令和2年2月19日

食品安全委員会 委員長 佐藤 洋 殿

> 農薬専門調査会 座 長 西川 秋佳

農薬に係る食品健康影響評価に関する審議結果について

令和元年12月18日付け厚生労働省発生食1218第4号をもって厚生労働大臣から食品安全委員会に意見を求められたピリフルキナゾンに係る食品健康影響評価について、当専門調査会において審議を行った結果は別添のとおりですので報告します。

農薬評価書

ピリフルキナゾン

(第5版)

2020年2月 食品安全委員会農薬専門調査会

目 次

		良
0	審議の経緯	3
0	食品安全委員会委員名簿	4
0	食品安全委員会農薬専門調査会専門委員名簿	5
0	要 約	. 10
Ι.	評価対象農薬の概要	. 11
	1. 用途	. 11
	2. 有効成分の一般名	. 11
	3. 化学名	. 11
	4. 分子式	. 11
	5. 分子量	. 11
	6.構造式	. 11
	7. 開発の経緯	. 11
Π.	安全性に係る試験の概要	. 13
	1. 動物体内運命試験	. 13
	(1)吸収	. 13
	(2)分布	. 14
	(3)代謝	. 15
	(4)排泄	. 17
	(5) ミクロソームを用いた in vitro代謝試験<参考資料>	. 18
	2. 植物体内運命試験	. 19
	(1) トマト	. 19
	(2) はつかだいこん	. 20
	(3) レタス	. 21
	3. 土壌中運命試験	. 22
	(1)好気的土壌中運命試験	
	(2)土壌吸着試験	. 23
	4. 水中運命試験	
	(1) 加水分解試験	
	(2)水中光分解試験	
	5. 土壌残留試験	
	6. 作物残留試験	
	(1)作物残留試験	
	(2)推定摂取量	
	7. 一般薬理試験	

	8. 急性毒性試験	26
	(1)急性毒性試験	26
	(2)急性神経 毒 性試験	28
	9. 眼・皮膚に対する刺激性及び皮膚感作性試験	28
	10. 亜急性毒性試験	28
	(1)90 日間亜急性毒性試験(ラット)	28
	(2) 90 日間亜急性毒性試験(マウス)	29
	(3)90 日間亜急性毒性試験(イヌ)	30
	(4)90 日間亜急性神経毒性試験(ラット)	31
	1 1. 慢性毒性試験及び発がん性試験	31
	(1) 1 年間慢性毒性試験(イヌ)	31
	(2)1年間慢性毒性試験及び6か月間回復試験(イヌ)	32
	(3)1年間慢性毒性試験(ラット)	32
	(4)2年間発がん性試験(ラット)	33
	(5)18 か月間発がん性試験(マウス)	34
	1 2. 生殖発生毒性試験	35
	(1)2世代繁殖試験(ラット)	35
	(2)発生毒性試験(ラット)	37
	(3) 発生毒性試験(ウサギ)	38
	13. 遺伝毒性試験	39
	14. その他の試験	40
	(1) 肝薬物代謝能への影響に関する試験	40
	(2)甲状腺の重量増加及びろ胞上皮細胞肥大の発生機序に関する試験	41
	(3)生殖器に観察された毒性変化に対する発生機序に関する試験	42
	(4) イヌ末梢血及びリンパ節を用いた免疫学的試験	49
	(5)T-細胞依存性抗体産生能に及ぼす影響検討試験	49
Ш.	. 食品健康影響評価	51
- 5	別紙1:代謝物/分解物/原体混在物略称	58
- 5	別紙2:検査値等略称....................................	60
- 5	別紙3:作物残留試験成績	62
- 5	別紙4:推定摂取量	73
- \$	参昭	75

<審議の経緯>

一第1版関係一

2007年 11月 29日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 値設定依頼(新規:ばれいしょ、キャベツ等)

2007年 12月 18日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 1218002 号)、関係書類の接受(参照 1~48)

2007年 12月 20日 第220回食品安全委員会(要請事項説明)

2008年 6月 13日 第13回農薬専門調査会確認評価第二部会

2009年 2月 2日 追加資料受理(参照49~60)

2009年 2月 3日 第19回農薬専門調査会確認評価第二部会

2009年 3月 30日 第49回農薬専門調査会幹事会

2009年 4月 22日 第50回農薬専門調査会幹事会

2009 年 6 月 4 日 第 288 回食品安全委員会(報告)

2009年 6月 4日 から7月3日まで 国民からの意見・情報の募集

2009年 7月 28日 農薬専門調査会座長から食品安全委員会委員長へ報告

2009年 7月 30日 第296回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照61)

2010年 10月 20日 残留農薬基準告示 (参照 62)

2010年 10月 20日 初回農薬登録

一第2版関係一

2012 年 3月 8日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 値設定依頼(適用拡大:だいこん、はくさい等)

2012年 5月 16日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第0516第2号)

2012年 5月 21日 関係書類の接受(参照63~74)

2012 年 5 月 24 日 第 432 回食品安全委員会 (要請事項説明)

2012 年 11 月 20 日 第 88 回農薬専門調査会幹事会

2012年 12月 5日 農薬専門調査会座長から食品安全委員会委員長へ報告

2012 年 12 月 10 日 第 457 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照75)

2014年 4月 24日 残留農薬基準告示(参照 84)

一第3版関係一

2014年 2月 5日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 値設定依頼(適用拡大:かんしょ、たまねぎ等)

2014年 3月 20日 厚生労働大臣から残留基準設定に係る食品健康影響評価につい

て要請(厚生労働省発食安第0320第4号)

- 2014年 3月 25日 関係書類の接受(参照 76~83)
- 2014年 3月 31日 第509回食品安全委員会(要請事項説明)
- 2014年 6月 18日 第106回農薬専門調査会幹事会
- 2014 年 6月 18日 第 107 回農薬専門調査会幹事会
- 2014年 7月 1日第520回食品安全委員会(報告)
- 2014年 7月 2日から7月31日まで 国民からの意見・情報の募集
- 2014 年 9月 11日第112回農薬専門調査会幹事会
- 2014年 9月 26日農薬専門調査会座長から食品安全委員会委員長へ報告
- 2014年 10月 7日第532回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照86)

2015年 5月 19日 残留農薬基準告示 (参照 87)

一第4版関係一

- 2016年 5月 25日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 値設定依頼(適用拡大: やまのいも、にがうり等)
- 2016年 12月 13日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発生食第1213第7号)
- 2016年 12月 14日 関係書類の接受(参照88~91)
- 2016年 12月 20日 第633回食品安全委員会(要請事項説明)
- 2017年 2月 28日 第640回食品安全委員会(審議)

(同日付け厚生労働大臣へ通知)(参照92)

2018年 5月 30日 残留農薬基準告示 (参照 93)

一第5版関係一

- 2019年 2月 20日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 値設定依頼(適用拡大: てんさい、カリフラワー等)
- 2019 年 12 月 18 日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発生食 1218 第 4 号)、関係書類の接受(参照 94~105)
- 2019年 12月 24日 第768回食品安全委員会(要請事項説明)
- 2020年 2月 7日 第180回農薬専門調査会幹事会
- 2020年 2月 19日 農薬専門調査会座長から食品安全委員会委員長へ報告

<食品安全委員会委員名簿>

(2009年6月30日まで)(2011年1月6日まで)(2012年6月30日まで)見上 彪(委員長)小泉直子(委員長)小泉直子(委員長)小泉直子(委員長代理*)熊谷 進(委員長代理*)

 長尾 拓
 長尾 拓

 野村一正
 野村一正

 畑江敬子
 畑江敬子

 廣瀬雅雄
 廣瀬雅雄

 本間清一
 村田容常

*:2009年7月9日から *:2011年1月13日から

(2015年6月30日まで) (2017年1月6日まで) (2018年6月30日まで) 佐藤 洋(委員長) 佐藤 洋 (委員長) 熊谷 進(委員長) 山添 康(委員長代理) 山添 康(委員長代理) 佐藤 洋(委員長代理) 山添 康(委員長代理) 熊谷 進 吉田緑 三森国敏 (委員長代理) 吉田緑 山本茂貴 石井克枝 石井克枝 石井克枝 堀口逸子 堀口逸子 上安平洌子 村田容常 村田容常 村田容常

(2018年7月1日から) 佐藤 洋(委員長) 山本茂貴(委員長代理) 川西 徹 吉田 緑 香西みどり 堀口逸子 吉田 充

<食品安全委員会農薬専門調査会専門委員名簿>

(2008年3月31日まで)

鈴木勝士 (座長) 布柴達男 三枝順三 根岸友惠 林 真 (座長代理) 佐々木有 赤池昭紀 代田眞理子 平塚 明 石井康雄 高木篤也 藤本成明 泉啓介 玉井郁巳 細川正清 上路雅子 田村廣人 松本清司 津田修治 臼井健二 柳井徳磨

江馬 眞 津田洋幸 山崎浩史 大澤貫寿 出川雅邦 山手丈至 長尾哲二 與語靖洋 太田敏博 大谷 浩 中濹憲一 吉田 緑 納屋聖人 若栗 忍 小澤正吾 小林裕子 西川秋佳

(2010年3月31日まで)

鈴木勝士 (座長) 佐々木有 平塚明 林 真 (座長代理) 代田眞理子 藤本成明 相磯成敏 高木篤也 細川正清 赤池昭紀 玉井郁巳 堀本政夫 石井康雄 田村廣人 松本清司 泉啓介 津田修治 本間正充 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 臼井健二 中澤憲一* 山手丈至 太田敏博 永田 清 與語靖洋 大谷 浩 納屋聖人 義澤克彦** 小澤正吾 西川秋佳 吉田 緑 川合是彰 布柴達男 若栗 忍 小林裕子 根岸友惠

> 根本信雄 *: 2009年1月19日まで **: 2009年4月10日から ***: 2009年4月28日から

(2012年3月31日まで)

三枝順三***

納屋聖人 (座長) 平塚 明 佐々木有 林 真(座長代理) 代田眞理子 福井義浩 相磯成敏 高木篤也 藤本成明 赤池昭紀 玉井郁巳 細川正清 浅野 哲** 田村廣人 堀本政夫 石井康雄 津田修治 本間正充 泉 啓介 增村健一** 津田洋幸 上路雅子 長尾哲二 松本清司 臼井健二 永田 清 柳井徳磨 太田敏博 長野嘉介* 山崎浩史 西川秋佳 小澤正吾 山手丈至

川合是彰布柴達男與語靖洋川口博明根岸友惠義澤克彦葉形麻樹子***根本信雄吉田 緑小林裕子八田稔久若栗 忍

*: 2011年3月1日まで **: 2011年3月1日から ***: 2011年6月23日から

(2014年3月31日まで)

• 幹事会

三枝順三

 納屋聖人(座長)
 上路雅子
 松本清司

 西川秋佳*(座長代理)
 永田 清
 山手丈至**

 三枝順三(座長代理**)
 長野嘉介
 吉田 緑

 赤池昭紀
 本間正充

• 評価第一部会

上路雅子 (座長)津田修治山崎浩史赤池昭紀 (座長代理)福井義浩義澤克彦相磯成敏堀本政夫若栗 忍

• 評価第二部会

 吉田 緑(座長)
 葉形麻樹子
 藤本成明

 松本清司(座長代理)
 腰岡政二
 細川正清

 泉 啓介
 根岸友惠
 本間正充

• 評価第三部会

 三枝順三(座長)
 小野 敦
 永田 清

 納屋聖人(座長代理)
 佐々木有
 八田稔久

 浅野 哲
 田村廣人
 増村健一

• 評価第四部会

西川秋佳*(座長) 川口博明 根本信雄 長野嘉介(座長代理*; 代田眞理子 森田 健

座長**)

山手丈至(座長代理**) 玉井郁巳 與語靖洋

井上 薫** *: 2013 年 9 月 30 日まで **: 2013 年 10 月 1 日から

(2016年3月31日まで)

• 幹事会

 西川秋佳(座長)
 小澤正吾
 林
 真

 納屋聖人(座長代理)
 三枝順三
 本間正充

赤池昭紀	代田眞理子	松本清司
浅野 哲	永田 清	與語靖洋
上路雅子	長野嘉介	吉田 緑*
• 評価第一部会		
上路雅子 (座長)	清家伸康	藤本成明
赤池昭紀(座長代理)	林 真	堀本政夫
相磯成敏	平塚明	山崎浩史
浅野 哲	福井義浩	若栗 忍
篠原厚子		
・評価第二部会		
吉田 緑(座長)*	腰岡政二	本間正充
松本清司 (座長代理)	佐藤 洋	根岸友惠
小澤正吾	杉原数美	山本雅子
川口博明	細川正清	吉田 充
桒形麻樹子		
• 評価第三部会		
三枝順三 (座長)	高木篤也	中山真義
納屋聖人(座長代理)	田村廣人	八田稔久
太田敏博	中島美紀	増村健一
小野 敦	永田 清	義澤克彦
• 評価第四部会		
西川秋佳 (座長)	佐々木有	本多一郎
長野嘉介 (座長代理)	代田眞理子	山手丈至
井上 薫**	玉井郁巳	森田 健
加藤美紀	中塚敏夫	與語靖洋
		*: 2015年6月30日まで
		**: 2015年9月30日まで
(2018年4月1日から)		
・幹事会		
西川秋佳(座長)	代田眞理子	本間正充
納屋聖人(座長代理)	清家伸康	松本清司
赤池昭紀	中島美紀	森田 健
浅野 哲	永田 清	與語靖洋
小野 敦	長野嘉介	
• 評価第一部会		
浅野 哲 (座長)	篠原厚子	福井義浩
平塚明(座長代理)	清家伸康	藤本成明

 堀本政夫 (座長代理)
 豊田武士
 森田 健

 赤池昭紀
 中塚敏夫
 吉田 充*

石井雄二

• 評価第二部会

松本清司 (座長)葉形麻樹子山手丈至平林容子 (座長代理)中島美紀山本雅子義澤克彦 (座長代理)本多一郎若栗 忍小澤正吾増村健一渡邉栄喜

久野壽也

· 評価第三部会

 小野 敦 (座長)
 佐藤 洋
 中山真義

 納屋聖人 (座長代理)
 杉原数美
 八田稔久

 美谷島克宏 (座長代理)
 高木篤也
 藤井咲子

 太田敏博
 永田 清
 安井 学

腰岡政二

• 評価第四部会

本間正充 (座長)加藤美紀玉井郁巳長野嘉介 (座長代理)川口博明中島裕司與語靖洋 (座長代理)代田眞理子西川秋佳乾 秀之髙橋祐次根岸友惠

*:2018年6月30日まで

〈第80回農薬専門調査会幹事会専門参考人名簿〉

小澤正吾 林 真

〈第 180 回農薬専門調査会幹事会専門参考人名簿〉

三枝 順三 林 真

キナゾリン環を有する殺虫剤「ピリフルキナゾン」 (CAS No.337458-27-2) について、各種資料を用いて食品健康影響評価を実施した。なお、今回、作物残留試験(てんさい、カリフラワー等)及び遺伝毒性試験の成績等が新たに提出された。

評価に用いた試験成績は、動物体内運命(ラット)、植物体内運命(トマト、はつかだいこん等)、作物残留、亜急性毒性(ラット、マウス及びイヌ)、亜急性神経毒性(ラット)、慢性毒性(ラット及びイヌ)、発がん性(ラット及びマウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性等である。

各種毒性試験結果から、ピリフルキナゾン投与による影響は、主に精巣(間細胞過形成等)、肝臓(肝細胞肥大等)及び血液(貧血)に認められた。神経毒性、催奇形性及び生体において問題となる遺伝毒性は認められなかった。繁殖試験及び発生毒性試験において、ラットの児動物及び胎児に乳頭遺残、尿道下裂又は肛門生殖突起間距離短縮が認められた。いずれの試験においても無毒性量が得られている。

発がん性試験では、ラット及びマウスに精巣間細胞腫の発生頻度増加が認められたが、 発生機序は本剤が有する抗アンドロゲン作用を介した二次的な影響によるものであり、 遺伝毒性によるものとは考え難く、評価に当たり閾値を設定することは可能であると考 えられた。

各種試験結果から、農産物中の暴露評価対象物質をピリフルキナゾン(親化合物のみ) と設定した。

各試験で得られた無毒性量のうち最小値は、イヌを用いた 1 年間慢性毒性試験及び 6 か月回復試験の 0.5 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.005 mg/kg 体重/日を許容一日摂取量(ADI)と設定した。

ピリフルキナゾンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ラットを用いた発生毒性試験の5~mg/kg体重であったことから、これを根拠として、安全係数100~で除した0.05~mg/kg 体重を妊婦又は妊娠している可能性のある女性に対する急性参照用量(ARfD)と設定した。また、一般の集団に対してはラットを用いた急性神経毒性試験の無毒性量である100~mg/kg 体重を根拠として、安全係数100~で除した1~mg/kg 体重をARfDと設定した。

I. 評価対象農薬の概要

1. 用途

殺虫剤

2. 有効成分の一般名

和名:ピリフルキナゾン

英名: pyrifluquinazon (ISO名)

3. 化学名

IUPAC

和名:1-アセチル-1,2,3,4-テトラヒドロ-3-[(3-ピリジルメチル) アミノ]-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル] キナゾリン-2-オン

英名: 1-acetyl-1,2,3,4-tetrahydro-3-[(3-pyridylmethyl) amino]-6-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl] quinazolin-2-one

CAS (No. 337458-27-2)

和名:1-アセチル-3,4-ジヒドロ-3-[(3-ピリジニルメチル)アミノ]-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]-2(1*H*)-キナゾリノン

英名: 1-acetyl-3,4-dihydro-3-[(3-pyridinylmethyl)amino]-6-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-2(1*H*)-quinazolinone

4. 分子式

 $C_{19}H_{15}F_7N_4O_2$

5. 分子量

464.34

6. 構造式

$$F_{3}C$$

$$F_{3}C$$

$$N$$

$$O$$

$$O$$

$$CH_{3}$$

7. 開発の経緯

ピリフルキナゾンは、日本農薬株式会社により開発されたキナゾリン環を有する殺虫

剤である。本剤は害虫の摂食行動を制御する神経系又は内分泌系へ作用すると推定され、アブラムシ類、コナジラミ類等のカメムシ目害虫に高い殺虫効果を示す。

日本では、2010年10月に初回農薬登録された。

今回、農薬取締法に基づく農薬登録申請(適用拡大: てんさい、カリフラワー等)の要請がなされている。

Ⅱ. 安全性に係る試験の概要

各種運命試験[$II.1 \sim 4$]は、ピリフルキナゾンのフェニル基炭素を IIC で均一に標識したもの(以下「IIC に関サフルキナゾン」という。)及びピリジン環の IIC を位炭素を IIC で標識したもの(以下「IIC に関サフルキナゾン」という。)を用いて実施された。放射能濃度及び代謝物濃度は、特に断りがない場合は比放射能(質量放射能)からピリフルキナゾンの濃度(IIC (IIC)に換算した値として示した。

代謝物/分解物/原体混在物略称及び検査値等略称は別紙1及び2に示されている。

1. 動物体内運命試験

(1) 吸収

① 血中濃度推移

Fischer ラット (一群雌雄各 4 匹) に、 $[phe^{-14}C]$ ピリフルキナゾン又は $[pyr^{-14}C]$ ピリフルキナゾンを 1 mg/kg 体重(以下[1.]において「低用量」という。)又は $100 \ mg/kg$ 体重(以下[1.]において「高用量」という。)で単回経口投与して、血中濃度推移について検討された。

血中薬物動態学的パラメータは表1に示されている。

経口投与された各標識体の吸収及び C_{max} 到達後の減衰はいずれも概ね速やかであった。血中放射能濃度推移については、高用量群では T_{max} の延長がみられた。また、 $[pyr^{-14}C]$ ピリフルキナゾン投与群では、血漿中濃度に比べ、時間経過とともに高い血中/血漿中濃度比が観察され、血球中に残留し蓄積されやすいことが考えられた。(参照 2、3)

		20 1	<u> </u>	1341/05 1	- J. · / ·				
投与量(mg/kg 体重)		1			100				
性別		左	隹	Щ	隹	雄		雌	
試料		血液	血漿	血液	血漿	血液	血漿	血液	血漿
標識体				[phe-	¹⁴ C]ピリ	フルキブ	トゾン		
T _{max} (hr)		1	1	3	3	12	12	9	9
C _{max} (µg/g)		0.518	0.414	0.397	0.337	30.6	23.6	31.1	26.4
T _{1/2} (hr)	α相 1)	0.64	0.63	0.85	0.68	0.75	0.94	0.90	1.08
1 1/2 (1117)	β相 ²⁾	4.78	2.44	4.60	2.91	1.63	1.40	1.70	1.41
AUC (hr · μg/g	·)	12.1	8.89	12.5	8.18	1,150	1,060	1,320	1,220
標識体		[pyr-14C]ピリフルキナゾン							
T _{max} (hr)		1	1	1	1	9	9	3	3
C _{max} (µg/g)		0.376	0.183	0.353	0.171	18.1	10.4	16.9	11.2
TD (1-1)	α相 1)	2.57	0.95	3.18	0.98	2.01	0.90	1.94	0.96
$T_{1/2}$ (hr)	β相 ²⁾	6.26	3.85	6.60	4.39	11.54	3.42	9.60	3.65
AUC (hr · μg/g	;)	21.4	3.68	19.6	3.82	1,420	389	1,340	433
· T 。79 時間 2) · 72。169 時間									

表 1 血中薬物動態学的パラメータ

^{1):} T_{max}~72 時間、2): 72~168 時間

② 吸収率

胆汁中排泄試験 [1.(4)②]で得られた胆汁及び尿中排泄率並びにカーカス 1 の残存放射能量の総和から、ピリフルキナゾンの投与後 72 時間における吸収率は少なくとも 63.1%と算出された。(参照 4)

(2)分布

Fischer ラット(一群雌雄各 4 匹、 $[pyr^{-14}C]$ ピリフルキナゾン高用量群については雄のみ 4 匹)に $[phe^{-14}C]$ ピリフルキナゾン又は $[pyr^{-14}C]$ ピリフルキナゾンを低用量又は高用量で単回経口投与して、体内分布試験が実施された。

主要組織中の残留放射能濃度は表2に示されている。

両標識体投与群における残留放射能は、主に肝臓、腎臓及び副腎で比較的高濃度認められた。[phe-14C]ピリフルキナゾン投与群では、投与 168 時間後において、これらの臓器を含め全ての臓器・組織中放射能濃度は大きく減衰し、特異的に放射能の貯留する臓器・組織は認められなかった。一方、[pyr-14C]ピリフルキナゾン投与群における減衰は緩やかであり、投与 168 時間後においてもほぼ全ての臓器・組織で有意な放射能が検出された。肝臓、腎臓、副腎、脳及び心臓においても比較的高濃度の放射能分布が認められ、これらの中で、心臓は放射能の減衰が最も緩徐であった。(参照 2、3)

衣と 主安社職中の残留成別能展及 (μg/g)							
標識体	投与量 (mg/kg 体重)	性別	投与 3 時間後/9 時間後 a	投与 168 時間後			
	1	雄	肝臓(3.59)、副腎(3.25)、腎臓 (2.15)、血液(0.43)、血漿(0.34)	肝臓(0.088)、副腎(0.084)、腎臓 (0.033)、血液(0.026)、血漿(0.004)			
[phe-14C]	1	雌	副腎(3.59)、肝臓(3.31)、腎臓 (1.96)、血液(0.37)、血漿(0.33)	肝臓(0.10)、副腎(0.099)、腎臓 (0.056)、血液(0.045)、血漿(0.005)			
ピリフルキーナゾン	100	雄	肝臓(170.3)、腎臓(111)、副腎 (110)、血液(24.8)、血漿(18.2)	肝臓(9.3)、腎臓(3.4)、副腎(3.2)、血液(0.9)、血漿(0.6)			
		雌	肝臓(156)、副腎(111)、腎臓(103)、 血液(19.5)、血漿(16.0)	肝臓(9.4)、腎臓(3.7)、副腎(3.4)、血液(1.3)、血漿(0.5)			
		雄	肝臓(9.30)、副腎(2.39)、腎臓(1.94)、心臓(0.58)、脳(0.30)、血液(0.23)、血漿(0.14)	心臓(0.48)、肝臓(0.40)、腎臓(0.36)、脳(0.26)、副腎(0.25)、血液(0.053)、血漿(0.005)			
[pyr- ¹⁴ C] ピリフルキ ナゾン	1	雌	肝臓(6.86)、腎臓(1.65)、副腎 (1.60)、心臓(0.55)、脳(0.39)、血液 (0.24)、血漿(0.14)	心臓(0.38)、腎臓(0.31)、肝臓(0.30)、副腎、脳(0.23)、血液(0.04)、血漿(0.006)			
	100	雄	肝臓(437)、腎臓(240)、副腎(93.6)、 心臓(71.5)、脳(42.3)、血液(17.5)、 血漿(11.6)	心臟(36.6)、肝臟(26.2)、腎臟 (25.3)、脳(18.3)、副腎(14.9)、血液 (4.4)、血漿(0.4)			

表2 主要組織中の残留放射能濃度 (ug/g)

a:低用量群では投与3時間後、高用量群では投与9時間後に採取した試料が用いられた。

¹ 組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

(3)代謝

排泄試験[1.(4)①]で得られた尿、糞及び血漿並びに体内分布試験[1.(2)]で 投与 168 時間後に比較的高濃度の放射能分布が認められた血液、脳、肝臓及び心臓 を試料として、代謝物同定・定量試験が実施された。

尿、糞及び血漿中代謝物は表 3 に、臓器及び組織中代謝物は表 4 に示されている。 [phe-14C]ピリフルキナゾン投与群の尿中からはピリフルキナゾンは検出されず、主要代謝物として、投与量の違い及び性別にかかわらず P 及び Q のグルクロン酸抱合体並びに E が検出された。また、糞中における主要代謝物は、雌雄ともに C、P、G のグルクロン酸抱合体及び W の抱合体であった。高用量群ではこれらの代謝物のほかにピリフルキナゾンが検出された。更に、血漿からは B、C、O 及び V が主要代謝物として検出され、ピリフルキナゾンは検出されなかった。

[pyr-14C]ピリフルキナゾン投与群の尿中からはピリフルキナゾンは検出されず、主要代謝物として、投与量の違い及び性別にかかわらず U が検出された。また、糞中における主要代謝物は、雌雄ともに C、G のグルクロン酸抱合体であった。高用量群ではこれらの代謝物のほかにピリフルキナゾンが検出された。

投与 168 時間後の血液、肝臓、脳及び心臓に残存する放射能のほとんどは脱離したピリジン環部分に由来する S 及び T からなるナイアシン(ビタミン B_3)であった。

各投与群のいずれの試料中代謝物にも、投与量の違い及び性別による顕著な差異 は認められなかった。

ピリフルキナゾンはラット体内において、N-脱アセチル化、ピリジン環窒素の酸化、ピリジルメチルアミノ基のイミノ化、キナゾリノン環の水酸化、ピリジン環部分の脱離、更には抱合化等により、広範かつ多様な代謝を受けると考えられた。また、ピリジン環部分はニコチンアルデヒド(R)を経て、ナイアシンに代謝され、生体内物質として、資化されることが考えられた。(参照 2、3)

表3 尿、糞及び血漿中代謝物(%TAR)

標識体	投与量 (mg/kg体重)	性別	試料	ピリフル キナゾン	代謝物
		雄	尿	_	P 及び Q のグルクロン酸抱合体(9.3 a)、E(3.4)、 Q(2.4)、D、O(いずれも 1 未満)
			糞	_	W の抱合体(14.4)、C(11.3)、G のグルクロン酸抱合体 (7.9)、P(5.3)、O(2.5)、F(1.9)、Q(1.5)、B(1.1)
	1		尿	_	P 及び Q のグルクロン酸抱合体(11.5 a)、E(3.0)、D 及 び O、Q(いずれも 1 未満)
		雌	粪	_	W の抱合体(17.4)、C(15.1)、G のグルクロン酸抱合体 (5.3)、P(3.9)、O 及び B(2.5)、Q(0.8)
[phe-14C]			尿	_	P 及び Q のグルクロン酸抱合体(7.8 a)、E(1.6)、D、O、Q(いずれも 1 未満)
ピリフル キナゾン	100	雄	糞	11.1	C(12.0)、W の抱合体(10.4)、G のグルクロン酸抱合体 (8.0)、B(7.6)、O(2.1)、Q、F(0.9)
			血漿b	_	V(4.7)、O(3.7)、C(2.2)、B(1.9)、D、E、M、N、Q(いずれも 1 未満)
		雌	尿	_	P 及び Q のグルクロン酸抱合体(9.1 a)、 $E(1.2)$ 、 D 、 O 、 Q (いずれも 1 未満)
			糞	6.3	C(17.4)、W の抱合体(12.0)、G のグルクロン酸抱合体 (6.0)、B(5.9)、O(2.7)、P(0.9)
				血漿 b	_
			尿	_	U(20.5)、E(3.0)、S(2.6)、B、C、D、T(いずれも 1 未満)
	_	雄	糞	_	C(9.0)、G のグルクロン酸抱合体(3.5)、F(1.1)、B(1.0)、 E、S(いずれも 1 未満)
[pyr-14C]	1		尿	_	U(17.6)、E(2.7)、S(1.7)、B、C、D、T(いずれも1未満)
ピリフル キナゾン		雌	糞	_	C(8.5)、B(2.3)、G のグルクロン酸抱合体(1.6)、E、S(いずれも1未満)
			尿	_	U(21.0), E(3.7), S(1.3), T(1.1), D(0.8)
	100	雄	糞	2.2	C(10.5)、G のグルクロン酸抱合体(5.6)、B(3.8)、E、F、S、T(いずれも 1 未満)

- : 検出限界未満、a: P 及び Q のグルクロン酸抱合体の合量値、b: μg/g

表4 臓器及び組織中代謝物([pyr-14C]ピリフルキナゾン投与群、%TRR)

投与量	試料	採取時間	代謝物			
(mg/kg 体重) 試科		TVAX1HJ	雄	此隹		
		投与3時間後	T(54.3), R(2.8), S(1.4)	T(52.4), R(2.0), S(2.0)		
	血液	投与24時間後	T(78.7), S(1.0)	T(90.7)		
		投与 168 時間後	T(91.3)	T(91.3)		
1		投与3時間後	T(79.7), R(2.4), S(2.0)	T(72.4), S(2.3), R(1.7)		
1	肝臓	投与 24 時間後	T(86.0), S(0.9)	T(86.8), S(1.0)		
		投与 168 時間後	T(77.3)	T(88.3)		
	脳	投与 168 時間後	S(91.5)	S(91.6)		
	心臓	投与 168 時間後	S(89.6)	S(93.1)		
		投与9時間後	T(29.5), R(2.4), S(1.5)			
	血液	投与 24 時間後	T(63.3), R(1.7)			
		投与 168 時間後	T(52.2)			
100		投与9時間後	T(66.6), R(1.3), S(0.6)			
100	肝臓	投与 24 時間後	T(76.6)			
		投与 168 時間後	T(77.4)			
	脳	投与 168 時間後	T(92.3)			
	心臓	投与 168 時間後	T(96.1)			

胆汁中排泄試験 [1.(4)②] において、投与後 72 時間で得られた胆汁、尿、糞及び消化管内容物を試料として代謝物同定・定量が実施された。

各試料における代謝物は表5に示されている。

消化管から吸収されたピリフルキナゾンは、水酸化及び加水分解のみならず、キナゾリン環及び基本骨格の開裂等広範に代謝され、更にグルクロン酸抱合を受け、 胆汁中に排泄されると考えられた。(参照 4)

表 5 各試料における代謝物 (%TAR)

試料	ピリフル キナゾン	代謝物
胆汁	_	P のグルクロン酸抱合体(8.3)、G のグルクロン酸抱合体(7.6)、 W(6.8)、Q(1.5)、G(1.3)、C、E(いずれも 1 未満)
尿	_	D、E、Q(いずれも1未満)
糞	_	C(1.4)、B、O(いずれも1未満)
消化管内容物	4.8	B(3.8), C(1.9), O(1.2)

一:検出限界未満

(4) 排泄

① 尿、糞及び呼気中排泄

Fischer ラット(一群雌雄各 4 匹、 $[pyr^{-14}C]$ ピリフルキナゾン高用量群については雄のみ 4 匹)に、 $[phe^{-14}C]$ ピリフルキナゾン又は $[pyr^{-14}C]$ ピリフルキナゾンを低用量又は高用量で単回経口投与して、排泄試験が実施された。

投与後 168 時間の尿 (ケージ洗浄液を含む)、糞及び呼気中排泄率は表 6 に示されている。

[phe-14C]ピリフルキナゾン投与群では投与量の違い及び性別にかかわらず投与後 168 時間で 94.8%TAR~97.0%TAR が糞尿中に排泄された。糞中には未吸収分も含まれていると推定されるが、後述の胆汁中排泄試験[1.(4)②]の結果も合わせると、雌雄とも主に糞中に排泄されると考えられた。また、呼気中への排泄は認められなかった。

一方、 $[pyr^{-14}C]$ ピリフルキナゾン投与群では投与後 168 時間で 52.4%TAR \sim 71.8%TAR が糞尿中にほぼ均等に排泄され、呼気中への排泄が認められた。投与 168 時間後に採取したカーカス(消化管内容物を含む)には 18.0%TAR \sim 30.9%TAR の 放射能が残存していた。(参照 2、3)

我。									
사무디	投与量	[phe-14C]ピリフルキナゾン		[pyr-14C]ピリフルキナゾン					
性別	(mg/kg 体重)	1	100	1	100				
	尿 a	20.4	14.7	31.1	32.7				
雄	粪	75.3	80.9	27.9	39.3				
	呼気			6.1	4.2				
	尿 a	20.8	16.6	28.9					
雌	糞	76.2	78.3	23.7					
	呼気			7.0					

表 6 投与後 168 時間の尿、糞及び呼気中排泄率 (%TAR)

② 胆汁中排泄

胆管カニューレを挿入した Fischer ラット(雄 20 匹)に、 $[phe^{-14}C]$ ピリフルキナゾンを低用量で強制経口投与して、胆汁中排泄試験が実施された。

投与後72時間の排泄率は表7に示されている。(参照4)

	排泄率	残存	字量	
胆汁	尿	消化管内容物	カーカス	
34.5	11.8	4.7	14.4	16.8

表7 投与後72時間の排泄率(%TAR)

(5) ミクロソームを用いた in vitro代謝試験<参考資料>

Fischer ラット (雄) 及びビーグル犬 (雄) 由来の肝ミクロソーム、SD ラット (雄) の鼻腔粘膜ミクロソーム及びイヌを用いた 1 年間慢性毒性試験及び 6 か月間回復試験 [11. (2)] で得られた鼻腔粘膜ミクロソームに、[phe-14C] ピリフルキナゾンを 0.2 μ M となるように添加して、 $in\ vitro$ 代謝試験が実施された。

各試料における代謝物は表8に示されている。

a:ケージ洗浄液を含む、/:採取・分析せず

ピリフルキナゾンは供試したミクロソームにおいて速やかに代謝され、B、C 等が主要代謝物として検出された。

ピリフルキナゾンの in vitro 代謝に定性的な差異は認められず、イヌにおいて、 ラットと同様の経路を経て代謝を受けるものと推察された。また、鼻腔粘膜におけ る代謝についても肝臓での代謝と同質であった。(参照 51)

供試 ミクロソーム	動物種	性別	ピリフル キナゾン	代謝物
HT.	ラット	雄	_	B(30.6)、C(16.7)、G(4.2)、N(3.4)、D(2.3)、 E(1.5)、微量未同定代謝物。(38.9)
肝	イヌ	雄	_	B(31.7)、C(22.5)、E(6.2)、D(4.5)、G(3.4)、N(3.2)、微量未同定代謝物。(28.6)
	ラット	雄	_	B(26.9)、C(9.2)、N(4.3)、D(4.0)、G(3.2)、Q(2.6)、E(1.3)、微量未同定代謝物。(46.4)
	イヌ	雄а	_	B(41.0)、C(13.7)、E 及び G(いずれも 3.0)、 N(2.1)、D(0.7)、微量未同定代謝物。(36.0)
鼻腔粘膜		此 推 a	_	B(59.1)、C(17.1)、G(3.7)、E(2.8)、N(1.3)、 D(1.0)、微量未同定代謝物。(14.5)
		雄Ь	_	B(70.2)、G(5.0)、C(4.7)、微量未同定代謝物 c (19.9)
10 117H H +2		雌 b		B(69.7)、C(7.2)、G(4.3)、N(1.1)、D 及び E(いずれも 0.4)、微量未同定代謝物 (16.5)

表8 各試料における代謝物 (%TAR)

2. 植物体内運命試験

(1) トマト

ポットに定植したミニトマト(品種名:千果)に、 $[phe^{-14}C]$ ピリフルキナゾン又は $[pyr^{-14}C]$ ピリフルキナゾンの 20%製剤を蒸留水で希釈後、100 g ai/ha の用量で 1 週間間隔で 3 回散布処理して、植物体内運命試験が実施された。試料として、果実及び葉を最終処理直後(0 日)、1、7 及び 14 日後(収穫期)に、茎部及び根部を 14 日後にそれぞれ採取した。

トマトの各採取部位における残留放射能分布は表9に示されている。

各処理区の果実及び葉における放射能濃度に顕著な減衰は認められなかった。また、いずれの採取時期においても果実及び葉における残留放射能は表面洗浄画分(果実: 41.0%TRR~75.2%TRR、葉: 60.3%TRR~80.2%TRR)及びアセトニトリル抽出画分(果実: 15.0%TRR~35.3%TRR、葉: 12.8%TRR~23.1%TRR)に回収された。

標識位置、試料採取時期及び採取部位にかかわらず主要成分はピリフルキナゾンであり、主要代謝物として、ピリフルキナゾンのN・脱アセチル化により生成したBが検出された。その他の代謝物として、各部位からC、D、E、H、J、K、L、N D

^{- :} 検出限界未満、a: [11. (2)] における対照群、b: [11. (2)] における 5 mg/kg 体重/日投与群、

c: 微量未同定代謝物の総和

び O が検出されたが、個々の代謝物として 10%TRR を超過するものはなかった。 (参照5)

[phe-14C]ピリフルキナゾン [pyr-14C]ピリフルキナゾン 標識体 処理後 0 日 1日 7 日 14 日 0 日 1 目 7 日 14 日 総残留 日数 放射能濃度 果実 0.7630.628 0.6080.6120.5140.3460.411 0.650(mg/kg) 葉 14.4 17.120.713.1 16.013.317.913.5茎 1.30 0.670 根 0.1600.051[phe-14C]ピリフルキナゾン [pyr-14C]ピリフルキナゾン 標識体 採取 処理後 部位 0 日 1 日 7 日 14 日 0 日 1 日 7 日 14 日 日数 0.4350.5480.4090.2450.211 0.3930.1720.323mg/kg 果実 %TRR 71.571.8 66.8 47.761.0 62.541.9 49.7ピリ 12.8 mg/kg 9.6110.58.06 9.40 8.96 9.168.81 葉 フル %TRR 66.9 61.3 67.5 71.6 67.8 67.5 50.4 45.5 キナ mg/kg 0.5400.388茎 ゾン %TRR 41.7 58.0mg/kg 0.0280.003 根 %TRR 17.46.5mg/kg 0.0150.018 0.0200.0230.0390.0330.0150.022果実 %TRR 2.4 2.43.2 4.411.4 5.23.6 3.4代 mg/kg 1.13 0.8440.3610.2281.30 0.932 0.3690.333葉 %TRR 謝 7.9 4.92.3 1.1 9.8 5.22.7 2.6物 0.0260.015mg/kg 茎 В %TRR 2.02.20.0050.002mg/kg 根 %TRR 3.34 4.8

表 9 トマトの各採取部位における残留放射能分布

/: 試料採取せず

(2) はつかだいこん

播種 11 日後の未成熟はつかだいこん (品種名:チェリーメイト) に、[phe-14C] ピリフルキナゾン又は $[pvr^{-14}C]$ ピリフルキナゾンの 20%製剤を蒸留水で希釈し、1 株当たり 225 µg の用量で 1 週間間隔で 3 回散布処理して、植物体内運命試験が実 施された。試料として、葉及び根を最終処理直後(0日)、1、7及び14日後(収 穫期) に採取した。

はつかだいこんの各採取部位における残留放射能濃度は表 10 に示されている。 各処理区の葉及び根における放射能濃度は経時的に減衰した。また、いずれの採 取時期においても葉における残留放射能は表面洗浄画分 (50.7%TRR \sim 71.9%TRR) 及びアセトニトリル抽出画分 (13.9%TRR \sim 31.8%TRR) に回収された。一方、散布直後の根における残留放射能のほとんどがアセトニトリル抽出画分 (66.8%TRR \sim 74.1%TRR) に回収されたが、いずれの処理区においても経時的に回収率は減少した。

標識位置、試料採取時期及び採取部位にかかわらず主要成分はピリフルキナゾンであり、収穫期の葉から $2.15\sim4.14$ mg/kg $(59.1\%TRR\sim70.7\%TRR)$ 、根から 0.007 mg/kg $(9.2\%TRR\sim13.0\%TRR)$ 検出された。代謝物として、B、C、D、E、H、J、K、L、N及びOが検出されたが、個々の代謝物として処理 14 日後に 10%TRR を超過するものはなかった。(参照 6)

表 16 16 26 2.60 a 15 a 15 a 16 a 16 a 16 a 16 a 16 a 16									
最終処理	[phe-14C]ピリ	フルキナゾン	[pyr-14C]ピリフルキナゾン						
後日数	葉	根	茎	根					
0 日	14.4	0.113	10.8	0.158					
1日	14.8	0.128	10.9	0.174					
7 日	10.9	0.094	5.84	0.128					
14 日	5.86	0.058	3.64	0.076					

表 10 はつかだいこんの各採取部位における残留放射能濃度 (mg/kg)

(3) レタス

播種 10 週後の未成熟レタス(品種名:シスコ)に、 $[phe^{-14}C]$ ピリフルキナゾン 又は $[pyr^{-14}C]$ ピリフルキナゾンの 20%製剤を蒸留水で希釈後、150 g ai/ha の用量 で 1 週間間隔で 3 回散布処理して、植物体内運命試験が実施された。試料として、 結球及び葉を最終処理直後(0 日)、1、7 及び 14 日後に、芯部及び根部を 14 日後 にそれぞれ採取した。

レタスの各採取部位における残留放射能濃度は表 11 に示されている。

各処理区の結球及び葉における放射能濃度に経時的な減衰は認められなかった。また、いずれの採取時期においても結球及び葉における残留放射能は表面洗浄画分(結球: 61.0%TRR \sim 92.5%TRR、葉: 47.5%TRR \sim 87.5%TRR)及びアセトニトリル抽出画分(結球: 4.3%TRR \sim 28.8%TRR、葉: 6.8%TRR \sim 43.8%TRR)に回収された。

標識位置、試料採取時期及び採取部位にかかわらず主要成分はピリフルキナゾン及びBであった。ピリフルキナゾンの経時的な減衰に伴い、Bの残留量が増加する傾向にあった。その他の代謝物として、各部位からC、D、E、H、J、K、L、N Q W0 が検出されたが、個々の代謝物として、処理 14 日後に 10% TRR を超過するものはなかった。 (参照 7)

標識体 [phe-14C]ピリフルキナゾン [pyr-14C]ピリフルキナゾン 処理後 0 日 1 日 7 日 14 日 0 日 1 目 7 日 14 日 総残留 日数 放射能濃度 結球 2.93 0.590 0.5551.42 1.82 2.32 0.867 0.568 (mg/kg) 葉 21.4 23.7 24.9 24.119.2 24.0 17.2 16.8 芯 0.304 0.233 根 0.1030.063[phe-14C]ピリフルキナゾン [pvr-14C]ピリフルキナゾン 標識体 採取 処理後 部位 0 日 1 日 7 日 14 日 0 日 1 目 7 日 14 日 日数 mg/kg 2.09 0.074 0.043 0.1740.182 0.2470.026 0.069 結球 %TRR 71.3 12.57.8 12.310.0 10.7 3.0 12.1ピリ 17.3 18.4 15.6 19.2 12.3 12.1 mg/kg 19.4 14.8 葉 %TRR フル 81.0 81.8 73.8 64.6 77.2 80.0 71.771.4キナ mg/kg 0.089 0.01 ゾン %TRR 29.24.2< 0.001 mg/kg 0.002 根 %TRR 0.402.50.379 0.989 1.79 0.708 0.340 mg/kg 0.4530.4351.45 結球 %TRR 13.0 76.8 78.369.779.4 76.9 81.6 59.70.483 1.21 3.07 5.01 1.27 0.572 1.14 1.77 代 mg/kg 葉 %TRR 謝 2.3 5.1 12.3 20.8 6.6 2.4 6.6 10.5 物 0.047 mg/kg 0.034 芯 В %TRR 15.6 14.5

表 11 レタスの各採取部位における残留放射能分布

以上の結果より、ピリフルキナゾンの植物体内における主要代謝経路は、N・脱ア セチル化によるBの生成であると考えられた。

0.006

5.7

0.006

9.4

3. 土壌中運命試験

根

(1) 好気的土壌中運命試験

mg/kg

%TRR

軽埴土(高知)に、 $[phe^{-14}C]$ ピリフルキナゾン又は $[pvr^{-14}C]$ ピリフルキナゾンの アセトニトリル溶液を 0.667 mg/kg 乾土の用量で添加し、20℃ の暗条件下で 181 日間インキュベートして、好気的土壌中運命試験が実施された。滅菌土壌は処理 181 日後にのみ分析した。

好気的土壌中放射能の抽出画分における経時的推移は表 12 に、土壌中分解物の 経時的推移は表13に示されている。

両標識体ともに溶媒抽出率は経時的に減少し、一方、非抽出(土壌残渣)画分に

残存する放射能の割合が増大した。また、 $[pyr^{-14}C]$ ピリフルキナゾン処理区では $^{14}CO_2$ が経時的に増加した。

[phe-14C]ピリフルキナゾン [pyr-14C]ピリフルキナゾン 経過日数 抽出画分 a 非抽出画分 抽出画分a 非抽出画分 14**CO**2 14**CO**2 日 0 95.70.8 109 0.6 7 日 84.0 13.0 < 0.1 91.6 13.4 1.1 28 日 61.532.4< 0.1 44.0 45.411.2181 日 37.258.615.941.628.8 < 0.1 181 日(滅菌) 80.5 19.8 77.8 297

表 12 好気的土壌中放射能の抽出画分における経時的推移 (%TAR)

土壌処理されたピリフルキナゾンは速やかに減衰した。主要分解物はB及びCであり、処理7日後に最大濃度を示したが、これらの分解物も速やかに減衰した。滅菌土壌中におけるピリフルキナゾンの減衰は、非滅菌土壌に比して緩やかであり、主要分解物としてBが検出された。土壌中分解物は腐植画分に取り込まれ、特にピリジン環部分は最終的には無機化されると考えられた。

ピリフルキナゾン並びに分解物 B 及び C の推定半減期はそれぞれ 1.8、7.8 及び 44 日であった。(参照 8)

⁄∀`□ □ ※/←	[phe-14C]	ピリフルキナゾン	[pyr-14C] \(\text{L}	_° リフルキナゾン
経過日数	ピリフルキナゾン	分解物	ピリフルキナゾン	分解物
0 日	88.9	B(1.6)、C、J(いずれも1未 満)	101.5	B、J、L(いずれも3未満)
7 日	6.1	C(25.9)、B(18.1)、G、H、I、 J、O、Q、X、Y(いずれも 9 未満)	5.5	C(29.3)、B(20.2)、G、H、 I、K、X(いずれも 10 未 満)
28 日	2.2	C(15.8)、B、G、H、I、J、N、 O、Q、X、Y(いずれも 6 未 満)	2.1	C(14.7)、B、G、H、I、J、 K、X、Y、Z(いずれも7未 満)
181 日	0.4	O(12.7)、B、C、H、J、N、Q、 X、Y、Z(いずれも3未満)	0.7	B、C、G、H、I、J、K、X、 Y、Z(いずれも3未満)
181 日 (滅菌)	3.3	B(41.3)、C、G、H、N、O(い ずれも 4 未満)	20.6	B(40.3)、C、G、H、K、 L(いずれも3未満)

表 13 土壌中分解物の経時的推移 (%TAR)

(2)土壤吸着試験

[phe-14C] ピリフルキナゾンを用いて、4種類の国内土壌 [砂土(宮崎)、壌土(埼

a: アセトニトリル/水 (4:1) 及びアセトニトリル/1 M 塩酸 (4:1) 抽出画分の総和

玉及び栃木)及びシルト質壌土(埼玉)]における土壌吸着試験が実施された。

Freundlich の吸着係数 K^{ads} は $3.24\sim28.7$ 、有機炭素含有率により補正した吸着係数 K_{oc} は $445\sim692$ であった。

以上の結果から、ピリフルキナゾンは中程度の移行性を有すると考えられた。(参 照 9)

4. 水中運命試験

(1) 加水分解試験

試験条件、推定半減期及び試験終了時における残存放射能は表 14 に示されている。

ピリフルキナゾンはアルカリ性条件下では極めて速やかに加水分解を受けるものの、弱酸性~中性条件下では比較的安定であった。主要分解物としてBが検出された。(参照10)

De Heaville III A TENCE I WAN						
pН	1.2	4.0	7.0	9.0		
試験温度 (°C)	37	25	25	25		
インキュベーション時間(日)	4	30	41	1.5		
推定半減期(日)	1.98	179	34.9	0.78		
ピリフルキナゾン (%)	24.9	86.2	42.0	22.8		
分解物 B (%)	78.0	13.7	51.7	67.8		

表 14 試験条件、推定半減期及び試験終了時における残存放射能

(2) 水中光分解試験

pH $5.0\sim5.1$ の滅菌酢酸ナトリウム緩衝液又は pH $7.2\sim7.4$ の滅菌自然水(河川水、大阪)に、[phe-¹⁴C]ピリフルキナゾン又は[pyr-¹⁴C]ピリフルキナゾンを 5 mg/L の濃度となるように添加した後、25°C で 6 日間(緩衝液)又は 4 日間(自然水)、キセノンアークランプ照射(光強度: $636\sim669$ W/m²、波長範囲: $250\sim850$ nm)して水中光分解試験が実施された。

両試料において、いずれの標識体を用いた場合も、ピリフルキナゾンの分解は緩慢であり、照射 6 日後の緩衝液及び 4 日後の自然水に残存していたピリフルキナゾンはそれぞれ 87.2%TAR~87.8%TAR 及び 77.4%TAR~85.6%TAR であった。主要分解物として B が緩衝液中から 1.9%TAR~2.4%TAR、自然水から 8.8%TAR~10.4%TAR が検出されたほか、痕跡量の多くの分解物が検出された。

ピリフルキナゾンの推定半減期は 37.5 日 (緩衝液) 及び 13.8 日 (自然水) であった。 (参照 11)

5. 土壤残留試験

火山灰土・軽埴土(茨城)及び沖積土・埴壌土(高知)を用いて、ピリフルキナゾン及び分解物(B、C及びO)を分析対象化合物とした土壌残留試験(容器内及びほ場)が実施された。結果は表 15 に示されている。(参照 12)

			推定半減期(日)			
試験	濃度 a	土壌	いリフェキナバン	ピリフルキナゾン		
			ピリフルキナゾン	+分解物 B、C、O		
容器内試験	0.4	火山灰土・軽埴土	0.3	1.6		
(畑地状態)	0.4 mg/kg	沖積土・埴壌土	0.6	1.0		
ほ場試験	200	火山灰土・軽埴土	1.5	8.4		
(畑地)	300 g ai/ha	沖積土・埴壌土	18.5	26.9		

表 15 土壤残留試験成績

6. 作物残留試験

(1) 作物残留試験

ばれいしょ、キャベツ等を用いて、ピリフルキナゾン及び代謝物 B を分析対象化 合物とした作物残留試験が実施された。

結果は別紙 3 に示されている。ピリフルキナゾン及び代謝物 B の最大残留値は、いずれも最終散布 1 日後に収穫しただいこん(葉部)の 10.0 mg/kg(ピリフルキナゾン)及び 6.13 mg/kg(代謝物 B)であった。(参照 13、63、64、82、89~91、<math>95~101)

(2) 推定摂取量

別紙3の作物残留試験の分析値を用いて、ピリフルキナゾンを暴露評価対象物質とした際に食品中から摂取される推定摂取量が表16に示されている(別紙4参照)。なお、本推定摂取量の算定は、登録されている又は申請された使用方法からピリフルキナゾンが最大の残留を示す使用条件で、全ての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定の下に行った。

表 16 食品中から摂取されるピリフルキナゾンの推定摂取量

	国民平均	小児(1~6 歳)	妊婦	高齢者 (65 歳以上)
	(体重:55.1 kg)	(体重:16.5 kg)	(体重:58.5 kg)	(体重:56.1 kg)
推定摂取量 (μg/人/日)	101	51.2	124	123

a: 容器内試験では純品(純度 99.1%)、ほ場試験では 20%顆粒水和剤(2,000 倍希釈液)を使用

7. 一般薬理試験

ラット及びマウスを用いた一般薬理試験が実施された。 結果は表 17 に示されている。(参照 14)

表 17 一般薬理試験概要

	农工 // 原来在两次成文						
	試験の種類	動物種	動物数 /群	投与量(mg/kg体重)(投与方法)	最大 無作用量 (mg/kg 体重)	最小 作用量 (mg/kg 体重)	概要
中枢神経系	一般状態 (FOB)	Fischer ラット	雌 5	0、5、50、500 (経口)	5	50	50 mg/kg 体重以上投与群で立毛、移動性低下、移動性低下、500 mg/kg 体重投与群で姿勢異常、動物の取り出し、大変の取り出し、大変の取り出し、大変ので変勢、大変を行び、大変ので変勢、大変を行び、大変のでは、大変では、大変では、大変では、大変では、大変では、大変では、大変では、大変
	自発運動量				50	500	自発運動量低下
	ヘキソバルビタ ール誘発睡眠	ICR マウス	雌 8		5	50	50 mg/kg 体重以上投 与群で睡眠延長
循環器系	血圧、心拍数	Fischer ラット	雌 5		50	500	心拍数及び収縮期血圧 低下
腎機能	尿量、尿中電解 質排泄量、浸透圧	Fischer ラット	雌 5		500	_	影響なし

注)検体は全て0.5%CMC-Na水溶液に懸濁して用いられた。 -: 最小作用量が設定できない。

8. 急性毒性試験

(1) 急性毒性試験

ピリフルキナゾン (原体) を用いた急性毒性試験が実施された。 結果は表 18 に示されている。 (参照 $15\sim17$)

表 18 急性毒性試験結果概要 (原体)

投与経	動物種	LD ₅₀ (mg		観察された症状
路		雄	雌	
経口	Fischer ラット 雌3匹		300~ 2,000	瀬死、伏臥、横臥、うずくまり姿勢、自発運動低下、自発運動消失、歩行異常、呼吸数低下、体温低下、立毛、流涙、尿失禁、被毛汚染 300 mg/kg 体重以上で死亡例
経皮	SD ラット 雌雄各5匹	>2,000	>2,000	症状及び死亡例なし
		LC_{50} (mg/L)	平伏位、腹・横臥位、円背位、低体温、立毛、
吸入	Fischer ラット 雌雄各5匹	1.2~1.4	1.2~1.4	血様流涙、眼周囲の赤色の汚れ、眼瞼下垂、 眼の暗調化、努力呼吸、緩徐呼吸、削痩、嗜 眠、蒼白、協調運動失調、間代性痙攣、褐色 又は黄色の被毛汚染 1.2 mg/L 以上で死亡例

代謝物 B、C、G、H、I、K、O 及び原体混在物 AQW を用いた急性毒性試験が 実施された。結果は表 19 に示されている。(参照 18、19、72、76~80)

表 19 急性毒性試験結果概要 (代謝物及び原体混在物)

				我 10 心压身压的热风 (10的)为人 (10的)为人 (10的)为人					
被験物質	投与 経路	動物種	LD ₅₀ (mg/kg 体重) 雌	観察された症状					
В	経口	SD ラット 雌 5 匹	>2,000	不活発、鼻及び眼周囲又は前肢の 乾燥した赤色物質、泌尿生殖器部 及び肛門性器部の乾燥した黄色物 質、排糞量減少 2,000 mg/kg 体重で切迫と殺例					
C	経口	SD ラット 雌 5 匹	>2,000	通常より小さな糞 死亡例なし					
G	経口	SD ラット 雌 5 匹	>2,000	症状及び死亡例なし					
Н	経口	SD ラット 雌 5 匹	>2,000	症状及び死亡例なし					
I	経口	SD ラット 雌 5 匹	>2,000	症状及び死亡例なし					
K	経口	SD ラット 雌 3 匹	>2,000	症状及び死亡例なし					
0	経口	Wistar ラット 雌3匹	>2,000	症状及び死亡例なし					
AQW	経口	SD ラット 雌 3 匹	300~2,000	よろめき歩行、腹臥、横臥、呼吸 数減少、体重減少 (2,000 mg/kg 体 重投与群) 2,000 mg/kg 体重で死亡例					

(2) 急性神経毒性試験

SD ラット(一群雌雄各 5 又は 10 匹)を用いた単回強制経口(原体:0、30、100、300 及び 500 mg/kg 体重、溶媒: CMC-Na 水溶液) 投与による急性神経毒性試験が実施された。

300 mg/kg 体重以上投与群の雌雄で切迫と殺例が発生した(投与 1~2 日後)。これらの死亡発現用量では、FOB による検査で顕著な変化(投与 6 時間後の観察で、異常姿勢、運動失調、歩行異常、異常呼吸等)、自発運動量低下、体重及び摂餌量減少が認められた。これらの変化は 100 mg/kg 体重以下の投与群では観察されなかった。

本試験における無毒性量は、雌雄とも 100 mg/kg 体重であると考えられた。急性神経毒性は認められなかった。(参照 20)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

日本白色種ウサギを用いた眼及び皮膚刺激性試験が実施された。眼及び皮膚に対する刺激性は認められなかった。

Hartley モルモット (Maximization 法) を用いた皮膚感作性試験が実施された結果、軽度の皮膚感作性が認められた。 (参照 $21\sim23$)

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

Fischer ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、50、100、500 及 び 2,500 ppm: 平均検体摂取量は表 20 参照) 投与による 90 日間亜急性毒性試験が 実施された。

投与群		50 ppm	100 ppm	500 ppm	2,500 ppm
平均検体摂取量	雄	2.89	5.74	29.3	155
(mg/kg 体重/日)	雌	3.21	6.44	33.0	159

表 20 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

各投与群で認められた毒性所見は表 21 に示されている。

本試験において、500 ppm 以上投与群の雄で網状赤血球増加、雌で T.Chol 増加等が認められたことから、無毒性量は雌雄とも 100 ppm (雄:5.74 mg/kg 体重/日、雌:6.44 mg/kg 体重/日)であると考えられた。(参照 24)

(甲状腺の重量増加及びろ胞上皮細胞肥大の発生機序に関しては[14.(2)]を、生殖器系に認められた毒性変化の発生機序に関しては[14.(3)]を参照)

表 21 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
$2,500 \mathrm{~ppm}$	・両側性赤色眼脂	・両側性赤色眼脂
	・自発運動量増加	・自発運動量減少、前肢握力低値
	・体重増加抑制、摂餌量低下	• 体重增加抑制、摂餌量低下
	· Ht、Hb、MCV、MCH、MCHC、	・Ht、Hb、RBC、MCH 及びMCHC
	WBC 及び Lym 減少	減少
	・ALP、AST 及び GGT 増加、T.Chol、	•網状赤血球数増加
	TG、カルシウム、ナトリウム及び	・AST、ALT、GGT 及び T.Bil 増加、
	クロール減少	TP、Alb、カルシウム、ナトリウム
	・尿蛋白増加	及びクロール減少
	・下垂体、甲状腺、副腎、心及び脾絶	・尿蛋白、Bil 及び尿量増加
	対及び比重量2増加	甲状腺、心及び腎絶対及び比重量増
	・腎絶対重量及び肺比重量増加	加
	・精巣上体絶対及び比重量減少	・肺及び脾比重量増加
	小葉中心性肝細胞肥大、小葉周辺性	・下垂体、副腎、胸腺、卵巣及び子宮
	肝細胞脂肪化及び胆管過形成	絶対及び比重量減少
	・甲状腺ろ胞上皮細胞肥大及びろ胞数	小葉中心性肝細胞肥大、単細胞性肝
	増加	細胞壊死、小葉周辺性肝細胞脂肪化
	・尿細管好塩基性化	及び胆管過形成
	・膵単細胞性外分泌細胞壊死及び外分	・甲状腺ろ胞上皮細胞肥大及びろ胞数
	泌細胞チモーゲン顆粒減少	増加
	・下垂体前葉好塩基性細胞肥大	・尿細管好塩基性化及び糸球体メサン
	・副腎皮質束状帯細胞肥大	ギウム肥厚
	・脾髄外造血亢進	• 膵単細胞性外分泌細胞壊死
	・精細管萎縮、精巣上体管腔内変性細	下垂体前葉好塩基性細胞肥大
	胞増加	副腎皮質束状帯細胞肥大
		• 眼球網膜萎縮
		・脾うっ血、充血及び髄外造血亢進
		卵巣及び子宮萎縮、膣粘液貯留上皮
		細胞増加
500 ppm 以上	·網状赤血球数増加	・T.Chol 増加
	・肝絶対及び比重量、腎比重量増加	肝絶対及び比重量増加
100 ppm 以下	毒性所見なし	毒性所見なし

(2) 90 日間亜急性毒性試験(マウス)

ICR マウス (一群雌雄各 10 匹) を用いた混餌 (原体: 0、60、750 及び 1,500 ppm: 平均検体摂取量は表 22 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 22 90 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群	60 ppm	750 ppm	1,500 ppm	
平均検体摂取量	雄	7.58	102	206
(mg/kg 体重/日)	雌	9.13	119	202

² 体重比重量を比重量という(以下同じ。)。

各投与群で認められた毒性所見は表 23 に示されている。

本試験において、750 ppm 以上投与群の雌雄で小葉中心性肝細胞肥大等が認められたことから、無毒性量は雌雄とも 60 ppm (雄:7.58 mg/kg 体重/日、雌:9.13 mg/kg 体重/日)であると考えられた。 (参照 25)

(生殖器系に認められた毒性変化の発生機序に関しては[14.(3)]を参照)

表 23 90 日間亜急性毒性試験(マウス)で認められた毒性所見

投与群	雄	雌
1,500 ppm	・Ht、Hb、RBC及び Eos 減少、網状 赤血球数増加 ・ALP、GGT及び T.Bil 増加、Glu減少 ・脾及び副腎絶対及び比重量増加 ・限局性肝細胞壊死及び細胞浸潤 ・副腎び漫性皮質空胞化及び被膜下細 胞過形成 ・脾うっ血及び髄外造血亢進 ・精巣間細胞過形成	・摂餌量低下 ・RBC 減少 ・AST、ALT、GGT、T.Bil 及び無機 リン増加、Glu 及び TG 減少 ・甲状腺及び脾絶対及び比重量増加 ・限局性肝細胞壊死及び細胞浸潤 ・卵巣萎縮
750 ppm 以上	・WBC 及び Lym 減少 ・AST 及び ALT 増加、TP、Alb、Glob 及びカルシウム減少 ・肝及び甲状腺絶対及び比重量増加、精巣上体絶対及び比重量減少 ・小葉中心性肝細胞肥大 ・甲状腺ろ胞上皮細胞肥大	・Ht 及び Hb 減少 ・肝絶対及び比重量増加 ・小葉中心性肝細胞肥大 ・甲状腺ろ胞上皮細胞肥大
60 ppm	毒性所見なし	毒性所見なし

(3)90日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いたカプセル経口 (原体:0,2,5 及び 30 mg/kg 体重/日) 投与による 90 日間亜急性毒性試験が実施された。

各投与群で認められた毒性所見は表24に示されている。

本試験において、5 mg/kg 体重/日以上投与群の雄で ALP 増加、雌で甲状腺ろ胞上皮細胞肥大が認められたことから、無毒性量は雌雄とも 2 mg/kg 体重/日であると考えられた。 (参照 26)

表 24 90 日間亜急性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
30 mg/kg 体重/日	・ALT 増加、Alb、A/G 比及びカルシウム減少 ・肝絶対及び比重量増加 ・び漫性肝細胞肥大 ・甲状腺ろ胞上皮細胞肥大§、前立腺 萎縮§	・ALP 及び ALT 増加、Alb 及び A/G 比減少 ・肝絶対及び比重量増加 ・甲状腺絶対及び比重量増加 [§] ・び漫性肝細胞肥大
5 mg/kg 体重/日	・ALP 増加	・甲状腺ろ胞上皮細胞肥大(
以上		
2 mg/kg 体重/日	毒性所見なし	毒性所見なし

^{§:}統計学的有意差は認められなかったが、毒性影響と判断した。

(4)90日間亜急性神経毒性試験(ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体: 0、30、150 及び 750 ppm: 平均検体摂取量は表 25 参照) 投与による 90 日間亜急性神経毒性試験が実施された。

表 25 90 日間亜急性神経毒性試験 (ラット) の平均検体摂取量

投与群		30 ppm	150 ppm	750 ppm
平均検体摂取量	雄	1.8	9.4	46.6
(mg/kg 体重/日)	雌	2.2	10.9	53.2

本試験において、150 ppm 以上投与群の雌で体重増加抑制が、750 ppm 投与群の雌で摂餌量減少が認められ、雄では検体投与に関連する変化は認められなかったことから、無毒性量は雄で本試験の最高用量 750 ppm (46.6 mg/kg 体重/日)、雌で30 ppm (2.2 mg/kg 体重/日)であると考えられた。亜急性神経毒性は認められなかった。 (参照 66)

11. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 4 匹) を用いたカプセル経口 (原体:0、1.5、5 及び 15 mg/kg 体重/日) 投与による 1 年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表 26 に示されている。

本試験において、1.5 mg/kg 体重/日以上投与群の雌雄で鼻腔嗅部単核細胞浸潤が認められたことから、無毒性量は雌雄とも1.5 mg/kg 体重/日未満であると考えられた。 (参照28)

(鼻腔病変の発生機序に関しては[14.(4)]を参照)

表 26 1年間慢性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
15 mg/kg 体重/日	・ALP 増加	・ALP 増加
	・甲状腺及び肝臓比重量増加	・小葉中心性肝細胞肥大
	・小葉中心性肝細胞肥大	
5 mg/kg 体重/日		
1.5 mg/kg 体重/日	• 鼻腔嗅部単核細胞浸潤	• 鼻腔嗅部単核細胞浸潤
以上		

(2) 1年間慢性毒性試験及び6か月間回復試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いたカプセル経口(原体:0、0.15、0.5 及び5 mg/kg 体重/日)投与による 1 年間慢性毒性試験及び 6 か月間回復試験が実施された。なお、本試験はイヌを用いた 1 年間慢性毒性試験[11.(1)]で認められた鼻腔病変の再現性を確認するとともに、その変化の免疫学的意義を検討[14.(4)]するために実施された。

5 mg/kg 体重/日投与群の雄で軽度(2例)、雌で中等度(1例)の鼻腔嗅部単核細胞浸潤が認められた。この変化は、6 か月間の休薬期間を設けることにより、いずれの個体においても同様の鼻腔病変は観察されなかったことから、本病変が可逆性である可能性が高いことが示唆された。

本試験において、5 mg/kg 体重/日投与群の雌雄で鼻腔嗅部単核細胞浸潤が認められたことから、無毒性量は雌雄とも0.5 mg/kg 体重/日であると考えられた。(参照52)

(鼻腔病変の発生機序に関しては[14.(4)]を参照)

(3) 1年間慢性毒性試験(ラット)

Fischer ラット (一群雌雄各 20 匹) を用いた混餌 (原体: 0、100、350 及び1,300 ppm: 平均検体摂取量は表 27 参照) 投与による 1 年間慢性毒性試験が実施された。

表 27 1 年間慢性毒性試験 (ラット) の平均検体摂取量

投与群		100 ppm	$350~\mathrm{ppm}$	1,300 ppm
平均検体摂取量	雄	4.08	14.4	56.5
(mg/kg 体重/日)	雌	4.97	18.0	65.6

各投与群で認められた毒性所見は表 28 に示されている。

本試験において、350 ppm 以上投与群の雄で MCV 及び MCH 減少等が、雌で腎絶対及び比重量増加等が認められたことから、無毒性量は雌雄とも 100 ppm (雄: 4.08 mg/kg 体重/日、雌: 4.97 mg/kg 体重/日) であると考えられた。 (参照 27)

(甲状腺の重量増加及びろ胞上皮細胞肥大の発生機序に関しては[14.(2)]を、 生殖器系に認められた毒性変化の発生機序に関しては[14.(3)]を参照)

表 28 1年間慢性毒性試験(ラット)で認められた毒性所見

投与群	雄	雌
1,300 ppm	・Ht 及び Hb 減少、網状赤血球数増加・T.Chol 及びクロール減少・尿量及び尿中蛋白質増加・心絶対及び比重量増加・肝、腎及び副腎絶対重量増加・脳絶対重量減少、精巣上体比重量減少・小葉中心性肝細胞肥大・甲状腺ろ胞上皮細胞肥大・精細管萎縮、間細胞過形成、精巣上体管腔内変性細胞増加	・立ち上がり姿勢増加 ・前肢及び後肢握力低下 ・食餌効率低下 ・MCV、MCH減少、網状赤血球数増加 ・GGT増加、TG及びカルシウム減少 ・甲状腺、肝絶対及び比重量増加、心 絶対重量増加、脾比重量増加、 ・子宮絶対及び比重量減少、脳絶対重 量減少 ・小葉周辺性肝細胞脂肪化、単細胞性 肝細胞壊死、小葉中心性肝細胞肥大 及び胆管過形成 ・甲状腺ろ胞上皮細胞肥大 ・膵臓間質増生 ・副腎皮質束状帯細胞肥大 ・眼球網膜萎縮
350 ppm 以上	 ・MCV 及び MCH 減少、骨髄有核細胞数増加 ・TG 減少 ・肝及び腎比重量増加 ・水腫性変化を伴う下垂体前葉好塩基性細胞増加 	・体重増加抑制・クロール減少・腎絶対及び比重量増加、心比重量増加加
100 ppm	毒性所見なし	毒性所見なし

(4) 2年間発がん性試験(ラット)

Fischer ラット (一群雌雄各 50 匹) を用いた混餌 (原体: 0、100、350 及び 1,300 ppm: 平均検体摂取量は表 29 参照) 投与による 2 年間発がん性試験が実施された。

表 29 2年間発がん性試験 (ラット) の平均検体摂取量

投与群		100 ppm	350 ppm	1,300 ppm
平均検体摂取量	雄	3.53	12.5	48.5
(mg/kg 体重/日)	雌	4.51	16.4	60.2

各投与群で認められた毒性所見(非腫瘍性病変)は表 30 に、精巣間細胞腫の発生頻度は表 31 に示されている。

腫瘍性病変として、350 ppm 以上投与群の雄において、精巣間細胞腫の増加(350 ppm: 49/50 例、1,300 ppm: 47/49 例) が認められた。

本試験において、350 ppm 以上投与群の雌雄で体重増加抑制等が認められたことから、無毒性量は雌雄とも 100 ppm(雄:3.53 mg/kg 体重/日、雌:4.51 mg/kg 体重/日)であると考えられた。(参照 29)

(生殖器系に認められた毒性変化の発生機序に関しては[14.(3)]を参照)

表 30 2年間発がん性試験 (ラット) で認められた毒性所見 (非腫瘍性病変)

		5 1 - 1 C - 5 1 E / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1
投与群	雄	雌
1,300 ppm	・眼球混濁 ・Lym 減少 ・腎絶対及び比重量増加、肝絶対重量増加、心及び副腎比重量増加 ・眼球白濁、精巣上体軟化 ・小葉中心性肝細胞肥大 ・慢性腎症 ・甲状腺小型ろ胞増加及びろ胞上皮細胞肥大 ・副腎束状帯及び網状帯細胞肥大 ・網膜萎縮 ・下腿筋横紋筋線維萎縮 ・鼻腔鼻炎	 ・眼球混濁 ・肝、腎、心及び甲状腺比重量増加 ・眼球白濁、子宮腔拡張 ・小葉中心性肝細胞肥大及びび漫性 肝細胞脂肪化 ・慢性腎症 ・甲状腺小型ろ胞増加及びろ胞上皮細胞肥大 ・副腎東状帯及び網状帯細胞肥大 ・自内障 ・膵外分泌細胞空胞化、脂肪浸潤、限局性外分泌細胞萎縮及び変異細胞巣 ・卵巣及び乳腺萎縮 ・子宮角内膜腺過形成、子宮頸部腺腔拡張
350 ppm 以上	・体重増加抑制、摂餌量減少・肝及び腎比重量増加、精巣上体絶対及び比重量減少・白内障・精巣、精巣上体、凝固腺及び前立腺萎縮	・体重増加抑制、摂餌量減少・胆管過形成・尿細管好塩基性化・網膜萎縮・膵チモーゲン顆粒減少・子宮角内膜腺腔拡張
100 ppm	毒性所見なし	毒性所見なし

表 31 精巣間細胞腫の発生頻度

投与群	0 ppm	100 ppm	350 ppm	1,300 ppm
検査動物数	50	50	50	49
精巣間細胞腫	41	38	49*	47**

^{*:} p <0.05、**: p <0.01 (Fisher の直接確率計算法)

(5) 18 か月間発がん性試験(マウス)

ICR マウス (一群雌雄各 52 匹) を用いた混餌 (原体: 0、60、250 及び 1,000 ppm: 平均検体摂取量は表 32 参照) 投与による 18 か月間発がん性試験が実施された。

表 32 18 か月間発がん性試験(マウス)の平均検体摂取量

投与群		60 ppm	250 ppm	1,000 ppm
平均検体摂取量	雄	6.25	27.1	122
(mg/kg 体重/日)	雌	5.82	25.0	120

各投与群で認められた毒性所見(非腫瘍性病変)は表 33 に、精巣間細胞腫の発 生頻度は表 34 に示されている。 腫瘍性病変として、1,000 ppm 投与群の雄において、精巣間細胞腫の増加(12/52 例)が認められた。

本試験において、250 ppm 以上投与群の雄で体重増加抑制等、雌で子宮角内膜過 形成が認められたことから、無毒性量は雌雄とも 60 ppm (雄:6.25 mg/kg 体重/ 日、雌:5.82 mg/kg 体重/日) であると考えられた。 (参照 30)

(生殖器系に認められた毒性変化の発生機序に関しては[14.(3)]を参照)

表 33 18 か月間発がん性試験(マウス)で認められた毒性所見(非腫瘍性病変)

		D 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
投与群	雄	雌
1,000 ppm	 腹部膨満、被毛湿潤 肝比重量増加、精巣上体絶対重量減少 腹部及び外陰部被毛汚染 腎盂拡張 小葉中心性肝細胞肥大、単細胞性肝細胞壊死及び限局性肝細胞壊死 甲状腺ろ胞上皮細胞肥大 鼻腔呼吸上皮細胞質内好酸性小体及び嗅上皮細胞質内好酸性小体増加 精巣間細胞過形成及び精細管萎縮 	 ・被毛脱毛、触毛脱毛 ・体重増加抑制 ・肝絶対及び比重量増加、甲状腺及び腎比重量増加 ・小葉中心性肝細胞肥大及び単細胞性肝細胞壊死 ・甲状腺ろ胞上皮細胞肥大 ・鼻腔呼吸上皮細胞質内好酸性小体増加 ・膵び漫性外分泌細胞萎縮 ・乳腺腺上皮過形成
250 ppm 以上	・触毛脱毛 ・体重増加抑制 ・副腎被膜下細胞過形成	•子宮角内膜過形成
60 ppm	毒性所見なし	毒性所見なし

表 34 精巣間細胞腫の発生頻度

投与群	0 ppm	60 ppm	250 ppm	1,000 ppm
検査動物数	51	52	52	52
精巣間細胞腫	0	0	0	12*

^{*:}p<0.01 (Fisher の直接確率計算法)

12. 生殖発生毒性試験

(1) 2世代繁殖試験(ラット)

SD ラット (一群雌雄各 24 匹) を用いた混餌 (原体: 0、30、150 及び 750 ppm: 平均検体摂取量は表 35 参照) 投与による 2 世代繁殖試験が実施された。

表 35 2世代繁殖試験(ラット)の平均検体摂取量

投与		30 ppm	150 ppm	750 ppm	
	р ш./	雄	1.79	8.94	45.5
平均検体摂取量	P世代	雌	2.72	13.8	67.2
(mg/kg 体重/日))	雄	1.94	9.66	48.8
	F ₁ 世代	雌	2.77	14.1	69.0

親動物及び児動物における各投与群で認められた毒性所見は表 36 に示されている。

本試験において、親動物では、750 ppm 投与群の P 雌雄で小葉中心性肝細胞肥大等、150 ppm 以上投与群の F_1 雌で甲状腺絶対及び比重量増加等が、児動物では、750 ppm 投与群の F_1 及び F_2 児動物で乳頭遺残(雄)、尿道下裂(雄、 F_1 のみ)、肛門生殖突起間距離短縮(雄)等が、150 ppm 以上投与群の F_2 児動物で体重増加抑制が認められたことから、一般毒性に対する無毒性量は、親動物の雄で 150 ppm (P 雄: 8.94 mg/kg 体重/日、 F_1 雄: 9.66 mg/kg 体重/日)、雌で 30 ppm (P 雄: 2.72 mg/kg 体重/日、 F_1 雄: 2.77 mg/kg 体重/日)、児動物で 30 ppm (P 雄: 1.79 mg/kg 体重/日、 F_1 姓: 2.77 mg/kg 体重/日、 F_1 雄: 1.94 mg/kg 体重/日、 F_1 雄: 2.77 mg/kg 体重/日)であると考えられた。

また、750 ppm 投与群の雄で包皮分離遅延及び正常形態精子出現率低下が、雌で妊娠期間延長が認められたことから、繁殖能に対する無毒性量は、雌雄とも 150 ppm (P 雄: 8.94 mg/kg 体重/H、H に H

(生殖器系に認められた毒性変化の発生機序に関しては[14.(3)]を参照)

表 36 2世代繁殖試験(ラット)で認められた毒性所見

	投与群	親 : P、	児 : F 1	親: F1、児: F2		
	欠 子群	雄	雌	雄	雌	
親動物	750 ppm	・正常形態精子出現 率低下 ・精巣絶対及び比重 量増加 ・肝及び腎及び甲状 腺比重量増加 ・小葉中心性肝細胞 肥大	・死亡(2例) ・体重増加抑制及び 摂餌量減少 ・妊娠期間延長 ・肝及び甲状腺絶対 及び比重量増加 ・腎及び下垂体比重 量増加 ・小葉中心性肝細胞 肥大 ・甲状腺ろ胞上皮細 胞肥大	 ・死亡(2例) ・包皮分離遅延 ・正常形態精子出現率低下 ・副腎及び精巣比重量増加 ・肝及び子宮絶対び比重量増加、腎比重量増加・腎盂拡張・小葉中心性肝細肥大・甲状腺ろ胞上皮胞肥大 		
	150 ppm 以上	150 ppm 以下 毒性所見なし	150 ppm 以下 毒性所見なし	150 ppm 以下 毒性所見なし	・腎§及び甲状腺絶対 及び比重量増加 毒性所見なし	
	30 ppm	21 -T) th = 1) (111)		21 -T) th = (111)	毎江川兄なし	
児動物	750 ppm	・乳頭遺残(雄)・尿道下裂(雄)・産児数減少・体重増加抑制(雌雄)・肛門生殖突起間距離短縮(雄)・脳、胸腺及び脾絶対重量減少		・乳頭遺残(雄) ・腎盂拡張(雌雄) ・産児数減少 ・肛門生殖突起間距離 ・脳及び胸腺絶対重量		
物	150 ppm 以上	150 ppm 以下 毒性所見なし		・体重増加抑制系		
	30 ppm			毒性所見なし		

^{§:} 腎絶対重量増加は 150 ppm 投与群のみの所見

(2)発生毒性試験(ラット)

SD ラット(一群雌 24 匹)の妊娠 $6\sim19$ 日に強制経口(原体:0、5、10 及び 50 mg/kg 体重/日、溶媒:1% CMC 水溶液)投与して発生毒性試験が実施された。

母動物では、50 mg/kg 体重/日投与群で、低体重、体重増加抑制、摂餌量減少及び妊娠子宮重量低値が認められた。

胎児では、50 mg/kg 体重/日投与群で、胎児体重及び胎盤重量の低値、腰仙移行椎の高値が認められ、10 mg/kg 体重/日以上投与群で、雄胎児の肛門生殖突起間距離の有意な短縮が認められたほか、過剰肋骨からなる骨格変異の出現率の高値が認められた。

本試験における無毒性量は、母動物で 10 mg/kg 体重/日、胎児で 5 mg/kg 体重/日であると考えられた。(参照 32)

^{§§: 150} ppm 投与群では雌のみ、750 ppm 投与群では哺育 21 日の雌雄のみで有意な低値

(3)発生毒性試験(ウサギ)

日本白色種ウサギ(一群雌 25 匹)の妊娠 $6\sim27$ 日に強制経口(原体:0、5、10 及び 20 mg/kg 体重/日、溶媒:1% CMC 水溶液)投与して発生毒性試験が実施された。

母動物及び胎児で投与の影響は認められなかった。

なお、用量設定試験において、100 mg/kg 体重/日投与群の母動物で、体重及び摂餌量の著しい減少並びに死亡及び流産が、50 mg/kg 体重/日投与群で、体重及び摂餌量減少並びに流産が、20 mg/kg 体重/日で、妊娠 21 日以降の体重増加抑制が認められた。このため、生存胎児が十分得られることが予想される 20 mg/kg 体重/日が、最高用量として選択された。

本試験における無毒性量は、母動物及び胎児で本試験の最高用量 20 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 33)

13. 遺伝毒性試験

ピリフルキナゾン(原体)の細菌を用いた復帰突然変異試験、マウスリンパ腫細胞を用いた遺伝子突然変異試験(マウスリンフォーマ TK 試験)、チャイニーズハムスター肺由来細胞(CHL)を用いた染色体異常試験、ラットを用いた *in vivo* UDS 試験及びマウスを用いた *in vivo* 小核試験が実施された。

結果は表37に示されている。

In vitro 試験では、細菌を用いた復帰突然変異試験及びマウスリンフォーマ TK 試験では陰性であったが、CHL 細胞を用いた染色体異常試験で陽性を示した。しかし、この陽性は染色体構造異常ではなく、閾値の設定が可能と考えられる数的異常の誘発によるものであった。更に、同じ指標を生体内で評価する in vivo 小核試験及び in vivo UDS 試験でも陰性であったことを総合的に考えると、ピリフルキナゾン(原体)には生体において問題となる遺伝毒性はないものと考えられた。(参照 34~36、102、103)

	表 3/ 退伍再性試驗概要(原体)					
=	試験	対象	処理濃度・投与量	結果		
in vitro	復帰突然変異試験	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537 株) Escherichia coli (WP2 uvrA 株)	15.4~1,250 μg/プレート (+/-S9) ¹⁾	陰性		
	マウスリン フォーマ TK 試験	マウスリンパ腫細胞 (L5178Y TK+/·)	10~80 μg/mL(-S9) (3 時間処理) 50~160 μg/mL(+S9) (3 時間処理) 10~70 μg/mL(-S9) (24 時間処理)	陰性		
	染色体 異常試験	チャイニーズハムスター 肺由来細胞(CHL)	20~80 μg/mL (-S9) 100~115 μg/mL (+S9) (6 時間処理) 9.8~29.6 μg/mL (-S9)	陽性 2)		
			(22 及び 44 時間処理)	陰性		
in vivo	UDS 試験	Wistar ラット(肝細胞) (一群雄 4 匹)	50、100 mg/kg 体重 (単回経口投与) (投与 4 及び 16 時間後に採取)	陰性		
	小核試験	ICR マウス(骨髄細胞) (一群雌雄 5 匹)	125、250、500 mg/kg 体重 (単回強制経口投与)	陰性		

表 37 遺伝毒性試験概要 (原体)

+/-S9:代謝活性化系存在下及び非存在下

主として動物、植物及び土壌由来の代謝物O及び原体混在物(BR、AQW、RFPDQ、

^{1):} 代謝活性化系存在下及び非存在下でいずれの菌株を用いた場合も 417 μ g/プレート以上で析出。TA1537 株では 417 μ g/プレート以上、他の菌株では 2,150 μ g/プレートで生育阻害が認められた。

^{2):} 染色体構造異常は示さないが、数的異常の誘発が認められた。

AQR、RFPAQ、AQA 及び QUA) について、細菌を用いた復帰突然変異試験が実施された。

試験結果は表 38 に示されているとおり全て陰性であった。 (参照 $37\sim43$ 、73)

被験 物質	試験	対象	処理濃度・投与量	結果
О			39.1~5,000 μg/プレート (+/-S9) ¹⁾	陰性
BR			9.77~1,250 µg/プレート (+/-S9) ²⁾	陰性
AQW		S. typhimurium	39.1~5,000 μg/プレート (+/-S9) ³⁾	陰性
RFPDQ	復帰突然	(TA98, TA100, TA1535,	78.1~1,250 μg/プレート (+/-S9) 4)	陰性
AQR	変異試験	TA1537 株)	1.22~1,250 μg/プレート (-S9) ⁵⁾	陰性
RFPAQ		E. coli (WP2 uvrA株)	2.44~5,000 μg/プレート (+/-S9) ⁶⁾	陰性
AQA			2.44~1,250 μg/プレート (+/-S9) ⁷⁾	陰性
QUA			9.77~5,000 μg/プレート (+/-S9) 8)	陰性

表 38 遺伝毒性試験概要(代謝物及び原体混在物)

- $^{1)}$: 菌株によっては、+/-S9 の 625 μ g/プレート以上で生育阻害を示すものがあった。更に+/-S9 の 313 μ g/プレート以上で結晶析出も観察された。
- $^{2)}$: 菌株によっては、+/-S9 の 313 μ g/プレート以上で生育阻害が観察されるものがあった。
- $^{3)}$: 菌株によっては、+/-S9 の 625 μ g/プレート以上で生育阻害を示すものがあった。更に 1,250 μ g/プレートで結晶析出も観察された。
- 4): +/-S9 の 625 μg/プレートで結晶析出が観察された。
- $^{5)}$: 菌株によっては、-S9 の $78.1\,\mu g/$ プレート以上で、+S9 の $313\,\mu g/$ プレート以上で生育阻害を示すものがあった。
- 6 : 菌株によっては、-S9 の 78.1 μ g/プレート以上で、+S9 の 313 μ g/プレート以上で生育阻害を示すものがあった。更に、-S9 の 313 μ g/プレート以上で、+S9 の 2,500 μ g/プレートで結晶析出が観察された。
- 7 : 菌株によっては、-S9 の 625 μ g/プレート以上で、+S9 の 78.1 μ g/プレート以上で生育阻害を示すものがあった。 更に、1,250 μ g/プレートで結晶析出も観察された。
- 8 : 菌株によっては、-S9 の 1,250 μ g/プレートで、+S9 の 156 μ g/プレート以上で生育阻害を示した。更に、-S9 の 1,250 μ g/プレートで結晶析出も観察された。

14. その他の試験

(1) 肝薬物代謝能への影響に関する試験

ピリフルキナゾンによるマウスを用いたヘキソバルビタール誘発睡眠時間への影響試験[7.]の結果、睡眠時間延長が認められたことから、ピリフルキナゾン及び代謝物Bの肝薬物代謝酵素に対する影響及びヘキソバルビタール代謝への影響が検討された。

ピリフルキナゾン及び代謝物 B は EROD 活性を阻害し、更にマウスのヘキソバルビタール誘発睡眠時間への影響試験に準じた投与条件で、マウス肝におけるヘキソバルビタール代謝を低下させた。以上の結果から、睡眠時間延長作用は、肝薬物代謝酵素阻害に基づいたものであることが示唆された。(参照 44)

^{+/-}S9:代謝活性化系存在下及び非存在下

(2) 甲状腺の重量増加及びろ胞上皮細胞肥大の発生機序に関する試験

① ラットの甲状腺系ホルモン及び肝 UDPGT に対する検討試験

ラットを用いた 90 日間亜急性毒性試験[10.(1)]及び 1 年間慢性毒性試験 [11.(3)]において甲状腺の重量増加及びろ胞上皮細胞肥大が認められた。その原因を明らかにするため、血清中甲状腺ホルモン濃度、それに影響を及ぼす要因である血清 TSH 濃度及び肝 UDPGT 活性に対するピリフルキナゾンの影響について、Fischer ラット(一群雄 5 匹)を用いた 14 日間混餌(原体:0、100、350 及び1,300 ppm: 平均検体摂取量は表 39 参照) 投与による検討試験が実施された。

表 39 甲状腺系ホルモン及び肝 UDPGT に対する検討試験の平均検体摂取量

投与群	100 ppm	350 ppm	1,300 ppm
平均検体摂取量(mg/kg 体重/日)	9.22	31.9	116

各投与群で認められた変化は表40に示されている。

甲状腺に対するホルモン刺激及び甲状腺ホルモンの代謝亢進が示唆された。したがって、ピリフルキナゾンの甲状腺に対する一連の影響は、肝の UDPGT 誘導に伴う甲状腺ホルモンの代謝亢進とそれに伴うフィードバック機構の働きで、甲状腺が刺激されたことによると考えられた。(参照 45)

表 40 甲状腺系ホルモン及び肝 UDPGT に対する検討試験で認められた変化

投与群	雄
1,300 ppm	・肝及び甲状腺比重量増加 ・肝及び甲状腺絶対重量増加%
	・小葉中心性肝細胞肥大及び甲状腺ろ胞上皮細胞肥大タ
	・UDPGT 活性上昇
	・T₃減少(投与7日後)、T₄増加
	・TSH 増加(投与 14 日後、対照群対比 153%) 🖇
350 ppm 以上	・T₃増加(投与 14 日後)
100 ppm	毒性所見なし

^{§:}統計学的有意差は認められなかったが、毒性影響と判断した。

② ラットの血清中甲状腺関連ホルモンに対する影響

ラットの甲状腺系ホルモン及び肝 UDPGT に対する検討試験 [14.(2)①] において、ピリフルキナゾンのラット甲状腺に対する影響は、肝臓における甲状腺ホルモンの代謝亢進を経由した甲状腺刺激に関する二次的機序であることが示唆された。甲状腺関連ホルモンに対する影響についてより明確な結果を得るために、Fischerラット(一群雄 5 匹)を用いた 8 週間混餌(原体: 0、350、1,300 及び 2,500 ppm: 平均検体摂取量は表 41 参照)投与による検討試験が実施された。

表 41 血清中甲状腺関連ホルモンに対する検討試験の平均検体摂取量

投与群	350 ppm	1,300 ppm	2,500 ppm
平均検体摂取量(mg/kg 体重/日)	27.9	103	179

各投与群で認められた変化は表 42 に示されている。

2,500 ppm 投与群で肝細胞空胞化及び T_3 濃度の増加が、1,300 ppm 以上投与群で肝及び甲状腺の重量増加、甲状腺ろ胞細胞肥大及び小型ろ胞並びに TSH 及び遊離 T_3 濃度の増加が、350 ppm 以上投与群で UDPGT 活性上昇が認められたことから、 [14.(2)①] で推察された甲状腺ホルモンの代謝亢進とそれに伴うフィードバック機構の働きを支持するものであると考えられた。 (参照 67)

表 42 血清中甲状腺関連ホルモンに対する検討試験で認められた変化

投与群	雄
2,500 ppm	・被毛汚染、眼球退色
	・び漫性肝細胞肥大
	・胆管周囲性肝細胞空胞化
	・T ₃ 増加
1,300 ppm 以上	・体重増加抑制、摂餌量減少
	・肝及び甲状腺の絶対及び比重量増加
	・肝腫大
	・精嚢腺、凝固腺及び前立腺萎縮
	・小葉中心性肝細胞肥大(1,300 ppm 群のみ)
	・甲状腺ろ胞細胞肥大
	・甲状腺小型ろ胞
	・遊離 T ₃ 増加§
	・TSH 増加§
350 ppm 以上	・UDPGT 活性上昇
	・T ₄ 減少

^{§: 1,300} ppm 投与群で統計学的有意差は認められなかったが、投与による変化と判断した。

(3) 生殖器に観察された毒性変化に対する発生機序に関する試験

① アンドロゲン受容体(AR)に対する影響(レポータージーンアッセイ)

ラット及びマウス雄の生殖器系に認められた毒性変化が抗アンドロゲン作用により生じた可能性が考えられたので、ピリフルキナゾン及び主要代謝物(B、C、O 及びV)(被験物質濃度: $0.03\sim100~\mu M$)についてジヒドロテストステロンの存在又は非存在下で、レポータージーンアッセイにより AR に対する影響の有無が検討された。

ピリフルキナゾンと代謝物 B は $10\sim100~\mu M$ で用量相関的にジヒドロテストステロン誘発性のレポータージーン活性を抑制し、高濃度で AR とジヒドロテストステロンの結合を拮抗的に抑制することが明らかになった。他の代謝物は高濃度において軽度のアゴニスト活性を示した。(参照 46)

② Hershberger 試験による抗アンドロゲン作用の検討

ピリフルキナゾン 100 mg/kg 体重/日以上投与群では、去勢ラットのプロピオン酸テストステロン又はジヒドロテストステロンによる副生殖器の重量増加作用を、20%~80%の回復に留めた。この回復抑制作用はプロピオン酸テストステロンによる方がジヒドロテストステロンによる場合より大きかった。フィナステリドはプロピオン酸テストステロンによる回復作用を 40%~90%に留めたが、ジヒドロテストステロンの回復作用について、低濃度では全く示さず、高濃度でかえって増強した。フルタミドはプロピオン酸テストステロンの回復作用は阻害したが、ジヒドロテストステロンの回復作用は部分的にしか阻害しなかった。これらの結果からピリフルキナゾンは AR とテストステロンの阻害を通じて作用し、一部テストステロンからジヒドロテストステロンへの 5α -還元酵素による変換過程にも影響すると考えられた。

ピリフルキナゾンのラット 2 世代繁殖試験 [12. (1)] で認められた包皮分離遅延、 肛門生殖突起間距離短縮等、ラット及びマウスの各種毒性試験 [10. (1)~(2)及び 11. (3)~(5)] で精巣に認められた精細管萎縮、間細胞過形成及び間細胞腫の増加 等の毒性変化は、AR を介する抗アンドロゲン作用によるものと考えられた。また、 2 世代繁殖試験で認められた尿道下裂は 5α -還元酵素阻害剤により生じることが知 られていることから、本剤には同酵素の阻害作用もあると考えられた。 (参照 47) (5α -還元酵素に対する阻害作用に関しては [14. (3)③] を参照)

③ 5α-還元酵素活性に対する阻害作用に関する試験

Hershberger 試験による抗アンドロゲン作用の検討[14.(3)②]において、 5α -還元酵素活性に対する阻害作用が示唆されたことから、ピリフルキナゾン及び主要代謝物 (B、C、O及び V) (被験物質濃度:10及び 100 μ M)について、前立腺ミクロソーム中の 5α -還元酵素活性に対する阻害作用が *in vitro* で検討された。

ピリフルキナゾンには明らかな 5α -還元酵素阻害作用は認められなかったが、代謝物 B は非拮抗的に 5α -還元酵素を阻害($IC_{50}=5.7\,\mu M$)することが明らかとなった。標的臓器又は組織中で、 5α -還元酵素の阻害に働き得る蛋白非結合型の代謝物 B の濃度は不明であるが、 5α -還元酵素阻害が何らかの関与をする可能性が示唆された。(参照 54)

④ AR 結合試験

ピリフルキナゾン及び主要代謝物 (B, C, O) 及び V)が AR に対するアンドロゲンの結合に対して影響を与える可能性を検討するために、AR 結合試験が実施された。

ピリフルキナゾン及び代謝物 B が高濃度 (30 μ M 以上) でアンドロゲンの結合を 部分的に阻害することが明らかとなった。しかし、その作用は極めて弱く、生体内 において影響する可能性は低いと考えられた。 (参照 55)

⑤ AR への影響(Hershberger 試験系)に関する検討

ピリフルキナゾンの抗アンドロゲン作用の機序として、AR の発現量に対する影響を検討するため、ピリフルキナゾンの抗アンドロゲン作用が確認されている Hershberger 試験条件下で、前立腺における AR 蛋白に対する本剤投与の影響が検討された。

試験は、精巣摘出 7 日後の SD ラット(一群雄各 4 匹)にプロピオン酸テストステロン(0.4 mg/kg 体重/日)を投与しながら、ピリフルキナゾン(200 mg/kg 体重/日)、対照薬としてフルタミド及びフィナステリド(いずれも 5 mg/kg 体重/日)を強制経口投与して実施された。結果の概要は表 43 に示されている。

被験物質		ピリフルキナゾン	フルタミド	フィナステリド
投与量(mg/kg 体重/日)		200	5	5
	前立腺(腹葉)	24*	22*	45*
臓器重量	精囊凝固腺	22*	16*	35*
	LABC ¹⁾	41*	43*	96
前立腺中	の AR 蛋白量	49*	61*	81

表 43 結果の概要

以上の結果から、ピリフルキナゾンは Hershberger 試験条件下において、AR 量を減少させることが明らかとなり、これがピリフルキナゾンの抗アンドロゲン作用機序の一つであると考えられた。(参照 56)

⑥ ラット前立腺 AR への影響に関する検討

ピリフルキナゾンの抗アンドロゲン作用機構解析を目的として、AR の発現量に対する影響を検討するため、ラット前立腺における AR 蛋白発現及び AR をコードする RNA (ARmRNA) 量に対するピリフルキナゾン投与の影響について検討された。

試験は SD ラット(一群雄 4 匹)にピリフルキナゾン(100 及び 200 mg/kg 体重)、

注)表中の数値(投与量を除く)はプロピオン酸テストステロンのみを投与した対照群を100とした値。

^{*:} p≤0.01 (Dunnett の多重比較法) ¹): 肛門挙筋+球海綿体筋

対照薬としてフルタミド及びフィナステリド (いずれも 5 mg/kg 体重) を強制単回 経口投与して実施された。

各投与群における AR 蛋白発現量及び ARmRNA 量の変化は表 44 に示されている。

X : 1X) # = 00 / 0 / 11 X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z							
力力联会业品厅	投与量	AR 蛋白発現量			I	ARmRNA 量	1
被験物質	(mg/kg体重)	6時間後	12 時間後	24 時間後	6 時間後	12 時間後	24 時間後
ピリフルキナゾン	100	56*	51**	97	100	118(128)	130
	200	40***	47**	48**	97	115(132)	135
フルタミド	5	63*	81	104	159	160*	183*
フィナステリド	5	83	67*	129	146	123	104

表 44 各投与群における AR 蛋白発現量及び ARmRNA 量の変化

以上の結果から、ピリフルキナゾンは前立腺中 AR 蛋白発現量を用量依存的に減少させ、この影響は臓器重量に影響を及ぼす以前に生じていることが明らかとなった。一方、ARmRNA 量は AR 蛋白量と相関した減少を示さず、むしろ増加する傾向にあったことから、ピリフルキナゾンは AR 遺伝子の転写後の過程に何らかの影響を与え、AR 蛋白量を減少させたものと推察された。

したがって、ピリフルキナゾンにより惹起される抗アンドロゲン作用は、副生殖器官に発現する AR 蛋白レベルの低下に因ると考えられた。 (参照 57)

⑦ ラット AR 強制発現系を用いたレポータージーンアッセイ及び AR 蛋白量への影響 に関する検討

ピリフルキナゾンの抗アンドロゲン作用機構解析を目的として、ラット AR の強制発現系を作成し、レポータージーンアッセイ及びウエスタンブロットを実施し、AR を介した転写誘導活性並びに細胞中 AR 発現量に対するピリフルキナゾンの影響について検討された。

ピリフルキナゾンはラット AR 活性を明らかに抑制した。また、ラット AR 強制発現細胞の AR 蛋白量を減少させたが、ヒト乳癌由来細胞の AR 蛋白量は低下させなかった。これらの結果並びに AR に対する影響(レポータージーンアッセイ) [14. (3)①]を併せて考察すると、ピリフルキナゾンはラット AR を介した転写誘導活性を選択的に阻害するものと考えられ、この影響は AR 蛋白の低下傾向と相関することから、ピリフルキナゾンにより惹起される抗アンドロゲン作用は、ラットに対し選択性を有する AR 蛋白量の低下作用に起因すると考えられた。(参照 58)

注)表中の数値は溶媒対照群を100とした値、

⁽⁾内の数値はノザンブロット法の測定値の溶媒対照群を100とした値。

^{*:} p≤0.1、**: p≤0.01、***: p≤0.001 (Dunnett の多重比較法)

⑧ AR の核内移行に及ぼす影響

ラット腎由来のAR強制発現細胞並びにヒト乳癌由来及び前立腺癌由来のAR発現細胞を用いて、ピリフルキナゾン及び代謝物BのARの核内移行に及ぼす影響について検討された。

ピリフルキナゾン及び代謝物 B(いずれも $25\,\mu$ M)の存在下で、ラット AR は部分的に細胞質内に残存し、AR 依存の転写活性に必須である AR-アンドロゲン複合体の核内移行が阻害されることが明らかになった。この作用はピリフルキナゾンより代謝物 B においてより顕著であった。一方、ヒト AR 発現細胞では細胞質に AR の存在が認められず、これらの化合物に明確な AR の核内移行の阻害は認められなかった。(参照 69)

9 ヒトAR蛋白量に及ぼす影響

ヒト乳癌由来のAR発現細胞を用いて、ピリフルキナゾンのヒトARの細胞内レベルに及ぼす影響について検討された。

ピリフルキナゾンは供試最高濃度 (30 μ M) においても、ヒトAR 蛋白量に影響を及ぼさなかった。 (参照 70)

⑪ エストロゲン受容体(ER)結合試験

ピリフルキナゾンのラット及びマウスにおける各種毒性試験で雌性生殖器系に認められた変化の原因を明らかにするために、ピリフルキナゾン、主要代謝物(B、C、O及びV)を用いたER結合試験が実施された。

代謝物 V は高濃度で ER(α 及び β)に対して阻害作用(ER- $\alpha: IC_{50} = 1.43 \times 10^{-4}$ M、ER- $\beta: IC_{50} = 8.81 \times 10^{-5}$ M)を示したが、他の被験物質ではいずれも阻害作用は認められなかった。(参照 59)

① 幼若ラット子宮肥大試験

ピリフルキナゾンのエストロゲン/抗エストロゲン作用を確認するために、幼若ラットを用いた子宮肥大試験(uterotropic assay)が実施された。

試験は SD ラット(一群雌各 6~8 匹)にピリフルキナゾン(50、100、150 及び 200 mg/kg 体重/日)、対照薬として 17β -エストラジオール(0.003 及び 0.01 mg/kg 体重/日)を 3 日間強制経口投与(エストロゲン作用検討)又はエチニルエストラジオール(3 mg/kg 体重/日)の皮下投与と同時に、ピリフルキナゾン(100 及び 200 mg/kg 体重/日)、対照薬として抗エストロゲン物質である ICI 182,780(0.05 及び 0.2 mg/kg 体重/日)を 3 日間強制経口投与(抗エストロゲン作用検討)して実施された。

ピリフルキナゾンはエストロゲン作用を示さないが、体重低下を生じるほどの高 用量では、弱い抗エストロゲン作用を示す可能性が考えられた。(参照 60)

② ラットの精巣間細胞腫の発生機序検討試験-血清中黄体形成ホルモンに対する 影響

ラット発がん性試験 [11.(4)] において、精巣間細胞腫の発生頻度の増加が認められた。ピリフルキナゾンは抗アンドロゲン作用を有することから、精巣間細胞腫の増加は、抗アンドロゲン作用に伴うフィードバック機構の結果により、LH の増加が原因と推察された。本試験は、LH の増加の有無を確認するために実施された。

Fischer ラット(一群雄 15 匹)にピリフルキナゾンを 13 週間混餌(原体:0、50、350、1,300 及び 2,500 ppm: 平均検体摂取量は表 45 参照)投与して、LH 濃度の変化等が調べられた。

公 10 ファーの指名的問題の近上成が入りののので、				
投与群	50 ppm	350 ppm	1,300 ppm	2,500 ppm
平均検体摂取量	6.0	20.9	77.2	145
(mg/kg 体重/日)	6.0	20.9	11.4	140

表 45 ラットの精巣間細胞腫の発生機序検討試験の平均検体摂取量

各投与群で認められた変化は表46に示されている。

1,300 ppm 以上投与群で、LH 濃度が投与期間を通じて用量相関性をもって増加し、LH 濃度の増加に並行してテストステロン濃度の増加が認められた。投与 8 週後に測定された遊離テストステロン及びジヒドロテストステロン濃度についても、1,300 ppm 以上投与群で、用量相関性のある増加が認められた。

ピリフルキナゾンの投与により、LH の持続的な増加が認められたことから、これが精巣の間細胞を刺激し続けた結果間細胞が増生し、長期間の投与では間細胞腫が誘発されたと考えられた。 (参照 68)

投与群	雄	
2,500 ppm	・被毛汚染	
	・体重増加抑制及び摂餌量減少	
	・精巣上皮細胞空胞化§§	
1,300 ppm 以上	・前立腺、精巣上体及び精嚢(凝固腺を含む)§ 絶対及び比重量減少 ・精細管萎縮§§	
	・精巣上体の生殖細胞の残渣	
	・前立腺萎縮§§	
	・血清中 LH、テストステロン、遊離テストステロン及びジヒド	
	ロテストステロン濃度増加	
350 ppm 以下	毒性所見なし	

表 46 ラットの精巣間細胞腫の発生機序検討試験で認められた変化

^{§:}精嚢(凝固腺を含む)については、1,300 ppm 投与群で統計学的有意差は認められなかったが、 投与による変化と判断した。

^{§§:} 統計検定は実施されていない。

③ マウスの精巣間細胞腫の発生機序検討試験ー血清中黄体形成ホルモンに対する 影響

本試験は、マウス発がん性試験 [11.(5)] において認められた精巣間細胞腫の 発生頻度増加について、その発生メカニズムを検索するために実施された。

ICR マウス(一群雄 80 匹)にピリフルキナゾンを 13 週間混餌(原体:0、250、500 及び 1,000 ppm: 平均検体摂取量は表 47 参照)投与して、LH 濃度の変化等が調べられた。

表 47 マウスの精巣間細胞腫の発生機序検討試験の平均検体摂取量

投与群	250 ppm	500 ppm	1,000 ppm
平均検体摂取量 (mg/kg 体重/日)	32.9	70.7	136

各投与群で認められた変化は表48に示されている。

500 ppm 以上投与群で、投与期間を通じて LH 濃度の上昇が認められ、精巣間細胞に対するピリフルキナゾンの作用が確認された。ピリフルキナゾンはラットと同様にマウスにおいても LH 濃度の上昇を惹起し、精巣の間細胞を刺激することで間細胞の過形成又は間細胞腫の発生頻度の増加を促す作用を有すると推察された。(参照 81)

表 48 マウスの精巣間細胞腫の発生機序検討試験で認められた変化

投与群	雄
1,000 ppm	・精巣上体絶対及び比重量減少
	• 精細管萎縮 ⁸⁸⁸
500 ppm 以上	・体重増加抑制
	•精巣間細胞肥大§§§
	・血清中 LH 及び DHT 濃度増加ឱ
250 ppm	・肝絶対及び比重量増加
	・血清中テストステロン濃度増加88

^{§:} DHT 濃度については、500 ppm 投与群で統計学的有意差は認められなかったが、 投与による変化と判断した。

(4) ピリフルキナゾン投与による生殖器に観察された毒性変化の発生機序に関する 考察

ピリフルキナゾンのホルモン様作用機序に関して、多くの詳細なメカニズム試験 [14.(3)①~③] が行われた結果、ピリフルキナゾンは抗アンドロゲン作用を有することが明らかとなった。また、高用量投与により、弱いながら抗エストロゲン作用を示す可能性が考えられた。

^{§ :} テストステロン濃度については、1,000 ppm 投与群で統計学的有意差は認められなかったが、投与による変化と判断した。

^{§§§:} 統計検定は実施されていない。

このことから、ラット又はマウスを用いた亜急性毒性試験、慢性毒性試験、発がん性試験、繁殖試験及び発生毒性試験に観察された生殖器への影響は、それぞれ以下の機序によるものと考察された。また、観察されたこれらの毒性変化には全て明確な閾値が存在した。

ラット又はマウスを用いた90日間亜急性毒性試験[10.(1)及び(2)]及びラットを用いた1年間慢性毒性試験[11.(3)]で観察された精巣重量減少、精細管萎縮及び精巣上体管腔内変性細胞増加等、精細管萎縮に関連する変化は本剤の抗アンドロゲン作用によると考えられた。また、ラットを用いた1年間慢性毒性試験並びにラット及びマウスを用いた発がん性試験[11.(4)及び(5)]で増加した精巣間細胞過形成及び精巣間細胞腫は、テストテスロンの低下がもたらすネガティブフィードバック機構により、下垂体からのLHが増加した結果、間細胞過形成が惹起され、精巣間細胞が増殖して腫瘍の発生が増加した二次的影響によるものと考えられた。更に、ラットを用いた90日間亜急性毒性試験の雌雄に観察された下垂体の塩基性細胞肥大も、本剤の抗アンドロゲン作用に関連する変化と考えられた。

ラット及びマウスを用いた 90 日間亜急性毒性試験並びに発がん性試験で観察された卵巣及び子宮重量の減少、また、マウスの発がん性試験で観察された子宮内膜 過形成の増加も、本剤の抗アンドロゲン作用又は抗エストロゲン作用が関連している可能性が示唆されたが、これらには明確な閾値が存在した。

2世代繁殖毒性試験[12.(1)]の750 ppm 投与群の児動物(F_1 及び F_2)及びラットを用いた発生毒性試験[12.(2)]の10 mg/kg 体重/日以上投与群で、乳頭遺残、尿道下裂又は肛門生殖突起間距離短縮が認められた。これらの所見は、本剤の持つ抗アンドロゲン作用によるものと考えられた。

(4) イヌ末梢血及びリンパ節を用いた免疫学的試験

イヌを用いた1年間慢性毒性試験[11.(1)]並びに1年間慢性毒性試験及び6か月間回復試験[11.(2)]において鼻腔病変が認められたため、その発現機序を解明する目的で、試験[11.(2)]で得られた末梢血及びリンパ節を用いて免疫学的試験が実施された。

末梢血リンパ球サブセット解析、血漿免疫グロブリン検査及びリンパ節のリンパ球サブセット解析のいずれにおいても、ピリフルキナゾンの免疫学的影響は認められなかった。 (参照 53)

(5) T-細胞依存性抗体産生能に及ぼす影響検討試験

SD ラット (一群雌雄各 10 匹、陽性対照群は雌雄各 5 匹) を用いた 28 日間混餌 (原体:0、30、150 及び 750 ppm: 平均検体摂取量は表 49 参照) 投与による T- 細胞依存性抗体産生能に及ぼす影響検討試験が実施された。免疫毒性学的検査として、最終と殺の 4 日前に異種抗原であるヒツジ赤血球を単回静脈内投与し、剖検日に重量測定後の脾臓を用いて脾臓細胞数の計数及び PFC アッセイにより抗体産生

細胞が計測された。

表 49 T-細胞依存性抗体産生能に及ぼす影響検討試験の平均検体摂取量

投与群		30 ppm	150 ppm	750 ppm
平均検体摂取量	雄	2.5	11.9	61.8
(mg/kg 体重/日)	雌	2.7	13.0	63.1

750 ppm 投与群の雌雄で体重増加抑制が認められたが、28 日間の投与終了後の 剖検では、脳、脾臓及び胸腺において、投与に関連する肉眼的病理変化及び重量の 変化はいずれの投与群にも認められなかった。免疫毒性学的検査では、いずれの投 与群においても、抗体産生細胞数の有意な増加はみられず、異種抗原に対する T-細胞依存性抗体産生能に及ぼす影響は認められなかった。(参照 71)

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて農薬「ピリフルキナゾン」の食品健康影響評価を実施した。なお、今回、作物残留試験(てんさい、カリフラワー等)及び遺伝毒性試験の成績等が新たに提出された。

 14 C で標識したピリフルキナゾンを用いた動物体内運命試験の結果、ラットにおける $[phe^{-14}C]$ ピリフルキナゾン投与群では、その吸収及び排泄は速やかであり、投与後72 時間における吸収率は少なくとも 63.1%と算出された。主に糞中に排泄された。また、臓器及び組織への残留性は認められなかった。一方、 $[pyr^{-14}C]$ ピリフルキナゾン投与群では、血液からの消失が緩慢で、臓器及び組織、特に血球、肝臓、脳等で放射能の残存が認められた。残存放射能の大部分がナイアシンであり、ピリジン環部分が生体内物質として資化されることが考えられた。ラットにおける主要代謝物は、尿中ではP及びQのグルクロン酸抱合体並びにU、糞中ではWの抱合体及びCであった。

 14 C で標識したピリフルキナゾンを用いた植物体内運命試験の結果、トマト、はつかだいこん及びレタスのいずれの作物においても代謝パターンは類似していると考えられた。各農作物中残留放射能の主要成分はピリフルキナゾンであり、レタスではピリフルキナゾンの減衰に伴い、ピリフルキナゾンのN脱アセチル化体である代謝物 B が増加し、結球で最大 81.6% TRR 検出された。

ピリフルキナゾン及び代謝物 B を分析対象化合物とした作物残留試験が実施された。 ピリフルキナゾン及び代謝物 B の最大残留値は、いずれもだいこん(葉部)の 10.0 mg/kg(ピリフルキナゾン)及び 6.13 mg/kg(代謝物 B)であった。

各種毒性試験結果から、ピリフルキナゾン投与による影響は、主に精巣(間細胞過 形成等)、肝臓(肝細胞肥大等)及び血液(貧血)に認められた。神経毒性及び生体 において問題となる遺伝毒性は認められなかった。

発生毒性試験において、ラットでは骨格変異の増加が認められたが、奇形の増加は 認められなかった。ウサギでは胎児に影響は認められなかった。これらのことから、 ピリフルキナゾンに催奇形性はないと考えられた。

繁殖試験及び発生毒性試験において、ラットの児動物及び胎児に乳頭遺残、尿道下裂又は肛門生殖突起間距離短縮が認められた。いずれの試験においても無毒性量が得られている。

発がん性試験では、ラット及びマウスで精巣間細胞腫の発生頻度増加が認められたが、発生機序は本剤が有する抗アンドロゲン作用を介した二次的な影響によるものであり、遺伝毒性によるものとは考え難く、評価に当たり閾値を設定することは可能であると考えられた。

植物体内運命試験の結果、10%TRR を超える代謝物として B が認められた。代謝物 B は、植物体内運命試験及び作物残留試験の結果、ピリフルキナゾンより残留値が高く認められる場合があるが、ラットにおいて認められ、急性毒性は弱い (LD50:2,000 mg/kg 体重超) ことから、農産物中の暴露評価対象物質をピリフルキナゾン(親化合物のみ)と設定した。

各試験における無毒性量等は表 50 に、単回経口投与等により生ずる可能性のある 毒性影響等は表 51 にそれぞれ示されている。

イヌを用いた 1 年間慢性毒性試験において無毒性量が設定できなかったが、より低い用量まで実施されたイヌを用いた 1 年間慢性毒性及び 6 か月間回復試験の無毒性量は、0.5 mg/kg 体重/日であったことから、イヌにおける無毒性量は 0.5 mg/kg 体重/日と考えられた。

食品安全委員会は、各試験で得られた無毒性量の最小値は、イヌを用いた1年間慢性毒性試験及び6か月間回復試験の0.5 mg/kg 体重/日であったことから、これを根拠として、安全係数100で除した0.005 mg/kg 体重/日を許容一日摂取量(ADI)と設定した。

ピリフルキナゾンの単回経口投与等により生ずる可能性のある毒性影響に対する無毒性量のうち最小値は、ラットを用いた発生毒性試験の $5\,\mathrm{mg/kg}$ 体重であり、認められた所見は肛門生殖突起間距離短縮であったことから、妊婦又は妊娠している可能性のある女性に対する急性参照用量(ARfD)は、これを根拠として、安全係数 $100\,\mathrm{cm}$ で除した $0.05\,\mathrm{mg/kg}$ 体重と設定した。また、一般の集団に対してはラットを用いた急性神経毒性試験の無毒性量である $100\,\mathrm{mg/kg}$ 体重を根拠として、安全係数 $100\,\mathrm{cm}$ 除した $1\,\mathrm{mg/kg}$ 体重をARfDと設定した。

ADI 0.005 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験及び回復試験

(動物種) イヌ

(期間) 1年間(6か月間回復期間)

(投与方法) カプセル経口

(無毒性量) 0.5 mg/kg 体重/日

(安全係数) 100

ARfD (1) 1 mg/kg 体重

※一般の集団

(ARfD 設定根拠資料) 急性神経毒性試験

(動物種)ラット(期間)単回(投与方法)強制経口

(無毒性量) 100 mg/kg 体重

(安全係数) 100

ARfD (2) 0.05 mg/kg 体重

※妊婦又は妊娠している可能性のある女性

(ARfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間) 妊娠 6~19 日 (45.5 + 15.4 +

 (投与方法)
 強制経口

 (無毒性量)
 5 mg/kg 体重/日

(安全係数) 100

<参考>

<EPA (2018) >

cRfD 0.06 mg/kg 体重/日

(cRfD 設定根拠資料) 発がん性試験

(動物種) マウス(期間) 18 か月間(投与方法) 混餌投与

(無毒性量) 6.25 mg/kg 体重/日

(不確実係数) 100

aRfD 1 mg/kg 体重

(一般の集団)

(aRfD 設定根拠資料) 急性神経毒性試験

(動物種) ラット(期間) 単回(投与方法) 強制経口

(無毒性量) 100 mg/kg 体重

(不確実係数) 100

aRfD 0.05 mg/kg 体重

(13~49歳の女性)

(aRfD 設定根拠資料) 発生毒性試験

(動物種) ラット

(期間)妊娠 6~19 日(投与方法)強制経口

(無毒性量) 5 mg/kg 体重/日

(不確実係数) 100

(参照 104、105)

表 50 各試験における無毒性量等

	☆ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇				
動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考 1)
ラット	90 日間 亜急性 毒性試験	0、50、100、500、2,500 ppm 雄:0、2.89、5.74、 29.3、155 雌:0、3.21、6.44、 33.0、159	雄:5.74 雌:6.44	雄: 29.3 雌: 33.0	雄:網状赤血球増加等 雌:T.Chol 増加等
	90 日間 亜急性 神経毒性 試験	0、30、150、750 ppm 雄:0、1.8、9.4、46.6 雌:0、2.2、10.9、53.2	雄:46.6 雌:2.2	雄:一 雌:10.9	雄:毒性所見なし 雌:体重増加抑制 (神経毒性は認められない)
	1年間 慢性毒性 試験	0、100、350、1,300 ppm 雄: 0、4.08、14.4、56.5 雌: 0、4.97、18.0、65.6	雄:4.08 雌:4.97	雄:14.4 雌:18.0	雄: MCV 及び MCH 減 少等 雌: 腎絶対及び比重量 増加等
	2年間 発がん性 試験	0、100、350、1,300 ppm 雄: 0、3.53、12.5、48.5 雌: 0、4.51、16.4、60.2	雄:3.53 雌:4.51	雄:12.5 雌:16.4	雌雄:体重増加抑制等 (精巣間細胞腫増加)
	2世代繁殖試験	0、30、150、750 ppm P雄: 0、1.79、8.94、 45.5 P雌: 0、2.72、13.8、 67.2 F1雄: 0、1.94、9.66、 48.8 F1雌: 0、2.77、14.1、 69.0	一般毒性 親動物 P雄: 8.94 P雌: 2.72 F ₁ 雄: 9.66 F ₁ 雌: 2.77 児動物 P雄: 1.79 P雌: 2.72 F ₁ 雄: 1.94 F ₁ 雌: 2.77 繁殖能 P雄: 8.94 P雌: 13.8 F ₁ 雄: 9.66 F ₁ 雌: 14.1	一般毒性 親動物 P雄: 45.5 P雌: 13.8 F1雄: 48.8 F1雌: 14.1 児動物 P雄: 8.94 P雌: 13.8 F1雄: 9.66 F1雌: 14.1 繁殖能 P雄: 45.5 P雌: 67.2 F1雄: 48.8 F1雌: 69.0	一般毒性 親動物 雄:小葉中心性肝細胞 肥大等 雌:甲状腺絶対及び比 重量増加等 児動物 雌雄:体重増加抑制 繁殖能 雄:包皮分離遅延及び 正常形態精子出現率低 下 雌:妊娠期間延長

T. 11 CT	→ b #*A	投与量	無毒性量	最小毒性量	7.11s - Lo
動物種	試験	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	備考 1)
	発生毒性 試験	0, 5, 10, 50	母動物:10 胎児:5	母動物:50 胎児:10	母動物:体重増加抑制等 胎児:肛門生殖突起間 距離短縮(雄)、骨格 変異出現率の高値 (催奇形性は認められない)
マウス	90 日間 亜急性 毒性試験	0、60、750、1,500 ppm 	雄:7.58 雌:9.13	雄:102 雌:119	雌雄:小葉中心性肝細 胞肥大等
	18 カ 月間 発がん性 試験	0、60、250、1,000 ppm 	雄: 6.25 雌: 5.82	雄:27.1 雌:25.0	雄: 体重増加抑制等 雌: 子宮角内膜過形成 (精巣間細胞腫増加)
ウサギ	発生毒性 試験	0, 5, 10, 20	母動物: 20 胎児: 20	母動物:- 胎児:-	母動物及び胎児:毒性 所見なし (催奇形性は認められ ない)
イヌ	90 日間 亜急性 毒性試験	0, 2, 5, 30	雄:2 雌:2	雄:5 雌:5	雄:ALP 増加 雌:甲状腺ろ胞上皮細 胞肥大
	1 年間 慢性毒性 試験	0、1.5、5、15	雄:— 雌:—	雄:1.5 雌:1.5	雌雄:鼻腔嗅部単核細 胞浸潤
	1年間 慢性毒性 試験及び 6か月間 回復試験	0、0.15、0.5、5	雄:0.5 雌:0.5	雄:5 雌:5	雌雄:鼻腔嗅部単核細 胞浸潤
		ADI	NOAEL: 0.5 SF: 100 ADI: 0.005		
		定根拠資料		生試験及び6か月間回	可復試験
ADI:許容一日摂取量、NOAEL:無毒性量、		SF·安全係数			

ADI: 許容一日摂取量、NOAEL: 無毒性量、SF: 安全係数 ¹⁾: 備考に最小毒性量で認められた毒性所見の概要を示した。

-:無毒性量又は最小毒性量は設定できなかった。

表 51-1 単回経口投与等により生ずる可能性のある毒性影響等(一般の集団)

動物種	試験	投与量 (mg/kg 体重)	無毒性量及び急性参照用量設定に 関連するエンドポイント ¹⁾ (mg/kg 体重)
ラット		0, 30, 100, 300, 500	雌雄:100
	急性神経毒性		
	試験		雌雄:切迫殺例、異常姿勢、運動失調、
			歩行異常、異常呼吸等
			NOAEL: 100
ARfD		D	SF: 100
			ARfD: 1
ARfD 設定根拠資料		· · · · · · · · · · · · · · · · · · ·	ラット急性神経毒性試験

ARfD: 急性参照用量 SF: 安全係数 NOAEL: 無毒性量¹⁾: 最小毒性量で認められた主な毒性所見を記した。

表 51-2 単回経口投与等により生ずる可能性のある毒性影響等 (妊婦又は妊娠している可能性のある女性)

動物種	試験	投与量 (mg/kg 体重/日)	無毒性量及び急性参照用量設定に 関連するエンドポイント ¹⁾ (mg/kg 体重/日)
ラット		0、30、150、750 ppm	児動物(雄)
			P雄:8.94
	2世代繁殖試験	P雄:0、1.79、8.94、45.5	F ₁ 雄:9.66
		P雌:0、2.72、13.8、67.2	
		F ₁ 雄:0、1.94、9.66、48.8	雄:肛門生殖突起間距離短縮、乳頭遺残、
		F ₁ 雌:0、2.77、14.1、69.0	尿道下裂
	→\c et → 1.1 → 1.2×	0, 5, 10, 50	胎児:5
	発生毒性試験		□~ □□ /
			肛門生殖突起間距離短縮
	幼若ラット	0, 50, 100, 150, 200	200 で <i>in vivo</i> 抗エストロゲン活性
	子宮肥大試験	(3日間強制経口投与)	あり
	Hershberger 試	0, 50, 100, 200	100 以上で <i>in vivo</i> 抗アンドロゲン活性
	験による抗アン	(10 日間強制経口投与)	あり
	ドロゲン作用の		
	検討		
			NOAEL: 5
ARfD		D	SF: 100
			ARfD: 0.05
	ARfD 設定	根拠資料	ラット発生毒性試験

ARfD: 急性参照用量 SF: 安全係数 NOAEL: 無毒性量

1):最小毒性量で認められた主な毒性所見を記した。

<別紙1:代謝物/分解物/原体混在物略称>

記号	化学名
D	1,2,3,4-テトラヒドロ-3-[(3-ピリジルメチル)アミノ]-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメ
В	チル)エチル]キナゾリン-2-オン
C	1,2,3,4・テトラヒドロ-3-[(3-ピリジルメチレン)アミノ]-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロ
С	メチル)エチル]キナゾリン-2-オン
D	1,2,3,4-テトラヒドロ-3-[3-(1-オキシピリジルメチル)アミノ]-6-[1,2,2,2-テトラフルオロ-1-(トリフ
D	ルオロメチル)エチル]キナゾリン-2-オン
E	1,2,3,4-テトラヒドロ-3-[3-(1-オキシピリジルメチレン)アミノ]-6-[1,2,2,2-テトラフルオロ-1-(トリ
Е	フルオロメチル)エチル]キナゾリン-2-オン
F	1,2,3,4-テトラヒドロ-8-ヒドロキシ-3-[(3-ピリジルメチル)アミノ]-6-[1,2,2,2-テトラフルオロ
T	-1-(トリフルオロメチル)エチル]キナゾリン-2-オン
G	1,2,3,4-テトラヒドロ-4-ヒドロキシ-3-[(3-ピリジルメチル)アミノ]-6-[1,2,2,2-テトラフルオロ
<u> </u>	-1-(トリフルオロメチル)エチル]キナゾリン-2-オン
Н	1,2,3,4-テトラヒドロ-3-[(3-ピリジルメチル)アミノ]-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメ
	チル)エチル]キナゾリン-2,4-ジオン
I	1,2,3,4-テトラヒドロ-4-ヒドロキシ-3-[(3-ピリジルメチレン)アミノ]-6-[1,2,2,2-テトラフルオロ
	-1-(トリフルオロメチル)エチル]キナゾリン-2-オン
J	1-アセチル·1,2,3,4-テトラヒドロ-3·[(3-ピリジルメチレン)アミノ]-6·[1,2,2,2-テトラフルオロ
	-1-(トリフルオロメチル)エチル]キナゾリン-2-オン
K	N[2-オキソ-6·[1,2,2,2-テトラフルオロ-1·(トリフルオロメチル)エチル]-1,4·ジヒドロ-2 H キナゾ
	リン-3-イル]- <i>N</i> -(3-ピリジルメチル)アセトアミド
L	N -[1-アセチル-2-オキソ-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]-1,4-ジヒドロ
	-2Hキナゾリン-3·イル]- N (3-ピリジルメチル)アセトアミド
M	3-アミノ-1,2,3,4-テトラヒドロ-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]キナゾ
	リン-2-オン
N	1,2,3,4-テトラヒドロ-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]キナゾリン-2-オ
0	1,2,3,4-テトラヒドロ-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]キナゾリン-2,4-
	ジオン
P	1,2,3,4-テトラヒドロ-8-ヒドロキシ-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]キ
	ナゾリン-2,4-ジオン
Q	2-アミノ-5-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]安息香酸
R	ピリジン-3-カルボキシアルデヒド
S	ピリジン-3-カルボン酸
T	ピリジン-3-カルボキシアミド
U	3-カルバモイル-1-メチルピリジニウム

	N {2-オキソ-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]-1,4-ジヒドロ-2 H キナゾ
V	リン-3-イル}アセトアミド
117	N {4-ヒドロキシ-2-オキソ-6-[1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル]-1,4-ジヒド
W	ロ-2 <i>H</i> キナゾリン-3·イル}アセトアミド
37	1,2,3,4-テトラヒドロ- 3 -[N ニトロソ- N (ピリジン- 3 -イルメチル)アミノ]- 6 -[$1,2,2,2$ -テトラフルオ
X	ロ-1-(トリフルオロメチル)エチル]キナゾリン-2-オン
37	1,2,3,4-テトラヒドロ-4-ヒドロキシ-3-[N ニトロソ- N (ピリジン-3-イルメチル)アミノ]-6-[$1,2,2,2$ -
Y	テトラフルオロ-1-(トリフルオロメチル)エチル]キナゾリン-2,4-ジオン
7	1,2,3,4-テトラヒドロ-3-[N ニトロソ- N (ピリジン-3-イルメチル)アミノ]-6-[$1,2,2,2$ -テトラフルオ
Z	ロ-1-(トリフルオロメチル)エチル]キナゾリン-2,4-ジオン

略称	名称	化学名
AQA		(原体混在物)
AQR	_	(原体混在物)
AQW	_	(原体混在物)
BR	_	(原体混在物)
QUA	_	(原体混在物)
RFPAQ	_	(原体混在物)
RFPDQ	—	(原体混在物)

<別紙2:検査値等略称>

略称	名称
A/G 比	アルブミン/グロブリン比
ai	有効成分量(active ingredient)
Alb	アルブミン
ALP	アルカリホスファターゼ
A T /TD	アラニンアミノトランスフェラーゼ
ALT	[=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)]
AR	アンドロゲン受容体
AST	アスパラギン酸アミノトランスフェラーゼ
ASI	[=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)]
AUC	薬物濃度曲線下面積
Bil	ビリルビン
BUN	血液尿素窒素
C_{max}	最高濃度
CMC	カルボキシメチルセルロース
DHT	ジヒドロテストステロン
Eos	好酸球数
EPA	米国環境保護庁
ER	エストロゲン受容体
EROD	エトキシクマリン O デエチラーゼ
FOB	機能観察総合評価
GGT	γ-グルタミルトランスフェラーゼ
441	[=γ-グルタミルトランスペプチダーゼ (γ-GTP)]
Glob	グロブリン
Glu	グルコース (血糖)
Hb	ヘモグロビン (血色素量)
Ht	ヘマトクリット値
IC50	50%阻害濃度
LC_{50}	半数致死濃度
LD_{50}	半数致死量
LH	黄体形成ホルモン
Lym	リンパ球数
MCH	平均赤血球へモグロビン量
MCHC	平均赤血球血色素濃度
MCV	平均赤血球容積

PFC	プラークフォーミングセル
PHI	最終使用から収穫までの日数
RBC	赤血球数
$T_{1/2}$	消失半減期
T_3	トリヨードサイロニン
T_4	サイロキシン
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
TG	トリグリセリド
T_{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
TSH	甲状腺刺激ホルモン
UDPGT	ウリジン二リン酸グルクロニルトランスフェラーゼ
UDS	不定期 DNA 合成
WBC	白血球数

<別紙3:作物残留試験成績>

作物名	試								残留値((mg/kg)				
[栽培形態]	験ほ	使用量	回数	PHI		ピリフル	キナゾン			代謝	物B		合計	計値
(分析部位)	場場	(g ai/ha)	(回)	(目)	公的分	析機関	社内分	析機関	公的分	析機関	社内分	析機関	公的	社内
実施年度	数		(Ш/		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均値	平均値
未成熟			3	1			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
とうもろこし		100	3	3			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
[露地]	2		3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
(種子)	_		3	1			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
2011 年度		95.5	3	3			< 0.01	<0.01			< 0.02	< 0.02		< 0.03
			3	7			<0.01	<0.01	/ 		< 0.02	<0.02		<0.03
			3	$\begin{array}{c} 7 \\ 14 \end{array}$			< 0.01	<0.01			<0.02 <0.02	<0.02 <0.02		<0.03 <0.03
だいず		94	3	20			<0.01 <0.01	<0.01 <0.01			<0.02	<0.02		<0.03
[露地]			3	28			< 0.01	<0.01			< 0.02	<0.02		< 0.03
(乾燥子実)	2		3	7			<0.01	<0.01			<0.02	<0.02		<0.03
2016 年度			3	14			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
2010 1 %		$77.5 \sim 80$	3	21			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
			3	28			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
			3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
		100	3	14			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
		100	3	21			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
			3	28	/		< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
			3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
2°1 (4°		93.5	3	14			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
だいず			3	21			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
[露地]	4		3	28	/	/	<0.01	<0.01	/		< 0.02	<0.02		<0.03
(乾燥子実)			3	7			< 0.01	< 0.01			< 0.02	<0.02		< 0.03
2017 年度		91	3	$\begin{array}{c} 14 \\ 21 \end{array}$			<0.01 <0.01	<0.01 <0.01			<0.02 <0.02	<0.02 <0.02		<0.03 <0.03
			3	$\frac{21}{28}$			< 0.01	<0.01			<0.02	<0.02		< 0.03
			3	7			<0.01	<0.01			<0.02	<0.02		<0.03
			3	14			< 0.01	<0.01			< 0.02	<0.02		< 0.03
		96	3	21			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
			3	28			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
えんどうま			3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
えんとりま め	2	$91\sim 91.5$	3	14			< 0.01	< 0.01		/	< 0.02	< 0.02		< 0.03
[露地]	4	91.91.0	3	21			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
[路地]			3	28			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03

作物名	試								残留値((mg/kg)				
[栽培形態]	験	使用量	口口	PHI		ピリフル	キナゾン			代謝	物 B		合計	l 十値
(分析部位)	ほ 場	(g ai/ha)	数 (回)	(日)	公的分	析機関	社内分	析機関	公的分	析機関	社内分	析機関	公的	社内
実施年度	数				最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均値	平均値
(乾燥子実) 2017 年度		85.5~91.5	3 3 3 3	7 14 21 28			<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01			<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02		<0.03 <0.03 <0.03 <0.03
ばれいしょ [露地] (塊茎) 2005 年度	2	75~150	3 3 3	1 3 14	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011	<0.03 <0.03 <0.03	<0.03 <0.03 <0.03
かんしょ [露地]	2	94	3 3 3	1 3 7			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
(塊根) 2011 年度	_	90	3 3 3	1 3 7			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
やまのいも [露地]	0	99	3 3 3	1 3 7			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
(塊茎) 2011 年度	2	88.5	3 3 3	1 3 7			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
こんにゃく [露地]		150	3 3	1 3 7			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
(球茎) 2011 年度	2	150	3 3	1 3 7			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
てんさい		100	3 3	7 14 21			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
[露地] (根部)	3	100	3 3	7 14 21			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03
2016年度		90	3 3 3	7 14 21			<0.01 <0.01 <0.01	<0.01 <0.01 <0.01			<0.02 <0.02 <0.02	<0.02 <0.02 <0.02		<0.03 <0.03 <0.03

作物名	試								残留値((mg/kg)				
[栽培形態]	験ほ	使用量	回数	PHI		ピリフル	キナゾン			代謝	物 B		合語	汁値
(分析部位)	は 場	(g ai/ha)	数 (回)	(目)	公的分	析機関	社内分	析機関	公的分	析機関	社内分	·析機関	公的	社内
実施年度	数		()		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均値	平均値
			3	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
		100	3	3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
だいこん			3	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
[露地]			3	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
(根部)	3	90	3	3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
			3	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
2010 年度			3	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
		89.5	3	3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
			3	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
			3	1	3.18	3.18	2.53	2.50	1.21	1.21	0.47	0.47	4.39	2.97
		100	3	3	0.12	0.12	0.16	0.16	0.165	0.154	0.28	0.28	0.27	0.44
だいこん			3	7	0.04	0.04	0.03	0.03	0.044	0.044	0.04	0.04	0.08	0.07
[露地]			3	1	0.01	0.01	0.03	0.03	0.044	0.044	0.07	0.07	0.05	0.10
(葉部)	3	90	3	3	< 0.01	< 0.01	< 0.01	< 0.01	0.011	0.011	0.02	0.02	0.03	0.03
			3	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
2010年度			3	1	3.74	3.68	10.0	9.98	6.13	6.12	2.23	2.23	9.80	12.2
		89.5	3	3	5.53	5.51	4.93	4.92	5.61	5.61	5.36	5.35	11.1	10.3
			3	7	3.39	3.39	3.93	3.66	5.95	5.91	5.63	5.51	9.30	9.17
			3	3	0.20	0.20	0.25	0.25	0.077	0.077	0.07	0.07	0.28	0.32
はくさい		119	3	7	< 0.01	< 0.01	0.05	0.05	< 0.011	< 0.011	0.02	0.02	< 0.03	0.07
[露地]	2		3	14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
(茎葉)			3	3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
2010年度		146	3	7	< 0.01	< 0.01	0.04	0.04	< 0.011	< 0.011	0.06	0.04	< 0.03	0.08
			3	14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03
キャベツ					0.10	0.055	0.05	0.04	0.000	0.000*	0.044	0.000	0.00	0.05
[露地]	0	104 001	3	1	0.10	0.055	0.07	0.04	0.033	0.022*	0.044	0.028	0.08	0.07
(葉球)	2	$134 \sim 201$	3	3	0.08	0.045*	< 0.01	< 0.01	<0.011	< 0.011	0.011	0.011*	0.06*	0.025*
2005 年度			3	14	0.07	0.04	< 0.01	< 0.01	< 0.011	< 0.011	< 0.011	<0.011	0.055*	<0.03
			3	1			0.02	0.02			0.15	0.14		0.16
カリフラワー		$131 \sim 141$	3	3			< 0.01	< 0.01			0.06	0.04		0.05
[露地]	2		3	7			< 0.01	< 0.01			0.03	0.02		0.03
(花蕾)			3	1	7		0.02	0.02	7		0.08	0.08	7	0.10
2017年度		110	3	3			< 0.01	< 0.01			0.02	0.02		0.03
			3	7			< 0.01	< 0.01			0.02	0.02		0.03

作物名	試								残留値((mg/kg)				
[栽培形態]	験ほ	使用量	回数	PHI		ピリフル	キナゾン			代謝	物 B		合言	十値
(分析部位)	は 場	(g ai/ha)	<u>剱</u> (回)	(目)	公的分	析機関	社内分	析機関	公的分	析機関	社内分	·析機関	公的	社内
実施年度	数		()		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均值	平均値	平均値
			3	1	0.33	0.32	0.42	0.40	0.132	0.132	0.18	0.17	0.45	0.57
ブロッコリー		150	3	3	0.50	0.50	0.22	0.22	0.099	0.099	0.24	0.24	0.60	0.46
[露地]	2		3	14	0.44	0.44	0.29	0.28	0.066	0.066	0.09	0.09	0.51	0.37
(花蕾)	_		3	1	0.21	0.20	0.21	0.21	0.099	0.088	0.04	0.04	0.29	0.25
2010 年度		100	3	3	0.15	0.14	0.13	0.13	0.033	0.033	0.03	0.02	0.17	0.15
, ,			3	14	0.08	0.08	0.08	0.08	0.022	0.022	0.02	0.02	0.10	0.10
レタス			3	1	1.05	0.545	0.52	0.27	0.121	0.061	0.176	0.094*	0.605	0.365
[施設] (茎葉)	2	134	3	3	1.11	0.585	0.85	0.47	0.077	0.044*	0.110	0.061	0.63	0.53
2005 年度			3	14	0.16	0.09	0.26	0.17	0.011	0.011*	0.033	0.016*	0.1	0.185
レタス														
[施設]			0	1			0.40	0.22			0.154	0.082*		0.90
(茎葉)	2	$100.5 \sim 134$	3	$\frac{1}{3}$			$0.40 \\ 0.02$	$0.22 \\ 0.02$			$0.154 \\ 0.011$	0.082"		$0.30 \\ 0.03$
2006 年度			3	5			0.02	0.02			0.011	0.011		0.05
サラダ菜			3	1**	6.77	4.24	/	/	0.594	0.528	/		4.76	
[施設]			3	3**	8.21	$\frac{4.24}{4.85}$			1.83	0.528 0.97			$\frac{4.76}{5.82}$	/
(茎葉)	2	$33.5 \sim 201$	3	$\frac{3}{7}$	2.98	1.69	/.		1.25	0.674			$\frac{3.82}{2.36}$	
2005 年度			3	14	0.25	0.17			0.198	0.132			0.305	
リーフレタス			3	1**	4.06	2.82	/		0.440	0.429			3.25	
[露地]		400 - 404	3	3**	3.95	2.47			0.242	0.231			2.7	
(茎葉)	2	$100.5 \sim 134$	3	7	0.34	0.21			0.099	0.072			0.28	
2005 年度			3	14	0.01	0.01			< 0.011	< 0.011			0.025	
			3	1			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
たまねぎ		181	3	3			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
[露地]	2		3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
(鱗茎)	4		3	1			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
2011 年度		188	3	3			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
			3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
ねぎ			3	3	0.23	0.22	0.20	0.20	< 0.011	< 0.011	< 0.02	< 0.02	0.23	0.22
[露地]	2	179	3	7	< 0.01	< 0.01	0.01	0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	0.03
[htts:			3	14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.02	< 0.02	< 0.03	< 0.03

作物名 接帯形態 検に	社内 平均値 0.11 <0.03 <0.03 8.60 7.52 5.83 1.85 1.50 1.14 3.19
大麻 中度 接	平均値 0.11 <0.03 <0.03 8.60 7.52 5.83 1.85 1.50 1.14 3.19
実施年度 (茎葉) 数 最高値 平均値 最高値 平均値 最高値 平均値 最高値 平均値 0.01 0.011 0.011 0.022 0.023 0.03	0.11 <0.03 <0.03 8.60 7.52 5.83 1.85 1.50 1.14
2010 年度 200 3 7 <0.01 <0.01 <0.01 <0.01 <0.011 <0.011 <0.011 <0.02 <0.02 <0.03 <0.03 <0.01 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.02 <0.02 <0.03 <0.03 <0.03 <0.01 <0.011 <0.011 <0.011 <0.011 <0.011 <0.02 <0.02 <0.03 <0.03 <0.03 <0.03 <0.01 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.02 <0.02 <0.03 <0.03 <0.03 <0.03 <0.01 <0.01 <0.011 <0.011 <0.011 <0.011 <0.011 <0.012 <0.02 <0.03 <0.03 <0.03 <0.03 <0.01 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.03 <0.03 <0.03 <0.03 <0.077 <0.066 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.011 <0.011 <0.011 <0.011 <0.011 <0.003 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	<0.03 <0.03 8.60 7.52 5.83 1.85 1.50 1.14 3.19
181 2 3 6.84 6.66 6.84 6.64 6.69 6.88 6.64 6.69 6.88 6.69 6.88 6.84	<0.03 8.60 7.52 5.83 1.85 1.50 1.14 3.19
181 2 3 6.81 6.64 0.91 0.88 0.69 0.68 0.69 0.68 0.12 0.12 0.12 0.12 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.13 0.14 0.15	8.60 7.52 5.83 1.85 1.50 1.14 3.19
181 2 3 6.81 6.64 0.91 0.88 0.69 0.68 0.68 0.69 0.68 0.68 0.69 0.68 0.68 0.69 0.68 0.68 0.69 0.68 0.68 0.69 0.68 0.68 0.69 0.68 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.69	7.52 5.83 1.85 1.50 1.14 3.19
(とう (施設	5.83 1.85 1.50 1.14 3.19
Table Ta	1.85 1.50 1.14 3.19
(送葉) 2016年度 3	1.50 1.14 3.19
2 7 1.06 1.04 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.18	1.14 3.19
2016年度 171 2 3 2.93 2.88 0.33 0.31 0.11 0.11 0.11 0.11 0.18 0.1	3.19
171 2 3 2.11 2.08 0.11 0.11 0.11 0.18	
アスパラガス [露地] (茎葉) 2 150 3 1 0.01 0.01 0.110 0.110 0.012 (茎葉) 2009 年度 3 7 <0.01	2.19
アスパラガス [露地] 150 3 3 <0.01	1.70
「露地 2 3 7	
(茎葉) 2 2009 年度 139 3 1 0.03 0.03 0.077 0.066 0.011 0.011 0.011 0.011 0.011 0.011 0.03 0.03 0.01 0.011 0.01 0.011 0.03 0.03 0.03 0.02 0.016* 0.044 0.033 0.25	
2009 年度 139 3 3 <0.01 <0.01 <0.011 <0.011 <0.011 <0.011 <0.03 <0.03 <0.03 <0.01 <0.011 <0.011 <0.011 <0.011 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0	
3 7 <0.01 <0.01 <0.011 <0.011 <0.03 ミニトマト	
ミニトマト [施設] 3 1 0.24 0.24 0.37 0.31 0.022 0.016* 0.044 0.033 0.25	
	0.34
(果実) 2 150 3 3 0.21 0.17 0.19 0.18 <0.011 <0.011 <0.011 0.18 0.12 0.12 0.20 0.15 <0.011 <0.011 0.011 0.011 0.18 0.12 0.12 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.19 0.16
2005年度	0.16
$\begin{bmatrix} \psi - \forall \gamma \\ \text{[Max]M} \end{bmatrix}$ 2 1 0.19 0.16 0.30 0.21 0.033 0.028 0.132 0.099 0.18	0.31
$\lfloor \mathbb{R} $	$0.31 \\ 0.21$
(果美)	0.11
2006年度	
なす [地記] 3 1 0.07 0.04 0.06 0.04 <0.011 <0.011 0.011 0.011* 0.055	0.05
$\lfloor \frac{\text{LMEX}}{2} \rfloor = 2 + 65 \sim 100 + 2 + 2 + 0.05 + 0.02 + 0.05 + 0.02 + 0.011$	0.045*
(米美) 3 14 <0.01 <0.01 <0.01 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.013	<0.02
2005年度	< 0.03
1	
[施設] 2 250 3 3 <0.01 <0.01 <0.01 <0.01 <0.01	0.03

作物名	試								残留値	(mg/kg)				
[栽培形態]	験ほ	使用量	回数	PHI		ピリフル	キナゾン			代謝	物 B		合語	十値
(分析部位)	場場	(g ai/ha)	<u></u> (回)	(目)	公的分	析機関	社内分	·析機関	公的分	析機関	社内分	·析機関	公的	社内
実施年度	数		(Ш)		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均値	平均値
(果実)			3	1	0.03	0.03	0.09	0.08	0.011	0.011	0.033	0.033	0.04	0.11
2010 年度		300	3	3	0.03	0.03	0.12	0.12	< 0.011	< 0.011	0.044	0.044	0.04	0.16
			3	7	0.02	0.02	0.04	0.04	< 0.011	< 0.011	< 0.011	< 0.011	0.03	0.05
			2	1	0.46	0.46			0.13	0.13			0.59	
ししとう		175	2	3	0.36	0.36			0.09	0.09			0.45	
[施設]	2		2	7	0.10	0.10			0.04	0.04		/	0.14	
(果実)	_		2	1	0.30	0.30			0.19	0.18			0.48	
2011 年度		125	2	3	0.07	0.07			0.10	0.10			0.17	
			2	7	0.01	0.01	1 11	4.10	0.01	0.01		/	0.02	
甘長		105	3	1			1.44	1.43			0.58	0.58		2.01
とうがらし		125	3	$\frac{3}{7}$			1.11	1.10			0.37	0.37		1.47
[施設]	2		3		/ 		0.45	0.44 0.91	/ 		0.54	0.53 0.48	/ 	0.97
(可食部)		91	3	$\frac{1}{3}$			$0.91 \\ 0.27$	0.91			$0.50 \\ 0.44$	0.48		1.39 0.70
2011 年度		91	3	- 3 - 7			0.27	0.26			0.44	0.10		0.70
A III (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			3	3			<0.01	<0.03			<0.02	<0.02		<0.03
食用ほおず		138.5	3	7			< 0.01	<0.01			< 0.02	<0.02		< 0.03
き [[4:39]]		100.0	3	14			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
[施設]	2		3	3			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
(果実)		125	3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
2013 年度			3	14			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
きゅうり			0	1	0.00	0.015	0.01	0.01*	رم مرا در مرا	-0.011	0.011	0.011*	0.00	0.00
[施設]	2	110~150	3	1 3	0.02 <0.01	0.015 <0.01	0.01 0.01	0.01* 0.01*	<0.011 <0.011	<0.011 <0.011	0.011 <0.011	0.011* <0.011	0.03 <0.03	0.03 0.03*
(果実)		110 - 150	3	14	<0.01	<0.01	<0.01	<0.01	<0.011	<0.011	<0.011	<0.011	<0.03	<0.03
2005 年度			5	14	\0.01	\0.01	\0.01	\0.01	<0.011	\0.011	\0.011	<0.011	\0.03	~ 0.03
			3	1	0.05	0.05	0.10	0.10	0.055	0.044	0.022	0.022	0.09	0.12
きゅうり		$231\sim290$	3	3	< 0.01	< 0.01	< 0.01	< 0.01	0.022	0.022	< 0.011	< 0.011	0.03	< 0.03
[施設]	2		3	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.011	< 0.011	< 0.03	< 0.03
(果実)			3	1	0.04	0.04	0.05	0.05	0.033	0.033	0.022	0.022	0.07	0.07
2010 年度		250	3	3	0.01	0.01	0.04	0.04	0.022	0.022	< 0.011	< 0.011	0.03	0.05
			3	7	< 0.01	<0.01	< 0.01	< 0.01	<0.011	<0.011	< 0.011	< 0.011	< 0.03	< 0.03
かぼちゃ			3	1			< 0.01	< 0.01			0.011	0.011		0.03
[施設]	2	114	3	3			< 0.01	< 0.01			0.022	0.022		0.03
DAD BY			3	7			< 0.01	< 0.01			0.033	0.022		0.03

作物名	試								残留値((mg/kg)				
[栽培形態]	験	使用量	回数	PHI		ピリフル	キナゾン			代謝	物B		合言	十値
(分析部位)	ほ 場	(g ai/ha)	(回)	(日)	公的分	·析機関	社内分	析機関	公的分	析機関	社内分	析機関	公的	社内
実施年度	数		()		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均値	平均値
(果実)			3	1			< 0.01	< 0.01			0.033	0.022		0.03
2012 年度		140	3	3			< 0.01	< 0.01			0.022	0.022		0.03
			3	7			<0.01	<0.01			0.011	0.011		0.03
しろうり		165**	3	1 3			$0.07 \\ 0.03$	$0.07 \\ 0.03$			$0.03 \\ 0.02$	$0.03 \\ 0.02$		$0.10 \\ 0.05$
[施設]		105	3	7			< 0.03	< 0.03			< 0.02	< 0.02		< 0.03
(果実)	2		3	1			0.02	0.02			0.03	0.03		0.05
2013 年度		150	3	3			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
2014 年度			3	7			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
٠			3	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.011	< 0.011	< 0.03	< 0.03
すいか		$100 \sim 125$	3	3	<0.01	<0.01	<0.01	< 0.01	<0.011	<0.011	<0.011	< 0.011	< 0.03	<0.03
[施設] (果肉)	2		3	7	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.011 <0.011	<0.011 <0.011	<0.011 <0.011	<0.011	<0.03	<0.03 <0.03
2009 年度		126	3	3	<0.01	<0.01	<0.01	<0.01	<0.011	<0.011	<0.011	<0.011	<0.03	<0.03
2009 平及		120	3	7	<0.01	<0.01	<0.01	<0.01	<0.011	<0.011	<0.011	<0.011	< 0.03	<0.03
			3	1	< 0.01	< 0.01	< 0.01	<0.01	<0.011	< 0.011	< 0.011	< 0.011	<0.03	<0.03
メロン		150	3	3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.011	< 0.011	< 0.03	< 0.03
[施設]	2		3	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.011	< 0.011	< 0.03	< 0.03
(果肉)			3	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.011	< 0.011	< 0.03	< 0.03
2009 年度		150	3	3	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	< 0.011	< 0.011	< 0.03	< 0.03
			3	7	<0.01	<0.01	<0.01	<0.01	<0.011	<0.011	<0.011	<0.011	<0.03	<0.03
にがうり		100	3	1	0.02	0.02 0.01			<0.011	<0.011 <0.011			0.03	
[施設]		128	3	3 7	0.01 <0.01	<0.01			<0.011 <0.011	<0.011			0.03 <0.03	
(果実)	2		3	1	0.11	0.10			<0.011	<0.011			0.11	
2012 年度		124	3	3	0.10	0.10			< 0.011	< 0.011			0.11	
, , , , ,			3	7	0.07	0.07			< 0.011	< 0.011			0.08	
さやえんど			2	1	0.06	0.06		1 –	0.02	0.02			0.08	
5		100	2	3	0.04	0.04			0.02	0.02			0.06	
[施設]	2		2	7	0.03	0.03	/	/	< 0.02	< 0.02		/	0.05	
(さや)		100	2	$\frac{1}{2}$	0.10	0.10			0.03	0.03			0.13	
2014 年度		100	$\frac{2}{2}$	3 7	$0.09 \\ 0.05$	0.09 0.04			0.03 <0.02	0.03 <0.02			$0.12 \\ 0.06$	
,			Z	1	0.05	0.04	/	\vee	<0.02	<0.02	/	/	0.06	

作物名	試								残留値((mg/kg)				
[栽培形態]	験ほ	使用量	回数	PHI		ピリフル	キナゾン			代謝	物B		合割	計値
(分析部位)	場場	(g ai/ha)	<u>级</u> (回)	(日)	公的分	析機関	社内分	析機関	公的分	析機関	社内分	析機関	公的	社内
実施年度	数		()		最高値	平均值	最高値	平均值	最高値	平均值	最高値	平均值	平均値	平均值
Secher Control			3	1	0.08	0.08	0.10	0.10	0.033	0.033	0.03	0.03	0.11	0.13
さや んげん [施設]		$84 \sim 93$	3	3 7	$0.03 \\ 0.01$	$0.03 \\ 0.01$	0.04 <0.01	0.04 <0.01	$0.022 \\ 0.011$	$0.022 \\ 0.011$	0.03 <0.02	0.03 <0.02	$0.05 \\ 0.03$	0.07 <0.03
(さや)	2		3	1	0.01	0.01	0.02	0.01	0.011	0.011	0.02	0.02	0.03	0.10
2010 年度		92	3	3	< 0.01	< 0.01	< 0.01	< 0.01	0.011	0.011	0.02	0.02	0.03	0.03
			3	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.011	< 0.011	0.02	0.02	< 0.03	0.03
オクラ		100	3	1	0.04	0.04 <0.01			0.132	0.132			0.17	
[露地]	_	123	3	3 7	<0.01 <0.01	<0.01 <0.01			0.055 <0.011	0.055 <0.011			0.07 <0.03	
(果実)	2		3	1	0.02	0.02			0.154	0.154			0.17	
2012 年度		$126 \sim 135$	3	3	< 0.01	< 0.01			0.011	0.011			0.03	
みかん			3	7	<0.01	< 0.01			<0.011	<0.011			<0.03	
[施設]			3	1	0.01	0.01*	0.01	0.01*	< 0.011	< 0.011	0.011	0.011*	0.03*	0.03
(果肉)	2	500	3	3 10~14	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.011	<0.011 <0.011	<0.011	<0.011 <0.011	<0.03 <0.03	<0.03 <0.03
2004 年度			3	10~14	<0.01	<0.01	<0.01	<0.01	<0.011	<0.011	<0.011	<0.011	<0.03	<0.03
みかん			3	1	1.59	1.46	1.42	1.20	0.154	0.154	0.418	0.258	1.6	1.45
[施設] (果皮)	2	500	3	3	1.33	1.26	1.33	1.08	0.176	0.165	0.110	0.099	1.45	1.15
2004 年度			3	10~14	0.57	0.32	0.45	0.25*	0.110	0.082	0.066	0.066	0.45	0.35
なつみかん														
[露地]	2	E00 - 1 004	3	1	0.30	0.21	0.48	0.31	<0.011	<0.011	<0.011	<0.011	$0.22 \\ 0.22$	0.32
(果実全体)	2	$500 \sim 1,224$	3	$\begin{array}{c} 3 \\ 28 \end{array}$	$0.29 \\ 0.03$	$0.21 \\ 0.02*$	$0.32 \\ 0.07$	$0.22 \\ 0.055$	<0.011 <0.011	<0.011 <0.011	<0.011 <0.011	<0.011 <0.011	0.22	$0.22 \\ 0.065$
2004 年度					0.00		0.01	0.000	70.011	70.011	0.011	-0.011	0.000	0.000
すだち [露地]			3	1			0.15	0.15			0.022	0.022		0.17
(果実全体)	1	500	3	3			< 0.01	< 0.01			< 0.011	< 0.011		< 0.03
2004 年度			3	14			< 0.01	< 0.01			< 0.011	< 0.011		< 0.03
かぼす			3	1			0.29	0.29			< 0.011	< 0.011		0.30
[露地]	1	600	3	3			0.29	0.29			0.011	0.011		0.30
(果実全体)			3	14			< 0.01	< 0.01			< 0.011	< 0.011		<0.03
2004 年度					/	/			V	V			V	

作物名	試								残留値((mg/kg)				
[栽培形態]	験ほ	使用量	回数	PHI		ピリフル	キナゾン			代謝	物B		合言	計値
(分析部位)	は場	(g ai/ha)	(回)	(目)	公的分	析機関	社内分	析機関	公的分	析機関	社内分	析機関	公的	社内
実施年度	数		()		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均值	平均値
りんご [露地] (果実) 2005 年度	2	335~389	3 3 3	1 3 14	0.15 0.11 0.02	0.09 0.065 0.015*	0.08 0.10 0.01	0.055 0.065 0.01*	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011	<0.011 <0.011 <0.011	0.1 0.075 0.03*	0.065 0.075 0.03*
なし [露地] (果実) 2004 年度	2	500~700	3 3 3	1 3 14	0.31 0.30 0.14	0.23 0.2 0.08	0.27 0.19 0.11	0.25 0.16 0.07	0.011 0.011 0.011	0.011 0.011* 0.011*	0.044 0.011 0.011	0.028 0.011* 0.011*	0.24 0.21 0.09	0.28 0.17 0.08
もも [露地] (果肉) 2004 年度	2	400~444	3 3 3	1 3 14	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	0.044 0.011 0.011	0.028* 0.011* 0.011*	0.011 0.011 <0.011	0.011* 0.011* <0.011	0.04* 0.03* 0.03*	0.03* 0.03* 0.03*
もも [露地] (果皮) 2004 年度	2	400~444	3 3	1 3 14	2.55 2.43 0.40	2.1 1.6 0.32	1.35 0.51 0.38	1.22 0.42 0.27	0.935 0.737 0.143	0.682 0.600 0.099	0.748 0.781 0.187	0.583 0.534 0.154	2.8 2.2 0.4	1.85 0.95 0.45
ネクタリン [露地] (果皮) 2006 年度	2	400~500	3 3 3	1 3 7	0.22 0.24 0.18	0.14 0.16 0.11			0.033 0.055 0.044	0.028 0.038 0.033			0.16 0.2 0.14	
すもも [露地]	2	350	3 3 3	1 3 7	0.04 0.04 0.02	0.04 0.04 0.02			<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			$0.05 \\ 0.05 \\ 0.03$	
(果実) 2009 年度	2	400	3 3 3	1 3 7	0.03 0.02 0.01	0.03 0.02 0.01			<0.011 <0.011 <0.011	<0.011 <0.011 <0.011			0.04 0.03 0.02	
うめ [露地]	2	400	3 3 3	1 3 7	0.24 0.19 0.14	0.24 0.19 0.14	0.34 0.38 0.17	0.33 0.38 0.16	0.044 0.033 0.044	0.044 0.033 0.044	0.055 0.044 0.055	$0.055 \\ 0.044 \\ 0.055$	0.28 0.22 0.18	$0.39 \\ 0.42 \\ 0.22$
(果実) 2009 年度	4	390~398	3 3 3	1 3 7	1.22 0.89 0.54	1.22 0.89 0.54	1.49 1.43 0.98	1.47 1.40 0.95	0.044 0.044 0.033	0.044 0.044 0.033	0.055 0.055 0.033	0.055 0.055 0.033	1.26 0.93 0.57	1.53 1.44 0.98

作物名	試								残留値	(mg/kg)				
[栽培形態]	験	使用量	口	PHI		ピリフル	キナゾン			代謝	物 B		合計	十値
(分析部位)	ほ 場	(g ai/ha)	数 (回)	(目)	公的分	析機関	社内分	析機関	公的分	析機関	社内分	析機関	公的	社内
実施年度	数		(Ш/		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均値	平均值
おうとう		450	3	1 3	0.19 0.38	0.18 0.37			$0.198 \\ 0.253$	0.198 0.242			0.38 0.61	
[施設]		400	3	7	0.30	0.37			0.209	0.242			0.01 0.42	
(果実)	2		3	1	0.65	0.63			0.088	0.088			0.72	
2009 年度		450	3	3	0.33	0.33			0.033	0.033			0.36	
いちご			3	7	0.19	0.19			0.044	0.044			0.23	
[施設]			3	1	0.36	0.31	0.31	0.26	0.616	0.341	0.572	0.319	0.655	0.575
(果実)	2	$134 \sim 168$	3	3	0.22	0.19	0.23	0.21	0.088	0.066	0.121	0.077	0.255	0.285
2005 年度			3	14	0.06	0.045	0.05	0.045	0.055	0.033*	0.033	0.022*	0.08	0.065
ぶどう			3	1	1.01	0.595	0.91	0.645	0.033	0.022*	0.022	0.016*	0.615	0.66
[施設]	2	$134\sim 335$	3	3	0.73	0.333 0.47	1.09	0.645	0.033	0.022	0.022	0.010	0.48	0.61
(果実) 2005 年度			3	14	0.89	0.515	0.92	0.565	0.011	0.011*	0.011	0.011	0.525	0.58
2005 年度			3	3	0.55	0.55	0.68	0.68	0.022	0.022	0.044	0.044	0.57	0.72
		100	3	7	0.56	0.56	1.22	1.22	0.022	0.022	0.044	0.044	$0.57 \\ 0.58$	1.29
ぶどう		133	3	14	0.82	0.82	1.06	1.06	0.022	0.022	0.055	0.055	0.84	1.12
[施設]	2		3	21	0.63	0.63	0.83	0.83	0.022	0.022	0.044	0.044	0.65	0.87
(果実)			3	3	0.82	0.82	1.06	1.06	0.033	0.033	0.022	0.022	0.85	1.08
2007 年度		333	3	7 14	$0.68 \\ 0.38$	$0.68 \\ 0.38$	$0.79 \\ 0.29$	$0.76 \\ 0.28$	0.022 0.011	0.022 0.011	0.033 0.011	0.033 0.011	$0.70 \\ 0.39$	$0.79 \\ 0.29$
			3	21	0.38 0.42	0.38 0.42	0.29	0.25	0.011	0.011	0.011	0.011	0.39 0.43	0.29
かき														
[露地]	2	240~300	3	$\frac{1}{3}$	$0.16 \\ 0.10$	$0.125 \\ 0.09$	$0.17 \\ 0.09$	$0.125 \\ 0.07$	$0.022 \\ 0.011$	0.016* 0.011*	<0.011 <0.011	<0.011 <0.011	$0.14 \\ 0.1$	0.14 0.08
(果実)	Z	240~300	3	14	0.10	0.09	0.09	0.07	< 0.011	<0.011	<0.011	<0.011	0.1	0.08
2004 年度					0.02	0.010			10.011	10.011			0.00	
キウイフルーツ		250	3	1			0.02	0.02			< 0.02	<0.02 <0.02		0.04
[露地]		250	3	3 7			0.01 0.01	0.01 0.01			<0.02 <0.02	<0.02 <0.02		0.03 0.03
(果肉)	2		3	1			<0.01	<0.01			<0.02	<0.02		<0.03
2011 年度		200	3	3			< 0.01	< 0.01			< 0.02	< 0.02		< 0.03
			3	7			< 0.01	<0.01			< 0.02	< 0.02		<0.03
マンゴー		01.4	3	1	0.09	0.09			0.022	0.022			0.11	
[施設]	2	314	3	3 7	$0.04 \\ 0.02$	$0.04 \\ 0.02$			<0.011 <0.011	<0.011 <0.011			$0.05 \\ 0.03$	
L			Э	ı <i>'</i>	0.02	0.02	\vee	\vee	~ 0.011	~ 0.011	\vee	\checkmark	0.05	/

作物名	試験に	使用量 (g ai/ha)	回 数 (回)	PHI (目)	残留值(mg/kg)									
[栽培形態] (分析部位)					ピリフルキナゾン			代謝物 B				合計値		
	ほ 場				公的分析機関		社内分析機関		公的分析機関		社内分析機関		公的	社内
実施年度	数		(Ш)		最高値	平均値	最高値	平均値	最高値	平均値	最高値	平均値	平均値	平均値
(果実) 2010 年度		400	3 3 3	1 3 7	0.16 0.33 0.14	0.16 0.32 0.14			<0.011 0.011 <0.011	<0.011 0.011 <0.011			0.17 0.33 0.15	
茶 [露地·被覆] (荒茶) 2004 年度	2	134~670	2 2	7 14	1.92 0.51	1.08 0.29	2.23 0.47	1.23 0.28	1.10 0.418	0.721 0.253	1.14 0.31	0.72 0.21	1.8 0.55	1.95 1.0
茶 [露地·被覆] (浸出液) 2004 年度	2	134~670	2 2	7 14			0.78 0.13	0.41 0.085			0.33 0.07	0.2 0.065*		0.65 0.2*
茶 [露地·被覆] (荒茶) 2006 年度	2	200~1,000	2 2	7 14	8.77 0.16	5.32 0.11	7.58 0.11	4.98 0.09	5.70 0.385	4.2 0.264	5.12 0.264	4.16 0.192	9.55 0.35	9.15 0.3
茶 [露地·被覆] (浸出液) 2006 年度	2	200~1,000	2 2	7 14			1.35 0.08	0.83 0.065			0.660 0.066	0.462 0.061*		1.3 0.2*

- ・散布には顆粒水和剤(有効成分量20%)を用いた。
- ・一部に定量限界未満を含むデータの平均値は定量限界値を検出したものとして計算し、*を付した。
- ・全てのデータが定量限界未満の平均値を算出する場合は定量限界値を平均し、<を付した。
- ・農薬の使用方法が申請された使用方法と異なる場合には**を付した。

<別紙4:推定摂取量>

<別紙 4:推	足以以里		是平均	小目(1~6 歳)	hí	£婦	方脸 耂 ((28 告ハ り	
	残留値 (mg/kg)		55.1 kg)		1~6 成) 16.5 kg)		сян 58.5 kg)	高齢者(65歳以上) (体重:56.1 kg)		
作物名等		ff	摂取量	ff 摂取量		ff	摂取量	ff		
		(g/人/日)	(µg/人/日)	(g/人/日)	(µg/人/日)	(g/人/日)	(µg/人/日)	(g/人日)	(µg/八日)	
だいこん(葉)	9.98	1.7	17.0	0.6	5.99	3.1	30.9	2.8	27.9	
はくさい	0.25	17.7	4.43	5.1	1.28	16.6	4.15	21.6	5.40	
キャベツ	0.055	24.1	1.33	11.6	0.64	19.0	1.05	23.8	1.31	
カリフラワ ー	0.02	0.5	0.01	0.2	0.00	0.1	0.00	0.5	0.01	
ブロッコリー	0.50	5.2	2.60	3.3	1.65	5.5	2.75	5.7	2.85	
レタス (含サラダ菜、 リーフレタス)	1.69	9.6	16.2	4.4	7.44	11.4	19.3	9.2	15.6	
ねぎ	0.22	9.4	2.07	3.7	0.81	6.8	1.50	10.7	2.35	
にら	6.66	2.0	13.3	0.9	5.99	1.8	12.0	2.1	14.0	
アスパラガス	0.03	1.7	0.05	0.7	0.02	1.0	0.03	2.5	0.08	
トマト	0.31	32.1	9.95	19.0	5.89	32.0	9.92	36.6	11.4	
ピーマン	0.21	4.8	1.01	2.2	0.46	7.6	1.60	4.9	1.03	
なす	0.12	12.0	1.44	2.1	0.25	10.0	1.20	17.1	2.05	
その他のな す科野菜	1.43	1.1	1.57	0.1	0.14	1.2	1.72	1.2	1.72	
きゅうり	0.05	20.7	1.04	9.6	0.48	14.2	0.71	25.6	1.28	
しろうり	0.02	0.5	0.01	0.1	0.00	0.1	0.00	0.9	0.02	
その他のう り科野菜	0.10	2.7	0.27	1.2	0.12	0.6	0.06	3.4	0.34	
オクラ	0.04	1.4	0.06	1.1	0.04	1.4	0.06	1.7	0.07	
未成熟えん どう	0.10	1.6	0.16	0.5	0.05	0.2	0.02	2.4	0.24	
未嫌いがん	0.10	2.4	0.24	1.1	0.11	0.1	0.01	3.2	0.32	
みかん	0.01	17.8	0.18	16.4	0.16	0.6	0.01	26.2	0.26	
なつみかん の果実全体	0.31	1.3	0.40	0.7	0.22	4.8	1.49	2.1	0.65	
その他の かんきつ類 果実	0.29	5.9	1.71	2.7	0.78	2.5	0.73	9.5	2.76	
りんご	0.09	24.2	2.18	30.9	2.78	18.8	1.69	32.4	2.92	
日本なし	0.25	6.4	1.60	3.4	0.85	9.1	2.28	7.8	1.95	
ネクタリン	0.16	0.1	0.02	0.1	0.02	0.1	0.02	0.1	0.02	
すもも	0.04	1.1	0.04	0.7	0.03	0.6	0.02	1.1	0.04	
うめ	1.47	1.4	2.06	0.3	0.44	0.6	0.88	1.8	2.65	
おうとう	0.63	0.4	0.25	0.7	0.44	0.1	0.06	0.3	0.19	

いちご	0.36	5.4	1.94	7.8	2.81	5.2	1.87	5.9	2.12
ぶどう	1.22	8.7	10.6	8.2	10.0	20.2	24.6	9.0	11.0
かき	0.125	9.9	1.24	1.7	0.21	3.9	0.49	18.2	2.28
キウイフルーツ	0.02	2.2	0.04	1.4	0.03	2.3	0.05	2.9	0.06
マンゴー	0.32	0.3	0.10	0.3	0.10	0.1	0.03	0.3	0.10
茶	0.83	6.6	5.48	1.0	0.83	3.7	3.07	9.4	7.80
その他のス パイス	1.46	0.1	0.15	0.1	0.15	0.1	0.15	0.2	0.29
合計			101		51.2		124		123

- ・残留値は、申請されている使用時期・回数のうち最大の残留を示す各試験区の平均残留値を用いた(参照 別紙3)。
- ・ff: 平成 17~19 年の食品摂取頻度・摂取量調査(参照 85)の結果に基づく 農産物摂取量(g/人/日)。
- ・摂取量:残留値及び農産物摂取量から求めたピリフルキナゾンの推定摂取量(µg/人/日)。
- ・未成熟とうもろこし、大豆、えんどうまめ、ばれいしょ、かんしょ、やまのいも、こんにゃく、てんさい、だいこん (根部)、たまねぎ、食用ほおずき、かぼちゃ、すいか、メロン及びももは、全データが定量限界未満であったため 摂取量の計算に用いなかった。
- ・レタスについては、レタス、サラダ菜及びリーフレタスのうち、残留値の高いサラダ菜の値を用いた。
- ・トマトについては、ミニトマトの値を用いた。
- ・その他のなす科野菜については、ししとう及び甘長とうがらしのうち、残留値の高い甘長とうがらしの値を用いた。
- ・その他のうり科野菜については、にがうりの値を用いた。
- ・未成熟えんどうについては、さやえんどうの値を用いた。
- ・未成熟いんげんについては、さやいんげんの値を用いた。
- ・その他のかんきつ類果実については、すだち及びかぼすのうち、残留値の高いかぼすの値を用いた。
- ・茶については、浸出液の値を用いた。
- ・その他のスパイスについては、みかんの皮の値を用いた。

<参照>

- 1 農薬抄録 ピリフルキナゾン (殺虫剤) (平成 20 年 12 月 25 日改訂): 日本農薬株式会社、2007 年、一部公表
- 2 [キナゾリノン-フェニル環-14C(U)]ピリフルキナゾンのラットにおける単回経口投与代謝試験 (GLP 対応) :日本農薬(株)、2006 年、未公表
- 3 [ピリジン環-2,6-¹⁴C]ピリフルキナゾンのラットにおける単回経口投与代謝試験(GLP 対応): 日本農薬(株)、2006 年、未公表
- 4 [キナゾリノン-フェニル環- 14 C(U)]ピリフルキナゾンのラットにおける胆汁中排泄試験(GLP 対応):日本農薬(株)、2006 年、未公表
- 5 トマトにおける代謝試験 (GLP 対応) : 日本農薬 (株) 、2006 年、未公表
- 6 ラディッシュにおける代謝試験(GLP対応):日本農薬(株)、2006年、未公表
- 7 レタスにおける代謝試験 (GLP 対応) : 日本農薬 (株) 、2006 年、未公表
- 8 好気的土壌代謝試験(GLP対応):日本農薬(株)、2006年、未公表
- 9 土壤吸着性試験(GLP対応):日本農薬(株)、2006年、未公表
- 10 加水分解運命試験(GLP 対応):日本農薬(株)、2005年、未公表
- 11 水中光分解運命試験(GLP対応):日本農薬(株)、2006年、未公表
- 12 土壤残留:日本農薬(株)、未公表
- 13 作物残留性試験:日本農薬(株)、未公表
- 14 生体機能への影響に関する試験(GLP対応): 日精バイリス(株)、2006年、未公表
- 15 ラットを用いた急性経口毒性試験(GLP対応):日本農薬(株)、2006年、未公表
- 16 ラットを用いた急性経皮毒性試験(GLP対応): 日本農薬(株)、2006年、未公表
- 17 ラットを用いた急性吸入毒性試験 (GLP 対応) : NOTOX B.V. (オランダ) 、2005 年、未公表
- 18 原体混在物 NNI-0101-1H-Ac(BR)のラットを用いた急性経口毒性試験(GLP 対応): (株) ボ ゾリサーチセンター、2006 年、未公表
- 19 原体混在物 NNI-0101-アミノキナゾリノン-1,N-diAc(AQW)のラットを用いた急性経口毒性試験 (GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- 20 ラットを用いた強制経口投与による急性神経毒性試験 (GLP 対応): Charles River Laboratories, Inc. (米国)、2006 年、未公表
- 21 ウサギを用いた皮膚刺激性試験(GLP対応):日本農薬(株)、2006年、未公表
- 22 ウサギを用いた眼刺激性試験(GLP対応):日本農薬(株)、2006年、未公表
- 23 モルモットを用いた皮膚感作性試験(GLP対応):日本農薬(株)、2006年、未公表
- 24 ラットを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP 対応): (財) 残留農薬研究所、2004 年、未公表
- 25 マウスを用いた飼料混入投与による 90 日間反復経口投与毒性試験 (GLP 対応): (財) 残留農薬研究所、2005 年、未公表
- 26 イヌを用いたカプセル投与による 90 日反復経口投与毒性試験 (GLP 対応) : (財) 残留農薬研究所、2005 年、未公表
- 27 ラットを用いた1年間反復経口投与毒性試験(GLP対応): (財)残留農薬研究所、2006年、

未公表

- 28 イヌを用いた 1 年間反復経口投与毒性試験(GLP 対応): (財)残留農薬研究所、2006 年、未 公表
- 29 ラットを用いた発がん性試験(GLP対応): (財)残留農薬研究所、2006年、未公表
- 30 マウスを用いた発がん性試験(GLP対応): (財)残留農薬研究所、2006年、未公表
- 31 ラットを用いた 2 世代繁殖毒性試験(GLP対応): (財)残留農薬研究所、2006年、未公表
- 32 ラットを用いた催奇形性試験(GLP対応): (財)残留農薬研究所、2006年、未公表
- 33 ウサギを用いた催奇形性試験(GLP対応): (財)残留農薬研究所、2005年、未公表
- 34 細菌を用いる復帰突然変異試験(GLP対応): 日本農薬(株)、2005年、未公表
- 35 チャイニーズハムスターの CHL 細胞を用いた in vitro 染色体異常試験 (GLP 対応):日本農薬 (株)、2006 年、未公表
- 36 マウスを用いた小核試験(GLP 対応): Huntington Life Science Ltd. (英国)、2003 年、未公表
- 37 原体混在物 NNI-0101-1H-Ac(BR)の細菌を用いる復帰突然変異試験(GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- 38 原体混在物 NNI-0101-アミノキナゾリノン-1,N-diAc(AQW)の細菌を用いる復帰突然変異試験 (GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- 39 原体混在物 NNI-0101-1H-イミノ(RFPDQ)の細菌を用いる復帰突然変異試験(GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- 40 原体混在物 NNI-0101-アミノキナゾリノン-N-Ac(AQR)の細菌を用いる復帰突然変異試験 (GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- 41 原体混在物 NNI-0101-イミノ(RFPAQ)の細菌を用いる復帰突然変異試験(GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- **42** 原体混在物 NNI-0101-アミノキナゾリノン-1-Ac(AQA)の細菌を用いる復帰突然変異試験 (GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- 43 原体混在物 NNI-0101-キナゾリノン-1-Ac(QUA)の細菌を用いる復帰突然変異試験 (GLP 対応): (株) ボゾリサーチセンター、2006 年、未公表
- 44 肝の薬物代謝能への影響に関する試験:日本農薬(株)、2006年、未公表
- 45 ラットの血中甲状腺系ホルモンおよび肝 UDP-GT に対する影響:日本農薬(株)、2006 年、未 公表
- 46 レポータージーンアッセイ: 名城大学農学部生物環境科学科環境微生物学研究室、2005 年、未公 表
- 47 ラットを用いた Hershberger 試験:日本農薬(株)、2006年、未公表
- 48 食品健康影響評価について (平成 19年 12月 18日付け厚生労働省発食安第 1218002号)
- 49 ピリフルキナゾンの食品健康影響評価に係る追加資料の提出:日本農薬株式会社、2008 年、未公表
- 50 ピリフルキナゾンの食品健康影響評価に係る追加資料の提出 追加試験成績:日本農薬株式会社、 2008 年、未公表

- 51 ミクロソームを用いた in vitro 代謝試験:日本農薬(株)、2008年、未公表
- 52 イヌを用いた 1 年間反復経口投与毒性試験及び 6 ヶ月間回復試験 (GLP 対応): 日生研株式会社、2008 年、未公表
- 53 イヌを用いた1年間反復経口投与毒性試験及び6ヶ月間回復試験 免疫学的試験: (財) 残留農薬研究所、2008年、未公表
- 54 ステロイド 5α-還元酵素活性に対する阻害作用:日本農薬(株)、2008年、未公表
- 55 アンドロゲン受容体結合アッセイ:日本農薬(株)、2008年、未公表
- 56 アンドロゲン受容体に対する影響(Hershberger 試験系):日本農薬(株)、2008年、未公表
- 57 ラットの前立腺アンドロゲン受容体への影響:日本農薬(株)、2008年、未公表
- 58 ラットアンドロゲン受容体強制発現系を用いたレポータージーンアッセイ及びアンドロゲン受容体タンパク量への影響:日本農薬(株)、2008年、未公表
- 59 エストロゲンレセプターバインディングアッセイ: (財) 残留農薬研究所、2007年、未公表
- 60 幼若ラット子宮肥大試験:日本農薬(株)、2008年、未公表
- 61 食品健康影響評価の結果の通知について(平成21年7月30日付け府食第728号)
- 62 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 22 年 10 月 20 日付け平成 22 年厚生労働省告示第 372 号)
- 63 農薬抄録 ピリフルキナゾン (殺虫剤) (平成 24 年 2 月 10 日改訂): 日本農薬株式会社、2012 年、一部公表
- 64 ピリフルキナゾンの作物残留性試験成績(2009~2010年):日本農薬(株)、未公表
- 65 ピリフルキナゾンの安全性評価資料 追加試験成績:日本農薬(株)、2012年、未公表
- 66 NNI-0101 原体のラットを用いた経口(混餌)投与による亜急性神経毒性試験(GLP 対応): Charles River Laboratories, Inc. (米国)、2009 年、未公表
- 67 Fischer ラットの血清中甲状腺関連ホルモン濃度に及ぼす NNI-0101 混餌投与の影響 (GLP 対応):日本農薬 (株)、2009 年、未公表
- 68 Fischer ラットの血清中黄体形成ホルモン濃度に及ぼす NNI-0101 混餌投与の影響 (GLP 対応): 日本農薬 (株) 、2010 年、未公表
- 69 ピリフルキナゾンの培養細胞系におけるアンドロゲン受容体の核内移行に及ぼす影響(GLP 対応):日本農薬(株)、2010年、未公表
- 70 ピリフルキナゾンのヒトアンドロゲン受容体タンパクレベルに及ぼす影響:日本農薬(株)、2010 年、未公表
- 71 4週間経口投与による NNI-0101 のラット T-細胞依存性抗体産生に及ぼす影響試験 (GLP 対応): Covance Laboratories Inc. (米国) 、2009 年、未公表
- 72 ピリフルキナゾン代謝物 NNI-0101-キナゾリンジオンのラットにおける急性経口毒性試験 (GLP 対応) : 日本農薬 (株) 、2011 年、未公表
- 73 NNI-0101-キナゾリンジオンの細菌を用いる復帰突然変異試験(GLP対応): (株) ボゾリサー チセンター、2011 年、未公表
- 74 食品健康影響評価について(平成24年5月16日付け厚生労働省発食安0516第2号)
- 75 食品健康影響評価の結果の通知について (平成24年12月10日付け府食第1045号)

- 76 代謝物 NNI-0101-1H(B)のラットを用いた急性経口毒性試験(GLP 対応): WIL Research(米国)、2013 年、未公表
- 77 代謝物 NNI-0101-1H-イミノ(C)のラットを用いた急性経口毒性試験 (GLP 対応): WIL Research (米国)、2013 年、未公表
- 78 代謝物 NNI-0101-1H-4-OH (G)のラットを用いた急性経口毒性試験 (GLP 対応): WIL Research (米国)、2013 年、未公表
- 79 代謝物 NNI-0101-1H-4-オキソ(H)のラットを用いた急性経口毒性試験(GLP 対応): WIL Research (米国)、2013 年、未公表
- 80 代謝物 NNI-0101-イミノ-4-OH (I)のラットを用いた急性経口毒性試験 (GLP 対応): WIL Research (米国)、2013 年、未公表
- 81 マウスの血清中黄体形成ホルモンに対する影響 (GLP 対応) : 日本農薬 (株) 、2011 年、未公表
- 82 農薬抄録 ピリフルキナゾン (殺虫剤) (平成 26 年 1 月 20 日改訂): 日本農薬株式会社、2014 年、一部公表
- 83 食品健康影響評価について (平成26年3月20日付け厚生労働省発食安0320第4号)
- 84 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 26 年 4 月 24 日付け平成 26 年厚生労働省告示第 225 号)
- 85 平成 17~19 年の食品摂取頻度・摂取量調査(薬事・食品衛生審議会食品衛生分科会農薬・動物 用医薬品部会資料、2014 年 2 月 20 日)
- 86 食品健康影響評価の結果の通知について(平成26年10月7日付け府食第773号)
- 87 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 27 年 5 月 19 日付け平成 27 年厚生労働省告示第 273 号)
- 88 食品健康影響評価について(平成28年12月13日付け厚生労働省発生食1213第7号)
- 89 農薬抄録 ピリフルキナゾン (殺虫剤) (平成 27 年 10 月 7 日改訂): 日本農薬株式会社、2015 年、一部公表
- 90 ピリフルキナゾンの作物残留性試験成績 (2013年) : 日本農薬(株)、未公表
- 91 ピリフルキナゾンの作物残留性試験成績(2012~2014年):日本農薬(株)、未公表
- 92 食品健康影響評価の結果の通知について(平成29年2月28日付け府食第103号)
- 93 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 30 年 5 月 30 日付け平成 30 年厚生労働省告示第 237 号)
- 94 食品健康影響評価について(令和元年12月18日付け厚生労働省発生食1218第4号)
- 95 農薬抄録 ピリフルキナゾン (殺虫剤) (平成 31 年 1 月 8 日改訂) : 日本農薬株式会社、2019 年、一部公表
- 96 ピリフルキナゾン (コルト) 顆粒水和剤 だいず 作物残留試験 最終報告書 (GLP 対応) (2017年): 一般社団法人日本植物防疫協会、未公表
- 97 ピリフルキナゾン (コルト) 顆粒水和剤 だいず 作物残留試験 最終報告書 (GLP 対応) (2018年): 一般社団法人日本植物防疫協会、未公表
- 98 ピリフルキナゾン (コルト) 顆粒水和剤 えんどうまめ 作物残留試験 最終報告書(2017年):

- 日本エコテック株式会社 大阪分析センター、未公表
- 99 ピリフルキナゾン(コルト) 顆粒水和剤 てんさい 作物残留試験 最終報告書(GLP対応)(2017年): 一般社団法人日本植物防疫協会、未公表
- 100ピリフルキナゾン (コルト) 顆粒水和剤 カリフラワー 作物残留試験 最終報告書(2018年): 日本エコテック株式会社 大阪分析センター、未公表
- 101ピリフルキナゾン (コルト) 顆粒水和剤 にら 作物残留試験 最終報告書 (GLP 対応) (2017年): 一般社団法人日本植物防疫協会、未公表
- 102 Pyrifluquinazon Technical: *In Vitro* Mutation Test Using Mouse Lymphoma L5178Y Cells (GLP 対応): Envigo CRS Limited. (英国) 2015 年、未公表
- 103 PYRIFLUQUINAZON Technical: In Vivo Unscheduled DNA Synthesis in Rat Hepatocytes (GLP 対応): Envigo CRS GmbH. (ドイツ) 2016 年、未公表
- 104 US EPA①: Federal Register: "Pyrifluquinazon" Vol.83, No.227: 60366-60372 (2018)
- 105 US EPA②: Pyrifluquinazon: Human Health Risk Assessment for the Proposed Use on Tuberous and Corm Vegetables, Leafy Vegetables (including greenhouse-grown lettuce), Brassica Head and Stem Vegetables, Fruiting Vegetables (including greenhouse-grown pepper and tomato), Cucurbit Vegetables (including greenhouse-grown cucumber), Citrus Fruits, Pome Fruits, Stone Fruits, Small Vine Climbing Fruits (excluding fuzzy kiwifruit), Tree Nuts, Leaf Petiole Vegetables, and Cotton, and for the Establishment of a Tolerance without a U.S. Registration for Residues in/on Imported Tea. (2018)