肥料・飼料等専門調査会における審議結果について

1. 審議結果

厚生労働大臣から食品安全委員会に意見を求められた対象外物質のうちアルギニン(平成22年2月15日付 厚生労働省発食安0215第3号)については、平成22年3月12日に開催された第36回肥料・飼料等専門調査会(座長: 唐木英明)において審議結果(案)がとりまとめられた。

審議結果(案)については、幅広く国民に意見・情報を募った後に、食品安全委員会に報告することとなった。

2. 対象外物質(アルギニン)に係る食品健康影響評価についての意見・情報の募集について

上記品目に関する「審議結果(案)」を食品安全委員会ホームページ等に公開し、 意見・情報を募集する。

1)募集期間

平成 24 年 2 月 23 日 (木) 開催の食品安全委員会 (第 420 回会合) 終了後、 平成 24 年 3 月 23 日 (金) まで。

2) 受付体制

電子メール (ホームページ上)、ファックス及び郵送

3) 意見・情報提供等への対応

いただいた意見・情報等をとりまとめ、肥料・飼料等専門調査会の座長の指示のもと、必要に応じて専門調査会を開催し、審議結果をとりまとめ、食品安全委員会に報告する。

対象外物質※評価書

アルギニン

2012年2月

食品安全委員会肥料 · 飼料等専門調査会

※ 食品衛生法(昭和22年法律第233号)第11条第3項の規定に基づき、 人の健康を損なうおそれのないことが明らかであるものとして厚生労働大臣が 定める物質

目次

貝	
〇審議の経緯	2
〇食品安全委員会委員名簿	2
〇食品安全委員会肥料·飼料等専門調査会専門委員名簿	2
〇要約	3
I. 評価対象動物用医薬品及び飼料添加物の概要	4
1. 用途	4
2. 一般名	4
3. 化学名	4
4. 分子式	4
5.分子量	4
6.構造式	4
7. 使用目的及び使用状況等	4
Ⅱ. 安全性に係る知見の概要	5
1. 吸収・分布・代謝・排泄	5
2. 毒性に関する知見	6
(1)急性毒性試験	6
(2)	6
(3)遺伝毒性試験	6
3. 国際機関における評価の概要	6
(1)JECFA における評価	6
(2)EFSA における評価	7
Ⅲ. 食品健康影響評価	7
• 別紙 検査値等略称	8
- 参昭	9

〈審議の経緯〉

2005年 11月 29日 対象外物質告示(参照1)

2010年 2月 15日 厚生労働大臣より食品衛生法第11条第3項の規定に基づき、

人の健康を損なうおそれのないことが明らかである物質を 定めることに係る食品健康影響評価について要請(厚生労働

省発食安第 0215 第 3 号)

2010年 2月 18日 第320回食品安全委員会(要請事項説明)

2010 年 3 月 12 日 第 36 回肥料・飼料等専門調査会

2012 年 2月 23 日 第 420 回食品安全委員会 (報告)

〈食品安全委員会委員名簿〉

(2011年1月6日まで) (2011年1月7日から)

小泉 直子(委員長) 小泉 直子(委員長)

見上 彪 (委員長代理*) 熊谷 進 (委員長代理*)

 長尾
 拓

 野村
 一正

 畑江
 敬子

 廣瀬
 雅雄

 村田
 容常

*:2009年7月9日から *:2011年1月13日から

〈食品安全委員会肥料·飼料等専門調査会専門委員名簿〉

(2011年9月30日まで) (2011年10月1日から)

唐木 英明 (座長) 唐木 英明 (座長*)

酒井 健夫 (座長代理) 津田 修治 (座長代理*)

青木 宙 高橋 和彦 青木 宙 舘田 一博

秋葉 征夫 舘田 一博 秋葉 征夫 戸塚 恭一

池 康嘉 津田 修治 池 康嘉 細川 正清

今井 俊夫 戸塚 恭一 今井 俊夫 宮島 敦子

江馬 眞 細川 正清 江馬 眞 山中 典子

仁河 吳 一种川 正信 仁河 吳 一口丁 夹 1

 桑形 麻樹子
 宮島 敦子
 桑形 麻樹子
 吉田 敏則

 下位 香代子
 元井 葭子
 下位 香代子

高木 篤也 吉田 敏則 高橋 和彦

*:2011年11月2日から

要約

食品衛生法(昭和22年法律第233号)第11条第3項の規定に基づき、人の健康を 損なうおそれのないことが明らかであるものとして厚生労働大臣が定める物質(対象 外物質)とされているアルギニンについて、各種評価書等を用いて食品健康影響評価 を実施した。

アルギニンは、タンパク質の構成アミノ酸であり、ヒトは通常アルギニンを含むタンパク質を食品から多量栄養素として摂取している。

動物に投与されたアルギニンは、細胞内タンパク質の連続的な代謝に利用され、アルギニンが過剰になったとしても、動物体内で代謝され、蓄積されることはないことから、食品を通じて動物用医薬品及び飼料添加物由来のアルギニンをヒトが過剰に摂取することはないものと考えられる。

アルギニンは、動物用医薬品、飼料添加物等、さまざまな分野での使用実績においても、これまでに安全性に関する特段の問題はみられていない。

以上のことから、アルギニンは、動物用医薬品及び飼料添加物として通常使用される限りにおいて、食品に残留することにより人の健康を損なうおそれのないことが明らかであるものであると考えられる。

I. 評価対象動物用医薬品及び飼料添加物の概要

1. 用途

動物用医薬品(代謝性用薬) 飼料添加物(飼料の栄養成分その他の有効成分の補給)

2. 一般名

和名:L-アルギニン 英名:L-arginine

3. 化学名

IUPAC

英名: (2S)-2-Amino-5-guanidinopentanoic acid CAS (No. 74-79-3)

4. 分子式

 $C_6H_{14}N_4O_2$

5. 分子量

174.20

6. 構造式

$$H_2N$$
 NH
 NH
 NH
 NH
 NH
 NH

7. 使用目的及び使用状況等

アルギニンは、タンパク質を構成する 20 種類のアミノ酸の一つで、グアニジノ (-NHC(=NH) NH₂) 基を持つ最も塩基性の高いアミノ酸である。高塩基性タンパク質である魚の白子のプロタミンでは全構成アミノ酸の約 2/3 を L-アルギニンが占め、植物種子やにんにく中には遊離の状態で含まれている。緑茶、にんにく、イカなどの特徴的な呈味成分であり、調味料として水産加工食品などに使用される。

ヒトは、食品からタンパク質を摂取し、その構成成分であるアミノ酸に加水分解後、吸収し、組織タンパク質の代謝に利用している。タンパク質構成アミノ酸のうちアルギニンをはじめとする 12 種類のアミノ酸については、解糖系及びクエン酸回路の両性代謝中間体から合成できるため、栄養学的には非必須アミノ酸とされている。アルギニンは、成長に必要な十分量は生合成されないため、成長期は外部よ

り摂取する必要があり、この点で準必須アミノ酸とされている。(参照2、3)

日本では、動物用医薬品として、牛及び馬のアミノ酸の補給を目的としたL-アルギニン塩酸塩を有効成分とする静脈注射用の製剤が承認されている。

飼料添加物としては、L-アルギニンが、飼料の栄養成分その他の有効成分の補給を目的に指定されており、対象飼料、添加量等の規定はない。

食品添加物としては、L-アルギニンの使用が認められており、使用基準は定められていない。

ヒト用医薬品としては、L-アルギニンが、低タンパク血症、低栄養状態等におけるアミノ酸補給等を目的として用いられている。

アルギニンは、食品に残留する農薬等に関するポジティブリスト制度の導入に伴い、食品衛生法(昭和22年法律第233号)第11条第3項の規定に基づき、人の健康を損なうおそれのないことが明らかであるものとして厚生労働大臣が定める物質(以下「対象外物質」という。)として、暫定的に定められている。今回、対象外物質アルギニンについて、食品安全基本法(平成15年法律第48号)第24条第2項の規定に基づき、厚生労働大臣から食品安全委員会に食品健康影響評価の要請がなされた。

Ⅱ. 安全性に係る知見の概要

本評価書では、各種評価書等の L-アルギニンに関する主な科学的知見を整理した。

1. 吸収・分布・代謝・排泄

タンパク質の分解によって生じる遊離アミノ酸は、小腸粘膜を通りナトリウム依存能動輸送によって吸収される。

吸収された遊離アミノ酸は、細胞内タンパク質の連続的な代謝に利用される。遊離されたアミノ酸の約75%は再利用される。新しいタンパク質にすぐに取り込まれないアミノ酸は速やかに両性代謝中間体に代謝されるので、過剰のアミノ酸は、蓄積されない。(参照2)

アルギニンは、生体内ではアンモニアの代謝や尿素の合成に係わる尿素回路の中間体として、アルギニノコハク酸から生合成される。(参照3)

アミノ基転移反応による α -アミノ基窒素が除去された後の残りの炭素骨格は、グルタミン酸を経て α -ケトグルタル酸へと代謝され、クエン酸回路において利用される。 (参照 2)

アミノ酸の分解により生じた過剰の窒素は、魚類はアンモニアとして直接排泄し、 鳥類はアンモニアを尿酸に、高等脊椎動物はアンモニアを尿素に変換して排泄する。 (参照 2)

2. 毒性に関する知見

(1)急性毒性試験

ラット(系統不明)を用いた経口投与による急性毒性試験が実施され、 LD_{50} は約 $12,000 \sim 16,000 \, \text{mg/kg}$ 体重であった。(参照 3、4)

(2) 亜急性毒性試験

ラット(系統不明)を用いた L-アルギニンの混餌投与(カゼイン 15%含有飼料: L-アルギニン 7.5%添加)による亜急性毒性試験が実施された。明らかな発育の遅延が認められた。(参照 3)

ラット (CD(SD)系、6 週齢、雌雄各 15 匹/群) を用いた L-アルギニンの強制経口投与 (2,000 mg/kg 体重/日) による 4 週間亜急性毒性試験が実施された。一般症状、体重、摂餌量、眼検査、血液学的検査、臓器重量及び剖検では影響は認められなかった。雌雄数例で尿中の pH 上昇 (pH 9) 及びタンパク陽性が増加した。胃の境界縁扁平上皮の軽度の過形成が雌雄で認められた。この変化はアルギニンの投与方法に起因するものと考えられた。また、投与終了後 2 週間の休薬期間中に変化は見られなくなり、可逆的な変化と考えられた。(参照 5)

ラット (系統不明、雌雄) を用いた L-アルギニンの 13 週間混餌投与 (0、1.25、2.5、5.0%) 試験が実施された。全投与群で毒性所見が認められなかったことから、NOAEL は本試験の最高用量である 5.0% (3,320 mg/kg 体重/日) とされた。(参照 4)

ラット (CD(SD)系、雌雄各 12 又は 18 匹/群)を用いた L-アルギニンの 13 週間混餌投与 (0、1.25、2.5 及び 5.0 %) 試験が実施された。全投与群で毒性所見が認められなかったことから、NOAEL は本試験の最高用量である 5.0 % (3,131 mg/kg 体重/日)とされた。(参照 5)

(3)遺伝毒性試験

大腸菌($Escherichia\ coli\ uvrB$ 、 $uvrB\ umuC$ 、 $uvrB\ LexA$)を用いた L-アルギ = ンの変異原性試験(プレート法)及びヒト末梢血リンパ球を用いた姉妹染色分体 交換試験は陰性であった。

ヒトリンパ球を用いた姉妹染色分体交換試験は陽性であったが、この試験は細胞毒性が測定されておらず、また、用量依存性がないことから、EFSAでは、この結果は結論付けられないとしている。(参照 4、6)

3. 国際機関における評価の概要

(1) JECFA における評価

JECFA では、第 63 回会議(2004 年)において、L-アルギニンは天然に存在す

るアミノ酸で、多量栄養素であるタンパク質の構成要素であること、さらに、flavouring agent として摂取する量よりはるかに多くの量を食品から摂取していることから、flavouring agent の安全性評価に関する手順を適用しないこととした。

L-アルギニンが、flavouring agent として使用される場合において、現在の摂取量では安全性上の懸念はないとされ、現在の使用を認める(Acceptable)と結論している。(参照 7)

(2) EFSA における評価

EFSAでは、L-アルギニンは、多量栄養素であること及びタンパク質の構成要素であることから、食品を通じたヒトへの暴露量は flavouring substance としての使用を通じた推定暴露量よりはるかに多いため、安全性評価手順は適用しないが、flavouring substance として使用された場合の推定摂取量では安全性上の懸念はないと結論している。しかし、EU における生産状況が不明のため最終的な評価にはできなかったとしている。(参照 6)

Ⅲ. 食品健康影響評価

アルギニンは、タンパク質の構成アミノ酸であり、ヒトは通常アルギニンを含むタンパク質を食品から多量栄養素として摂取している。

動物に投与されたアルギニンは、細胞内タンパク質の連続的な代謝に利用され、アルギニンが過剰になったとしても、動物体内で代謝され、蓄積されることはないことから、食品を通じて動物用医薬品及び飼料添加物由来のアルギニンをヒトが過剰に摂取することはないものと考えられる。

アルギニンは、動物用医薬品、飼料添加物等、さまざまな分野での使用実績においても、これまでに安全性に関する特段の問題はみられていない。(参照 8)

また、国際機関における食品添加物の flavouring agent 及び flavouring substance としての評価において、アルギニンの食品としての摂取量が大きいことを考慮して、安全性上の懸念はないとされている。

以上のことから、アルギニンは、動物用医薬品及び飼料添加物として通常使用される限りにおいて、食品に残留することにより人の健康を損なうおそれのないことが明らかであるものであると考えられる。

<別紙 検査値等略称>

略称	名称	
EFSA	欧州食品安全機関	
JECFA	FAO/WHO 合同食品添加物専門家会議	
LD_{50}	半数致死量	
NOAEL	無毒性量	

く参照>

- 1. 食品衛生法第11条第3項の規定により人の健康を損なうおそれのないことが明らかであるものとして厚生労働大臣が定める物質を定める件(平成17年厚生労働省告示第498号)
- 2. Murray RK, Granner DK, Rodwell VW. 上代淑人 監訳. "タンパク質とアミノ酸の代謝". イラストレイテッドハーパー・生化学 原書 27 版. 丸善, 2007, p. 265-293,487-494
- 3. "L-アルギニン". 食品添加物公定書解説書. 第 8 版. 谷村顕雄.棚元憲一 監修. 廣川書店, 2007, p. D112-114.
- 4. European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food (AFC) on a request from the Commission related to Flavouring Group Evaluation 26: Amino acids from chemical group 34. The EFSA Journal (2006) 373, 1-48.
- 5. European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Additives and Products or Substances used in Animal Feed on the safety and efficacy of the product containing L-arginine produced by fermentation from Corynebacterium glutamicum(ATCC-13870) for all animal species Adopted on 17 April The EFSA Journal(2007)473,1-19
- 6. European Food Safety Authority (EFSA). SCIENTIFIC OPINION Flavouring Group Evaluation 79, (FGE.79). Consideration of amino acids and related substances evaluated by JECFA (63rd meeting) structurally related to amino acids from chemical group 34 evaluated by EFSA in FGE.26Rev1. The EFSA Journal (2008) 870, 1-46.
- 7. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives: L-ARGININE, 2004
- 8. 平成 20 年度 農薬等のポジティブリスト制度における対象外物質の食品健康影響評価に関する情報収集調査 報告書 平成 21 年 3 月.