食品を科学するーリスクアナリシス(分析)連続講座ー

カフェインは危ない?

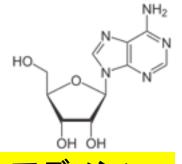
~コーヒーを科学する~

コーヒーと疫学

委員 佐藤 洋

本日の講義内容

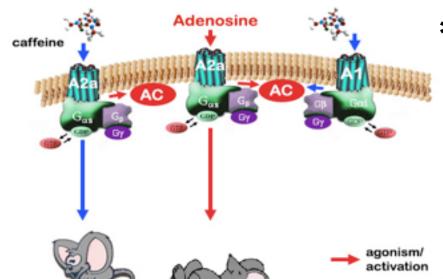
- ・カフェインの薬理作用・毒性
- ・コーヒーの成分
- ・健康への影響を調べる疫学
- ・コーヒーの健康影響について



カフェインの作用

アデノシン受容体のアンタゴニスト*

tagonism/


- 薬理作用
 - 覚醒作用
 - 心拍数の増加等

アデノシン

カフェイン

*拮抗物質、ブロッカーとも呼ぶ。受容体に結合するが、その受容体に本来結合する物質(アゴニスト)のような作用はひきおこさない。 アゴニストが受容体に結合することを阻害することもあり、受容体本来の作用を抑制してしまう。

- ▶ 生物学的半減期:4-6時間
- ▶ 血漿中濃度∶2-3杯で20-40 μ mol/L

http://www.palobiofarma.com

カフェイン含有量

コーヒー抽出法	カフェイン含有量 (237ml 中)
ドリップ (Automatic)	145mg
ドリップ(Non Automatic)	124mg
エスプレッソ※	50-75mg※30ml中
デカフェ	2-3mg

FDA内資料NDB(National Nutrient Database): Caffeine INTAKE BY THE U.S.POPULATION P8, P24を基に食品安全委員会作成

市販飲料	カフェイン含有量(1製品中)	
缶コーヒー	92.5~159.1mg	※ 185ml
栄養ドリンク	30∼50mg	%50∼80ml
目覚め効果を謳ったドリンク	100~150mg	
エナジードリンク	79~179.2mg	※ 150 ~ 280ml

カフェインの毒性(?)

- カフェインは、アデノシン受容体のアンタゴニスト
 - 神経系、循環器系の興奮作用
 - 覚醒、心拍数増加、利尿等
 - (コーヒーの常用範囲でおきる)
- LD₅₀ (半数致死量: OECD SIDS)
 - ラット経口 200-400 mg/kg bw、
 - マウス経口 185 mg/kg bw
 - 11g/ヒト (コーヒー183杯) でLD50に相当
- Powdered Pure Caffeine (FDA注意喚起)
- カフェインガム:一個でコーヒー4杯(FDA注意喚起)
- コーヒー豆より高カフェイン含量:ガラナ豆等

カフェインは危ない?

- エネルギードリンク
 - カフェインの含量:80-180mg/缶
 - コーヒー 一杯分より多い程度
 - 飲み方に特徴
 - 徹夜、アルコールと一緒に、騒ぎながら
 - 興奮→疲労感の減少・抑制
 - アルコールの作用を覆い隠す
 - 利尿作用→脱水、アルコールとともに飲用で危険
 - アイソトニック飲料やスポーツ飲料とは異なる
- 缶コーヒーにも含有量の多いものあり:150mg/缶

いろいろな飲料中のカフェイン量

	カフェイン <u>量</u> (液体 100g 中)	抽出条件
レギュラーコーヒー	60mg	コーヒー粉末10gを熱湯150mlで抽出
インスタン トコーヒー	60mg	インスタントコーヒー2gを熱湯に溶解して140gに調整
紅茶	30mg	紅茶5gを熱湯360mlで1.5~4分抽出
煎茶	20 mg	茶10gを湯(90℃)430mlで1分抽出
ウーロン茶	20 m g	茶15gを湯(90℃)650mlで0.5分抽出

http://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/toushin/05031802.htm

コーヒーの健康影響についての疑問

- 興奮作用 何か悪い作用があるのでは?
- ・ カフェインの作用 心血管系への影響?
 - 冠動脈疾患
 - 脳卒中
 - 不整脈
 - 心不全など
- カフェイン以外の成分の健康影響は?
- がんへの影響は?

コーヒーの健康影響

- ・コーヒーとしての心血管系への影響?
- ・近年のレビュー*では、全般的には影響無し
 - 冠動脈疾患
 - 脳卒中
 - 不整脈
 - 心不全

レビュー*: あるテーマに沿ってこれ迄なされて来た複数の研究から、全体としての研究 成果を整理した論文

コーヒーの健康影響についての疑問

- 興奮作用 何か悪い作用があるのでは?
- ・ カフェインの作用 心血管系への影響?
 - 冠動脈疾患
 - 脳卒中
 - 不整脈
 - 心不全など
- カフェイン以外の成分の健康影響は?
- がんへの影響は?

コーヒー消費量と前立腺がん

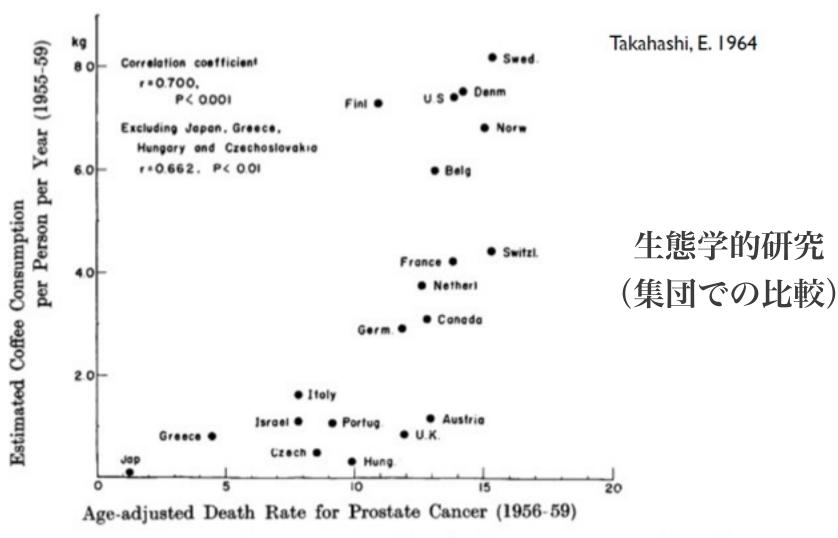


Fig. 2. Correlation diagram between estimated national average consumption of coffee and age-adjusted death rate for prostate cancer by 20 countries.

疫学の基礎:疫学の研究方法

コホート研究:相対危険度(Relative Risk)

曝露群が疾病となるリスクは a/(a+b) で、 一方、非曝露群のリスクは c/(c+d)RR= $\{a/(a+b)\}/\{c/(c+d)\}$ もし疾患が稀なものであれば、 (a+b) = b, (c+d) = dRR= $\{a/b\}/\{c/d\} = ad/bc$ Hazard Ratio

	疾病あり	疾病なし	合 計
曝露あり	а	b	a+b
曝露なし	С	d	c+d

症例対照研究:オッズ比(Odds Ratio)

症例の曝露オッズ=a/c 対照の曝露オッズ=b/d オッズ比 odds ratio (OR) OR = (a/c) ÷ (b/d) = ad/bc

	症 例	対 照
曝露あり a		b
曝露なし	С	d
合 計	a+c	b+d

コーヒーはがんのリスクを下げる?

【週刊文春2014年8月28号の記事より】

肝がんリスクを下げるコーヒー

(国立がん研究センター がん予防検診研究センター長 津金昌一郎)

・・・・・国際的な疫学研究でも、コーヒーによる<u>肝がんの予防効果を示す研究結果が数多く出ています。・・</u>(略)・・他にも<u>子宮体がんの発生率が低く</u>、また女性においては<u>一部の大腸がんになる確率も低い傾</u>向にあることが分かりました。

〇多目的コホート(約10万人)の結果

コーヒーを飲んでいる人肝細胞がんの減少 HR(Relative Risk): 0.49(0.36 to 0.66)

Inoue, M et al. 2005

子宮体がんの減少 HR (Relative Risk): 0.6 I (0.39 to 0.97)以下 Shimazu,T et al.2008

> 食品安全委員会 内服府 Food Safety Commission of Japan

メタ分析 (アナリシス)

- ・あるテーマに沿ってこれ迄なされて来 た複数の研究結果を集積して、全体 としての結論を導く
 - (meta-analysis)
- ・系統的レビュー
 - (systematic review)

コーヒーの健康影響(冠動脈疾患)

Cano-Marquina et al. 2013

- 冠動脈疾患*
 - 症例対照研究では、影響有り
 - オッズ比 1.4-1.6程度(5杯/日)
 - コホート研究では影響無し
 - 新しい研究では、影響無し

Very heavy vs 1.07 (0.87-1.32) light coffee drinking Heavy vs 1.04 (0.92-1.17) light coffee drinking Moderate vs 0.96 (0.87-1.06) light coffee drinking 0.9 1.0 1.1 0.7 1.3 1.5 Wu |N et al. 2009

RR(95% CI)

*心筋梗塞や狭心症

コーヒーの健康影響 (脳卒中)

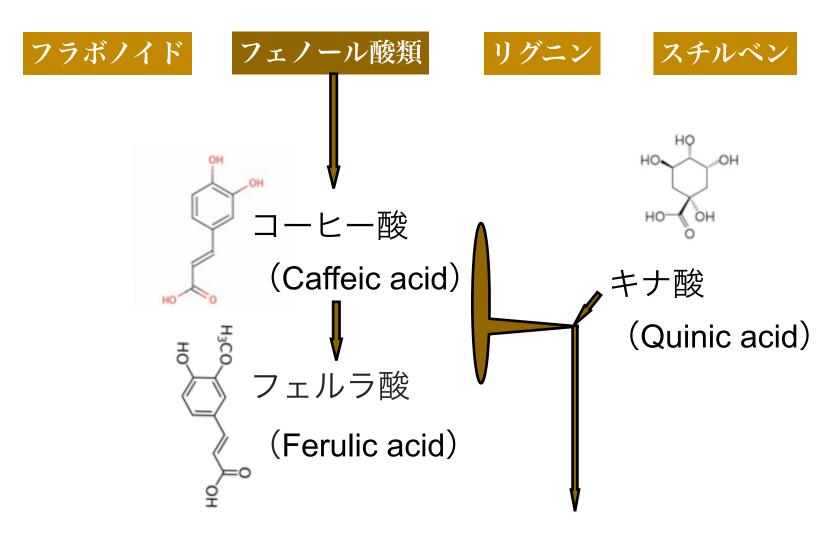
- 冠動脈疾患*や脳卒中**において
 - コーヒーの習慣的飲用者でない場合、
 - コーヒー飲用後短期間(時間)で
 - 発作の増加
 - ・ *心筋梗塞および**急性虚血性脳卒中

コーヒーの健康影響 (糖尿病・肝疾患)

- 2型糖尿病
 - RRの低下: 0.65(日に6-7杯以上)
- 肝疾患
 - AST, ALT, GGTのレベル減少
 - 肝硬変のリスク低下

コーヒーの健康影響(その他)

- パーキンソン病
 - -防御的な作用があると言われている
- アルツハイマー病
 - カフェイン、クロロゲン酸、その組み合わせが、認知の悪化に防御的に作用
 - 防御的な作用を認めていない研究も
- 骨粗しよう症?(明確な結果は出てない)


コーヒーの健康影響

メタ分析によるがんの相対危険度(Relative Risk) Cano-Marquina et al. 2013

がんの部位	RRの増減	備考
卵巣	\leftrightarrow	
膵臓	\leftrightarrow , \downarrow	男性では低下
膀胱	\leftrightarrow , \uparrow	症例対照研究では1.49
前立腺	\uparrow	症例対照研究で上昇1.13
結腸直腸	\downarrow , \leftrightarrow	症例対照、コホートで差異
肺	\uparrow	喫煙の影響を完全に排除出来ず1.27
胃	\leftrightarrow	
乳房	\leftrightarrow	
肝臓	\downarrow	
全部位	\downarrow	

コーヒー中の ポリフェノール類(Polyphenols)

クロロゲン酸類(Chlorogenic acids)

コーヒーの主要成分

カフェイン(Caffeine)

クロロゲン酸(Chlorogenic acid)

カフェストール(Cafestol)

カーウェオール(Kahweol)

βカロテンとビタミンA投与と肺がん発症

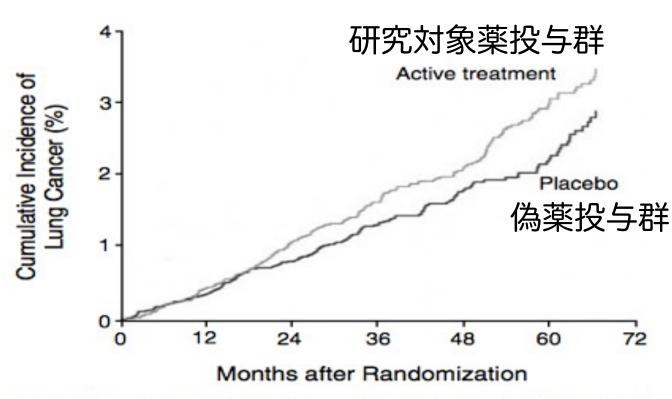


Figure 1. Kaplan-Meier Curves of the Cumulative Incidence of Lung Cancer among Participants Receiving Active Treatment and Those Receiving Placebo.

Data are shown only through 5½ years of follow-up because of the small numbers of participants beyond that time.

介入試験

無作為化割り 付け試験 RCT

Omenn et al. 1996, New England Journal of Medicine

THE MAXIM OF PARACELSUS

すべての物質は毒である。 毒でないものはない。

> "All substances are poisons: there is none which is not poison. The **dose** differentiates a poison from a remedy."

> > **Paracelsus**

量が毒か薬かを決める。

まとめ

- ・(カフェインに限らず)量を見極めることが重要
- ・どのような物質(成分)と一緒に取るかも重要
- ・特定の成分のみを濃縮したものは注意が必要
- ・偏った成分の摂取はリスクを高める場合もある。
- ・信頼度の高い(疫学)研究の結果に基づいた判断 介入研究(RCT)、メタ分析、 コホート研究、症例対照研究

