
15/6	Probit		500	20	50	0	1.766660
15//	Logit		500	20	50	0	1.805983
7218		max	dose	a	BMD	С	d

1579	Exponential	10000 10	50 2	2.000000
1580	Inverse exponential	10000 10	50 2	1.516266
1581	Hill	10000 10	50 2	2.501481
1582	Log-normal	10000 10	50 2	1.421107
1583	Gamma	10000 10	50 2	2.758485
1584	Quadratic exponential	10000 10	50 2	-198.000000
1585	Probit	10000 20	50 0	1.766652
1586	Logit	10000 20	50 0	1.805941
1587				

1588 This table show that, while the parameters *a, c, BMD* are fixed to make sure that background response, 1589 maximum response and BMD are 10, 20, and 50 respectively, the value of the parameter *d* that brings 1590 the models closest to each other, varies across the different models, and depends on the experimental 1591 dose range.

Addressing finally the question of how different or how similar are the median responses $\mu(x)$ and $e^{\mu(x)}$ for a same endpoint, but assuming different distributions (normal and log-normal respectively); Figure B.5 shows a matrix plot with, for all 8 models, the median responses $\mu(x)$ (type and colour according to legend in right lower figure) and $e^{\mu(x)}$ (solid line in orange) overlaid, with

- All parameters *a* and *c* such that the
- 1597 o background response equals 10;
- 1598 o maximum response equals 20;
- The parameter *b* always such that BMD equals 50;
- The model-specific parameter *d* such that
- 1601 o the models $\mu(x)$ for the normal case $y|x \sim N(\mu(x), \sigma^2)$ are closest to the exponential model with d=2 (left upper panel in Figure 5).
- 1603 o the models $e^{\mu(x)}$ for the log-normal case $y|x \sim \text{LOGN}(\mu(x), \sigma^2)$ are closest to their normal counterpart $\mu(x)$.

Figure B.5 shows that, although the functional form of the two median responses $\mu(x)$ and $e^{\mu(x)}$ is different, the resulting curves with the model-specific choices of *d* are essentially identical. The modelspecific values of *d* are shown in the following table

1608		d normal	d log-normal
1609	Exponential	2.000000	1.893664
1610	Inverse exponential	1.397181	1.504560
1611	Hill	2.464058	2.446903
1612	Log-normal	1.404980	1.419891
1613	Gamma	2.753478	2.636557
1614	Quadratic exponential	-198.000000	2.448653
1615	Probit	1.766660	1.746467
1616	Logit	1.805983	1.818089
1617			

1620

1621 **Non-linear models**

Nonlinear models need more attention during the implementation and estimation process, as compared 1622 1623 to linear models. Nonlinear model components typically complicate identifiability, reduce precision of parameter estimation and lead to delayed convergence in iterative frequentist estimation procedures 1624 and Bayesian MCMC sampling. Estimates of nonlinear parameters may be highly correlated with each 1625 other, hindering simultaneous estimation of the parameters. It needs careful selection of starting values 1626 and it might be required to use particular constraints in the frequentist setting and (weakly) informative 1627 priors to stabilize the estimation process in a Bayesian application setting (see e.g. Chapter 10 in 1628 Congdon, 2006). 1629

- 1630 All 16 candidate models for the mean function $\mu(x)$ in case of a continuous endpoint, and all 8 candidate models for the probability function $\pi(x)$ are non-linear models. 1631
- 1632
- 1633
- 1634

Appendix C – Data Examples: Continuous Endpoints

1635

1636 The appendix contains simulated examples based on the description in Section 2.6.3 to produce the 1637 generic figures 3.1, 3.2 and 3.3 as well as the example analysed in the previous update of the guidance.

1638

1639 **Example generated based on Figure 3.1**

1640 **The Data**

1641 This example concerns a simulated dataset, generated as a log-normal exponential models with

parameters a=2.015, b=1.5, c=1.344 and d=1.8, with dose levels 0, 0.5, 1, 2, 3 and a constant group size

1643 of 20. With a BMR=0.10, the true BMD equals 0.2287.

* *	у 🗘	s 🗘	n ‡
0.0	7.534954	0.3131743	20
0.5	10.500018	0.6299896	20
1.0	13.886423	0.8874875	20
2.0	15.192057	0.8709575	20
3.0	15.331456	0.8501652	20

1644

1645 The Bartlett test did reject the assumption of constant variance (normal distribution) with a p-value of 1646 0.00; and did not the assumption of constant coefficient of variation (lognormal distribution), with p-1647 values 0.46. These findings are to be expected as the data are generated according to the log-normal 1648 distribution.

1649 **Results**

PROAST. The EFSA BMD WEB app produce the following results of BMD modelling, using the 1650 1651 exponential, inverse exponential, Hill and lognormal model, considering model averaging based on 1000 bootstraps, by means of PROAST 70.0. The BMR was selected at 10 %. For the exponential model the 1652 BMD was estimated as 0.184 with BMDL=0.149 and BMDU=0.220; for the inverse exponential model 1653 the BMD estimate was 0.103 with BMDL=0.085 and BMDU=0.121; for the Hill model the BMD estimate 1654 was 0.241 with BMDL=0.203 and BMDU=0.277 and for the lognormal model the BMD estimate was 1655 0.171 with BMDL=0.156 and BMDU=0.185. The model averaging results produced BMDL=0.172 and 1656 BMDU=0.253. The ratio $\frac{BMDU}{BMDL}$ = 1.47, indicating the precision of the estimation of the BMD. 1657

1658 Using Laplace approximation. The model specific results (BML,BMD,BMDU,weight) are given in 1659 Table C1. This table shows that i) the model specific BMDL's vary from 0.11 to 0.29, ii) all normal 1660 models get weight 0.0000 (as to be expected), iii) the weights for the log-normal models vary from 0.10 1661 to 0.17, with the highest weight 0.17 for the gamma model, and weight 0.11 for the true exponential 1662 model, and iv) the model-specific CI's do differ substantially; some of them are even not overlapping.

1663 More information for the log-normal gamma model is depicted in Figure C1, with, for the background 1664 and minimum median response, and the BMD, the flat uninformative PERT prior distributions (in blue) 1665 and the final posterior distributions (in orange). The fourth parameter d (left lower panel) gets a log-1666 normal prior distribution (in blue), which is moderately informative with median at 1, in order to stabilize 1667 the fitting computationally. Similar plots can be made for all other 15 models.

1673Table C1. The 3.1 Example. Model specific values for BMDL, BMD, and BMDU; and the posterior weights of each1674model (used for constructing the model average).1675

IModel	Ι	BMDL I	BMD I	BMDU I	LP_Weights
I:	- 1 -	:!	:!	:!·	:
E4_N		0.1731888	0.2123943	0.2595017	0.0000148
IIE4_N		0.2965451	0.33048961	0.3679164	0.0000183
H4_N		0.2269271	0.2653731	0.3092148	0.0000146
ILN4_N		0.2427195	0.2792751	0.3211445	0.0000191
G4_N		0.19738891	0.23893691	0.29003661	0.0000210
IQE4_N		0.1198093	0.15672001	0.20405531	0.00000671
P4_N		0.1456187	0.1850162	0.23407381	0.00001521
L4_N		0.1553091	0.1946162	0.2432718	0.0000165
IE4_LN		0.1735614	0.20483061	0.2412964	0.1112446
IIE4_LN		0.2934952	0.32432021	0.3572765	0.12457801
H4_LN		0.2326410	0.26520341	0.3019512	0.1029464
LN4_LN		0.24030281	0.2710677	0.3054201	0.13395381
G4_LN		0.1939274	0.22912761	0.2709128	0.1712867
IQE4_LN		0.1318274	0.16234991	0.1995502	0.12753301
IP4_LN		0.1542705	0.1848169	0.2220185	0.11173641
LLA IN	1	0 1650/101	0 10725011	0 22122101	0 11650401

1678

1679Figure C1: The 3.1 Example: prior and posterior densities (pink and orange coloured respectively) for the background response,1680the maximum response, the BMD, and the parameter *d*, for the normal-quadratic exponential model. The vertical dashed lines in1681the upper panels are the observed values for the background and maximum response.

1682

1683 Using the weights of Table C1 (last column), the final model averaged BMD estimate equals 0.224, very close to the true value of 0.2288, with 90% CI (0.154,0.329). Based on the Laplace approximation 1684 results, the ratio $\frac{BMDU}{BMDL}$ is slightly larger (2.1), the estimation of the BMD is slightly more uncertain. Figure C2 shows, on the log-scale, the summary data together with the model-specific fitted dose-response 1685 1686 models, together with the CI (in green), the BMD estimate (red bullet point), and the posterior 1687 distribution of the BMD, with the 90 % CI (in green) and the BMD estimate (red bullet point). Note how 1688 the fitted models vary substantially in the range from dose 0 to the first dose level; also, the posterior 1689 density of the BMD (in the lower right panel) shows some different peaks coming from mixing quite 1690 different posterior densities of the individual models (see also the quite different CI's in Table C1). 1691

Using MCMC. Using MCMC (hybrid and Bridge sampling), the results are quite similar. The final model averaged BMD estimate, obtained with Bridge sampling, equals 0.238 with 90% CI (0.158,0.334). The estimates for the hybrid method are 0.223 for the point estimate, and (0.154,0,327) for the credible interval.

1697Figure C2. The 3.1 Example: based on the Laplace approximation: fitted normal dose-response models (upper left), fitted log-1698normal dose-response models (upper right), all fitted models (lower left), averaged model with posterior density of the BMD, with169990% confidence interval (in green) and BMD point estimate (in red).

1700

1696

1701 Example generated based on Figure 3.2

1702 **The Data**

This example concerns a simulated dataset, generated as a log-normal exponential models with parameters a=2.015, b=1.5, c=1.344 and d=1.8, with dose levels 0,3,6,8,10 and a constant group size of 20. With a BMR=0.10, the true BMD equals 0.2287.

× ‡	у \$		n ‡
0	7.534954	0.3131743	20
3	15.332418	0.9199283	20
6	15.108938	0.9656190	20
8	15.198939	0.8713520	20
10	15.331459	0.8501653	20

1706

1707 The Bartlett test did reject the assumption of constant variance (normal distribution) with a p-value of

1708 0.00; and did not reject the assumption of constant coefficient of variation (lognormal distribution), with

1709 p-values 0.46. These findings are to be expected as the data are generated according to the log-normal

1710 distribution.

1711 Results

1712**PROAST.** The EFSA BMD WEB app produce the following results of BMD modelling, using the1713exponential, inverse exponential, Hill and lognormal model, considering model averaging based on 10001714bootstraps, by means of PROAST 70.0. The BMR was selected at 10 %. For the exponential model the1715BMD was estimated as 0.04, not providing confidence limits; for the inverse exponential model the BMD1716estimate was 0.000001, not providing confidence limits; for the Hill model the BMD estimate was17170.000001, not providing confidence limits and for the lognormal model the BMD estimate was 0.002,1718not providing confidence limits. The model averaging results produced BMDL=0.000001 and1719BMDU=0.018. The ratio $\frac{BMDU}{RMDL} = 18000$, indicating the uncertainty range of the estimation of the BMD.

Using Laplace approximation. Not unexpectedly, as the response at the first active dose is already at its maximum and consequently the data contain no information about the dose-response pattern from the background to the maximum response, the model individual and the model averaged intervals are very wide and the BMDL are all essentially equal to or very close to 0. The model averaged BMD estimate is 0.0033, and the CI is (0.0000,10). The CI is the full experimental dose range, turning the BMDL not useful. As the MCMC results are more precise and useful, we report more details about this approach.

Using MCM. All models converged. The model specific results (BML, BMD, BMDU, weight) are given in 1727 Table C2, showing a quite large difference between the Laplace and the MCMC based weights (see last 1728 two columns), indicating instability and/or inappropriateness of the Laplace approximation. This table 1729 shows that i) the model specific BMDL's vary from 0.007 to 0.033, ii) all normal models get weight 1730 1731 0.0000 (as to be expected as the data are log-normal), iii) the weights for the log-normal models vary from 0.07 to 0.19, with the highest weight 0.19 for the probit model, followed by the logit model and 1732 the log-normal model (weight 0.17), and the true exponential model (weight 0.16), and iv) the model-1733 1734 specific CI's do differ substantially and are quite wide. In general, there is an overestimation of the true BMD=0.229 (model-specific point estimates tend to be larger than this true value). 1735

1736 More information for the probit model is depicted in Figure C3, with, for the background and minimum 1737 median response, and the BMD, the flat uninformative PERT prior distributions (in blue) and the final 1738 posterior distributions (in orange). The fourth parameter *d* (left lower panel) gets a log-normal prior 1739 distribution (in blue), which is moderately informative with median at 1, in order to stabilize the fitting 1740 computationally. Similar plots can be made for all other 15 models.

Table C2. The X2 Example. Model specific values for BMDL, BMD, and BMDU; and the posterior weights of each
 model (used for constructing the model average).

IModel	Ι	BMDL I	BMD I	BMDU I	BS_Weights	LP_Weights
l:	- 1 -	:!·	:!·	:!	: ·	:
E4_N	Т	0.02764241	0.40546691	1.4690946	0.0000125	0.00000371
IE4_N	Т	0.0212298	0.35712871	1.4483790	0.00000941	0.0000155
H4_N	Т	0.0161180	0.2965316	1.3055899	0.0000631	0.0000152
LN4_N	Т	0.0267314	0.42992041	1.5667839	0.0000139	0.0000018
G4_N	Т	0.0104603	0.14749881	0.49094981	0.00000591	0.0017301
IQE4_N	Т	0.00487201	0.05247121	0.1491418	0.00000391	0.0000004
P4_N	Т	0.0270251	0.4419917	1.6380351	0.0000162	0.0001679
L4_N	Т	0.02933461	0.44455551	1.6064774	0.0000155	0.0000048
E4_LN	Т	0.03020081	0.43780921	1.5213304	0.1584487	0.0516604
IIE4_LN	Т	0.0139272	0.32308001	1.3882260	0.1036083	0.1684196
H4_LN	Т	0.0159106	0.3157980	1.3181756	0.07266341	0.1814249
ILN4_LN	Т	0.0291702	0.44062961	1.6158573	0.1668675	0.4304857
G4_LN	Т	0.0121915	0.18075871	0.5581414	0.0791062	0.04277291
IQE4_LN	Т	0.00653371	0.06948231	0.1847613	0.0590165	0.0416480
P4_LN	I	0.03095871	0.47549491	1.6816063	0.1914703	0.03896251
IL4 LN	Ι	0.03313061	0.43425711	1.53062841	0.16873541	0.04268651

Figure C3: The 3.2 Example: prior and posterior densities (pink and orange coloured respectively) for the background response,
the maximum response, the BMD, and the parameter *d*, for the normal-quadratic exponential model. The vertical dashed lines in
the upper panels are the observed values for the background and maximum response.

1749

Using the weights of Table C2 (last column) and based on Bridge sampling, the final model averaged 1750 1751 BMD estimate equals 0.353, somewhat larger than the true value of 0.229, with 90% CI (0.021, 1.487). The ratio of $\frac{BMD}{BMDL}$ is equal to 16.8 and for $\frac{BMDU}{BMDL}$ is around 74, indicating uncertainty in the estimation of 1752 the BMD, but it is already improved in comparison to the results obtained when using the frequentist 1753 1754 approach (PROAST). Note that the BMDL is about 10 times smaller than the true BMD and that the CrI covers almost have of the range (0,3) (3 being the first active dose). Figure C4 shows, on the log-scale, 1755 the summary data together with the model-specific fitted dose-response models, together with the CrI 1756 1757 (in green), the BMD estimate (red bullet point), and the posterior distribution of the BMD, with the 90 % CrI (in green) and the BMD estimate (red bullet point). Note how the fitted models vary substantially 1758 in the range from dose 0 to the first dose level, resulting in very different BMD estimates. As no data 1759 are available in the range (0.3) (covering the range 0 to more than 10 times the true BMD), no model 1760 can be informed by such data, and the different models adapt optimally to the available data on the 1761 1762 higher dose levels, with the consequence that the fits deviate a lot in the dose range of interest.

www.efsa.europa.eu/publications

1764

Figure C4. The 3.2 Example: based on the Bridge sampling: fitted normal dose-response models (upper left), fitted log-normal 1765 dose-response models (upper right), all fitted models (lower left), averaged model with posterior density of the BMD, with 90% 1766 confidence interval (in green) and BMD point estimate (in red). 1767

1768 **Using informative priors.** We fit the same data again but with different informative priors on the BMD. Remember that the true value of the BMD=0.229. The table below shows the impact of using 1769 informative priors in comparison to uninformative ones. When no mode is used to inform the prior 1770 1771 distribution of the BMD, the estimation procedures does not improve the precision in estimation, being very large if Laplace approximation is used and larger than 70 when Bridge sampling is used. It is clear 1772 that if the range in which the BMD should be located is restricted and a most likely value is provided, 1773 1774 the estimation precision improves drastically with a ratio for Laplace approximation smaller than 20 for 1775 Laplace and less than 10 for Bridge sampling. It is also worth noting that if the informative prior is misspecified, then the resulting BMD estimation might be as well biased. 1776

1777

Informative prior on BMD	Laplace approximation BMD and CrI	Bridge sampling BMD and CrI
Uninformative prior	0.003 (0.000, 10)	0.229 (0.021, 1.487)
Uniform PERT prior on (0,3)	0.000 (0.000, 10)	0.345 (0.020, 1.481)
PERT prior on (0,3) with mode 1	0.552 (0.104, 1.952)	0.669 (0.151, 1.533)
PERT prior on (0,0.5) with mode 0.2	0.166 (0.058, 0.488)	0.053 (0.173, 0.352)
PERT prior on (0.199,0.259) with mode 0.229	0.228 (0.205, 0.254)	0.228 (0.210, 0.247)
PERT prior on (0.109,0.169) with mode 0.139	0.138 (0.115, 0.165)	0.138 (0.120,0.157)

1778

1780

1781

1782

1783 1784

1779 We observe that, for this dataset:

- The Laplace approximation acts poorly unless the BMD priors is informative enough.
- Bridge sampling outperforms the Laplace approximation, especially for less informative priors.
- The Bridge CrI's are narrower than the Laplace CrI's.
- An informative prior affects the BMDU more than the BMDL (reflecting the gain in accuracy).
- Flat informative priors have less effect than focused priors on the same range (as expected).
- A very informative incorrect prior affects the BMD adversely. 1785
- 1786
- Example generated based on Figure 3.3 1787

The Data 1788

1789 This example concerns a simulated dataset, generated as a log-normal exponential models with 1790 parameters a=2.015, b=1.5, c=1.344 and d=1.8, with dose levels 0,0.025,0.05,0.15,0.4 and a constant aroup size of 20. With a BMR=0.10, the true BMD equals 0.2287. 1791

× ‡	у \$		n [‡]
0.000	7.534954	0.3131743	20
0.025	7.680831	0.4608415	20
0.050	7.604586	0.4860125	20
0.150	7.960201	0.4563567	20
0.400	9.654912	0.5353875	20

1792

1793 The Bartlett test did not reject the assumption of constant variance (normal distribution) with a p-value 1794 of 0.25; and did not reject the assumption of constant coefficient of variation (lognormal distribution),

1794 of 0.25; and did not 1795 with p-values 0.46.

1796 **Results**

1797**PROAST.** The EFSA BMD WEB app produce the following results of BMD modelling, using the1798exponential, inverse exponential, Hill and lognormal model, considering model averaging based on 10001799bootstraps, by means of PROAST 70.0. The BMR was selected at 10 %. For the exponential model the1800BMD was estimated as 0.226 with BMDL=0.18 and BMDU=0.275; for the inverse exponential model the1801BMD estimate was 0.223 with BMDL=0.182 and BMDU=0.265; for the Hill model the BMD estimate was18020.226 with BMDL=0.18 and BMDU=0.275 and for the lognormal model the BMD estimate was 0.2251803with BMDL=0.181 and BMDU=0.269. The model averaging results produced BMDL=0.175 and1804BMDU=0.272. The ratio $\frac{BMDU}{BMDL} = 1.55$, indicating the precision of the estimation of the BMD.

1805 Using Laplace approximation. The model specific results (BML,BMD,BMDU,weight) are given in 1806 Table 6, showing that i) the model specific BMDL's vary from 0.170 to 0.182, ii) the weights vary across 1807 all 16 models, but with higher weights for the log-normal models iii) the highest weight is for the log-1808 normal quadratic exponential model (0.19), and weights about 0.08 for all other log-normal models. 1809 The normal models have weights about 0.02, except for the normal quadratic exponential model with 1810 weight 0.05.

1811 More information for the log-normal quadratic exponential model is depicted in Figure C5, with, for the 1812 background and minimum median response, and the BMD, the flat uninformative PERT prior 1813 distributions (in blue) and the final posterior distributions (in orange). The fourth parameter *d* (left 1814 lower panel) gets a log-normal prior distribution (in blue), which is moderately informative with median 1815 at 1, in order to stabilize the fitting computationally. Similar plots can be made for all other 15 models.

1816

1817 Table C3. The 3.3 Example. Model specific values for BMDL, BMD, and BMDU; and the posterior weights

1818 of each model (used for constructing the model average).

1819

1820 1821 1822

1823

1824Figure C5: The 3.3 Example: prior and posterior densities (pink and orange coloured respectively) for the background response,1825the maximum response, the BMD, and the parameter *d*, for the normal-quadratic exponential model. The vertical dashed lines in1826the upper panels are the observed values for the background and maximum response.

1827

1828Using the weights of Table C3 (last column), the final model averaged BMD estimate equals 0.217, quite1829close to the true value of 0.229, with 90% CrI (0.176,0. 259). Note that this CrI includes the true value18300.229. Based on the Laplace approximation results, the ratio $\frac{BMDU}{BMDL}$ is slightly smaller (1.47), the1831estimation of the BMD is slightly more precise. Figure C6 shows, on the log-scale, the summary data1832together with the model-specific fitted dose-response models, together with the CrI (in green), the BMD1833estimate (red bullet point), and the posterior distribution of the BMD, with the 90 % CrI (in green) and

the BMD estimate (red bullet point). Note how the fitted models vary substantially in the range from

1835 dose 0 to the first dose level, resulting in very different BMD estimates.

Figure C6. The 3.3 Example: based on the Bridge sampling: fitted normal dose-response models (upper left), fitted log-normal dose-response models (upper right), all fitted models (lower left), averaged model with posterior density of the BMD, with 90% confidence interval (in green) and BMD point estimate (in red).

1841 The Body Weight Example in the 2017 EFSA Guidance Update

1842 **The Data**

See Example 1 in Section 2.5.9 of EFSA SC (2017). The data in this example relate to a 2-year study in
 male mice. A dose-related decrease in body weight was observed. This endpoint is assumed to be the
 critical effect and the BMR considered is 5%.

Dose (mg/kg bw per day)	Body weight, group mean (g)	SD	n
0	43.85	2.69	37
0.1	43.51	2.86	35
0.5	40.04	3.00	43
1.1	35.09	2.56	42

1846 bw: body weight; SD: standard deviation.

1847 The Bartlett test did not reject the assumption of constant variance (normal distribution) nor the 1848 assumption of constant coefficient of variation (lognormal distribution), with p-values 0.76 and 0.59 1849 respectively.

1850 **Results**

1851 **PROAST.** Using PROAST v. 61.6 with the default BMR of 5% and applying the Exponential and the Hill 1852 model, the BMDL in EFSA SC (2017) was determined to be 0.20 mg/kg, with BMDU=0.41 mg/kg. The

EFSA BMD WEB app produce the following results of BMD modelling, using the exponential, inverse 1853 exponential, Hill and lognormal model, considering model averaging based on 1000 bootstraps, by 1854 means of PROAST 70.0. The BMR was selected at 5 %. For the exponential model the BMD was 1855 estimated as 0.297 with BMDL=0.198 and BMDU=0.41; for the inverse exponential model the BMD 1856 estimate was 0.316 with BMDL=0.219 and BMDU=0.422; for the Hill model the BMD estimate was 0.297 1857 with BMDL=0.198 and BMDU=0.41 and for the lognormal model the BMD estimate was 0.308 with 1858 BMDL=0.21 and BMDU=0.416. The model averaging results produced BMDL=0.216 and BMDU=0.419. 1859 The ratio $\frac{BMDU}{BMDL}$ = 1.94, indicating the precision of the estimation of the BMD. 1860

1861 Here, all 16 models are used, with equal prior probabilities 1/16 and with uninformative priors on the 1862 model parameters, again with BMR=5%.

- 1863 Using Laplace approximation. The model specific results (BML, BMD, BMDU, weight) are given in1864 Table C4.
- 1865Table C4. The Body Weight Example in the 2017 EFSA Guidance Update. Model specific values for BMDL, BMD,
and BMDU; and the posterior weights of each model (used for constructing the model average).

and the p		sterior weights	or cucinnou c	a (used for cor	isti acting the n
IModel	Т	BMDL I	BMD I	BMDU I	LP_Weights
I:	- 1 -	:!·	:!·	:!	:
E4_N	Т	0.2157647	0.3051895	0.4150530	0.04257971
IE4_N	Т	0.28249271	0.3621116	0.4520611	0.04459321
H4_N		0.22551561	0.31337601	0.42003931	0.0447041
ILN4_N	Т	0.2478021	0.33530281	0.43696431	0.04884791
G4_N	Т	0.2169682	0.3076148	0.4191537	0.05738871
IQE4_N	Т	0.2193732	0.29635171	0.38952641	0.1475168
P4_N	Т	0.2051127	0.2971634	0.4122854	0.03795671
L4_N	Т	0.20585591	0.29816551	0.4115279	0.0381361
IE4_LN	Т	0.2112178	0.30231721	0.4153308	0.04956901
IIE4_LN	Т	0.2774877	0.36007281	0.4516058	0.04765391
H4_LN	Ι	0.2192489	0.30887501	0.4179231	0.05064601
ILN4_LN	Т	0.24602421	0.33380051	0.43746521	0.0535331
G4_LN	Т	0.2118579	0.30469981	0.4193945	0.0634064
IQE4_LN		0.2129402	0.2919186	0.38696901	0.17589961
P4_LN		0.2073613	0.30009381	0.4136090	0.04858201
L4_LN		0.20938551	0.30065281	0.4131613	0.04898661

- 1867
- 1868

Table C4 shows that i) the model specific BMDL's vary from 0.205 to 0.282, ii) weights are quite evenly
distributed across all models, iii) the highest weights are assigned to the quadratic exponential models,
with weight 0.148 and 0.176 for the normal and log-normal version respectively

1873 More information for the log-normal quadratic exponential model is depicted in Figure C7, with, for the 1874 background and maximum median response (in this case a negative decreasing response), and the 1875 BMD, the flat uninformative PERT prior distributions (in pink) and the final posterior distributions (in orange). Actually, the prior for the maximum response is weakly informative. Reason for that is that 1876 the maximum response is not reached at the end of the experimental dose range (see Figure C8). The 1877 prior for the maximum response is therefore centered at half of the observed mean response at the 1878 1879 highest dose (35.09/2=17.545), with a considerably large uncertainty range. As there is little or no 1880 information in the data about this maximum response, the posterior density remains close to the prior density (right upper panel of Figure C7). Finally, for the fourth parameter d (left lower panel), the log-1881 normal prior distribution (in pink) is moderately informative with median at the value of 1, in order to 1882 1883 stabilize the fitting computationally. The orange posterior distribution is shifted somewhat to the left. Similar plots can be made for all other 15 models. 1884

1885

1887

1888Figure C7: The Body Weight Example in the 2017 EFSA Guidance Update: prior and posterior densities (blue and orange coloured1889respectively) for the background response, the maximum response, the BMD, and the parameter *d*, for the log-normal quadratic1890exponential model. The vertical dashed lines in the upper panels are the observed values for the background and maximum1891response.

1892

Using the weights of Table C4 (last column), the final model averaged BMD estimate equals 0.308 with 90% CI (0.219,0.419). So, the BMDL=0.219 mg/kg, with BMDU=0.419 mg/kg, quite similar to the results in EFSA SC (2017) and the same if we would have analysed it using the EFSA WEB app.

Figure C8 shows, on the log-scale, the summary data together with the model-specific fitted doseresponse models, together with the CI (in green) and the BMD estimate (red bullet point). The lower right panel shows the posterior density of the BMD.

1899 **Using MCMC.** Using MCMC (hybrid and Bridge sampling), the results are very similar. The final model averaged BMD estimate, obtained with Bridge sampling, equals 0.317 with 90% CI (0.224,0.423).

1901

www.efsa.europa.eu/publications

Figure C8. The Body Weight Example in the 2017 EFSA Guidance Update: based on the Laplace approximation, model-specific fitted dose-response models, together with the CI (in green) and the BMD estimate (red bullet point). Upper left: normal models; upper right: log-normal models; Lower left: all models; Lower right: model-averaged fitted dose-response model, together with the posterior distribution of the BMD.

Appendix D – Data Examples: Quantal Endpoints

1908 Thyroid epithelial cell vacuolisation data in the 2017 EFSA Guidance Update

1909 **The Data**

- 1910 This example relates to a 2-year study in rats, where three doses of a substance were administered to
- the animals. Dose-related changes in thyroid epithelial cell vacuolisation were found, and these data were used for a BMD analysis.

Dose (mg/kg day)	No of animals with thyroid epithelial vacuolisation	No of animals in dose group
0	6	50
3	6	50
12	34	50
30	42	50

1913

1914 **Results**

- 1915 **PROAST.** Using PROAST v 62.3 together with the MADr-BMD program, as described in Wheeler and 1916 Bailer (2008), using the default BMR of 10% extra risk, using all 8 models except the exponential model,
- and using the bootstrap, the BMDL in EFSA SC (2017) was determined to be 1.5 mg/kg (a BMDU was
- 1918 not calculated). Using the EFSA BMD WEB app (based on PROAST 70.0) the model average BMDL=1.65
- and BMDU=5.86. The ratio $\frac{BMDU}{BMDL}$ = 3.55, indicating the precision of the estimation of the BMD

Using Laplace approximation. The model specific results (BML,BMD,BMDU,weight) are given in
 Table D1, showing that i) the model specific BMDL's vary from 0.808 to 2.588, ii) the weights vary
 substantially across all 8 models iii) the highest weight 0.65 is for the inverse exponential model,
 followed by the Hill model with weight 0.14, and all other models with weights below 0.06.

More information for the inverse exponential model is depicted in Figure D1, for the background and the BMD, the flat uninformative PERT prior distributions (in blue) and the final posterior distributions (in orange). The fourth parameter *d* (left lower panel) gets a log-normal prior distribution (in blue), which is moderately informative with median at 1, in order to stabilize the fitting computationally. Similar plots can be made for all other 7 models.

1929

1930

1931Table D1. The thyroid epithelial cell vacuolisation data. Model specific values for BMDL, BMD, and BMDU; and the1932posterior weights of each model (used for constructing the model average).1933

Model	BMDL I	BMD I	BMDU I	LP_Weights
l:l·	:!-	:!	:!	:
IE4_Q I	1.25524301	2.3035751	4.281751	0.0219120
∣IE4_Q ∣	2.58790581	3.8824211	5.798193	0.65437131
IH4_Q I	1.9398613	3.151456	5.0846321	0.1414341
ILN4_Q I	2.4071414	3.3210681	4.6012221	0.05894711
G4_Q	1.4236897	2.6505301	4.8946341	0.04566161
IQE4_Q I	1.3395459	1.983821	2.9305041	0.05923391
1P4_Q	0.8077153	1.7095761	3.5981521	0.00712721
1L4_0	0.90054781	1.8123891	3.6732111	0.01131281

1934 1935

1936

1940

1941 Using the weights of Table D1 (last column), the final model averaged BMD estimate equals 3.567 with 1942 90% CrI (1.832, 5.562). Based on the Laplace approximation results, the ratio $\frac{BMDU}{BMDL}$ is slightly smaller 1943 (3.04), the estimation of the BMD is slightly more precise. Although it can be said that these results are 1944 quite close to the PROAST results. Figure D2 shows, on the log-scale, the summary data together with 1945 the model-specific fitted dose-response models, together with the CrI (in green), the BMD estimate (red 1946 bullet point), and the posterior distribution of the BMD, with the 90 % CrI (in green) and the BMD 1947 estimate (red bullet point). Note how the fitted models vary substantially close the first active dose 1948 level, resulting in quite different BMD estimates.

Using MCMC. The results are quite similar, but the inverse exponential model receives an even higher weight of 0.784, implying the averaged version to be pulled somewhat in the direction of the model specific values for the inverse exponential. The averaged BMD estimate is 4.008 with CrI (2.180, 6.126),

1952 achieving an even higher precision $\left(\frac{BMDU}{BMDL} = 2.81\right)$.

Figure D1: The thyroid epithelial cell vacuolisation data: prior and posterior densities (pink and orange coloured respectively) for the background response, the BMD, and the parameter *d*, for the inverse exponential model. The vertical dashed line in the upper right panel is the observed background proportion.

1953
 1954
 1954
 1955
 1955
 1956

www.efsa.europa.eu/publications

Appendix E – Template for reporting a BMD analysis

1958AData description

Brief general description of the data. This section should include a table summarizing the data. In case that raw data is available, resulting in a too large table, summary statistics may be given instead⁸. For quantal endpoints both the number of responding animals and the total number of animals should be given for each dose level; for continuous endpoints either the individual responses or the mean responses and the associated SDs (or SEMs) and sample sizes should be given for each dose level.

Dose	Endpoint mean	SD	Ν	Covariates (gender)
0	43.85	2.69	37	М
0.1	43.51	2.86	35	М
0.5	40.04	3.00	43	М
1.1	35.09	2.56	42	М
0	41.54	6.26	36	F
0.1	38.71	4.73	42	F
0.5	33.76	3.92	37	F
1.1	28.55	2.08	38	F

1964**Table E.1:**Example of table for continuous dose-response data

1965

1966 In case that several control groups are reported in the publication or provided by the applicant, they 1967 should all be presented in the table. How these will be handled in the analysis needs a case-by-case 1968 consideration.

1969

Table E.2: Example of table for quantal dose-response data

Dose	Number of animals with event of interest	N	Covariates (gender)
0	2	50	М
3	4	50	Μ
12	32	49	Μ
30	45	50	Μ
0	6	50	F
3	6	50	F
12	34	50	F
30	42	50	F

1970

1971 In case different endpoints are to be analysed, they should be described in different subsections, 1972 containing information pertaining to each endpoint.

1973

1974 The following steps apply for each endpoint considered.

1975

⁸ Note that, when the individual data were used in the original analysis, slightly different results may be obtained using the summary data in the analysis.

1976	В	Selection of the BMR
1977 1978 1979	The value of relevance in the transfer of the	the BMR used in the analysis. The rationale behind the choice made (the biological ne case of a continuous endpoint) should be described.
1980	С	Software used
1981 1982 1983	The software u software was	used, including version number should be reported. In case another non-publicly available used, the script for the BMD analysis should be provided as an appendix.
1984	D	Justification of any deviation from the procedure and assumptions
1985 1986	• In case ar deviating	other approach than Bayesian model averaging was used, the rationale and details for from the recommended approach should be provided.
1987 1988 1989	 Assumption gamma di homosced 	ons made when deviating from the recommended defaults in this guidance document (e.g. stributional assumption instead of normal and log-normal, heteroscedasticity instead of asticity).
1990 1991	Other mod were fitted	lels than the recommended ones listed in Tables 2 and 3 of this guidance document that d should be listed, with the reasons to include them.
1992 1993	 Descriptio final BMD 	n of any deviation from the procedure described in the flow chart (Figure 2) to obtain the credible interval.
1994		
1995	E	Results
1996	The results of	the BMD analysis should contain:
1997	 In cas 	e where individual data are available, the results of the distributional assumption test.
1998	Result	s of the Bartlett test (see Section 2.5.1)
1999 2000	 A table Table 	e presenting the results of the models fitted, BMD, BMDL, BMDU and model weight (see E.3.)
2001	Repor	t whenever convergence issues were encountered
2002	Repor	t whether none of the candidate models fit sufficiently well to the data (see Section 2.5.3).
2003	Table E.:	3: Result table for continuous/quantal data.
	Model	BMDL BMD BMDU Model Weights
	Exponential	(E4)
	Inverse Expo	onential (IE4)
	Hill (H4)	
	Log-normal	(LN4)
	Gamma (G4	
	Probit (P4)	
	Logit (L4)	
2004	0(-')	
2005		

2006 **F** Plots of fitted models

2007 Show the plot of the data with confidence intervals for the responses, together with the resulting models 2008 as well as the model average fit (Figure E.1.).

2009

2010

2016

2017

2011 2012	Figure F.1:	Plot of the models from each model family in the case of continuous data (plots shown here are from Bayesian prototype package).
2013		
2014		
2015		

G Conclusions

2018 This section should summarize the results for each endpoint (dataset) that was analysed and provide a 2019 discussion of the rationale behind selecting the critical endpoint.

The BMD confidence interval of the critical endpoint (and the BMDL selected as RP) should be reported and discussed.

2022

www.efsa.europa.eu/publications