平成31年3月20日

食品安全委員会 委員長 佐藤 洋 殿

薬剤耐性菌に関するワーキンググループ 座長 田村 豊

薬剤耐性菌に係る食品健康影響評価に関する審議結果について

平成15年12月8日付け15消安第3979号をもって農林水産大臣から食品安全委員会に意見を求められた薬剤耐性菌に係る食品健康影響評価のうち、家畜に使用するテトラサイクリン系抗生物質に係る薬剤耐性菌に関する食品健康影響評価について、当ワーキンググループにおいて審議を行った結果は別添のとおりですので報告します。

家畜に使用するテトラサイクリン系抗生物質に係る 薬剤耐性菌に関する食品健康影響評価

2019年3月

食品安全委員会 薬剤耐性菌に関するワーキンググループ

目次

		貝
0	審議の経緯	4
0	食品安全委員会委員名簿	4
0	食品安全委員会薬剤耐性菌に関するワーキンググループ専門委員名簿	5
0	要約	6
I.	評価要請の経緯(<別添>[Ⅰ.]参照)	7
	食品健康影響評価	
1	. ハザードの特定(<別添>[Ⅱ.]参照)	
	(1)動物用抗菌性物質に関する情報	
	(2)薬剤耐性菌及び薬剤耐性決定因子に関する情報	7
	(3)関連するヒト用抗菌性物質の概要	8
	(4)ハザードの特定	8
2	2. 発生評価(<別添>[皿.]参照)	9
	(1)ハザードの出現(薬剤耐性機序、遺伝学的情報等)	9
	(2) ハザードを含む当該細菌の感受性分布	9
	(3) 発生評価に係るその他要因(薬物動態、使用方法、使用量等)	10
	(4) 発生評価の結果	10
3	3. 暴露評価(<別添>[IV.]参照)	10
	(1) ハザードを含む当該細菌の生物学的特性(生残性、増殖性等)	10
	(2) ハザードを含む当該細菌による食品の汚染状況	11
	(3)暴露評価に係るその他の要因(食肉処理工程、流通経路等)	11
	(4) 暴露評価の結果	11
4	4. 影響評価(<別添>[V.]参照)	11
	(1) ハザードとなり得る細菌に起因する感染症治療における評価対象薬剤の重要	更
	度	11
	(2) ハザードに起因する感染症の重篤性等(発生状況、発生原因、症状等)	
	(3)影響評価に係るその他の要因(代替薬の状況、医療分野における薬剤耐性の	
	状況等)	
	(4) 影響評価の結果	
Ę	5. リスクの推定(<別添>[VI.]参照)	
	5. 食品健康影響評価の結果	
	/・ 及HH (CE/大水/目 □	
Ш.	その他の考察	14
	4	• •
< 另	 添>	15
	評価の経緯及び範囲等	
	」はじめに	

	2. 経緯	16
	(1)評価要請のあった飼料添加物及び動物用医薬品	16
	(2)評価の範囲	16
	3. ハザードである薬剤耐性菌の考え方	16
I	. ハザードの特定に関する知見	17
	1. 評価対象 TC 系の名称、化学構造等	17
	(1)名称、化 学構造等	17
	(2)評価対象成分の系統	19
	(3)使用方法、規制等	20
	(4)使用状況	23
	2. TC 系の海外における評価状況等	26
	(1) WHO	26
	(2)米国	26
	(3)欧州	26
	(4)豪州	27
	3. 対象家畜における TC 系の薬物動態	27
	4. 抗菌活性	29
	(1)抗菌活性の作用機序及び作用のタイプ	29
	(2)抗菌スペクトル	29
	(3)対象とする家畜の病原菌に対する MIC 分布及び耐性率	30
	(4)指標細菌及び食品媒介性病原菌に対する TC 系の MIC 分布及び耐性率	32
	5. TC 系に対する薬剤耐性機序及び薬剤耐性決定因子について	36
	(1)耐性の基本的機序	36
	(2)耐性遺伝子の分布と伝達	38
	6. 関連するヒト用抗菌性物質(交差耐性を生じる可能性及び医療分野における重要	性)
		40
	(1)TC 系及び他の系統の抗生物質との交差耐性等	40
	(2)TC 系の医療分野における重要度	44
	7. ハザードの特定に係る検討	45
	(1)TC 系で治療可能なヒトの主要な食品媒介性感染症	45
	(2)黄色ブドウ球菌感染症	46
	(3) 常在菌による感染症の検討	47
	8. ハザードの特定	48
Ш	. 発生評価に関する知見	
	1. 畜産現場における TC 系耐性の状況	
	(1)畜産現場における薬剤耐性菌の発生状況	
	(2) 家畜分野における TC 系耐性に関するその他の知見	
	2. ハザードの耐性機序及び薬剤耐性決定因子の出現及び選択の可能性	52

(1)ハザードの TC 系耐性機序	52
(2)ハザードの薬剤耐性決定因子	53
(3)突然変異による薬剤耐性の獲得	54
(4)薬剤耐性決定因子の細菌間での伝達の可能性	55
(5)TC 系の耐性選択圧及び交差耐性	55
(6)使用量	57
Ⅳ. 暴露評価に関する知見	57
1. 畜産食品の消費量	57
2. ハザードを含む当該細菌の生物学的特性	58
(1)抵抗性、生残性及び増殖性	58
(2)生体外における生存能力と分布状況	58
(3)ヒトの腸内細菌叢として定着する可能性	59
(4)ヒトの常在菌又は病原菌に薬剤耐性決定因子が伝達する可能性	59
3. 家畜及び畜産食品が農場から出荷されヒトに摂取されるまでの経路	60
4. 牛、豚及び鶏由来食品がハザードとなり得る細菌に汚染される可能性及び汚染制	け沢
	61
(1)健康家畜における汚染状況	62
(2)と畜場、食鳥処理場等における汚染状況	63
(3)食品材料、食品及び調理施設等における汚染状況	65
(4)小売畜産食品等における汚染状況	65
V. 影響評価に関する知見	68
1. ハザードとなり得る細菌の暴露に起因して生じる可能性のあるヒトの疾病	68
(1)発生原因及び発生状況	68
(2)重篤度	73
2. 当該疾病のヒト用抗菌性物質による治療	74
(1)治療方針及び第一選択薬	
(2) 当該疾病の治療におけるハザードの影響	75
(3)ヒト臨床分野における TC 系抗生物質耐性菌の状況等	76
VI. 食品健康影響評価の考え方	
1. 発生評価、暴露評価及び影響評価の考え方	81
2. リスクの推定の考え方	82
別紙 検査値等略称	83
全 四	OE

<審議の経緯>

2003年	12 月	8 日	農林水産大臣から薬剤耐性菌に係る食品健康影響評価につ
			いて要請(15 消安第 3979 号)
2003年	12月	11 日	第23回食品安全委員会(要請事項説明)
2013年	3月	7 日	関係資料の接受
2017年	9月	4 日	第 11 回薬剤耐性菌に関するワーキンググループ
2017年	11月	6 日	第12回薬剤耐性菌に関するワーキンググループ
2018年	5月	17 日	第15回薬剤耐性菌に関するワーキンググループ
2018年	10月	29 日	第 18 回薬剤耐性菌に関するワーキンググループ
2019年	2月	12 日	第730回食品安全委員会(報告)
2019年	2月	13 日	から3月14日まで 国民からの意見・情報の募集
2019年	3月	20 日	薬剤耐性菌に関するワーキンググループ座長から食品安全
			委員会委員長へ報告
2019年	3月	26 日	第736回食品安全委員会

<食品安全委員会委員名簿>

(2006年6月30日まで)	(2006年12月20日まで)	(2009年6月30日まで)
寺田 雅昭(委員長)	寺田 雅昭(委員長)	見上 彪(委員長)
寺尾 允男(委員長代理)	見上 彪(委員長代理)	小泉 直子(委員長代理*)
小泉 直子	小泉 直子	長尾 拓
坂本 元子	長尾 拓	野村 一正
中村 靖彦	野村 一正	畑江 敬子
本間 清一	畑江 敬子	廣瀬 雅雄**
見上 彪	本間 清一	本間 清一
		*:2007年2月1日から
		**:2007年4月1日から
(2011年1月6日まで)	(2012年6月30日まで)	(2015年6月30日まで)

(2012年6月30日まで)	(2015年6月30日まで)
小泉 直子(委員長)	熊谷 進(委員長)
熊谷 進(委員長代理*)	佐藤 洋 (委員長代理)
長尾 拓	山添 康(委員長代理)
野村 一正	三森 国敏(委員長代理)
畑江 敬子	石井 克枝
廣瀬 雅雄	上安平冽子
村田 容常	村田 容常
*:2011年1月13日から	
	小泉 直子(委員長) 熊谷 進(委員長代理*) 長尾 拓 野村 一正 畑江 敬子 廣瀬 雅雄 村田 容常

(2017年1月6日まで) (2018年6月30日まで) (2018年7月1日から) 佐藤 洋(委員長) 佐藤 洋(委員長) 佐藤 洋(委員長) 山添 康(委員長代理) 山添 康(委員長代理) 山本 茂貴(委員長代理) 熊谷 進 吉田 緑 川西 徹 緑 吉田 山本 茂貴 吉田 緑 石井 克枝 石井 克枝 香西みどり 堀口 逸子 堀口 逸子 堀口 逸子 村田 容常 村田 容常 吉田 充

く食品安全委員会薬剤耐性菌に関するワーキンググループ専門委員名簿>

(2017年9月30日まで) (2018年9月30日まで)

吉川 泰弘 (座長) 田村 豊 (座長) 田村 豊 (座長) 荒川 宜親 (座長代理)

浅井 鉄夫 佐々木一昭 浅井 鉄夫 佐々木一昭 荒川 宜親 菅井 基行 今田 千秋 菅井 基行 今田 千秋 砂川富正 植田富貴子 砂川 富正 岡村 雅史 筒井 敦子 植田富貴子 戸塚 恭一 甲斐 明美 豊福 肇 甲斐 明美 豊福 肇

(2018年10月1日から)

田村 豊 (座長)

荒川 官親(座長代理)

浅井鉄夫佐々木一昭今田千秋菅井基行植田富貴子砂川富正岡村雅史豊福肇甲斐明美早川佳代子

<第11回食品安全委員会薬剤耐性菌に関するワーキンググループ専門参考人名簿>

池 康嘉(一般社団法人薬剤耐性菌教育研究会代表理事 兼 群馬大学名誉教授)

<第 12 回食品安全委員会薬剤耐性菌に関するワーキンググループ専門参考人名簿>

池 康嘉(一般社団法人薬剤耐性菌教育研究会代表理事 兼 群馬大学名誉教授)

<第15回食品安全委員会薬剤耐性菌に関するワーキンググループ専門参考人名簿>

池 康嘉(一般社団法人薬剤耐性菌教育研究会代表理事 兼 群馬大学名誉教授)

<第18回食品安全委員会薬剤耐性菌に関するワーキンググループ専門参考人名簿>

池 康嘉(一般社団法人薬剤耐性菌教育研究会代表理事 兼 群馬大学名誉教授) 藤本 修平(東海大学医学部医学科基礎医学系生体防御学教授)

要約

テトラサイクリン系抗生物質が家畜に対し、飼料添加物として給与された場合及び動物 用医薬品として投与された場合に選択される薬剤耐性菌について、「家畜等への抗菌性物 質の使用により選択される薬剤耐性菌の食品健康影響に関する評価指針」(平成 16 年 9 月 30 日食品安全委員会決定)に基づき、評価を実施した。

評価対象抗菌性物質は、牛、豚及び鶏(以下「家畜」という。)に飼料添加物及び動物用医薬品として使用するテトラサイクリン系抗生物質(以下「TC系」という。)のオキシテトラサイクリン及びクロルテトラサイクリン並びに豚及び鶏に動物用医薬品として使用するTC系のドキシサイクリンである。家畜由来の畜産食品を介して伝播する可能性があり、かつ、ヒトの医療分野においてTC系が推奨薬とされている感染症は、黄色ブドウ球菌感染症である。したがって、評価すべきハザードとして、家畜に対して評価対象TC系を使用することによりTC系耐性が選択された黄色ブドウ球菌を特定した。

発生評価では、評価対象 TC 系が家畜に使用された場合に、ハザードが選択される可能性及びその程度を評価し、黄色ブドウ球菌の TC 系耐性機序、国内の家畜における TC 系耐性状況等を検討した結果、その程度は中等度と考えた。

暴露評価では、ヒトが家畜由来の畜産食品を介してハザードに暴露される可能性及びその程度を評価し、ヒトがハザードに暴露され得る各経路でのハザードの増加又は減弱の程度、ハザードによる食品の汚染状況等を検討した結果、その程度は無視できる程度と考えた。

影響評価では、ヒトにおける治療効果が減弱又は喪失する可能性及びその程度を評価し、 評価対象 TC 系と交差耐性を示すヒト用 TC 系の医療における重要性、ハザードに起因す る感染症の重篤性等を検討した結果、その程度は低度と考えた。

以上の各評価結果から、総合的にハザードのリスクを推定したところ、評価対象 TC 系が家畜に使用された結果として、ハザードが選択され、家畜由来の畜産食品を介してヒトがハザードに暴露され、ヒト用抗菌性物質による治療効果が減弱又は喪失する可能性は否定できないが、リスクの程度は低度であると考えた。

なお、薬剤耐性菌については、現時点では詳細な科学的知見や情報が必ずしも十分とはいえず、また、リスク評価の手法についても国際的に十分確立されていないと考えるため、 国際機関における検討状況等を含め新たな科学的知見・情報の収集が必要である。

I. 評価要請の経緯(<別添>[I.]参照)

2003年12月8日に、農林水産省から、飼料添加物として指定されている抗菌性物質が飼料に添加され家畜等に給与された場合及び飼料添加物として指定されている抗菌性物質と同一又は同系統で薬剤耐性の交差が認められる抗菌性物質が動物用医薬品として家畜等に投与された場合に選択される薬剤耐性菌について、食品健康影響評価の要請がなされた。この評価要請に含まれ、現時点で牛、豚及び鶏(以下「家畜」という。)に使用可能なテトラサイクリン系抗生物質(以下「TC系」という。)は、飼料添加物としてのオキシテトラサイクリン(OTC)及びクロルテトラサイクリン(CTC)、動物用医薬品としてのOTC、CTC及びドキシサイクリン(DOXY)の3成分(以下「評価対象TC系」という。)である。なお、水産動物は知見が十分に集積されていないこと及びその飼養形態、水産食品の生産・加工工程、ハザードの検討対象となる細菌等が家畜とは異なることから、本評価の対象とせず、別途評価することとした。

食品安全委員会薬剤耐性菌に関するワーキンググループは、これらの評価対象 TC 系に関して、「家畜等への抗菌性物質の使用により選択される薬剤耐性菌の食品健康影響に関する評価指針」(平成 16 年 9 月 30 日食品安全委員会決定。以下「評価指針」という。)に基づき、家畜に動物用抗菌性物質を使用することにより選択される薬剤耐性菌が食品を介してヒトに伝播し、ヒトが当該細菌に起因する感染症を発症した場合に、ヒト用抗菌性物質による治療効果が減弱又は喪失する可能性及びその程度について評価を行った。なお、評価に当たり参照した知見を<別添>に示した。

Ⅱ. 食品健康影響評価

1. ハザードの特定(<別添>[Ⅱ.]参照)

ハザードとして特定される細菌は、評価対象 TC 系を家畜に使用することにより選択され、家畜由来の食品を介してヒトがその薬剤耐性菌に起因する感染症を発症した場合に、ヒト用抗菌性物質による治療効果が減弱又は喪失する可能性がある細菌である。

(1)動物用抗菌性物質に関する情報

評価対象抗菌性物質は、家畜に飼料添加物及び動物用医薬品として使用する第 1 世代 TC 系の OTC 及び CTC 並びに豚及び鶏に動物用医薬品として使用する第 2 世代 TC 系の DOXY である。

TC 系の作用機序は、細菌リボソームの 30S サブユニットに結合することによるタンパク質合成阻害であり、静菌作用を示す。グラム陽性菌及び陰性菌、抗酸菌、マイコプラズマ等に対して有効である。

評価対象 TC 系を有効成分とする動物用医薬品は、牛では肺炎、下痢症、乳房炎、関節炎、趾間腐爛等に、豚では肺炎、下痢症等に、鶏では呼吸器病、下痢症、関節炎等の起因菌に対して使用される。

家畜にTC系を使用した場合に選択圧を受けるのは、承認製剤の有効菌種及び家畜に常在している腸内細菌のうち本来感受性を示す菌種等と考えられる。

(2)薬剤耐性菌及び薬剤耐性決定因子に関する情報

細菌における TC 系耐性の主な機序は、①排出ポンプによる薬剤の排出、②リボソーム保護タンパクによるリボソームの保護・防御及び③修飾酵素による薬剤の不活化である。

グラム陽性菌では②が、グラム陰性菌では①が主要な耐性機構であり、いずれも TC 系の耐性遺伝子である各種の tet 遺伝子等が付与する耐性である。tet 遺伝子は多くの細菌に分布しており、しばしば接合性プラスミド又はトランスポゾン上に存在し、新たな菌種又は菌属への耐性伝達を起こす。

(3) 関連するヒト用抗菌性物質の概要

交差耐性が生じる可能性があるヒト医療用の抗生物質は、同系統のTC系及び化学構造が類似するグリシルサイクリン系抗生物質である。第1世代TC系(OTC、CTC、テトラサイクリン(TC)及びデメチルクロルサイクリン(DMCTC))の間では交差耐性がみられるが、第2世代(DOXY及びミノサイクリン(MINO))は第1世代TC系の耐性菌に対しても抗菌力を持つことがある。また、グリシルサイクリン系抗生物質であるチゲサイクリン(TGC)は tet 遺伝子によって臨床上の耐性とはならない。なお、国内の健康家畜由来細菌でTGC耐性は報告されていない。

国内のヒト医療において、TC 系は細胞内寄生細菌、原虫等の治療の際に第一選択薬として用いられ、また皮膚感染症、リンパ管・リンパ節炎、乳腺炎、骨髄炎、咽頭・喉頭炎、扁桃炎、急性気管支炎、肺炎等の治療に用いられる。TGC は、国内では多剤耐性グラム陰性菌感染症治療薬として承認されており、カルバペネム耐性腸内細菌科細菌(CRE)感染症も適応症に含まれる。

(4) ハザードの特定

ハザードの特定に当たって、①国内の家畜に使用する TC 系の有効菌種、②主要な腸管感染症(食中毒を含む。)として国立感染症研究所のウェブサイトに掲載されている感染症のうち、病原体が細菌であり、国内の家畜から生産された畜産食品の経口摂取を介してヒトに感染し得る感染症の起因菌及び③感染症の予防及び感染症の患者に対する医療に関する法律(平成 10 年法律第 114 号)に基づく一類から五類までの感染症の起因菌のいずれかに当てはまるものを抽出し、さらに、国内の家畜に TC 系を使用することにより耐性菌が選択され、家畜由来の食品を介してヒトがその耐性菌に起因する感染症を発症した場合に、ヒト用抗菌性物質による治療効果が減弱又は喪失する可能性がある細菌を検討した。その結果、ハザードの特定に係る検討において考慮すべき細菌は、黄色ブドウ球菌、腸球菌及び大腸菌であると考えた(表 1)。

これら細菌による感染症のうち、ヒト医療において TC 系又は TC 系と交差耐性を示す 抗菌性物質が第一選択薬又は推奨薬とされている感染症は、メチシリン耐性黄色ブドウ球 菌 (MRSA) 等を含む黄色ブドウ球菌感染症である。

黄色ブドウ球菌は、ヒトや動物の化膿性疾患の主要な原因菌である。黄色ブドウ球菌感染症には、膿痂疹、せつ、よう、毛嚢炎等の皮膚・軟部組織感染症、毒素性ショック症候群、敗血症、心内膜炎、肺炎、骨髄炎等に加え、種々の院内感染症等がある。近年は、ヒト医療現場等では MRSA 感染症が問題となっている。黄色ブドウ球菌は毒素型食中毒を起こすが、菌自体も畜産食品から分離され、ヒトが暴露される可能性がある。

表 1 国内における主要な食品媒介性細菌感染症の起因菌

菌種	国内の家畜で検 出・発生	畜産食品の経口摂 取由来病原菌	感染症法一~五類 感染症の起因菌	ヒト治療に TC 系使用
黄色ブドウ球菌 Staphylococcus aureus	0	0	○ MRSA:五類 VRSA:五類	O MSSA, CA-MRSA : MINO
腸球菌 Enterococcus faecium, E. faecalis	0	0	○ VRE : 五類	×
大腸菌 <i>Escherichia coli</i>	0	0	〇 EHEC : 三類 CRE : 五類	×

CA-MRSA: 市中感染型メチシリン耐性黄色ブドウ球菌、CRE: カルバペネム耐性腸内細菌科細菌、EHEC: 腸管出血性大腸菌、MINO: ミノサイクリン、MRSA: メチシリン耐性黄色ブドウ球菌、MSSA: メチシリン感性黄色ブドウ球菌、VRE: バンコマイシン耐性腸球菌、VRSA: バンコマイシン耐性黄色ブドウ球菌

以上のことから、評価すべきハザードとして、家畜に対して評価対象 TC 系を使用した 結果として選択される TC 系耐性黄色ブドウ球菌(MRSA 等を含む。)を特定した。

2. 発生評価(<別添>[Ⅲ.]参照)

(1) ハザードの出現(薬剤耐性機序、遺伝学的情報等)

黄色ブドウ球菌の主要な TC 系耐性機序は、薬剤排出及びリボソーム保護である。薬剤排出ポンプが発現した場合は MINO に対しては感受性を維持するが、リボソーム保護では MINO に対して耐性となる。これらの TC 系耐性は、プラスミド又はトランスポゾンによる耐性遺伝子獲得が主である。TC 系耐性遺伝子である tet 遺伝子は、Staphylococcus 属にも数多く存在する。黄色ブドウ球菌で主要な tet 遺伝子は、tet(K)遺伝子(薬剤排出)及び tet(M)遺伝子(リボソーム保護)である。tet(M)遺伝子は宿主範囲の広い Tn916型トランスポゾン上に存在し、最も多くの菌属から発見されている。

MRSA には、臨床的に院内感染型 MRSA(HA-MRSA)及び市中感染型 MRSA(CA-MRSA)が区別されており、このほかに家畜関連型 MRSA(LA-MRSA)がある。それぞれ細菌学的に又は遺伝学的に特徴がある。LA-MRSA の遺伝学的性状としての MLST(multilocus sequence typing)は、欧州では sequence type(ST)398、アジアでは ST9が優勢である。国内の家畜由来株では ST5、ST9 等がみられ、ST398 の報告は数例である。LA-MRSA ST398 は通常多剤耐性で、tet(M)遺伝子を保有する。

以上から、懸念の程度は中程度と考えた。

(2) ハザードを含む当該細菌の感受性分布

JVARM では病畜由来黄色ブドウ球菌の薬剤感受性調査が実施され、家畜の病性鑑定由 来株から OTC 又は TC に対する耐性株が検出されているが、分離株数が少ないことから 耐性率の推移傾向をみることはできない。

また、MRSA については、国内の家畜から MRSA の分離報告はあるものの、その分離率は低い。欧州の家畜では LA-MRSA ST398 の分離率が高く、ST398 はほぼ TC 系耐性であると報告されているが、国内の家畜からの ST398 の分離報告は僅かであり、TC 系耐性率を含めて不明な点が多い。

家畜由来黄色ブドウ球菌の薬剤感受性については、国内外で体系的なサーベイランスが

実施されていないことから、海外との比較は容易ではないものの、国内の家畜由来 TC 系耐性黄色ブドウ球菌の検出率は低い。

以上から、懸念の程度は小さいと考えた。

(3) 発生評価に係るその他要因(薬物動態、使用方法、使用量等)

動物用医薬品として販売される TC 系は、抗菌性物質販売量総計の 45%前後(2016年: 39.8%) を占める。このうち 70%程度が豚に使用され、そのほとんど(約 97%) が経口投与剤である。

飼料添加物としての TC 系の検定合格数量は、動物用医薬品としての販売量に比べて 0.7%程度であり、これらはほぼ 100%鶏に使用されている。

家畜に使用する評価対象 TC 系については、動物用医薬品及び医薬品の使用の規制に関する省令(平成 25 年農林水産省令第 44 号)等により使用方法等が定められており、家畜由来細菌の TC 系を含めた薬剤耐性に関する全国規模のモニタリング調査のほか、動物用医薬品の使用に当たっては獣医師の関与の義務付け等の適正使用の確保のための措置が講じられている。

以上から、懸念の程度は中程度と考えた。

(4)発生評価の結果

以上のことから、食品安全委員会薬剤耐性菌に関するワーキンググループは、評価対象 TC 系が家畜に使用された場合に、ハザードが選択される可能性及びその程度は中等度と考えた(表 2)。

なお、国内外の家畜における黄色ブドウ球菌のTC系耐性状況については情報が限られていた。そうした状況で、輸入豚でLA-MRSAST398が分離されており、豚ではTC系の使用量が比較的多く、ハザード発生のリスクに影響を与える可能性もあることから、引き続き国内外の状況について情報収集を行うことが重要であると考えた。

表 2	発生評価の内容
11 4	70-1-11 Im(, < 1 1/11.

判断項目	懸念の程度
評価結果	中等度
①ハザードの出現に係る懸念	中程度
②ハザードの感受性に係る懸念	小さい
③その他要因に係る懸念	中程度

3. 暴露評価 (<別添>[IV.]参照)

(1) ハザードを含む当該細菌の生物学的特性(生残性、増殖性等)

黄色ブドウ球菌は乾燥、冷蔵・冷凍等に抵抗性があり、食品製造工場の環境中でもよく生存する。MRSA を含む黄色ブドウ球菌のヒトの腸管での保菌率は 20%程度と報告されているが、主要な保菌部位である鼻腔での保菌の影響等を考慮すると、食品とともに経口摂取した家畜由来黄色ブドウ球菌が腸管に定着する可能性は低いと考えた。

LA-MRSAは、ヒトから家畜への宿主適応過程において、ヒトへの定着性等が低下したと考えられている。ヒトが家畜との直接接触によって鼻腔等に保菌した場合でも、家畜との接触がない場合は持続的定着性に乏しいと示唆されている。

黄色ブドウ球菌からヒトの腸内細菌や病原菌にTC系耐性遺伝子が伝達される可能性については、黄色ブドウ球菌は細菌間での伝達が起こりやすいと考えられるプラスミド又はトランスポゾン上に tet 遺伝子を保有しているものの、ヒト胃腸管内の常在菌ではないことから、腸内において腸内細菌叢に家畜由来黄色ブドウ球菌から可動性遺伝因子が伝達する可能性は低いと考えた。

以上から、懸念の程度は小さいと考えた。

(2) ハザードを含む当該細菌による食品の汚染状況

家畜のと体、市販食肉等から黄色ブドウ球菌は検出されるが、TC 系耐性黄色ブドウ球菌の報告は少なく、MRSA の検出率も低い。また、食品から分離される黄色ブドウ球菌及びMRSA は主にヒト由来の汚染と考えられている。

以上から、懸念の程度は小さいと考えた。

(3) 暴露評価に係るその他の要因(食肉処理工程、流通経路等)

家畜に由来する食品をヒトが摂取する場合のリスク管理措置として、と畜場法施行規則 (昭和 28 年厚生省令第 44 号)等に基づく食肉処理工程等において衛生管理が実施されている。更に牛肉については生食用の規格基準が策定され、牛肝臓及び豚肉 (肝臓を含む。)については生食の提供が禁止されている。したがって、牛及び豚由来の食肉等が適切に処理、保管、流通及び消費される限りにおいては、大きな懸念を生じさせるその他の要因はないと考えた。また、鶏肉については、厚生労働省及び消費者庁が加熱用を生食用として流通・提供しないよう通知している。

また、黄色ブドウ球菌の食品を介した感染は、調理前に手を洗うこと、他の食材、特に調理済み食品との交差汚染を防ぐこと、食材を十分に加熱すること等の一般的な食中毒対策により、予防可能であると考えた。

以上から、懸念の程度は小さいと考えた。

(4) 暴露評価の結果

以上のことから、食品安全委員会薬剤耐性菌に関するワーキンググループは、ヒトが家 畜由来の畜産食品を介してハザードによる暴露を受ける可能性及びその程度は無視できる 程度と考えた(表 3)。

表 3	: 暴露評価の内	17 7 7
4X • 1) AKRAHT IIIIV ノド '	1/1

判断項目	懸念の程度
評価結果	無視できる程度
①生物学的特性に係る懸念	小さい
②食品の汚染状況に係る懸念	小さい
③その他要因に係る懸念	小さい

4. 影響評価 (<別添>[V.]参照)

(1) ハザードとなり得る細菌に起因する感染症治療における評価対象薬剤の重要度

「食品を介してヒトの健康に影響を及ぼす細菌に対する抗菌性物質の重要度ランク付けについて」(平成18年4月13日食品安全委員会決定)において、評価対象TC系のう

ちDOXY はⅡ (高度に重要) 1、OTC 及び CTC はⅢ (重要) 2とされている。

ヒト医療において、メチシリン感性黄色ブドウ球菌(MSSA)による感染症に対して抗菌性物質を投与する場合、感染症の部位や起因株の薬剤感受性試験結果を考慮しつつ、第一選択薬としては、セファゾリン等の第1世代セファロスポリン系、ペニシリン系とβ-ラクタマーゼ阻害剤との合剤等が使用されるが、肺炎や皮膚軟部組織感染症の第二選択薬としてMINOが推奨されている。

MRSA 感染症の場合でも、CA-MRSA による肺炎や皮膚軟部組織感染症では、感受性があれば MINO が使用可能である。

以上から、推奨薬ではあるが、ランク I ではない(どちらか一方のみ該当する。)ことから、懸念の程度は中程度と考えた。

(2) ハザードに起因する感染症の重篤性等(発生状況、発生原因、症状等)

ヒトの黄色ブドウ球菌感染症は、外鼻孔、鼻前庭等の常在菌による内因性の感染が多いと考えられている。家畜由来のMRSAが食品を介してヒトに感染した事例の報告はない。 海外でのLA-MRSAの疫学的・遺伝学的報告からは、ヒトにおけるLA-MRSA感染の主な伝播経路は動物との物理的な接触によるものと考えられている。国内においては、ヒトからのLA-MRSAの分離報告はない。

黄色ブドウ球菌感染症は健常者に対しては一般的には無害だが、易感染者に対して重症 感染症を引き起こす可能性がある。HA-MRSA の病原性は黄色ブドウ球菌と同程度だが、 多剤耐性のため治療が難渋化し、重症化する事例も多い。米国では白血球溶解毒素 (PVL) を産生する強毒性の CA-MRSA クローンが問題になっており、近年は国内でも増加傾向 にあるという報告もみられる。LA-MRSA については、海外では ST398 の病原因子の保 有は極めてまれとの報告がある。

以上から、懸念の程度は小さいと考えた。

(3)影響評価に係るその他の要因(代替薬の状況、医療分野における薬剤耐性の状況等)

国内のヒト医療分野における黄色ブドウ球菌の TC 系耐性率については、MSSA では MINO 耐性率は極めて低く、MRSA では入院及び外来ともに MINO 耐性率は高いものの、2010 年以降は減少傾向にある。また、黄色ブドウ球菌感染症や MRSA 感染症については、抗菌薬による治療を行う場合に、MINO 以外に系統の異なる薬が多く存在することから、大きな懸念を生じさせるその他の要因はないものと考えられた。

以上から、懸念の程度は小さいと考えた。

(4) 影響評価の結果

以上のことから、食品安全委員会薬剤耐性菌に関するワーキンググループは、ハザードに暴露されることにより起こり得るヒトの健康上の影響及びヒト用抗菌性物質の医療における重要性を考慮して、ヒトにおける治療効果が減弱又は喪失する可能性及びその程度は低度と考えた(表 4)。

なお、海外では TC 系耐性を持つ LA-MRSA ST398 の伝播様式やヒト医療における影

¹ 当該抗菌性物質に対する薬剤耐性菌が選択された場合に、有効な代替薬があるが、その数がⅢにランク付けされる抗菌性物質よりも極めて少ない場合。

² 当該抗菌性物質に対する薬剤耐性菌が選択された場合にも、同系統又は異なった系統に有効な代替薬が十分にあるもの。

響が研究されているが、国内では不明な点が多いことから、今後も国内外の状況について情報収集を行うことが重要であると考えた。

表 4 影響評価の内容

判断項目	懸念の程度
評価結果	低度
①重要度ランク I かつ推奨薬	中程度
②当該疾病の重篤性に係る懸念	小さい
③その他要因に係る懸念	小さい

5. リスクの推定 (<別添>[VI.]参照)

食品安全委員会薬剤耐性菌に関するワーキンググループは、評価指針に基づき、発生評価、暴露評価及び影響評価に係る評価結果から、総合的にハザードのリスクを推定した結果、総合的なリスクの程度は低度と判断した(表 5)。

表 5 リスクの推定の内容

評価項目	評価結果
リスクの推定(スコア合計)	低度(3)
①発生評価(スコア)	中等度(2)
②暴露評価(スコア)	無視できる程度(0)
③影響評価(スコア)	低度(1)

6. 食品健康影響評価の結果

以上のことから、これまでに得られている科学的知見に基づく家畜に使用する TC 系に係る薬剤耐性菌に関する食品健康影響評価は、以下のとおりと考えた。

- (1) 評価対象 TC 系が家畜に使用された結果としてハザードが選択され、家畜由来の畜産食品を介してヒトがハザードに暴露され、ヒト用抗菌性物質による治療効果が減弱又は喪失する可能性は否定できないが、リスクの程度は低度であると考えた。
- (2) なお、薬剤耐性菌については、現時点では詳細な科学的知見や情報が必ずしも十分 とはいえず、また、リスク評価の手法についても国際的に十分確立されていないと考える ため、国際機関における検討状況等を含め新たな科学的知見・情報の収集が必要である。

Ⅲ. その他の考察

今回の評価結果においては、リスクの程度は低度としたが、評価対象TC系については、 適正使用の確保のための措置、薬剤耐性菌に関する情報収集等のリスク管理措置の徹底が 図られるとともに、薬剤耐性菌に関する科学的知見・情報を収集した上で随時検証を行い、 必要となるリスク管理措置が講じられることが不可欠である。

併せて、薬剤耐性菌に係るモニタリングについては、「牛及び豚に使用するフルオロキノロン系抗菌性物質製剤に係る薬剤耐性菌に関する食品健康影響評価」(平成 22 年 3 月 25 日付け府食第 240 号)のWIIの内容を受けて農林水産省が実施しているところであるが、引き続きその充実が望まれる。

なお、TC 系については、引き続き国内外の新たな科学的知見・情報等の収集及び検証を 行った上で、国際機関等における検討状況等も踏まえ、医薬品、医療機器等の品質、有効 性及び安全性の確保等に関する法律(昭和 35 年法律第 145 号)に基づく承認・再審査時 のみならず、必要に応じて再評価の実施を検討することが必要であると考える。

家畜に使用するテトラサイクリン系抗生物質に係る 薬剤耐性菌に関する食品健康影響評価 に当たり参照した知見

I. 評価の経緯及び範囲等

1. はじめに

食品安全委員会薬剤耐性菌に関するワーキンググループは、2003 年に農林水産省から 要請があった家畜に使用するテトラサイクリン系抗生物質(以下「TC系」という。)に係 る薬剤耐性菌に関して、「家畜等への抗菌性物質の使用により選択される薬剤耐性菌の食 品健康影響に関する評価指針」(平成 16 年 9 月 30 日食品安全委員会決定。以下「評価指 針」という。)に基づき、「家畜等に動物用抗菌性物質を使用することにより選択される薬 剤耐性菌が食品を介してヒトに伝播し、ヒトが当該細菌に起因する感染症を発症した場合 に、ヒト用抗菌性物質による治療効果が減弱あるいは喪失する可能性及びその程度」につ いて、評価を行った。(参照1)

2. 経緯

(1)評価要請のあった飼料添加物及び動物用医薬品

2003年12月8日に、農林水産省から、①飼料の安全性の確保及び品質の改善に関する法律(昭和28年法律第35号。以下「飼料安全法」という。)第2条第3項の規定に基づき飼料添加物として指定されている抗菌性物質が、飼料添加物として飼料に添加され家畜等に給与された場合、及び②医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(昭和35年法律第145号。以下「医薬品医療機器等法」という。)第14条第1項の規定に基づき承認されている動物用医薬品の主成分のうち、飼料添加物として指定されている抗菌性物質と同一又は同系統で薬剤耐性の交差が認められる抗菌性物質が、医薬品医療機器等法及び獣医師法(昭和24年法律第186号)の規定に従い動物用医薬品として家畜等に投与された場合に選択される薬剤耐性菌について、食品健康影響評価の要請がなされた。

この評価要請に含まれ、現時点で家畜等(牛、豚、鶏及び水産動物)に使用可能な TC 系は、飼料添加物としてのオキシテトラサイクリン(OTC)及びクロルテトラサイクリン(CTC)、動物用医薬品としての OTC、CTC 及びドキシサイクリン(DOXY)の 3 成分³(以下「評価対象 TC 系」という。)である。

(2)評価の範囲

評価対象TC系は、牛、豚及び鶏(以下「家畜」という。)の飼養及び水産動物の養殖過程において使用される。水産動物は知見が十分に集積されていないこと及びその飼養形態、水産食品の生産・加工工程、ハザードの検討対象となる細菌等が家畜とは異なることから、本評価の対象とせず、別途評価することとした。

3. ハザード4である薬剤耐性菌の考え方

薬剤耐性菌とは、抗菌性物質等の薬剤に対して感受性を示さない(薬剤が効かない)性

_

³ 製剤の有効成分としては、塩基、塩酸塩等があるが、投与後家畜の体内で溶解した状態では塩基として作用するため、本評価においては、特に断りがない限り一般名として記載した。

⁴ ハザードとは、ヒトに対する危害因子であり、本評価では、TC 系を有効成分とする動物用医薬品及び飼料添加物を家畜に使用した結果として選択される薬剤耐性菌をいう。

質を持つ菌である。対象菌が薬剤に対して発育できるか否かを判断する最小発育阻止濃度 (MIC)が「耐性」のブレイクポイント(耐性限界値)よりも大きい場合、その薬剤に対して耐性であると判断される。

薬剤耐性菌の判断基準となるブレイクポイントは、以下に示すように幾つかの異なる考え方に基づき設定されたものが存在しており、各知見によって、薬剤耐性率の判断基準は異なる場合がある。

したがって、本評価においては、ある一定のブレイクポイントを基準とする薬剤耐性菌を定義して評価することは困難であると考えられることから、評価に用いた各知見で採用しているブレイクポイントを明確にした上で薬剤耐性率等のデータを検討し、薬剤耐性菌のリスクについて総合的に評価することとする。

なお、ブレイクポイントの設定に当たっては、薬剤感受性が低下しているだけでもヒトの治療に支障をきたす可能性があると報告されていることから、米国の臨床検査標準協会 (CLSI)等においては、抗菌性物質のブレイクポイントについては薬剤低感受性も考慮すべきであるとの議論がある。しかしながら、薬剤低感受性を考慮したブレイクポイントについては、現時点で十分な科学的知見が集積されておらず、薬剤低感受性に関する評価は困難であるため、今後、科学的知見の収集に努める必要があると考えられる。

① CLSI におけるブレイクポイント

国際的に多く利用されているブレイクポイントであり、細菌の実測 MIC 及び抗菌性物質の血中濃度から、感性(S)、中間(I)、耐性(R)のカテゴリーに分類されている。しかし、CLSI におけるブレイクポイントは、米国における用法・用量を基準として設定されたものであるため、日本国内における抗菌性物質使用の実態とやや異なっている場合がある。

② 日本化学療法学会におけるブレイクポイント

感染症に対する抗菌性物質の臨床効果が80%以上の有効率で期待できるMICとして、 感染症・感染部位別にブレイクポイントが設定されている。これまでに呼吸器感染症、敗 血症及び尿路感染症における各薬剤のブレイクポイントが提案されている。

③ 細菌学的(疫学的)ブレイクポイント

同一の菌属又は菌種の菌株を多数収集して MIC を測定し、その分布が二峰性を示した場合にそのピークの中間値をブレイクポイントとするという設定方法である。国内の動物由来薬剤耐性菌モニタリング (JVARM) では、CLSI のブレイクポイントを判断基準とするほか、CLSI で規定されていない薬剤については、この細菌学的 (疫学的) ブレイクポイントを耐性か感性かの判断基準としている。

Ⅱ. ハザードの特定に関する知見

1. 評価対象 TC 系の名称、化学構造等

(1) 名称、化学構造等

評価対象 TC 系は、飼料添加物としてはアルキルトリメチルアンモニウムカルシウムオキシテトラサイクリン (OTC-Q) 及び CTC が指定されており、動物用医薬品としては OTC、塩酸オキシテトラサイクリン (OTC-HCl)、OTC-Q、塩酸クロルテトラサイクリン (CTC-HCl)、塩酸ドキシサイクリン (DOXY-HCl) がある。これらの成分の名称、化学構造等を

表 1-1 オキシテトラサイクリンの概要

<u> </u>		7 例 文				
		塩酸オキシテトラサイクリ	アルキルトリメチルアンモニウムカ			
一般名	オキシテトラサイクリン	\sim	ルシウムオキシテトラサイクリン			
(英名)	(Oxytetracycline)	(Oxytetracycline	(Alkyltrimethylammonium			
		hydrochloride)	calcium oxytetracycline)			
化学名	オキシテトラサイクリン	オキシテトラサイクリン塩	オキシテトラサイクリンアルキルト			
化子石	オキンプトフリイクリン	酸塩	リメチルアンモニウムカルシウム塩			
CAS 番号	79-57-2	2058-46-0	_			
	(4S,4aR,5S,5aR,6S,12aR)-	(4S,4aR,5S,5aR,6S,12aR)-				
	4-(dimethylamino)-	4-(dimethylamino)-				
IUPAC	1,5,6,10,11,12a-	1,5,6,10,11,12a-				
英名	hexahydroxy-6-methyl-	hexahydroxy-6-methyl-	-			
X 1	3,12-dioxo-4,4a,5,5a-	3,12-dioxo-4,4a,5,5a-				
	tetrahydrotetracene-2-	tetrahydrotetracene-2-				
	carboxamide	carboxamide;hydrochloride				
分子式	$C_{22}H_{24}N_2O_9$	$C_{22}H_{24}N_2O_9 \cdot HCl$	_			
分子量	460.44	496.90	_			
構造式	HO HI HI OH OH OH OH OH OH OH	HO OH OH OH OH	OH O OH O OH O O			

表 1-2 クロルテトラサイクリンの概要

<u> </u>	ロルノトノリイクリンの晩安						
一般名	クロルテトラサイクリン	塩酸クロルテトラサイクリン					
(英名)	(Chlortetracycline)	(Chlortetracycline hydrochloride)					
化学名	クロルテトラサイクリン	クロルテトラサイクリン塩酸塩					
CAS 番号	57-62-5	64-72-2					
IUPAC 英名	(4S,4aS,5aS,6S,12aR)-7-chloro-4- (dimethylamino)-1,6,10,11,12a- pentahydroxy-6-methyl-3,12-dioxo- 4,4a,5,5a-tetrahydrotetracene-2- carboxamide	(4S,4aS,6S,12aR)-7-chloro-4-(dimethylamino)- 1,6,10,11,12a-pentahydroxy-6-methyl-3,12- dioxo-4,4a,5,5a-tetrahydrotetracene-2- carboxamide;hydrochloride					
分子式	$\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{ClN}_2\mathrm{O}_8$	$C_{22}H_{23}ClN_2O_8 \cdot HCl$					
分子量	478.88	515.34					
構造式	OH OH OH OH	OH OH OH OH					

表 1-3 ドキシサイクリンの概要

一般名	塩酸ドキシサイクリン
(英名)	(Doxycycline hydrochloride)
化学名	ドキシサイクリン塩酸塩
CAS 番号	10592-13-9
IUPAC 英名	(4S,4aR,5S,5aR,6R,12aR)-4-(dimethylamino)-1,5,10,11,12a- pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro- 4H-tetracene-2-carboxamide;hydrochloride

分子式	$C_{22}H_{24}N_2O_8 \cdot HCl$
分子量	480.90
構造式	OH HCI

(2) 評価対象成分の系統

TC 系は 3 世代に分類することができる。第 1 世代は OTC、CTC、テトラサイクリン (TC) 等の天然型である。第 2 世代は DOXY、ミノサイクリン(MINO)等の半合成型 で、第 1 世代より脂溶性が高く胃腸から吸収されやすい。第 3 世代は、新たに命名された グリシルサイクリン系を含む古い世代の TC 系に対して耐性を持つ菌株にも効果がある新規の拡張型(novel extended-spectrum class)抗生物質である。(参照 $5\sim6$)

これらの評価対象である第1世代及び第2世代TC系並びに関連する系統の抗生物質について、国内における医薬品医療機器等法に基づくヒト用及び動物用医薬品としての承認並びに飼料安全法に基づく飼料添加物としての指定の状況を表2に示した。(参照7~8)

表 2 国内における TC 系及び関連する系統のヒト用医薬品並びに家畜等における動物用 医薬品及び飼料添加物としての承認・指定状況

			ヒト月	用医薬品・	動物用品	医薬品	飼料
系統・世代	成分一般名	略語	ヒト	牛、鸡	水産	イヌ・	添加物
				豚、鶏	動物	ネコ	
①評価対象成	分の系統						
第 1 世代 TC	オキシテトラサイクリン	OTC	\bigcirc	\circ	\bigcirc	(()	\circ
系	クロルテトラサイクリン	CTC		\circ			\circ
	テトラサイクリン	TC	0				
	デメチルクロルテトラサ	DMCTC	\bigcirc				
	イクリン	DMCTC	0				
第2世代TC	ドキシサイクリン	DOXY	\bigcirc	\bigcirc	\bigcirc		
系	ミノサイクリン	MINO	0				
②関連する系	統						
グリシルサ							
イクリン系	チゲサイクリン	тоо	\bigcirc				
(第3世代) /	TGC	O				
TC 系)							

(○):2017年現在承認はあるが販売されていない製剤。

① 評価対象成分の系統(第1及び第2世代TC系)

OTC 及び CTC は、TC 系の広域スペクトル抗生物質であり、それぞれ *Streptomyces rimosus* 及び *Streptomyces aureofaciens* によって産生される。OTC 及び CTC は世界各国でヒト用及び動物用医薬品として長い使用経験を有する。(参照9~11) DOXY は、OTC 又は TC から化学的に誘導して得られる。(参照 10、12) OTC、CTC 及び DOXY は、国

内では、動物用医薬品としては、家畜、魚類等を対象に OTC、OTC-HCl、OTC-Q、CTC-HCl 及び DOXY-HCl の飼料添加剤、注射剤等が承認されており、飼料添加物としては、家畜を対象に OTC-Q 並びに牛及び鶏を対象に CTC が指定されている。また、ヒト用医薬品としては、OTC-HCl 及び DOXY-HCl の外用剤、経口剤、注射剤等が使用されている。(参照 2、 $9\sim12$)

このほか、国内でヒト用医薬品として使用されている TC 系には、塩酸 TC (TC-HCl)、塩酸デメチルクロルテトラサイクリン (DMCTC-HCl) 及び塩酸ミノサイクリン (MINO-HCl) がある。(参照 2)

TC 系は抗菌スペクトルの広い静菌的薬剤で、リケッチア、クラミジア、マイコプラズマ、放線菌等にも有効であり、ヒトのクラミジア、マイコプラズマ及びリケッチアの感染に対しては第一選択薬となっている。(参照 2、13)

なお、農薬として、国内では OTC が 1957 年に初回登録されている。(参照 9) 2016 年度の OTC の国内出荷量は約 10.5 トン (有効成分換算) であった。(参照14)

② 関連する系統(グリシルサイクリン系(第3世代TC系))

TC 系耐性菌に対しても効力を持つ新しいグリシルサイクリン系抗生物質として、MINO の誘導体であるチゲサイクリン(TGC)が開発され、ヒト用医薬品として米国で 2005 年に、欧州連合(EU)で 2006 年に承認され、日本国内では 2012 年に承認された。 (参照 2、15、16) なお、TGC は動物用医薬品としては承認されていない。

TGC は静菌的に抗菌作用を示し、メチシリン耐性黄色ブドウ球菌(MRSA)、バンコマイシン耐性腸球菌(VRE)等の多剤耐性グラム陽性菌のほか、基質特異性拡張型 β -ラクタマーゼ(ESBL)産生グラム陰性菌にも抗菌活性を示し、広域な抗菌スペクトルを有す。(参照 16)ただし、国内での適応菌種は「本剤に感性の大腸菌、シトロバクター属、クレブシエラ属、エンテロバクター属、アシネトバクター属。ただし、他の抗菌薬に耐性を示した菌株に限る。」とされている。(参照 2、16)

(3) 使用方法、規制等

① 動物用医薬品の使用方法、規制等

動物用医薬品及び医薬品の使用の規制に関する省令(平成 25 年農林水産省令第 44 号。 以下「使用規制省令」という。)において、食用動物に抗菌性物質製剤等の動物用医薬品を 使用する際の使用基準を定め、対象動物、用法及び用量、対象動物に対する使用禁止期間 等を規定している。

評価対象 TC 系を有効成分とする動物用医薬品は、家畜の呼吸器病、下痢症等に使用される。使用規制省令に基づく投与経路及び対象動物並びに承認製剤の有効菌種は表3のとおりである。(参照8)

表 3 評価対象 TC 系製剤の使用方法等 1)

		<i>المل</i> يك	ケチャ	-fm 9)							有効菌種	重等					
		対象動物 3)			グラム陽性菌				グラム陰性菌							その他	
評価対象成分	投与経路2	牛	豚	鶏	豚丹毒菌	ブドウ球菌	レンサ球菌	コリネバクテリウム	パスツレラ	ボルデテラ	(ヘモフィルス)	(ヘモフィルス)	カンピロバクター	大腸菌	サルモネラ	マイコプラズマ	ウレアプラズマ
OTC	経口	0	0	0		0	0	0	0	0	0		0	0	0	0	
	注射	0	0		0	0	0	0	0	0	0		0	0	0	\circ	\circ
OTC-HCl	経口	\circ	0	0		0	0	\circ	\circ	\circ	0		0	0	0	\circ	
	注射	\bigcirc	\circ	0	\circ	\circ	\circ	0	0	\bigcirc			\bigcirc	\circ	\bigcirc	\circ	
	注入・挿入	\circ				0	0	0						0			
OTC-Q	経口	\circ	0	0		0	0	0	0	0	0		0	\circ	\circ	\circ	
CTC-HCl	経口	0	\circ	0		\circ	\circ		\bigcirc	\bigcirc	\circ			\circ	\bigcirc	\bigcirc	
DOXY-HCl	経口		\circ	0		0						0		\circ		0	

- 1) 使用規制省令に掲げられている動物用医薬品のうち、現在承認薬がのないものを除く。
- 2)経口には飼料添加剤及び飲水添加剤が、注入・挿入には乳房注入剤がある。
- 3) 製剤によって、牛及び豚での使用可能な月齢等が定められている。鶏は産卵鶏を除く。

使用禁止期間は成分、投与経路、対象動物等によって異なるが、食用に供するためにと殺する前の牛(搾乳牛を除く。)で $5\sim62$ 日間、豚で $5\sim30$ 日間、鶏(産卵鶏を除く。)で $5\sim13$ 日間、食用に供するために搾乳する前の牛で $72\sim144$ 時間、食用に供する卵の産卵前の鶏で15日間程度である。(参照8)

抗菌性物質を含有する動物用医薬品は、医薬品医療機器等法に基づき要指示医薬品に指定されており、獣医師等の処方せん又は指示を受けた者以外には販売してはならないとされている。また、獣医師法により獣医師が要指示医薬品を投与したり、指示書を発行したりする際には自ら診察を行わなければならないとされており、それらの動物用医薬品の使用には必ず獣医師の関与が義務付けられている。

TC 系製剤について、添付文書に記載すべき事項として共通して設定されている「使用上の注意」は以下のとおりである。(参照8)

- ① 本剤は要指示医薬品であるので獣医師等の処方せん・指示により使用すること。
- ② 本剤は効能・効果において定められた適応症の治療にのみ使用すること。
- ③ 本剤は定められた用法・用量を厳守すること。
- ④ 本剤の使用に当たっては、治療上必要な最小限の期間の投与に止めること。
- ⑤ 本剤は「使用基準」の定めるところにより使用すること。

なお、使用規制省令に基づき、使用している飼料に飼料添加物の OTC 又は CTC が含まれている場合は、定められた用量の上限値からその含量を差し引いた用量以内で使用することとされている。

また、生産者及び獣医師等による動物用抗菌性物質製剤の慎重使用の徹底に関して、農林水産省が 2013 年に「畜産物生産における動物用抗菌性物質製剤の慎重使用に関する基

② 飼料添加物に関する使用方法、規制等

a. 対象飼料及び添加量

OTC-Q 及び CTC は、飼料安全法第 2 条第 3 項の規定に基づき、飼料が含有している栄養成分の有効な利用の促進を目的として 1976 年に飼料添加物に指定された。

抗菌性飼料添加物は、その成分規格並びに製造、使用等の方法及び表示の基準について、 飼料及び飼料添加物の成分規格等に関する省令(昭和51年農林省令第35号。以下「成分 規格等省令」という。)により規定されており、同省令の別表第1の対象飼料に定められた 量を添加又は混和して使用し、対象以外の家畜等に対しては使用してはならないとされて いる。また、搾乳中の牛又は産卵中の鶏若しくはうずら並びに食用を目的としてと殺する 前7日間の牛(生後おおむね6月を超えた肥育牛を除く。)、豚、鶏又はうずらに使用して はならないとされている。OTC-Q及びCTCの添加が認められている飼料の種類及び添加 量は、表4のとおり限定されている。

飼料中の添加量が規定の範囲内であることの確認は、独立行政法人農林水産消費安全技術センター (FAMIC) が飼料製造業者に対して行う立入検査の際に行われており、農場における OTC-Q 又は CTC 添加飼料の家畜への使用制限については、各都道府県が遵守を確認することとなっている。(参照 2)

表 4 TC 系抗菌性飼料添加物の対象飼料及び添加量 (g 力価/トン)

飼料添加物名	鶏(ブロイラーを除 く。)用 ¹⁾	ブロイラー用 ²⁾	豚用 3)	牛戶	1 4)	
	幼すう用,中すう用	前期用	ほ乳期用	ほ乳期用	幼齢期用	
OTC-Q	5~55	5~55	5~70	20~50	20~50	
CTC	10~55	10~55	-	10~50	10~50	

- -:対象飼料がない。
- 1) 幼すう用: ふ化後おおむね 4 週間以内の鶏用飼料、中すう用: ふ化後おおむね 4 週間を超え 10 週間以内の鶏用飼料
- 2) 前期用:ふ化後おおむね3週間以内のブロイラー用飼料
- 3) ほ乳期用: 体重がおおむね30 kg以内の豚用飼料
- 4) ほ乳期用:生後おおむね3月以内の牛用飼料、幼齢期用:生後おおむね3月を超え6月以内の牛用飼料
- 注)抗菌性飼料添加物のうずら用飼料への使用は鶏用に準じて行われているが、OTC-Q 及び CTC のうずら用飼料への使用実態はない。(参照 2)

b. 同一飼料に添加することのできる抗菌性飼料添加物及び添加量

抗菌性飼料添加物は、成分規格等省令の別表第1の1(2)において、表5に示した4区分に分類されている。表の同一欄内の2つ以上の飼料添加物は、同一飼料に併用してはならないとされており、OTC-Q及びCTCは第3及び第4欄の抗菌性飼料添加物と同一飼料に併用してはならない。

表 5 飼料一般の製造の方法の基準における同一飼料に用いてはならない抗菌性飼料添加物

区分	飼料添加物
公 1 押	アンプロリウム・エトパベート、アンプロリウム・エトパベート・スルファキノキサリン、サリノマイシンナトリウム、センデュラマイシンナトリウム、ナイカルバジン、ナラシン、ハロフジノンポリスチレンスルホン
第1欄	下りりム、センデュフマイシンケトリウム、ケイカルハシン、ケラシン、ハロノシノンホリステレンスルホン酸カルシウム、モネンシンナトリウム、ラサロシドナトリウム
第2欄	クエン酸モランテル
第3欄	亜鉛バシトラシン、アビラマイシン、アルキルトリメチルアンモニウムカルシウムオキシテトラサイクリン、エンラマイシン、クロルテトラサイクリン、ノシヘプタイド、フラボフォスフォリポール、リン酸タイ
	ロシン
第4欄	アルキルトリメチルアンモニウムカルシウムオキシテトラサイクリン、クロルテトラサイクリン、ビコザマイ
タノゴイ内	シン

表 5 について、各抗菌性飼料添加物の対象家畜を整理すると、OTC-Q 又は CTC と併用可能な抗菌性飼料添加物及びその添加量は、表 6 のとおりである。各区分より 1 種類ずつ併用が可能である。

表 6 飼料添加物である TC 系と併用可能な抗菌性飼料添加物及びその添加量(飼料 1 トン当たりの有効成分量)

· 1/2/ · 1/////// =/								
区分	1 日前まれがて カロルカレタ	単位	鶏(ブロイラ く。)		ブロイ ラー用	豚用	牛用	
ガ			幼すう用,「	中すう用	前期用	ほ乳期用	ほ乳期用	幼齢期用
	サリノマイシンナトリウム	g力価	50		50	-	-	15
	センデュラマイシンナトリ ウム	g力価	25		25	-	-	-
	ナラシン	g力価	80		80	-	-	-
第	モネンシンナトリウム	g力価	80		80	-	30	30
1	ラサロシドナトリウム	g力価	75		75	-	-	-
欄	アンプロリウム・エトパベー		アンプ。ロリウム	40~250	40~250	-	-	-
	F	g	エトハ゜ヘ゛ート	2.56~16	2.56~16	-	-	-
			アンプ。ロリウム	100	100	-	-	-
	アンプロリウム・エトパベート・スルファキノキサリン	g	エトハ。ヘ、ート	5	5	-	-	-
			スルファキノキサリン	60	60	1	-	-
第 2 欄	クエン酸モランテル	g	-		-	30	-	-
第	ナイカルバジン	g	-		100	-	-	-
1 欄	ハロフジノンポリスチレン スルホン酸カルシウム	g	40	40		-	-	-

(4)使用状況

OTC-Q は、1961年に動物用医薬品として承認された後、配合飼料会社向けと末端農家向けに製造販売が行われてきた。その後、1975年の飼料安全法の改正により1976年に飼料添加物に指定され、動物用医薬品と分離された。(参照2)

CTC は、1955年に動物用医薬品として承認された後、OTC-Q と同様に、1975年の飼

料安全法の改正により1976年に飼料添加物に指定された。(参照2)

① 動物用医薬品販売量

国内において 2007~2016 年に動物用医薬品として販売された抗菌性物質(抗生物質及び合成抗菌剤)全体並びに TC 系の推定年間販売量を表 7 に示した。TC 系は抗菌性物質販売量総計の 45%前後(2016 年: 39.8%(331,550 kg))を占めている。(参照18)

表 7 動物用抗菌性物質及び TC 系を有効成分とする動物用医薬品の推定年間販売量(原 末換算) (kg)

薬剤系統		原末換算量(kg)/年										
采用不机	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016		
動物用抗菌性物質製剤 ¹⁾ 総計	856,894	777,169	848,764	737,672	789,222	763,298	785,532	753,208	787,818	832,558		
TC 系製剤 ²⁾ (%) ³⁾	405,305 (47.3)	341,552 (43.9)	372,482 (43.9)	331,491 (44.9)	367,191 (46.5)	355,499 (46.6)	340,524 (43.3)	324,845 (43.1)	333,859 (42.4)	331,550 (39.8)		

- 1) 「動物用医薬品販売高年報 (別冊) 各種抗生物質・合成抗菌剤・駆虫剤・抗原虫剤の販売高と販売量」から 駆虫剤及び抗原虫剤の販売量を除いたもの。抗真菌性抗生物質を含む。
- 2) OTC、OTC-HCl、OTC-Q、CTC-HCl 及び DOXY-HCl。対象動物種は牛、豚、鶏、イヌ・ネコ、水産用及 びその他。
- 3) 動物用抗菌性物質製剤販売量に対して TC 系製剤販売量が占める割合(%)

TC 系の対象動物別の年間販売量を図 1 に示した。2007~2016 年では 67~75%が豚用に販売されている。(参照 18)

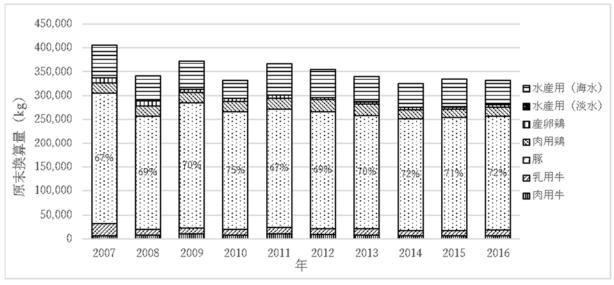


図1 家畜等に動物用医薬品として使用される TC 系の推定年間販売量(対象動物別)(原末換算)(kg)。(割合(%)は TC 系製剤販売量全体に占める豚用販売量推定割合。 TC 系製剤販売量の対象動物種は牛、豚、鶏、イヌ・ネコ、水産用(淡水及び海水)及びその他。イヌ・ネコ及びその他の動物種用については、計上されている年でも販売量は 1 kg 以下。)

TC 系の配合剤として、アミノグリコシド系の硫酸フラジオマイシン又はサルファ剤の

スルファジミジンとの配合剤が販売されている。 $2011\sim2015$ 年の推定年間販売量を表 8 に示した。(参照19)配合剤としての TC系の販売量は、表 7の TC 系製剤販売量の内数となっている。国内で販売される硫酸フラジオマイシンのうち、経口用の全量が TC 系との配合剤であり、肉用牛、乳用牛及び豚に使用されているが、特に豚での使用量が多い($2011\sim2015$ 年: $84.9\sim98.0\%$)。スルファジミジンは、全量が豚に使用する経口用の TC 系との配合剤として販売されている。(参照 18)

表8 TC系を含む配合剤の推定年間販売量(原末換算)(kg)

	成分		原末換算量(kg)/年									
			2011		2012		2013		2014		2015	
主剤 1	主剤 2	主剤1	主剤1 主剤2		主剤2	主剤1	主剤2	主剤1	主剤2	主剤1	主剤2	
OTC-HCl	硫酸フラジオマイシン	94	94 66		67	104	73	101	71	110	77	
OTC-Q	硫酸フラジオマイシン	554	421	438	333	725	552	524	399	582	443	
CTC-HCl	スルファジミジン	1,705	1,705	1,586	1,586	1,268	1,268	1,043	1,043	354	354	

② 飼料添加物使用量

飼料安全法に基づき、抗菌性物質の飼料添加物は特定添加物に分類されており、原則として FAMIC による検定を受け合格したものでなければ販売できない。

OTC-Q の特定添加物としての検定合格数量は、1977 年から約 10 年間は 10,000 kg(力価)/年間を超えていたが、その後減少した。(参照 2)

 $2009\sim2016$ 年度の TC 系の特定添加物検定合格数量 (実量力価換算) を表 9 に示した。 (参照20)

飼料添加物としての OTC-Q 及び CTC の検定合格数量は、2,100 kg 前後で推移しており、飼料添加物検定合格数量総計の 2%未満である。動物用医薬品としての販売量と比較すると平均 0.6%程度である。(参照 18、20)

農林水産省からの報告によると、飼料添加物として使用される TC 系は、OTC-Q 及び CTC ともにほぼ 100%鶏に使用されている(2015 及び 2016 年度)。

表 9 TC 系の特定添加物検定合格数量(実量力価換算)(kg 力価)

成分		実量力価換算量(kg 力価)/年度									
11)(,))	2009	2010	2011	2012	2013	2014	2015	2016			
特定添加物総計1)	165,383	194,354	195,174	197,658	199,214	196,736	192,008	210,038			
OTC-Q	1,008	800	1,600	800	0	800	1,200	560			
構成比(%)2)	(0.6)	(0.4)	(0.8)	(0.4)	(0.0)	(0.4)	(0.6)	(0.3)			
CTC	1,200	1,200	800	1,200	1,600	1,440	1,400	1,400			
構成比(%)2)	(0.7)	(0.6)	(0.4)	(0.6)	(0.8)	(0.7)	(0.7)	(0.7)			

¹⁾ 検定合格数量及び登録特定飼料等製造業者による製造数量の実量力価換算量の総計

.

²⁾ 特定添加物総計に対する OTC-Q 又は CTC の割合 (%)

⁵ 飼料安全法に基づき、登録特定飼料等製造業者又は外国特定飼料等製造業者が製造し表示が付された飼料添加物は検定を受けずに販売が可能だが、2009~2016年度の間、TC系に係る登録特定飼料等製造業者の事業場の登録はない。また、2016年度末時点で、外国特定飼料等製造業者の登録はない。(参照 20)

2. TC 系の海外における評価状況等

(1) WHO

WHO の「ヒト医療において重要な抗菌性物質のリスト」は、2011年の第 3 版改訂において、TC 系の重要性を「Critically Important」から「Highly Important」へと一段階引き下げた。これは、TC 系は動物由来 Brucella 感染症の主要な治療薬ではあるものの、近年 Brucella 感染症は多くの国で動物レゼルボア(病原巣)の撲滅に伴い重要性が低くなりつつあることによる。(参照21)

(2) 米国

米国食品医薬品庁 (FDA) は、ヒト医療における抗菌性物質の重要度ランク付けにおいて、TC 系はヒト医療で重要な感染症 (リケッチア病、炭疽の治療又は予防等) の唯一若しくは限定的又は必須の治療薬であるとして、その重要度を3段階評価の中間である「Highly important」としている。(参照22、23)

2013年に、FDAは、飼料添加又は飲水添加によって食料生産動物に投与されるヒト医療において重要な抗菌性物質(「medically important antimicrobials」)について、獣医師の監督下での使用に切り替えるとともに、生産目的(家畜の成長促進又は飼料利用効率の改善)での使用を不適切とする見解を示した。動物用医薬品業界に対して、既存承認抗菌性物質の生産目的での使用を自主的に取り下げるよう推奨し、2017年1月に取下げ手続が完了した。(参照23、24)

なお、米国では、2016 年時点で、食料生産動物に治療又は予防目的で使用可能な TC 系の動物用医薬品として OTC、CTC 及び TC が承認・販売されており、2016 年の米国内の動物用抗菌性物質販売量全体の最大量 $6(42\%(5,866.6 \ \text{FV}))$ を占め、そのうち 49%は牛に、43%は豚に使用されたと推定されている。(参照25)

(3) 欧州

EUでは、飼料添加物に関する改正法令の導入により、2006年から抗菌性飼料添加物の区分が廃止されたことを受けて、TC系を含む抗菌性物質を成長促進目的で食料生産動物で使用することが禁止されている。(参照26、27)

欧州医薬品庁(EMA)は、ヒト医療における抗菌性物質の重要度ランク付けにおいて、TC 系は *Brucella* 感染症に対する代替薬の少ない治療薬であり、耐性 *Brucella* 菌がハザードとなり得ると挙げているものの、EU 域内における *Brucella* 菌の有病率は低いとし、その分類をヒト医療へのリスクは低い又は限定的である「カテゴリー1」としている。(参照28)

EU では、2015 年時点で、食料生産動物の治療目的で使用可能な TC 系の動物用医薬品には OTC、CTC、TC 及び DOXY がある。EMA の 2015 年の動物用医薬品販売量に関す

⁶ 牛、豚、鶏、七面鳥及びその他(食料生産動物以外の動物(イヌ、馬等)、minor species(魚等)等を含また。)

⁷ 牛、山羊、羊、豚、馬、家きん、うさぎ、七面鳥及び魚。

る報告書において、欧州 30 か国(EU 及び欧州経済地域(EEA)加盟国の一部8並びにスイス)における食料生産動物用の抗菌性物質販売量 9 のうち、TC 系の販売量は 2,722.8 トン(32.8%、 mg/PCU^{10} の割合で計算)で最も多かった。TC 系販売量の剤型別では、プレミックス、経口液剤及び経口散剤が 53.4、23.6 及び 19.5%であった。(参照29)

EU では、グリシルサイクリン系及び関連する系統の抗生物質の動物への使用によるヒトの公衆衛生上の影響について欧州委員会から評価要請を受け、EMA が 2013 年に評価を行った。その概要は以下のとおりである。(参照30)

TC 系は EU において最も広く使用される動物用抗菌性物質であり、ある種の食料生産動物には第一次選択薬として使用されることから、食料生産動物におけるその使用削減の工程がマクロライド系、フルオロキノロン系等の「critically important antimicrobials」の使用量を増加させる可能性がある。動物における TC 系の使用が TGC に対する「preresistance」11を選択する可能性はあるが、こうした耐性決定因子は既に動物及びヒトの細菌において広範にみられるものである。動物における適切な使用のためのガイドラインに従い、TC 系の慎重使用が強く提言される。他の抗菌性物質と同様に、TC 系も感染症の治療目的に使用されるべきであり、予防的な使用をしないことを推奨する。(参照 30)

(4)豪州

豪州の抗菌性物質に関する専門家グループ (ASTAG) は、豪州におけるヒト用抗菌性物質の重要度ランク付けにおいて、TC 系はヒトの医療において耐性化が進行しても他の系統の抗菌性物質が数多く利用可能であるとして、その重要度を「Low」としている。(参照31)

3. 対象家畜における TC 系の薬物動態

OTC、CTC 及び TC については 2013 年に、DOXY については 2012 年に、食品安全委員会において残留基準の設定に係る食品健康影響評価が行われている。このほか、EMA 及び JECFA において TC 系の評価が行われている。それらの報告によると、TC 系製剤を使用対象動物である家畜に経口投与を行ったとき、消化管からの吸収は高く、体内に広く分布し、特に腎臓及び肝臓から高濃度で検出される。(参照 9、12)

OTC は経口投与された場合、主に胃及び小腸上部で吸収され、体内に広く分布する。腸管から吸収された OTC は肝臓で濃縮されて胆汁に排泄され、一部は腸管から再吸収されて、腸、肝臓及び胆汁の間を循環するため長時間にわたり少量ではあるが生体内に維持さ

9 イオノフォア系抗コクシジウム剤の飼料添加物は本データに含まれていない。

⁸ EU 加盟国からマルタ、EEA 加盟国からリヒテンシュタインを除く。

¹⁰ 個体数調整単位(population correction unit): ある動物集団の大きさを表すため、各畜種の飼養頭数と 1 頭当たり重量の積を合計したもの。各加盟国の動物集団の大きさを飼養頭数等(量)で補正することにより、加盟国間で動物用医薬品の使用量を比較するために EMA が開発した指標。(参照 258)

¹¹ TC 系排出ポンプが臨床的な TGC 耐性に関与しているとの知見はないが、TC 系耐性機構を持つ腸内細菌科細菌では野生株に比べて $2\sim4$ 倍程度の TGC の MIC 上昇が起き、また、tet 遺伝子の変異により TGC の MIC 上昇が起こることが in vitro で確認されている。(参照 30)「pre-resistance」は、臨床的 TGC 耐性ではないものの、tet 遺伝子等を保有している細菌が、長期間の TC 系の使用等により TGC 耐性を獲得する可能性がある状態などを指すと考えられる。

れる。(参照 2、32) 静脈内又は筋肉内投与された場合は、腎臓に最も多く分布し、主に尿中に排出される。(参照 9)

CTC は、経口的又は非経口的投与により、よく吸収され、生体各部によく分布する。(参照 2、32) 経口投与では主に糞便中、筋肉内投与の場合は主に尿及び胆汁中に排泄されると考えられる。(参照 9)

DOXY は、他の TC 系に比べ経口投与による消化管からの吸収性が高く、体内各部によく分布する。静脈内注射による血中濃度も他剤に比べて高く、胆汁が主な排出経路と考えられている。(参照 32)

食品安全委員会での残留基準の設定に係る評価等で整理された TC 系の各種対象動物に おける薬物動態パラメーターを表 10-1~10-5 に示した。

TC 系は一般に分布容が大きく、参照 9 においても OTC を牛(約 5 mg/kg 体重)又は 豚に静脈内投与した場合の分布容が、それぞれ 1.00 ± 0.18 又は 1.62 ± 0.83 L/kg と記載されている。(参照 9)

表 10-1 OTC の薬物動態パラメーター

動物種	投与量・経路	血液 T _{max} (h)	血液 C _{max}	(参照)
牛	約 5 mg/kg 体重 筋肉内	7	$2.28\pm0.15~\mathrm{mg/L}$	9
牛	10 mg/kg 体重 単回筋肉内	5~10	$4.6{\sim}6.8~\mathrm{mg/L}$	9
牛	10 mg/kg 体重 筋肉内	8	2.92 μg/mL	33
牛	20 mg/kg 体重 単回筋肉内	3	平均 3.67 mg/L	9, 33
豚	20 mg/kg 体重 経口	1	0.48 μg/mL	33
豚	20 mg/kg 体重 単回筋肉内	1	3.91±1.01 mg/L	9, 33
豚	20 mg/kg 体重 単回筋肉内	0.92±1.05	5.67±2.40 mg/L	34
鶏	20 mg/kg 体重 経口	4	1.30 μg/mL	33
鶏	200ppm 飼料添加	-	0.11 μg/mL	33

表 10-2 豚の OTC 単回筋肉内投与 (20 mg/kg 体重) における薬物動態パラメーター

C _{max} (mg/L)	T _{max} (h)	AUC (h·mg/L)	T _{1/2} (h)	MRT _{last} (h)
5.67±2.40	0.92±1.05	84.5±14.7	12.9±1.83	14.7±1.27

n=14、平均値±標準偏差(参照34)

表 10-3 CTC の薬物動態パラメーター

動物種	投与量・経路	血液 T _{max} (h)	血液 C _{max}	(参照)
牛	20 mg/kg 体重 経口	4	2.42 μg/mL	33
豚	20 mg/kg 体重 経口	4	3.37 μg/mL	33
鶏	100 mg/kg 体重 単回強制経口	2	1.92 mg/L	9
鶏	100 mg/kg 体重 経口	0.5	25.6 μg/mL	33

表 10-4 DOXY の薬物動態パラメーター

動物種	投与量・経路	血液 Cmax	血液 T _{max} (h)	(参照)
豚	10 mg/kg 体重 単回強制経口	2.94 μg/g	2	12, 33
豚	5.9 mg/kg 体重/12h 15 回混餌投与	0.73±0.17~1.00±0.18 µg/mL	4.41±0.19	35
鶏	5 mg/kg 体重 単回強制経口	0.62 μg/g	4	12
鶏	10 mg/kg 体重 単回強制経口	1.81 μg/g	4	12, 33

表 10-5 豚の DOXY 混餌投与(5.9 mg/kg 体重/12h、15 回)における薬物動態パラメーター

$C_{max}(mg/L)$	$T_{max}(h)$	T _{1/2} (h)	$AUC_{0-12}(h \cdot mg/L)$	AUC ₁₆₈₋₁₈₀ (h • mg/L)
0.73±0.17~1.00±0.18	4.41 ± 0.19	5.92 ± 1.02	5.74 ± 0.56	9.66 ± 2.16

n=9、平均値±標準偏差(参照35)

4. 抗菌活性

(1) 抗菌活性の作用機序及び作用のタイプ

TC 系は、細菌の 70S リボソームの構成ユニットの 1 つである 30S サブユニットと結合 し、タンパク合成過程のペプチド鎖延長反応において、アミノアシル-tRNA が mRNA-リボソーム複合体上のアクセプター (A) 部位に入ることを阻止することにより、タンパク合成を阻害する。 (参照 2、10)

また、TC 系はリボソームへの結合が可逆的であるため、通常これらの抗菌作用は静菌的となる。(参照 5、6)

(2) 抗菌スペクトル

TC 系は、グラム陽性菌、グラム陰性菌、抗酸菌、更にマイコプラズマ、クラミジア、リケッチア等に対して幅広い抗菌力を持つ。真菌には抗菌作用を示さない。(参照 2、10)

全ての TC 系で抗菌活性はほぼ同様であるが、抗菌活性は一般に脂溶性が高いほど強くなるため、TC 系の世代間で差がみられる。(参照36)

OTC、CTC 及び TC の抗菌スペクトル及び抗菌活性はほぼ同様である。(参照 2、32、

37)

DOXY の抗菌スペクトルは、他の TC 系とほぼ同様であるが、 $in\ vitro$ での抗菌活性は TC の $2\sim4$ 倍増強されており、黄色ブドウ球菌を含むグラム陽性菌に対して、より強力に 作用する。(参照38)

(3) 対象とする家畜の病原菌に対する MIC 分布及び耐性率

① JVARM:野外流行株の薬剤耐性調査(病畜由来細菌のモニタリング)

JVARM では、病畜由来細菌の薬剤感受性実態調査を実施している。2006~2015 年度 (大腸菌については2005年度を含む。) の病性鑑定由来細菌のOTC 又はTC に対する感受性試験結果を表11-1~11-4に示した。(参照39)

OTC 又は TC の MIC 値は、黄色ブドウ球菌に対して $\le 0.125 \sim > 256 \,\mu g/mL$ (菌株数の多い牛由来では耐性率 $0 \sim 8.3\%$)、大腸菌に対して $\le 0.5 \sim 512 \,\mu g/mL$ (耐性率 $50.9 \sim 82.9\%$)、サルモネラに対して $\le 0.5 \sim 512 \,\mu g/mL$ (耐性率 $12.1 \sim 83.3\%$)、Pasteurella multocida に対して $0.25 \sim 128 \,\mu g/mL$ (耐性率 $7.4 \sim 9.8\%$)、Mannheimia (Pasteurella) haemolytica に対して $\le 0.5 \sim 64 \,\mu g/mL$ (耐性率 $15.1 \sim 24.6\%$)等であった。大腸菌及びサルモネラでは比較的高い耐性率が認められた。(参照 2、39)

表 11-1 病畜由来黄色ブドウ球菌の OTC 又は TC 感受性

	11 1 /r;	国出来英島ノーノが固い 010 人は 10 恋文は									
動物						年	度				
種		2006	$2007^{1)}$	2008	2009	2010	2011	2012	2013	2014	2015
牛	菌株数	17	35	45	85	132	109	88	109	90	75
	MIC 範囲	0.25~ 256	-	0.25~ 0.5	0.125~ 0.5		≦ 0.125~ 0.5	0.25~ >128	$\leq 0.125 \sim 128$		0.25~ 32
	MIC_{50}	0.25	-	0.25	0.25	0.5	0.25	0.5	0.5	0.25	0.5
	MIC_{90}	8	ı	0.5	0.5	0.5	0.25	0.5	1	0.5	1
	耐性株数	1	-	0	0	6	0	2	9	5	5
	耐性率(%)	5.9	-	0.0	0.0	4.5	0.0	2.3	8.3	5.6	6.7
豚	菌株数	1	3	3	4	1	5	4	5	3	2
	MIC 範囲	0.25	-	0.25~ 0.5	0.25~ 128	32	0.25~ 64	0.5~ 128	0.5~64	32~64	64
	MIC ₅₀	NA	-	NA	NA	NA	NA	NA	NA	NA	NA
	MIC90	NA	-	NA	NA	NA	NA	NA	NA	NA	NA
	耐性株数	0	ı	0	2	1	3	3	2	3	2
	耐性率(%)	NA		NA	NA	NA	NA	NA	NA	NA	NA
鶏	菌株数	0	10	3	3	4	8	20	24	13	6
	MIC 範囲	-	-	128~ 256	0.25~ 256	0.25	≦0.12~ 64	0.25~32	0.25~ 0.5	0.25~32	0.25~ >256
	MIC_{50}	-	ı	NA	NA	NA	NA	0.5	0.25	0.5	NA
	MIC90	-	-	NA	NA	NA	NA	0.5	0.5	32	NA
	耐性株数	•	1	3	2	0	3	1	0	2	1
	耐性率(%)		-	NA	NA	NA	NA	5.0	0.0	15.4	NA

供試薬剤は 2009 年度まで OTC、2010 年度から TC。MIC の単位は μ g/mL。ブレイクポイントは $16\,\mu$ g/mL。 鶏は肉用鶏及び採卵鶏。

NA: 菌株数が10株未満のため、MIC50、MIC90及び耐性率の記載は省略した。

^{-:} OTC 及び TC いずれの調査も実施していない。

表 11-2 病畜由来大腸菌の OTC 又は TC 感受性

動					年	度			
物種		2005	2006	2007	2008~2011	2012	2013	2014	2015
牛	菌株数	-	-	-	-		57	45	47
	MIC 範囲	-	-	-	-	-	1~>64	1~>64	2~>64
	MIC ₅₀	-	-	-	-	-	16	64	64
	MIC ₉₀	-	-	-	-	i	>64	>64	>64
	耐性株数	-	-	-	-	ı	29	30	31
	耐性率(%)	-	-	-	-	i	50.9	66.7	66.0
豚	菌株数	-	-	-	-	-	158	115	108
	MIC 範囲	-	-	-	-	-	1~>64	1~>64	1~>64
	MIC ₅₀	-	-	-	-	i	64	>64	64
	MIC ₉₀	-	-	-	-	ı	>64	>64	>64
	耐性株数	-	-	-	-	-	125	87	82
	耐性率(%)	-	-	-	-	ı	79.1	75.7	75.9
鶏	菌株数	28	41	53	-	82	96	-	48
	MIC 範囲	1~512	1~512	1~512	-	1~128	≦0.5~ >64	-	1~>64
	MIC ₅₀	128	256	256	-	128	64	ı	64
	MIC90	256	512	512	-	128	>64	-	>64
	耐性株数	17	34	39	-	61	59	-	34
	耐性率(%)	60.7	82.9	73.6	-	74.4	61.5	-	70.8

供試薬剤は 2009 年度まで OTC、2010 年度から TC。MIC の単位は μ g/mL。ブレイクポイントは $16\,\mu$ g/mL。 鶏は肉用鶏及び採卵鶏。

-: OTC 及び TC いずれの調査も実施していない。

表 11-3 病畜由来サルモネラの OTC 又は TC 感受性

動物						年	度				
種		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
牛	菌株数	35	62	73	84	94	50	82	56	63	76
	MIC 範囲	0.5~256	1~256	1~512	1~512	1~>64	1~>64	1~>64	1~>64	1~>64	1~>64
	MIC ₅₀	64	8	2	2	32	2	2	>64	32	>64
	MIC ₉₀	256	256	256	256	>64	>64	>64	>64	>64	>64
	耐性株数	18	31	31	28	50	15	27	37	32	42
	耐性率(%)	51.4	50.0	42.5	33.3	53.2	30.0	32.9	66.1	50.8	55.3
豚	菌株数	25	48	92	22	59	63	83	60	58	49
	MIC 範囲	1~256	0.5~512	1~512	0.5~512	1~>64	1~>64	≦0.5~ >64	2~>64	1~>64	1~>64
	MIC ₅₀	256	256	256	2	64	>64	>64	64	64	64
	MIC ₉₀	256	512	512	512	>64	>64	>64	>64	>64	>64
	耐性株数	17	40	75	16	42	39	44	40	35	30
	耐性率(%)	68.0	83.3	81.5	72.2	71.2	61.9	53.0	66.7	60.3	61.2
鶏	菌株数	51	59	57	36	33	25	32	50	51	7
	MIC 範囲	0.5~256	1~256	1~512	1~256	1~64	1~64	≦0.5~ >64	1~>64	1~>64	2~>64
	MIC ₅₀	1	2	128	16	2	2	2	2	2	NA
	MIC_{90}	256	256	256	256	64	64	64	64	64	NA
	耐性株数	16	29	29	9	4	9	11	15	20	3
	耐性率(%)	31.4	49.2	50.9	25.0	12.1	36.0	34.4	30.0	39.2	NA

供試薬剤は 2009 年度まで OTC、 2010 年度から TC。 MIC の単位は μ g/mL。 ブレイクポイントは $16\,\mu$ g/mL。 鶏は肉用鶏及び採卵鶏。

NA: 菌株数が10株未満のため、MIC50、MIC90及び耐性率の記載は省略した。

表 11-4 病畜由来のその他菌種の OTC 又は TC 感受性

菌種	分離 年度	薬剤	動物種	菌株数	MIC 範囲	MIC ₅₀	MIC ₉₀	ブ レイク ポ イント	耐性 株数	耐性率 (%)
D / 11			牛	68	0.25~64	1	2	8	5	7.4
Pasteurella multocida	2008	OTC	豚	51	0.5~128	2	2	8	5	9.8
munocida			鶏	5	0.5	NA	NA	-	0	NA
Mannheimia	2011	TC	牛	65	≦0.5~32	1	32	8	16	24.6
(Pasteurella)	2014	TC	牛	66	≦0.5~32	1	16	8	13	19.7
haemolytica	2015	TC	牛	53	≦0.5~>64	1	16	8	8	15.1
Haemophillus parasuis	2015	TC	豚	20	≦0.5~16	≦0.5	1	4	1	5.0
			牛	10	1~>64	2	64	16	2	20.0
Klebsiella spp.	2015	TC	豚	1	>64	NA	NA	16	1	NA
			鶏	2	64~>64	NA	NA	16	2	NA

MIC の単位は µg/mL。鶏は肉用鶏及び採卵鶏。

NA: 菌株数が10株未満のため、MIC₅₀、MIC₉₀及び耐性率の記載は省略した。

(4)指標細菌及び食品媒介性病原菌に対する TC 系の MIC 分布及び耐性率

現在、国内でTC系を使用している家畜は、牛、豚及び鶏であり、それらに由来する主 な食品媒介性病原菌としては、グラム陰性菌である腸管出血性大腸菌、サルモネラ及びカ ンピロバクターがある。また、薬剤感受性の指標細菌として重要な菌種は、グラム陽性菌 である腸球菌及びグラム陰性菌である大腸菌である。

① JVARM:農場における家畜由来細菌の薬剤耐性モニタリング

JVARM では、2000 年から農場における健康家畜由来の指標細菌及び食品媒介性病原菌 の薬剤感受性実態調査を全国的に実施している12。2000~2015 年度の健康家畜糞便由来 腸球菌 (E. faecalis 及び E. faecium)、大腸菌、サルモネラ及びカンピロバクター (C. jejuni 又は C. coli) 13の OTC 又は TC に対する感受性試験結果から耐性率を図 2-1~2-4 に示し た。なお、サルモネラについては、2008年度以降は病性鑑定由来細菌について調査してお り、その結果は[Ⅱ. 4. (3)]の表 11-3 に記載した。(参照40)

豚由来株ではいずれの 4 菌種も TC 系に対して高い耐性率 (45.1~89.8%) 示した。ま た、肉用鶏では腸球菌及び大腸菌が高い耐性率(49.0~86.5%)を示した。

¹² JVARM における健康家畜由来細菌の抗菌性物質感受性調査は、国内の都道府県で同じ細菌について、 1999 年度は全国で、2000 年度から 2007 年度までは 4 ブロックに分けて 1 年に 1 ブロックずつ調査を行 い、4年間で全国を調査するという体制(2000~2003年度:第1クール、2004~2007年度:第2クール) で、2008 年度からは、2 ブロックに分けて 2 年間で全国を調査する体制(2008~2009 年度: 第 3 クール、 2010~2011 年度: 第4クール、2012~2013 年度: 第5クール、2014~2015 年度: 第6クール)で、様々 な抗菌性物質に対する感受性を調査している。(参照40)

¹³ 牛及び鶏では C. jejuniのみ、豚では C. coliのみ。

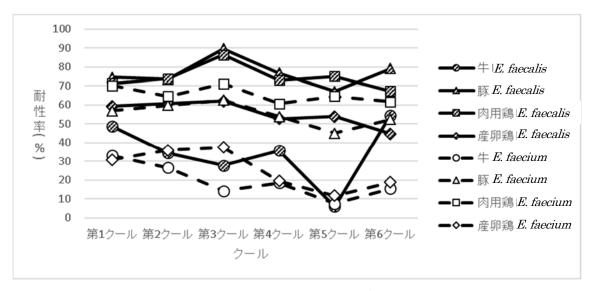


図 2-1 腸球菌の OTC 耐性の推移 (2000~2015 年度)

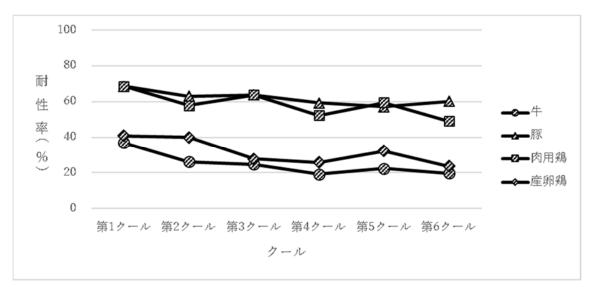


図 2-2 大腸菌の OTC 又は TC 耐性の推移(2000~2015 年度)。供試薬剤は 2009 年度まで OTC、2010 年度から TC。

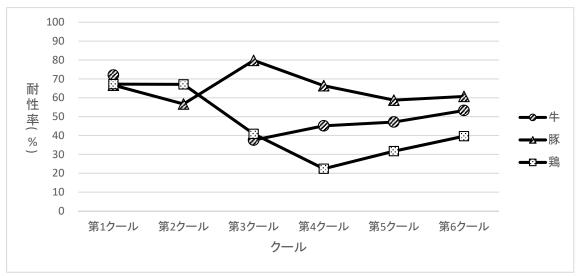


図 2-3 サルモネラの OTC 又は TC 耐性の推移 (2000~2015 年度)。供試薬剤は2009 年度まで OTC、2010 年度から TC。

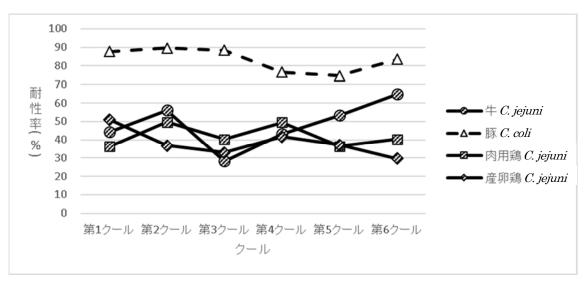


図 2-4 カンピロバクターの OTC 又は TC 耐性の推移(2000~2015 年度)。供試薬剤は 2009 年度まで OTC、2010 年度から TC。

② JVARM:と畜場及び食鳥処理場における家畜由来耐性菌の薬剤耐性モニタリング

JVARM では、2012 年度からと畜場及び食鳥処理場における健康家畜由来細菌の薬剤感受性実態調査を実施している。 $2012\sim2015$ 年度の健康家畜糞便由来腸球菌、大腸菌、サルモネラ及びカンピロバクター(C. jejuni 又は C. coli)の OTC 又は TC に対する感受性試験結果を表 $12-1\sim12-4$ に示した。なお、腸球菌については、2013 年度は調査を実施していない。(参照41)

各菌種において、TC 系の耐性率は他系統の抗菌性物質と比較して高く、30%以上の耐性率を示したのは、豚及び鶏の腸球菌及び大腸菌、鶏のサルモネラ、牛及び鶏の C. jejuni並びに牛及び豚の C. coliであった。2012 年度以降の調査において、明らかな耐

表 12-1 と畜場等における家畜由来腸球菌の OTC 感受性

動物種		2012 年度	2013 年度	2014 年度	2015 年度
牛	菌株数	201	0	260	2015
	MIC 範囲	≦0.12~>64	-	0.125~>64	0.25~>64
	MIC ₅₀	0.5	-	0.5	0.5
	MIC ₉₀	>64	-	64	>64
	耐性株数	49	-	55	73
	耐性率(%)	24.4	-	21.2	3.6
豚	菌株数	194	0	88	96
	MIC 範囲	0.25~>64	-	0.125~>64	0.25~>64
	MIC ₅₀	32	-	16	32
	MIC ₉₀	>64	-	>64	>64
	耐性株数	120	-	48	57
	耐性率(%)	61.9	-	54.5	59.4
肉用鶏	菌株数	133	0	181	181
	MIC 範囲	0.25~>64	-	0.125~>64	≤ 0.12~>64
	MIC_{50}	64	-	16	32
	MIC_{90}	>64	-	>64	>64
	耐性株数	96	-	105	114
	耐性率(%)	72.2	-	58.0	63.0

MIC の単位は μ g/mL。 ブレイクポイントは 16μ g/mL。

表 12-2 と畜場等における家畜由来大腸菌の TC 感受性

	1		T	1	ı
動物種		2012 年度	2013 年度	2014 年度	2015 年度
牛	菌株数	248	341	263	274
	MIC 範囲	≦0.5~>64	≤ 0.5~>64	≦0.5~>64	≤ 0.5~>64
	MIC ₅₀	2	2	2	2
	MIC90	64	>64	64	>64
	耐性株数	47	56	52	51
	耐性率(%)	19.0	16.4	19.8	18.6
豚	菌株数	195	127	93	96
	MIC 範囲	≦0.5~>64	1~>64	1~>64	1~>64
	MIC ₅₀	64	64	64	4
	MIC90	>64	>64	>64	>64
	耐性株数	114	79	55	44
	耐性率(%)	58.5	62.2	59.1	45.8
肉用鶏	菌株数	133	166	172	184
	MIC 範囲	1~>64	≤ 0.5~>64	≦0.5~>64	1~>64
	MIC ₅₀	8	4	4	64
	MIC90	>64	>64	>64	>64
	耐性株数	66	73	75	101
	耐性率(%)	49.6	44.0	43.6	54.9

MIC の単位は μ g/mL。ブレイクポイントは $16~\mu$ g/mL。鶏は肉用鶏及び採卵鶏。

表 12-3 食鳥処理場における鶏由来サルモネラの TC 感受性

動物種	2012 年度	2013 年度	2014 年度	2015 年度

肉用鶏	菌株数	94	118	128	123
	MIC 範囲	≤ 0.5~>64	1~>64	1~>64	1~>64
	MIC_{50}	32	64	64	64
	MIC_{90}	64	64	>64	64
	耐性株数	70	97	109	103
	耐性率(%)	74.5	82.2	85.2	83.7

MIC の単位は μg/mL.。ブレイクポイントは 16 μg/mL。

表 12-4 と畜場等における家畜由来カンピロバクターの TC 感受性

動物種(菌種)		2012 年度	2013年度	2014 年度	2015 年度
牛	菌株数	82	143	132	157
C. jejuni	MIC 範囲	≦0.03~>64	0.06~>64	0.06~>64	≦0.06~>64
	MIC ₅₀	0.25	16	32	32
	MIC90	>64	>64	>64	>64
	耐性株数	37	75	65	82
	耐性率(%)	45.1	52.4	49.2	52.2
鶏	菌株数	71	81	57	94
C. jejuni	MIC 範囲	≦0.03~>64	0.06~>64	0.06~>64	≦0.06~>64
	MIC ₅₀	0.25	0.06	0.06	0.12
	MIC90	64	>64	>64	64
	耐性株数	27	36	22	27
	耐性率(%)	38.0	44.4	38.6	28.7
牛	菌株数	-	-	47	81
C. coli	MIC 範囲	-	-	0.12~>64	0.12~>64
	MIC_{50}	-	-	>64	>64
	MIC_{90}	-	-	>64	>64
	耐性株数	-	-	29	53
	耐性率(%)	-	-	61.7	65.4
豚	菌株数	129	106	93	65
C. coli	MIC 範囲	0.06~>64	0.06~>64	0.12~>64	0.12~>64
	MIC ₅₀	64	>64	>64	>64
	MIC90	>64	>64	>64	>64
	耐性株数	109	99	75	57
	耐性率(%)	84.5	93.4	80.6	87.7

MIC の単位は μg/mL.。ブレイクポイントは 16 μg/mL。

5. TC 系に対する薬剤耐性機序及び薬剤耐性決定因子について

(1) 耐性の基本的機序

TC 系に対する細菌の耐性機構は、主に①排出ポンプによる薬剤の菌体外への能動的排出、②リボソーム保護タンパク質の産生によるリボソームの保護・防御、③修飾酵素による薬剤の不活化の 3つがある。特に①及び②が主要な機序であり、両機序を有する菌属も存在する。(参照 6、10)

① 薬剤の菌体外への能動的排出

細胞膜に内在するタンパク質により、TC系を単独で排出するのではなく、Mg2+等2価

^{-:}調査していない。

カチオンとのキレート体を H^+ とアンチポート(対向輸送)することにより、細胞内の TC 系を細胞外に能動的に排出する。(参照 2 、6 、42 、43)

これらの排出タンパクはグラム陽性菌及びグラム陰性菌の双方に広く存在し、特にグラム陰性菌で主要な耐性機構である。グラム陰性菌では Tet(B)、次いで Tet(A)が幅広く存在する。Tet(B)は OTC、CTC、TC、DOXY 及び MINO を排出できるが、TGC は排出できない。Tet(B)以外の排出タンパクは、OTC、CTC、TC 及び DOXY を排出できるが、MINO 及び TGC は排出できない。(参照 5、6、16、43~45)

② リボソームの保護・防御

リボソーム保護タンパク (ribosomal protection proteins: RPP) により、TC 系からリボソームのA部位を保護する。この耐性機構の主なタンパクはTet(M)及びTet(O)である。RPP はグラム陽性菌及びグラム陰性菌の双方に広く存在し、Tet(M)が最も幅広く存在する。グラム陽性菌では薬剤排出機構よりも広く分布していると考えられる。(参照 2、43、46、47)

TC 系は、リボソームのペプチド延長サイクルにおいてリボソームの 30S サブユニットに結合し、複合体の A 部位にアミノアシル・tRNA が結合できないため、タンパク質合成阻害が起きる。しかし、耐性菌が生産する Tet(O)等の RPP は、A 部位近傍に存在する伸長因子結合部位であるリボソーム 50S サブユニットの L11 領域に結合して 30S サブユニット上の結合部位から TC を解離させることにより、この非生産性サイクルからリボソームを正常化させることができる。 TC の解離を助長した後、RPP は結合している GTP を加水分解してリボソームから離れ、リボソームの延長サイクルが回復する。(参照 2、46、47)

RPP は OTC、CTC、TC、DOXY 及び MINO に対して耐性を与えるが、TGC への感受性は維持される。(参照 5、6、44、45)

③ 修飾酵素による薬剤の不活化

他の抗菌性物質に対して一般的な耐性機構である不活化酵素による化学修飾は、TC系ではまれである。Tet(X)のみが $in\ vitro$ での活性を確認されている。(参照 6、48)

Bacteroides 属が保有する tet(X)遺伝子は、NADPH 依存性のモノオキシゲナーゼ Tet(X)をコードしている。この酵素は TC 系の炭素 11a 位を水酸化し、リボソームへの結合能を低下させ、不活化する。また、Tet(X)は TGC も不活化する。この反応は酸素を必要とするが、Bacteroides 属は偏性嫌気性菌であり、菌体内で Tet(X)の活性は確認されていない。(参照 6、45、49、50)

4 その他

a. 多剤排出ポンプ

TC 系に特異的な排出タンパクが関与する耐性機序以外では、TC 系の排出に関与する多剤排出ポンプとして、グラム陽性菌では MFS 型やその変種の MATE 型、SMR 型、グラ

ム陰性菌では RND 型が挙げられる¹⁴。(参照 2、51、52)

グラム陽性菌では、MATE型の排出ポンプで、TC系を基質とするTet(38)並びにフルオロキノロン系及びグリシルサイクリン系を基質とするMepAが黄色ブドウ球菌で報告されている。(参照52)

グラム陰性菌では、大腸菌で 20 種類の多剤排出ポンプが確認されているが、その中で TC 系を含め最も薬剤感受性に関係するものが RND 型の AcrAB-TolC 複合体であり、抗生物質、消毒剤、抗がん剤、色素性毒素、界面活性剤等の多種多様な物質を、膜を介したプロトン濃度勾配の駆動力を用いて細胞膜外へ排出する。(参照 2、5、53、54)

b. 細胞膜透過性低下

グラム陰性菌は細胞壁外膜のリポ多糖の存在により複数の抗菌性物質に自然耐性を示すが、TC 系は OmpF 等のポリンチャンネルにより外膜を容易に通過する。大腸菌では、TC 系、クロラムフェニコール等の存在下で、 $MarA^{15}$ が過剰発現し、上述の多剤排出ポンプ AcrAB の発現を誘導するとともに、OmpF 合成を抑制する。これにより細胞内への TC 系の蓄積及び取込みの両方が減少し、薬剤耐性を示す。(参照 6、55、56)

(2) 耐性遺伝子の分布と伝達

上記(1)①~③の TC 系耐性機構に関与する因子として、表 13 に示した 59 遺伝子が発見されている 16 。これらの遺伝子はその遺伝子産物であるタンパク質のアミノ酸相同性によって分類されている。(参照 5、6、45、57)

表 13 TC 系耐性遺伝子

耐性機構	遺伝子			
排出タンパク遺伝子(33種)	tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(H), tet(J), tet(K), tet(L), tet(A(P), tet(V), tet(Y), tet(Z), tet(30), tet(31), tet(33), tet(35), tet(38), tet(39), tet(40), tet(41), tet(42), tet(43), tet(45), tet(57), tet(58), tet(59), tet(3), otr(B), otr(C) tet(AB(46), tet(AB(60)			
RPP 遺伝子(12 種)	tet(M), tet(O), tet(Q), tet(S), tet(T), tet(W), tetB(P), tet(32), tet(36), tet(44), otr(A), tet			
酵素的不活化遺伝子(13種)	tet(\$49), tet(\$49), tet(\$51), tet(\$52), tet(\$53), tet(\$54), tet(\$55), tet(\$56)			
機能が不明な遺伝子(1種)	tet(U)			

¹⁴ 多剤排出ポンプには、遺伝子塩基配列と機能の類似性から MFS(major facilitator superfamily)、SMR(small multidrug resistance)、ABC(ATP-binding cassette)、MATE(multidrug and toxic compound extrusion)及び RND(resistance nodule division)の 5 型(family)がある。染色体上にコードされ、細菌の薬剤自然抵抗性の主因を成す。MFS 型には一部の Tet 排出タンパクも含まれる。(参照 5、52、54)

15 MarA は marRAB オペロンの活性因子であるとともに、様々な遺伝子の発現を誘導する。marRAB オペロンは大腸菌の染色体上の multiple-antibiotic resistance(mar)遺伝子座に存在し、内在性の多剤耐性を制御している。TC 系等により mar 抑制因子である MarR が不活化されると marRAB オペロンの発現が誘導され、MarA の産生が上昇する。一度 MarR が不活化されると、marRAB オペロンの発現は構成型になる。(参照 56)

¹⁶ モザイク遺伝子の記載は省略。

動物用医薬品としての TC 系の有効菌種及び指標細菌が保有する排出タンパク遺伝子、RPP 遺伝子等を表 14 にまとめた。(参照 45、57)

これらのうち最も多くの菌属から発見されているのが tet(M)であり、tet(B)、tet(W)、tet(A)、tet(L)、tet(Q)及び tet(K)も多くの菌から検出されている。ほとんどの菌属で、複数の排出タンパク遺伝子及びRPP 遺伝子が検出されている。(参照 6、45、49、50)

なお、TC系の有効菌種の家畜由来株では、tet(X)遺伝子の保有は報告されていない。

表 14 国内で使用される動物用 TC 系製剤の主な有効菌種及び指標細菌の tet 遺伝子保有状況

			酵素的	機能が
菌属	排出タンパク遺伝子	RPP 遺伝子	不活化	不明な
			遺伝子	遺伝子
グラム陽性菌				
Corynebacterium	tet(Z), tet(33), tet(39)	tet(M), tet(W)		
属				
<i>Enterococcus</i> 属	tet(K), tet(L), tet(58)	tet(M), tet(O), tet(S), tet(T)		tet(U)
<i>Erysipelothrix</i> 属		tet(M)		
<i>Staphylococcus</i> 属	tet(K), tet(L), tet(38), tet(42),	tet(M), tet(O), tet(S), tet(W),		tet(U)
	tet(43), tet(45)	tet(44)		
Streptococcus 属	tet(K), tet(L), tet(40), tetAB(46)	tet(M), tet(O), tet(Q), tet(S),		tet(U)
		tet(T), tet(W), tet(32)		
グラム陰性菌				
Actinobacillus 属	tet(B), tet(H), tet(L)	tet(O)		
Bordetella 属	tet(A), tet(C), tet(31)			
Escherichia 属	tet(A), tet(B), tet(C), tet(D), tet(E),	tet(M), tet(W)	tet(X)	
	tet(G), tet(J), tet(L), tet(Y)			
Salmonella 属	tet(A), tet(B), tet(C), tet(D), tet(G),			
	tet(L)			
<i>Haemophilus</i> 属	tet(B), tet(K)	tet(M)		
Pasteurella 属	tet(B), tet(D), tet(G), tet(H), tet(L)	tet(M), tet(O)		
<i>Campylobacter</i> 属		tet(O), tet(44)	-	-
その他				
<i>Mycoplasma</i> 属		tet(M)		

国内における家畜由来株からの tet 遺伝子の検出状況を表 15 に示した。

表 15 国内における家畜由来株からの tet 遺伝子の検出状況

対象菌種	分離年度	由来	検出された遺伝子	(参照)
Salmonella Infantis	2001~2003	健康肉用鶏糞便	tet(A)	58*
S. Infantis	1989~1998	肉用鶏	tet(A)	59 *
	2001~2003	健康肉用鶏糞便		
Actinobacillus	1986~1987	病豚	tet(A), tet(B), tet(H), tet(O)	60*
pleuropneumoniae	1999~2000			
	2002~2005			
Erysipelothrix	1988~1998	豚丹毒罹患豚	tet(M)	61
rhusipasiae				

^{*:} JVARM における調査

tet遺伝子は様々な農業環境において多種にわたる細菌に分布していることが示されている。 国内の豚及び鶏の糞便、家畜堆肥及び土壌から分離された TC 耐性菌 350 株における tet 遺伝子の存在を調べたところ、249 株から検査対象 tet 遺伝子 19 タイプのうち 15 タイプの少なくとも 1 つ以上が検出された。そのうち 140 株が排出タンパク遺伝子、109 株が RPP 遺伝子を保有していた。(参照 2、62)

豚及び鶏の糞便由来株で最も多く検出された遺伝子はtet(M)遺伝子であり、それぞれ39.3% (24/61 株) 及び43.8% (42/96 株) に認められた。tet(M) 遺伝子陽性株で最も多かったのは Enterococcus属であり、鶏糞便由来株で2番目に多かったtet(H) 遺伝子陽性株はEscherichia属が主流であった。堆肥由来株からは主にtet(B)、tet(J)、tet(M)、tet(S)、tet(W) 遺伝子等が検出された。また堆肥を使用した土壌由来株からは主にtet(B)、tet(D)、tet(D)、tet(D)、tet(D)、tet(D)、tet(D)、tet(D) は 遺伝子等が検出され、堆肥を使用していない土壌からもtet(B)、tet(D)、tet(D)、tet(D) は 遺伝子等が検出された。(参照2、62)

TC 系耐性遺伝子はグラム陽性菌及び陰性菌に広く分布しているが、グラム陰性菌の TC 系耐性はほとんどがプラスミド性の排出タンパクに関連する遺伝子による耐性である。(参照 42)

tet 遺伝子はしばしば接合伝達性プラスミド又はトランスポゾン上に存在し、プラスミドの伝達及びトランスポゾンの転移によって新たな菌種又は菌属への耐性伝達を起こす。 tet(M)遺伝子が最も多くの菌種及び菌属から検出されている理由として、tet(M)遺伝子が極めて広い宿主範囲を持つTn916(tet(M), 15 kbp)型接合転移性トランスポゾン上に存在することに関連すると考えられる。(参照 $63\sim67$)

6. 関連するヒト用抗菌性物質(交差耐性を生じる可能性及び医療分野における重要性) (1) TC 系及び他の系統の抗生物質との交差耐性等

評価対象 TC 系と化学構造が類似し、交差耐性を生じる可能性のあるヒト医療用の抗生物質は、同系統の TC 系及びグリシルサイクリン系抗生物質である。これらの名称、化学構造式、適応症等を表 16 にまとめた。(参照 2、3、4、15、68)

① 第1及び第2世代TC系間での交差耐性

OTC 及び CTC は同じ第1世代の TC 系との間に交差耐性がみられる。一方、第2世代の DOXY 及び MINO は脂溶性が高いため良好な組織浸透性を示し、第1世代 TC 系の耐性菌に対しても抗菌力を持つことがある。(参照 2、13、 $69\sim74$)

② グリシルサイクリン系 (第3世代 TC 系) 抗生物質との交差耐性

グリシルサイクリン系の TGC は、排出タンパク及び RPP 遺伝子の両方を持つ TC 系耐性株に対しても抗菌力を有する。しかし、近年大腸菌、サルモネラ等のグラム陰性菌で研究が進んでいる RND 型多剤排出ポンプが、他の TC 系と同様に TGC の耐性に関与していることが示されている。(参照 2、13、15、16、69、74、)

[II. 2. (3)] に記載したとおり、EU では 2013 年に EMA がグリシルサイクリン系

及び関連する系統の抗生物質の動物への使用によるヒトの公衆衛生上の影響について評価 を行っている。EU では 2006 年に TGC は複雑性皮膚・軟部組織感染症及び複雑性腹腔内 感染症を適応として承認されている。プラスミドやトランスポゾン上の可動性の TC 系耐 性因子は、臨床上の耐性とはならない程度の TGC の MIC の軽度な上昇を起こす。不活化 酵素の Tet(X)は例外的に (in vitroで) TGC 耐性を付与するが、その臨床的な意義は確認 されていない。一方、臨床的な TGC 耐性は、RND 型や MATE 型の多剤排出ポンプの制 御遺伝子の染色体変異によって起こることが報告されており、水平伝達は起こらない。 TGC 耐性は主に TGC の使用によって選択されるが、フルオロキノロン系等の他の抗菌性 物質が、共通の薬剤排出機構によって TGC 耐性選択に関連する可能性がある。TC 系は EU において最も広く使用される動物用抗菌性物質であり、その使用が TC 系耐性因子の 選択を通じて TGC に対する「pre-resistance」機構を選択する可能性があるが、こうした 耐性因子は既に動物及びヒトの細菌において広範にみられるものである。獣医領域におけ る TC 系又はフルオロキノロン系の使用が TGC 耐性に与える影響の可能性は推定が困難 である。動物由来細菌における TC 系耐性は一般的にみられるが、動物由来株の定期的な TGC 感受性調査が行われていないこともあり、TGC 耐性についてはほとんど報告がない。 (参照30)農林水産省は、JVARMの家畜由来大腸菌及び黄色ブドウ球菌について、TGC とTC、DOXY 及びMINO 間の交差耐性を調査した。2015年に分離された健康な牛、豚 及び肉用鶏由来大腸菌 100株(TC 耐性株を中心に選択)では、TC、DOXY 及び又はMINO 耐性株が検出されたが、それらは全て TGC 感受性であった。また、2016 年に分離された 病畜(牛、豚及び鶏) 由来黄色ブドウ球菌 71 株では、TGC 耐性株 (MIC=1.0 μg/mL) が 4株認められた。TGC 耐性4株の由来は、豚由来3株、採卵鶏由来1株であった。この4 株中3株はTC、DOXY及びMINOにも耐性を示し、1株はTC及びDOXYのみに耐性 を示しMINOには感性であった。(参照75)

表 16 家畜に使用される TC 系と交差耐性を生ずる可能性のある国内で販売されるヒト用の TC 系

名称	CAS 番号	化学構造式、適応症
第1世代TC系	•	
塩酸オキシテトラサイク リン (Oxytetracycline hydrochloride)	2058-46-0	HCI NH2 表在性皮膚感染症、深在性皮膚感染症、リンパ管・リンパ節炎、 慢性膿皮症、乳腺炎、骨髄炎、咽頭・喉頭炎、扁桃炎、急性気管 支炎、肺炎 等
塩酸テトラサイクリン (Tetracycline hydrochloride)	64-75-5	OH O OH O O

		表在性皮膚感染症、深在性皮膚感染症、リンパ管・リンパ節炎、慢性膿皮症、乳腺炎、骨髄炎、咽頭・喉頭炎、扁桃炎、急性気管
塩酸デメチルクロルテト ラサイクリン (Demethyl- chlortetracycline hydrochloride (JAN); demeclotetracycline hydrochloride (INN))	64-73-3	支炎、肺炎 等 CI OH H OH O
第2世代TC系		
塩酸ドキシサイクリン (Doxycycline hydrochloride)	10592-13-9	サイン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
塩酸ミノサイクリン (Minocycline hydrochloride)	13614-98-7 3 世代 TC 系)	NH2 HCI 表在性皮膚感染症、深在性皮膚感染症、リンパ管・リンパ節炎、慢性膿皮症、乳腺炎、骨髄炎、咽頭・喉頭炎、扁桃炎、急性気管支炎、肺炎 等
チゲサイクリン (Tigecycline)	220620-09-7	深在性皮膚感染症、慢性膿皮症、外傷・熱傷及び手術創等の二次感染、びらん・潰瘍の二次感染、腹膜炎、腹腔内膿瘍、胆嚢炎

③ 他の主な抗生物質との交差耐性

主な抗生物質であるペニシリン(ペニシリン系)、ストレプトマイシン(アミノグリコシド系)、バシトラシン(ペプチド系)、ポリミキシン \mathbf{B} (ペプチド系)、ネオマイシン(アミノグリコシド系)及びエリスロマイシン(マクロライド系)との間に交差耐性はみられない。(参照 $\mathbf{2}$ 、 $\mathbf{71}$)

また、TC 系の耐性遺伝子(tet(K)、tet(L)、tet(M)及び tet(O))は、近年多剤耐性菌の治療薬として開発され、グラム陽性菌に対して広い抗菌スペクトルを持つリネゾリド (LZD) (オキサゾリジノン系) への感受性に対して影響を与えず、交差耐性はみられない。 (参照 2、76)

④ 多剤耐性(共耐性17等)

黄色ブドウ球菌では、スペインのヒト臨床由来 LZD 耐性のメチシリン耐性黄色ブドウ球菌 (MRSA) から、耐性遺伝子の cfr (オキサゾリジノン系、クロラムフェニコール系、リンコマイシン系、プロイロムチリン系及びストレプトグラミン A 群)、ant(4=)-Ia (トブラマイシン)、tet(L) (TC 系)及び dfrK (トリメトプリム)を保有する多剤耐性接合性プラスミドが検出されたとの報告がある。(参照77)

大腸菌では、β-ラクタマーゼの遺伝子並びにアミノグリコシド系、クロラムフェニコール系、スルホンアミド系、TC系、トリメトプリム又は水銀イオン等の他の幾つかの薬剤に対する耐性遺伝子を同時に保有する多剤耐性プラスミドが高い頻度で認められる。(参照78~89)

サルモネラでは、 $1999\sim2001$ 年に JVARM において国内の牛、豚及び鶏から分離された S. Typhimurium 107 株のうち 57 株が S. Typhimurium ファージタイプ DT104 であり、このうち 45 株(牛 37 株、豚 8 株)が多剤耐性を示し、ACSSuT(アンピシリン、クロラムフェニコール、ストレプトマイシン、スルホンアミド及び TC)耐性であった。第1、第2及び第3世代セファロスポリンのセファゾリン、セフロキシム及びセフチオフルに耐性を示すものはなかった。(参照 89)

また、農林水産省が 2016 年に実施した病畜(肉用牛、乳用牛及び豚) 由来サルモネラ 126 株の薬剤感受性試験の結果を表 17 に示した。(参照90)

最も多かった多剤耐性パターンは、アンピシリン、ストレプトマイシン及び TC に対する3 剤耐性であった(18/126 株(14.3%))。 TC を含む多剤耐性サルモネラのうち、豚由来でフルオロキノロン系(シプロフロキサシン)、乳用牛由来で第3 世代セファロスポリン系(セフォタキシム)に対して耐性を示す株がそれぞれ1及び3株(0.8及び2.4%)認められた。(参照90)

表 17	病畜由来サル	ノエネラの)多剂耐地	パターン
$AX \perp I$		ノモートノリ	ノクマロリリリエエ	

耐性 薬剤数	多剤耐性パターン	肉用牛 (n=21)	乳用牛 (n=48)	豚 (n=57)	合計株数 (n=126)
2	ABPC,KM	0	8	0	8
	ABPC,SM	0	0	1	1
	NA,CPFX	0	0	1	1
	SM,TMP	0	0	1	1
	SM,TC	0	1	1	1
3	ABPC,SM,TC	5	6	7	18
	SM,KM,TC	0	0	1	1
	SM,TC,TMP	0	0	1	1
4	ABPC,SM,GM,TC	0	0	2	2
	ABPC,SM,KM,TC	0	5	0	5
	ABPC,SM,TC,CP	3	0	3	6
	ABPC,SM,TC,TMP	0	0	1	1

¹⁷ 他系統の薬剤によって、同一プラスミド上の複数の遺伝子が共選択されること等により、複数の異なる系統の薬剤に耐性を示す。

_

	ABPC,SM,CP,TMP	0	0	2	2
	SM,TC,CP,TMP	0	0	1	1
	SM,TC,NA,CPFX	0	0	1	1
5	ABPC,SM,GM,TC,CL	1	0	2	3
6	ABPC,GM,KM,TC,NA,TMP	1	0	0	1
	ABPC,SM,GM,KM,TC,TMP	0	0	2	2
	ABPC,SM,GM,TC,CP,TMP	1	0	0	1
	ABPC,SM,GM,TC,NA,TMP	0	0	1	1
	ABPC,SM,KM,GM,TC,TMP	0	0	2	2
	ABPC,SM,KM,TC,CP,TMP	0	1	0	1
7	ABPC,SM,GM,KM,TC,NA,TMP	0	0	1	1
8	ABPC,CEZ,CTX,SM,KM,TC,NA,CP	0	3	0	3
	合計株数	11	24	31	65
	耐性率	52%	50%	54%	52%

ABPC: アンピシリン、CEZ: セファゾリン、CL: コリスチン、CP: クロラムフェニコール、CPFX: シプロフロキサシン、CTX: セフォタキシム、GM: ゲンタマイシン、KM: カナマイシン、NA: ナリジクス酸、SM: ストレプトマイシン、TC: テトラサイクリン、TMP: トリメトプリム

なお、大腸菌の Mar 変異株では、非特異的な膜透過性の低下により、TC、クロラムフェニコール、 β ・ラクタム系、ピューロマイシン(アミノヌクレオシド系)、ナリジクス酸、ペニシリン系、フルオロキノロン系、有機溶媒等の幅広い薬剤に耐性を示すことが報告されている。(参照 6、55、91)

(2) TC 系の医療分野における重要度

① 重度感染症、公衆衛生上重要度の高い感染症、食品由来感染症への治療の選択肢と しての重要度

「食品を介してヒトの健康に影響を及ぼす細菌に対する抗菌性物質の重要度のランク付けについて」(平成 18 年 4 月 13 日食品安全委員会決定)において、「テトラサイクリン系の天然型に属するもの」(OTC、TC 及び DMCTC)が「当該抗菌性物質に対する薬剤耐性菌が選択された場合にも、同系統又は異なった系統に有効な代替薬が十分にある」として「III: 重要」に、「テトラサイクリン系の活性の持続性を強化したもの」(DOXY 及び MINO)が「当該抗菌性物質に対する薬剤耐性菌が選択された場合に、有効な代替薬があるが、その数がIIIにランク付けされる抗菌性物質よりも極めて少ない」として「II: 高度に重要」に、「グリシルサイクリン系に属するもの」(TGC)が「ある特定のヒトの疾病に対する唯一の治療薬である抗菌性物質又は代替薬がほとんど無い」として「I: きわめて高度に重要」に、それぞれランク付けされている。(参照92)

TC 系は大きな副作用が少なく、価格も安いため以前は広く使用されていたが、1970年代以降耐性菌が増加し、新規の抗菌薬が多数開発されたこともあり、臨床的な有効性が減少した。現在では主に、クラミジア、リケッチア等の細胞壁にペプチドグリカンを持たない細胞内寄生細菌、原虫等の治療の際に第一選択薬として用いられ、又は他の系統の抗菌薬が無効なときに投与されている。現在ヒトの臨床でよく用いられているのは、第2世代TC系のDOXY及びMINOである。(参照2、13、68、93、94)

② 代替物質の有無及びその名称

各種細菌において TC 系に対する高い耐性率が検出されているが、代替薬としてマクロライド系、フルオロキノロン系等の抗菌性物質が使用されている。 (参照 13、44、69) また、TGC は、国内では多剤耐性グラム陰性菌感染症治療薬として承認されており、カルバペネム耐性腸内細菌科細菌 (CRE) 感染症への適応を有する。欧米では MRSA、VRE

ルバペネム耐性腸内細菌科細菌 (CRE) 感染症への適応を有する。欧米では MRSA、VRE 等の耐性グラム陽性菌、嫌気性菌、ESBL 産生菌等にも抗菌活性を有し、承認されているが、国内では十分な評価がなされていないため使用しない。(参照 16)

7. ハザードの特定に係る検討

(1) TC 系で治療可能なヒトの主要な食品媒介性感染症

ハザードの特定に当たっては、①国内の家畜に使用する TC 系の有効菌種、②主要な腸管感染症(食中毒を含む。)として国立感染症研究所のウェブサイトに掲載されている感染症のうち、病原体が細菌であり、国内の家畜から生産された畜産食品の経口摂取を介してヒトに感染し得る感染症の起因菌及び③感染症の予防及び感染症の患者に対する医療に関する法律(平成 10 年法律第 114 号)(以下「感染症法」という。)に基づく一類から五類までの感染症の起因菌、のいずれかに当てはまるものを抽出し、さらに、国内の家畜に TC 系を使用することにより耐性菌が選択され、家畜由来の食品を介してヒトがその耐性菌に起因する感染症を発症した場合に、ヒト用抗菌性物質による治療効果が減弱又は喪失する可能性がある細菌を表 18 に記載して検討した。(参照 8、95)

また、指標細菌である腸球菌及び大腸菌に加え、国内では、畜産食品を介した食中毒の原因微生物としてサルモネラ及びカンピロバクターの報告が多いため、これらについても特に表 18 に記載し、検討した。(参照96)しかしながら、サルモネラ及びカンピロバクターによる細菌性腸炎の治療は一般的に対症療法を中心とし、抗菌薬の投与は推奨されていない。免疫不全患者や重症患者に抗菌薬の投与を検討する場合、サルモネラ感染症については、フルオロキノロン系(レボフロキサシン、トスフロキサシン、シフロプロキサシン)が第一選択薬となり、第二選択薬としては第3世代セファロスポリン系(セフトリアキソン)及びマクロライド系(アジスロマイシン)がある。カンピロバクター感染症では、マクロライド系(クラリスロマイシン、アジスロマイシン、エリスロマイシン)が第一選択薬であり、キノロン系に対しては近年耐性菌が増加している。(参照97、98)

表 18	ハザー	ドの特定に係る検討において考慮する細胞	對
1 I U	· · /		15

, 1 14/C: 1	1 9 13 (1 1	7 7/21/7 9/11		
菌種等	国内の家畜で検 出・発生	畜産食品の経口 摂取由来病原菌	感染症法―~五類 感染症の起因菌	ヒト治療に TC 系使用
黄色ブドウ球菌 ¹⁾ Staphylococcus aureus	0	0	○ MRSA: 五類 VRSA: 五類	O MSSA, CA-MRSA : MINO
豚丹毒菌 Erysipelothrix rhusiopathiae	0	×	×	Δ
豚レンサ球菌 Streptococcus suis	0	Δ	×	Δ
エルシニア Yersinia enterocolitica, Y. pseudotuberculosis	0	Δ	×	Δ

Q 熱コクシエラ Coxiella burnetii	Δ	Δ	〇 四類	0
レプトスピラ Leptospira interrogans	Δ	×	四類	0
リステリア Listeria monocytogenes	Δ	Δ	×	Δ
腸球菌 ³⁾ Enterococcus faecium, E. faecalis	0	0	〇 VRE:五類	×
大腸菌 ²⁾ Escherichia coli	0	0	○ EHEC : 三類 CRE : 五類	×
サルモネラ <i>Salmonella</i> Typhimurium, <i>S.</i> Choleraesuis 等	0	0	×	×
カンピロバクター Campylobacter jejuni, C. coli	0	0	×	×

CA-MRSA: 市中感染型メチシリン耐性黄色ブドウ球菌、CRE: カルバペネム耐性腸内細菌科細菌、EHEC: 腸管出血性大腸菌、MINO: ミノサイクリン、MRSA: メチシリン耐性黄色ブドウ球菌、MSSA: メチシリン 感性黄色ブドウ球菌、VRE: バンコマイシン耐性腸球菌、VRSA: バンコマイシン耐性黄色ブドウ球菌 1) MRSA、VRSA を含む。

2) 病原大腸菌(EHEC 及び下痢原性大腸菌感染症(ETEC、EIEC、EPEC、EAEC))、CRE を含む。 3) VRE を含む。

これらを検討した結果、ハザードの特定に係る検討において考慮すべき感染症は、黄色 ブドウ球菌並びに常在菌である腸球菌及び大腸菌による感染症であると考えた。

(2) 黄色ブドウ球菌感染症

黄色ブドウ球菌は、毒素型食中毒を起こすほか、ヒトや動物の化膿性疾患の主要な原因菌であり、膿痂疹、せつ、よう、毛嚢炎等の皮膚・軟部組織感染症、毒素性ショック症候群(TSS)、敗血症、心内膜炎、肺炎、骨髄炎等に加え、種々の院内感染症等の原因となる。(参照99、100)健常人でも皮膚、粘膜、鼻腔(特に鼻前庭)及び咽喉頭に常在細菌叢の一部として定着しており、その保菌率は約30%とみられている。(参照99)

黄色ブドウ球菌感染症の治療には β -ラクタム系を使用するほか、MINO、バンコマイシン (VCM)、マクロライド系等が使用される。 β -ラクタム系が無効の場合はMRSA を疑う。 (参照 97)

MRSA はヒトの医療関連感染を起こす代表的な細菌であり、院内で分離される耐性菌として最も分離頻度が高い。MRSA には、従来から知られている院内感染型 MRSA (HAMRSA: hospital-acquired MRSA) ¹⁸と性状が異なる市中感染型 MRSA (CA-MRSA: community-acquired MRSA) 及び家畜関連型 MRSA (LA-MRSA: livestock-associated MRSA) が存在している。(参照101)

国内で使用可能な抗MRSA薬は、グリコペプチド系(VCM及びテイコプラニン(TEIC))、アミノグリコシド系(アルベカシン(ABK))、オキサゾリジノン系(LZD)及び環状リポ

_

 $^{^{18}}$ 病院と療養施設を含めて医療施設関連型 MRSA(healthcare-associated MRSA)とも呼ばれる。

ペプチド系(ダプトマイシン(DAP))の 4 系統 5 種類である。国内で MRSA 感染症に使用されている抗 MRSA 薬以外の抗菌薬には、リファンピシン(RFP)、スルファメトキサゾール/トリメトプリム(ST)合剤 19 、MINO 等がある。(参照 101)

CA-MRSA は、HA-MRSA である SCC mec II 型以外の型が多くみられ、II 型ほど多剤 耐性化は進んでいない。そのため、抗 MRSA 薬以外に、クリンダマイシン (CLDM)、MINO、キノロン系、アミノグリコシド系に感性と判断される場合が多い。(参照 101)

MRSA 感染症に対して抗菌薬を選択する場合は、伝染性膿痂疹等の浅在性皮膚軟部組織 感染症に対しては、CA-MRSA が原因であることが多いため、中等症以下であれば、ST 合 剤又は MINO²⁰を選択する。また、尿路感染症においても、腎周囲膿瘍等には DAP、VCM、 TEIC、LZD とともに、感受性が確認されれば ST 合剤又は MINO との併用も考慮する。 (参照 101)

なお、米国の臨床治療指針では、バンコマイシン耐性黄色ブドウ球菌(VRSA)の治療には、DAP を他の抗菌性物質(ゲンタマイシン、RFP、LZD、ST 合剤、 β -ラクタム系等)とともに使用する。DAP に対しても耐性の場合は、キヌプリスチン/ダルホプリスチン (QPR/DPR)、ST 合剤、LZD、テラバンシン 21 等を使用する。(参照 102)

[Ⅱ. 4. (3) ①]に記載したとおり、JVARM の病畜由来細菌モニタリングにおいて、黄色ブドウ球菌の薬剤感受性調査が実施されており、OTC 又は TC に対する耐性株が検出されているが、分離株数が少ないため耐性率の推移の傾向をみることはできない。(参照 39)

(3) 常在菌による感染症の検討

腸球菌、大腸菌等のヒトの腸管にも常在し、ヒトにおいて日和見感染症の原因となる種々の細菌が、家畜の腸管からも分離される。このため、家畜に対して TC 系を使用した結果として、これらの常在菌において TC 系耐性遺伝子を保有する株が選択され、食品を介してヒトに伝播し、ヒトの腸内細菌叢の感性菌に TC 系耐性遺伝子を伝達する可能性はある。したがって、これまでに家畜及びヒトにおいて、同一の又は同系統の抗菌性物質に対する薬剤耐性が獲得され、遺伝的性状が類似している菌株が分離される等の報告がある常在菌については、ハザードの特定において検討する必要がある。

一般的に、常在菌の病原性は非常に弱く、健康なヒトにおいては食品を介して感染症を直接引き起こす可能性は低いと考えられる。しかし、疾病治療のため医療機関に入院し、手術等を受けることで感染症に対する抵抗力が低下した患者では、腸球菌、大腸菌等による感染症は予後の悪化を招くため、医療現場では警戒されている。特に、家畜、ヒト等の常在性の細菌が多剤耐性を獲得した CRE、VRE 等による感染症が問題となっている。

しかしながら、CRE 及び VRE 感染症の治療にはそれぞれコリスチン、TGC、ホスホマイシン及びアミノグリコシド系並びに LZD 及び QPR/DPR 等が使用され、TGC 以外のTC 系は使用されない。 (参照 97、103)

¹⁹ RFP 及び ST 合剤は、ブドウ球菌属及び皮膚軟部組織感染症に対する適応は国内未承認。(参照 101)

^{20 8} 歳未満の小児には使用できない。(参照 101)

²¹ テラバンシン (Telavancin) は国内未承認。

8. ハザードの特定

ハザードとして特定される細菌は、評価対象 TC 系を家畜に使用することにより選択される薬剤耐性菌であり、ヒトが家畜由来の畜産食品を介してその薬剤耐性菌に起因する感染症を発症した場合に、ヒト用抗菌性物質による治療効果が減弱又は喪失する可能性がある感染症の原因菌である。

TC 系の抗菌スペクトルは広範囲であるため、その有効菌種及び適応症は多数存在する。 その中で、家畜に評価対象 TC 系を使用することにより耐性菌が選択され、その耐性菌が 家畜由来の畜産物を介してヒトに伝播し、重篤な問題となる可能性があると考えられるヒ トの疾病としては、近年医療現場等で問題となっている MRSA 等を含む黄色ブドウ球菌 による感染症が考えられる。

近年ではヒトの治療薬として OTC を用いることはほとんどなく、使用されているのは 第2世代 TC 系の DOXY 及び MINO である。MRSA 感染症の治療にも MINO が使用される場合がある。これら第2世代 TC 系は組織浸透性の違いから、一般に OTC 又は CTC 耐性菌に対しても抗菌力を示すが、耐性機構がリボソーム保護の場合は交差耐性を生じる。以上のことから、リスク評価すべきハザードとして、家畜に対して TC 系を使用した結果として選択される TC 系耐性黄色ブドウ球菌(MRSA 等を含む。)を特定した。

皿. 発生評価に関する知見

発生評価では、評価指針の第2章第2の1に基づき、動物用抗菌性物質が家畜に使用された場合に、ハザードが選択される可能性及びその程度を評価する。また、発生評価の範囲は、動物用抗菌性物質を家畜に使用した時点から、当該家畜又は当該家畜から生産された畜産食品が農場から出荷される時点までとする。

1. 畜産現場における TC 系耐性の状況

(1) 畜産現場における薬剤耐性菌の発生状況

① 黄色ブドウ球菌

[II. 4. (3) ①]に記載したとおり、JVARM の病畜由来細菌モニタリングにおいて、 黄色ブドウ球菌の薬剤感受性調査が実施されている。牛由来株の OTC 又は TC 耐性率は 平均 4%程度である。豚及び鶏由来株からは OTC 又は TC に対する耐性株が検出されてい るが、分離株数が少ないため耐性率の推移の傾向をみることはできない(表 11-1)。

② MRSA

a. MRSA の特徴

MRSA 22 では、HA-MRSA、CA-MRSA 及び LA-MRSA の間で遺伝子型及び表現型に相違がある。それぞれの特徴を表 19 に示した。(参照 101、 $104\sim112$)

HA-MRSA 及び CA-MRSA の鑑別については、臨床的な観点からは入院患者から分離される MRSA を HA-MRSA と、市中の健康人に感染し、分離される MRSA を CA-MRSA と、それぞれ定義している。一方、細菌学的には SCC mec²³の遺伝子型が、HA-MRSA では I、II 及び III 型が多く、CA-MRSA では IV 及び V 型が多い。LA-MRSA の明確な定義はなされていないが、家畜に関連し、HA-MRSA 及び CA-MRSA の遺伝子型と区別される MRSA である。(参照 101)

LA-MRSA の遺伝学的性状については、MLST (multilocus sequence typing) は欧州では sequece type (ST) 398 (clonal complex (CC) 398²⁴に属する。) が多く、アジアでは ST9 (CC9) が優勢であるが、ST398 の分離も報告されている。また、spa型²⁵や SCCmec型でもヒト由来 MRSA と明確に区別される。(参照 101、113~118)

²² MRSA は β -ラクタム系と結合親和性の極めて低い penicillin-binding protein 2' (PBP2') と呼ばれる細胞壁合成酵素が産生されることで、 β -ラクタム系が存在しても細胞壁合成を遂行でき、分裂・増殖し続けることができる。この PBP2'産生を支配する構造遺伝子 mecA を持ちメチシリンに耐性を示す黄色ブドウ球菌をMRSA と定義しているが、実際にはメチシリン、オキサシリン等の狭域半合成ペニシリンだけでなく、その後開発されたセファロスポリン系を含むほとんど全ての β -ラクタム系に耐性を示す。(参照 2、219、259~261) ²³ Staphylococcal cassette chromosome (SCC)はゲノムアイランドで、可動性遺伝因子として Staphylococcus属間の耐性因子や病原因子の水平伝達に関与する。SCC の中で、メチシリン耐性に関与する mec 遺伝子を持つものを SCCmec と呼び、mecA、mecB及び mecC遺伝子の保有が報告されている。(参照 262)

 $^{^{24}}$ Sequence type (ST) バリアントが多数存在すると clonal complex (CC) が形成される。CC398 内の ST はほとんどが ST398 である。(参照 101、263) このため、特に必要のない限り、参照文献において「CC398」と記載されているものを含め、以下「ST398」と記載する。

²⁵ 黄色ブドウ球菌の病原因子であるプロテイン A 遺伝子の多変領域の塩基配列に基づく型。

表 19 HA-MRSA、CA-MRSA 及び LA-MRSA の主な性状の比較

	性状	HA-MRSA	CA-MRSA	LA-MRSA	
由习	₹	医療施設	不明	家畜	
主な	よクローン	NewYork/Japan	USA300 (米国が中心)	-	
薬剤感受性		多剤耐性	多くの抗菌薬に感性	多剤耐性	
TC 系感受性		分離菌による	MINO 感受性株が多い	MINO を含め TC 系耐性 (ST398 は <i>tet</i> (M)保有)	
	ACME	(-)	(+)	(-)	
		(—)	(USA300 保有)	(-)	
病	agr発現	普通	亢進	普通	
原	PSMs 発現	Ms 発現 普通又は(-) 亢進		(-)	
因子	α-hemolysin 発 現	普通	亢進	普通	
	PVL 形質	(-)	(+)	(-)	
	ΦSa3	溶原化	溶原化	(-)	
SC	C <i>mec</i> 型	I, II, III型	IV, V型	IVa, V型	
spa	型 型	t002	t018, t019, t021	t011 又は t034	
ML	ST型	ST5	ST8(米国), ST30(日本)	ST398(欧州), ST9(アジ ア)	

ACME: ヒト皮膚定着因子、agr: 病原性因子のグローバル調節因子、PSMs: 菌血症・膿瘍形質、 α -hemolysin: 壊死性肺炎、PVL: 感染症により肺炎病態に寄与

b. TC 系耐性菌の検出状況

国内の家畜における MRSA 及びその TC 系耐性の検出状況について表 20 に示した。 国内では、2009 年に豚の鼻腔スワブから MRSA (0.9%) が分離され、SCCmec型別はできなかったが、ST221 (CC5) で spa型は t002 であり、アンピシリン、メチシリン及びストレプトマイシンに耐性を示し、OTC には感性であった。 (参照 101、119)

2012 年に豚の鼻腔スワブから分離された MRSA のうち、同一農場の豚 4 頭から分離された 11 株は全て ST398 であった。そのうち 1 株の全ゲノム解析では、SCCmec 型が海外で報告されているものとは異なる新規の型であると同定された。本株は mecA のほか、norA、ermB、ermT、tet(38)、tet(L)、tet(M)及び tet(S)遺伝子を保有しており、アンピシリン、TC、エリスロマイシン、ストレプトマイシン及びクロラムフェニコールに耐性を示した。(参照120)

2013 年の調査で養豚地帯の豚の鼻腔スワブから MRSA(8%)が分離された。分離された MRSA は ST97/spa t1236/SCCmec V 及び ST5/spa t002/非定型 SCCmec であり、アンピシリン、オキサシリン、TC に耐性を示した。(参照 101、121)

また、乳房炎罹患牛由来の牛乳から MRSA が分離され、ST5/spat002 又はt375/SCCmec II 及び ST89/spa t5266/SCCmec IIIa の性状を示し、ヒト由来 MRSA に類似していた。 (参照 101、126) 他の乳房炎関連 MRSA 分離株では、ST5/spat002/SCCmec II の OTC 耐性株及び ST8/spat1767/SCCmec IVI が認められている。(参照 122、123)

また、MRSA ST398 については、2016 年 7 月~2017 年 2 月に 5 か国から輸入された検疫豚 125 頭中 2 か国から輸入された 41 頭の鼻腔スワブから MRSA(24.1 及び 89.5%)が分離され、MLST 型別を実施した 12 株全てが ST398/SCC mec V 又は非定型であった。

(参照124) なお、国内の豚から分離されたメチシリン感性黄色ブドウ球菌 (MSSA) では、 その 40%が ST398/spa t034 であった。(参照 101、125)

表 20 国内の農場における MRSA の検出状況

動物種	分離年月	都道府県数	農場数	頭数/ 検体 数	由来	SA 分 離株 数	MRSA 分離 株数	CC 又は ST*	spa 遺 伝子	SCCm ec	TC 系耐性	(参照)
牛	1998.5~	21	260	-	乳房炎罹患	363	4	ST5	t002	II		126
	2005.5				牛由来の牛			ST5	t375	II		
					乳			ST89	t5266	IIIa		
牛	2005.3~ 12	1	1	78	乳房炎発生 牛群の乳, 乳頭,搾乳 器具,タオ ル	97	70	ST5	t002	П	OTC 耐性 (MIC=64)	122
牛	2011	1	1	7	乳房炎 乳	-	7	ST8	t1767	IVl		123
豚	2003~2				病豚(皮膚	15	0	ST398	t034			125
	009				炎 7 頭, 関				t1298			
					節炎 1 頭,				t3934			
					その他不			ST9	t337			
					明)				t526			
									t1430			
								~	t6158	-		
								ST5	t179	-		
								ST97	t2112			
11	2000	_	20) 		- # 10 # 04 1	ST705	t529	TIM	Om 0 -411	110
豚	2009.3~	7	23	115	と畜場搬入	-	1 農場鼻腔由	ST221	t002	UT	OTC 感性	119
	9				豚鼻腔スワ		来 1 株(0.9%)					
					ブ及び糞便							
豚	2012	4地	5	500	鼻腔スワブ	-	14 株		不明		TC 耐性	120
		方					1農場4頭 11 株	ST398		classA- A1B3	(<i>tet</i> (38), <i>tet</i> (L),	
							1農場1頭	ST5		不明	tet(M),	
							3株				tet(S) 保 有)	
豚	2013.2~	1	21	100	と畜場搬入	-	8株(8%)				TC 耐性	121
	3				豚鼻腔スワ		(5 株)	ST97	t1236	V		
					ブ		(3 株)	ST5	t002	非定型		
輸	2016.7~	5カ	15 □	125	鼻腔スワブ	-					TC 耐性	124
入	2017.2	国	ット	_			41 株	=12)		非定型		
検												
疫												
豚												
11.1.								L	l	1	l	

^{*}MSSA 及び MRSA が分離された場合は、MRSA の CC 又は ST 型。MSSA のみ分離された場合は MSSA の CC 又は ST 型。

(2) 家畜分野における TC 系耐性に関するその他の知見

海外では、家畜から分離された LA-MRSA についての報告がある。

LA-MRSA ST398 は 2004 年にオランダの養豚従事者の家族から最初に分離が報告された。その後、短期間に欧州の牛や家きん農場に拡散し、ヒトにも伝播した。(参照 101、113 ~ 116 、127)LA-MRSA ST398 の欧州や北米における豚の保菌率は $24.9 \sim 85.7\%$ と報告さ

れ、また、養豚従事者では $9.3\sim64\%$ が陽性であり、本菌が広く養豚農場に浸潤していることが明らかとなった。(参照 101、 $113\sim116$ 、128) オランダでは、豚及び肉用子牛は、ヒトへの LA-MRSA 感染のリスク要因となっていると考えられている。(参照 129) さらに LA-MRSA ST398 は、イランの家きん、カナダ、米国、中国、韓国等の豚等からも分離されたという報告がある。(参照 101、 $130\sim132$) ほとんどの分離株は TC 系、 β -ラクタム系、マクロライド系、リンコマイシン系及びストレプトグラミン系に対して多剤耐性を示す。(参照 101)

マレーシアにおける調査では、養豚農場の 30% (9/30 農場) から MRSA が分離され、 豚及び養豚従事者での陽性率はそれぞれ 1.4% (5/360 頭) 及び 5.5% (5/90 人) であった。 分離された MRSA (ST9 又は ST1/spa t4538 又は t1784/SCC mec V) 10 株は全て、エリスロマイシン、セフトリアキソン、セフォキシチン、シプロフロキサシン、ゲンタマイシン、TC、ST 合剤、CLDM 及び QPR/DPR に耐性を示した。このうち 8 株が TGC に対して耐性を示した²⁶。 (参照133) LA-MRSA ST9 は一般的に多剤耐性であり、台湾及び中国でもエリスロマイシン、シプロフロキサシン、ゲンタマイシン、TC 及び CLDM に対する耐性率が 80%を超えたという報告がある。 (参照134) ヒトでの感染報告事例は極めて少ない。

LA-MRSA の動物とヒトとの間での伝播は第一義的に物理的な接触による。また、MRSA が定着した養豚農場では、MRSA に汚染した塵埃により作業者への感染が起こるとの報告がある。ただし、LA-MRSA のヒト・ヒトの伝播は極めてまれとされる。(参照101)

2. ハザードの耐性機序及び薬剤耐性決定因子の出現及び選択の可能性 (1) ハザードの TC 系耐性機序

Staphylococcus 属における TC 系耐性では、能動的薬剤排出及びリボソーム保護の 2 種類が主な耐性機構として知られている。

黄色ブドウ球菌において、薬剤排出ポンプが発現した場合は TC に対して耐性となるが、 MINO に対しては感性となる。一方、リボソーム保護では、TC や MINO を含む第 1 及び第 2 世代 TC 系に対して耐性を付与する。ただし、グリシルサイクリン系(第 3 世代 TC 系)抗生物質である TGC に対しては、いずれも耐性に寄与しない。(参照 69、135、136)また、これら以外に、多剤排出ポンプのうち MFS、MATE 及び SMR 型の 3 種類が黄色ブドウ球菌でみられ、 $in\ vitro$ では MATE 型多剤排出ポンプによる TGC への感受性低下が報告されている。(参照 51、52)

黄色ブドウ球菌における tet 遺伝子の検出状況及び TC 系耐性の表現型を表 21 に示した。

_

 $^{^{26}}$ 豚由来 ST9:5 株、養豚従事者由来 ST9 及び ST1: それぞれ 3 株及び 2 株の計 10 株。 TGC 耐性株 8 株の内訳は不明。

表 21 黄色ブドウ球菌における tet 遺伝子の検出状況及び TC 系耐性の表現型

		耐性	松林	
菌種	等			(参照)
<u> </u>	. 14	薬剤排出	リボソーム保護	(> ///V
Staphylococcus	属で報告されて	<u>tet(K)</u> , tet(L), tet(38),	tet(M), tet(O), tet(S),	5, 51, 57, 137
いる TC 系耐性遺	伝子 1)2)	tet(42), tet(43), tet(45)	tet(W), tet(44)	
LA-MRSA ST398	8で報告されて	tet(K), tet(L)	tet(M)	51
いる TC 系耐性遺	伝子			
LA-MRSA ST398	8における存在	プラスミド又は染色体	トランスポゾン又は染	51, 138, 139
部位		上	色体上	
	TC	R	R	16, 140
黄色ブドウ球菌	DOXY	S	R	141
の TC 系感受性	MINO	S	R	16, 140, 141
	TGC	S	S	16, 140
	TC	R	R	139
MRSA³)のTC系	DOXY	R	R	139
感受性	MINO	S	R	139
	TGC	-	-	-

下線: 黄色ブドウ球菌の主要な TC 系耐性遺伝子。

- 1) 加えて、Staphylococcus 属ではTC系耐性決定因子として、tet(U)遺伝子(耐性機序不明)と mepA遺伝
- 子 (MATE 型多剤排出) が報告されている。(参照 51)
- 2) 黄色ブドウ球菌では tet(K)遺伝子が最も一般的にみられる。(参照 5)
- 3) ポーランドのヒト臨床由来株及び欧州の由来不明株。

(2) ハザードの薬剤耐性決定因子

表 21 に示したとおり、黄色ブドウ球菌の主要な TC 系耐性遺伝子には、tet(K) (薬剤排出)及び tet(M) (リボソーム保護)がある。tet(K)遺伝子のみを保有する場合は MINO に対しては感受性を示し、tet(M)遺伝子を保有する場合は MINO を含めて TC 系に対して耐性となる。(参照 70、135、136)近年欧州で問題となっている LA-MRSA ST398 は通常多剤耐性であり、tet(M)遺伝子を保有し、TC、MINO 等に耐性である。(参照 51、104)tet(L)遺伝子は黄色ブドウ球菌での保有率は高くないが、LA-MRSA ST398 での保有率はそれよりも高く、tet(L)遺伝子保有株のほとんどは tet(M)遺伝子、tet(M)及び tet(K)遺伝子等の他の TC 系耐性遺伝子を保有する。(参照 50)

また、黄色ブドウ球菌の mepRAB 遺伝子クラスターは MarR family 抑制タンパク (mepA 遺伝子発現抑制が知られている MepR)、MATE 型多剤排出ポンプ (MepA) 及び機能不明タンパク (MepB) をコードしている。MepA は TGC を基質としており、invitro で mepA 遺伝子を過剰発現させると TGC への感受性が低下するとの報告がある。(参照 51、52、142、143)

①薬剤耐性決定因子の分離状況

JVARM の病畜由来細菌モニタリングにおける黄色ブドウ球菌の薬剤感受性調査では、 2000 年度にメチシリン耐性遺伝子(mec 遺伝子)が牛及び豚から 1 株ずつ分離されている。それ以外の年度では、tet 及び mec 遺伝子の検査は行われていない。(参照 39)

また、[III. 1. (1)②]に記載したとおり、2012年の調査で mecA、norA、ermB、ermT、

tet(38)、tet(L)、tet(M)及び tet(S)遺伝子を保有する MRSAST398 の分離が報告されている。(参照 120)

②黄色ブドウ球菌において tet 遺伝子が TC 系の MIC に与える影響

各種 TC 系耐性遺伝子を保有する黄色ブドウ球菌の実験株又は標準株に対する TC、MINO 及び TGC の MIC の報告では、薬剤排出タンパク遺伝子の tet(K)遺伝子保有株では MINO 及び TGC の MIC 上昇はみられないが、RPP 遺伝子の tet(M) 遺伝子保有株では MINO の MIC 上昇がみられる(表 22)。(参照 140)

表 22 黄色ブドウ球菌の保有 TC 系耐性遺伝子の異なる株に対する TC、MINO 及び TGC の in vitro 抗菌活性

系統*	耐性遺伝子	MIC (μg/mL)						
		TC	MINO	TGC				
UBMS 88-7	tet(K)	>32	0.25	0.5				
UBMS 88-5	tet(M)	>32	4	0.5				
UBMS 90-1	tet(M)	>32	4	0.25				
UBMS 90-2	tet(M)	32	2	0.25				
UBMS 90-3	感性	0.12	0.06	0.25				
ATCC 29213	コントロール	0.25	0.06	0.5				
Smith	感性	0.12	0.06	0.25				

^{*:1989~1994}年の米国及びカナダの臨床由来株

(3) 突然変異による薬剤耐性の獲得

TC 系耐性は、プラスミド又はトランスポゾンによる耐性遺伝子獲得によるメカニズムが主である。(参照 2)

突然変異による耐性獲得としては、グラム陽性菌の Propionibacterium acnes、Streptococcus pneumoniae 及び Mycoplasma bovis 並びにグラム陰性菌の Helicobacter pylori では 16S rRNA の点突然変異による TC 系耐性が報告されている。(参照144) また、グラム陽性菌の Bacillus subtilis、E. faecium、E. faecalis 及び黄色ブドウ球菌並びにグラム陰性菌の大腸菌、Acinetobacter baumannii、Neisseria gonorrhoeae 及び Klebsiella pneumoniae では、30S リボソームタンパク S10 をコードする rpsJ 遺伝子の点突然変異又は欠失変異による TC 又は TGC 耐性が報告されており、S. pneuminiae では 30S リボソームタンパク S3 をコードする rpsC遺伝子の点突然変異による TGC 耐性が報告されている。(参照 144)

黄色ブドウ球菌における突然変異による耐性獲得率については余り報告されていない。 (参照2)

また、第1及び第2世代 TC 系と TGC 間の交差耐性はないとされているが、大腸菌を用いた $in\ vitro$ の試験で、tet(A)、tet(K)、tet(M)及び tet(X)遺伝子に人為的にアミノ酸置換を起こした場合、いずれも大腸菌に対する TGC の MIC の顕著な増加を示し、特に変異 Tet(A)及び Tet(X)産生株では臨床的に意義のある MIC(それぞれ $2\mu g/mL$ 及び $3\mu g/mL$)に達したとの報告がある。ただし、変異 Tet(X)以外では、TGC と第1及び第2世代 TC 系

の化学的構造の違いから、TGC 耐性獲得に伴い TC、DOXY 及び MINO の MIC は低下した。(参照 141) 野外株での同様の変異の報告はない。

(4)薬剤耐性決定因子の細菌間での伝達の可能性

[Π . 5. (2)]に記載したとおり、TC 系耐性遺伝子は、ヒト、動物及び環境中から分離された様々な細菌から検出されている。これは、TC 系耐性遺伝子の大部分が接合性プラスミドやトランスポゾンと関連しており、細菌間での伝達が起こりやすいためであると考えられる。 (参照 2、5)

tet(K)及び tet(L)遺伝子は、ヒト、動物、土壌等に関連するグラム陽性菌に広く分布している。 1990 年代後半には、それまで抗生物質耐性因子が報告されていなかった *Mycobacterium* 属や *Nocardia* 属からも tet(K)及び tet(L)遺伝子が検出され、TC 系耐性グラム陽性菌とこれらの属や *Streptomyces* 属の間で遺伝子交換が起きたことが示唆された。 (参照 2、5)

tet(M)遺伝子は、接合転移性トランスポゾンTn916Tn1545ファミリーとの関連が深い。Tn916 (tet(M), 15 kbp)は E. faecalis で最初に発見された接合転移性トランスポゾンであり、その後Tn1545 (tet(M), cml) が S. pneumoniae から発見された。接合転移性トランスポゾンは、プラスミドの関与なしに、供与菌の染色体から受容菌の染色体へ菌と菌の接合により転移することを特徴とするトランスポゾンである。(参照 63、66、67) Tn916の接合転移頻度は供与菌によって異なり、 $<10^8\sim10^4$ である。接合転移頻度に影響を与える因子は供与菌の挿入部位におけるTn916両側の6 個の塩基配列とされている 27 。(参照 65、67、145、146)

tet(S)遺伝子については、Streptococcus intermedius の Tn916S 上に存在することが示されている。(参照 137、147) また、tet(S)遺伝子保有 E. faecalis からプラスミドを持たない E. faecalis 又は Listeria monocytogenes への接合伝達では、供与菌当たり 10^{-4} ~ 10^{-9} の伝達頻度であることが示されている。(参照 2、5、148) tet(O)遺伝子は接合因子と関連はなく、接合性プラスミド上にあるときのみ伝達可能であり、Streptococcus 属及びカンピロバクターの中で伝達される。tet(Q)遺伝子はグラム陽性菌でみられ、接合因子上に位置しており、マクロライド耐性に関与する ermF遺伝子とリンクしていることが示されている。(参照 2、5)

(5)TC 系の耐性選択圧及び交差耐性

① 耐性選択圧

黄色ブドウ球菌の 11 株について、OTC 添加寒天培地上で漸次濃度を高めながら継代し、

27 宿主 DNA に挿入された Tn916の両側の塩基配列の一方は宿主 DNA 挿入部位の 6 個の標的塩基と、他方は元の宿主 DNA に挿入されていたときの Tn916 両側の 6 塩基のどちらか一方の塩基から構成される。 両側 6 個のそれぞれの塩基配列は異なる。接合転移に際しては両側の 6 塩基の 5'末端の外側と内側の一本鎖 DNA が切られ、次に残りの一本鎖の内側と外側が切られ、互い違いの 6 塩基の一本鎖の切断面をもつ Tn916 DNA 断片が形成される。この切断面をのりしろ(heteroduplex)とする非複製環状中間体が形成される。次に非複製環状中間体は、接合伝達性プラスミドと同様に、接合起点(oriT)から始まる一本鎖 DNA が IV 型分泌機構を通して受容菌に伝達されると同時に受容菌内で環状 2 重鎖 DNA が合成され、受容菌 DNA の 6 個の標的 挿入塩基に挿入される。(参照 64~67、254)

30 代後の同菌の OTC に対する耐性獲得度を検討したところ、感受性は $1/20\sim1/80$ に低下した。(参照 2、149)

牛及び鶏由来黄色ブドウ球菌の 3 株について、OTC 添加培地を用いた試験管内耐性獲得試験を行った。そのうちの 1 株では、継代 6 代目までは耐性が認められず、7 代目で MIC 値が 2 倍となり、20 代目で MIC 値が 128 倍という緩い耐性化がみられた。他の 2 株の 20 代目の MIC 値は 64 倍及び 256 倍であった。(参照 2、150)

tet(M)遺伝子を保有する黄色ブドウ球菌は、発育阻止濃度以下の TC で前処理することにより、tet(M)の mRNA 転写物量が増加し、TC 耐性度が上昇することが報告されている。 (参照 5)

② 交差耐性

OTC 及び CTC 耐性を有する黄色ブドウ球菌は、同じ第1世代 TC 系の TC 及び DMCTC に対して交差耐性を示す。また、第2世代の DOXY 及び MINO に対しては、耐性機序が tet(M)遺伝子等によるリボソーム保護である場合は交差耐性を示す可能性がある。(参照 2)

グリシルサイクリン系(第3世代 TC 系)の TGC については、耐性機序が tet(X)遺伝子による薬剤不活化の場合は、第1及び第2世代と交差耐性を示す可能性があるが、[II. 6. (1)②]に記載したとおり、農林水産省でJVARM の病畜由来黄色ブドウ球菌株を用いて TC、DOXY、MINO 及び TGC の間の交差耐性について調査したところ、TGC との交差耐性は認められなかった。(参照 75)

③ 共耐性

Tn916Tn1545ファミリーに属する接合性トランスポゾンはグラム陽性球菌に広範に存在し、<math>tet(M)遺伝子を単独で(Tn916等)又は他の耐性遺伝子とともに(Tn1545等)保有する。グラム陽性菌の Streptococcus 属、Staphylococcus 属及び Enterococcus 属は、トランスポゾン上に tet(M)及び ermB 遺伝子を同時に保有することが一般的である。(参照 5)

デンマークの豚由来の MRSA ST398 が保有するプラスミド上に tet(M)遺伝子と同時に cfr遺伝子等が存在したことが報告されており(参照151)、TC 系と LZD 等との共耐性を起こす可能性がある。

また、全ゲノムシーケンス解析(Whole-genome sequence typing)に基づく系統発生の調査により、LA-MRSA ST398 はヒト由来 MSSA を起源とし、家畜への伝播に伴って病原因子を喪失し、その後 TC 系耐性遺伝子 (tet(M)) 及びメチシリン耐性媒介因子 (SCCmec) を獲得したことが推察されている。家畜由来の MRSA 及び MSSA の ST398 はほぼ tet(M) を保有していたが、ヒト由来の ST398 には存在しなかった。家畜生産における TC 系使用は MRSA 又は MSSA の区別なく tet(M)を保有する黄色ブドウ球菌 ST398 を選択すると考えられる。MRSA は、家畜生産における広域スペクトラムのセファロスポリン系の使用による選択や亜鉛等の金属の使用による共選択を受ける可能性がある。(参照 104、152)

(6)使用量

[II. 1. (4)]において TC 系の動物用医薬品及び飼料添加物としての推定使用量を記載した。

動物用医薬品については、特に使用量の多い豚について、投与経路別の推定年間販売量を表 23 に示した。(参照 18)

大部分は経口投与剤(飲水添加剤又は飼料添加剤)であり、年間 240 トン前後販売されている。注射剤の割合は少なく、豚における TC 系の年間販売量の 0.4%程度である。

表 23 豚に使用される動物用医薬品としての TC 系の推定年間販売量(投与経路別) (原 末換算) (kg)

投与		原末換算量(kg)/年									
経路	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
経口	271,388	234,691	260,708	245,802	245,473	243,161	236,101	232,520	235,488	238,359	
注射	1,336	1,189	996	1,262	1,086	1,066	972	954	851	717	

飼料添加物については、そのほぼ 100%が鶏に使用されている。なお、鶏で使用可能な期間は成分規格等省令に基づき肉用鶏でふ化後おおむね3週間以内、それ以外の鶏でおおまれ 10週間以内となっている。

2009~2016 年度の OTC-Q 及び CTC の検定合格数量は、2,100 kg 前後で推移しており、飼料添加物検定合格数量全体や動物用医薬品としての TC 系の販売量と比較すると少ない。(参照 18、20)

IV. 暴露評価に関する知見

暴露評価では、評価指針の第2章第2の2に基づき、ヒトがハザードに暴露され得る経路を明らかにするとともに、各経路でのハザードの増加又は減弱の程度を推定し、畜産食品を介してハザードの暴露を受ける可能性及びその程度を評価する。暴露評価の範囲は、家畜又は家畜から生産された畜産食品が農場から出荷された時点から、ヒトがこれらの畜産食品を入手し、摂取する時点までとする。

1. 畜産食品の消費量

家畜由来の畜産食品の年度別需給の推移を表 24 に示した。(参照153) 一人当たり消費量はほぼ横ばいで推移している。

表 24 牛、豚及び鶏由来食品の年間 1 人当たり消費量(純食料ベース) (kg)

品目	消費量		年度									
— НП 🗀	旧具里	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
牛肉	消費量(kg)	5.7	5.7	5.8	5.9	6.0	5.9	6.0	5.9	5.8	6.0	
十四	自給率(%)	43	44	43	42	40	42	41	42	40	38	
牛乳	消費量(kg)	93.1	86.0	84.5	86.4	88.6	89.4	88.9	89.5	91.9	91.3	
乳製品	自給率(%)	66	70	71	67	65	65	64	63	62	62	
豚肉	消費量(kg)	11.5	11.7	11.5	11.7	11.9	11.8	11.8	11.8	12.2	12.4	
	自給率(%)	52	52	55	53	52	53	54	51	51	50	

鶏肉	消費量(kg)	10.7	10.8	11.0	11.3	11.4	12.0	12.0	12.2	12.6	13.0
病内	自給率(%)	69	70	70	68	66	66	66	67	66	65
心自以口	消費量(kg)	17.1	16.7	16.5	16.5	16.7	16.6	16.8	16.7	16.9	16.9
鶏卵	自給率(%)	96	96	96	96	95	95	95	95	96	97

注:自給率は重量ベース

2. ハザードを含む当該細菌の生物学的特性

ハザードとして特定した TC 系耐性黄色ブドウ球菌(TC 系耐性 MRSA 等を含む。)について、黄色ブドウ球菌の一般的な生物学的特性を中心に整理した。TC 系感性菌と耐性菌で生物学的特性が異なること等を示す知見がある場合はその点を記載した。

(1)抵抗性、生残性及び増殖性

平成 21 年度食品安全確保総合調査「食品により媒介される感染症等に関する文献調査報告書」より黄色ブドウ球菌の食品中での生残性等に関する項目を表 25 に示した。(参照99、154)

黄色ブドウ球菌は、乾燥、冷蔵、冷凍又は室温での保存では抵抗性がある。(参照155、156)低温条件下での生残性については、−20℃で24時間の冷凍保存後のニシン刺身表面の菌数低下は生じず、凍結に対する黄色ブドウ球菌の耐性が高いことが報告されている。(参照157)

表 25 黄色ブドウ球菌の食品中での生残性等

	項目		概要
微生物等に	生化学的性料	犬	通性嫌気性のグラム陽性球菌。耐塩性であり、食塩濃度 0~15%の培地中で増殖する。また、コアグラーゼ産生を示し、ウサギ血漿を凝固する。細胞壁にプロテイン A という特異タンパクを保有する。
寺に関す	毒素		エンテロトキシン(SE)は極めて耐熱性が高く、100℃、20 分間の加熱によっても完全に失活しない。また、種々のタンパク質分解酵素に対しても抵抗性を示す。
媒介食	食品中での増殖性・生	温度	本菌の増殖温度は5~8~47.8℃(至適30~37℃)。SE産生温度は10~46℃(至適35~40℃)。
路に関	残性	pH 水分活性	本菌の増殖 pH は 4.0~10.0(至適 6.0~7.0)。SE 産生 pH は 4.0~9.8(至 適 6.5~7.3)。 0.90~0.94~0.99 以上。
媒介食品に関する情報	殺菌条件		62℃、30分の加熱で死滅。次亜塩素酸ソーダ 100ppm、1分で死滅。ただし、食品中で産生された SE は耐熱性が高く同条件で失活しない。

(2) 生体外における生存能力と分布状況

黄色ブドウ球菌は全ての食料生産動物及びヒトを含むほとんどの恒温動物の皮膚及び粘膜にみられ、広く存在する細菌である。生肉、バルク乳等の動物由来食品で通常検出されるが、他菌との競争に弱く増殖できないため、生の食品(乳房炎罹患牛由来の生乳を除く。)で食中毒を起こすことはまれである。(参照 156、158)

黄色ブドウ球菌は食品製造工場の環境中でもよく生存し、加工機械の細菌叢の一部とな

(3) ヒトの腸内細菌叢として定着する可能性

黄色ブドウ球菌は、ヒトや動物の皮膚、鼻腔等の常在菌である。健常人でも特に鼻前庭及び咽喉頭の常在細菌叢の一部として定着しており、その保菌率は約30%とみられている。(参照2、99)健常人及び入院患者の調査をまとめた報告では、MRSAを含む黄色ブドウ球菌の鼻腔保菌者は40%、腸管保菌者は20%であり、鼻腔と腸管に由来する菌株は同一であることが多いが、腸管保菌者のうち37%は鼻腔での保菌がみられなかった。(参照159)成人は一般に、ブドウ球菌の感染に対してかなりの抵抗力がある。(参照155)

MRSA についても、健常者の皮膚及び粘膜において一過性に存在するが、MRSA 保菌者に対して広域スペクトル抗菌薬を不適切に長期投与すると、正常細菌叢が崩れ、菌交代現象により MRSA が優勢となる場合がある。 (参照 2、160)

また LA-MRSA ST398 では、ヒトから家畜への宿主適応過程において、ヒトへの定着性、伝達性及び病原性の低下が起きたと考えられている。LA-MRSA ST398 のヒトへの第一義的な感染経路は家畜との接触と考えられているが、家畜飼養従事者の鼻腔及び咽喉頭における LA-MRSA ST398 の感染持続性は家畜との接触期間に依存し、高暴露集団であっても家畜との接触がない場合の感染は主に一過性であることから、LA-MRSA はヒトにおける持続的定着性に乏しいと示唆されている。(参照 104、161)

デンマークの調査では、家畜との明らかな接触のない都市居住者で LA-MRSA CC9/CC398²⁸株の感染がみられ、ヒト、動物及び食品由来 CC9/CC398 分離株との系統解析において家きん及び家きん肉由来株が多く含まれる系統群 (clade) に属していた。著者らは家きん肉によるヒトへの感染の媒介が示唆されるとし、ヒトでの LA-MRSA の疫学における食品媒介性伝播の役割は小さいという一般的な見解を変えるために十分な知見ではないものの、LA-MRSA の幅広い宿主への高い適応性を示したとものと考察している。(参照162)

(4) ヒトの常在菌又は病原菌に薬剤耐性決定因子が伝達する可能性

Staphylococcus 属から黄色ブドウ球菌への mecA 遺伝子の水平伝達や腸球菌から黄色ブドウ球菌への VCM 耐性決定因子の水平伝達についての報告がある。(参照163、164)バクテリオファージによる形質導入を介して黄色ブドウ球菌と Staphylococcus epidermidis、S. xylosus、L. monocytogenes 等の他菌種との間で耐性遺伝子が伝達されることが報告されており、可動性遺伝因子である staphylococcal pathogenicity island (SaPI) に挿入された tet(M)遺伝子の伝達が確認されている。(参照165)

ヒト並びに豚肉及び鶏肉加工施設の食品由来 *Listeria* 属(*L. monocytogenes* 及び *L. innocua*)の tet(M)遺伝子は、分子系統解析において黄色ブドウ球菌、*Lactobacillus* 属、 *Enterococcus* 属の tet(M)遺伝子相同性グループと同一又は近傍に分類され、他のグラム 陽性菌から獲得されたことが示唆されている。(参照 2、166)

自然界での薬剤耐性の伝達についての知見は限られているが、ヒトや動物宿主への細菌

²⁸ CC398 のゲノムに CC9 の spa 遺伝子を含む領域が組み込まれた新たなハイブリッド型。

の定着時に伝達が生じると考えられている。黄色ブドウ球菌の系統内では頻繁に可動性遺伝因子の交換が生じていることがヒト由来株の疫学的知見から示唆されている。(参照 165) 黄色ブドウ球菌 ST398 の豚及びヒト由来株を同時に皮膚へ接種したノトバイオート豚での定着試験において、豚由来株からヒト由来株への可動性遺伝因子の伝達は菌接種後 4 時間で認められ、16 日間の実験期間中にバクテリオファージの伝達及びプラスミドのファージ媒介性の伝達が高頻度に起こり、様々な可動性遺伝因子を保有する菌株が鼻腔及び体表に定着したことが報告されている。このことから、可動性遺伝因子の獲得が定着における宿主適応に寄与する可能性が示唆されている。なお、本試験では tet(K)遺伝子保有プラスミドの伝達はみられたが、Tn916 tet(M)の伝達はみられなかった。(参照167) 一方、ヒト腸内における豚由来株からヒト腸内細菌叢への耐性決定因子やその他の可動性遺伝因子の伝達性を示唆する報告はない。

黄色ブドウ球菌は感染時や埋め込み医療機器表面においてバイオフィルムを形成するが、バイオフィルム形成過程では接合及び薬剤耐性遺伝子の伝達・可動化が促進されること、浮遊培養の状態よりもバイオフィルム中でファージの放出が亢進し、形質導入の可能性が高まることから、バイオフィルム環境において遺伝子伝達が高頻度に生じている可能性が示唆されている。(参照 165)

抗菌性物質が薬剤耐性の伝達に関与する可能性としては、致死的濃度以下の抗菌性物質(シプロフロキサシン、オキサシリン等)による SOS 応答の誘導がファージを介した耐性遺伝子の伝達を引き起こす可能性、又は β -ラクタム系によるリコンビナーゼ遺伝子 ccrC1 の発現誘導が染色体からの SCCmec の切出しを起こし、SCCmec が接合性プラスミドに転移する可能性が示唆されている。(参照 165)

3. 家畜及び畜産食品が農場から出荷されヒトに摂取されるまでの経路

農場では、家畜伝染病予防法(昭和 26 年法律第 166 号)に基づく飼養衛生管理基準により、家畜の伝染性疾病の予防が図られるとともに、家畜生産段階における HACCP の考え方が取り入れられた「家畜の生産段階における衛生管理ガイドライン」(2002 年)及び「畜産農場における飼養衛生管理向上の取組認証基準(農場 HACCP 認証基準)」(2009年)により、微生物等の汚染防止対策が講じられている。(参照168)

と畜場ではと畜場法施行規則(昭和28年厚生省令第44号)、食鳥処理場では食鳥処理の事業の規制及び食鳥検査に関する法律施行規則(平成2年厚生省令第40号。以下「食鳥検査法施行規則」という。)において、HACCPシステムの考え方を含んだ衛生管理の導入を図るため、と畜場又は食鳥処理場の衛生管理基準及び構造設備基準が定められており、食肉又は食鳥処理段階における微生物汚染防止対策が図られている。(参照169)

また、2014 年 4 月に改正されたと畜場法施行規則及び食鳥検査法施行規則において、と畜業者等及び食鳥処理業者の講ずべき衛生措置の基準が改正され、従来の基準に加え、新たに HACCP を用いて衛生管理を行う場合の基準が規定された。なお、事業者はいずれかの基準を選択できる。(参照170)

生食用牛肉については、2011年10月に、食品衛生法(昭和22年法律第233号)に基づく食品、添加物等の規格基準(昭和34年厚生省告示第370号)が改正され、生食用食肉(生食用として販売される牛の食肉(内臓を除く。))の規格基準が策定された。肉塊

の表面から深さ 1 cm 以上の部分までを 60℃で 2 分間以上加熱する方法又はこれと同等以上の殺菌効果を有する方法で加熱殺菌を行うことや腸内細菌科菌群が陰性でなければならないこと等が規定された。さらに、同規格基準の改正により、2012 年 7 月には、牛肝臓の生食用としての販売・提供は禁止された。 (参照171、172)

豚の食肉(内臓を含む。)については、2015年6月に、同規格基準の改正により、食肉販売店、飲食店等において生食用としての提供が禁止された。(参照173)

鶏の食肉については、厚生労働省及び消費者庁が、食鳥処理場から出荷される鶏肉の加熱用の表示等の情報伝達の指導や、飲食店での加熱用鶏肉の生又は加熱不十分による食中毒発生時の指導・監視について通知した。(参照174、175) 一部の地方自治体において、生食用食鳥肉の衛生対策(黄色ブドウ球菌陰性の成分規格目標、と体の体表の焼烙による殺菌の基準目標等)が定められ、関係事業者に対し指導等を行っている(参照174、176、177)

牛乳については、乳及び乳製品の成分規格等に関する省令(昭和 26 年厚生省令第 52 号) に基づく牛乳の殺菌条件 (63°Cで 30 分間加熱殺菌するか、又はこれと同等以上の殺菌効果を有する方法で加熱殺菌 (国内では $120\sim135$ °Cで $1\sim3$ 秒での加熱処理が主流)) することが規定されている29。 さらに、乳製品についても牛乳と同等の加熱殺菌をしたものが製造・加工に用いられている。(参照178)

鶏卵については、卵選別包装施設(GP センター)の衛生管理要領(平成 10 年 11 月 25 日厚生省通知第 1674 号)により、卵の衛生管理について定められており、洗卵に当たっては、洗浄水及びすすぎ水は、150ppm 以上の次亜塩素酸ナトリウム溶液又はこれと同等以上の効果を有する殺菌剤を用いることとされている。黄色ブドウ球菌の殺菌条件(表 25)を超える濃度での処理が行われている。また、液卵は食品、添加物等の規格基準により、殺菌液卵はサルモネラが検体 25 g につき陰性、未殺菌液卵は、細菌数が検体 1 g につき 1,000,000 以下でなければならないと定められている。同規格基準により、未殺菌液卵を使用して食品を製造、加工又は調理する場合は、70°Cで1分間以上加熱するか、又はこれと同等以上の殺菌効果を有する方法で加熱殺菌しなければならないと定められている。

4. 牛、豚及び鶏由来食品がハザードとなり得る細菌に汚染される可能性及び汚染状況

牛、豚及び鶏では、皮膚及び鼻腔が黄色ブドウ球菌の主な定着部位であるとともに、腸管にも存在している。(参照 115、179、180) このため、と体はと殺解体工程において保菌部位から黄色ブドウ球菌に汚染される可能性がある。また、と体や小売り肉から CA-MRSAと同系統の株が分離されることがあり、食肉処理工程においてヒトから汚染される可能性を示唆している。(参照181~186)

黄色ブドウ球菌は、無芽胞病原菌の中では熱、乾燥、pH 等の細菌の生残性に影響を及ぼす諸因子に対して抵抗性の強い菌である。食品中の黄色ブドウ球菌は容易に死滅せず、50℃前後の高温でも長時間生残し、45℃でも増殖する。また低温にも抵抗性を示し、冷蔵・

_

²⁹ 食品衛生法に基づく特別牛乳さく取処理業の許可を受けた施設では、さく取した生乳を未殺菌又は低温殺菌で処理し、乳等省令で定める成分規格(細菌数 30,000 以下、大腸菌群陰性等)を有する特別牛乳を製造することが可能。2016 年度の許可施設数は全国 5 施設(うち 1 施設が未殺菌乳を製造。)。

冷凍保存では長期間生存する。室温の培地上では数か月間生存する。乾燥した状態でも 2 ~3 か月間生存する。(参照 99、155)

このため、と殺解体工程で黄色ブドウ球菌に汚染された後、食肉等がトリミング、洗浄等の適切な処理が十分されずに出荷され、飲食店の調理場、家庭の台所等に持ち込まれた場合、調理前及び調理中に他の食材を汚染する可能性があるが、調理の際に十分加熱することにより黄色ブドウ球菌は排除されるものと考えられる。

なお、畜産物加工場及び市販食肉における TC 系耐性黄色ブドウ球菌の報告は少なく、 また検出率も低い。(参照 2)

牛の生乳は少数の黄色ブドウ球菌を含んでおり、乳房炎由来の牛乳の場合菌数は高くなる。鶏卵が汚染する原因としては、卵殻表面に黄色ブドウ球菌等のグラム陽性菌が検出されたことから、鶏腸管(糞便)由来が考えられる。未殺菌液卵からはグラム陰性菌が検出されたことから、卵殻を通して内部に侵入すると考えられる。(参照 158、187)

したがって、生乳及び鶏卵では黄色ブドウ球菌による汚染の可能性があるが、[W. 3.] に記載したとおり、食品衛生法に基づく乳等省令及び規格基準を遵守することにより、黄色ブドウ球菌は排除されるものと考えられる。

(1)健康家畜における汚染状況

2004~2006年に1県の農場又はと畜場で採取された家畜糞便又はと畜場で採取されたスワブ検体からの黄色ブドウ球菌及びMRSAの検出状況を表26に示した。黄色ブドウ球菌の陽性率は、牛(鼻腔スワブ)で13%(13/100検体)、豚(鼻腔スワブ)で28%(28/100検体)、肉用鶏(皮膚スワブ)で9%(9/100検体)であった。黄色ブドウ球菌はアンピシリン及びTCに最も高い耐性率を示し、市販又は食肉市場で購入した牛肉由来株のTC耐性率(6.8%)は豚肉由来株(34.9%)及び鶏肉由来株(29.1%)に比べて有意に低かった。食肉由来検体でのMRSA分離率は3%(9/300検体)であり、TC耐性は豚肉由来株のみでみられた(50%(2/4株))。以上から、食料生産動物及び食肉におけるMRSAの陽性率は低かった。(参照188)

表 26 家畜糞便及びスワブ並びに食肉における黄色ブドウ球菌及び MRSA の陽性率及び TC 耐性率

		黄色ブ	ドウ球菌	うちI	MRSA
検体の種類	検体数	陽性検体数(陽	TC 耐性検体数	陽性検体数(陽	TC 耐性検体数
		性率(%))	(耐性率(%))	性率(%))	(耐性率(%))
乳用牛糞便	25	0	-	0	-
肉用牛糞便	25	0	-	0	-
豚糞便	25	0	-	0	-
採卵鶏糞便	25	2 (8.0)	0	0	-
肉用鶏糞便	25	0	-	0	-
牛鼻腔スワブ	100	13 (13.0)	4 (30.8)	0	-
豚鼻腔スワブ	100	28 (28.0)	16 (57.1)	0	-
肉用鶏皮膚ス	100	9 (9.0)	8 (88.9)	0	_
ワブ	100	9 (9.0)	0 (00.9)	U	
牛肉	100	44 (44.0)	3 (6.8)	1 (1.0)	0

豚肉	100	63 (63.0)	22 (34.9)	4 (4.0)	2 (50.0)
鶏肉	100	79 (79.0)	23 (29.1)	4 (4.0)	0

(2) と畜場、食鳥処理場等における汚染状況

① と畜場

2006年に、と畜場 1 施設において、搬入された肥育豚 20 頭について、同一と体のと殺開始直後から最終工程までの各処理工程における汚染状況が調査された(表 27)。その結果、と殺・放血直後の外皮で黄色ブドウ球菌、サルモネラ及びカンピロバクターが高率に分離され、また黄色ブドウ球菌は外皮臀部と最終枝肉の足根部で約半数の個体から分離された。足根部の汚染が高い原因としては、フットカッターにより外皮から汚染され、最終枝肉まで付着したものと考察されている。(参照 2、189)

表 27 各処理工程における豚と体からの分離菌の陽性率 (%)

採材処理工程	拭取り部位	黄色ブドウ球菌	サルモネラ	カンピロバクター	リステリア
と殺・放血直後	外皮臀部	賢部 60		55	0
	直腸便	55	5	100	0
最終洗浄直後	最終枝肉(胸部)	30	0	25	0
(急速冷蔵庫内)	最終枝肉(臀部)	15	0	0	0
	最終枝肉(足根部 切断面)	50	0	10	0

n=20

4 県のと畜場 4 施設において、と畜場から牛及び豚の枝肉又は部分肉が搬出される工程について、汚染源としての器具、機械及び作業者が調査された(表 28-1 及び 28-2)。黄色ブドウ球菌は枝肉及び作業従事者の使用手袋から検出され、器具等からは検出されなかった。(参照 2、190)

表 28-1 搬出工程における拭取り細菌検査結果(牛)

調査場所	拭取り検体	検体数	生菌数(CPU/cm²)					陽性率(%)			
神里·扬州		伊平剱	<10	10≦	10²≦	10³≦	10⁴≦	大腸菌群	大腸菌	黄色ブドウ球菌	
せり場	壁	13	1		1	2	9	0.0	0.0	0.0	
	その他	3				3		0.0	0.0	0.0	
搬入出場	床	5			1	4		100.0	60.0	0.0	
(プラット	壁	21	5	6	7	3		0.0	0.0	0.0	
ホーム)	コンベア	19	4	3	9	3		18.2	10.5	0.0	
	枝肉	9	7	2				0.0	0.0	0.0	
	その他	33	23	7	1	1	1	0.0	0.0	0.0	
枝肉保管	ドア入口(木製)	14	7	4	2	1		0.0	0.0	0.0	
冷蔵庫	壁	23	13	3	5	2		0.0	0.0	0.0	
117/24/	枝肉	68	13	28	22	5		23.5	10.3	13.2	
	その他	23	5	14	3	1		4.8	0.0	4.3	
懸垂型	壁	4	4					0.0	0.0	0.0	
搬送車	床	8	4	4				0.0	0.0	0.0	
(1台)	枝肉	9	5	4				22.2	0.0	0.0	
(1 🗇)	その他	6	1	5				0.0	0.0	0.0	
横積型	壁	6	2	3	1			0.0	0.0	0.0	
	床	18	3	2	2	3	8	14.3	0.0	0.0	

搬送車	枝肉	4	1		2	1		_	25.0	25.0
(5台)	その他	3		1	2			_	0.0	0.0
作業	樹脂製手袋	29	4	12	13			12.0	0.0	6.9
従事者	軍手	33		6	17	9	1	28.6	12.1	6.1
70 7 1	長衣服	3			3			_	0.0	0.0
	長靴底	9	1	1	1	6		16.7	11.1	0.0
その他		63	9	20	21	12	1	34.4	21.9	23.9

表 28-2 搬出工程における拭取り細菌検査結果 (豚)

細木担託	拭取り検体	検体数		生菌数	(CPU	J/cm ²)		陽性率(%)			
調査場所		快冲级	<10	10≦	10²≦	10³≦	10⁴≦	大腸菌群	大腸菌	黄色ブドウ球菌	
搬入出場 (プラットホ ーム)		5	2		2	1		0.0	0.0	0.0	
枝肉保管	通路(汚染部)	8		2	2	4		-	0.0	0.0	
冷蔵庫	壁	5	2	1	1		1	_	-		
1,177,74	枝肉	44			16	12	16	42.9	14.3	0.0	
懸垂型	壁	6	5		1			_	0.0	0.0	
搬送車	床	4	1				3	_	0.0	0.0	
(2台)	その他	6		1	3	2		_	0.0	0.0	
横積型	壁	28	3	12	2	8	3	0.0	0.0	0.0	
搬送車	床	28	1	3	3	10	12	40.0	0.0	11.1	
(5台)	その他	11		10	1			_	0.0	0.0	
作業	樹脂製手袋	6		5	1			16.7	0.0	16.7	
従事者	軍手	12		3	2	4	3	0.0	16.71	8.3	
从 子 口	衣服	6	2	4				-	0.0	0.0	
	長靴底	6			1	5		_	16.7	0.0	
その他		5	5	•	•	•	•	34.4	21.9	23.9	

② 食鳥処理場における汚染状況

全国のブロイラー処理場 82 施設及び成鶏処理場 31 施設において、食鳥と体、予備冷却水及び本冷却水の細菌汚染状況が調査された。食鳥と体が本冷却槽から出てきた開始時間直後では、と体において黄色ブドウ球菌はブロイラー処理場の 37%から、成鶏処理場の55%から検出された。予備冷却水においては、ブロイラー処理場の11%から、成鶏処理場の12%から、本冷却水においては、ブロイラー処理場の9%から、成鶏処理場の7%から検出された。黄色ブドウ球菌の検出率は、食鳥と体では処理時間の経過であまり変わらなかったが、予備冷却水及び本冷却水では120分後で陽性施設率、平均菌数ともに高い傾向がみられた。(参照2、191)

食鳥処理場内の処理工程ごとの黄色ブドウ球菌の分離では、全体で 506 検体中 89 検体 (17.6%) から黄色ブドウ球菌が検出されたが、PCR 法による mecA 遺伝子の検査において MRSA は検出されなかった。健康鶏の鼻腔及び皮膚翼下部に付着・定着しているコアグラーゼ II 型菌が本調査において生鳥及びと体に共通して検出されていること、また、冷却前後のと体及び製品から分離された TC 耐性株が生鳥からも分離されていることから、生鳥に由来する黄色ブドウ球菌が生産工程においても継続的に検出されることが示唆されている。 (参照 2、192)

(3) 食品材料、食品及び調理施設等における汚染状況

食品材料及び食品(市販食品を除く。)並びに食品製造施設、調理施設等に由来する9,844 検体のうち、畜産食品の調査結果を表29に示した。MRSAが検出された19 検体を種類 別でみると、未加熱惣菜5 検体、加熱惣菜4 検体、弁当類3 検体、魚介類2 検体、調理施 設・器具の拭取り2 検体、水産加工品(魚粉)1 検体、肉類加工品1 検体及び洋生菓子1 検体であった。著者らは、食品衛生学的にみて、食品から検出される黄色ブドウ球菌は主 にヒトからの汚染と考えられることから、検出された黄色ブドウ球菌及びMRSAは主に 調理従事者あるいはその周辺の器材・器具由来のものと考えることが妥当と考察している。 (参照2、193)

表 29 畜産食品における黄色ブドウ球菌及び MRSA の検出状況

検体の種類	検体数	黄色ブドウ球菌陽性検 体数(陽性率(%))	うち MRSA 陽性検体数 (陽性率(%)) ¹⁾
生肉	276	136 (49.3)	0 (0)
肉類加工品	132	7 (5.3)	1 (0.8)
卵と液卵	135	9 (6.7)	0 (0)
乳製品	71	5 (7.0)	0 (0)

検体採取期間:1997~2000年 1) 陽性率は検体数に占める割合

(4) 小売畜産食品等における汚染状況

国内の食品の黄色ブドウ球菌の汚染率は、生乳及び乳製品、豚肉、鶏肉並びに牛肉で20~40%である。(参照194~196)

黄色ブドウ球菌及び MRSA について、畜産食品における全国的な汚染状況の調査は行われていない。(参照 2)

国内の市販食肉からの黄色ブドウ球菌及びMRSAの検出状況に関する報告を表30に示した。

2002 年 5 月~2003 年 8 月に 47 都道府県の小売店から採取された鶏の生肉及び内臓 444 検体のうち、292 検体(65.8%)が黄色ブドウ球菌陽性であった。この 292 検体から 分離された黄色ブドウ球菌 714 株のうち、鶏もも生肉及び鶏肝臓から mecA 遺伝子を保有する SCCmecIV の MRSA2 株 (0.3%) が分離された。これは、国内の鶏生肉からの MRSA 分離例についての初の報告であった。なお、この 2 株は、ヒト由来株に特徴的な生物型(biovar)であったことから、加工工程で鶏生肉を取り扱う従業員によって伝播されたものであることが示唆された。(参照 184)

2002 年 5 月~2004 年 9 月に分離された牛精肉由来 18 株、豚精肉由来 18 株、鶏精肉由来 196 株、2005 年 5~10 月に分離された牛ひき肉由来 26 株、豚ひき肉由来 30 株、鶏ひき肉由来 32 株の黄色ブドウ球菌において、mecA 遺伝子を保有する MRSA は豚ひき肉由来の 1 株だけであった。(参照197)

2003 年 4 月~2011 年 3 月に採取された市販食肉 305 検体 (牛肉、豚肉、鶏肉、しか肉、いのしし肉、かも肉等。輸入食肉を含む。) のうち、68 検体 (22.3%) が黄色ブドウ球菌陽性であった。この 68 検体から分離された黄色ブドウ球菌 78 株のうち、10 株の

(豚肉 1 検体、鶏肉 2 検体及びかも肉 1 検体)から分離され、鶏肉及びかも肉由来株は ST8/t1767/ SCCmec IV であった。なお、散発下痢症患者由来 MRSA 14 株との分子疫学 的比較では、ヒト糞便由来 1 株と鶏肉及びかも肉由来の 1 株ずつの POT 型及び PFGE パターンが一致した。著者らは、少なくともコアグラーゼ III型・エンテロトキシン C (SEC) 型のうち一部特定の遺伝子型の MRSA は、食肉等の食品を介して市中に蔓延している可能性があることが示唆されたが、この MRSA が生産段階で家きんが保菌していたものか、又は食鳥処理工程でヒトから汚染されたものかは不明であるとしている。(参照 101、198)

2008~2009 年に分離された牛ひき肉由来 3 株、豚肉由来 2 株,豚ひき肉由来 1 株、鶏肉由来 1 株及び台湾産あひる肉由来 1 株の MRSA は、ST8/spat1767/SCCmec IVI(牛ひき肉及び豚ひき肉由来 2 株)、ST8/spat1767/SCCmec 型別不能(豚肉及び鶏肉由来 2 株)、ST8/spa t4133/SCCmec IVI(牛ひき肉 1 株)、ST88/spa t1028/SCCmec IV(豚肉 1 株)、ST59/spa t3385/SCCmec V(牛ひき肉由来 1 株)及び ST573/spa t3525/SCCmec IV(あひる肉由来 1 株)であった。これらの MRSA 株のうち、ST8/spat1767 又は t4133/SCCmec IVIの 3 株は、ヒト由来市中感染型 MRSA 10 株(ST8/spa t1767 又は t17177/SCCmec IVI)及び牛乳房炎由来 MRSA 1 株(ST8/spa t1767/SCCmec IVI)と同一の PFGE パターンを示し、疫学的関連性が示唆された。(参照 123)

表 30 市販食肉からの黄色ブドウ球菌及び MRSA の検出状況

検体	分離年月	都道府県 数/ 小売店舗 数	検体数	黄色ブド ウ球菌陽 性検体数 (陽性率 (%))	黄色ブド ウ球菌分 離株数	MRSA 陽 性検体(菌 株)数(陽性 率(%))	型別	(参照)
鶏肉(内臓	2002 年 5	47/ 145	444	292 (65.8)	714	2 (0.3%)	SCC mec	184
を含む。)	月 ~2003						IV	
	年8月							
鶏精肉	2002.5~2	47/131			196	0		197
豚精肉	004.9	2/18			18	0		
牛精肉		2/18			18	0		
鶏ひき肉	2005.5~1	2/32			32	0		
豚ひき肉	0	2/30			30	1 (3.3)	NT	
牛ひき肉		2/26			26	0		
鶏肉	2003.4~2	1/1	107	38 (35.5)	41	2 (1.9)	ST8/t1767	198
	011.3						/ SCC mec	
H-rh			95	12 (12.6)	13	0	IV	
牛肉							NT	
豚肉			65	5 (7.7)	5	1 (1.5)	N1	
鹿肉			21	9 (42.9)	13	0		
いのしし 肉			5	2 (40.0)	3	0		
馬肉			5	0	0	0		
狩猟鳥肉			4	0	0	0		
かも肉			2	2 (100)	3	1 (50.0)	ST8/t1767	
,, Or ,			_	_ (100)	J	1 (33.3)	/ SCCmec	
							IV	
うずら肉			1	0	0	0		
食品(食肉	2008~200	不明/不明	5,435	_	-	8 (0.15)		123

を含む。)	9	(食肉検体		2) 牛・	ST8/t1767	
		数不明)	月	豕ひき	/SCC <i>mec</i>	
				柯	IVl	
				2) 豚	ST8/t1767	
				肉•鶏肉	/SCC <i>mec</i>	
					型別不能	
			(1)牛ひ	ST8/t4133	
			3	き肉	/SCC <i>mec</i>	
					IVl	
			(1)豚肉	ST88/t102	
					8/SCCme	
					c IV	
			((1) 牛ひ	ST59/t338	
			3	き肉	5/SCCme	
					cV	
			(1)あひ	ST573/t35	
			Ž	る肉	25/SCC <i>m</i>	
					$ec\mathrm{IV}$	

NT : not tested

V. 影響評価に関する知見

影響評価では、評価指針の第2章第2の3に基づき、本評価で特定したハザードに暴露 されることにより起こり得るヒトの健康上の影響及びヒト用抗菌性物質の医療における重 要性を考慮して、ヒトにおける治療効果が減弱又は喪失する可能性及びその程度を評価す る。

以下に、2017年に実施した食品安全確保総合調査「食品を介してヒトに伝播される薬剤耐性菌に関する文献等調査報告書(テトラサイクリン系抗生物質等に関するヒト医療における状況)」において整理した知見を活用した。(参照199)

1. ハザードとなり得る細菌の暴露に起因して生じる可能性のあるヒトの疾病

ハザードとなり得る細菌である黄色ブドウ球菌による暴露の結果、生じる可能性のある ヒトの疾病として、毒素型食中毒、膿痂疹、せつ、よう、毛嚢炎等の皮膚・軟部組織感染 症、TSS、敗血症、心内膜炎、肺炎、骨髄炎に加え、種々の院内感染症等がある。

(1) 発生原因及び発生状況

① 発生原因

a. 黄色ブドウ球菌

黄色ブドウ球菌による菌血症及び呼吸器感染症は、外鼻孔、鼻前庭等の常在菌による内 因性の感染が多いと示唆されることが、遺伝学的調査によって報告されている。(参照 200、201)

b. MRSA 感染症

一般的に、MRSA の経口摂取では、胃酸及び胃腸管内の正常細菌叢が MRSA の胃腸管内への定着を阻止し、感染は成立しないと考えられる。(参照202)世界的には食品を媒介した MRSA による疾病事例報告は 2 例あるが、一方は毒素型食中毒であり(参照203)、他方は保菌者による汚染食品が院内感染の原因となった例であることから(参照202)、現段階で MRSA 伝播又は感染症の原因として汚染食肉はあまり重要ではないと考えられる。(参照204)

MRSA 腸炎の発生機序として、上気道に定着した MRSA の胃への侵入、胃切除や抗潰瘍剤の投与による胃酸 pH の上昇に伴う MRSA の増殖及び腸への侵入、抗菌性物質投与による腸内細菌叢の変動及び MRSA の選択・増殖があると考えられ、菌交代性腸炎の一つである。重症化には TSST-1 (Toxic Shock Syndrome Toxin-1) 等の毒素が関与しているとされている。MRSA 腸炎の報告は少数である。(参照205~207)

HA-MRSA は院内感染の主要な原因菌であり、多くの施設において分離される菌のトップを占めている。HA-MRSA は入院患者や医療関係者、医療施設から分離され、主に病院内で感染する。 (参照 2、208) 50 歳以上の易感染者が感染を起こしやすく、感染のリスク因子として、入院又は手術、長期療養施設への長期入所、透析、カテーテルの留置等が挙げられる。 (参照 2、232)

上記の HA-MRSA リスク因子に該当しない患者(過去1年以内に入院歴がない外来患者)から分離される MRSA を CA-MRSA として区別しており、これによる死亡例が1997年以降世界的にみられるようになった。感染者の多くは小児から青年までの層で、皮膚接触によって感染する。感染リスクが高い環境やリスク因子としては、学校、軍隊、競技チーム、刑務所、入れ墨等が挙げられる。(参照2、209)

LA-MRSA のヒトに対する影響は知見が限られているが、これまで幾つかの報告がなされている。欧州では、豚での ST398 株の陽性率が高い地域では、院内感染に大きな影響を与えている可能性が指摘されている。オランダの報告では、豚飼養密度が高い地域の病院は MRSA 罹患率が 3 倍上昇し(参照 129、204)、ドイツの報告では、家畜飼養密度が高い地域の病院は入院時 MRSA 定着患者の 22%が農場由来の株であったとしている(参照 204、210)。また、欧州では ST398 株の院内感染症事例の報告があり、更に同株はヒトに対して心内膜炎、軟部組織感染症、人工呼吸器関連肺炎等重症感染症を引き起こすことが報告されている。(参照 204)動物からヒトへの LA-MRSA の伝播経路は、LA-MRSA の疫学的・遺伝学的報告から、主に動物との物理的な接触によるものと考えられている。(参照 204)

国内においては食品を介したヒトからのLA-MRSAの分離報告はない。白血球溶解毒素(Panton-Valentine leukocidin: PVL)遺伝子を保有するMRSAST398による死亡事例が報告されているが、筆者らは遺伝子解析の結果等から中国のヒト由来CA-MRSAの株に近縁であり、動物関連の株ではないと推測している。(参照211)

② 病原体検出状況

MRSA 等を含む黄色ブドウ球菌の検出状況について、病原微生物検出情報 (IASR) 及び院内感染対策サーベイランス (JANIS) で公開されている情報を整理した。

a. IASR

IASR 月報における各都道府県市の地方衛生研究所等からの黄色ブドウ球菌分離報告30について、2009~2018年の食中毒菌としての分離報告数を図 3-1に、感染性胃腸炎患者由来病原菌としての分離報告数を図 3-2に示した(それぞれ月別及び週別の報告数を年単位に合計している。)。(参照 199、212、213)

³⁰ IASR における黄色ブドウ球菌は、感染症法で規定された報告対象疾患の起因菌ではないため、本報告は全国の地方衛生研究所等から寄せられた情報を累積したものである。長年にわたり実施されてきたため、ある程度の動向は把握できると考えられるが、厳密な定量性を有していないことに注意を要する。(参照 199)

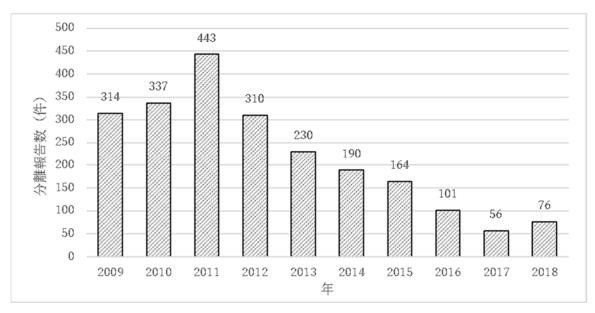


図 3-1 IASR における食中毒菌としての黄色ブドウ球菌の分離報告数

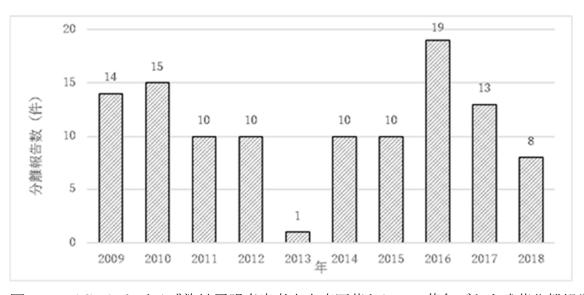


図 3-2 IASR における感染性胃腸炎患者由来病原菌としての黄色ブドウ球菌分離報告数

b. JANIS

JANIS 検査部門公開情報 2016 年 $1\sim12$ 月年報によると、入院として報告された検体のうち、黄色ブドウ球菌が分離された患者数の割合は図 4 のとおりである。(参照 199、214) なお、JANIS の参加医療機関数は、2012 年(734 機関)から 2016 年(1,696 機関)にかけて年々増加していることから、検体数の増加を考慮して割合で表示している。(参照 199)

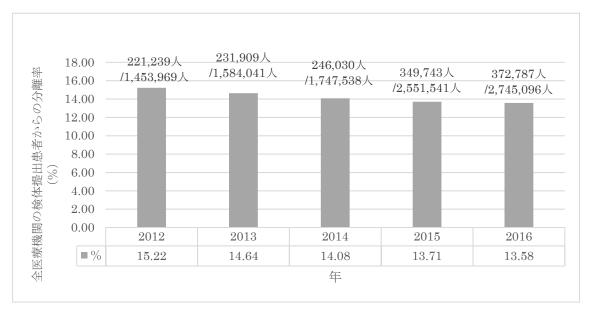


図4 JANISにおける黄色ブドウ球菌検出検体提出患者数の割合(入院)

③ 感染症発生状況

a. 感染症発生動向調査 (NESID)

厚生労働省の感染症発生動向調査 (NESID) 年別報告数 (五類定点把握) における 2007 ~2016 年の MRSA 感染症報告数を表 31 に示した。全国約 500 か所の基幹定点 (月単位報告) による報告数としては年間 20,000 件程度が報告されており、定点 (指定届出機関) 当たりでは年間約 50 件となっているが、2013 年以降は減少傾向にある。 (参照 2、199、215)

VRSA 感染症は世界的にもまれで、感染症発生動向調査年別報告数(五類全数把握)によると、届出対象となった 2003 年 11 月から 2016 年までにおいて、国内での発生はない。 (参照 199、216)

表 31 NESID 年別報告数における MRSA 感染症患者報告数(定点把握)

年	MRSA 感染症 定点	把握(月単位報告)
+	報告数	定点当たり
2007	24,926	53.15
2008	24,898	52.75
2009	23,359	49.70
2010	23,860	50.77
2011	23,463	49.82
2012	22,129	46.78
2013	20,155	42.43
2014	18,082	37.83
2015	17,057	35.61
2016	16,338	34.11

b. JANIS

厚生労働省の JANIS 全入院患者部門のデータによれば、2008~2017 年の入院患者にお

ける MRSA 新規感染症患者数の割合は 3~6%程度であった (表 32)。(参照 2、217) この期間において、JANIS が対象とする薬剤耐性菌による新規感染症発症患者数の合計のうち、MRSA が占める割合は 90%程度であった。(参照 217)

表 32 院内感染対策サーベイランス全入院患者部門における MRSA 新規感染症患者数

年	新規 MRSA 感染症患者数 (罹患率(%))	総入院患者数
2008	14,385 (6.05)	2,377,350
2009	15,093 (5.27)	2,865,088
2010	13,178 (4.96)	2,655,911
2011	17,162 (4.81)	3,571,708
2012	16,577 (4.28)	3,874,874
2013	15,509 (3.61)	4,292,431
2014	16,081 (3.39)	4,749,180
2015	17,756 (3.27)	5,422,251
2016	17,728 (3.11)	5,693,149
2017	17,454 (3.03)	5,766,473

c. 人口動態統計調査

厚生労働省の人口動態統計調査結果によると、黄色ブドウ球菌に関連する感染症による 死亡者数は表 33 のとおりである。(参照 190、218)

表 33 人口動態調査における黄色ブドウ球菌が関連する感染症を死因とする死亡者数

X 00 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	死亡者数/年						- <i>>></i>			
死因	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
MRSA 腸炎	-	-	-	-	-	-	-	23	24	14
ブドウ球菌性 食中毒	0	0	0	0	0	0	0	0	0	0
黄色ブドウ球 菌による敗血 症	222	278	269	246	218	226	177	207	195	198
MRSA 敗血 症	209	257	248	218	200	202	152	173	161	164
VRSA 敗血症	0	0	0	0	0	0	0	0	0	0
薬剤耐性黄色 ブドウ球菌敗 血症	0	1	0	0	0	1	0	1	0	0
その他	13	20	21	28	18	23	25	33	34	34
MRSA 感染症 (部位不明)	62	54	55	50	69	50	58	48	56	64
VRSA 感染症 (部位不明)	0	0	0	0	0	0	0	0	0	0
MRSA 肺炎	1,020	945	992	900	888	772	631	649	611	381
VRSA 肺炎	1	0	0	0	0	0	0	0	0	0
SSSS	1	4	1	1	1	4	3	2	8	3

黄色ブドウ球 菌による新生 児の敗血症		0	0	0	0	0	0	0	0	1
計	1,309	1,281	1,317	1,197	1,176	1,052	869	929	894	661

SSSS:ブドウ球菌性熱傷様皮膚症候群

(2) 重篤度

① 黄色ブドウ球菌感染症

黄色ブドウ球菌は、ヒトや動物の皮膚等の体表面に常在しており、通常の感染防御能力を有する健常者に対しては一般的に無害である。しかし、易感染者に対しては、皮膚の切創、刺創等に伴う化膿症(創傷感染)、毛嚢炎、膿痂疹等の皮膚軟部組織感染症、肺炎、敗血症といった様々な重症感染症を引き起こす原因菌となる。(参照 2、219)

黄色ブドウ球菌は多様な病原因子を産生し、一部の典型的な分泌型毒素による症候群を除き、黄色ブドウ球菌感染症にはこれらの多様な病原因子が関与すると考えられる。黄色ブドウ球菌感染症に関与する代表的な分泌型毒素について、表 34 に示した。(参照 100、158)

表 34 黄色ブドウ球菌感染症に関与する代表的な分泌型毒素

感染症	分泌型毒素
せつ、よう、壊死性肺炎(まれ)	PVL
水疱性膿痂疹、ブドウ球菌性熱傷様皮膚症候群(SSSS)	ETA, ETB, ETD
毒素性ショック症候群(TSS)	TSST-1, SE
新生児 TSS 様発疹症(NTED)	TSST-1
術後感染性腸炎	TSST-1, SE

PVL:白血球溶解毒素、 ET:表皮剥奪毒素、SE:エンテロトキシン、TSST:毒素性ショック症候群毒素

② MRSA 感染症

一般的に MRSA は通常の黄色ブドウ球菌と比べて病原性に違いはなく、それらと同程度の各種感染症を起こす。 (参照 2、219) 易感染状態の患者の MRSA 感染症に対して抗菌化学療法を実施する場合、各種の抗菌薬に抵抗性を示すため、治療が難渋し重症化する事例も多い。 (参照 219)

MRSA 感染では、一般的には外科系疾患を有する患者で問題となる場合が多く、骨折後の骨髄炎、開腹・開胸手術後の術後感染等で治療困難な例も多い。また、悪性消耗性疾患(血液疾患、がん等)を基礎疾患に持つ患者並びに新生児及び高齢者ではリスクが高くなる。(参照 2、219)また、MRSA では、TSST-1 以外に少数ではあるが表皮剥脱毒素を産生する株も散見され、新生児 TSS 様発疹症(Neonatal TSS-like Exanthematous Disease: NTED)以外にブドウ球菌性熱傷様皮膚症候群(Staphylococcal Scalded Skin Syndrome: SSSS)を呈する症例もある。(参照 199、219)

HA-MRSA は PVL の産生株の頻度は低い。 (参照 101、220、221)

CA-MRSA による主な疾患として皮膚軟部組織感染症が挙げられ、その予後は良好であるが、まれに肺炎を起こすと致死率が高い。(参照 101、222) 肺炎では、組織の破壊による空洞や化膿病巣、膿胸等の壊死病変がみられることが多い。(参照 101) 海外では、これらの病変の形成には病原因子の1つとして PVL が関与していると報告されている。(参照 101、223、224) 米国等では SCC mec type IV、PVL 遺伝子を有する強毒性の USA300 が重大な問題となっている。(参照 101、225) 国内の CA-MRSA では従来 PVL 産生株はまれだったが、近年は増加傾向との報告もみられる。(参照 101、226) 国内における 2008~2009 年での MRSA の菌株では、SCC mec IV の検出は外来患者で 33.3%と、入院患者で 17.8%と、院内型である SCC mec II (HA-MRSA) は外来患者で 59.8%と、入院患者で 17.8%と、院内型である SCC mec IV も検出されつつあるが、PVL 遺伝子の陽性率は SCC mec II では 0%、SCC mec IV で 2.3%であると報告された。(参照 101、227~230)

LA-MRSA ST398 の調査では、SE 及び TSST-1 産生株は極めてまれにしか報告されておらず、動物や家畜関連由来の MRSA ST398 からは PVL 遺伝子はほぼ検出されていない。(参照231)

③ VRSA 感染症³¹

臨床症状としては、一般的な黄色ブドウ球菌による感染と同じで、皮膚の切創、刺創等に伴う化膿、毛嚢炎等の皮膚組織の炎症から、肺炎、腹膜炎、敗血症、髄膜炎等に至るまで様々な症状がある。細菌感染症に対する抵抗力が低下した入院患者等が感染した場合、特に手術後の患者は感染の危険性が高くなり、免疫が低下した人等では、様々な疾患の原因となるいわゆる日和見感染症の原因となる。(参照 199、232)日本において VRSA が出現し増加した場合、VCM による感染症の治療が非常に困難となり、患者の予後を悪化させ、治療期間の延長等により、社会的、経済的損失をもたらすと考えられている。(参照 199、233)

2. 当該疾病のヒト用抗菌性物質による治療

(1)治療方針及び第一選択薬

① 黄色ブドウ球菌感染症

黄色ブドウ球菌は一般的に

黄色ブドウ球菌は一般的に無害だが、易感染者には敗血症、髄膜炎、肺炎、関節炎、皮膚軟部組織感染症等を起こすことがある。抗菌性物質を投与する場合には、感染部位及び感染症起因株の薬剤感受性試験結果を考慮しつつ、第一選択薬としては、セファゾリン等の第1世代セファロスポリン系、ペニシリン系とβ-ラクタマーゼ阻害剤との合剤等があり、それらの中から適切と思われる抗菌性物質を選択して使用する。肺炎や皮膚軟部組織感染症の第二選択薬として、MINOを使用することがある。(参照 97)

患者の便から黄色ブドウ球菌が検出された場合、多くは他の原因による腸炎で、黄色ブドウ球菌は保菌されているだけの状態をみている可能性がある。このため、通常便中から検出される黄色ブドウ球菌 (MRSA を含む。) を治療対象とする状況はまれである。(参照

_

³¹ 感染症法に基づく届出において、「獲得型バンコマイシン耐性遺伝子を保有し、バンコマイシン耐性を示す黄色ブドウ球菌による感染症」と定義されている。(参照 265)

② MRSA 感染症

国内において承認されている抗 MRSA 薬は、注射薬としてアミノグリコシド系(アルベカシン)、グリコペプチド系(VCM 及び TEIC)、オキサゾリジノン系(LZD)及び環状ポリペプチド系(DAP)の 4 系統 5 種類、経口薬としてグリコペプチド系(VCM)及びオキサゾリジノン系(LZD)の 2 系統 2 種類がある。作用機序及び作用様式は個々の抗菌薬で異なるが、いずれも単剤で高い有効性を有する。(参照 2、101、208)

易感染状態の患者の MRSA 感染症に対して抗菌化学療法を実施する場合には、より有効な抗菌薬の選択及び投与法を見極めることが重要なポイントとなる。MRSA の治療には抗 MRSA 薬の投与が必須というわけでない。薬剤感受性を確認すると多くの抗菌薬に感受性を示す場合があり、有効な薬剤があれば代わりにそれが用いられる。特に、CA-MRSA はオキサシリン以外のほとんどの抗菌薬に対して感受性を示すとされており、 β -ラクタム系以外 32 で感受性を示す薬剤は CLDM、TC系(MINO)、キノロン系、アミノグリコシド系であることが多いため、これらの薬剤に対する感受性を確認すべきである。(参照 2、101、208)

市中肺炎及び皮膚軟部組織感染症で MRSA の場合、多くは CA-MRSA であるため、ST 合剤等を投与する。感受性が確認できれば MINO も使用できる。(参照 101)

③ VRSA 感染症

国内において、VRSA 感染症に対する推奨薬は特に定められていない。

2002 年に米国で初めて分離された VRSA 株は、*mecA* 及び *vanA* 遺伝子を保有し、 VCM に高度耐性 (MIC≥128 µg/mL) である一方、MINO、ST 合剤、クロラムフェニコール、RFP、LZD、QPR/DPR 等には感受性を示したと報告されていることから (参照234)、 TC 系 (MINO) が使用できる可能性がある。

(2) 当該疾病の治療におけるハザードの影響

MRSA 感染症、特に CA-MRSA 感染症の治療において、薬剤感受性試験の結果により TC 系 (MINO) が用いられることがある。そのため、CA-MRSA が TC 系耐性を有する ことにより、使用できる薬剤の選択肢が減るという可能性がある。

ただし、[II. 4. (2)]に記載したとおり、第2世代 TC 系は脂溶性で組織浸透性が高く、TC 耐性菌に対しても有効性を示すことがある。(参照 2)国内では、CA-MRSA には ST 合剤や MINO が有効であるほか、サーベイランス結果からは CLDM、キノロン系、カルバペネム系及びファロペネムも有効なことが示唆されており(参照 101)、使用に当たっては個々の感受性試験で確認することが重要となる。

-

³² CLSI の M100-S15 (2005 年度版) によると、「MRSA はオキサシリンに耐性を示す限り、たとえオキサシリン以外の β -ラクタム系に *in vitro* で感受性を示しても臨床上の有効性は低いと考えられるため、感受性とは表記しないこと」との注意書きがあり、基本的に β -ラクタム系は使用しない。(参照 2、208) CA-MRSA は β -ラクタム系に感性を示す場合があるが、 β -ラクタム系で容易に高度耐性化するので β -ラクタム系は使用しない。(参照 101)

また、国内では上述のとおり 4 系統 5 種類の抗 MRSA 薬が承認されている。HA-MRSA は各施設に特有の株が存在し薬剤感受性パターンが異なるため、抗 MRSA 薬を含め抗菌薬に対する感受性を把握することが必要である。(参照 101)

なお、TGC は、米国及び欧州では抗 MRSA 薬として承認されている。国内では 2012 年 9 月に承認されたが、MRSA は適応菌種となっていない。 (参照 2、16)

(3) ヒト臨床分野における TC 系耐性菌の状況等

JANIS の $2012\sim2016$ 年の検査部門データに基づく MSSA 及び MRSA の MINO 耐性 の経年的推移を図 $5\cdot1\sim5\cdot4$ に示した。(参照 199)

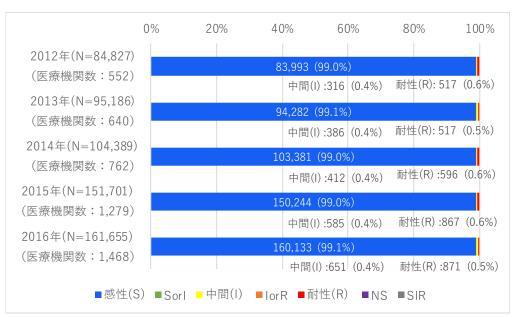


図 5-1 MSSA の MINO に対する SIR 判定数(入院)



図 5-2 MSSA の MINO に対する SIR 判定数(外来)

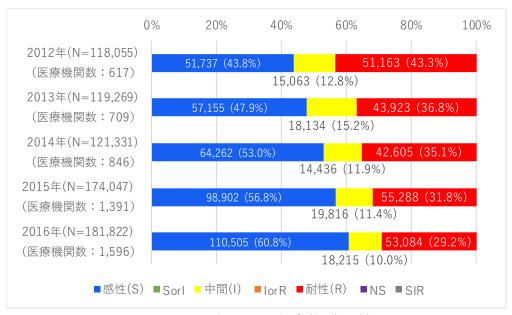


図 5-3 MRSA の MINO に対する SIR 判定数(入院)

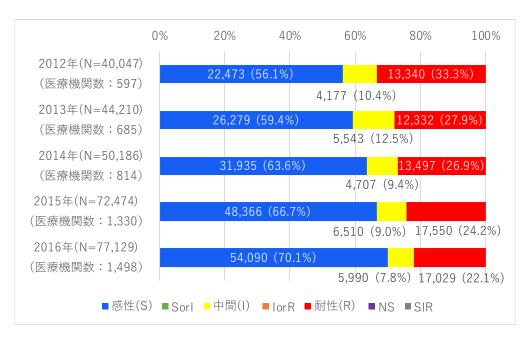


図 5-4 MRSA の MINO に対する SIR 判定数 (外来)

また、国内で分離された黄色ブドウ球菌の臨床由来株における TC 系の MIC を表 35 に示した。

表 35 黄色ブドウ球菌の臨床由来株における TC 系の MIC

Q L / 1	/	⊐ - гнн/гі		*******	U = 0 / (- 1				
医療		供試	菌株						
機関 数	由来	種類	株数	薬剤	MIC 範囲	MIC_{50}	MIC_{90}	耐性率(%)	(参照)
0.4	術部感	MSSA	71	MINIO	0.06~1.56	0.13	0.39	NA	235
34	染	MRSA	240	MINO	0.06~32	8	16	NA	
0	し、アドナト	MSSA	197	MINO	≦0.5	NA	≦0.5	0	236
8	200	MRSA	76	MINO	≦0.5	NA	≦0.5	0	
	INTERIT DE	SA	205		≦0.06~32	0.25	16	NA	237
32		MSSA	75	MINO	≦0.06~0.5	0.125	0.25	NA	
	恩朱	MRSA	130		≦0.06~32	8	16	NA	
	nsG nT/ 0.0	SA	189		≦0.06~16	0.25	16	NA	238
46		MSSA	76	MINO	≦0.06~16	0.125	0.125	NA	
	恩朱	MRSA	113		≦0.06~16	8	16	NA	
	版 加 中	SA	130		≦0.06~16	0.25	16	NA	239
46		MSSA	54	MINO	≦0.06~16	0.125	0.25	NA	
	恐呆	MRSA	76		0.125~16	16	16	NA	
97	術部感	MSSA	40	MINO	0.06~0.25	0.125	0.125	0	240
21	染	MRSA	103	MINO	0.06~32	8	16	45.6	
14	血液	MRSA	830	MINO	≦ 0.125~>32	8	16	42.2	241
	INTERIT DE	SA	206		≦0.06~32	0.125	16	23.3	242
34		MSSA	102	MINO	≦0.06~8	0.125	0.125	0	
	恐朱	MRSA	104		≦0.06~32	8	16	46.2	
42	尿路感 染	MRSA	55	MINO	0.125~16	16	16	52.7	243
₹ 111	皮膚感	MSSA	26 a 24 b	TC	0.25~0.5 0.25~0.5	$0.5 \\ 0.25$	0.5 0.5	NA	244
个奶	染	MRSA	32 ^a 18 ^b	10	0.25~>64 0.25~64	64 0.25	>64 0.5	NA	
		MSSA	438	MINO	≦0.06~16	0.125	0.125	0.5	245
40	軟部組 織感染	MRSA	141		≦0.06~32	0.125	16	36.2	
	HXT6 HTT. 1211	SA	232		≦0.06~16	0.25	16	25.9	246
35		MSSA	113	MINO	≦0.06~16	0.125	0.25	1.8]
	恐朱	MRSA	119]	≦0.06~16	8	16	48.7]
27	術部感 染	MRSA	86	TGC	0.125~1	0.5	1	0	247
24	術後腹	MRSA	38	TGC	0.125~1	0.5	1	42.1	248
	機関数 34 8 32 46 46 27 14 34 42 不明 40 35 27	医療機数344832Formula (Mark)34832464646462714424242423442744040404035404040404040402724404040404040	医療機数 由来 供試 34 術部感 MRSA MRSA MRSA MRSA MRSA MRSA MRSA MRSA	 医療機関数	 医療機関数	 医療機関数 由来 種類 株数 薬剤 MIC 範囲 34 待部感 MSSA 71 MINO 0.06~1.56 34 決	機関 数	接機関数 由来 接越菌株 薬剤 MIC 範囲 MIC 50 MIC 90 MIC 90	接機関数 由来 供款歯株 種類 株数 薬剤 MIC 範囲 MIC 50 MIC 90 m性率(%) m性率(%) MIS 3 240 MIS 4 240 MIS 5 0.06~32 8 16 NA 0.06~32 0.25 16 NA 0.06~32 8 16 NA 0.06~32 NA 0.

a:患者年齢 15 歳以上b:患者年齢 15 歳以下

国内の三次医療機関において $2005\sim2012$ 年に分離された MRSA 2,339 株の SCCmec 型及び MINO 耐性状況の経年的変化を表 36 に示した。HA-MRSA の主要な SCCmec 型である II 型の割合は 90.0%($2005\sim2006$ 年)から 74.3%($2011\sim2012$ 年)にかけて有意に低下し、CA-MRSA の主要な SCCmec 型である IV 型の割合は 5.8%($2005\sim2006$ 年)から 16.3%($2011\sim2012$ 年)にかけて有意に上昇した。MINO 耐性率は年次ごとに

有意な低下がみられた。また、SCC mec IV/V の株の MINO 耐性率は SCC mec I/II の株に 比べて有意に低かった。(参照249)

表 36 国内の三次医療機関における MRSA SCC mec 型及び MINO 耐性の経年的変化

				菌株数(割合(%))		
		2005~2006年	2007~2008年	2009~2010年	2011~2012年	合計
		(n=708)	(n=610)	(n=488)	(n=533)	(n=2,339)
SCC <i>mec</i> 型	I	9 (1.3)	19 (3.1)	11 (2.3)	9 (1.7)	48 (2.1)
	II	637 (90.0)	537 (88.0)	405 (83.0)	396 (74.3)	1975 (84.4)
	IV	41 (5.8)	35 (5.7)	51 (10.5)	87 (16.3)	214 (9.1)
	V	2 (0.3)	3 (0.5)	1 (0.2)	7 (1.3)	13 (0.6)
	型別不能	19 (2.7)	16 (2.6)	20 (4.1)	34 (6.4)	89 (3.8)
MINO 耐性	MIC ₅₀	32	16	8	8	16
	MIC_{90}	32	32	32	16	32
	耐性率(%)	73.2	63.6	48.6	47.3	59.6

MIC の単位は µg/mL.。

国内の HA-MRSA 及び CA-MRSA の TC 系耐性を表 37 に示した。

表 37 HA-MRSA 及び CA-MRSA の TC 系耐性

分離		供試菌株		薬剤	耐性株	耐性率	薬剤耐性	(参
年	種別	ST/SCC <i>mec</i>	株数	采用	数	(%)	遺伝子	照)
2003~	CA-MRSA	8/IV/PVL+	3	TC	0			250
2004		30/IV/PVL+	2		1	50	tet(K) プラス	
							ミドpGKT1	
		89/IV	1		0			
		91/IV	2		0			
		89/NT	7		0			
	HA-MRSA	5/II	9		9	100	不明	
		91/IV	2		0			
1980~	HA-MRSA	30/IV/PVL+	6	TC/MINO	3/1	50	<i>tet(</i> K) プラス	251
1990							ミド3株/	
年代							tet(M) 1 株	
2000	HA-MRSA	5/II/PVL+	2		2/2	100	tet(M) 2 株	
年代	CA-MRSA	30/IV/PVL+	2		1/0	50	tet(K) プラス	
							ミド pGKT1	
							1株	
2009~	CA-MRSA	89/II	6	MINO	0			252
2010		2117/II	1		0			
		8/IV	1		0			
		91/IV	1		0			
		121/V	1		0			
		5/NT	1		1	100	不明	
		89/NT	2		0			
2002	CA-MRSA	89/II	6	TC	0			253
		5/IV	1		0			
		81/IV	1		0			
		88/IV	3		0			
		89/IV	1		0			
		91/IV	1		0	<u></u>		

		89/V	4		0			
2000~	CA-MRSA	765/I/PVL+	1	TC	0			254
2008		30/IV/PVL+	6		2	33.3	tet(K)	
							プラスミド	
							pGKT1	
		1335/IV/PVL+	2		0			
$2003 \sim$	CA-MRSA	8/IV	18	TC	0			255
2010		1344/IV	1		0			
		New/IV	2		0			
2008~	CA-及び	-/II	631	MINO	453	71.8	不明	227
2009	HA-MRSA	-/IV	171		8	4.7		
2011	外来患者由	5/II	2	TC/MINO	0			230
	来	30/II	1		0			
		89/II	1		0			
		764/II	14		13/13	92.9	tet(M) 14 株 tet(L) 2 株	
		8/IV	7		2/0	28.6	tet(K) 2 株 tet(M) 1 株	
		30/IV	2		0			
		89/IV	1		0			
		5/V	1	•	0			
		121/V	1		0		<i>tet</i> (M) 1 株	
		772/VI	1		0		000(212) 2 7 7	
2009~	CA-MRSA	30/I	1	MINO			不明	256
2014		8/IV	3				, , , ,	
		30/IV	3	1	***************************************			
		1/V	1					
		59/V	2	•				
			計10	•	1	10.0		
2012~	CA-MRSA	IV, V	13	MINO/DOXY	1/0	7.7/0 a	不明	257
2013		I, II	13	1	11/8	84.6/61.	1	
	HA-MRSA					5 a		
		IV, V	64	1	1/1	1.6/1.6 a		
		I, II, III	129]	105/93	81.4/72.		
						1 a		

a: 非感性(耐性及び中等度耐性)株の割合

VI. 食品健康影響評価の考え方

1. 発生評価、暴露評価及び影響評価の考え方

評価指針に基づき、発生評価、暴露評価及び影響評価に係る現時点での知見から、特定したハザードの定性的な評価を実施する。

各評価に当たっては、原則として、表 38 に示した考え方に基づき、主に 3 つの判断項目について懸念の程度を判断した結果を踏まえ、総合的に評価することとする。

表 38 発生評価、暴露評価及び影響評価における評価区分の判断の考え方

衣。	38 発生評価、泰露評価及び影響評価における評価区分の判断の考え方						
	判断項目		評価区分				
発	①ハザードの出現に係る情報(薬剤耐性機	「大」2項目以	· · · · · · · ·				
生	序、遺伝学的情報等)が懸念されるか	上	能性があり、その程度も大きい。				
評	②ハザードを含む当該細菌の感受性分布が						
価	懸念されるか	「大」1項目又	「中等度」: ハザードが選択される				
	③その他要因(薬物動態、使用方法、使用	は「中」2項目	可能性があり、その程度は中程度				
	量等)が懸念されるか	以上	である。				
		「大」0 項目か	「低度」: ハザードが選択される可				
	①~③について懸念の程度を以下のとおり	つ「中」1 項目	能性があるが、その程度は小さい。				
	判断						
	○懸念が大きい「大」	「小」3項目	「無視できる程度」: ハザードが選				
	○懸念が中程度「中」		択される可能性及びその程度は無				
	○懸念が小さい「小」		視できる程度である。				
暴	①ハザードを含む当該細菌の生物学的特性	「大」2項目以	「高度」: ハザードの暴露を受ける				
露	(生残性、増殖性等) が懸念されるか	上	可能性があり、その程度も大きい。				
評	②ハザードを含む当該細菌による食品の汚						
価	染状況が懸念されるか	「大」1項目又	「中等度」: ハザードの暴露を受け				
	③その他要因(食肉処理工程、流通経路等)	は「中」2項目	る可能性があり、その程度は中程				
	が懸念されるか	以上	度である。				
		「大」0項目か	「低度」:ハザードの暴露を受ける				
	①~③について懸念の程度を以下のとおり	つ「中」1項目	可能性があるが、その程度は小さ				
	判断		۷٬ _۰				
	○懸念が大きい「大」	「小」3項目	「無視できる程度」: ハザードの暴				
	○懸念が中程度「中」		露を受ける可能性及びその程度は				
	○懸念が小さい「小」		無視できる程度である。				
影	①対象薬剤が、「ヒト用抗菌性物質の重要度	「大」2項目以	「高度」: ハザードに起因する感染				
響	ランク付けが I (きわめて高度に重要)」	上	症に対する治療効果が減弱又は喪				
評	かつ「当該疾病の推奨薬」であるか		失する可能性があり、その程度も				
価			大きい。				
	(発生状況、発生原因、症状等)が懸念		「中等度」: ハザードに起因する感				
	されるか		染症に対する治療効果が減弱又は				
	③その他要因(代替薬の状況、医療分野の	以上	喪失する可能性があり、その程度				
	薬剤耐性の状況等)が懸念されるか		は中程度である。				
			「低度」:ハザードに起因する感染				
	①~③について懸念の程度を以下のとおり	つ「中」1項目	症に対する治療効果が減弱又は喪				
	判断		失する可能性があるが、その程度				
	○懸念が大きい(①は該当する)「大」		は小さい。				

○懸念が中程度(①はどちらか一方のみ該	「小」3項目	「無視できる程度」: ハザードに起
当する)「中」		因する感染症に対する治療効果が
○懸念が小さい(①はどちらも該当しない)		減弱又は喪失する可能性及びその
[小]		程度は無視できる程度である。

2. リスクの推定の考え方

評価指針に基づき、発生評価、暴露評価及び影響評価に係る評価結果から、ハザードのリスクを推定する。

リスクの推定に当たっては、原則として、表 39 に示した考え方に基づき、発生評価、 暴露評価及び影響評価の結果を踏まえ、総合的に判断することとする。

なお、影響評価において極めて重篤性が高いと考えられる悪影響が懸念される場合等に あっては、表 39 の考え方にかかわらず、影響評価の結果の重み付けを高くすること等、リ スクを総合的に推定することが必要であると考える。

表 39 リスクの推定の判断の考え方

	評価項目		
①発生評価	②暴露評価	③影響評価	
0777	@7 - Z	@7-7	
◎スコア	◎スコア	◎スコア	リスクの推定の区分
高度(3)	高度(3)	高度(3)	, , , , , , , , , , , , , , , , , , ,
中等度(2)	中等度(2)	中等度(2)	
低度(1)	低度(1)	低度(1)	
無視できる程度(0)	無視できる程度(0)	無視できる程度(0)	
・スコア合計 8~	g		高度:ハザードによるリスクは大き
У (2) Д Д (1	<i>-</i>		V '0
・スコア合計 5~	7		中等度:ハザードによるリスクは中程
一 八二 / 口町 り	1		度である。
・スコア合計 2~	Λ	低度:ハザードによるリスクは小さ	
八二/口町 2	T	٧٠°	
・スコア合計 0~	1	無視できる程度:ハザードによるリス	
	1		クは無視できる程度である。

<別紙 検査値等略称>

略称	名称		
ABC	ATP-binding cassette		
ABK	アルベカシン		
ADI	一日摂取許容量(Acceptable daily intake)		
ASTAG	Australian Strategic and Technical Advisory Group on AMR		
ATP	アデノシン三リン酸		
CA-MRSA	市中感染型 MRSA(Community-acquired MRSA)		
CC	クローナル・コンプレックス (Clonal complex)		
CFU	コロニー形成単位(Colony-forming unit)		
CLDM	クリンダマイシン		
CLSI	臨床検査標準協会(Clinical and Laboratory Standards Institute)		
CRE	カルバペネム耐性腸内細菌科細菌(Carbapenem-resistant Enterobacteriaceae)		
CTC	クロルテトラサイクリン		
CTC-HCl	塩酸クロルテトラサイクリン		
DAP	ダプトマイシン		
DMCTC	デメチルクロルテトラサイクリン		
DMCTC-HCl	塩酸デメチルクロルテトラサイクリン		
DOXY	ドキシサイクリン		
DOXY-HCl	塩酸ドキシサイクリン		
EF	ペプチド鎖延長因子(Elongation facters)		
EMA	欧州医薬品庁(European Medicines Agency)		
ESBL	基質特異性拡張型 β-ラクタマーゼ(Extended-spectrum β-lactamase)		
EU	欧州連合(European Union)		
FAMIC	独立行政法人農林水産消費安全技術センター(Food and Agricultural Materials		
	Inspection Center)		
FDA	米国食品医薬品庁(Food and Drug Administration)		
FAO	国際連合食糧農業機関(Food and Agriculture Organization of the United		
	Nations)		
HACCP	危害分析重要管理点(Hazard Analysis and Critical Control Point)		
HA-MRSA	院内感染型 MRSA(Hospital-acquired MRSA)		
IASR	病原微生物検出情報(Infectious Agents Surveillance Report)		
JANIS	院内感染対策サーベイランス事業(Japan Nosocomial Infections Surveillance)		
JVARM	動物由来薬剤耐性菌モニタリング(Japanese Veterinary Antimicrobial Resistance		
	Monitoring System)		
LA-MRSA	家畜関連型 MRSA(Livestock-associated MRSA)		
LZD	リネゾリド		
MATE	Multidrug and toxic compound excrusion		
MFS	Major facilitator superfamily		
MIC	最小発育阻止濃度(Minimum inihibitory concentration)		
MIC50	50%最小発育阻止濃度		
MIC90	90%最小発育阻止濃度		
MINO	ミノサイクリン		
MINO-HCl	塩酸ミノサイクリン		
MLST	Multilocus sequence typing		
MRSA	メチシリン耐性黄色ブドウ球菌(Meticillin-resistant Staphylococcus aureus)		
MSSA	メチシリン感性黄色ブドウ球菌(Meticillin-susceptible Staphylococcus aureus)		
mRNA	メッセンジャーRNA (リボ核酸)		
NADPH	ニコチンアミドアデニンジヌクレオチドリン酸		
l .	1		

NTED	新生児 TSS 様発疹症(Neonatal TSS-like Exanthematous Disease)		
OIE	国際獣疫事務局(World Organisation for Animal Health)		
OTC	オキシテトラサイクリン		
OTC-HCl	塩酸オキシテトラサイクリン		
OTC-Q	アルキルトリメチルアンモニウムカルシウムオキシテトラサイクリン		
PCU	個体数調整単位(Population correction unit)		
PFGE	パルスフィールドゲル電気泳動(Pulsed-field gel electrophoresis)		
POT	Phage open-reading frames typing		
PVL	白血球溶解毒素(Panton-Valentine leukocidin)		
QPR/DPR	キヌプリスチン/ダルホプリスチン		
RFP	リファンピシン		
RND	Resistance-noduration-cell-division		
rRNA	リボーム RNA		
RPP	リボソーム保護タンパク質(Ribosomal protectin proteins)		
SaPI	Staphylococcal pathogenicity island		
SCCmec	Staphylococcal cassette chromosome mec		
SE	エンテロトキシン(Staphylococcal enterotoxin)		
SMR	Small multidrug resistance		
SSSS	ブドウ球菌性熱傷様皮膚症候群(Staphylococcal Scalded Skin Syndrome)		
ST	Sequence type		
ST 合剤	スルファメトキサゾール・トリメトプリム合剤		
TC	テトラサイクリン		
TC-HCl	塩酸テトラサイクリン		
TEIC	テイコプラニン		
TGC	チゲサイクリン		
TSS	毒素性ショック症候群(Toxic Shock Syndrome)		
TSST-1	毒素性ショック症候群毒素 1 型(Toxic Shock Syndrome Toxin-1)		
tRNA	トランスファー(転移)RNA		
VCM	バンコマイシン		
VRE	バンコマイシン耐性腸球菌 (Vancomycin-resistant <i>Enterococci</i>)		
VREF	バンコマイシン耐性 Enterococcus faecium		
VRSA	バンコマイシン耐性黄色ブドウ球菌(Vancomycin-resistant Staphylococcus		
	aureus)		
WGST	全ゲノムシーケンス解析(Whole-genome sequence typing)		
WHO	世界保健機関(World Health Organization)		

<参照>

- 1. 食品安全委員会. 家畜等への抗菌性物質の使用により選択される薬剤耐性菌の食品健康影響に関する評価指針. 2004.
- 2. 農林水産省. 食品健康影響評価に関する資料(抄録) テトラサイクリン系. 2013.
- 3. O'Neil MJ, Heckelman PE, Dobbelaar PH, Roman KJ, Kenny CM, Karaffa LS. The Merck Indexx: An Encyclopedia of Chemicals, Drugs, and Biologicals. 15 th ed., The Royal Society of Chemistry, 2013.
- 4. National Center for Biotechnology Information: PubChem. https://pubchem. ncbi. nlm. nih. gov/pccompound/ (accessed 2018-5-2).
- Chopra I, Roberts M. Tetracycline antibiotic: Mode of action, applications, molecular biology, and epidermiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232-60.
- 6. Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci. 2010;67(3):419-31.
- 7. 独立行政法人 医薬品医療機器総合機構. 医療用医薬品情報検索. https://www.pmda.go.jp/PmdaSearch/iyakuSearch/ (accessed 2018-3-13).
- 8. 農林水産省. 動物医薬品検査所. 動物用医薬品等データベース. http://www. nval. go.jp/asp/asp_dbDR_idx.asp (accessed 2018-3-13).
- 9. 食品安全委員会. 動物用医薬品、飼料添加物及び農薬評価書 オキシテトラサイクリン、クロルテトラサイクリン及びテトラサイクリン(第 3 版). 2016.
- 10. 高折修二、橋本敬太郎、赤池昭紀、石井邦雄監訳、グッドマンギルマン薬理書[下]. 第12 版、廣川書店、2013.
- 11. JECFA. Toxicological evaluation of certain veterinary drug residues in food, WHO FOOD ADDITIVES SERIES 36, CHLORTETRACYCLINE and TETRACYCLINE. 1995.
- 12. 食品安全委員会. 動物用医薬品評価書 ドキシサイクリン. 2012
- 13. 細川直登. テトラサイクリン系抗菌薬 新規 tigecycline も含めて. 臨床と微生物. 2006;33(5):55-9.
- 14. 薬剤耐性ワンヘルス動向調査検討会. 薬剤耐性ワンヘルス動向調査年次報告書2018. 厚生労働省, 2018.
- 15. 医薬品インタビューフォーム. グリシルサイクリン系抗生物質製剤タイガシル®点滴静脈注用 $50~\mathrm{mg}$ (第 $4~\mathrm{kb}$) . 2015.
- 16. 日本化学療法学会編 チゲサイクリン適正使用のための手引き 2014. 日化療会誌 2014:62(3):311-66.
- 17. 農林水産省. 消費・安全局. 畜産物生産における動物用抗菌性物質製剤の慎重使用に関する基本的な考え方について. 2013. http://www. maff. go.jp/j/syouan/tikusui/yakuzi/pdf/prudent_use. pdf (accessed 2018-2-8).
- 18. 農林水産省. 動物用医薬品検査所. 動物用医薬品、医薬部外品及び医療機器販売高年報 (別冊)各種抗生物質・合成 抗 菌 剤 ・ 駆 虫 剤 ・ 抗 原 虫 剤 の 販 売 高 と 販 売 量 ($2005\sim2016$ 年) . http://www. maff. go.jp/nval/iyakutou/hanbaidaka/index.html (accessed $2018-2\cdot18$).
- 19. 農林水産省. 動物医薬品検査所. テトラサイクリン配合剤の販売量(非公表).
- 20. 独立行政法人 農林水産消費安全技術センター. 特定添加物検定結果(2009~2016 年度). http://www.famic. go.jp/ffis/feed/sub4_kentei.html (accessed 2018-10-24).
- 21. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically important antimicrobials for human medicine 3rd revision 2011. 2012. http://www.who.int/foodsafety/publications/antimicrobials-third/en/.
- 22. FDA/CVM. U.S. Guidance for Industry #152 of Evaluating the safety of antimicrobial new animal drugs with regard to their microbiological effects on bacteria of human health concern. 2003.
- 23. FDA/CVM. Guidance for Industry #213. New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #209. 2013.
- 24. FDA/CVM. FDA Announces Implementation of GFI #213, Outlines Continuing Efforts to Address Antimicrobial Resistance Update. 2017. https://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm535154.htm.
- $25. \quad FDA.\ 2016\ Summary\ Report\ on\ Antimicrobials\ Sold\ or\ Distributed\ for\ Use\ in\ Food-Producing\ Animals.\ 2017.$ $https://www.fda.\ gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM588085.\ pdf.$
- 26. European Commission. Scientific Steering Committee. Opinion of the Scientific Steering Committee on Antimicrobial Resistance 28 May 1999. 1999.
- 27. European Commission. Scientific Steering Committee. 2 nd Opinion on Anti-microbial Resistance. Adopted on 10-11 May 2001. 2001.
- 28. EMA. Answers to the requests for scientific advice on the impact on public health and animal health of the use of antibiotics in animals. 2014. (EMA/381884/2014).
- 29. EMA. European Surveillance of Veterinary Antimicrobial Consumption, 2017. 'Sales of veterinary antimicrobial agents in 30 European countries in 2015' (EMA/184855/2017).
- EMA. Use of glycylcyclines in animals in the European Union: development of resistance and possible impact on human and animal health (EMA/291760/2013). 2013.
 http://www.ema.europa.eu/docs/en_GB/document_library/Report/2013/07/WC500146814. pdf.
- 31. Australian Strategic and Technical Advisory Group on AMR (ASTAG). Importance ratings and summary of antibacterial uses in humans in Australia- Version 1.1. 2015.
- 32. 二宮幾代治.5章 テトラサイクリン系抗生物質. In, 動物の抗生物質. 養賢堂, 1987. p. 213-7.
- 33. 動物用抗菌剤研究会編. 最新データ動物用抗菌剤マニュアル第2版. 東京: インターズー. 2013.
- 34. Dorey L, Pelligand L, Cheng Z, Lees P. Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens *Actinobacillus pleuropneumoniae* and *Pasteurella*

- multocida. J Vet Pharmacol Therap. 2017;40(5):505-16.
- 35. Bousquet É, Nouws J, Terlouw P, De Kleyne S. Pharmacokinetics of doxycycline in pigs following oral administration in feed. Vet Res. 1998;29(5):475-85.
- 36. Bryskier A, eds. Antimicrobial Agents: antibacterials and antifungals. ASM Press, 2005.
- 37. English AR, P'an SY, Gardotki JF, Wright WA. Tetracycline Microbiologic, Pharmacologic, and Clinical Evaluation. Antibiotics Ann.,70 (1953-1954).
- 38. 中沢昭三, 小野尚, 子小林慎子, 小松初子. 新しいテトラサイクリン誘導体 Doxycycline に関する細菌学的研究. Chemotherapy (Tokyo). 1969;17(2):123.
- 39. 農林水産省. 動物用医薬品検査所. 動物用医薬品の事故防止・被害対応業務において収集した病性鑑定由来細菌の薬剤感受性(2008~2015 年度). http://www. maff. go.jp/nval/yakuzai/yakuzai_p3-2.html.
- 40. 農林水産省. 動物医薬品検査所. Report of the Japanese Veterinary Antimicrobial Resistance Monitoring System (2000~2015 年度). http://www. maff. go.jp/nval/yakuzai_yakuzai_p3.html (accessed 2018-8-23).
- 41. 農林水産省. 動物医薬品検査所. と畜場及び食鳥処理場における家畜由来細菌の薬剤耐性モニタリング結果(2012~2015 年度). http://www. maff. go.jp/nval/yakuzai/yakuzai_p3-3.html.
- 42. 山口明人, 澤井哲夫. 抗生物質の細菌細胞膜透過機構. ファルマシア. 1992;28(8):867-71.
- 43. 山口明人. テトラサイクリン系薬の耐性機構. 臨床と微生物. 1995;22(5):31-5.
- 44. Tuckman M, Petersen PJ, Howe AYM, Orlowski M, Mullen S, Chan K, *et al.* Occurrence of tetracycline resistance genes among *Escherichia coli* isolates from phase 3 clinical trials of tigecycline. Antimicrob Agents Chemother. 2007;51(9): 3205-11.
- 45. Roberts MC. Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Front Microbiol. 2011;2:1-8.
- 46. Taylor DE, Chau A. Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother. 1996;40(1):1-5.
- 47. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother. 2003;47(12):3675-81.
- Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The tetracycline destructases: a novel family of tetracyclineinactivating enzymes. Chem Biol. 2015;22(7):888-97.
- 49. Speer BS, Salyers AA. Novel aerobic tetracycline resistance gene that chemically modifies tetracycline. J Bacteriol. 1989;171(1):148-53.
- 50. Speer BS, Bedzyk L, Salyers AA. Evidence that a novel tetracycline resistance gene found on two *Bacteroides* transposons encodes an NADP-requiring oxidoreductase. J Bacteriol. 1991;173(1):176-83.
- 51. Kadlec K, Fessler AT, Hauschild T, Schwarz S. Novel and uncommon antimicrobial resistance genes in livestock-associated methicillin-resistant *Staphylococcus aureus*. Clin Microbiol Infect. 2012;18:745-55.
- 52. Handzlik J, Matys A, Kieć-Kononowicz K. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of gram-positive bacteria *S. aureus*. Antibiotics. 2013;2:28-45.
- 53. 村上聡. 多剤排出トランスポーターの立体構造と作動機構. SPring-8 Information. 2007;12(3):283-6.
- 54. 山口明人. 細菌異物排出タンパクの構造・機能とその発現制御に関する研究. 日細菌誌. 2008:63(4):437-46.
- 55. Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) *Escherichia coli* selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother. 1989;33(8):1318-25.
- Alekshun MN and Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother. 1997;41:2067-75.
- 57. Roberts MC. Tetracycline and MLS nomenclature. http://faculty.washington.edu/marilynr/ (accessed 2018-4-24).
- 58. Asai T, Itagaki M, Shiroki Y, Yamada M, Tokoro M, Kojima A, *et al.* Antimicrobial resistance types and genes in *Salmonella enterica* Infantis isolates from retail raw chicken meat and broiler chickens on farms. J Food Prot. 2006;69:214-6.
- Asai T, Ishihara K, Harada K, Kojima A, Tamura Y, Sato S, et al. Long-term prevalence of antimicrobialresistant Salmonella enterica subspecies enterica serovar Infantis in broiler chicken industry in Japan. Microbiol Immunol. 2007;51(1):111-5.
- 60. Morioka A, Asai T, Nitta H, Yamamoto K, Ogikubo Y, Takahashi T, *et al.* Recent trends in antimicrobial susceptibility and the presence of the tetracycline resistance gene in *Actinobacillus pleuropneumoniae* isolates in Japan. J Vet Med Sci. 2008;70(11):1261-4.
- 61. Yamamoto K, Sasaki Y, Ogikubo Y, Noguchi N, Sasatsu M, Takahashi T. Identification of the tetracycline resistance gene, *tet*(M), in *Erysipelothrix rhusiopathiae*. J Vet Med B Infect Dis Vet Public Health. 2001;48(4):293-301.
- 62. Kobashi Y, Hasebe A, Nishio M, Uchiyama H. Diversity of tetracycline resistance genes in bacreria isolated from various agricultural environment. Microbes Environ. 2007;22(1):44-51.
- 63. Franke AE and Clewell DB. 1981. Evidence for a chromosome-borne resistance transposon (Tn*916*) in *Streptococcus faecalis* that is capable of "conjugal" transfer in the absence of a conjugative plasmid. J Bacteriol. 1981;145(1):494-502.
- 64. Gawron-Burke C and Clewell DB. A transposon in *Strgaweptococcus faecalis* with fertility properties. Nature. 1982;300(5889):281-4.

- 65. Clewell DB and Dunny GM. Chapter 7. Conjugation and genetic exchange in Enterococci. *The Enterococci: Pathogenesis, molecular biology, and antibiotic resistance*. Edited by Gilmore MS, et al. 2002. ASM Press, Washington, DC.
- 66. Weaver KE, Rice LB, et al. Chapter 6. Plasmids and transposons. *The Enterococci: Pathogenesis, molecular biology, and antibiotic resistance.* Edited by Gilmore MS, et al. 2002. ASM Press, Washington, DC.
- 67. Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV, Hayes F. Extrachromosomal and mobile elements in Enterococci: Transmission, maintenance, and epidemiology. In Gilmore MS, Clewell DB, Ike Y, Shanker N (ed.). Enterococci-From commensals to leading causes of drug resistant infection. NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. 2014.
- 68. 日本医薬品集フォーラム監修. オキシテトラサイクリン塩酸塩, テトラサイクリン塩酸塩, デメチルクロルテトラサイクリン塩酸塩, ドキシサイクリン塩酸塩水和物, ミノサイクリン塩酸塩. 日本医薬品集 2010 医療薬. じほう. pp2010:634-635, 1578-1580, 1595-1596, 1666-1667, 2558-2563.
- 69. Jones CH, Tuckman M, Howe AYM, Orlowski M, Mullen S, Chan K, *et al.* Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among *Staphylococcus aureus* isolates from phase 3 clinical trials of tigecycline for complicated skin and skin structure infections. Antimicrob Agents Chemother. 2006; 50(2):505-10.
- Pijpers A, Van Klingeren B, Schoevers EJ, Verheijden JHM, Van Miert ASJPAM. In vitro activity of five tetracyclines and some other antimicrobial agents against four porcine respiratory tract pathogens. J Vet Pharmacol Ther. 1989;12(3):267-76.
- 71. Wright SS, Finland M. Cross-resistanbe among 3 tetracyclines. Proc Soc Exp Biol Med. 1954;85:40-2.
- 72. McMurry LM, Cullinane JC, Levy SB. Transport of the lipophilic analog minocycline differs from that of tetracycline susceptible and resistant *Escherichia coli* strains. Antimicrob Agents Chemother. 1982;22(5):791-9.
- Candanoza C, Ellner PD. Defferences in susceptibility of Enterobacteriaceae and penicillin-resistant Staphylococcus aureus to tetracycline and minocycline. Antimicrob Agents Chemother. 1975;7(3):227-8.
- 74. Horiyama T, Nikaido E, Yamaguchi A, Nishino K. Role of *Salmonella* multidrug efflux pumps in tigecycline resistance. J Antimicrob Chemother. 2011;66:105-10.
- 75. 農林水産省. 動物医薬品検査所. 家畜由来細菌におけるチゲサイクリンとその他のテトラサイクリン系抗菌性物質との耐性の交差について(非公表). 2018.
- 76. Fines M, Leclercq R. Activity of linezolid against gram-positive cocci possessing genes conferring resistance to protein synthesis inhibitors. J Antimicrob Chemother. 2000;45:797-802.
- 77. de Gopegui ER, Juan C, Zamorano L, Pérez JL, Oliver A. Transferable multidrug resistance plasmid carrying *cfr* associated with *tet*(L), *ant* (4)-Ia, and *dfrK* genes from a clinical ethicillin-resistant *Staphylococcus aureus* ST125 strain. Antimicrob Agents Chemother. 2012;56(4):2139-42.
- Batchelor M, Threlfall EJ, Liebana E. Cephalosporin resistance among animal-associated *Enterobacteria*: a current perspective. Expert Rev Anti-Infect There. 2005;3:403-17.
- 79. Jacoby GA, Monuz-Price LS. The new β-lactamases. New Engl J Med. 2005;352:380-91.
- Arlet G, Barrett TJ, Butaye P, Cloeckaert A, Mulvey MR, White DG. Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes Infect. 2006;8:1945-54.
- 81. Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob Agents Chemother. 2004;48:533-7.
- Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. β-lactamases among extended-spectrum βlactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J Antimicrob Chemother. 2005;56:115-21.
- Horton JM, Sing RF, Jenkins SG. Multidrug-resistant Salmonella associated with AmpC hyperproduction. Clin Infect Dis. 1999;29:1348.
- 84. Winokur PL, Brueggemann A, DeSalvo DL, Hoffmann L, Apley MD, Uhlenhopp EK, *et al.* Animal and human multidrug-resistant, cephalosporin-resistant *Salmonella* isolates expressing a plasmid-mediated CMY-2 AmpC β-lactamase. Antimicrob Agents Chemother. 2000;44:2777-83.
- 85. Chiu CH, Su LH, Chu C, Chia JH, Wu TL, Lin TY, et al. Isolation of Salmonella enterica serotype choleraesuis resistant to ceftriaxone and ciprofloxacin. Lancet. 2004;363:1285-6.
- 86. Weill FX, Fabre L, Grandry B, Grimont PAD, Casin I. Multiple-antibiotic resistance in *Salmonella enterica* serotype Paratyphi B isolates collected in France between 2000 and 2003 is due mainly to strains harboring *Salmonella* genomic islands 1,1-B, and 1-C. Antimicrob Agents Chemother. 2005;49:2793-801.
- 87. Madec JY, Poirel L, Saras E, Gourguechon A, Girlich D, Nordmann P, et al. Non-ST131 Escherichia coli from cattle harbouring human-like blaCTX-M-15-carrying plasmids. J Antimicrob Chemother. 2012;67:578-81.
- 88. Fischer J, Rodríguez I, Baumann B, Guiral E, Beutin L, Schroeter A, et al. blaCTX-M-15-carrying Escherichia coli and Salmonella isolates from livestock and food in Germany. J Antimicrob Chemother. 2014;69:2951-8.
- 89. Esaki H, Morioka A, Kijima A, Ishihara K, Asai T, Tamura Y, *et al.* Epidemiological characterization of *Salmonella* Typhimurium DT104 prevent among food-producing animals in the Japanese Veterinary Antimicrobial Resistance Monitoring program (1999-2001). Microbiol Immunol. 2004;48(7):553-6.
- 90. 農林水産省. 動物医薬品検査所. サルモネラの多剤耐性パターン (非公表). 2017.
- 91. Wilkinson SP, Grove A. Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol. 2006;8(1):51.
- 92. 食品安全委員会. 食品を介してヒトの健康に影響を及ぼす細菌に対する抗菌性物質の重要度のランク付けについて. 2006.

- 93. 後藤陽一郎. Tetracycline. 臨床医. 1992;18(3):40-2.
- 94. 副島林蔵、二木芳人、角優. テトラサイクリン系抗生剤. 臨床成人病. 1987 年増刊号; 91-97.
- 95. 国立感染症研究所. 食中毒と腸管感染症. https://www. niid. go.jp/niid/ja/route/intestinal.html.
- 96. 厚生労働省. 食中毒統計資料. 食中毒発生状況(2006~2016 年). http://www. mhlw. go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/shokuhin/syokuchu/04.html (accessed 2017-11-6).
- 97. 日本感染症学会/日本化学療法学会編. JAID/JSC 感染症治療ガイド 2014. ライフサイエンス出版. 2015.
- 98. 日本感染症学会/日本化学療法学会編. 感染症治療ガイドライン 2015. 腸管感染症--. 日化療会誌. 2016;64:31-65.
- 99. 坂崎利一編集. 新訂 食水系感染症と細菌性食中毒. 中央法規出版. 2000.
- 100. 久恒順三, 達川伸行, 佐藤祐介, 加藤文紀, 鹿山鎮男, 菅井基行. 黄色ブドウ球菌. 感染症内科. 2013;1(3):275-85.
- 101. 日本感染症学会/日本化学療法学会編. MRSA 感染症の治療ガイドライン-2017 年改訂版. 日化療会誌. 2017;65(3):323-425.
- 102. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clin Infect Dis. 2011;52 (3):e18-e55.
- 103. 下野信行, 西田留梨子. カルバペネム耐性腸内細菌科細菌 (CRE) 感染症の治療. 日化療会誌. 2016:64(5):742-9.
- 104. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersenet PS, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio. 2012;3(1):e00305-11.
- 105. Queck SY, Jameson-Lee M, Villaruz AE, et al. 2008. RNA III-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell. 32:150-158.
- 106. Otto M. 2013. Community-associated MRSA: what makes them special? Int J Med Microbiol. 303:324-330.
- 107. Li M, Diep BA, Villaruz AE, et al. 2009. Evolution of virulence in epidemic community-associated methicillinresistant Staphylococcus aureus. Proc Natl Acad Sci U.S.A. 106:5883-5888.
- 108. Otto M. 2012. MRSA virulence and spread. Cell Microbiol. 14:1513-1521.
- 109. Diep BA and Otto M. 2008. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 16:361-369.
- Price LB, Stegger M, Hasman H, et al. 2012. Staphylococcus aureus CC398: Host adaptation and emergence of Methicillin resistance in livestock. mBio. 3:e00305-11.
- 111. Uhlemann AC, Porcella SF, Trivedi S, et al. 2012. Identification of a highly transmissible animal-independent *Staphylococcus aureus* ST398 clone with distinct genomic and cell adhesion properties. mBio. 3:e00027-12.
- 112. Argudin MA, Tenhagen BA, Fetsch A, et al. 2011. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from Nonhuman sources. Applied and Environmental Microbiology. 77:3052-3060.
- 113. De Neeling AJ, van den Broek MJM, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD, Boshuizen HC. High prevalence of methicillin-resistant *Staphylococcus aureus* in pigs. Vet Microbiol. 2007;122: 3660-372.
- 114. Lewis HC, Moelbak K, Reese C, Aarestrup FM, Selchau M, Sørum M, et al. Pigs as source of methicillinresistant Staphylococcus aureus CC398 infections in humans, Denmark. Emerg Infect Dis. 2008;14:1383-9.
- 115. Khana T, Friendship R, Dewey C, Weese JS. Methicillin-resistant *Staphylococcus aureus* colonization in pigs and pig farmers. Vet Microbiol. 2008;128:298-303.
- 116. Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, et al. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in Midwestern U.S. swine and swine workers. PLoS One. 2009; 4:e4258
- 117. Li S, Skov RL, Han X, Larsen AR, Larsen J, Soerum M, et al. Novel types of staphylococcus cassette chromosome mec elements identified in clonal 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother. 2011;55:3046-50.
- 118. FSA. Risk Assessment on Meticillin-Resistant Staphylococcus aureus (MRSA), with a focus on Livestock-associated MRSA, in the UK Food Chain. 2017.
- 119. Baba K, Ishihara K, Ozawa M, Tamura Y, Asai T. Isolation of methicillin-resistant *Staphylococcus aureus* (MRSA) from swine in Japan. Int J Antimicrob Agents. 2010;36:352-4.
- 120. 小島明美ら. 平成 25 年度食品安全確保推進研究事業「食品由来細菌の薬剤耐性サーベイランスの強化と国際対応に関する研究」家畜由来薬剤耐性菌のサーベイランスに関する研究. 2014.
- 121. Sato T, Usui M, Motoya T, Sugiyama T, Tamura Y. Characterization of methicillin-resistant *Staphylococcus aureus* ST97 and ST5 isolated from pigs in Japan. J Global Antimicrob Resist. 2015;3:283-5.
- 122. Hata E. Bovine mastitis outbreak in Japan caused by methicillin-resistant *Staphylococcus aureus* New York/Japan clone. J Vet Diagn Invest. 2016;28(3):291-8.
- 123. Sato T, Usui M, Konishi N, Kai A, Matsui H, Hanaki H, et al. Closely related methicillin-resistant Staphylococcus aureus isolates from retail meat, cows with mastitis, and humans in Japan. PLoS One. 2017;12(10):e0187319.
- 124. Furuno M, Uchiyama M, Nakahara Y, Uenoyama K, Fukuhara H, Morino S, et al A Japanese trial to monitor methicillin-resistant Staphylococcus aureus (MRSA) in imported swine during the quarantine period. J Glob Antimicrob Resist. 2018;14:182-4.
- 125. Asai T, Hiki M, Baba K, Usui M, Ishihara K, Tamura Y. Presence of *Staphylococcus aureus* ST398 and ST9 in Swine in Japan. Jpn J Infect Dis. 65;2012:551-2.
- 126. Hata E, Katsuda K, Kobayashi H, Uchida I, Tanaka K, Eguchi M. Genetic variation among *Staphylococcus aureus* strains from bovine milk and their relevance to methicillin-resistant isolates from humans. J Clin Microbiol. 2010;48:2130-9.

- 127. Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. Methicillin-resistant *Staphylococcus aureus* in pig farming. Emerg Infect Dis. 2005;11:1965-6.
- 128. Morcillo A, Castro B, Rodriguez-Alvarez C, Gonzalez JC, Sierra A, Montesinos MI, *et al* Prevalence and characteristics of methicillin-resistant *Staphylococcus aureus* in pigs and pig workers in Tenerife, Spain. Foodborne Pathog Dis. 2012;9:207-10.
- 129. Van Rijen MM, van Keulen PH, Kluytmans JA. Increase in a Dutch hospital of methicillin-resistant *Staphylococcus aureus* related to animal farming. Clin Infect Dis. 2008;46:261-3.
- 130. Yan X, Yu X, Tao X, Zhang J, Zhang B, Dong R, et al. Staphylococcus aureus ST398 from slaughter pigs in northeast China. Int J Med Microbiol. 2014;304(3-4):379-83.
- 131. Wang W, Liu F, Zulqarnain B, Zhang CS, Ma K, Peng ZX, et al. Genotypic characterization of methicillin-resistant Staphylococcus aureus isolated from pigs and retail foods in China. Biomed Environ Sci. 2017;30(8):570-80.
- 132. Lim SK, Nam HM, Jang GC, Lee HS, Jung SC, Kwak HS. The first detection of methicillin-resistant *Staphylococcus aureus* ST398 in pigs in Korea. Vet Microbiol. 2012;155(1):88-92.
- 133. Neela V, Zafrul AM, Mariana NS, van Belkum AF, Liew YK. Rad EG. Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J Clin Microbiol. 2009;47(12):4138-40.
- 134. Chuang YY, Huang YC. Livestock-associated meticillin-resistant *Staphylococcus aureus* in Asia: an emerging issue?. Int J Antimicrob Agents. 2015;45(4):334-40.
- 135. Schmitz FJ, Krey A, Sadurski R, Verhoef J, Milatovic D, Fluit AC. Resistance to tetracycline and distribution of tetracycline resistance genes in European *Staphylococcus aureus* isolates. J Antimicrob Chemother. 2001;47:239-46
- 136. Fluit AC, Florijn A, Verhoef J, Milatovic D. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother. 2005;49(4):1636-8.
- 137. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005;245:195-203.
- 138. Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC. MgrA is a multiple regulator of two new efflux pumps in *Staphylococcus aureus*. J Bacteriol. 2005;187(7):2395-405.
- 139. Trzcinski K, Cooper BS, Hryniewicz W, Dowson CG. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2000;45(6):763-70.
- 140. Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butyglucylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother. 1999;43(4):738-44.
- 141. Linkevicius M, Sandegren L, Andersson DI. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob Agents Chemother. 2016;60(2):789-96.
- 142. McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, et al. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother. 2005;49(5):1865-71.
- 143. Kaatz GW, DeMarco CE, Seo SM. MepR, a repressor of the *Staphylococcus aureus* MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein. Antimicrob Agents Chemother. 2006;50(4):1276-81.
- 144. Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387.
- 145. Clewell DB, Flannagan SE, Ike Y, et al. 1988. Sequence analysis of termini of conjugative transposon Tn916. J Bacteriol. 170:3046:3052.
- 146. Jaworski DD and Clewell DB. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn*916* in *Enterococcus faecalis*. J Bacteriol. 176:3328-3335.
- 147. Lancaster H, Roberts AP, Bedi R, Wilson M, Mullany P. Characterization of Tn916S, a Tn916 like element containing the tetracycline resistance determinant tet(S). J Bacteriol. 2004;186(13):4395-8.
- 148. Charpentier E, Gerbaud G, Courvalin P. Presence of the *Listeria* tetracycline resistance gene *tet*(S) in *Enterococcus faecalis*. Antimicrob Agents Chemother. 1994;38(10):2330-5.
- 149. 久保文明. 諸種葡萄球菌の Terramycin に対する動態に就いての研究. 慈恵医大誌. 1953;67(7):50-9.
- 150. 清水晃. 動物由来黄色ブドウ球菌に対するオレアンドマイシンとオキシテトラサイクリンの試験管内における併用効果について. 神大農研報. 1977;12:325331.
- 151. Kehrenberg C, Cuny C, Strommenger B, Schwarz S, Witte W. Methicillin-resistant and-susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrob Agents Chemother. 2009;53(2):779-81.
- 152. Cavaco LM, Hasman H, Aarestrup FM, Wagenaar JA, Graveland H, Veldman K, et al. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol. 2011;150(3-4):344-8.
- 153. 農林水産省. 平成 28 年度食料需給表. https://www.e-stat. go.jp/stat-search/files?page=1&layout=datalist&lid=000001202544 (accessed 2018-05-01).
- 154. 社団法人 畜産技術協会. 平成 21 年度食品安全確保総合調査 食品により媒介される感染症等に関する文献調査報告書.2010.
- 155. 吉田眞一, 柳雄介編. 戸田新細菌学 改訂第32版. 南山堂. 2002.
- 156. Food Safety Authority of Ireland. Microbial factsheet series: Staphylococcus aureus. 2011;1.
- 157. 田村吉史, 酒井和吉, 中野敦博, 竹田誠一, 渡辺義政. 凍結高圧処理による大腸菌及び黄色ブドウ球菌への殺菌効果. 北海道立食品加工研究センター研究報告. 2007;7:1-6.

- 158. Varnam AH, Evan MG著. 丸山務, 熊谷進監訳. カラーグラフィック 図説食品汚染病原微生物 -健康危害と予防のための衛生管理-. 廣川書店. 2003.
- 159. Acton DS, Plat-Sinnige MT, van Wamel W, de Groot N, van Belkum A. Intestinal carriage of *Staphylococcus aureus*: how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur J Clin Microbiol Iinfect Dis. 2009;28(2):115.
- 160. 片岡大輔, 藤原弘光, 谷本綾子, 田中吉紀. 鳥取大学医学部附属病院におけるグラム陰性桿菌の抗菌薬感受性成績 ― 狭域スペクトル抗菌薬活用の可能性―. 感染症誌. 2002; 76(7):542-9.
- 161. Graveland H, Wagenaar JA, Bergs K, Heesterbeek H, Heederik D. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PloS One. 2011;6(2):e16830.
- 162. Larsen J, Stegger M, Andersen PS, Petersen A, Larsen AR, Westh H, et al. Evidence for human adaptation and foodborne transmission of livestock-associated methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2016;63(10):1349-52.
- 163. Palmer KL, Kos VN, Gilmore MS. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol. 2010;13(5):632-9.
- 164. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003;111(9):1265-73.
- Haaber J, Penadés JR, Ingmer H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017; 25(11):893-905.
- 166. Bertrand S, Huys G, Yde M, D'Haene K, Tardy F, Vrints M, et al. Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J Med Microbiol. 2005;54:1151-6.
- McCarthy AJ, Loeffler A, Witney AA, Gould KA, Lloyd DH, Lindsay JA. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol Evol. 2014;6(10):2697-708.
- 168. 農林水産省. 家畜の生産段階における飼養衛生管理の向上について(農場HACCP等). http://www. maff. go.jp/j/syouan/douei/katiku_yobo/k_haccp/index.html (accessed 2018-5-7).
- 169. 河村成彦, 松岡隆介. 食品保健行政と HACCP システム. 公衆衛生研究. 2001;50(2):75-8.
- 170. 厚生労働省. と畜場法施行規則及び食鳥処理の事業の規制及び食鳥検査に関する法律施行規則の一部を改正する省令の公布等について(平成26年5月12日付け食安発0512第3号).
- 171. 厚生労働省. 生食用食肉(牛肉)の規格基準設定に関する Q&A について. 2011.
- 172. 厚生労働省. 牛の肝臓の基準に関する Q&A について. 2012.
- 173. 厚生労働省. 食品、添加物等の規格基準の一部を改正する件について(平成27年6月2日付け食安発0602第1号).
- 174. 食品安全委員会. 食品健康影響評価のためのリスクプロファイル〜鶏肉等における Campylobacter jejuni/coli. 2018.
- 175. 厚生労働省, 消費者庁. カンピロバクター食中毒対策の推進について (平成 29 年 3 月 31 日付け生食監発 0331 第 3 号, 消食表第 193 号).
- 176. 宮崎県. 生食用食鳥肉の衛生対策。平成19年8月.
- 177. 鹿児島県. 「生食用食鳥肉の衛生基準」平成12年2月.
- 178. 厚生省. 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号). https://www. mhlw. go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/shokuhin/jigyousya/shokuhin_kikaku/370b.html(accessed 2018-05-25).
- 179. Szabo I, Beck B, Friese A, Fetsch A, Tenhagen BA, Roesler U. Colonization kinetics of different methicillinresistant *Staphylococcus aureus* sequence types in pigs and host susceptibilities. Appl Environ Microbiol. 2012;78(2):541-8.
- 180. Other Bacterial Diseases. In Diseases of Poultry, 13th ed. Swayne, DE (Ed.). Wiley-Blackwell. 2013.
- 181. de Boer E, Zwartkruis-Nahuis JT, Wit B, Huijsdens XW, de Neeling AJ, Bosch T, et al. Prevalence of methicillinresistant *Staphylococcus aureus* in meat. Int J Food Microbiol. 2009; 134(1-2):52-6.
- 182. Lassok B, Tenhagen BA. From pig to pork: methicillin-resistant *Staphylococcus aureus* in the pork production chain. J Food Prot. 2013;76(6):1095-108.
- 183. Beneke B, Klees S, Stührenberg B, Fetsch A, Kraushaar B, Tenhagen BA. Prevalence of methicillin-resistant *Staphylococcus aureus* in a fresh meat pork production chain. J Food Prot. 2011;74(1):126-9.
- 184. Kitai S, Shimizu A, Kawano J, Sato E, Nakano C, Uji T, et al. Characterization of methicillin-resistant Staphylococcus aureus isolated from retail raw chicken meat in Japan. J Vet Med Sci 2005;67:107-10.
- 185. Pu S, Han F, Ge B. Isolation and characterization of methicillin-resistant *Staphylococcus aureus* strains from Louisiana retail meats. Appl Environ Microbiol. 2009;75(1):265-7.
- 186. Lim SK, Nam HM, Park HJ, Lee HS, Choi MJ, Jung SC, et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus in raw meat in Korea. J Microbiol Biotechnol. 2010;20(4):775-8.
- 187. 指原信広,水谷宏,高山澄江,小沼博隆,鈴木昭,今井忠平. 液全卵 (凍結卵) の原料,製品および製造工程における細菌汚染について. 食品衛生学雑誌. 1979;20(2):127-36.
- 188. Hiroi M, Kawamori F, Harada T, Sano Y, Miwa N, Sugiyama K, et al. Antibiotic resistance in bacterial pathogens from retail raw meats and food-producing animals in Japan. J Food Prot. 2012;75(10):1774-82.
- 189. 金沢亨, 月沢毅, 宮野佳子. 豚と体の食中毒菌汚染状況調査について. 秋田県食肉衛生検査所 業務概要 平成19年度 (平成18年度業績).35-39.
- 190. 品川邦汎. 食肉・食鳥肉処理における微生物コントロールに関する研究. 厚生科学研究費補助金 生活安全総合研

- 究事業 平成 11 年度総括研究報告書. 平成 12 年 7 月.
- 191. 清水泰美, 星野利得, 石岡大成, 森田幸雄, 黒田晃, 花里康夫. 食鳥処理場における細菌汚染調査. 日獣会誌. 1998;51:608-612.
- 192. 新井孝典, 岡田秀平, 清水晃. 食鳥処理場における *Staphylococcus aureus* の汚染状況と分離株の性状. 日獣会誌. 2004;57:460-64.
- 193. 村上和保, 石橋弥, 和田貴臣. 食品材料、食品および調理施設からのメチシリン耐性黄色ブドウ球菌(MRSA)の検出. 日食微誌. 2002;19(3):127-31.
- 194. 食品安全委員会. ファクトシート, ブドウ球菌食中毒. 2011. http://www.fsc. go.jp/sonota/factsheets/09staphylococcal. pdf.
- 195. 品川邦汎. 4.黄色ブドウ球菌. HACCP: 衛生管理計画の作成と実践 改訂データ編. p. 72-85, 熊谷進(編集代表), 中央法規出版, 東京, 2003.
- 196. 重茂克彦. 黄色ブドウ球菌とエンテロトキシン. 食品衛生研究. 2009;59(12):17-23.
- 197. 藤尾公輔, 清水晃, 松村浩介, 河野潤一, 北川浩, 五十君靜信. 市販食肉、健康人、豚および鶏から分離された黄色ブドウ球菌の薬剤耐性. 日食微誌. 2007;24(2): 100-106.
- 198. 緒方喜久代,成松浩志,鈴木匡弘,樋口渉,山本達男,谷口初美. 市中感染型 MRSA の分子疫学調査―市販流通食肉がその感染媒体である可能性の検討―. 産業医大誌. 2014;36(3): 79-90.
- 199. 平成 29 年食品安全確保総合調査「食品を介してヒトに伝播される薬剤耐性菌に関する文献等調査報告書(テトラサイクリン系抗生物質等に関するヒト医療における状況). http://www.fsc. go.jp/fsciis/survey/show/cho20180050001.
- 200. Corne P, Marchandin H, Jonquet O, Campos J, Banuls AL. Molecular evidence that nasal carriage of *Staphylococcus aureus* plays a role in respiratory tract infections of critically ill patients. J Clin Microbiol. 2005;43(7):3491-3.
- 201. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of *Staphylococcus aureus* bacteremia. N Engl J Med. 2001;344:11-16.
- Kluytmans J, van Leeuwen W, Goessens W, Hollis R, Messer S, Herwaldt L, et al. Food-initiated outbreak of methicillinresistant Staphylococcus aureus analyzed by pheno- and genotyping. J Clin Microbiol. 1995;33(5):1121-8.
- 203. Jones TF, Kellum ME, Porter SS, Bell M, Schaffner W. An outbreak of community-acquired foodborne illness caused by methicillin-resistant *Staphylococcus aureus*. Emerg Infect Dis. 2002;8(1):82-4.
- 204. Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans JA, *et al.* Methicillin-resistant *Staphylococcus aureus* (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 2010;15(41):pii=19688.
- 205. 保里恵一, 由良二郎, 品川長夫, 桜井敏, 真下啓二, 水野章. 術後感染性腸炎, 特に MRSA 腸炎の実態. 感染症誌. 1989;63(7):701-7.
- 206. 竹末芳生, 横山隆, 児玉節, 山東敬弘, 村上義昭, 宮本勝也, *et al.* メチシリン耐性黄色ブドウ球菌 (MRSA) 腸炎の検討. 日臨外医誌. 1994;55(8):1921-5.
- 207. 渡辺浩, 佐藤哲史, 栗田伸一, 佐藤晃嘉, 吉嶺裕之, 田中宏史, *et al.* MRSA 便培養陽性 18 例の臨床的検討. 感染症誌. 1996;70(11):1170-5.
- 208. 前崎繁文. 救急で問題となる薬剤耐性菌 --MRSA から MDRP まで--. 日救急医会誌. 2010;21:51-62.
- 209. 山本達男, 高野智洋, Baranovich T, 樋口渉, 西山晃史. メチシリン耐性黄色ブドウ球菌(MRSA). モダンメディア. 2008;54(3):95-103.
- 210. Köck R, Harlizius J, Bressan N, Laerberg R, Wieler LH, Witte W, *et al.* Prevalence and molecular characteristics of methicillin-resistant *Staphylococcus aureus* (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Euro J Clin Microbiol Infect Dis. 2009;28(11):1375.
- 211. Koyama H, Sanui M, Saga T, Harada S, Ishii Y, Tateda K, *et al.* A fatal infection caused by sequence type 398 methicillin-resistant *Staphylococcus aureus* carrying the Panton-Valentine leukocidin gene: A case report in Japan. J Infect Chemother. 2015;21(7):541-3.
- 212. 国立感染症研究所. 病原微生物検出情報(2009~2013年). http://www.niid.go.jp/niid/ja/allarticles/surveillance/510-iasr/graphs/4274-iasrgb2013.html (accessed 2018-10-25).
- 213. 国立感染症研究所. 病原微生物検出情報(2014~2018 年). https://www. niid. go.jp/niid/ja/iasr/510-surveillance/iasr/graphs/1524-iasrgb.html (accessed 2019-1-9).
- 214. 厚生労働省院内感染対策サーベイランス事業. 公開情報 2016 年 1 月~12 月年報(全集計対象医療機関)院内感染対策サーベイランス検査部門. https://janis. mhlw. go.jp/report/open_report/2016/3/1/ken_Open_Report_201600. pdf (accessed 2018-1-15).
- 215. 国立感染症研究所. 感染症発生動向調査年別報告数一覧(定点把握). 五類感染症(定点). https://www. niid. go.jp/niid/ja/survei/2085-idwr/ydata/7314-report-jb2016.html (accessed 2018-10-3).
- 216. 国立感染症研究所. 感染症発生動向調査年別報告数一覧(全数把握). 五類感染症(全数). https://www. niid. go.jp/niid/ja/survei/2085-idwr/ydata/7312-report-ja2016-30.html (accessed 2018-10-3).
- 217. 厚生労働省院内感染対策サーベイランス事業.全入院患者部門 JANIS(一般向け)期報・年報. 病床数別公開情報. https://janis. mhlw. go.jp/report/zen.html (accessed 2018-xx-xx).
- 218. 厚生労働省. 人口動態統計. http://www.e-stat. go.jp/SG1/estat/OtherList.do?bid=000001041646&cycode=7.
- 219. 国立感染症研究所. 感染症情報センター. 感染症の話, メチシリン耐性黄色ブドウ球菌感染症. 2002;4(18-19):10-2. http://idsc. nih. go.jp/idwr/kansen/k02 g1/k02 18.html.

- 220. Vandenesch F, Naimi T, Enright M C, Lina G, Nimmo G R, Heffernan H, *et al.* Community-acquired methicillin-resistant *Staphylococcus aureus* carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis. 2003;9:978-84.
- 221. Naimi T S, LeDell K H, Como-Sabetti K, Borchardt S M, Boxrud D J, Etienne J, et al. Comparison of community-and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290:2976-84.
- 222. Karampela I, Poulakou G, Dimopoulos G. Community acquired methicillin resistant *Staphylococcus aureus* pneumonia: an update for the emergency and intensive care physician. Minerva Anestesiol. 2012;78(8):930-40.
- 223. Gillet Y, Issartel B, Vanhems P, Fournet J C, Lina G, Bes M, et al. Association between *Staphylococcus aureus* strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359:753-9.
- 224. Prince A, Wang H, Kitur K, Parker D. Humanized mice exhibit increased susceptibility to *Staphylococcus aureus* pneumonia. J Infect Dis. 2017;215(9):1386-95.
- 225. Glaser P, Martins-Simões P, Villain A, Barbier M, Tristan A, Bouchier C, et al. Demography and intercontinental spread of the USA300 community-acquired methicillin-resistant Staphylococcus aureus lineage. MBio. 2016;7:e02183-15.
- 226. Yamaguchi T, Okamura S, Miura Y, Koyama S, Yanagisawa H, Matsumoto T. Molecular characterization of community-associated methicillin-resistant *Staphylococcus aureus* isolated from skin and pus samples of outpatients in Japan. Microb Drug Resist. 2015;21:441-7.
- 227. Yanagihara K, Araki N, Watanabe S, Kinebuchi T, Kaku M, Maesaki S, *et al.* Antimicrobial susceptibility and molecular characteristics of 857 methicillin-resistant *Staphylococcus aureus* isolates from 16 medical centers in Japan (2008-2009): nationwide survey of community-acquired and nosocomial MRSA. Diagn Microbiol Infect Dis. 2012;72:253-7.
- 228. Mine Y, Higuchi W, Taira K, Nakasone I, Tateyama M, Yamamoto T, *et al.* Nosocomial outbreak of multidrugresistant USA300 methicillin-resistant *Staphylococcus aureus* causing severe furuncles and carbuncles in Japan. J Dermatol. 2011;38:1167-71.
- 229. Uehara Y, Ito T, Ogawa Y, Hirotaki S, Shoji T, Tame T, et al. Molecular epidemiologic study of community-associated methicillin-resistant Staphylococcus aureus with Panton-Valentine leukocidin gene among family members in Japan. J Infect Chemother. 2015;21:700-2.
- 230. Kawaguchiya M, Urushibara N, Ghosh S, Kuwahara O, Morimoto S, Ito M, *et al.* Genetic diversity of emerging Panton-Valentine leukocidine/arginine catabolic mobile element (ACME)-positive ST8 SCC*mec* IVa meticillinresistant *Staphylococcus aureus* (MRSA) strains and ACME-positive CC5 (ST5/ST764) MRSA strains in Northern Japan. J Med Microbiol. 2013;62:1852-63.
- 231. Ballhausen B, Kriegeskorte A, van Alen S, Jung P, Köck R, Peters G, et al. The pathogenicity and host adaptation of livestock-associated MRSA CC398. Vet Microbiol. 2017;200:39-45.
- 232. 東京都感染症情報センター. バンコマイシン耐性黄色ブドウ球菌感染症 Vancomycin-Resistant Staphylococcus Aureus (VRSA) infection. 2016. http://idsc. tokyo-eiken. go.jp/diseases/vrsa/ (accessed 2018-10-9).
- 233. 国立感染症研究所. 感染症情報センター. バンコマイシン耐性黄色ブドウ球菌感染症 Vancomycin Resistant Staphylococcus Aureus (VRSA) 一般向け解説. http://idsc. nih. go.jp/disease/vrsa/guide01.html (accessed 2018-10-9).
- 234. 国立感染症研究所. 感染症情報センター. バンコマイシン耐性黄色ブドウ球菌感染症 Vancomycin Resistant Staphylococcus Aureus (VRSA) 専門家向け解説. http://idsc. nih. go.jp/disease/vrsa/guide02.html (accessed 2019-1-18)
- 235. Suzuki M, Miyaki M, Sekine K, Kurihara T, Abe S, Aikawa N, *et al.* Antimicrobial-susceptible patterns of *Staphylococcus aureus* isolated from surgical infections: a new approach. J Infect Chemother. 2011;17:34-9.
- 236. Nakaminami H, Noguchi N, Ikeda M, Hasui M, Sato M, Yamamoto S, *et al.* Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive *Staphylococcus aureus* isolates from patients with impetigo in Japan. J Med Microbiol. 2008;57:1251-8.
- 237. Niki Y, Hanaki H, Yagisawa M, Kohno S, Aoki N, Watanabe A, *et al.* The first nationwide surveillance of bacterial respiratory pathogens conducted by the Japanese Society of Chemotherapy. Part 1: a general view of antibacterial susceptibility. J Infect Chemother. 2008;14:279-90.
- 238. Niki Y, Matsumoto T, Yagisawa M, Kohno S, Aoki N, Watanabe A, *et al.* Nationwide surveillance of bacterial respiratory pathogens conducted by the Japanese Society of Chemotherapy in 2008; general view of the pathogens' antibacterial susceptibility. J Infect Chemother. 2011;17: 510-23.
- 239. Watanabe A, Yanagihara K, Matsumoto T, Kohno S, Aoki N, Oguri T, *et al.* Nationwide surveillance of bacterial respiratory pathogens conducted by the Surveillance Committee of Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases, and Japanese Society for Clinical Microbiology in 2009: general view of the pathogens' antibacterial susceptibility. J Infect Chemother. 2012;18:609-20.
- 240. Takesue Y, Watanabe A, Kusachi S, Matsumoto T, Iwamoto A, Totsuka K, *et al.* Nationwide surveillance of antimicrobial susceptibility patterns of pathogens isolated from surgical site infections (SSI) in Japan. J Infect Chemother. 2012;18:816-26.
- 241. Hanaki H, Cui L, Ikeda-Dantsuji Y, Nakae T, Honda J, Yanagihara K, *et al.* Antibiotic susceptibility survey of blood-borne MRSA isolates in Japan from 2008 through 2011. J Infect Chemother. 2014;20:527-34.
- 242. Yanagihara K, Kadota J, Aoki N, Matsumoto T, Yoshida M, Yagisawa M, et al. Nationwide surveillance of bacterial

- respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2010: General view of the pathogens' antibacterial susceptibility. J Infect Chemother. 2015;21:410-20.
- 243. Ishikawa K, Hamasuna R, Uehara S, Yasuda M, Yamamoto S, Hayami H, et al. Japanese nationwide surveillance in 2011 of antibacterial susceptibility patterns of clinical isolates from complicated urinary tract infection cases. J Infect Chemother. 2015;21:623-33.
- 244. Kanayama S, Ikeda F, Okamoto K, Nakajima A, Matsumoto T, Ishii R, et al. In vitro antimicrobial activity of ozenoxacin against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus and Streptococcus pyogenes isolated from clinical cutaneous specimens in Japan. J Infect Chemother. 2016;22:720-3.
- 245. Watanabe S, Ohnishi T, Yuasa A, Kiyota H, Iwata S, Kaku M, *et al.* The first nationwide surveillance of antibacterial susceptibility patterns of pathogens isolated from skin and soft-tissue infections in dermatology departments in Japan. J Infect Chemother. 2017;23:503-11.
- 246. Yanagihara K, Watanabe A, Aoki N, Matsumoto T, Yoshida M, Sato J, et al. Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2012: General view of the pathogens' antibacterial susceptibility. J Infect Chemother. 2017;23:587-97.
- 247. Takesue Y, Kusachi S, Mikamo H, Sato J, Watanabe A, Kiyota H, *et al.* Antimicrobial susceptibility of pathogens isolated from surgical site infections in Japan: Comparison of data from nationwide surveillance studies conducted in 2010 and 2014:2015. J Infect Chemother. 2017;23:339-48.
- 248. Takesue Y, Kusachi S, Mikamo H, Sato J, Watanabe A, Kiyota H, et al. Antimicrobial susceptibility of common pathogens isolated from postoperative intra-abdominal infections in Japan. J Infect Chemother. 2018;24:330-40.
- 249. Ito A, Nakaminami H, Fujii T, Utsumi K, Noguchi N. Increase in SCC*mec* type IV strains affects trends in antibiograms of meticillin-resistant *Staphylococcus aureus* at a tertiary-care hospital. J Med Microbiol. 2015;64(7):745-51.
- 250. Takizawa Y, Taneike I, Nakagawa S, Oishi T, Nitahara Y, Iwakura N, *et al.* A Panton-Valentine leucocidin (PVL) positive community-acquired methicillin-resistant *Staphylococcus aureus* (MRSA) strain, another such strain carrying a multiple-drug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. J Clin Microbiol. 2005;43:3356-63.
- 251. Taneike I, Otsuka T, Dohmae S, Saito K, Ozaki K, Takano M, *et al.* Molecular nature of methicillin-resistant *Staphylococcus aureus* derived from explosive nosocomial outbreaks of the 1980s in Japan. FEBS Lett. 2006;580:2323-34.
- 252. Kikuta H, Shibata M, Nakata S, Yamanaka T, Sakata H, Akizawa K, et al. Predominant dissemination of PVL-negative CC89 MRSA with SCCmecType II in children with impetigo in Japan. Int J Pediatr. 2011;2011:1-8.
- 253. Hisata K, Ito T, Jin J, Li S, Watanabe S, Hiramatsu K, et al. Dissemination of multiple MRSA clones among community-associated methicillin-resistant *Staphylococcus aureus* infections from Japanese children with impetigo. J Infect Chemother. 2011;17:609-21.
- 254. Isobe H, Takano T, Nishiyama A, Hung WC, Kuniyuki S, Shibuya Y, *et al.* Evolution and virulence of Panton-Valentine leukocidin-positive ST30 methicillin-resistant *Staphylococcus aureus* in the past 30 years in Japan. Biomed Res. 2012;33:97-109.
- 255. Iwao Y, Ishii R, Tomita Y, Shibuya Y, Takano T, Hung WC, et al. The emerging ST8 methicillin-resistant Staphylococcus aureus clone in the community in Japan: associated infections, genetic diversity, and comparative genomics. J Infect Chemother. 2012;18:228-40.
- 256. Nakaminami H, Ito A, Sakanashi D, Suematsu H, Yamagishi Y, Mikamo H, et al. Genetic diversity of pvl-positive community-onset methicillin-resistant Staphylococcus aureus isolated at a university hospital in Japan. J Infect Chemother. 2017;23:856-8.
- 257. Inomata S, Yano H, Tokuda K, Kanamori H, Endo S, Ishizawa C, *et al.* Microbiological and molecular epidemiological analyses of community-associated methicillin-resistant *Staphylococcus aureus* at a tertiary care hospital in Japan. J Infect Chemother. 2015;21:729-36.
- 258. EMA, 2011. Trends in the sales of veterinary antimicrobial agents in nine European countries (2005-2009) (EMA/238630/2011).
- 259. 清水晃. 動物におけるメチシリン耐性ブドウ球菌の生態と疫学解析. 獣畜新報. 2001;54(9):739-41.260. 清水晃. 動物用抗菌性物質をめぐる最近の話題 (5) -5.メチシリン耐性黄色ブドウ球菌(MRSA)-. 畜産の研究. 2002;56(5):75-80.
- 261. 山本達男, 高野智洋, Baranovich T, 樋口渉, 西山晃史. メチシリン耐性黄色ブドウ球菌(MRSA). モダンメディア. 2008;54(3):95-103.
- Hanssen AM, Ericson Sollid JU. SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol. 2006;46:8-20.
- 263. Gravelanda H, Duimb B, van Duijkerenb E, Heederika D, Wagenaar JA. Livestock-associated methicillin-resistant *Staphylococcus aureus* in animals and humans. Int J Med Microbiol. 2011;301:630-4.
- 264. Jaworski DD and Clewell DB. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn 916 in Enterococcus faecalis. J Bacteriol. 176:3328-3335.
- 265. 厚生労働省. 19 バンコマイシン耐性黄色ブドウ球菌感染症. https://www. mhlw. go.jp/bunya/kenkou/kekkaku-kansenshou11/01-05-13-01.html (accessed 2019-1-18) .

家畜に使用するテトラサイクリン系抗生物質に係る薬剤耐性菌に関する食品健康影響評価 に関する審議結果についての意見・情報の募集結果について

- 1. 実施期間 平成 31 年 2 月 13 日~平成 31 年 3 月 14 日
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 1 通
- 4. 意見・情報の概要及び薬剤耐性菌に関するワーキンググループの回答

意見・情報の概要 ※

1 ・ヒトの治療効果が減弱または喪失する 可能性が否定できないのにリスクの程度 は低度であると考えるのは国民の健康を 最優先にしていないのでは?仮にリスク が低いとしても、リスクがある以上、この ような物質の使用は認められるべきでは ない。

・薬剤耐性菌については知見等が不十分 な状況を鑑みれば、当面、この物質の使用 は禁止すべきである。

ワーキンググループの回答

御意見ありがとうございました。

食品安全委員会は、国民の健康の保護が最も重要であるという基本的認識の下、科学的知見に基づき客観的かつ中立公正にリスク評価を行っております。薬剤耐性菌に関する評価においては、「家畜等への抗菌性物質の使用により選択される薬剤耐性菌に関する食品健康影響評価指針」(平成16年9月30日食品安全委員会決定)に基づき、発生評価、暴露評価及び影響評価を実施し、それらの結果を踏まえ、評価書案の表38及び39に示した考え方に基づき総合的にリスクを推定しています。評価結果に基づくリスク管理が実施されれば、食品を介した安全性は担保されるものと考えます。

頂いた御意見は、動物用医薬品の承認、 飼料添加物の指定等、リスク管理にも関 係するものと考えられることから、リス ク管理機関である農林水産省に伝えま す。

薬剤耐性菌「家畜に使用するテトラサイクリン系抗生物質」に係る評価書の変 更点

修正箇所	食品安全委員会	食品安全委員会
	第736回会合資料	第 730 回会合資料
	(変更後)	(変更前)
6 頁	ヒトの医療分野においてTC系が <u>推奨</u>	ヒトの医療分野においてTC系が <u>第一</u>
11 行目	薬とされている感染症は	選択 薬とされている感染症は
10 頁	動物用医薬品として販売される TC	動物用医薬品として販売される TC
5 行目	系は、抗菌性物質販売量総計の45%前	系は、抗菌性物質販売量総計の 45%前
	後(2016年: <u>39.8</u> %)を占める。	後(2016年: <u>41.1</u> %)を占める。
24 頁	TC 系は抗菌性物質販売量総計の 45%	TC 系は抗菌性物質販売量総計の 45%
5 行目	前後(2016年: <u>39.8</u> %(331,550 kg))	前後(2016年: <u>41.1</u> %(331,550 kg))
	を占めている。	を占めている。
24 頁	2016	2016
表 7	832,558	806,065
	331,550	331,550
	(39.8)	(<u>41.1</u>)

※修正箇所は、第736回会合資料における頁等