## (案)

## 農薬 · 添加物評価書

# ピリメタニル

2012年4月18日 食品安全委員会農薬専門調査会

| 1  | 日 次                    |     |
|----|------------------------|-----|
| 2  |                        | 頁   |
| 3  | ○ 審議の経緯                | . 3 |
| 4  | 〇 食品安全委員会委員名簿          | . 3 |
| 5  | 〇 食品安全委員会農薬専門調査会専門委員名簿 | . 3 |
| 6  | 〇 要約                   | . 5 |
| 7  |                        |     |
| 8  | I. 評価対象農薬・添加物の概要       | 6   |
| 9  | 1. 用途                  | 6   |
| 10 | 2. 有効成分の一般名            | 6   |
| 11 | 3. 化学名                 | 6   |
| 12 | 4. 分子式                 | 6   |
| 13 | 5. 分子量                 | 6   |
| 14 | 6.構造式                  | 6   |
| 15 | 7. 開発及び評価要請の経緯         | 6   |
| 16 |                        |     |
| 17 | Ⅱ. 安全性に係る試験の概要         | . 8 |
| 18 | 1. 動物体内運命試験            | . 8 |
| 19 | (1)ラット 審議済             | . 8 |
| 20 | (2)マウス 審議済             | 11  |
| 21 | (3)畜産動物(ウシ)            | 12  |
| 22 | 2.植物体内運命試験 審議済         | 13  |
| 23 | (1)りんご                 | 13  |
| 24 | (2)ぶどう                 | 14  |
| 25 | (3) にんじん               | 14  |
| 26 | (4) トマト                | 15  |
| 27 | (5)リーフレタス              | 16  |
| 28 | (6) いちご                | 17  |
| 29 | (7)後作物                 | 18  |
| 30 | 3. 土壌中運命試験 審議済         | 19  |
| 31 | (1)好気的土壌中運命試験①         | 19  |
| 32 | (2)好気的土壌中運命試験②         | 19  |
| 33 | (3)好気的・嫌気的土壌中運命試験      | 20  |
| 34 | 4. 水中運命試験 審議済          | 21  |
| 35 | (1)加水分解試験              | 21  |
| 36 | (2)水中光分解試験             | 21  |
| 37 | 5. 土壌残留試験 審議済          | 21  |
| 38 | 6. 作物残留試験 審議済          | 21  |

| 1  | 7. 一般薬理試験 審議済                        | 21 |
|----|--------------------------------------|----|
| 2  | 8. 急性毒性試験 審議済                        | 22 |
| 3  | (1)急性毒性試験                            | 22 |
| 4  | (2)急性神経毒性試験(ラット)                     | 23 |
| 5  | 9. 眼・皮膚に対する刺激性及び皮膚感作性試験 審議済          | 23 |
| 6  | 1 0. 亜急性毒性試験                         | 24 |
| 7  | (1)90 日間亜急性毒性試験(ラット)[1990 年、GLP]     | 24 |
| 8  | (2) 90 日間亜急性毒性試験(マウス) [1991 年、GLP]   | 25 |
| 9  | (3)90 日間亜急性毒性試験(イヌ) [1991 年、GLP]     | 27 |
| 10 | (4)90 日間亜急性神経毒性試験(ラット)[2001 年]審議済    | 29 |
| 11 | 1 1. 慢性毒性試験及び発がん性試験                  | 30 |
| 12 | (1)1 年間慢性毒性試験(イヌ) [1992 年、GLP]       | 30 |
| 13 | (2)2年間慢性毒性/発がん性併合試験(ラット) [1993年、GLP] | 31 |
| 14 | (3) 80 週間発がん性試験(マウス) [1993 年、GLP]    | 32 |
| 15 | 1 2 . 生殖発生毒性 審議済                     | 33 |
| 16 | (1)2 世代繁殖試験(ラット)[1993 年、GLP]         | 33 |
| 17 | (2)発生毒性試験(ラット)[1991 年、GLP]           | 34 |
| 18 | (3) 発生毒性試験 (ウサギ) [1991年、GLP]         | 34 |
| 19 | 1 3.遺伝毒性試験 <mark>審議済</mark>          | 34 |
| 20 | 1 4. その他の試験 審議済                      | 35 |
| 21 | (1)マウスの肝薬物代謝酵素及び性周期に及ぼす影響 [1998 年]   |    |
| 22 | (2)雄ラットの肝薬物代謝酵素に及ぼす影響 [1991 年]       |    |
| 23 | (3)ラットの甲状腺に対する影響① [1992年、GLP]        |    |
| 24 | (4) ラットの甲状腺に対する影響② [1992年、GLP]       |    |
| 25 | 15. 一日摂取量の推計等   審議済                  |    |
| 26 | 1 6. 耐性菌の選択 審議済                      |    |
| 27 | (1)ヒトの腸内細菌叢に及ぼす影響について                | 38 |
| 28 | (2)ヒト真菌症に係る真菌に対する作用について              |    |
| 29 | (3)耐性の伝達について                         | 40 |
| 30 |                                      |    |
| 31 | Ⅲ. 食品健康影響評価                          | 41 |
| 32 |                                      |    |
| 33 | · 別紙 1:代謝物/分解物略称                     |    |
| 34 | · 別紙 2:検査値等略称                        |    |
| 35 | · 別紙 3:作物残留試験 (海外)                   |    |
| 36 | ・参照                                  | 50 |
| 37 |                                      |    |

#### 1 〈審議の経緯〉

2005年 11月 29日 残留農薬基準告示(参照1)

2006年 5月 30日 インポートトレランス設定の要請

2010年 4月 30日 厚生労働大臣から残留基準設定に係る食品健康影響評価につ

いて要請(厚生労働省発食安0430第1号)

2010年 5月 10日 関係書類の接受 (参照 2~10)

2010年 5月 13日 第331回食品安全委員会(要請事項説明)

2011年 2月 1日第70回農薬専門調査会幹事会

2012年 2月 20日 補足資料受理(参照11、12)

2012年 4月 18日 第82回農薬専門調査会幹事会

2

#### 3 〈食品安全委員会委員名簿〉

(2009年1月6日まで) (2011年1月7日から)

小泉直子(委員長) 小泉直子(委員長)

見上 彪(委員長代理\*) 熊谷 進(委員長代理\*)

長尾拓長尾拓野村一正野村一正畑江敬子廣瀬雅雄廣瀬雅雄村田容常

\*:2009年7月9日から \*:2011年1月13日から

4

#### 5 〈食品安全委員会農薬専門調査会専門委員名簿〉

(2012年3月31日まで)

納屋聖人 (座長) 佐々木有 平塚 明 林 真(座長代理) 代田眞理子 福井義浩 相磯成敏 高木篤也 藤本成明 玉井郁巳 赤池昭紀 細川正清 浅野 哲\*\* 田村廣人 堀本政夫 津田修治 石井康雄 本間正充 泉 啓介 津田洋幸 増村健一\*\* 上路雅子 長尾哲二 松本清司 永田 清 臼井健二 柳井徳磨 太田敏博 長野嘉介\* 山崎浩史 西川秋佳 山手丈至 小澤正吾 川合是彰 布柴達男 與語靖洋

| 川口博明     | 根岸友惠 | 義澤克彦 |
|----------|------|------|
| 桑形麻樹子*** | 根本信雄 | 吉田 緑 |
| 小林裕子     | 八田稔久 | 若栗 忍 |
| 三枝順三     |      |      |

\*: 2011年3月1日まで \*\*: 2011年3月1日から \*\*\*: 2011年6月23日から

1

#### (2012年4月1日から)

| 相磯成敏  | 玉井郁巳 | 細川正 | 清          |
|-------|------|-----|------------|
| 赤池昭紀  | 田村廣人 | 堀本政 | 夫          |
| 浅野 哲  | 津田修治 | 本間正 | 充          |
| 泉 啓介  | 永田 清 | 増村健 | <u>ţ</u> — |
| 上路雅子  | 長野嘉介 | 松本清 | 司          |
| 小野 敦  | 納屋聖人 | 森田  | 健          |
| 川口博明  | 西川秋佳 | 山崎浩 | 史          |
| 桑形麻樹子 | 根岸友惠 | 山手丈 | 至          |
| 腰岡政二  | 根本信雄 | 與語靖 | 詳          |
| 三枝順三  | 八田稔久 | 義澤克 | 彦          |
| 佐々木有  | 福井義浩 | 吉田  | 緑          |
| 代田眞理子 | 藤本成明 | 若栗  | 忍          |
|       |      |     |            |

2 3

#### 〈第82回農薬専門調査会幹事会専門参考人名簿〉

4 5

〔調査審議に参画した食品安全委員会添加物専門調査会専門委員〕1

塚本徹哉 頭金正博 中江 大

<sup>1 「</sup>農薬であって農作物の収穫後に添加物としても使用されるものについて、食品安全基本法第24条の規定に基づき意見を求められた場合の取扱いについて」(平成22年5月20日食品安全委員会決定)に基づき調査審議の際に招聘した添加物専門調査会の専門委員

#### 要約事務局修文

殺菌剤「ピリメタニル」(CAS No. 131341-86-1)は、ポジティブリスト制度施行に伴う暫定基準が設定されている。本剤について、食品添加物指定の要請書、及びインポートトレランス設定の要請に関する資料並びにJMPR、米国、EU及び豪州が行った評価を基に食品健康影響評価を実施した。

評価に用いた試験成績は、動物体内運命(ラット、マウス及びウシ)、植物体内運命(りんご、ぶどう、にんじん、トマト、リーフレタス及びいちご)、急性毒性(ラット及びマウス)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性等の試験成績である。

各種毒性試験結果から、ピリメタニル投与による影響は主に体重(増加抑制)、肝臓(肝細胞肥大等)、甲状腺(ろ胞上皮細胞肥大等)及び尿路系(マウス:膀胱拡張等)に認められた。繁殖能に対する影響及び遺伝毒性は認められなかった。ラットの雌で甲状腺ろ胞細胞腺腫の発生頻度が増加したが、遺伝毒性試験、メカニズム試験の結果等から、腫瘍の発生メカニズムは遺伝毒性によるものではないと考えられ、評価に当あたり閾値を設定することは可能であると考えられた。ウサギの発生毒性試験において、母動物に毒性が認められる 300 mg/kg 体重/日で矮小児並びに 13 胸椎及び13 肋骨の発生頻度増加が発現したが、母動物に毒性がみられない用量では胎児に対する影響は認められず、ラットの発生毒性試験では催奇形性は認められなかった。

各試験で得られた無毒性量のうち最小値がラットを用いた 2 年間慢性毒性/発がん性併合試験の 17 mg/kg 体重/日であった<u>ことからので</u>、これを根拠として<u>、</u>安全係数 100 で除した 0.17 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

#### 1 I. 評価対象農薬・添加物の概要

- 2 1. 用途
- 3 殺菌剤(添加物としては防ばい剤)

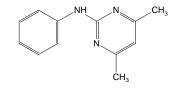
4

- 5 2. 有効成分の一般名
- 6 和名:ピリメタニル
- 5 英名: pyrimethanil (ISO名)

8

- 9 3. 化学名
- 10 **IUPAC**
- 11 和名: N-(4,6-ジメチルピリミジン-2-イル)アニリン
- 其 英名: N-(4,6-dimethylpyrimidin-2-yl)aniline
- 13 **CAS** (No.131341-86-1)
- 14 和名:4,6-ジメチル-N-フェニル-2-ピリミジンアミン
- 5 英名: 4,6-dimethyl-*N*-phenyl-2-pyrimidinamine

16


- 17 4. 分子式
- $18 C_{12}H_{13}N_3$

19

- 20 5. 分子量
- 21 199.26

22

23 6. 構造式



2425

26

27

28

2930

31

32

33

3435

#### 7. 開発及び評価要請の経緯

ピリメタニルは、シェーリング AG (現バイエルクロップサイエンス AG) によって開発されたアニリノピリミジン系殺菌剤である。本剤は、糸状菌のメチオニン生合成を阻害し、糸状菌を直接死滅させるとともに、植物細胞壁を加水分解する酵素の菌体外への分泌を阻害することにより植物への感染を防ぐとされている。

我が国では 1999 年に農薬登録されたが 2005 年に失効し、現在は農薬として登録されていない。今回、インポートトレランス設定の要請(高麗人参)がなされている。また、ポジティブリスト制度導入に伴う暫定基準値が設定されている。

さらに、我が国では、収穫後の農作物への使用の目的が、かび等による腐敗<u>及び</u>、 | 変敗の防止である場合には、食品の保存の目的で使用したと解されるため、そのよ

#### 2012/04/18 第82回農薬専門調査会幹事会 ピリメタニル評価書(案)たたき台

1 うなものは添加物に該当する<u>事務局修文</u>。ピリメタニルは防ばい目的で収穫後の農 2 作物に使用されることが見込まれ、添加物指定等について事業者から厚生労働省に 3 指定要請がなされている。 4

#### Ⅱ. 安全性に係る試験の概要

食品添加物指定の要請書(2010年)、JMPR 資料(2007年)、米国資料(2004年)、EU 資料(2005年)及び豪州資料(2011年)を基に、毒性に関する主な科学的知見、一日摂取量の推計結果等を整理した。(参照  $3\sim12$ )

各種運命試験 [ II-1~4] は、ピリメタニルのフェニル基の炭素を均一に  $^{14}$ C で標識したもの(以下「 $[phe^{-14}C]$ ピリメタニル」という。)又はピリミジニル基の  $^{2}$  位の炭素を  $^{14}$ C で標識したもの(以下「 $[pyr^{-14}C]$ ピリメタニル」という。)を用いて実施された。標識位置が不明のものは、その旨を記した。放射能濃度及び代謝物濃度は特に断りがない場合はピリメタニルに換算した。代謝物/分解物略称及び検査値等略称は別紙  $^{1}$  及び  $^{2}$  に示されている。

#### 1. 動物体内運命試験

- (1) ラット 審議済
- ① 吸収

#### a. 血中濃度推移

SD ラット (一群雄 24 匹) に[phe-14C] ピリメタニルを 11.8 mg/kg 体重 (以下 [1. (1)①、③及び④] において「低用量」という。) 又は 800 mg/kg 体重 (以下 [1. (1)①、③及び④] において「高用量」という。) で単回経口投与し、血中濃度推移について検討された。

薬物動態学的パラメータは表1に示されている。

低用量群では、投与後速やかに  $C_{max}$  に達した。 $T_{max}$  の比較により、高用量群では低用量群と比較して吸収の遅延が示唆された。

血漿中代謝物について検討された結果、低用量群では親化合物、B、B の硫酸 抱合体、C、D 及び F が認められ、B が最も多くを占めた。高用量群では、B の 硫酸抱合体及び F は認められず、親化合物が最も多くを占めた。(参照 3)

(要請書 安全性に関する資料:101~103頁)

表 1 薬物動態学的パラメータ 1)

| 投与群              |              | T <sub>max</sub> (hr) | C <sub>max</sub> (µg/g) | T <sub>1/2</sub> (hr) | AUC (μg·hr/g) |
|------------------|--------------|-----------------------|-------------------------|-----------------------|---------------|
| +# 11.8 mg/kg 体重 |              | 0.735                 | 4.62                    | 4.80                  | 11.3          |
| 雄                | 800 mg/kg 体重 | 3.94                  | 56.5                    | 11.8                  | 1,080         |

1)総放射能を指標として算出した。

#### b. 吸収率

単回投与による排泄試験 [1. (1) ④ a.] で得られた尿中排泄率及びケージ洗浄液中の放射能量から、低用量群及びおよび高用量群とも吸収率は少なくとも 78% 以上事務局修正と推定された。 (参照 3)

(要請書 安全性に関する資料:90~91頁)

1 2 3

4

5

6

7

8

9 10

## ② 分布

SD ラット (一群雌雄各 3 匹) に[phe-14C] ピリメタニルを 10 又は 800 mg/kg 体重で単回経口投与し、体内分布試験が実施された。

主要組織における残留放射能濃度は表2に示されている。

いずれの用量においても、消化管を除くと甲状腺、副腎、肝臓、腎臓及び腎脂肪で比較的高濃度の分布が認められた。800 mg/kg 体重投与群ではさらに卵巣でも濃度が高かった。両投与群における組織中放射能濃度の違いは、投与量の違い(80 倍)に比べると少なかった。(参照 3)

(要請書 安全性に関する資料:97~100頁)

表 2 主要組織における残留放射濃度 (μg/g)

| 衣 2 工安恒戦に8317 ②次田以利1版及(μ5/ 8/ |                   |    |                                                                                                                                                                   |                                                                                    |  |  |  |  |
|-------------------------------|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|
| 標識体                           | 投与量<br>(mg/kg 体重) | 性別 | T <sub>max</sub> 付近 <sup>1)</sup>                                                                                                                                 | 最終試料採取時間2)                                                                         |  |  |  |  |
|                               |                   | 雄  | 甲状腺(44.9)、腎脂肪(42.4)、消化管(38.0)、副腎(30.4)、腎臓(22.5)、肝臓(11.6)、カーカス(5.10)、血漿(5.05)、その他(4.00未満)                                                                          | 甲状腺(0.273)、腎臓(0.240)、<br>副腎(0.240)、カーカス(0.118)、<br>その他(0.100 未満)                   |  |  |  |  |
| 14C-                          | 10                | 雌  | 甲状腺(72.6)、腎脂肪(72.6)、副腎(52.3)、消化管(24.2)、卵巣(22.1)、腎臓(15.9)、肝臓(11.8)、カーカス(6.81)、血漿(4.75)、脾臓(4.74)、肺(4.70)、その他(4.00未満)                                                | 臓(0.474)、腎臓(0.235)、カーカス(0.167)、卵巣(0.108)、そ                                         |  |  |  |  |
| ピリメタニル                        | 800               | 雄  | 消化管(8,050)、腎脂肪(788)、甲<br>状腺(787)、副腎(410)、肝臓<br>(157)、肺(150)、腎臓(145)、カ<br>ーカス(125)、骨格筋(79.3)、心<br>臓(58.0)、血漿(47.9)、その他<br>(45.0 未満)                                | 肝臓(31.0)、腎臓(23.9)、副腎(20.8)、全血(9.18)、カーカス(6.68)、腎脂肪(6.40)、肺(6.03)、                  |  |  |  |  |
|                               |                   | 雌  | 消化管(7,320)、腎脂肪(1,780)、<br>甲状腺(1,620)、副腎(897)、卵巣<br>(668)、肺(291)、肝臓(263)、腎<br>臓(173)、カーカス(170)、脳<br>(113)、心臓(109)、骨格筋(86.5)、<br>脾臓(77.1)、血漿(57.4)、その他<br>(55.0 未満) | 臓(33.8)、副腎(33.1)、腎臓(26.5)、腎脂肪(12.1)、カーカス(10.8)、全血(9.19)、卵巣(7.35)、肺(6.83)、脾臓(5.47)、 |  |  |  |  |
| 1) 低田县                        | 群は投与1時間           | 月公 | 高用量群は投与2時間後。                                                                                                                                                      | 1                                                                                  |  |  |  |  |

<sup>1)</sup> 低用量群は投与1時間後、高用量群は投与2時間後。

<sup>2)</sup> 低用量群は投与24時間後、高用量群は投与48時間後。

3 4

5 6

7

8 9

10 11

12 13

14

15 16

17

18

#### ③ 代謝

排泄試験 [1. (1) 4 a. 及び b. ] で得られた低用量及び高用量単回投与並びに反 復投与後の尿及び糞を試料とした代謝物同定・定量試験が実施された。

尿及び糞中代謝物は表3に示されている。

尿及び糞ともに、極性物質が最も多くを占め、その量は反復投与群で増加した。 尿中に親化合物は認められず、主要代謝物は B(10.7~38.1%TRR) 及び Bの 硫酸抱合体  $(8.3\sim14.7\%TRR)$  であった。高用量群では C も多く認められた (11.5%TRR)。 糞中の主要代謝物も同様に B (6.8~23.6%TRR) 及び B の硫 酸抱合体(6.4~8.8%TRR)であったが、Bは反復投与群では単回投与群に比べ て極めて少なかった。糞中からは親化合物が 3.5~11.1%TRR 認められた。尿及 び糞中の代謝パターンにはわずかな差が認められ、投与量の増加に伴ってC及び Fの尿中排泄が増加した。

ピリメタニルのラット体内における主要代謝経路は、いずれか一方又は両芳香 環の酸化であった。(参照3)

(要請書 安全性に関する資料:94~96頁)

#### 表3 尿及び糞中代謝物(%TRR)

|   | 投与群 (投与量)        | 試料 | ピリメタニル                                | 代謝物                              |
|---|------------------|----|---------------------------------------|----------------------------------|
|   |                  | 尿  |                                       | 極性物質(38.6)、B(38.1)、B の硫酸抱合体      |
|   | 11 0 m a/l-a /太舌 | 水  | _                                     | (14.7), E(6.0), D(1.4)           |
| 単 | 11.8 mg/kg 体重    | 糞  | 0.0                                   | 極性物質(29.4)、B(22.6)、C(10.3)、B の   |
| 口 |                  | 英  | 6.2                                   | 硫酸抱合体(6.4)、F(4.5)、E(2.7)、D(1.5)、 |
| 投 |                  | 尿  |                                       | 極性物質(30.9)、B(26.9)、C(11.5)、B の   |
| 与 | 800 mg/kg 体重     | 水  | · · · · · · · · · · · · · · · · · · · | 硫酸抱合体(8.3)、E(5.2)、F(4.8)、D(1.8)、 |
|   | 600 mg/kg 冲里     | 糞  | 11 1                                  | 極性物質(36.9)、B(23.6)、B の硫酸抱合体      |
|   |                  | 英  | 11.1                                  | (8.1), E(4.8), C(3.8), D(1.8)    |
| 反 |                  | 尿  |                                       | 極性物質(51.6)、B の硫酸抱合体(11.2)、       |
| 復 | 10 mg/kg 体重      | 水  | _                                     | B(10.7), E(7.0), C(1.7), D(1.5)  |
| 投 |                  | 糞  | 3.5                                   | 極性物質(55.4)、C(9.3)、B の硫酸抱合体       |
| 与 |                  | 異  | ა.მ                                   | (8.8), F(7.4), D(3.6)            |

19

-:検出されず。

20

2122

2324

25

26

#### 4 排泄

#### a. 単回投与

SD ラット (一群雌雄各 5 匹) に $[phe^{-14}C]$ ピリメタニルを低用量又は高用量で 単回経口投与し、排泄試験が実施された。

投与後24及び96時間の尿及び糞中排泄率は表4に示されている。

排泄は速やかであり、投与後24時間の尿及び糞中に低用量群で95%TAR以上、

高用量群で62%TAR 以上が、また、96 時間の尿及び糞中には低用量群でほぼ全量が、高用量群で94%TAR 以上が排泄された。主要排泄経路は尿中であった。投与96 時間後の組織中残留放射能量は低く、低用量群ではカーカス及び肝臓で $0.082\sim0.223~\mu g/g$  検出された以外、放射能は検出されなかった。高用量群では、肝臓及び腎臓で $6.85\sim11.3~\mu g/g$  検出され、他の組織では $5.5~\mu g/g$  未満であった。(参照3)

(要請書 安全性に関する資料:90~91頁)

表 4 投与後 24 及び 96 時間の尿及び糞中排泄率 (%TAR)

| 投与量       |      | 11.8 mg | /kg 体重 |      | 800 mg/kg 体重 |      |      |      |
|-----------|------|---------|--------|------|--------------|------|------|------|
| 性別        | 雄    |         | 雌      |      | 雄            |      | 雌    |      |
| 試料        | 尿    | 糞       | 尿      | 糞    | 尿            | 糞    | 尿    | 糞    |
| 投与後 24 時間 | 78.7 | 19.4    | 75.3   | 20.3 | 54.0         | 8.9  | 56.7 | 9.9  |
| 投与後 96 時間 | 81.4 | 20.9    | 78.6   | 22.8 | 79.2         | 15.5 | 79.3 | 18.2 |

注) 尿の値はケージ洗浄液を含む。

#### b. 反復投与

SD ラット (一群雌雄各 5 匹) に非標識ピリメタニルを 10 mg/kg 体重/日で  $14 \text{ 日間反復経口投与後、[phe-}^{14}\text{C]}$ ピリメタニルを 10 mg/kg 体重で単回強制経口投与し、排泄試験が実施された。

単回投与時と同様に排泄は速やかであり、 $[phe^{-14}C]$ ピリメタニル投与後 24 時間の尿(ケージ洗浄液を含む)及び糞中に、雄でそれぞれ 71.6 及び 17.9% TAR、雌でそれぞれ 72.3 及び 16.8% TAR が排泄された。主要排泄経路は単回投与時と同じく尿中であった。 $[phe^{-14}C]$ ピリメタニル投与 24 時間後の組織中残留放射能量は低く、放射能は肝臓、腎臓及び全血で  $0.044\sim0.441~\mu g/g$  検出された以外、放射能は検出されなかった。反復投与による排泄パターンへの影響は認められなかった。(参照 3)

(要請書 安全性に関する資料:92~93頁)

#### (2) マウス 審議済

ICR マウス (一群雌雄各 5 匹) に $[phe^{-14}C]$ ピリメタニルを 10 mg/kg 体重で単回強制経口投与し、体内分布及び排泄について検討された。

投与 96 時間後の組織中残留放射能量は極めて低く、全血、カーカス、腎臓及び肝臓で 0.003~0.040 μg/g 検出された以外、放射能は検出されなかった。

投与後24及び96時間の尿及び糞中排泄率は表5に示されている。

排泄は速やかであり、投与後 24 時間の尿及び糞中にほぼ完全に排泄された。 排泄速度及び経路に性差は認められず、また、マウスにおける排泄の挙動はラット [1.(1)] と類似していた。(参照 3) (要請書 安全性に関する資料:94~95 頁)

1 2 3

#### 表 5 投与後 24 及び 96 時間の尿及び糞中排泄率 (%TAR)

| 投与量       |      | 10 mg/ | kg 体重 |      |  |  |
|-----------|------|--------|-------|------|--|--|
| 性別        | 左    | 隹      | 此     | 推    |  |  |
| 試料        | 尿    | 糞      | 尿     | 糞    |  |  |
| 投与後 24 時間 | 80.0 | 21.0   | 86.6  | 13.4 |  |  |
| 投与後 96 時間 | 85.5 | 23.8   | 91.9  | 16.6 |  |  |

注) 尿の値はケージ洗浄液を含む。

4 5 6

7

8 9

10

1112

13

14

15

16

1718

1920

21

22

23

2425

#### (3) 畜産動物(ウシ) 事務局修文

巡乳牛(品種及び頭数不明)に <sup>14</sup>C-ピリメタニル (標識位置不明)を 10 ppm (0.4 mg/kg 体重/日相当)で 7 日間連続混餌投与し、動物体内運命試験が実施された。 試料として、早朝(7 時半前後)と夕方(16 時前後)の1日2回採取された乳汁、24 時間おきに回収された尿及び糞、投与前から経時的に採取された血液並びに及びと殺時(最終投与後 24 時間以内)に採取された肝臓、腎臓、心臓、肺、脾臓、筋肉及び腎脂肪が用いられた。

乳汁中の総残留放射能は約 119 時間(約 5 日)で定常状態に達し(0.069 mg/kg)、その他の測定時には  $0.0007 \sim 0.065 \text{ mg/kg}$  で推移した。組織における総残留放射能濃度は、筋肉、腎脂肪、腎臓及び肝臓でそれぞれ 0.017、0.036、0.249 及び 0.363 mg/kg であった。筋肉及び腎脂肪への残留は非常に低く、代謝物の同定はできなかった。

乳汁中の主要代謝物は C(64%TRR) であり、極性代謝物も認められた (27%TRR)。 腎臓中代謝物として B(46%TRR)、C(5.4%TRR) 及び E(6.8%TRR) の<u>ほか</u> 他、極性代謝物が認められた (42%TRR)。 肝臓中の抽出放射能は少なく (28%TRR)、代謝物は検出されなかったが、残りの放射性残留物はタンパク質 (48%TRR)、脂質 (9.1%)、RNA(6.7%TRR) 及び硫化グリコアミノグリカン (6.0%TRR) に分画された。乳汁、肝臓及び腎臓中のいずれにも、ピリメタニルは検出されなかった。

ピリメタニルの乳牛における代謝は、ラットの結果と類似していた。 (参照4:

239~240 頁、参照 5:924~926 頁)

#### 【追加資料要求事項】

畜産動物における主要代謝物 B (2-(4-hydroxyanilino)-4,6-dimethylpyrimidine) 及び C (2-anilino-4,6-dimethylpyrimidin-5-ol) に関する毒性情報 (急性毒性試験、遺伝毒性試験等) があれば提出すること。また、ウシの乳汁中の代謝物 B の総残留放射能 (TRR) に対する割合を示すこと。

#### 【厚生労働省回答】

毒性情報について調べましたが、ございませんでした。

#### 【事務局より】

ウシの乳汁中の代謝物 B の、総残留放射能(TRR)に対する割合につきましては、JMPR

(2008年)(参照 5)、table 4 (925~926 頁)において、「TLC による分析で、代謝物 B と C は分離できなかったが、大部分が代謝物 C であると考えられた。」とされていることを確認しました。

1

#### 【頭金専門委員コメント】

主要代謝物 B と C は、ラットおよびウシで生成されており、代謝物の生成としては種差は小さいと推測されます。従って、親化合物を用いる毒性試験において、生体内では B と C が生成されていることから(生成割合も算出されているので)、親化合物を用いる毒性試験からある程度は B と C の毒性も推測可能と思われます。同様に、遺伝毒性試験も代謝活性化の系(S-9)を加えているので、一定の B と C が産生されていると思われます。以上のことから、代謝物 B と C の毒性情報はないが、親化合物の毒性試験からの推測は可能ではないかと考えます。

2 3

4

5

6 7

8

9

10

11

12

13

1415

#### 2. 植物体内運命試験 審議済

#### (1) りんご

りんご (品種不明) の着色開始 (start of red pigmentation) 時 (果実直径 20  $\sim$ 30 mm) に、フロアブル剤に調製した[phe-14C]ピリメタニル又は[pyr-14C]ピリメタニルを 33 mg ai/樹で 4 回(計 82 g ai/ha 相当)処理し、植物体内運命試験が実施された。果実及び葉は、最終処理 6 週間後の成熟期に採取された。

各試料における総残留放射能及び代謝物は表 6 に示されている。

回収放射能のうち、 $41\sim45\%$ は果肉から、48%は果皮から得られた。また、果実では  $18\sim19\%$ が表面洗浄液から、 $71\sim74\%$ が果実抽出物から回収され、葉では  $41\sim44\%$ が表面洗浄液から、 $51\sim53\%$ が葉抽出物から回収された。果実及び葉のいずれにおいても、親化合物が最も多くを占め( $55\sim77\%$ )、代謝物としてGが果実で 1.5%、葉で  $15\sim16\%$ 認められた。両標識体による結果は類似していたことから、芳香環間のアミン結合の開裂は起こらないことが示唆された。(参照 5:927 頁)

1617

18

表 6 りんご各試料における総残留放射能及び代謝物

| <b>业</b> 4∉ | 抽動                               | 総残留 | 抽出     |        | (抽出放 | 非抽出       |      |      |
|-------------|----------------------------------|-----|--------|--------|------|-----------|------|------|
| 試料          | 標識体                              | 放射能 | 放射能 1) | ピリメタニル | G    | その他 2)    | 未同定  | 放射能  |
|             | [phe-14C]                        |     | 93     | 77     | 1.5  | 1.1-3.4   | 1.5  | 7    |
| 田宇          | ピリメタニル                           | 14  | 13     | 11     | 0.21 | 0.15-0.48 | 0.21 | 0.98 |
| 果実          | $[\mathrm{pyr}^{-14}\mathrm{C}]$ |     | 89     | 70     | 1.5  | 1.7-3.3   | 2.5  | 11   |
|             | ピリメタニル                           | 8.8 | 7.8    | 6.2    | 0.13 | 0.15-0.29 | 0.22 | 0.97 |
|             | $[\mathrm{phe^{-14}C}]$          |     | 93     | 61     | 15   | 0.6-7.5   | 2    | 6.7  |
| 葉           | ピリメタニル                           | 63  | 58     | 38     | 9.4  | 0.38-4.7  | 1.3  | 4.2  |
|             | $[\mathrm{pyr}^{-14}\mathrm{C}]$ |     | 95     | 55     | 16   | 0.6-6.9   | 2.6  | 4.9  |
|             | ピリメタニル                           | 54  | 51     | 30     | 8.6  | 0.32-3.7  | 1.4  | 2.6  |

19 20

21

上段:回収放射能に対する%、下段:mg/kg、/:該当なし

<sup>1)</sup> 表面洗浄液を含む。

<sup>2)</sup> ピリメタニルの水酸化体及び抱合体。

## 3

## 4 5

6

8 9

10 11 12

13

14

15

16

17 18

19

20 21

25

26

27

22 23

24

28

29

(2) ぶどう

ぶどう(品種不明)に、水和剤に調製した $[phe^{-14}C]$ ピリメタニルを 200 mg ai/ 樹で2回処理し、植物体内運命試験が実施された。処理には自動ピペットを用い、 被験物質が植物体の表面にできるだけ均等に拡散するよう、細かい飛沫にして実 施された。初回処理は成熟開始時に実施され、最終処理 21 日後に果実及び葉が 採取された。

各試料における総残留放射能及び代謝物は表7に示されている。

果実及び葉のいずれにおいても、主な成分は親化合物であり、それぞれ回収放 射能の 91% (27 mg/kg) 及び 31% (7.2 mg/kg) を占めた。果実では、親化合物 以外に回収放射能の 1.0%を超える代謝物はなかった。葉では、K が回収放射能 の 17%を、非抽出放射能が 18%を占めた。非抽出放射能の過酷抽出により、高 極性代謝物及び親化合物が認められた。事務局修文 (参照5:928頁)

#### \* じこ々 計判によいよる 妙味の壮 田北 ひかけん

| 表 / ふとう合試料における総残留放射能及び代謝物 |      |     |     |        |       |           |     |
|---------------------------|------|-----|-----|--------|-------|-----------|-----|
| 試料                        | 総残留  | 表面  | 抽出  | (表面洗泡  | 净液+抽出 | 放射能)      | 非抽出 |
| 武科                        | 放射能  | 洗浄液 | 放射能 | ピリメタニル | K     | 未同定       | 放射能 |
| H /+                      |      | 56  | 40  | 91     | 0.6   | 0.1~0.4   | 3.6 |
| 果実                        | 29.5 | 17  | 12  | 27     | 0.18  | 0.03-0.12 | 1.1 |
| 葉                         |      | 23  | 67  | 31     | 17    | 1.9~2.8   | 18  |
|                           | 23.3 | 5.4 | 16  | 7.2    | 3.9   | 0.44-0.65 | 4.2 |

5.4上段:回収放射能に対する%、下段:mg/kg、/:該当なし

(3) にんじん にんじん(品種不明)に、フロアブル剤に調製した[pyr-14C]ピリメタニルを土 **壌又は葉面処理し、植物体内運命試験が実施された。試験設計概要は表8に示さ** れている。

| 表 8 にんじんにおける植物体内連命試験の試験設計概要 |       |           |                                 |  |  |  |  |  |
|-----------------------------|-------|-----------|---------------------------------|--|--|--|--|--|
| 7244                        | 処理量(l | kg ai/ha) | 世                               |  |  |  |  |  |
| 試験区                         | 1回目1) | 2 回目 2)   | 試料採取時期                          |  |  |  |  |  |
| 土壤処理区                       | 0.77  | 0.99      | ①1回目処理1日後                       |  |  |  |  |  |
| 葉面処理区I                      | 0.77  | 0.99      | ②1 回目処理 21 日後                   |  |  |  |  |  |
| 葉面処理区 II                    | 2.44  | 2.90      | ③2 回目処理 1 日後<br>④2 回目処理 21 日後 3 |  |  |  |  |  |

- (4)2 回目処理 21 日後 <sup>3)</sup>
- 1) BBCH スケール 43 (根部の直径が予想到達サイズの 30%に達した時) 2) BBCH スケール 47 (根部の直径が予想到達サイズの 70%に達した時)
- ③ ④の植物の状態は BBCH スケール 49 (標準的な根部の形及びサイズに達した収穫期)
  - 各試料における総残留放射能及び代謝物は表りに示されている。 いずれの試料においても、抽出放射能として回収放射能の 83~99%が得られ

た。そのうち、親化合物が最も多くを占め、回収放射能の  $46\sim98\%$ (葉部:  $2.3\sim49$  mg/kg、根部:  $0.13\sim0.71$  mg/kg)であった。回収放射能の 10%以上認められた代謝物は H のみであり、最大で 16%(1.9 mg/kg、2 回目葉面処理 21 日後の葉部)であった。他に、水酸化された親化合物の抱合体である L、M 及び I がそれぞれ回収放射能の  $0.1\sim7.6\%$ 検出された。(参照  $5:928\sim930$  頁)

表 9 にんじん各試料における総残留放射能及び代謝物

| <b>4</b> π 式田 | lak4€ | 採取         | 総残留  | 抽出    |                  | (抽出加    | 汝射能)  |       |       | 非抽出   |
|---------------|-------|------------|------|-------|------------------|---------|-------|-------|-------|-------|
| 処理            | 試料    | 時期         | 放射能  | 放射能1) | ピリメタニル           | Н       | L     | M     | Ι     | 放射能   |
|               |       | <u>(1)</u> |      | 93    | 89               | -       | -     | -     | -     | 6.8   |
|               |       | 1          | 0.44 | 0.41  | 0.39             | -       | -     | -     | -     | 0.030 |
|               |       | 2          |      | 87    | 78               | -       | -     | -     | -     | 13    |
|               | 根部    | 3          | 0.44 | 0.38  | 0.34             | -       | -     | -     | -     | 0.057 |
|               | 이디지다  |            |      | 93    | 87               | 0.8     | -     | -     | 0.3   | 7.2   |
|               |       | 0          | 0.36 | 0.33  | 0.31             | 0.003   | -     | -     | 0.001 | 0.026 |
|               |       | 4          |      | 90    | 86               | -       | -     | -     | -     | 10    |
| 葉面            |       | 4)         | 0.83 | 0.75  | 0.71             | -       | -     | -     | -     | 0.083 |
| 処理            | 理     | 1          |      | 99    | 98               | 0.2     | 0.1   | -     | 0.1   | 0.7   |
|               |       | (1)        | 26.5 | 26    | 25               | 0.052   | 0.026 | -     | 0.026 | 0.18  |
|               | 葉部    | <u>2</u>   |      | 85    | 46               | 14      | 6.4   | 2.0   | 7.6   | 15    |
|               |       |            | 5.14 | 4.3   | 2.3              | 0.71    | 0.33  | 0.10  | 0.39  | 0.76  |
|               |       | 3          |      | 98    | 93               | 2.0     | 0.7   | 0.2   | 0.8   | 1.9   |
|               |       | 9          | 52.8 | 52    | 49               | 0.11    | 0.37  | 0.11  | 0.42  | 1.0   |
|               |       | 4          |      | 86    | 48               | 16      | 5.6   | 2.2   | 5.7   | 14    |
|               |       | 4          | 12.2 | 10    | 5.8              | 1.9     | 0.67  | 0.26  | 0.68  | 1.7   |
|               |       | 2          |      | 95    | 83               | 0.3     | 0.6   | 0.2   | 0.1   | 4.6   |
|               | 根部    | <b>(a)</b> | 0.23 | 0.22  | 0.19             | < 0.001 | 0.001 | -     | -     | 0.010 |
|               | (15)  | 4          |      | 85    | 70               | 1.3     | 1.0   | 1.2   | 0.6   | 15    |
| 土壌            |       | 4          | 0.18 | 0.15  | 0.13             | 0.002   | 0.002 | -     | -     | 0.027 |
| 上坡            |       | 2          |      | 87    | 75               | 3.6     | 0.7   | 0.7   | 1.2   | 13    |
|               | 在: 立( | 4          | 0.3  | -     | -                | 0.011   | 0.002 | 0.002 | 0.004 |       |
|               | 米印    | 葉部 ④       |      | 88    | 53               | 7.3     | 1.9   | 1.9   | 2.8   | 18    |
|               |       |            | 0.89 | ma/le | -<br>· /· 該 4 /> | 0.065   | 0.017 | 0.017 | 0.025 |       |

 上段:回収放射能に対する%、下段:mg/kg、/:該当なし、-:検出されず ① 葉部については表面洗浄液を含む。

#### (4) トマト

トマト (品種不明) に、フロアブル剤に調製した $[phe^{-14}C]$ ピリメタニル又は $[pyr^{-14}C]$ ピリメタニルを 40~mg~ai/樹で 4~回、7~日間隔で葉面処理する植物体内運命試験が実施された。初回処理は、果実の成熟開始時に実施された。各処理後

果実及び葉を速やかに採取し、最終収穫は収穫期(初回処理 29 日後又は最終処理 8 日後)に行った。

各試料における総残留放射能及び代謝物は表 10 に示されている。

残留放射能の多くが表面洗浄液から回収され、収穫期の果実及び葉で回収放射能の 67~91%を占めた。果実及び葉のいずれにおいても、抽出放射能及び表面洗浄液中の主な成分は親化合物であり、回収放射能の 95~97%(果実で 57~59 mg/kg、葉で 760~2,700 mg/kg)を占めた。代謝物はいずれも 1.1%以下(果実で 0.67 mg/kg 以下、葉で 14 mg/kg 以下)であり、親化合物の水酸化体及び抱合体、未同定代謝物等であった。標識位置の違いによる抽出放射能量及び代謝物プロファイルに差は認められなかった。(参照 5:930~932 頁)

表 10 トマト各試料における総残留放射能及び代謝物

| 試料     | 採取                           | 総残留    | 表面     | 抽出        | (表面洗          | 浄液+抽出加      | 女射能)       | 非抽出  |
|--------|------------------------------|--------|--------|-----------|---------------|-------------|------------|------|
| 武介     | 時期                           | 放射能    | 洗浄液    | 放射能       | ピリメタニル        | その他 1)      | 未同定 2)     | 放射能  |
|        | [pyr- <sup>14</sup> C]ピリメタニル |        |        |           |               |             |            |      |
|        | 最終処理                         |        | 97     | NA        | NA            | NA          | NA         | 3.4  |
| 田宇     | 直後                           | 700    |        |           |               |             |            |      |
| 果実     | 最終処理                         |        | 91     | 7.2       | 97            | 0.2-0.36    | 0.16-1.1   | 0.23 |
|        | 8日後                          | 61     |        | 4.4       | 59            | 0.12-0.22   | 0.10-0.67  | 0.14 |
|        | 最終処理                         |        | 97     | NA        | NA            | NA          | NA         | 2.6  |
| 葉      | 直後                           | 11,000 |        |           |               |             |            | 290  |
| 来      | 最終処理                         |        | 67     | 32        | 96            | 0.08-0.51   | 0.1-0.53   | 1.0  |
|        | 8日後                          | 790    |        | 250       | 760           | 0.63-4.0    | 0.79 - 4.2 | 7.9  |
|        |                              |        | [p]    | ne-14C] ビ | ゚リメタニル        |             |            |      |
|        | 最終処理                         |        | 99     | NA        | NA            | NA          | NA         | 0.82 |
| 田宇     | 直後                           | 960    | 950    |           |               |             |            | 7.9  |
| 果実     | 最終処理                         |        | 88     | 9.3       | 97            | 0.12-0.27   | 0.08-0.3   | 0.21 |
|        | 8日後                          | 59     | 52     | 5.5       | 57            | 0.071-0.16  | 0.047-0.18 | 0.12 |
|        | 最終処理                         |        | 98     | NA        | NA            | NA          | NA         | 2.1  |
| 葉      | 直後                           | 14,000 | 14,000 |           |               |             |            | 300  |
| 米      | 最終処理                         |        | 88     | 12        | 95            | 0.2-0.5     | 0.05-0.06  | 0.66 |
|        | 8日後                          | 2,800  | 2,500  | 340       | 2,700         | 5.6-14      | 1.4-1.7    | 18   |
| L.F.T. | 同加北台社会                       |        | 下ft    | /1 /      | / . ≒太业/ チュ 1 | NIA . MHC+3 | 133        |      |

上段:回収放射能に対する%、下段:mg/kg、/:該当なし、NA:分析されず

#### (5) リーフレタス

リーフレタス(品種不明)に、乳剤に調製した $[pyr^{-14}C]$ ピリメタニルを 800~g ai/ha の用量で 2 回処理し、1 回目処理直後、2 回目処理 7 日後及び収穫期(2 回目処理 21 日後)に採取した葉部を試料とする植物体内運命試験が実施された。

<sup>1)</sup> ピリメタニルの水酸化体及び抱合体。

<sup>2)</sup> 未同定又は未分離の代謝物。

1 各試料における総残留放射能及び代謝物は表 11 に示されている。

残留放射能の大部分は表面洗浄液及び抽出物中に存在した。回収放射能のうち最も多く認められたのは親化合物であり、 $44\sim92\%$ を占めた。加水分解により、B及び Cがいずれも回収放射能の 8%未満で認められた。(参照  $5:932\sim933$ 頁)

表 11 リーフレタス各試料における総残留放射能及び代謝物

|       | No. 1 Control of the |     |     |        |        |      |      |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------|--------|------|------|--|
| 採取時期  | 総残留                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 表面  | 抽出  | (表面洗泡  | 净液+抽出放 | (射能) | 非抽出  |  |
| 休以时朔  | 放射能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 洗浄液 | 放射能 | ピリメタニル | В      | С    | 放射能  |  |
| 1回目処理 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93  | 6.1 | 92     | -      | -    | 0.5  |  |
| 直後    | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92  | 6.0 | 91     |        |      | 0.50 |  |
| 2回目処理 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63  | 29  | 80     | 1.4    | 1.7  | 8.2  |  |
| 7日後   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11  | 5.2 | 14     | 0.25   | 0.31 | 1.5  |  |
| 2回目処理 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32  | 52  | 44     | 4.5    | 7.9  | 6.2  |  |
| 21 日後 | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3 | 2.2 | 1.8    | 0.19   | 0.33 | 0.26 |  |

上段:回収放射能に対する%、下段:mg/kg、/:該当なし、·:検出されず

#### (6) いちご

温室栽培のいちご(品種不明)に、フロアブル剤に調製した $[pyr^{-14}C]$ ピリメタニルを 1,000 g ai/ha の用量で土壌処理する植物体内運命試験が実施された。処理 3、15 及び 28 日後に果実、茎、葉及び根に分けて採取し、分析された。

各試料における残留放射能は表12に示されている。

葉及び茎の総残留放射能濃度は、採取時期によらずほぼ一定であった( $0.03\sim0.04~mg/kg$ )。果実では、処理 15~日後に最高値 0.6~mg/kg を示し、処理 28~日後には 0.02~mg/kg に減少した。これは果実重量の増加によるものと考えられた。根についての結果は報告されていない。

各採取時期にクロロホルム抽出により回収された放射能を考慮すると、親化合物の最高値は処理 15 日後に 0.52~mg/kg、処理 28 日後には 0.05~mg/kg 未満に減少したと推定された。抽出放射能の特徴づけ及び同定は実施されていない。(参照 5:933~頁)

表 12 いちご各試料における残留放射能

|    | ı     |              |        |        |         | 1         |
|----|-------|--------------|--------|--------|---------|-----------|
|    | 処理後   | <br>  総残留放射能 | 抽出     | (抽出)   | 放射能)    | <br>  非抽出 |
| 試料 |       |              |        | クロロホルム | メタノール/水 |           |
|    | 日数(日) | (mg/kg)      | 放射能 1) | 抽出 2)  | 抽出 3)   | 放射能 1)    |
|    | 3     | 0.4          | 2.2    | -      | 2.2     | 98        |
| 果実 | 15    | 0.6          | 87     | 87     | 0.2     | 13        |
|    | 28    | 0.02         | 33     | 24     | 8.4     | 67        |
| 茎葉 | 3     | 0.04         | 7      | 6.4    | 1.4     | 93        |

| 15 | 0.03 | 64 | 58 | 7.8 | 36 |
|----|------|----|----|-----|----|
| 28 | 0.04 | 75 | 72 | 9.9 | 25 |

- : 20 dpm 未満
- 1) 回収放射能に対する%。
- 2) 親化合物と推定される(同定されていない)。
- 3) 水酸化された親化合物の抱合体と推定される(同定されていない)。

以上の植物体内運命試験の結果から、放射能成分の構成に標識位置による差は認められなかった。ピリメタニルの植物における代謝は、3つの異なるタイプの作物(果実、根菜類及び葉菜類)による試験によって適切に定義された。ピリメタニルはほとんど代謝されず、残留成分の多くを親化合物が占めた。いずれの標識体を用いた試験においても、代謝プロファイルは類似していたことから、環結合部分の開裂は起こらないことが示唆された。主な代謝物は親化合物の水酸化体及び抱合体であったが、これらは概ね10%TRR未満であった。(参照4:240頁)

#### (7)後作物

[pyr-<sup>14</sup>C]ピリメタニルを 2.4 kg ai/ha の用量で土壌処理し、処理 30、130 及び 300 日後に後作物(レタス、小麦及びラディッシュ)を植え付け、小麦では植え付け  $35\sim190$  日後、レタス及びラディッシュでは  $46\sim79$  日後に収穫し、各作物 における <sup>14</sup>C の吸収について検討された。

処理 30 日後に植え付けた作物では、総残留放射能が 0.23(ラディッシュの根)  $\sim 8.2 \text{ mg/kg}$  (小麦茎葉) 検出され、ピリメタニルは 1%TRR (ラディッシュの葉) から 45%TRR (小麦茎葉) を占め、残留濃度としては小麦以外で 0.05 mg/kg 未満であった。10%TRR を超える主要代謝物として、O が小麦茎葉及びレタスで認められた。小麦では、35 日後に収穫された未成熟茎葉で 1 mg/kg、73 日後に収穫された穀粒で 0.41 mg/kg、わらで 8.2 mg/kg の総残留放射能が検出され、うち親化合物はそれぞれ 1.1、<0.001 及び 0.22 mg/kg であった。130 日間の休閑期を設けた試験では、作物中の総残留放射能は  $0.01\sim0.08 \text{ mg/kg}$  に減少し、親化合物は  $1\sim26\%\text{TRR}$  を占めた。10%TRR を超える抽出性代謝物は認められなかった。

また、0.8 kg ai/ha の用量で 3 回処理したじゃがいもを収穫した後、30 日間の休閑期を設けて小麦を植えた試験では、ピリメタニル及び代謝物 O の残留は検出限界未満(ピリメタニル:<0.012 mg/kg、O:<0.015 mg/kg、ただし小麦の未成熟茎葉では定量限界未満、<0.05 mg/kg)であった。休閑期から小麦の収穫までの期間は、未成熟茎葉で  $128\sim232$  日、わらでは  $190\sim316$  日であった。

ピリメタニルの最終処理後、30 日又はそれ以上の休閑期を設けて植え付けられた後作物におけるピリメタニルの残留は、小麦の未成熟茎葉及びわらで検出される可能性を除くと、ほとんど定量限界未満(<0.05~mg/kg)であると考えられた。(参照 4:241~ 頁、参照  $5:939\sim940~$  頁)

#### 3. 土壌中運命試験 審議済

#### (1) 好気的土壌中運命試験①

砂壌土(ドイツ)に $[phe^{-14}C]$ ピリメタニル又は $[pyr^{-14}C]$ ピリメタニルを 100、200 及び 500 mg/kg の用量で処理し、20℃の好気的条件下における土壌中運命試験が実施された。土壌は処理 33、83、131、186、243、280 及び 321 日後に採取された。

放射能分布及び推移は表13に示されている。

ピリメタニルの消失は、500 mg/kg 処理区で標識体による差が認められた。処理 243 日後の親化合物の割合は、[phe-14C]ピリメタニル及び[pyr-14C]ピリメタニルでそれぞれ 89.4 及び 1.2%TAR であった。[phe-14C]ピリメタニル処理区では 10 種類の分解物が同定されたが、単一の成分では最高でも 1.7%TAR しか認められなかった。[pyr-14C]ピリメタニル処理区では、主要分解物として  $\mathbf{J}$  が認められ、最大で 58%TAR を占めた。 $\underline{-20}$ 他の  $\mathbf{9}$  種類の分解物はいずれも  $\mathbf{1.2}\%\text{TAR}$  を超えなかった。 $\mathbf{J}$  の生成は親化合物の減少と相関していたことから、この分解物は親化合物の直接的な分解生成物であることが示唆された。 $\underline{-88}$  事務局修文 (参照  $\mathbf{5}:935$  頁)

表 13 好気的土壌中運命試験(1)における放射能分布及び推移(%TAR)

| <i>h</i> n r⊞ 目.  | 処理後 | [phe-1 | 4C]ピリメ | タニル     | [   | pyr-14C] ヒ° | リメタニル | /   |
|-------------------|-----|--------|--------|---------|-----|-------------|-------|-----|
| 処理量<br>(mæ/læ)    | 日数  | 抽出     | (抽出族   | (抽出放射能) |     | (抽出放射能)     |       |     |
| (mg/kg)           | (目) | 放射能    | 親化合物   | 未同定     | 放射能 | 親化合物        | J     | 未同定 |
| 100 1)            | 83  | 96     | 94     | 0.6     | 95  | 92          | -     | 1.1 |
| 100 1)            | 186 | 12     | 7.6    | 1.3     | 61  | 4.8         | 52    | 1.5 |
| 200 2)            | 33  | 101    | 100    | 0.3     | 102 | 101         | 0.1   | 0.5 |
| 200 27            | 186 | 40     | 34     | 1.2     | 63  | 3.1         | 56    | 1.7 |
|                   | 83  | 103    | 101    | 0.5     | 102 | 100         | NA    | 0.5 |
| 500 <sup>3)</sup> | 243 | 94     | 89     | 2.9     | 64  | 1.2         | 58    | 1.7 |
|                   | 321 | 8.4    | 2.4    | 3.7     | NA  | NA          | NA    | NA  |

- -:検出されず、NA:分析されず
- 1) 処理 33、243、280 及び 321 日後以降の試料は分析されず。
- 2) 処理 243 日後以降の試料は分析されず。
- 3) [phe-14C] ピリメタニル処理区の処理 33 日後、[pyr-14C] ピリメタニル処理区の処理 33、280 及び 321 日後の試料は分析されず。

#### (2) 好気的土壌中運命試験②

砂壌土(ドイツ)に $[pyr^{-14}C]$ ピリメタニルを 1.3 mg/kg の用量で処理し、 $20\pm2$  の暗所条件下で最大 364 日インキュベートして好気的土壌中運命試験が実施された。土壌は処理直後、7、14、28、62、90、153、244 及び 364 日後に採取された。

1 放射能分布及び推移は表14に示されている。

抽出放射能は経時的に減少し、それに伴って結合性放射能及び  $^{14}CO_2$  が増加した。抽出放射能中の主な成分はピリメタニルであり、分解物として J 及び N が認められた。ピリメタニルの推定半減期は約 30 日と算出された。 $DT_{90}$  は約 90 日であった。(参照  $5:935\sim936$  頁)

表 14 好気的土壌中運命試験②における放射能分布及び推移 (%TAR)

| 処理後   | 抽出     | (抽片      | (抽出放射能)  |          |          | $^{14}\mathrm{CO}_2$ | 総回収    |
|-------|--------|----------|----------|----------|----------|----------------------|--------|
| 日数    | 放射能    | ピリメタニル   | J        | N        | 放射能      | 14CO <sub>2</sub>    | 放射能    |
| 0 日   | 95, 96 | 92, 94   | -        | -        | 1.3, 0.5 | -                    | 96, 97 |
| 28 日  | 57, 61 | 45, 51   | 5.4, 4.1 | -        | 37, 32   | 1.7, 1.5             | 97, 95 |
| 90 日  | 26, 27 | 12, 14   | 5.1, 5.3 | 1.6, 1.1 | 62, 62   | 6.5, 6.4             | 95, 96 |
| 364 日 | 11, 11 | 4.3, 4.7 | 1.2, 1.0 | 0.9, 0.9 | 62, 63   | 17, 18               | 90, 92 |

-:検出されず

#### (3) 好気的・嫌気的土壌中運命試験

砂壌土(ドイツ)に $[pyr^{-14}C]$ ピリメタニルを乾土当たり 1.33 mg/kg の用量で処理し、20 °C、好気的条件下で 30 日間、その後湛水し嫌気的条件下で最大 90 日間(処理 120 日後まで)インキュベートして好気的・嫌気的土壌中運命試験が実施された。さらに、嫌気的条件下における新たな分解物を分離する目的で、13.4 mg/kg 処理区も設定された。

放射能分布及び推移は表 15 に示されている。

処理直後には、処理放射能のすべてが抽出されたが、処理 30 日後には 56% TAR に減少し、結合性放射能が 44% TAR に増加した。 $CO_2$  への無機化は湛水後に終了し、 $^{14}CO_2$  は試験期間中ほとんど一定値を示した。 $^{14}CO_2$  は試験終了時に 1.6% TAR 認められた。 $^{14}CO_2$  以外の揮発性放射能は試験期間を通して 0.1% TAR 未満であった。

試験終了時の抽出放射能における主な成分は親化合物であった。主要分解物は J であり、処理 30 日後に最大(14%TAR)となった。さらに、痕跡量(最大で 処理 37 日後に 2.2%TAR)の N が検出された。他に 14 種類の未同定代謝物が検出されたが、3.8%TAR を超えるものはなかった。(参照  $5:936\sim937$  頁)

表 15 好気的・嫌気的土壌中運命試験における放射能分布及び推移 (%TAR)

| 処理後   | 抽出  | (抽出放射能) |    |              | 結合性 | $^{14}\mathrm{CO}_2$ | 総回収 |
|-------|-----|---------|----|--------------|-----|----------------------|-----|
| 日数    | 放射能 | ピリメタニル  | J  | N            | 放射能 | 14CO2                | 放射能 |
| 0 日   | 100 | 99      | -  | -            | 1.2 | -                    | 101 |
| 30 日  | 56  | 28      | 14 | $(2.2)^{1)}$ | 44  | 1.1                  | 101 |
| 90 日  | 44  | 25      | 10 | 0.8          | 53  | 1.1                  | 98  |
| 120 目 | 47  | 26      | 10 | 1.5          | 51  | 1.6                  | 100 |

1) 処理 37 日後の数値(処理 30 日後の数値は他の化合物を含む値であったため)。

 $\frac{1}{2}$ 

3

4

5

#### 4. 水中運命試験 審議済

#### (1) 加水分解試験

ピリメタニルは、20°C、pH5、7及び9の条件下において、加水分解に対して安定であった。詳細については記載されていない。 (参照4:240頁)

6 7 8

9

10

1112

13

1415

1617

18

#### (2) 水中光分解試験

ピリメタニルを pH 4 (クエン酸緩衝液) 及び 7 (リン酸緩衝液) の各滅菌緩衝液に 10 mg/L となるように添加し、水銀アーク光(Hg-arc-lamp)による自然光 (>290 nm)を pH 4 では  $29.3 \pm 2.6$  °C で最長 4 日間、pH 7 では  $30.1 \pm 1.6$  °C で最長 28 日間照射する水中光分解試験が実施された。

暗所対照区では、 $97.4\sim101$ %の放射能が回収され、ピリメタニルの有意な分解は認められなかった。光照射区での推定半減期は<u>擬</u>偽一次反応式<u>上路専門委員</u>修正により pH 4 で 1.2 日、pH 7 で 76.8 日と算出された。

また、ピリメタニルをフミン酸を含む pH 7 の滅菌自然水に 10 mg/L となるように添加し、水銀アーク光を 4 日間連続照射する試験が実施された。推定半減期は 47.5 時間と算出された。暗所対照区及び蒸留水における分解はみられなかった。(参照  $5:938\sim939$  頁)

1920

21

#### 5. 土壌残留試験 審議済

土壌残留試験については、参照した資料に記載がなかった。

222324

25

26

27

28

## 6. 作物残留試験 審議済

国内における作物残留試験成績は提出されていない。

高麗人参を用いてピリメタニルを分析対象とした海外における作物残留試験が 実施された。結果は別紙3に示されている。

高麗朝鮮人参(生人参) <u>上路専門委員修正</u>におけるピリメタニルの最高値は、1 年次の人参で最終散布 30 日後に収穫された 0.041 mg/kg であった。 (参照 9)

293031

32

3334

### 7. 一般薬理試験 審議済

ピリメタニルを用い、ラット、マウス、モルモット、ウサギ及びイヌにおける一般薬理試験が実施された。結果は表 16 に示されている。 (参照 3)

(要請書 安全性に関する資料:86~89頁)

#### 表 16 一般薬理試験概要

| 試馬       | 倹の種類                                      | 動物種              | 動物数 匹/群          | 投与量<br>(mg/kg 体重)<br>(投与経路)                             | 最大<br>無作用量<br>(mg/kg 体重) | 最小作用量<br>(mg/kg体重) | 結果の概要                                                                           |
|----------|-------------------------------------------|------------------|------------------|---------------------------------------------------------|--------------------------|--------------------|---------------------------------------------------------------------------------|
| 中枢       | 一般症状<br>(Irwin 法)                         | SD<br>ラット        | 雄 4              | 0、20、141、<br>1,000<br>(経口) <sup>a</sup>                 | 141                      | 1,000              | 一時的な感情鈍麻<br>がみられた                                                               |
| 神経系      | 睡眠時間                                      | SD<br>ラット        | 雌雄<br>各 <b>5</b> | 0、20、141、<br>1,000<br>(経口) <sup>b</sup>                 | 141                      | 1,000              | ヘキソバルビタールに<br>よる睡眠時間を延<br>長させた                                                  |
| 自律神経系    | 摘出回腸                                      | Hartley<br>モルモット | 雄                | 0、1、10、100<br>μg/mL<br>( <i>in vitro</i> ) <sup>c</sup> | 1 μg/mL                  | 10                 | 5-HT で誘発され<br>た収縮のみ抑制さ<br>れた<br>ACh、His、BaCl <sub>2</sub><br>による収縮は影響<br>されなかった |
| 呼吸循環器系   | 呼吸・<br>血流量・<br>血圧・<br>心拍数・<br>心機能・<br>心電図 | ビーグル<br>犬        | 雌 3              | 0、500、1,000<br>(十二指腸内)a                                 | 1,000                    | _                  | 影響なし                                                                            |
| 消化器系     | 小腸炭末<br>輸送能                               | ICR<br>マウス       | 雄 10             | 0、20、141、<br>1,000<br>(経口) <sup>d</sup>                 | 1,000                    | _                  | 影響なし                                                                            |
| 神経筋接合部   | 摘出横隔莫<br>神経筋                              | SD<br>ラット        | 記載なし             | 0、1、10、100<br>μg/mL<br>( <i>in vitro</i> )e             | 100                      | _                  | 影響なし                                                                            |
| rfn vite | 溶血作用                                      | NZW<br>ウサギ       | 雄 3              | 0、1、10、100<br>μg/mL<br>( <i>in vitro</i> )              | 100                      | _                  | 影響なし                                                                            |
| 血液       | 血液凝固                                      | SD<br>ラット        | 雌雄<br>各 10       | 0、20、141、<br>1,000<br>(経口)d                             | 1,000                    | _                  | 影響なし                                                                            |

注) 溶媒は、a: 0.5%CMC、b: 0.5%MC、c: 滅菌蒸留水、d: 5%CMC、c: タイロード液が用いられた。

-:最小作用量が設定できない

#### 4 5

6

7

3

#### 8. 急性毒性試験 審議済

#### (1)急性毒性試験

8 ピリメタニルを用いた急性毒性試験が実施された。結果は表 17 に示されてい

9 る。 (参照 3、4)

(要請書 安全性に関する資料:1~2頁、参照4:237頁)

2 3

1

#### 表 17 急性毒性試験概要 (原体)

| 投与 | 動物種                                | $\mathrm{LD}_{50}$ (mg/k      | g 体重) | 観察された症状                                                                      |
|----|------------------------------------|-------------------------------|-------|------------------------------------------------------------------------------|
| 経路 | 到加州里                               | 雄                             | 雌     |                                                                              |
| 経口 | SD ラット<br>雌雄各 5 匹<br>[1989 年、GLP]  | 4,150                         | 5,970 | 自発運動低下、筋緊張低下及び<br>運動失調<br>雄:1,600 mg/kg 体重以上で死<br>亡例<br>雌:6,400 mg/kg 体重で死亡例 |
|    | ICR マウス<br>雌雄各 5 匹<br>[1990 年、GLP] | 4,670                         | 5,360 | 筋緊張低下、自発運動低下、体温低下、円背位、体表及び外陰部の汚れ並びに四肢蒼白雌雄:5,000 mg/kg 体重で死亡例                 |
| 経皮 | ラット                                | >5,000                        |       | 参照資料に記載なし                                                                    |
| 吸入 | ラット                                | LC <sub>50</sub> (mg/L) >1.98 |       | 参照資料に記載なし                                                                    |

4 5

#### (2) 急性神経毒性試験 (ラット) 事務局修文

6 7 SD ラット (一群雌雄各 12 匹) を用いた強制経口 (原体:0、30、100、1,000 mg/kg 体重、溶媒:0.5%MC) 投与による急性神経毒性試験が実施された。

8 9

10

11

1,000 mg/kg 体重投与群の試験 1 日後に一過性の FOB 所見(歩行及び運動失調、雌で散瞳、雄で後肢握力低下、体温低下)、雌雄で自発運動量低下(52%以上の低下)が観察されたが、試験 8 及び 15 日後には全動物が正常となった。これらの症状は、高用量の強制経口投与でみられる一過性で非特異的な影響であると考えられた。無毒性量は 100 mg/kg 体重であると考えられた。神経毒性は認め

1213

られなかった。事務局追記 (参照 4:236 頁、参照 6:473 頁)

14 15

#### 9. 眼・皮膚に対する刺激性及び皮膚感作性試験 審議済

1617

眼刺激性試験及び皮膚刺激性試験(ウサギ、系統不明)が実施されており、眼に対して軽微な刺激性が認められたが、皮膚に対して刺激性は認められなかった。

18 19 Hartley モルモットを用いた皮膚感作性試験(Maximization 法)が実施された結果、皮膚感作性は認められなかった。(参照 3、4)

2021

(要請書 安全性に関する資料:73頁、参照4:235頁)

#### 【事務局より】

以下の毒性試験(混餌投与試験)について、平均検体摂取量の表を追記しました。

2 3

4

5

6

7

#### 10. 亜急性毒性試験

#### (1) 90 日間亜急性毒性試験(ラット) [1990 年、GLP]

SD ラット(一群雌雄各 10 匹)を用いた混餌(原体:0、80、800 及び 8,000 ppm: 平均検体摂取量は表 18 参照) 投与による 90 日間亜急性毒性試験が実施された。 なお、0及び8,000 ppm 投与群には、4週間の回復群(雌雄各10匹)が設けら れた。

8 9

10

表 18 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

| 投与群          |   | 80 ppm | 800 ppm | 8,000 ppm |
|--------------|---|--------|---------|-----------|
| 平均検体摂取量      | 雄 | 5.4    | 54.5    | 529       |
| (mg/kg 体重/日) | 雌 | 6.8    | 66.7    | 626       |

11 12

各投与群で認められた毒性所見は表 19 に示されている。

13 14

15 16

17 18

19 20

21 22

2324

25

2627

28

29 30

31

800 ppm 投与群の雄において、小葉中心性肝細胞肥大が 2 例認められたが、そ の発生頻度に統計学的な有意差はみられず、中江専門委員のコメントにより事務局 追記 吉田専門委員削除 JMPR では、軽度であり肝重量の増加がないこと(個体別 でも対照群の範囲内)及び、事務局修文血液生化学的検査における肝逸脱酵素の 増加等肝障害に関連する変化がみられないことから、毒性影響ではないとしてお り、農薬専門調査会は妥当であると判断した。80 及び 800 ppm 投与群の雌にお いても、肝比重量が増加したが用量相関性がなく、血液生化学的検査における肝 逸脱酵素の増加等肝障害に関連する変化がみられないことから、毒性影響ではな いと考えられた。800 ppm 投与群の雌で腎比重量の増加が認められたが、組織学 的変化及び腎障害に関連する変化が認められないことから、毒性影響でないと考 えられた。

本試験において、8,000 ppm 投与群の雌雄で甲状腺ろ胞上皮細胞の肥大、及び 事務局修文リポフスチン沈着等が認められたので、無毒性量は雌雄とも 800 ppm (雄:54.5 mg/kg 体重/日、雌:66.7 mg/kg 体重/日) であると考えられた。(参 照 3、4)

(肝薬物代謝酵素に対する影響は [14.(2)] 参照)

(要請書 安全性に関する資料:3~7頁、参照4:235頁)

表 19 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

| 投与群        | 雄                                                                                                                     | 雌                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 8,000 ppm  | <ul><li>・体重増加抑制及び摂餌量減少</li><li>・尿蛋白増加</li><li>・肝及び腎比重量²増加</li><li>・小葉中心性肝細胞肥大</li><li>・甲状腺ろ胞上皮細胞肥大、リポフスチン沈着</li></ul> | <ul><li>・体重増加抑制及び摂餌量減少</li><li>・肝及び腎比重量増加</li><li>・小葉中心性肝細胞肥大</li><li>・甲状腺ろ胞上皮細胞肥大、リポフスチン沈着</li></ul> |
| 800 ppm 以下 | 毒性所見なし                                                                                                                | 毒性所見なし                                                                                                |

#### (2) 90 日間亜急性毒性試験(マウス) [1991 年、GLP]

ICR マウス (一群雌雄各 20 匹) を用いた混餌 (原体: 0、80、900 及び 10,000 ppm: 平均検体摂取量は表 20 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 20 90 日間亜急性毒性試験(マウス)の平均検体摂取量

| 投与群          |   | 80 ppm | 900 ppm | 10,000 ppm |
|--------------|---|--------|---------|------------|
| 平均検体摂取量      | 雄 | 12     | 139     | 1,860      |
| (mg/kg 体重/日) | 雌 | 18     | 203     | 2,550      |

各投与群で認められた毒性所見は表 21 に示されている。

 れなかった。また、病理組織学的検査において、肝臓のグリコーゲンを示す PAS 染色性の低下が全投与群で観察されたが、栄養状態を反映したもので、毒性影響

とは考えられなかった。

本試験において、10,000 ppm 投与群の雌雄で甲状腺ろ胞細胞剥離性壊死等が認められたので、無毒性量は雌雄とも 900 ppm (雄:139 mg/kg 体重/日、雌:203 mg/kg 体重/日) であると考えられた。 (参照3)

900 ppm 以上投与群の雌で、肉眼的に卵巣嚢の拡張が認められたが、<u>組織学的</u> 検査において対応する<del>マウスでは好発する変化<u>背景データ確認</u>であり、組織学的</del>

変化がも吉田専門委員修文みられなかったことから、投与による影響とは考えら

(要請書 安全性に関する資料:8~12頁)

2 体重比重量を比重量という(以下同じ)。

#### 表 21 90 日間亜急性毒性試験(マウス)で認められた毒性所見

| 投与群        | 雄                                                                                               | 雌                                                                                                          |
|------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 10,000 ppm | ・体重増加抑制<br>・摂餌量増加、食餌効率減少<br>・肝比重量増加<br>・甲状腺暗色化<br>・尿細管拡張<br>・膀胱結石<br>・甲状腺ろ胞細胞剥離性壊死、<br>リポフスチン沈着 | ・体重増加抑制<br>・摂餌量増加、食餌効率減少<br>・Chol 及び T.Bil 増加<br>・肝絶対及び比重量増加<br>・膀胱結石、膀胱上皮増生<br>・甲状腺ろ胞細胞剥離性壊死、<br>リポフスチン沈着 |
| 900 ppm 以下 | 毒性所見なし                                                                                          | 毒性所見なし                                                                                                     |

#### 【追加資料要求事項1】(三枝専門委員、廣瀬委員)

- ①マウスを用いた 90 日間亜急性毒性試験の肉眼的病理検査において、900 ppm 以上投与群でみられた卵巣嚢拡張を自然発生性の病変と判断しているが、その根拠となる背景データを提出すること。
- ②マウスの甲状腺に対する影響(ろ胞細胞剥離性壊死)の作用機序について考察すること。

#### 【回答】

①げっ歯類の卵巣は周囲を卵巣嚢で取り囲まれ、同嚢内への液状成分の貯留による嚢胞状拡張は剖検時にしばしば認められ Bulsal cyst と呼ばれる。老齢マウスに比較的高頻度に発生する変化で、げっ歯類特有の変化であるが、マクロでは他の嚢胞(卵胞嚢胞、黄体嚢胞など)と区別がつかないことも多く、マクロ所見としての意義があまり無いことから、通常試験施設では背景データとしての蓄積がなく入手することができなかった。

本試験で使用したマウスと同系統の ICR 系 CD-1 マウスにおける自然発生性の卵巣嚢胞についての報告では、剖検(78 週齢)で自然発生性の卵巣嚢胞が高率(52%)にみられたとされている。またこの報告では、「組織検査で 18 週齢程度の若い動物ではしばしば門部近くに認められたものが、週齢を経るにつれて卵巣組織を圧迫するまでに拡張するものと思われた。」との記載があることから、本亜急性試験における約 17 週齢ぐらいのマウスにおいても、発生部位については判明しないが、自然発生的に認められる病変と考えられる。

また、以下に示す本90日間亜急性試験の結果からも、本所見を自然発生性と考えることを支持できるものと考える。

剖検で認められた卵巣における '透明液体貯留を伴う卵巣嚢の拡張'の発生率

| 検査群(ppm)   | 0  | 80 | 900 | 10000 |
|------------|----|----|-----|-------|
| 動物数        | 10 | 10 | 10  | 10    |
| 卵巣嚢拡張(左右計) | 1  | 1  | 4   | 5     |

#### 卵巣の病理組織学的所見

| 21/2/C 42 // 1/27/197/198 1 H 2//2/ 2 | <i>'</i> ⊔ |    |     |       |
|---------------------------------------|------------|----|-----|-------|
| 検査群(ppm)                              | 0          | 80 | 900 | 10000 |
| 動物数                                   | 10         | 10 | 10  | 10    |
| 卵巣嚢拡張                                 | 1          | 0  | 2   | 0     |
| 副卵巣嚢胞                                 | 0          | 0  | 0   | 1     |

さらに、80週の混餌投与を行った同系統のマウスを用いた発がん性試験における卵巣の肉 眼的および病理組織学的所見では、以下のように、1600 ppm の長期投与においても、嚢胞または卵巣嚢胞化の発生率に対照群と差は認められず、本病変は投与の影響によるものではないことが示唆される。

#### 肉眼所見

|          | 途中死亡例 |    |     |      | 最終と殺例 |    |     |      |
|----------|-------|----|-----|------|-------|----|-----|------|
| 検査群(ppm) | 0     | 16 | 160 | 1600 | 0     | 16 | 160 | 1600 |
| 動物数      | 12    | 10 | 12  | 11   | 39    | 41 | 39  | 40   |
| 嚢胞       | 6     | 4  | 5   | 4    | 22    | 17 | 19  | 25   |

#### 病理組織学的所見

| 714-11-11-11-11-11-11-11-11-11-11-11-11-1 |       |    |     |      |       |    |     |      |
|-------------------------------------------|-------|----|-----|------|-------|----|-----|------|
|                                           | 途中死亡例 |    |     |      | 最終と殺例 |    |     |      |
| 検査群(ppm)                                  | 0     | 16 | 160 | 1600 | 0     | 16 | 160 | 1600 |
| 動物数                                       | 12    | 10 | 12  | 11   | 39    | 41 | 39  | 40   |
| 囊胞(cyst)                                  | 8     | 7  | 8   | 5    | 30    | 16 | 18  | 33   |
| 囊胞(cystic bursa)                          | 0     | 0  | 1   | 0    | 3     | 2  | 3   | 0    |

以上より、本試験の剖検で認められた卵巣嚢の拡張は本薬投与との関連性はなく自然発生性の非腫瘍性病変であることが窺われ、また病理組織学的所見でも卵巣の異常所見が認められていないことから毒性学的有意性はないものと考えられた。

②甲状腺においてリポフスチン沈着が認められている。また UDP-GT については測定していないが、肝薬物代謝酵素第一相酵素の誘導が確認されている。一方、ラットにおいては、本薬投与群で甲状腺ろ胞細胞の肥大、リポフスチン沈着、コロイドの欠乏、ろ胞細胞の過形成を示す動物の増加が高用量群で認められ、高用量における甲状腺機能の亢進が認められた。またラットにおいて、過塩素酸を用いたヨウ素の取り込み試験では、本薬に甲状腺への直接的な影響は認められないことが確認されており、更にマウスと同様に肝薬物代謝酵素第 I 相酵素の誘導に加え、UDP-GT の酵素の誘導が確認された。これらのことから、本薬が甲状腺に直接的に影響を及ぼすのではなく、肝臓の薬物代謝酵素を誘導して甲状腺ホルモンのクリアランスの増加を導くものと考えられた。この機序は、甲状腺ホルモンの恒常性に及ぼす甲状腺以外の間接的な影響に起因したものであり、甲状腺ホルモンの低下に伴い、正常な調節機構である視床下部・下垂体・甲状腺軸による TSH の増加を来たし、甲状腺を刺激した結果として知られている。このように、本薬の甲状腺への刺激は、種差による程度・反応の違いはあるが、マウスにおいてもラット同様なメカニズムで起こっていると考えられる。

本試験の最高用量群で多く認められた「ろ胞細胞剥離性壊死」の作用機序は、マウスにおいてもラットと同様に甲状腺ホルモンのクリアランスの増加が正常な調節機構である視床下部-下垂体-甲状腺軸を介した TSH の増加により、長期間甲状腺ろ胞細胞が刺激を受け、ろ胞細胞の細胞増殖亢進を来し、その結果、形態学的にアポトーシス増加、即ち「ろ胞細胞剥離性壊死」という組織像に至ったものと考えられた。

#### 【吉田専門委員コメント】

・卵黄嚢拡張について:

1

評価書ですでに記載されているように、対応する組織学的所見がありませんので、投与による影響ではないと思います。

・甲状腺ろ胞細胞剥離性壊死について:

通常では腔内に上皮細胞が剥離脱落することは観察されませんが、甲状腺への直接作用でないことがわかっているので、これ以上の回答については求める必要がないと思います。

1

#### 【中江専門委員コメント】

・卵黄嚢拡張について:

回答の第2段落で肉眼所見と病理組織学的所見の表を提示しながら考察で前者にまったく言及していないのは気になりますが、回答の内容は全体として了承できます。ただし、評価書の文言は卵黄嚢拡張について依然として肉眼所見にしか言及しておらず、また、「マウスでは好発する変化」で「投与による影響とは考えられない」と判断した根拠が示されていないので、評価書においては問題が解決していることがわかりません。私としては、評価書においても、回答内容の骨子を追記して、問題が解決されたことを明確にすべきと考えます。

・甲状腺ろ胞細胞剥離性壊死について:

回答の文章はこの分野の専門家でない方が作成したものであるようで、さらに、整理もされていないので、わかりにくいが、概ね何を言いたいかは理解でき、回答の内容は若干の不満があるものの了承できます。ただ、これについても評価書では、回答内容が反映されていないので、やはり回答内容の骨子を追記すべきと考えます。

2

4

56

7

8

9

10

1112

13

14

15

1617

#### (3) 90 日間亜急性毒性試験(イヌ) [1991 年、GLP] 事務局修文

ビーグル犬 (一群雌雄各 4 匹) を用いた強制経口 (原体:0、6、80 及び 1,000/800 mg/kg 体重/ $<math>\theta$ <sup>3</sup>、溶媒: $\theta$ 0.5%MC 水溶液) 投与による  $\theta$ 0 日間亜急性毒性試験が実施された。

1,000/800 mg/kg 体重/日投与群の雌雄で嘔吐、流涎、淡黄色便及び投与後 3 時間 以内の自発運動低下が認められた。JMPR は、嘔吐は投与後 4 時間以内に認められたことから、胃消化管の局所刺激を示唆する所見であり、毒性影響ではないと判断している。農薬専門調査会は JMPR の判断は妥当であると考えた。嘔吐は、投与量を 800 mg/kg 体重/日に減量後は軽減した。80 mg/kg 体重/日投与群の雌雄でも嘔吐がみられたが、その頻度は<u>雄 4 回、雌 9 回全投与回数の 2%</u>算出方法確認に過ぎず稀であることから、投与による直接の影響ではないと考えられた。1,000/800 mg/kg 体重/日投与群の雌雄で軽度な体重減少が認められた。

本試験において、1,000/800 mg/kg 体重/日投与群の雌雄で流涎、淡黄色便等が認められたので、無毒性量は雌雄で 80 mg/kg 体重/日投与群であると考えられた。(参照 3、6)

(要請書 安全性に関する資料:15~19頁、参照6:463、464頁)

19

18

<sup>3 1,000/800</sup> mg/kg 体重/日投与群は、1,000 mg/kg 体重/日で投与開始後 6 日間に全動物で嘔吐が認められたため、投与 7 日目から 800 mg/kg 体重/日に減じられた。

#### 【追加資料要求事項2】(三枝専門委員)

イヌを用いた 90 日間亜急性毒性試験の 80 mg/kg 体重/日投与群で認められた嘔吐の頻度は、全投与回数に対して 2%と低いと説明しているが、2%の算出方法を示すこと。

#### 【回答】

80 mg/kg 体重/日投与群において、各動物について以下の回数嘔吐が観察された。 雌雄それぞれの全嘔吐回数は 4 回/群、9 回/群であり、それぞれの群で 90 回×4 匹=360 回投与した。従って、投与頻度は雄で 1%、雌で 2.5%と算出された。雌雄を合わせて 2%と表現している報告書の表現を記載した。

|        | 雄 1 | 雄 2 | 雄 3 | 雄 4 |
|--------|-----|-----|-----|-----|
| 観察された日 | 無し  | 1回  | 2 回 | 1 回 |
|        | 雌 1 | 雌 2 | 雌 3 | 雌 4 |
| 観察された日 | 2 回 | 1 回 | 5 回 | 1 回 |

#### 【中江専門委員コメント】

#### ・嘔吐について:

示された方法で算出された 2%という数字に科学的な意味があると思えないので、回答は、了承できません。本件の嘔吐については、このような意味不明な数字を提示するのでなく、回答で示されたような個体毎の発現回数を提示するなどして、結果として低頻度であることを主張すべきと考えます。

#### 【事務局より】

本文中に嘔吐の観察された日数を追記し、記載を修正しました。

## (4)90日間亜急性神経毒性試験(ラット) [2001年] 審議済

SD ラット (一群雌雄各 12 匹) を用いた混餌 (原体: 0、60、600 及び 6,000 ppm: 平均検体摂取量は表 22 参照) 投与による 90 日間亜急性神経毒性試験が実施された。

6 7 8

2 3

4

5

1

#### 表 22 90 日間亜急性神経毒性試験 (ラット) の平均検体摂取量

| 投与群          |   | 60 ppm | 600 ppm | 6,000 ppm |  |
|--------------|---|--------|---------|-----------|--|
| 平均検体摂取量      | 雄 | 4.0    | 38.7    | 392       |  |
| (mg/kg 体重/日) | 雌 | 4.6    | 44.3    | 430       |  |

9 10

11

12

1314

各投与群で認められた毒性所見は表 19 に示されている。

投与に関連した死亡は認められず、臨床所見、FOB 及び神経組織学的検査に影響は認められなかった。

6,000 ppm 投与群の雌において体重増加抑制及び摂餌量減少が認められた。同群の雄では試験第1週目のみ統計学的に有意な体重増加抑制(21%)及び摂餌量減少

1 (12%) が認められた。

本試験において、6,000 ppm 投与群の雌雄で体重増加抑制等が認められたので、ので、無毒性量は雌雄とも 600 ppm (雄: 38.7 mg/kg 体重/日、雌: 44.3 mg/kg 体重/日)であると考えられた。神経毒性は認められなかった。(参照 6:474 頁)

4 5

6

7

8

9

10

11

12

13

14

15

1617

2

3

#### 11. 慢性毒性試験及び発がん性試験

#### (1) 1年間慢性毒性試験(イヌ) [1992年、GLP] 事務局修文

400/250 mg/kg 体重/日投与群の雌雄で嘔吐、体重増加抑制、摂餌量減少、飲水量減少、トロンボテスト値の軽度減少単位確認、雄で WBC 及び Neu 増加が認められた。JMPR では、嘔吐は胃消化管の局所刺激を示唆する所見であり、毒性影響ではないと判断している。農薬専門調査会は JMPR の判断は適切と考えた。嘔吐及び体重増加抑制は、投与量を 250 mg/kg 体重/日に減じた後は軽減した。

本試験において、400/250 mg/kg 体重/日投与群の雌雄で体重増加抑制等が認められたので、無毒性量は雌雄で 30 mg/kg 体重/日であると考えられた。(参照 3、6)

18

(要請書 安全性に関する資料:20~23 頁、参照6:464、465頁)

1920

#### 【追加資料要求事項3】(松本専門委員)

イヌを用いた慢性毒性試験の血液学検査において、高用量群の雌雄でとトロンボテストの軽度減少が認められたとあるが、この試験の単位が「%」なのか「時間(秒)」であるのか不明である。確認のため報告書を提出すること。

#### 【回答】

トロンボテストの測定単位は「時間(秒)」を用いておりますが、要請書 21 頁では対照群の値に対する%で表示しております。 (報告書 82~100 頁、表 2.1、2.2)

#### 【松本専門委員】

トロンボテストについて、単位が秒であり、軽度の低下(短縮)であることを確認しました。評価書の語句修正はありません。

#### 【吉田専門委員】

了承します。

21

#### 【中江専門委員コメント】

・トロンボテストについて:

絶対値で測定したものをわざわざ相対値に変換して記載することが必要であると考えた理由がわからないので、回答は、了承できません。本件のトロンボテストの値については、

 $<sup>^4</sup>$  400/250 mg/kg 体重/日投与群は、400 mg/kg 体重/日で投与開始後 1 週間にほとんどのイヌで嘔吐が認められたため、その後 250 mg/kg 体重/日に減じられた。

ふつうに絶対値で提示し、対照群と各投与群の間に統計学的有意性や生物学的有意性をもった差があるのかないのかをきちんと示した上で、その毒性学的意義を評価する必要があります。評価書では、単に最高用量群で「軽度減少」と書いてあるだけなので、このあたりがどうであっても文言に影響しませんが、とはいえ、わざわざ「軽度」という表現を付けてしまうと、この変化の統計学的有意性や生物学的有意性がないことを示唆しているように受け取れます。

【事務局】「軽度」を削除しました。

#### 1 2

3

4

#### (2)2年間慢性毒性/発がん性併合試験(ラット) [1993年、GLP]

SD ラット(一群雌雄各 70 匹)を用いた混餌(原体:0、32、400 及び 5,000 ppm: 平均検体摂取量は表 23 参照) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

5 6 7

#### 表 23 2 年間慢性毒性/発がん性併合試験(ラット)の平均検体摂取量

| 投与群          |   | 32  ppm | 400 ppm | 5,000 ppm |  |
|--------------|---|---------|---------|-----------|--|
| 平均検体摂取量      | 雄 | 1.3     | 17      | 221       |  |
| (mg/kg 体重/日) | 雌 | 1.8     | 22      | 291       |  |

8

各投与群で認められた毒性所見(非腫瘍性病変)は表 24 に、甲状腺に認められた腫瘍の発生頻度は表 25 に示されている。

11 12

10

腫瘍性病変については、甲状腺ろ胞細胞腺腫が 5,000 ppm 投与群の雄で 9 例 に、雌で 7 例に認められ、雌の発生頻度は有意に高かった事務局修文。

13 14 本試験において、5,000 ppm 投与群の雌雄で甲状腺ろ胞上皮細胞肥大等が認められたので、無毒性量は雌雄とも 400 ppm (雄: 17 mg/kg 体重/日、雌: 22 mg/kg 体重/日)であると考えられた。 (参照 3、6)

1516

(甲状腺に対する影響は「14.(3)及び(4)]参照)

17 18 (要請書 安全性に関する資料: 47~65 頁、参照6: 466~468 頁)

19

20

#### 表 24 2 年間慢性毒性/発がん性併合試験 (ラット) で認められた毒性所見 (非腫瘍性病変)

|            | (5) (22) (3) (2)                                                                                                             |                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 投与群        | 雄                                                                                                                            | 雌                                                                                                               |
| 5,000 ppm  | ・Chol 及び GGT 増加<br>・肝絶対及び比重量増加<br>・小葉中心性肝細胞肥大<br>・好酸性変異肝細胞巣用語確認<br>・甲状腺ろ胞上皮細胞肥大<br>・甲状腺ろ胞上皮細胞過形成<br>・甲状腺コロイド欠乏<br>・甲状腺褐色色素沈着 | ・体重増加抑制 ・血小板の増加、Hb、Htの減少 ・Chol 及び T.Bil 増加 ・肝比重量増加 ・小葉中心性肝細胞肥大 ・甲状腺ろ胞上皮細胞肥大 ・甲状腺ろ胞上皮細胞過形成 ・甲状腺コロイド欠乏 ・甲状腺褐色色素沈着 |
| 400 ppm 以下 | 毒性所見なし                                                                                                                       | 毒性所見なし                                                                                                          |

#### 【追加資料要求事項4】(西川専門委員)

ラットを用いた2年間慢性毒性/発がん性併合試験で認められた「肝の好酸性細胞巣」の原語を示すこと。

#### 【回答】

好酸性細胞巣は「eosinophilic foci」と報告されています。

【吉田専門委員】回答を了承します。

【中江専門委員】回答は了承できます。評価書も「好酸性変異肝細胞巣」となっているので、 これで問題ないと思います。

2

3

#### 表 25 甲状腺に認められた腫瘍の発生頻度

| 性別        |    | 左  | 隹   |       |    | 此  | 推   |       |
|-----------|----|----|-----|-------|----|----|-----|-------|
| 投与量 (ppm) | 0  | 32 | 400 | 5,000 | 0  | 32 | 400 | 5,000 |
| 検査動物数     | 70 | 70 | 70  | 70    | 70 | 70 | 70  | 70    |
| 甲状腺ろ胞細胞腺腫 | 3  | 3  | 2   | 9     | 0  | 3  | 3   | 7**   |
| 甲状腺ろ胞細胞腺癌 | 0  | 1  | 0   | 1     | 0  | 0  | 0   | 0     |
| 甲状腺C細胞腺腫  | 10 | 5  | 5   | 12    | 6  | 10 | 4   | 8     |
| 甲状腺C細胞腺癌  | 1  | 0  | 0   | 0     | 0  | 1  | 0   | 0     |

\*\*: p <0.01 (Fisher の直接確率検定)

456

7

8

#### (3) 80 週間 18 か月間発がん性試験(マウス) [1993 年、GLP]

ICR マウス (一群雌雄各 51 匹) を用いた混餌 (原体: 0、16、160 及び 1,600 ppm: 平均検体摂取量は表 26 参照) 投与による 80 週間 18 か月間発がん性試験が実施された。試験名について、事務局修正

9 10

11

表 26 80 週間発がん性試験(マウス)の平均検体摂取量

| 投与群          |   | 16 ppm | 160 ppm | 1,600 ppm |  |
|--------------|---|--------|---------|-----------|--|
| 平均検体摂取量      | 雄 | 2.0    | 20.0    | 211       |  |
| (mg/kg 体重/日) | 雌 | 2.5    | 24.9    | 254       |  |

12 13

死亡率に検体投与の影響はみられなかった。対照群を含め、主な死亡原因は雌雄ともにアミロイド症であったが、雄の 1,600 ppm 投与群ではアミロイド症による死亡はみられず、泌尿器系病変による死亡が多くみられた。

16 17

18

14

15

1,600 ppm 投与群の雄では、投与 52 週までに死亡又は切迫と殺された動物において有意差はないが包皮炎、包皮腺炎又は膿瘍、精嚢拡張又は精嚢炎、前立腺炎及び凝固腺拡張、膀胱拡張又は膀胱炎等の増加が認められた。同群では最終と殺動物においても膀胱拡張の発生頻度が増加(対照群 3/51 例に対し 13/51 例)し、用量相関性は明確でないものの、この群における変化は検体投与に関連する

1 変化と考えられた。

本試験において、1,600 ppm 投与群の雄で膀胱拡張等が認められ、雌では毒性所見は認められなかったので、無毒性量は雄で 160 ppm (20.0 mg/kg 体重/日)、雌で本試験の最高用量 1,600 ppm (254 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。 (参照 3)

(要請書 安全性に関する資料:36~46頁)

#### 12. 生殖発生毒性 審議済

#### (1)2世代繁殖試験(ラット) [1993年、GLP]

SD ラット(一群雌雄各 30 匹)を用いた混餌(原体:0、32、400 及び 5,000 ppm: 平均検体摂取量は表 27 参照) 投与による 2 世代繁殖試験が実施された。

表 27 2 世代繁殖試験 (ラット) の平均検体摂取量

| 投与群                 |                   |   | 32 ppm | 400 ppm | 5,000 ppm |
|---------------------|-------------------|---|--------|---------|-----------|
|                     | 4\4\              | 雄 | 1.9    | 23.1    | 294       |
| 平均検体摂取量(mg/kg 体重/日) | P世代               | 雌 | 2.2    | 27.4    | 343       |
|                     | F <sub>1</sub> 世代 | 雄 | 2.3    | 29.1    | 389       |
|                     |                   | 雌 | 2.7    | 34.0    | 450       |

親動物では、P 及び  $F_1$  世代のいずれにも、行動、症状及び死亡に検体投与の影響は認められなかった。検体投与の各群で  $1\sim2$  例に死亡や瀕死がみられたが、投与との関連はなかった。5,000 ppm 投与群の P 及び  $F_1$  世代雌雄で体重増加抑制、P 世代雄及び  $F_1$  世代雌雄で生育期の摂餌量減少が認められた。この群の P 世代雌では繁殖率(86.2%)及び妊娠率(83.3%)の統計学的有意な低下が認められたが、いずれも背景データの範囲内(繁殖率: $80.0\sim100\%$ 、妊娠率: $80.0\sim100\%$ )であり、検体投与の影響によるものとは考えられなかった。

児動物では、5,000 ppm 投与群の  $F_1$ 及び  $F_2$ 世代で体重増加抑制が認められた。 400 ppm 投与群の  $F_2$ 世代で生後 7 及び 14 日に平均体重が低く有意差が認められたが、 $F_1$ 世代の対照群に近い値であることから検体投与による影響とは考えられなかった。また、5,000 ppm 投与群の  $F_1$ 及び  $F_2$ 世代の児動物で、空中立ち直り反応に軽度であるが有意な低下がみられたが、その他の機能には異常がないことから、体重増加抑制に関連した軽度の発育遅延によるものと考えられた。

本試験において、5,000 ppm 投与群の親動物及び児動物で体重増加抑制等が認められたので、無毒性量は親動物及び児動物とも 400 ppm (P 雄: 23.1 mg/kg 体重/日、P 雌: 27.4 mg/kg 体重/日、 $F_1$  雄: 29.1 mg/kg 体重/日、 $F_1$  雌: 34.0 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 3)

(要請書 安全性に関する資料:24~29頁)

#### (2) 発生毒性試験 (ラット) [1991 年、GLP]

SD ラット (一群雌 30 匹) の妊娠  $6\sim15$  日に強制経口 (原体:0、7、85 及び 1,000 mg/kg 体重/日、溶媒:1%MC 水溶液) 投与し、発生毒性試験が実施された。

母動物では、対照群及び7 mg/kg 体重/日投与群の各1例が死亡(誤投与)したが、検体投与に関連した死亡はなかった。1,000 mg/kg 体重/日投与群で脱毛、削痩、後湾姿勢、体重増加抑制及び摂餌量減少が認められた。

胎児では、1,000 mg/kg 体重/日投与群で平均胎児体重低下が認められた。

本試験において、1,000 mg/kg 体重/日投与群の母動物で削痩等、胎児で平均胎児体重低下が認められたので、無毒性量は母動物及び胎児とも 85 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照3)

(要請書 安全性に関する資料:30~32頁)

#### (3)発生毒性試験(ウサギ) [1991年、GLP] 事務局修文

NZW ウサギ (一群雌 18 匹) の妊娠  $7\sim19$  日に強制経口 (原体:0、7、45 及び 300 mg/kg 体重/日、溶媒:1%MC 水溶液) 投与し、発生毒性試験が実施された。

母動物では、300 mg/kg 体重/日投与群で削痩がみられた 3 例、45 mg/kg 体重/日投与群で衰弱した 1 例及び 7 mg/kg 体重/日投与群で骨折した 1 例が切迫と殺された。300 mg/kg 体重/日投与群のと殺例については、剖検において 1 例に肝臓壊死が、他の 2 例で胃に暗褐色の液体が認められた。300 mg/kg 体重/日投与群で体重増加抑制及び摂餌量減少が認められた。

胎児では、300 mg/kg 体重/日投与群で平均胎児体重が低下し、矮小児、13 胸椎及び13 肋骨の発生頻度増加が認められた。JMPRでは、300 mg/kg 体重/日投与群でみられたこれらの胎児の所見は、瀕死状態、体重増加抑制といった重篤な母体毒性による二次的なもので、検体の投与とは関連のないものと判断している。農薬専門調査会はこの判断は適切と考えた。本試験において、300 mg/kg 体重/日投与群の母動物で削痩等が、胎児で平均胎児体重低下等が認められたので、無毒性量は母動物及び胎児とも 45 mg/kg 体重/日であると考えられた。(参照 3)(要請書 安全性に関する資料:33~35 頁)

### 13. 遺伝毒性試験 審議済

ピリメタニル原体の細菌を用いた DNA 修復試験及び復帰突然変異試験、ヒトリンパ球を用いた染色体異常試験、ラット肝細胞を用いた UDS 試験並びにマウスを用いた *in vivo* 小核試験が実施された。

結果は表 28 に示されているとおり、すべて陰性であった。ピリメタニルに遺伝 毒性はないものと考えられた。(参照 3) (要請書 安全性に関する資料:74~85頁)

2 3

1

#### 表 28 遺伝毒性試験概要

| 試験                   |                                  | 対象                                                                                                          | 処理濃度・投与量                                                                                                   | 結果 |
|----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----|
| in vitro             | DNA<br>修復試験<br>[1994 年、<br>GLP]  | Bacillus subtilis<br>(H17、M45 株)                                                                            | 50~5,000 μg/ディスク(+/-S9)                                                                                    | 陰性 |
|                      | 復帰突然<br>変異試験<br>[1990 年、<br>GLP] | Salmonella typhimurium<br>(TA98、TA100、TA1535、<br>TA1537、TA1538 株)<br>Escherichia coli<br>(CM881 及び CM891 株) | 15~1,500 μg/7° ν-ト (+/-S9)                                                                                 | 陰性 |
|                      | 染色体異常<br>試験<br>[1990 年、<br>GLP]  | ヒトリンパ球                                                                                                      | 7.8~62.5 μg/mL(-S9: 24 時間)<br>125 μg/mL(-S9: 42 時間)<br>31.3~250 μg/mL(+S9: 24 時間)<br>250 μg/mL(+S9: 42 時間) | 陰性 |
| in vivo/<br>in vitro | UDS 試験<br>[1991 年、<br>GLP]       | SD ラット (肝細胞)<br>(一群雄 6 匹、予備として<br>さらに 1~2 匹)                                                                | 100、300 及び 1,000 mg/kg 体重<br>(単回強制経口投与)                                                                    | 陰性 |
| in vivo              | 小核試験<br>[1991 年、<br>GLP]         | ICR マウス(骨髄細胞)<br>(一群雌雄各 15 匹、最高用<br>量群は死亡例の予備として<br>さらに各 5 匹)                                               | 900 mg/kg 体重<br>(単回強制経口投与)                                                                                 | 陰性 |

+/-S9: 代謝活性化系存在下及び非存在下

4 5

6 7

8

9

10

1112

13

14

15

16

1718

#### 14. その他の試験 審議済

#### (1)マウスの肝薬物代謝酵素及び性周期に及ぼす影響 [1998年]

ICR マウス(一群雌15匹)にピリメタニルを4日間混餌(原体:0及び900 ppm) 投与し、肝薬物代謝酵素誘導の有無及び性周期について検討された。性周期は、試験開始前(試験1日)及び試験4日に回収した膣スメアを用いて確認された。 死亡例は認められず、また、一般状態、体重及び肝重量に検体投与の影響は認められなかった。PROD 活性、肝ミクロソーム蛋白量(mg/g 肝)及びチトクローム P450量(mg 蛋白及び g 肝当たり)に有意な増加が認められた。

膣スメア検査において、構成細胞及び性周期に明らかな違いは認められなかった。

本試験から、マウスにおいてはピリメタニル投与により Cyp2b を含むチトクローム P450 の弱い肝薬物代謝酵素誘導が認められた。(参照3)

(要請書 安全性に関する資料:13~14頁)

1920

21

#### (2) 雄ラットの肝薬物代謝酵素に及ぼす影響 [1991年]

ラットを用いた 90 日間亜急性毒性試験 [10.(1)] において、8,000 ppm 投与

群で小葉中心性肝細胞肥大が認められたので、肝薬物代謝酵素に及ぼす影響について検討する目的で、SD ラット(一群雄 6 匹)にピリメタニルを 1 日 2 回、4 日間強制経口(原体:0、100 及び 200 mg/kg 体重、溶媒:0.5%トラガカントガム水溶液)投与する試験が実施された。陽性対照群として、PB(0.1%飲料水混入 14 日間投与)、 $\beta$ -ナフトフラボン(コーン油に懸濁し 80 mg/kg 体重/日で 4 日間腹腔内投与)及びクロフィブラート(コーン油に懸濁し 400 mg/kg 体重/日で 4 日間腹腔内投与)投与群が設定された。

ピリメタニルの 100 及び 200 mg/kg 体重投与により、EROD 及び PROD 活性の統計学的に有意な増加が認められた。EROD 活性の増加は PB 及び $\beta$ -ナフトフラボンより低く、PROD 活性の増加は PB より低く $\beta$ -ナフトフラボンより高かった。ラウリン酸水酸化酵素活性は若干増加したが、有意水準 5%では有意差はみられなかった。

以上より、ラットにおいてはピリメタニル投与により肝薬物代謝酵素の CYP1A2及びCYP2B1がわずかに誘導されると推測された。(参照3)

(要請書 安全性に関する資料:66~67頁)

## (3) ラットの甲状腺に対する影響① [1992年、GLP]

ラットを用いた 2 年間慢性毒性/発がん性併合試験 [11.(2)] において、高用量群で甲状腺ろ胞上皮細胞肥大、コロイド欠乏、ろ胞上皮細胞過形成等の変化が認められた。これらが甲状腺に対する直接的な作用によるものか、又は肝臓を介した間接的な作用によるものかについて検討された。

SD ラット (一群雄 6 匹) に、ピリメタニル 5,000 ppm (平均検体摂取量:509 mg/kg 体重/日)、プロピルチオウラシル 2,000 ppm (平均検体摂取量:177 mg/kg 体重/日) 又は PB 1,000 ppm (平均検体摂取量:109 mg/kg 体重/日) を 7 日間 混餌投与後、8 日目に  $^{125}$ I が  $^{125}$ I 投与 6 時間後に、一群には過塩素酸塩カリウムを  $^{125}$ I 力は  $^{125}$ I 投与 6 時間後に、一群には過塩素酸塩カリウムを  $^{125}$ I 力は  $^{$ 

各投与群で認められた所見は表 29 に示されている。

125Iの摂取及び放出に関し、ピリメタニル投与群では PB 投与群と同様の傾向が示されたことから、ピリメタニルで認められた甲状腺の変化は甲状腺に直接作用するものではなく、間接的な影響によるものと考えられた。 (参照 3)

(要請書 安全性に関する資料:68~69頁)

### 表 29 各投与群で認められた所見

| ピリメタニル投与群                    | プロピルチオウラシル投与群                                                              | PB 投与群                                                           |
|------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|
| ・体重増加抑制、摂餌量減少<br>・125Iの摂取率増加 | ・自発運動低下、立毛<br>・体重増加抑制、摂餌量減少<br>・甲状腺絶対及び比重量増加<br>・125Iの摂取率減少、125Iの放<br>出率増加 | ・自発運動低下、不安定歩行、<br>筋緊張低下、体力消耗、立<br>毛<br>・ <sup>125</sup> I の摂取率増加 |

# (4) ラットの甲状腺に対する影響② [1992年、GLP] <u>事務局修文</u>

ラットの甲状腺に対する影響① [14. (3)] で得られた結果を確認するとともに、甲状腺に対する影響及びその可逆性についてさらに検討する目的で、SD ラット (一群雄 10 匹) にピリメタニルを 5,000 ppm (平均検体摂取量: 379 mg/kg 体重/日) で 14 日間混餌投与し、その後 14 日間の回復期間を設ける試験が実施された。

検体投与群で認められた毒性所見は表30に示されている。

試験 15 日に UDPGT の顕著な増加(対照群 71 に対し 317)が認められた。 甲状腺コロイド欠乏及びろ胞上皮細胞肥大が対照群にも全例(5/5 例)で認められたが、病変の程度は投与群で中等度であり、対照群で軽度であった。投与群では中等度のろ胞上皮増生も認められた。

回復期間終了後には、TSH、 $T_4$ 、 $T_3$ 及び  $rT_3$  は完全に回復した。甲状腺の所見についても回復がみられ、可逆的なものであると考えられた。UDPGT は有意に高かったものの、試験 15 日に比べると回復がみられた(対照群 41 に対し 67)。

以上より、ラットの 2 年間慢性毒性/発がん性併合試験でみられた甲状腺への影響は、ピリメタニル投与による肝臓への影響を中心とした間接的影響に起因するものと考えられた。 (参照 3)

(要請書 安全性に関する資料:70~72頁)

# 表 30 ピリメタニル投与群に認められた所見事務局修正

|           | 秋 00 ピ ファ ア ― ア   X J 和   C 同じのアファ                                                                                                                                                                             |                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 投与量       | <del>試験 15 日(</del> 投与終了翌日 <u>(試験 15 日</u> )<br>まで <u>)</u>                                                                                                                                                    | 試験 29 日(回復期間終了)まで          |
| 5,000 ppm | <ul> <li>・体重増加抑制</li> <li>・肝絶対及び比重量増加</li> <li>・甲状腺絶対及び比重量低下</li> <li>・TSH 増加 (試験 2~15 日)</li> <li>・T4減少 (試験 4 日)</li> <li>・T3減少 (試験 4 日)</li> <li>・rT3増加 (試験 2 日)</li> <li>・UDPGT の顕著な増加 (試験 15 日)</li> </ul> | ・甲状腺絶対及び比重量低下<br>・UDPGT 増加 |
|           | <ul><li>・小葉中心性肝細胞肥大(5/5 例)</li><li>・甲状腺コロイド欠乏(5/5 例)</li><li>・ろ胞上皮細胞肥大(5/5 例)</li></ul>                                                                                                                        |                            |

#### ・ろ胞上皮細胞増生(4/5 例)

#### <まとめ>

ラットの肝臓及び甲状腺に対する影響を評価するためのメカニズム試験の結果から、肝臓の酵素誘導による甲状腺ホルモンクリアランスの増加に起因する甲状腺ホルモンの不均衡によって、TSH 増加及び持続的な甲状腺刺激が起こることが示唆され、この持続的な TSH 増加がラットにおけるろ胞上皮の腫瘍の増加に関連していると考えられた。げっ歯類では、甲状腺ホルモンの不均衡及び TSH 上昇に対する感受性が特に高いため、この機序によるげっ歯類の甲状腺腫瘍は、ヒトへ外挿されないと考えられている。本剤には遺伝毒性もないことから、ピリメタニルによるヒトへの発がんリスクの可能性は低いと結論された。(参照 4:236 頁)

# 15. 一日摂取量の推計等 審議済

農薬又は添加物として使用され、各農畜産物について基準値案上限まで本剤が残留していると仮定した場合、平成 10~12 年の国民栄養調査結果に基づき計算される一日当たりの最大摂取量(理論的最大一日摂取量)は表 31 に示されている。

(要請書 添付資料概要:31~36頁)

## 表 31 食品中より摂取されるピリメタニルの理論的最大一日摂取量(µg/人/日)

|                 | 国民平均        | 小児(1~6歳)    | 妊婦          | 高齢者(65歳以上)  |
|-----------------|-------------|-------------|-------------|-------------|
|                 | (体重:53.3kg) | (体重:15.8kg) | (体重:55.6kg) | (体重:54.2kg) |
| 食品添加物 小計        | 594.8       | 587.6       | 533.4       | 595.0       |
| 農薬及び食品<br>添加物合計 | 1042.4      | 854.9       | 866.8       | 1085.9      |

# 16. 耐性菌の選択 審議済

ピリメタニルを食品添加物としてヒトが摂取した場合における耐性菌の選択リスクについて検討を行った。

#### (1) ヒトの腸内細菌叢に及ぼす影響について

ピリメタニルに関して、腸内細菌叢への影響を調べた研究は実施されていないが、ピリメタニルに関して実施された毒性試験から、腸内細菌叢への影響を考察することができると考えられた。

S. typhimurium 及び E. coli を用いた復帰突然変異試験 [13.] の予備試験において、 $5,000~\mu g/7$  V-トで軽微な細胞毒性が認められたが、 $500~\mu g/7$  V-ト以下では細胞毒性が観察されなかった。

NZW ウサギを用いた発生毒性試験 [12. (3)] では、下痢は認められなかった。

ウサギの腸内細菌叢は各種抗生物質に感受性があるため、ウサギが抗生物質を摂取すると微生物叢が変動し、下痢等の症状を呈するが、ピリメタニルはウサギの腸内細菌叢に影響を及ぼさなかったと考えられた。他の動物においても同様に、下痢等の症状は認められなかった。

さらに、ピリメタニルについて、*Erwinia sp.*、*Corynebacterinm sp.*、 *Xanthomonas sp.*及び *Pseudomonas sp.*の植物病原性細菌に対する作用の研究 が報告されているが、ピリメタニルはこれらのいずれに対しても活性を示さなかった。

以上より、ピリメタニルは細菌に対して殺菌活性を有さず、食品添加物の摂取で考えられる濃度において腸内細菌叢に影響を及ぼさないと考えられた。また、各種植物病原性細菌に対する作用も認められなかった。(参照3)

(要請書 添付資料概要:38~39頁)

### (2) ヒト真菌症に係る真菌に対する作用について

ヒト真菌症に係る真菌では、クリプトコッカス属(担子菌類)、アスペルギルス属(不完全菌類)及びカンジダ属(子嚢菌類)が特に重要と考えられるが、これら真菌に対するピリメタニルの作用が研究されたことはない。しかしながら、担子菌類、不完全菌類及び子嚢菌類を含む広範な植物病原菌に対する作用が調べられていることから、これらを基にヒト真菌症に係る真菌に対する作用を考察した。

担子菌類について、*Ustilago nuda*、*Ustilago avenae*、*Rhizoctonia solani* 及 び *Puccinia recondita* fsp *tritici* の 4 種を用いた *in vitro* 又は *in plant*(植物体中)の試験が実施されており、ピリメタニルはいずれにも、ほとんど活性を示さなかった。

不完全菌類について、 $Aspergillus\ nidulans$  を用いた  $in\ vitro$  の試験が実施されており、ピリメタニルの試験濃度  $30\ mg/L$  で生育が抑制された。抑制程度は処理濃度とともに低下し、試験濃度  $0.3\ mg/L$  では阻害程度は低いものであった。

子嚢菌類については、*Candida albicans* と同類の子嚢菌類である酵母 *Saccharomyces cervisiae* に対するピリメタニルの作用が研究されており、ほとんど活性を有さないことが報告されている。

以上のように、ピリメタニルは担子菌類及び子嚢菌類に対してほとんど作用性を持たないことが報告されている。また、不完全菌類に対しては軽微な作用が認められたが、その作用は軽微であり、さらに、15年以上のピリメタニル使用にもかかわらず、アスペルギルス属に関してピリメタニル耐性菌の出現は報告されていない。したがって、ピリメタニルがヒト真菌症に係る真菌であるアスペルギルス属、カンジダ属又はクリプトコッカス属等の真菌の耐性菌を選択する可能性は低いと考えられた。(参照3)

(要請書 添付資料概要: 40~41 頁)

### (3)耐性の伝達について

細菌間にみられるような耐性の伝達については、[16.(1)及び(2)]のとおり、ピリメタニルは細菌に対する作用を示さないことから、ピリメタニルの使用による細菌における耐性選択又は耐性遺伝子の出現の可能性は排除できる。また、ピリメタニルはヒト真菌症に係る真菌に対してもほとんど不活性であり、ピリメタニルによる選択がこれら真菌では想定されないことから、ヒト真菌症に係る真菌内で耐性が選択される可能性も考えられない。したがって、耐性遺伝子の選択が起こらないと想定されることから、真菌間で耐性が伝達される可能性はほとんどないと考えられた。(参照3)

(要請書 添付資料概要:38~39頁)

### Ⅲ.食品健康影響評価

参照に挙げた資料を用いて、農薬及び添加物「ピリメタニル」の食品健康影響評価を実施した。

14C で標識したピリメタニルを用いた動物体内運命試験の結果、ラットに経口投与後のピリメタニルは速やかに  $C_{max}$  に達し、吸収率は少なくとも 78% 上事務局 修文と推定された。甲状腺、副腎、肝臓、腎臓及び腎脂肪で比較的高濃度の分布が認められた。尿中に親化合物は認められず、主要代謝物は B 及び B の硫酸抱合体であった。高用量群では C も多く認められた。糞中の主要代謝物も同様に B 及び B の硫酸抱合体であったが、親化合物も認められた。ピリメタニルのラット体内における主要代謝経路は、いずれか一方の環又は両芳香環の酸化であった。排泄は速やかであり、投与後 24 時間の尿及び糞中に低用量群で 95% TAR 以上、高用量群で 62% TAR 以上が排泄された。主要排泄経路は尿中であった。また、マウス及びウシにおいても、排泄及び代謝の挙動はラットと類似していた。ウシの乳汁、肝臓及び腎臓中のいずれにも、ピリメタニルは検出されず、主要代謝物は乳汁中では C (64% TRR)、腎臓中では B (46% TRR) であった。

 $^{14}$ C で標識したピリメタニルを用いたりんご、ぶどう等における植物体内運命試験が実施された結果、いずれの植物においても親化合物が最も多くを占めた。回収放射能の 10%を超える代謝物は、G (りんごの葉で  $15\sim16\%$ )、K (ぶどうの葉で 17%) 及び H (にんじんの葉で 16%) であった。

各種毒性試験結果から、ピリメタニル投与による影響は主に体重(増加抑制)、 肝臓(肝細胞肥大等)、甲状腺(ろ胞上皮細胞肥大等)及び尿路系(マウス:膀胱 拡張等)に認められた。繁殖能に対する影響及び遺伝毒性は認められなかった。

発がん性試験において、ラットの雌で甲状腺ろ胞細胞腺腫の発生頻度が増加したが、遺伝毒性試験、メカニズム試験の結果等から、腫瘍の発生メカニズムは遺伝毒性によるものではないと考えられ、評価に当たり閾値を設定することは可能であると考えられた。

ウサギの発生毒性試験において、母動物に毒性が認められる用量(300 mg/kg 体重/日)で矮小児並びに13 胸椎及び13 肋骨の発生頻度増加が発現したが、母動物に毒性がみられない用量では胎児に対する影響は認められなかった。JMPRでは300 mg/kg 体重/日投与群でみられた胎児の所見は母体毒性による二次的なもので、検体との関連はないと判断している。食品安全委員会農薬専門調査会はJMPRの判断は適切と考えた。ラットの発生毒性試験では催奇形性は認められなかった。

畜産動物における主要代謝物は B 及び C であったが、ピリメタニル自体の毒性が弱いこと、当該代謝物はラットでも検出されており、いること、ピリメタニル自体の毒性が弱いことに加え、水溶性が高まる代謝を受けているものであるおり、親化合物より毒性が高くなるとは考えられないことから、暴露評価対象物質に加える必要はないと判断した事務局修文。

各種試験結果から、農産物及び畜産物中の暴露評価対象物質をピリメタニル(親

#### 2012/04/18 第82回農薬専門調査会幹事会 ピリメタニル評価書(案)たたき台

1 化合物のみ)と設定した。

各評価機関の評価結果及び各試験の無毒性量等は表32に示されている。

食品安全委員会農薬専門調査会は、各試験で得られた無毒性量のうち最小値がラットを用いた 2 年間慢性毒性/発がん性併合試験の 17 mg/kg 体重/日であったことからので、これを根拠として、安全係数 100 で除した 0.17 mg/kg 体重/日を一日摂

取許容量(ADI)と設定した事務局修文。

7

2

3

4

5

6

ADI 0.17 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性/発がん性併合試験

(動物種)ラット(期間)2年間(投与方法)混餌

(無毒性量) 17 mg/kg 体重/日

(安全係数) 100

8 9

## 【事務局より】

審議後、上路専門委員及び小澤専門委員から畜産動物の主要代謝物を暴露評価対象物質にしなくてよいかの問題が提起されました。上路専門委員と相談の上、ひとまず暴露評価対象物質に加えない理由を食品健康影響評価に追記しつつ、乳汁中のBの生成量及び毒性に関して追加資料要求を行いました。

1

# 表 32 各評価機関の評価結果及び各試験の無毒性量等 豪州の評価結果について事務局追記

|     | I                              | <u> </u>          | 放送の計画和未及の音試験の無毎に重守   家州の計画和未について事物问点記 |                |          |          |             |          |  |
|-----|--------------------------------|-------------------|---------------------------------------|----------------|----------|----------|-------------|----------|--|
|     | 無毒性量(mg/kg 体重/日) <sup>1)</sup> |                   |                                       |                |          |          |             |          |  |
| 動物種 | 試験                             | (mg/kg 体重/日)      | JMPR                                  | 米国             | EU       | 豪州 2)    | 食品安全委員会     | 参考資料     |  |
|     |                                | (IIIg/Kg 件里/口/    | OMEN                                  | <b>小</b> 国     | EU       | 家川 =/    | 農薬専門調査会     | (概要書)    |  |
| ラット |                                | 0,80,800,8,000    | 54.5                                  | 雌雄:54.5        | 雄:5.4    | 5.4      | 雄:54.4      | 雄:54.4   |  |
|     |                                | ppm               |                                       |                | 雌:6.8    |          | 雌:66.7      | 雌:66.7   |  |
|     |                                |                   |                                       |                |          |          |             |          |  |
|     | 亜急性                            |                   |                                       | 甲状腺ろ胞上皮細       | 体重增加抑制、蛋 | 尿パラメータの変 | 雌雄:甲状腺ろ胞    | 雌雄:甲状腺ろ胞 |  |
|     | 毒性試験                           | 529               | 胞肥大等                                  | 胞肥大等           | 白尿、肝及び甲状 | 化、肝肥大    | 上皮細胞肥大等     | 上皮細胞肥大等  |  |
|     | 世江州                            | 雌:0、6.8、66.7、     |                                       |                | 腺の病理所見等  |          |             |          |  |
|     |                                | 626               |                                       |                |          |          |             |          |  |
|     |                                |                   |                                       |                | ,        | ,        |             | ,        |  |
|     |                                | 0, 60, 600, 6,000 | · ·                                   | 雄:392          |          | /        | 雄:38.7      |          |  |
|     |                                | ppm               | 雌:44.3                                | 雌:44.3         |          |          | 雌: 44.3     |          |  |
|     | 00 🗆 🖽                         | <u> </u>          | # . 事歴記目お1                            | ##. 事歴記目お1     |          |          | 雌雄:体重増加抑    |          |  |
|     |                                |                   | 雄:毒性所見なし<br>雌:体重増加抑制                  |                |          |          | 脚架: 件里增加抑制等 |          |  |
|     |                                | 雌:0、4.6、44.3、     |                                       | 唯. 冲里增加抑制<br>等 |          |          | 刑守          |          |  |
|     |                                | 430               | <del>寸</del>                          | ₹              |          |          | (神経毒性は認め    |          |  |
|     | 四人的大                           |                   | (神経毒性は認め                              |                |          |          | られない)       |          |  |
|     |                                |                   | られない)                                 |                |          |          | 240.817     |          |  |
|     |                                |                   | 340.81                                |                |          |          |             |          |  |
|     |                                | 0,32,400,5,000    | 17                                    | 雄:17           | 雄:17     | 17       | 雄:17        | 雄:17     |  |
|     |                                | ppm               |                                       | 雌:22           | 雌:22     |          | 雌:22        | 雌:22     |  |
|     |                                |                   |                                       |                |          | 体重增加量減少、 |             |          |  |
|     | 2 年間                           |                   |                                       | 雌雄:甲状腺ろ胞       |          |          |             | 雌雄:甲状腺ろ胞 |  |
|     | 慢性毒性                           | 雌:0、1.8、22、291    | 胞肥大等                                  | 上皮細胞肥大等        | 上皮細胞肥大等  | 病理組織学的変化 | 上皮細胞肥大等     | 上皮細胞肥大等  |  |
|     |                                |                   |                                       |                |          | 等        |             |          |  |
|     | 発がん性                           |                   | 田小りはマルケのから                            |                |          |          |             |          |  |
|     | 併合試験                           |                   |                                       |                |          |          |             | 甲状腺ろ胞細胞腺 |  |
|     |                                |                   | 腫増加(雌雄)                               | 腫増加            | 腫増加(雌雄)  | 腫増加      | 腫増加(雌)      | 腫増加(雌)   |  |
|     |                                |                   |                                       |                |          |          |             |          |  |
|     |                                |                   |                                       |                |          |          |             |          |  |
|     |                                |                   |                                       |                |          |          |             |          |  |

## 2012/04/18 第82回農薬専門調査会幹事会 ピリメタニル評価書(案) たたき台

|     |       | 投与量                          | 無毒性量(mg/kg 体重/日) <sup>1)</sup> |             |            |              |                     |                       |
|-----|-------|------------------------------|--------------------------------|-------------|------------|--------------|---------------------|-----------------------|
| 動物種 | 試験    | 仅于重<br>(mg/kg 体重/日)          | JMPR                           | 米国          | EU         | 豪州 2)        | 食品安全委員会 農薬専門調査会     | 参考資料<br>(概要書)         |
|     |       | 0,32,400,5,000               |                                | 親動物及び児動物    | 親動物及び児動物   | 親動物及び        | 親動物及び児動物            | 親動物及び児動物              |
|     |       | ppm                          | 児動物: 23.1                      | '           |            |              |                     | P雄:23.1               |
|     |       |                              |                                |             | 雌:23.4     |              |                     | P雌:27.4               |
|     |       | P雄:0、1.9、23.1、               |                                | 繁殖能:294/343 |            |              |                     | F <sub>1</sub> 雄:29.1 |
|     |       | 294                          | 如新州                            |             |            | 如手がファド日手     | $F_1$ 雌:34.0        | $F_1$ 雌:34.0          |
|     |       |                              |                                |             | 親動物及び児動    |              |                     |                       |
|     |       |                              | <sup>抑制</sup><br>児動物:体重低下      | 物:体重增加抑制    | 物: 体里增加抑制等 |              |                     | 親動物及び児動               |
|     |       | 17年 : 0、2.3、29.1、<br>389     | 元期初 . 平里似了                     | 等           | 寺          |              | 物: 体 里 增 加 利 制<br>等 | 物:体重増加抑制              |
|     |       | F <sub>1</sub> 雌:0、2.7、34.0、 |                                |             |            |              | 寺                   | 等                     |
|     |       |                              | (繁殖能に対する                       |             |            |              | <br>(繁殖能に対する        | (繁殖能に対する              |
|     |       |                              | 影響は認められな                       |             |            |              |                     | 影響は認められな              |
|     |       |                              | (い)                            |             |            |              |                     | (v)                   |
|     |       | 0,7,85,1,000                 | 母体毒性:85                        | 母体毒性:85     | 母体毒性:85    | /            | 母動物及び胎児:            | 母動物及び胎児:              |
|     |       | ·                            | 発生毒性:1,000                     | 発生毒性:85     | 発生毒性:85    |              | 85                  | 85                    |
|     |       |                              |                                |             |            |              |                     |                       |
|     |       |                              | 母動物:臨床症状、                      |             | 母動物:削痩等    | l /          |                     | 母動物:削痩等               |
|     | 発生毒性  |                              |                                |             | 胎児:平均同腹児   | /            |                     | 胎児:平均胎児体              |
|     | 試験    |                              | 胎児:毒性所見な                       | 重量低下等       | 重量低下等      |              | 重低下                 | 重低下                   |
|     |       |                              |                                |             |            |              | (魔大形体) ( ) 以 以 以    | (催奇形性は認め              |
|     |       |                              | (催奇形性は認め                       |             |            |              |                     | (惟可形性は祕の) られない)       |
|     |       |                              | られない)                          |             |            |              | 940/447             | 940/447               |
| マウス |       | 0,80,900,10,000              | 139                            | <br>雄:139   | 雄: 139     | 139          | 雄:139               | 雄:139                 |
|     |       | ppm                          |                                |             | 雌:203      |              |                     | 雌:203                 |
|     | 00 日間 |                              |                                |             |            |              |                     |                       |
|     | 亜急性   |                              |                                |             |            |              |                     | 雌雄:甲状腺ろ胞              |
|     | 毒性試験  |                              | 胞剥離性壊死等                        | 胞剥離性壊死等     | 上皮細胞剥離性壊   | Chol、Bil 增加等 |                     | 上皮細胞剥離性壊              |
|     |       | 雌: 0、18、203、                 |                                |             | 死等         |              | 死等                  | 死等                    |
|     |       | 2,550                        |                                |             |            |              |                     |                       |
|     |       |                              |                                |             |            |              | <u> </u>            |                       |

### 2012/04/18 第82回農薬専門調査会幹事会 ピリメタニル評価書(案) たたき台

|      |                          | 投与量                 |                   |              | 無毒性量(mg                   | /kg 体重/日) <sup>1)</sup> | 無毒性量(mg/kg 体重/日) <sup>1)</sup> |               |  |  |  |  |
|------|--------------------------|---------------------|-------------------|--------------|---------------------------|-------------------------|--------------------------------|---------------|--|--|--|--|
| 動物種  | 試験                       | 仅分里<br>(mg/kg 体重/日) | JMPR              | 米国           | EU                        | 豪州 2)                   | 食品安全委員会<br>農薬専門調査会             | 参考資料<br>(概要書) |  |  |  |  |
|      |                          | 0、16、160、1,600      | 20.0              | 雄:210.9      | 雄:17.3                    | 24                      | 雄:20.0                         | 雄:20.0        |  |  |  |  |
|      |                          | ppm                 |                   | 雌:253.8      | 雌:22.3                    |                         | 雌:254                          | 雌:254         |  |  |  |  |
|      | 80 週間                    |                     | D.D               |              |                           | 尿路系病変                   |                                |               |  |  |  |  |
|      |                          | 雄:0、2.0、20.0、       | 雄:尿路糸病炎           | 毒性所見なし       | 膀胱拡張等                     |                         |                                | 雄:膀胱拡張等       |  |  |  |  |
|      |                          | 211                 | (水水) 計2217        |              |                           |                         | 雌:毒性所見なし                       | II I          |  |  |  |  |
|      |                          |                     | (発がん性は認め<br>られない) |              |                           |                         |                                | (発がん性は認め      |  |  |  |  |
|      |                          | 254                 |                   |              |                           |                         | られない)                          | られない)         |  |  |  |  |
| ウサギ  |                          | 0,7,45,300          |                   |              | 母体毒性:45                   |                         | 母動物及び胎児:                       |               |  |  |  |  |
|      |                          |                     | 発生毒性:300          | 発生毒性:45      | 胎児毒性:45                   | 45                      | 45                             | 45            |  |  |  |  |
|      | =\\ 11 <del>- </del>  11 |                     | 母動物:死亡等           | 母動物:削痩等      | 母動物:削痩等                   | 体重増加量減少、                | <b>丹動版</b> ,                   | 丹動物· 別唐笙      |  |  |  |  |
|      | 発生毒性                     |                     |                   |              | 母勤物: 削瘦等<br>胎児: 平均胎児重     |                         |                                | 胎児:平均胎児体      |  |  |  |  |
|      | 試験                       |                     | 加ル・母性の元な          | 量低下等         | 量低下等                      |                         |                                | 重低下等          |  |  |  |  |
|      |                          |                     | (催奇形性は認め          | <b>重</b> ⊠Ⅰ寻 | <b>正</b> 囚Ⅰ 寸             |                         | 五四十五                           | 至区14          |  |  |  |  |
|      |                          |                     | られない)             |              |                           |                         |                                |               |  |  |  |  |
| イヌ   | 00 日間                    | 0 , 6 , 80 ,        | 80                | <br>雌雄:80    |                           | 80                      | 雌雄:80                          | 雌雄: 80        |  |  |  |  |
|      |                          | 1,000/800           | 00                | MEAE . OU    | <u> </u>                  | 00                      | LEAE . OU                      | 此性公臣 · OU     |  |  |  |  |
|      | 毒性試験                     | 1,000/000           | 下痢等               | 下痢等          | 嘔吐等                       | 飲水量減少等                  | 雌雄:嘔吐等                         | 雌雄:嘔吐等        |  |  |  |  |
|      |                          | 0,2,30,400/250      | 30                | 雌雄:30        | 雌雄:30                     | 30                      | 雌雄:30                          | 雌雄:30         |  |  |  |  |
|      | 1 年間<br>慢性毒性             |                     |                   |              |                           |                         |                                |               |  |  |  |  |
|      | 世<br>武験                  |                     | 体重増加抑制等           | 雌雄:体重増加抑     | 雌雄:嘔吐等                    | 摂餌量減少、食餌                | 雌雄:嘔吐等                         | 雌雄:嘔吐等        |  |  |  |  |
|      | 武阙                       |                     |                   | 制等           |                           | 効率低下等                   |                                |               |  |  |  |  |
|      |                          |                     | -                 | -            |                           |                         |                                | NOAEL: 17     |  |  |  |  |
|      | AΓ                       |                     | SF: 100           |              |                           |                         |                                | SF: 100       |  |  |  |  |
|      |                          |                     |                   |              |                           |                         |                                | ADI: 0.17     |  |  |  |  |
|      |                          |                     | ラット2年間            | ラット2年間       |                           |                         |                                | ラット2年間        |  |  |  |  |
|      | ADI 設定                   |                     |                   |              |                           | 慢性毒性/発がん性               |                                |               |  |  |  |  |
| 1.77 | - 177 3/                 |                     |                   |              | 併合試験<br>- K * * NOAEL . 4 | P 1 1 1 1 2 1           |                                | 性併合試験         |  |  |  |  |

ADI:一日摂取許容量 cRfD:慢性参照用量 UF:不確実係数 SF:安全係数 NOAEL:無毒性量 LOEL:最小毒性量 NOEL:無影響量 /:試験記載なし

<sup>1)</sup> 最小毒性量で認められた主な毒性所見等を記した。2) 豪州資料では NOEL が記載されている。

# 1 <別紙1:代謝物/分解物略称>

| 記号 | 略称                              | 化学名                                                                       |
|----|---------------------------------|---------------------------------------------------------------------------|
| В  | AE C614276<br>SN 614276<br>AN2  | 2-(4-hydroxyanilino)-4,6-dimethylpyrimidine                               |
| С  | AE C614277<br>SN614277<br>AN3   | 2-anilino-4,6-dimethylpyrimidin-5-ol                                      |
| D  | AE 614278<br>SN 614278          | 2-anilino-6-methylpyrimidine-4-methanol                                   |
| Е  | AE C614 800<br>SN 614800<br>AN6 | 2-(4-hydroxyanilino)-4-hydroxymethyl-6-methylpyrimidine                   |
| F  | SN 615224                       | 2-(4-hydroxyanilino)-6-dimethyl-pyrimidin-5-ol                            |
| G  | U1                              | β-O-glucoside of 2-anilino-4-hydroxymethyl-6-<br>hydroxymethylpyrimidine  |
| Н  |                                 | Malonyl-β-O-glucoside of 2-anilino-4-hydroxymethyl-<br>6-methylpyrimidine |
| I  | U2/M5                           | β-O-glucoside of 2-anilino-4-hydroxymethyl-<br>6-methylpyrimidine         |
| J  | SN 512 723<br>AE F132593<br>AN7 | 2-amino-4,6-dimethylpyrimidine                                            |
| K  | M1                              | C-6 sugar of 2-(4-hydroxyanilino)-4,6-dimethylpyridine                    |
| L  |                                 | β-O-glucoside of 2-(4-hydroxyanilino)-4,6-<br>dimethylpyrimidine          |
| M  |                                 | Malonyl- β-O-glucoside of 2-(4-hydroxyanilino)-4,6-<br>dimethylpyrimidine |
| N  | SN 469 626<br>AE F132512<br>AN9 | 2-hydroxy-4,6-dimethyl-pyrimidine                                         |
| О  | AE C621312<br>AN5               | 2-anilino-4,6-di(hydroxymethyl)pyrimidine                                 |

# 1 <別紙2:検査値等略称>

| 略称                 | 1個寺崎が/名称                    |
|--------------------|-----------------------------|
| ACh                | アセチルコリン                     |
| ai                 | 有効成分量(active ingredient)    |
| AUC                | 薬物濃度曲線下面積                   |
| Chol               | コレステロール                     |
| C <sub>max</sub>   | 最高濃度                        |
| CMC                | カルボキシメチルセルロース               |
| CYP                | チトクローム P450 アイソザイム          |
| EROD               | エトキシレゾルフィン $O$ デエチラーゼ       |
| FOB                | 機能観察総合検査                    |
| GGT                | γ-グルタミルトランスフェラーゼ            |
| 441                | [=γ-グルタミルトランスペプチダーゼ(γ-GTP)] |
| His                | ヒスタミン                       |
| 5-HT               | セロトニン                       |
| LC50               | 半数致死濃度                      |
| $\mathrm{LD}_{50}$ | 半数致死量                       |
| MC                 | メチルセルロース                    |
| MCH                | 平均赤血球血色素量                   |
| MCHC               | 平均赤血球血色素濃度                  |
| MCV                | 平均赤血球容積                     |
| Neu                | 好中球数                        |
| P450               | チトクローム P450                 |
| PB                 | フェノバルビタール (ナトリウム)           |
| PHI                | 最終使用から収穫までの日数               |
| PROD               | ペントキシレゾルフィン $O$ デペンチラーゼ     |
| rT <sub>3</sub>    | リバーストリヨードサイロニン              |
| T <sub>1/2</sub>   | 消失半減期                       |
| T <sub>3</sub>     | トリヨードサイロニン                  |
| $T_4$              | サイロキシン                      |
| TAR                | 総投与(処理)放射能                  |
| T.Bil              | 総ビリルビン                      |
| T <sub>max</sub>   | 最高濃度到達時間                    |
| TRR                | 総残留放射能                      |
| TSH                | 甲状腺刺激ホルモン                   |
| UDPGT              | ウリジン二リン酸グルクロニルトランスフェラーゼ     |
| UDS                | 不定期 DNA 合成                  |

# 2012/04/18 第82回農薬専門調査会幹事会 ピリメタニル評価書(案)たたき台

| WBC | 白血球数 |
|-----|------|
|-----|------|

## 2012/04/18 第82回農薬専門調査会幹事会 ピリメタニル評価書(案)たたき台

# 1 <別紙 3:作物残留試験(海外)>

| 作物名                                | 試験          | <b>全</b>          |               |            | 残留值(mg/kg) |
|------------------------------------|-------------|-------------------|---------------|------------|------------|
| (分析部位)                             | 圃           | 使用量<br>(g ai/ha)  | 回<br>数<br>(回) | PHI<br>(目) | ピリメタニル     |
| 実施年                                | 圃<br>場<br>数 | (8 012 110)       |               |            | 最高値        |
|                                    | 1           | 111 <sup>SC</sup> | 3             | 50         | 0.019      |
| 高麗人参<br>(生人参/1 年次)                 | 1           |                   | 3             | 40         | 0.017      |
| 2004-2005 年度                       | 1           |                   | 4             | 40         | 0.025      |
| 2004 2009 +/2                      | 1           |                   | 4             | 30         | 0.041      |
| 古南 レタ                              | 1           |                   | 3             | 50         | 0.013      |
| 高麗人参<br>(生人参/2 年次)<br>2004-2005 年度 | 1           |                   | 3             | 40         | 0.014      |
|                                    | 1           |                   | 4             | 40         | 0.017      |
|                                    | 1           |                   | 4             | 30         | 0.039      |

## 1 <参照>

- 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正す
   3 合件(平成17年11月29日付け平成17年厚生労働省告示第499号)
- 4 2. 食品健康影響評価について(平成22年4月30日付け厚生労働省発食安0430 第1号)
- 6 3. ピリメタニル(殺菌剤) 添加物指定の要請書:ヤンセンファーマ株式会社、7 2010年、一部公表予定
- 4. JMPR: "Pyrimethanil", Pesticide residues in food—2007 report. p.234-249 (2008)
- JMPR: "Pyrimethanil", Pesticide residues in food—2007 evaluations. Part
   I. Residues. p.919-1025 (2008)
- 6. JMPR: "Pyrimethanil", Pesticide residues in food—2007 evaluations. Part II. Toxicological. p.446-486 (2009)
- 14 7. US EPA: Federal Register Vol. 69, No. 165 Augst 26, 2004. p.52434-52444 15 (2004)
- 8. EU: "Pyrimethanil" Draft Assessment Report (DAR) -public versionvolume 1 (2005)
- 18 9. Pyrimethanil 37% SC の人参残留性試験報告書:韓国三共株式会社、2005 19 年、未公表
- 20 10. Australia APVMA : JAPANESE POSITIVE LIST RESPONSE IN SUPPORT OF AUSTRALIAN MRLs FOR : PYRIMETHANIL (2011)
- 22 11. 食品健康影響評価に係る補足資料の提出等について(平成 24 年 2 月 17 日付 23 け食安基発 0217 第 1 号)
- 24 12. ピリメタニル(殺菌剤) 食品添加物の指定の要請書添付資料概要:ヤンセ
   25 ンファーマ株式会社、2012年、一部公表予定