細菌を用いた復帰突然変異試験

 <u> </u>	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								_
文献番号	試験	生物種	OA濃度	代謝活	性化		コメント	在	1
#	时间火	土物種	UN低反	活性化に用いた物質	無	有	1//	+	
#156	Ames試験	TA100	20~500 ng/plate	S9 mix		_		1991	1
#130		TA98	20~300 Hg/plate	O9 IIIIX	1	_			

	ほ乳類培養細胞を用	いた遺伝子	一突然変異試験				_		
文献番号	以来		OA濃度	代謝活性化			コメント	年	1
#	叶间火	土初生	の人伝反	活性化に用いた物質	無	有	177 F	+	
#156		CHL細胞 株(チャイ ニーズハム スター肺細 胞)			+		・ジフテリアに対する毒耐性をマーカーとして測定。・OA濃度10~15 ng/mlにおいて突然変異頻度は5500/10⁶/1 mgと推計された。	1991	
#166(未入 手) cited by #132		哺乳類細胞						1993	
#168	前方突然変異 (HPRT突然変異アッ		OA、5~5,000 nM	ラット肝臓S9		_	・OECDガイダンスによる方法。	2004	

文献番号	試験	生物種	毒の種類及び濃	代謝活	性化		コメント	年		
#	12人的大	工107年	一世の世界人の伝	活性化に用いた物質	無	有	2/01			
未入手	in vitro小核試験	Perna pernaの血 球(?)	OA 0.3 mg/10 ml を添加?					2003		
88	in vitro小核試験	CHO-K1 細胞株	OA、1~50 nM、4 時間	雄ラット肝臓S9 (postmitochondria)	_	+	・4時間のインキュベーションでは、影響なし。24時間のインキュベーションで、20 nM以上の濃度で小核形成及び多核細胞が有意に増加。S9存在下では30 nM以上で有意に増加。・アポトーシスは少なかった。・OAは、セントロメアを含むユーロクロマチンを誘導。	2003		
169	in vitro小核試験	CaCo-2細 的株	OA、30~60 nM、 4時間 5~20 nM、24時		+		・20 nM以上で4時間、5 nM以上で24時間インキュベートすると小核形成が有意に増加。小核の増加は、用量依存的であった。	2006		

	インディケーター試験	₹						
	in vitro							
文献番号	試験	生物種	OA濃度	代謝活	性化		コメント	年
#	四八河火	土物准	UA低反	活性化に用いた物質	無	有		+
168	不定期DNA試験 (UDS)	ラット肝臓 細胞	1.32∼100 nM		_		・OECDガイダンスによる方法。	2004
166	姉妹染色分体交換	ヒトリンパ芽 細胞腫由 来細胞及 びCHO細 胞	2∼10 nM				・蛋白質ホスファターゼ阻害剤OAはブロモデオキシウリジンの存在に依存して姉妹染色分体交換を誘発した。 ・OAは、ブロモデオキシウリジンの作用を促進したと考えられた。	1963
171	蛍光 in situ ハイブリダイゼーション法(FISH)	CHO-K1 細胞		ラット肝臓89			・ラット肝臓 S9 存在下。熱処理によりこの作用は 失活。 ・染色体の異数性を誘導。	2003
88	FISH	CHO-K1 細胞		ラット肝臓S9			・セントロメアを含む小核を形成し、 OA は染色体の異数性を誘導すると考えられた。	2003

in vovo 染色体異常 試験

	試験	生物種	OA用量	結果	コメント	年
169	小核試験	Swissマウス、雌	経口投与. ①435、525又は 610 µg/kg体重 ②115~1314 µg/kg体重		①525 μg/kg体重投与群で、小核形成が有意に増加したが、用量依存性はなかった。 ②230 μg/kg体重以上の投与群は死亡した。	2006

遺伝毒性試験(暫定版) 資料 2-3

DNA付加体

文献番号	試験	生物種	被検物質	OA濃度	結果		年
167	³² Pポストラベリング法		IHESVグラチノザ	OA 0.01∼5 nM 0.1∼2.5 nM	+	 ・32Pポストラベリング法により付加体形成がみられた。 ・BHK21 C13細胞では、1 nMから付加体形成がみられたが、濃度依存性はなかった。 ・観察された付加体の数はそれぞれ2.6~95.6/10⁹ヌクレオチド及び5.2~31.1/10⁹ヌクレオチドであった。 	1996