添加物専門調査会における審議結果について

1. 審議結果

厚生労働大臣から食品安全委員会に意見を求められたイソプロパノールに係る食品健康影響評価(平成23年4月19日厚生労働省発食安0419第9号)については、平成23年12月16日に開催された第102回添加物専門調査会(座長:今井田克己)において審議され、審議結果(案)が取りまとめられた。

審議結果(案)については、幅広く国民に意見・情報を募った後に、食品安全委員会に報告することとなった。

2. イソプロパノールに係る食品健康影響評価に関する審議結果(案)についての意見・情報の募集について

上記品目に関する「審議結果(案)」を食品安全委員会ホームページ等に公開し、意見・ 情報を募集する。

1)募集期間

平成 24 年 2 月 16 日 (木) 開催の食品安全委員会 (第 419 回会合) 終了後、平成 24 年 3 月 16 日 (金) までの 30 日間。

2) 受付体制

電子メール (ホームページ上)、ファックス及び郵送

3) 意見・情報提供等への対応

いただいた意見・情報等を取りまとめ、添加物専門調査会の座長の指示のもと、必要に応じて専門調査会を開催し、審議結果を取りまとめ、食品安全委員会に報告する。

(案)

添加物評価書

イソプロパノール

(第2版)

2012年2月

食品安全委員会添加物専門調査会

目次

	Į.	ŧ
○審議の	D経緯	3
〇食品多	安全委員会委員名簿	3
〇食品3	安全委員会添加物専門調査会専門委員名簿	4
〇要約		5
I. 評値	価対象品目の概要	6
1. 月	用途	6
2. =	主成分の名称	6
3. 5	分子式及び構造式	6
4.5	分子量	6
5. 怜	生状等	6
6. 🖥	平価要請の経緯	6
7. 敖	見格基準の改正の概要	8
Ⅱ. 安全	全性に係る知見の概要	8
1. 作	本内動態	8
(1)	吸収	8
(2)	分布	9
(3)	生体内変換 1	1
(4)	排泄1	4
(5)	体内動態のまとめ1	6
2. 🛊	毒性1	6
(1)	遺伝毒性1	6
(2)	急性毒性1	9
(3)	短期反復投与毒性1	9
(4)	長期反復投与毒性2	1
(5)	発がん性	2
(6)	生殖発生毒性	2
(7)	その他	9
3. t	≤トにおける知見30	0
(1)	疫学研究3	0
(2)	その他	0
ш. — <u>в</u>	3 摂取量の推計等3	0
1. >	米国における摂取量3	0
2 1	か州における摂取量 3	1

3. 我が国における摂取量	31
(1)添加物(香料)としての使用に係る摂取量	31
(2)添加物以外としての使用に係る摂取量	32
(3)添加物(抽出溶媒)としての使用に係る摂取量	34
Ⅳ. 国際機関等における評価	35
1.JECFA における評価	35
(1)香料として	35
(2)抽出溶媒として	35
2. 欧州における評価	35
(1)香料として	35
(2)抽出溶媒及び担体溶剤として	35
3. 我が国における評価	37
V. 食品健康影響評価	37
別紙1:略称	39
別紙2:各種毒性試験成績	40
別紙3:香料構造クラス分類(イソプロパノール)	48
参照	49

<審議の経緯>

第1版(添加物の指定及び規格基準の設定に係る食品健康影響評価)

2003年12月15日 厚生労働大臣から添加物の指定及び規格基準の設定に係る

食品健康影響評価について要請(厚生労働省発食安第

1215002 号)、関係書類の接受

2003年12月18日 第24回食品安全委員会(要請事項説明)

 2004 年 3月24日
 第6回添加物専門調査会

2004年 4月 9日 第7回添加物専門調査会

2004年 9月 8日 第12回添加物専門調査会

2004 年 10 月 5 日 第 13 回添加物専門調査会

2004年10月21日 第66回食品安全委員会(報告)

2004年10月21日から2004年11月17日まで 国民からの御意見・情報の募集

2004年12月8日 添加物専門調査会座長より食品安全委員会委員長へ報告

2004年12月9日 第73回食品安全委員会(報告)

(同日付け厚生労働大臣に通知)

2005年 4月28日 食品衛生法施行規則の一部を改正する省令(平成 17 年厚

生労働省令第95号)及び食品、添加物等の規格基準の一部を改正する件(平成17年厚生労働省告示第233号)公

布

第2版関係(規格基準の改正に係る食品健康影響評価に伴う改訂)

2011年 4月26日 厚生労働大臣から添加物の規格基準の改正に係る食品健康

影響評価について要請(厚生労働省発食安0419 第9号)

2011年 4月28日 第380回食品安全委員会(要請事項説明)

2011年11月21日 関係書類の接受

2011 年 11 月 29 日 第 101 回添加物専門調査会 2011 年 12 月 16 日 第 102 回添加物専門調査会

2012 年 2月16日 第 419 回食品安全委員会(報告)

<食品安全委員会委員名簿>

(2006年6月30日まで) (2011年1月13日から)

寺田 雅昭 (委員長) 小泉 直子 (委員長)

寺尾 允男 (委員長代理) 熊谷 進 (委員長代理)

小泉 直子 長尾 拓

坂本 元子 野村 一正

中村 靖彦 畑江 敬子

本間 清一 廣瀬 雅雄

見上 彪 村田 容常

<食品安全委員会添加物専門調査会専門委員名簿>

(2005年9月30日まで) (2011年10月25日から)

 福島
 昭治
 (座長)
 今井田 克己 (座長)

 山添
 康
 (座長代理)
 梅村 隆志 (座長代理)

今井田 克己伊藤 清美江馬 眞江馬 眞大野 泰雄久保田 紀久枝

 大野 泰雄
 久保田 紀久枝

 西川 秋佳
 塚本 徹哉

 西川 秋佳
 塚本 徹成

 林 真
 頭金 正博

 三森 国敏
 中江 大

 三森 国敏
 三森 国敏

要約

香料及び抽出溶媒として使用される添加物「イソプロパノール」(CAS 登録番号: 67-63-0 (イソプロパノールとして)) について、各種試験成績等を用いて食品健康影響評価を実施した。

評価に供した試験成績は、イソプロパノールを被験物質とした遺伝毒性、反復投 与毒性、生殖発生毒性等に関するものである。

イソプロパノールはヒトの血中、尿中、唾液中及び呼気中において検出される、いわゆる生体内物質の一つである。経口摂取されたイソプロパノールのほとんどは消化管で比較的速やかに吸収され、様々な組織・器官に分布する。吸収されたイソプロパノールのほとんどは生体内で ADH によって酸化され、ヒトでの半減期は比較的短時間であるが、代謝物として生成するアセトンはイソプロパノールと比較して長く生体内に留まることが示されている。一方、イソプロパノールを基質としたときの ADH 活性の種差については、動物を用いた毒性試験成績の解釈に特段の影響を及ぼすような知見は得られていない。したがって、本専門調査会としては、代謝物アセトンによる影響について、イソプロパノールに係る毒性試験成績及びヒトにおける知見をもって包括的に評価を行うことは可能であると判断した。

本専門調査会としては、入手した遺伝毒性試験成績から、添加物「イソプロパノール」には生体にとって特段問題となるような遺伝毒性はないと評価した。

入手した長期反復投与毒性試験成績は経口投与による試験ではないので参考データであるが、本試験成績において雄ラットで見られたとされるライディヒ細胞腺腫の発生率の増加について、本専門調査会としては、対照群での発生頻度の異常低値によるものであり、本品目の添加物としての使用において安全性に懸念をもたらすものではないと判断した。

本専門調査会としては、入手した生殖発生毒性試験成績から、本品目に催奇形性はないと評価した。

本専門調査会としては、入手したヒトにおける知見から、本品目の安全性に懸念をもたらすような証拠は得られていないと判断した。

本専門調査会として、各試験成績における NOAEL のうち最小値であったラット二世代生殖発生毒性試験成績における NOAEL 100 mg/kg 体重/日と、今般の規格基準改正後の本品目の推定一日摂取量 $1.6\sim2.0$ mg/人/日とを比較して得られる安全マージン $(2,500\sim3,100)$ が適切な安全マージン 100 を上回ることを確認した。

以上より本専門調査会としては、添加物「イソプロパノール」について、添加物として適切に使用される場合、安全性に懸念がないと考えられ、ADIを特定する必要はないと評価した。

I. 評価対象品目の概要

1. 用途

香料及び抽出溶媒(参照1)

2. 主成分の名称

和名:イソプロパノール

英名: Isopropanol、2-Propanol、Propan-2-ol

CAS 登録番号: 67-63-0 (イソプロパノールとして)

(参照1、2、3、4、5)

3. 分子式及び構造式

 C_3H_8O

4. 分子量

60.10 (参照1、4、5)

5. 性状等

我が国において現在使用が認められている添加物(香料)「イソプロパノール」の成分規格において、含量として「本品は、イソプロパノール(C_3H_8O)99.7%以上を含む。」、性状として「本品は、無色透明な液体で、特有のにおいがある。」と規定されている。評価要請者による今般の成分規格改正案における含量及び性状の規定は、以上の現行規定から変更されていない。(参照 1 、4 、5)

6. 評価要請の経緯

評価要請者によれば、イソプロパノールは、果実、野菜、乳製品、酒類等といった食品中に天然に含まれている成分であるとされている。添加物「イソプロパノール」は香料及び食品製造加工における抽出溶媒(extraction solvent)として広く欧米諸国等で使用されている添加物であるとされている。(参照1)

JECFA⁽¹⁾の成分規格においては、添加物「イソプロパノール」の用途は「抽 出溶媒 (extraction solvent)、担体溶剤 (carrier solvent) 及び香料」である とされている。(参照3)

米国では、イソプロパノールについて、合成香料として必要最小限の量をGMPの下で使用することが認められている(21CFR§172.515)(参照1、6)。そのほか、スパイス、レモン油及びホップ類の製造・抽出に使用することが認められており、それぞれスパイスオレオレジン中 50ppm 以下、レモン油中6ppm 以下及びホップ類抽出物(ビール製造前又は製造中に麦汁に添加するものであって、その旨の表示がなされたものに限るとされている。)中2.0%以下

¹ 本文中で用いられた略称については、別紙1に名称等を示す。

といった残存基準が定められている(21CFR § 173.240)(参照 1 、7)。また、(i) アナトー抽出物、パプリカオレオレジン及びターメリックオレオレジン(21CFR § 73.30、§ 73.345 及び § 73.615)(上記スパイスオレオレジン中の残存基準が適用される。)並びにコーン胚乳油(残存基準 100ppm 以下)(21CFR § 73.315)といった製造バッチごとの検定証明書の取得が不要な色素添加物(参照 1 、8 、9 、1 0 、1 1)、(ii)総魚たん白濃縮物(残存基準 250ppm 以下)(21CFR § 172.385)といった特定食品・栄養添加物(参照 1 、1 2)、(iii)改変ホップ抽出物(残存基準 250ppm 以下)(21CFR § 172.560)といった香料関連物質(参照 1 、1 3)、(iv)ジェランガム及びキサンタンガム(残存基準 0.075%以下)(21CFR § 172.665 及び § 172.695)といったガム類・チューインガムベース類関連物質(参照 1 、1 4 、1 5)等の添加物の製造時の抽出溶媒として使用することが認められている。なお、評価要請者は、米国でイソプロパノールを担体溶剤として使用することを認めた法令は確認できないとしている(参照 1)。

EU では、イソプロパノールについて、香料として使用することが認められているほか、食品中の残存を 10~mg/kg 以下とする使用基準の下で抽出溶媒として使用することが認められている(参照 1、 1 6)。そのほか、イソプロパノールを担体溶剤として使用することは、域内のいくつかの国々において認められているとされている(参照 1 、 1 7)。しかし、EFSA05 においては、清涼飲料に加える香料の担体溶剤としてイソプロパノールを使用することを認めた場合にはイソプロパノールの推定一日摂取量が ADI を超過する可能性が指摘され(参照 1 8)、評価要請者は、EU としてそのような使用は認められていないとしている(参照 1)。

我が国では、添加物(香料)「イソプロパノール」について、2003 年 12 月に厚生労働省から食品安全委員会に、食品安全基本法(平成 15 年法律第 48 号)に基づく食品健康影響評価の依頼がなされ(参照 1 9)、2004 年 12 月、食品安全委員会は「食品の着香の目的で使用する場合、安全性に懸念はないと考えられる。」と食品健康影響評価を取りまとめている(参照 2 0、2 1、2 2、2 3、2 4、2 5)。それを受けて、2005 年 4 月、厚生労働省は添加物「イソプロパノール」を食品衛生法(昭和 22 年法律第 233 号)第 10 条の規定に基づく添加物として指定し、その使用基準を「着香の目的以外に使用してはならない。」と定め、「有機溶剤として使用する等の着香の目的以外の使用は認められないこと。」と指導している。(参照 1、2 6)

厚生労働省は、2002 年 7 月の薬事・食品衛生審議会食品衛生分科会での了承事項に従い、(i) JECFA で国際的に安全性評価が終了し、一定の範囲内で安全性が確認されており、かつ、(ii) 米国及び EU 諸国等で使用が広く認められていて国際的に必要性が高いと考えられる食品添加物については、企業等からの指定要請を待つことなく、主体的に指定に向けた検討を開始する方針を示している。今般、厚生労働省において、本品目の使用基準を現行の「イソプロパノールは、着香の目的以外に使用してはならない。」から「イソプロパノールは、着香の目的及び食品成分を抽出する目的以外に使用してはならない。食品成分の抽出にあっては 10 mg/kg (抽出物)を超えて残存しないように使用しなけれ

ばならない。」に改正すること、及び成分規格の一部を改正することについて添加物(香料及び抽出溶媒)「イソプロパノール」についての評価資料が取りまとめられたことから、食品安全基本法第 24 条第 1 項第 1 号の規定に基づき、食品安全委員会に対して、食品健康影響評価の依頼がなされたものである。(参照 1 、 2)

7. 規格基準の改正の概要

厚生労働省は、食品安全委員会の食品健康影響評価結果の通知を受けた後に、 添加物「イソプロパノール」について、規格基準の改正を行おうとするもので あるとしている。(参照1、2)

Ⅱ. 安全性に係る知見の概要

1. 体内動態

イソプロパノールは、健常人の体内で見出される物質であるとされている。 Ernstgård ら(2003)の報告によれば、スウェーデンにおいて、職業暴露がなく、48 時間以上飲酒を控えさせた $26\sim49$ 歳の 17 例(男性 8 例及び女性 9 例)の血中で最高 1.95 μ M(0.12 mg/L)、尿中で最高 2.5 μ M(0.15 mg/L)、唾液中で最高 24.6 μ M(1.48 mg/L)及び呼気中で最高 0.06 μ M(0.004 mg/L)のイソプロパノールを検出したとされている(参照 2.7)。

(1) 吸収

① ヒトにおける吸収

EHC103 における引用によれば、Bonte ら(1981)の報告において、ヒト 10 例にイソプロパノール(3.75 mg/kg 体重)及びエタノール(1,200 mg/kg 体重)をオレンジジュースとともに単回経口摂取させ、摂取後 2 時間の血中濃度を測定する試験が実施されている。その結果、イソプロパノールの最高血中濃度は 0.83 ± 0.34 mg/L であったとされている。(参照 2 8)

Monaghan ら(1995)の報告によれば、米国において、1 週間以上飲酒を控え、8 時間以上絶食させた $25{\sim}45$ 歳の健康な非喫煙男性 3 例に、70% イソプロパノール(0.6 mL/kg 体重;イソプロパノールとして 420 mg/kg 体重⁽²⁾)を 240 mL 水溶液として単回経口摂取させる試験が実施されている。その結果、血清中イソプロパノール濃度に係る $AUC_{0-\infty}$ は $106{\sim}119$ mg·hr·dL⁻¹ と算出されている。当該 3 例のうち 1 例の血清中イソプロパノール濃度は摂取後 30 分間以内に最高(約 700 mg/L)に達したとされている。(参照 2 9)

Blanchet ら(2007)の報告によれば、3 日間に局所消毒剤(1 本当たり 100~mL: イソプロパノール 40~g 及びプロパノール溶液 27~g 含有)を 1 回 2 本、計 2 回飲用し、急性中毒を発症した 38 歳女性症例(入院患者)1 例が紹介されている。2 回目の飲用の 8 時間後の血漿中イソプロパノール

² 「70%」については、報告では明示されていないが 70% (w/v) であると仮定して換算した。

及びアセトン濃度は370 mg/L及び2,270 mg/Lであったとされている。(参照30)

② 動物における吸収

EHC103 においても引用されている Lehman ら(1944)の報告によれば、イヌ(性別不詳)(各群 3 匹)にイソプロパノール(0.93、1.86、3.75 mL/kg 体重;730、1,460、2,940 mg/kg 体重)を単回強制経口投与(胃内挿管)する試験が実施されている。その結果、個体間のバラツキがきわめて大きいが、血中のイソプロパノールは、2,940 mg/kg 体重投与群の 1 匹で投与 2 時間後に約 3,000 mg/L に達し、同群の全動物で投与 24 時間後までにほぼ消失したとされている。(参照 2 8 、3 1)

EHC103 においても引用されている Nordmann ら(1973)の報告によれば、一夜絶食させた体重 $150\pm10\,\mathrm{g}$ の Wistar ラット(各群雌 $10\,\mathrm{E}$)にイソプロパノール(0、3,000 mg/kg 体重)(50%(w/v)水溶液として)を単回強制経口投与(胃内挿管)する試験が実施されている。その結果、投与群の血中イソプロパノール濃度は投与 8 時間後で最高($4,800\sim6,000$ mg/L)に達したとされている(参照 28、3 2)。EHC103 では、本報告と後述の井戸田(1985)の報告とを比較し、イソプロパノールの消化管吸収時間は高用量投与によって延長されると指摘されている(参照 28)。

EHC103 においても引用されている井戸田(1985)の報告によれば、18時間絶食させた 10 週齢の Wistar ラット(各群雄 5 匹)にイソプロパノール(200、400 mg/kg 体重)(20%(w/v)水溶液として)を単回経口投与し、投与 0、1、2 及び 3 時間後の血中イソプロパノール濃度を測定する試験が実施されている。その結果、血中イソプロパノール濃度は、いずれの投与群でも投与 1 時間後に最高(400 mg/kg 体重投与群で 18.83 mmol/kg(1,132 mg/kg))に達し、その後徐々に減少して投与 3 時間後に 400 mg/kg 体重投与群では 400 mg/kg(1,006 mg/kg)、200 mg/kg 体重投与群では 400 mg/kg 体重投与群での値の約 1/2 になったとされている。(参照 28、33)

(2)分布

① ヒトにおける分布

EHC103 においても引用されている Natowicz ら (1985) の報告によれば、アルコール依存症の既往歴がなく肝機能の正常なイソプロパノール急性中毒症例 1 例 (46 歳黒人女性) の血清中イソプロパノール濃度は脳脊髄液中濃度と一致していたとされている。 (参照 2 8 、3 4)

上述の Monaghan ら(1995)の報告によれば、米国において、1 週間以上飲酒を控え、8 時間以上絶食させた $25{\sim}45$ 歳の健康な非喫煙男性 3 例に、70%イソプロパノール(0.6 mL/kg 体重;イソプロパノールとして 420 mg/kg 体重)を 240 mL 水溶液として単回経口摂取させる試験が実施されている。その結果、血清中イソプロパノール濃度に係る分布容積(Vc)は $0.472{\sim}0.549$ L/kg 体重と算出されている。(参照 29)

Gaulier ら(2011)の報告によれば、パーティーにおいて何らかの物質を乱用し、その後頭痛、腹痛及び吐き気を訴え救急搬送され、パーティーから約 1.5 日後に死亡した 12 歳女性症例が紹介されている。剖検において尿、胃内容物、肝臓及び脳中イソプロパノール濃度は 8.3 mg/L、21.7 mg/L、52.6 mg/kg 及び 4.8 mg/kg、アセトン濃度は 631 mg/L、37.9 mg/L、13.2 mg/kg 及び 36.3 mg/kg であったとされている。(参照 3.5)

② 動物における分布

EHC103 においても引用されている Wax ら(1949)の報告によれば、ペントバルビタールナトリウム静注で麻酔したイヌの消化管をイソプロパノール(1.25 mL/kg 体重;980 mg/kg 体重)(10%含有生理食塩水溶液として)で 30 分間灌流する試験が実施されている。その結果、測定対象とした血液、脊髄液、肝臓、腎臓、脳及び骨格筋の全てにイソプロパノールが分布しており、血液及び脊髄液には同程度の濃度で分布していたとされている。(参照28、36)

EHC103 においても引用されている上述の井戸田 (1985) の報告によれば、18 時間絶食させた 10 週齢の Wistar ラット (各群雄 5 匹) にイソプロパノール (400 mg/kg 体重) (20% (w/v) 水溶液として)を単回経口投与し、投与 0、1、2 及び 3 時間後の血中並びに投与 3 時間後の肝臓、腎臓及び脳中イソプロパノール濃度を測定する試験が実施されている。その結果、投与 3 時間後の血中並びに肝臓、腎臓及び脳中イソプロパノール濃度は、いずれも 10 mmol/kg (600 mg/kg) をやや超える程度であり、組織・器官間で大差はなかったとされている。 (参照 2 8、3 3)

③ 血液脳関門通過性

EHC103においても引用されている Raichle ら (1976) の報告によれば、アカゲザル成獣の総頸動脈に [11 C]イソプロパノール (0.2 mL)、次いで [15 O]H $_2$ O を単回注入し、被験物質の血液脳関門通過性等を評価する試験が実施されている。その結果、50 mL/100 g 脳/min の脳血流において、[11 C]イソプロパノール注入量の 99%が血液脳関門を通過したとされている。(参照 2 8 、 3 7)

④ 胎盤、胎児、乳汁への移行性

FAS42 及び EHC103 においても引用されている Lehman ら(1945)の報告によれば、ラットにイソプロパノール(2.5%; 1,870 mL(1,470 mg)/kg 体重/日)を飲水投与する二世代試験において、離乳前(20 日齢)のF₁の肝臓、胃及び脳からイソプロパノールが検出されたことから、Lehman らは児動物が哺育期間中に乳汁を介してイソプロパノールに暴露されたことは明らかであるとしている。(参照 2.8、3.8、3.9)

Wood ら (2007) の報告によれば、米国において、刑務所を出所後 $1\sim2$ 日間飲酒及びその他何らかの物質の乱用(本人の事後申告によるとされている。)をした後に産科トリアージセンター待合室で体重 $2,340~\mathrm{g}$ の新生児

(女)を出産して卒倒した 35 歳女性 1 例が紹介されている。新生児血中からはイソプロパノールが検出され、それ以外のアルコールは検出されなかったとされている。新生児の血中イソプロパノール濃度は出生 1.5 時間後で 1,400 mg/L であったが、出生 10.5 時間後以降では検出下限値(20 mg/L)未満であったとされている。しかしながら、血中アセトン濃度は出生 1.5、10.5、24 及び 42.5 時間後で 160、180、100 及び 30 mg/L であったとされている。新生児血中での検出結果を受けて、母親の血中濃度を測定したところ、出産 4.5 時間後でイソプロパノールは検出下限値未満であったが、アセトンは 310 mg/L であったとされている。(参照 4.0)

(3) 生体内変換

① ヒトにおける生体内変換

EHC103では、イソプロパノールに暴露されたヒトの血中からアセトンを検出したとする複数の報告が引用されている。(参照28)

EHC103 における引用によれば、上述の Bonte ら(1981)の報告において、ヒト 10 例にイソプロパノール(3.75 mg/kg 体重)及びエタノール(1,200 mg/kg 体重)をオレンジジュースとともに単回経口摂取させ、摂取後 2 時間の血中濃度を測定する試験が実施されている。その結果、イソプロパノールの最高血中濃度は 0.83 ± 0.34 mg/L であったとされている。採取した血液試料についてアリルスルファターゼを添加してインキュベートしたところ、イソプロパノール濃度は摂取 1 時間後の血液試料で 2.27 ± 1.43 mg/L に増加したとされている。このことから、EHC103 ではイソプロパノールが血中で硫酸抱合体となっていると推定されている。(参照 2 8)

イソプロパノールについての試験ではないので参考データであるが、Frezza ら(1990)の報告によれば、アルコール依存症でない者 28 例(男性 11 例及び女性 17 例)にエタノールを経口摂取(300 mg/kg 体重)させたときの初回通過による代謝効果を男女で比較したところ、女性は男性よりも低く、男性の 23%であったとされている。また、同じ者の胃幽門洞粘膜の内視鏡下生検試料のサイトゾル画分中 ADH 活性を測定したところ、男性 $(0.046\pm0.005\ nmol/mg\ nmol/mg$

上述の Monaghan ら (1995) の報告によれば、米国において、1 週間以上飲酒を控え、8 時間以上絶食させた $25\sim45$ 歳の健康な非喫煙男性 3 例に、70%イソプロパノール (0.6 mL/kg 体重; イソプロパノールとして 420 mg/kg 体重) を 240 mL 水溶液として単回経口摂取させる試験が実施されている。その結果、血清中アセトン濃度に係る $AUC_{0-\infty}$ は $1,316\sim1,486$ mg・

hr·dL⁻¹と算出されている。(参照29)

木村ら (2009) の報告によれば、アルコール依存症患者 638 例 (男性 438 例及び女性 200 例) の ADH1B の遺伝子型を見る試験が実施されている。その結果、ADH1B の遺伝的多型に係る性差は認められなかったとされている。(参照 43)

上述の Agarwal & Goedde (1990) のレビューによれば、ヒト ADH の遺伝的多型について、東アジア系民族とヨーロッパ系白人との差の存在が指摘されている (参照 4 2)。また、イソプロパノールを基質とした試験ではないので参考データであるが、Dohmen ら (1996) の報告によれば、日本人及び白人系民族 (各 10 例) にエタノール (300 mg/kg 体重) (5%溶液として) を単回静脈内投与又は経口摂取させ、初回通過による代謝効果を比較したところ、日本人は白人系民族に対して明らかに低い値を示したとされている (参照 4 4)。

Lee ら(2011)の報告によれば、大腸菌を宿主として発現させ精製したヒトのクラス I ADH1A、1B1、1B2、1B3、1C1 若しくは 1C2、クラス II ADH2 又はクラスIV ADH4 とイソプロパノール又はエタノールとを 25℃、pH7.5 リン酸バッファー中で NAD+の存在下でインキュベートする *in vitro* 試験が実施されている。その結果、触媒効率を表す V_{max}/K_m は、エタノールを基質としたときを 100%とすると、イソプロパノールを基質としたときのクラス I ADH1A で 590%、1B1 で 2.3%、1B2 で 0.25%、1B3 で 0.99%、1C1 で 0.36%、及び 1C2 で 0.58%、クラス II ADH2 で 0.72%、並びにクラスIV ADH4 で 0.36%と、ADH1A を除き、イソプロパノールの酸化はエタノールよりも非効率であることが明らかにされている。(参照 4 5)

② 動物における生体内変換

EHC103 によれば、生体内でイソプロパノールが非特異的 ADH によってアセトンに変換されることがラット、イヌ及びウサギを用いた多くの試験成績で明らかにされている。(参照28)

EHC103 においても引用されている Kamil ら (1953) の報告によれば、体重約 3 kg のウサギにイソプロパノール (5 mL; 3,900 mg) を単回強制経口投与(胃内挿管)する試験が実施されている。その結果、投与後 24時間尿中から投与量の 10.2%のイソプロパノールがグルクロン酸抱合体として検出されたとされている。(参照 28、46)

EHC103 における引用によれば、Siebert ら(1972)の報告において、 ウサギにイソプロパノール(750、1,350 mg/kg 体重)を単回静脈内投与 したところ、投与量の $64\sim84\%$ のイソプロパノールがアセトンに酸化され たとされている。(参照 2 8) EHC103 においても引用されている Chen & Plapp(1980)の報告によれば、イソプロパノール、 $[U^{-2}H]$ イソプロパノール及びエタノールについて、ラットへの単回経口投与($in\ vivo$)又は精製ラットH ADH への添加($in\ vitro$)を行い、それらの酸化速度を比較する試験が実施されている。その結果、イソプロパノール、 $[U^{-2}H]$ イソプロパノール及びエタノールの酸化速度は、 $in\ vivo$ で 1.0:2.4:4.1、 $in\ vitro$ で 1.0:2.3:9.6 であったとされている。Chen & Plapp は、イソプロパノールと $[U^{-2}H]$ イソプロパノールと $[U^{-2}H]$ イソプロパノールとの酸化速度相対比が $in\ vivo$ 及び $in\ vitro$ でほぼ同じであったことから、ラット生体内でのイソプロパノール酸化速度はほぼ ADH のみによって決定されると結論している。(参照 2.8、4.7)

EHC103 における引用によれば、Cederbaum ら(1981)の報告において、イソプロパノールはラット肝ミクロソーム画分のオキシダーゼによっても酸化されるとされている(参照28)が、生体内においてイソプロパノールの大部分はADHによって酸化される。

EHC103 においても引用されている上述の井戸田 (1985) の報告によれ ば、18 時間絶食させた 10 週齢の Wistar ラット(各群雄 5 匹)に、ADH 阻害剤である 4-メチルピラゾール (0、300 mg/kg 体重) を単回経口投与 し、その 1 時間後にイソプロパノール(400 mg/kg 体重)(20%(w/v) 水溶液として)を単回経口投与し、投与0、1、2及び3時間後の血中並び に投与3時間後の肝臓、腎臓及び脳中イソプロパノール濃度を測定する試 験が実施されている。その結果、4-メチルピラゾール無処置投与群では、 血中イソプロパノール濃度は投与1時間後に最高(18.83 mmol/kg: 1.132 mg/kg) に達し、その後徐々に減少して投与 3 時間後に 16.74 mmol/kg (1,006 mg/kg) になったとされている。一方、4·メチルピラゾール処置 投与群では、血中イソプロパノール濃度は投与後3時間上昇し続け、投与 3時間後に $27.85 \, \text{mmol/kg} \, (1,674 \, \text{mg/kg})$ になったとされている。血中ア セトン濃度は投与3時後まで直線的に上昇し、4・メチルピラゾール無処置 投与群で 9.35 mmol/kg (562 mg/kg) に増加したのに対し、4-メチルピラ ゾール処置投与群ではその約 1/2 の 4.49 mmol/kg (267 mg/kg) への増加 にとどまったとされている。投与3時間後の血中並びに肝臓、腎臓及び脳 中イソプロパノール濃度は、いずれも4-メチルピラゾール処置投与群で無 処置投与群の約2倍に増加したとされている。一方、投与3時間後の血中 並びに肝臓、腎臓及び脳中アセトン濃度は4-メチルピラゾール処置投与群 で無処置投与群の約 1/2 に減少したとされている。以上より井戸田は、イ ソプロパノールの生体内変換に ADH が関与していることが認められたと している。また、別途イソプロパノール及びエタノールを同時投与する試 験が実施されており、イソプロパノールの生体内変換が抑制されたことか ら、井戸田は ADH のイソプロパノールに対する基質特異性はエタノール に対するそれに比べて低いとしている。(参照28、33)

③ 生体内変換の種差

EHC103 においても引用されている上述の井戸田 (1985) の報告によれば、ヒト男性事故死例又は 18 時間絶食させた 10 週齢の雄 Wistar ラット

若しくは 10 週齢の雄 ICR マウスから採取した肝臓のサイトゾル画分 $(60,000\,g$ 上清) とイソプロパノール又はエタノールとを pH9.6 で NAD+ の存在下でインキュベートし、1 分間当たりの NADH2 生成量で肝 ADH 活性を測定する *in vitro* 試験が実施されている。その結果、ヒト、ラット 及びマウスにおけるイソプロパノールを基質としたときの肝 ADH 活性は、エタノールを基質としたときの同活性を 100%とすると、それぞれ $9\sim10\%$ 、 $30\sim40\%$ 及び $30\sim45\%$ であったとされている(参照 2~8、3~3)。本専門 調査会としては、本試験はイソプロパノールを基質としたときの肝 ADH 活性を直接比較したものではないことから、本試験成績をもってイソプロパノールの生体内変換の種差について判断することはできないと考えた。

(4) 排泄

① ヒトにおける排泄

EHC103 においても引用されている Daniel ら(1981)の報告によれば、米国において、消毒用イソプロパノールを大型容器の 1/4 相当量飲んだ 38 歳白人男性(症例 1) 及び 0.5 パイント(約 240 mL)飲んだ 26 歳女性(症例 2)が、アルコール乱用歴のあるイソプロパノール急性中毒入院症例として紹介されている。症例 1 の血中イソプロパノール濃度は入院時からその 9 時間後までに 1,000 mg/L から 100 mg/L まで減少し、症例 1 及び症例 2 の血中イソプロパノール濃度の半減期は 155 分間(約 2.6 時間)及び187 分間(約 3.1 時間)と算出されている。症例 1 については入院後 7 時間、症例 2 については入院後 40 時間血中アセトン濃度が測定されたが、その消失速度は遅く、半減期を算出することができなかったとされている。なお、Daniel らは、両症例ともにアルコール乱用歴があるため、通常のヒトとはアルコール変換能が異なる可能性を指摘している。(参照 2 8、4 8)

EHC103 における引用によれば、上述の Bonte ら(1981)の報告において、ヒト 10 例にイソプロパノール(3.75 mg/kg 体重)及びエタノール(1,200 mg/kg 体重)をオレンジジュースとともに単回経口摂取させ、摂取後 2 時間の血中濃度を測定する試験が実施されている。その結果、イソプロパノールの投与後 2 時間尿中排泄率は投与量の 1.9%であったとされている。(参照 2 8)

EHC103 においても引用されている上述の Natowicz ら(1985)の報告によれば、米国において、アルコール依存症の既往歴がなく肝機能の正常なイソプロパノール急性中毒症例 1 例 (46 歳黒人女性) が紹介されている。入院時の血清中イソプロパノール濃度は 2,000 mg/L であり、時間経過とともに一次式で減少し、その半減期は 6.4 時間であったとされている。一方、入院時の血清中アセトン濃度は 120 mg/L であり、その半減期は 22.4 時間であったとされている。(参照 28、34)

Pappas ら(1991)の報告によれば、米国における $35\sim73$ 歳のイソプロパノール急性中毒症例 5 例(うち 2 例は同一人物が 2 回急性中毒を発症したもの)が紹介されている。血中イソプロパノール濃度は中毒発症から入院までに要した時間(0.5 時間~3 時間)により様々であったが最高で

 $165\sim2,200~mg/L$ であり、その半減期は $2.6\sim16.2$ 時間(平均 4.2 時間)であったとされている。血中アセトン濃度は最高で $1,250\sim5,850~mg/L$ であり、その半減期は呼吸補助処置なしで $18.8\sim26.2$ 時間、呼吸補助処置ありで $7.6\sim7.8$ 時間であったとされている。(参照 4.9)

上述の Monaghan ら (1995) の報告によれば、米国において、1 週間以上飲酒を控え、8 時間以上絶食させた $25\sim45$ 歳の健康な非喫煙男性 3 例に、70%イソプロパノール (0.6 mL/kg 体重; イソプロパノールとして 420 mg/kg 体重) を 240 mL 水溶液として単回経口摂取させる試験が実施されている。その結果、血清中イソプロパノール濃度に係る排泄速度定数は $0.715\sim0.746$ hr⁻¹ と算出されている。また、血清中アセトン濃度に係る排泄速度定数は $0.0365\sim0.0445$ hr⁻¹ と算出されている。(参照 29)

Zuba ら(2002)の報告によれば、ポーランドにおいて、急性中毒で入院した $16\sim75$ 歳のアルコール乱用症例 169 例(男性 147 例及び女性 22 例)が紹介されている。多くの症例で肝機能障害が認められた⁽³⁾が、うち 57 例について入院後 24 時間経時的に血中イソプロパノール濃度を測定したところ、最高で 75.6 mg/L であり、その半減期は 4.8 ± 2.4 時間と算出されている。(参照 5 0)

上述の Blanchet ら (2007) の報告によれば、3 日間に局所消毒剤 (1本当たり 100 mL: イソプロパノール 40 g 及びプロパノール溶液 27 g 含有) を 1 回 2 本、計 2 回飲用し、急性中毒を発症した 38 歳女性症例 (入院患者) 1 例が紹介されている。血漿中アセトン濃度は一次式で減少し、その半減期は 27 時間であったとされている。(参照 3 0)

② 動物における排泄

EHC103 においても引用されている上述の Lehman ら(1944)の報告によれば、イヌ(性別不詳)(各群 3 匹)にイソプロパノール(0.64、1.28、2.56、3.84 mL/kg 体重;500、1,000、2,000、3,000 mg/kg 体重)を単回静脈内投与する試験が実施されている。その結果、3.84 mL/kg 体重投与群で、投与 1、6 及び 7 時間後の尿中イソプロパノール濃度が 3,280、2,130 及び 2,390 mg/L であったのに対し、投与 3 時間後の吐瀉物中濃度が 3,110 mg/kg、唾液中濃度が最高で 3,560 mg/L であったことから、Lehman らはイソプロパノールが尿以外の経路(胃液及び唾液)からも排泄されることを指摘している。(参照 2 8、3 1)

EHC103 における引用によれば、Abshagen & Rietbrock (1969) の報告において、イヌにイソプロパノール (1,000 mg/kg 体重) を静脈内投与したときの血中濃度半減期は 4 時間であったとされている。(参照 2 8)

EHC103 における引用によれば、Rietbrock & Abshagen (1971) のレビューにおいて、ラットにイソプロパノール (500、1,500 mg/kg 体重)

_

³ 総ビリルビン高値、AST 高値、ALT 高値、 γ -GTP 異常及びアルブミン低値がそれぞれ全症例の 40.3%、62.1%、53.1%、63.2%及び 32.1%に認められたとされている。

を腹腔内投与したときの血中濃度半減期は 1.5 時間及び 2.5 時間であった とされている。また、ラット、イヌ及びウサギに投与されたイソプロパノ ール及びその代謝物アセトンは、主に肺(呼気)から排泄され、わずかに 尿中(投与量の 4%以下)にも排泄されるとされている。(参照 2 8)

EFSA05 においても引用されている Slauter ら (1994) の報告によれば、7~9 週齢の F344 ラット (各群雌雄各 4 匹) に $[2^{-14}C]$ イソプロパノールの単回強制経口投与 (300、3,000 mg/kg 体重) 又は 8 日間反復強制経口投与 (300 mg/kg 体重/日) を行う試験が実施されている。その結果、投与後72 時間の呼気(未変化体又はアセトンとして)、呼気(CO_2 として)、尿及び糞便中排泄率は、300 mg/kg 体重単回投与群の雄で投与量の 56.6%、24.6%、5.9%及び 0.7%、雌で 54.7%、27.4%、4.8%及び 0.6%、3,000 mg/kg体重単回投与群の雄で 68.2%、15.8%、8.3%及び 0.8%、雌で 70.9%、15.4%、6.8%及び 0.5%であったとされている。また、300 mg/kg 体重/日反復投与群の雄で 52.8%、28.6%、5.4%及び 0.9%、雌で 55.3%、27.3%、4.5%及び 1.0%であったとされている。 (参照 1 8、5 1)

(5)体内動態のまとめ

以上より本専門調査会としては、イソプロパノールの体内動態について以 下のように評価した。イソプロパノールはヒトの血中、尿中、唾液中及び呼 気中において検出される、いわゆる生体内物質の一つである。経口摂取された イソプロパノールのほとんどは消化管で比較的速やかに吸収され(吸収率に 性差は見られない。)、その血中濃度は30分~2時間程度で最高に達する。吸 収されたイソプロパノールは様々な組織・器官に分布し、胎盤及び乳汁への 移行性並びに血液脳関門通過性が認められる。吸収されたイソプロパノール のほとんどは生体内で ADH によって酸化され、アセトンを生成するととも に一部はグルクロン酸抱合や硫酸抱合を受ける。ヒトにおける初回通過によ るエタノールの代謝について性差の存在が報告されているが、イソプロパノ ールを基質としたときの性差を示唆する知見は得られなかった。また、5%濃 度のエタノールを経口投与したときの初回通過による代謝について民族差の 存在が報告され、ヒト ADH の遺伝的多型性についても民族差の存在が報告 されているが、ADH のイソプロパノール代謝活性を直接民族間で比較した 知見は得られなかった。イソプロパノールのヒトでの半減期は、 $2.6\sim6.4$ 時 間と比較的短時間であるが、代謝物として生成するアセトンの半減期は18.8 ~27 時間であり、イソプロパノールと比較して長時間にわたって生体内に留 まることが示されている。一方、イソプロパノールを基質としたときの ADH 活性の種差については、動物を用いた毒性試験成績の解釈に特段の影響を及 ぼすような知見は得られていない。したがって、代謝物アセトンによる影響 について、イソプロパノールに係る毒性試験成績及びヒトにおける知見をも って包括的に評価を行うことは可能であると判断した。

2. 毒性

(1)遺伝毒性

- ① DNA 損傷を指標とする試験
 - a. in vitro SCE 試験

EFSA05 及び SIDS97 においても引用されている von der Hude ら (1987) の報告によれば、イソプロパノール (純度 99.7%) についての V79 を用いた *in vitro* SCE 試験 (最高濃度 100.0 mM) が実施されてお り、代謝活性化系の有無にかかわらず陰性であったとされている。(参照 1.8、5.2、5.3)

b. SOS クロモ試験

EFSA05 においても引用されている von der Hude ら(1988)の報告によれば、イソプロパノールについての *Escherichia coli* PQ37 を用いた SOS クロモ試験(用量不詳)が実施されており、代謝活性化系の有無にかかわらず陰性であったとされている。(参照 1.8、5.4)

② 遺伝子突然変異を指標とする試験

a. 微生物を用いる復帰突然変異試験

FAS42、EFSA05 及び SIDS97 においても引用されている Florin ら (1980) の報告によれば、イソプロパノールについて、細菌 (Salmonella typhimurium TA98、TA100、TA1535 及び TA1537)を用いた復帰突然変異試験(3 μ mol/plate; 0.18 mg/plate)が実施されており、代謝活性化系の有無にかかわらず陰性であったとされている。(参照 18、38、52、55)

FAS42、EFSA05 及び SIDS97 においても引用されている Shimizu ら(1985)の報告によれば、イソプロパノールについての細菌(S. typhimurium TA98、TA100、TA1535、TA1537 及び TA1538 並びに E. coli WP2uvrA)を用いた復帰突然変異試験(最高用量 5 mg/plate)が実施されており、代謝活性化系の有無にかかわらず陰性であったとされている。(参照 1 8 、 3 8 、 5 2 、 5 6)

FAS42 及び SIDS97 においても引用されている Zeiger ら(1992)の報告によれば、イソプロパノールについての細菌(S. typhimurium TA97、TA98、TA100、TA1535 及び TA1537)を用いた復帰突然変異試験(最高用量 10 mg/plate)が実施されており、代謝活性化系(ラット及びハムスター肝臓由来)の有無にかかわらず陰性であったとされている。(参照 3 8 、5 2 、5 7)

JETOC(1997)の報告によれば、イソプロパノール(純度 99.5%)についての細菌(S. typhimurium TA98、TA100、TA1535 及び TA1537 並びに E. coli WP2uvrA)を用いた復帰突然変異試験(最高用量 5 mg/plate)が実施されており、代謝活性化系の有無にかかわらず陰性であったとされている。(参照 5 8)

b. ほ乳類培養細胞を用いる前進突然変異試験

FAS42、EFSA05 及び SIDS97 においても引用されている Kapp ら (1993) の報告によれば、イソプロパノールについての CHO-K1-BH $_4$ を用いた 6-TG 抵抗性を指標とする HGPRT 遺伝子座の前進突然変異試

験(最高濃度 5.0 mg/mL) が実施されており、代謝活性化系の有無にかかわらず陰性であったとされている。(参照 1.8 、 3.8 、 3.8 、 5.2 、 5.9)

c. ショウジョウバエを用いる遺伝子突然変異試験

Palermo & Mudry (2011) の報告によれば、ショウジョウバエにイソプロパノール (0、50、75%) を吸入暴露させる眼色スポット試験が実施されている。その結果、100 個眼当たりスポット数の対照群に対する増加に用量相関性は認められなかったとされている。

また、別途 7 日齢未交配ショウジョウバエ雄にイソプロパノール (0、75%)を吸入暴露させ、24 時間ごとに $4\sim6$ 日齢の未交配雌 (Basc) 5 匹との交配を 5 回連続で繰り返し、ブルード (同時産児群) $A\sim E$ を得る伴性劣性致死試験が実施されている。その結果、いずれのブルードにおいても対照群に比べて伴性劣性致死率の有意な増加は認められなかったとされている。 (参照 6 0)

③ 染色体異常を指標とする試験

a. in vivo 染色体異常試験

Barilyak & Kozachuk (1988) の報告によれば、雄ラットにイソプロパノール (0、 LD_{50} の 1/5 相当用量 (2,260~12,800 mg/kg 体重の範囲内であったとされている。)) を単回強制経口投与(胃内挿管)し、投与48 時間後にと殺し、大腿骨骨髄細胞を採取し、その染色体を観察する invivo 染色体異常試験が実施されている。その結果、構造異常の出現頻度は対照群で 0%であったのに対し投与群で $1.2\pm0.5\%$ 、数的異常の出現頻度は対照群で $0.5\pm0.3\%$ であったのに対し投与群で $1.0\pm0.4\%$ であったとされている。以上より Barilyak & Kozachuk は、本試験条件下でイソプロパノールに明らかな構造異常誘発性及び数的異常誘発性が見られたとしている。(参照 6 1)

b. げっ歯類を用いる *in vivo* 小核試験

EFSA05 及び SIDS97 においても引用されている Kapp ら(1993)の報告によれば、8~11 週齢の ICR マウス(各群雌雄各 15 匹)にイソプロパノール(最高用量 2,500 mg/kg 体重)を単回腹腔内投与し、投与 24時間後、48 時間後又は 72 時間後に各群雌雄各 5 匹ずつの骨髄細胞中のMNPCE の出現頻度を見る $in\ vivo$ 小核試験が実施されている。その結果、最高用量である 2,500 mg/kg 体重投与群で、投与後 72 時間以内に 6 匹が死亡し、生存した動物には体重減少が認められたが、いずれの投与群でも MNPCE の出現頻度に有意な増加は認められず、陰性であったとされている。(参照 18、52、59)

c. 染色体異常を指標とするその他の試験

EFSA05 及び SIDS97 における引用によれば、Griffiths ら(1980)の報告において、イソプロパノールについての Neurospora crassa を用いた染色体不分離を見る試験が実施されており、代謝活性化系非存在下で陰性であったとされている。(参照 1.8、5.2)

上述の Palermo & Mudry (2011) の報告によれば、 $0\sim2$ 時間齢、 $24\sim29$ 時間齢又は 4 日齢の未交配ショウジョウバエ雌にイソプロパノール (0、75%) を吸入暴露させ、24 時間ごとに 7 日齢の雄と、雌雄 10 対 15 の比率での交配を 5 回連続で繰り返し、ブルード $I\sim V$ を得る性染色体不分離誘発性試験が実施されている。その結果、初回の交配で得られたブルード I のみにおいて、 $24\sim29$ 時間齢暴露群で対照群の約 50 倍、4 日齢暴露群で対照群の約 6 倍の性染色体不分離の増加(p<0.00001) が認められたとされている。

別途、ブルード I の雌について、(i) ふ化 24 時間後にイソプロパノールを吸入暴露させて交配(吸入交配群)又は(ii) ふ化 $0\sim2$ 時間後にイソプロパノールを吸入暴露させて 22 時間後に交配(回復後交配群)を行い、それぞれの児を観察する試験が実施されている。その結果、児の染色体不分離率は、対照群で 0.036%であったのに対し、吸入交配群で 1.683% と有意に増加した(p<0.00001)が、回復後交配群では 0%であったとされている。(参照 60)

以上より本専門調査会としては、in vivo 染色体異常試験において被験物質の投与による染色体異常が見られたとされていることについては、用量等の詳細が報告されておらず、評価の対象とすることはできないと判断した。また、ショウジョウバエを用いた試験における染色体不分離については、生物学的に意義のない高濃度の一用量のみで実施された試験の結果であり、回復期をおくことにより見られなくなったとされている。そのほか、in vitro の試験において全て陰性であったこと、及びげっ歯類を用いる in vivo 小核試験において陰性であったことから、添加物「イソプロパノール」には生体にとって特段問題となるような遺伝毒性はないと評価した。

(2) 急性毒性

表1のとおり、イソプロパノールについてのラット、マウス、ウサギ及びイヌを用いた急性経口投与毒性に関する試験成績が報告されている。

12 1	JJHM/ MIC.	ノいての心に	工性口汉一带工机队队侧
動物種	LD ₅₀ (mg/kg 体重)	観察期間	参照(4)
ラット	5,280	3 日間	Lehman & Chase (1944) (28, 52, 62)
	5,840	14 日間	Smyth & Carpenter (1948) (28,52,63)
	4,710	7 日間	Kimura 5 (1971) (28, 52)
	5,500	14 日間	Guseinov 5 (1985) (28, 52)
マウス	4,475	14 日間	Guseinov 5 (1985) (28, 52)
ウサギ	5,030	3 日間	Lehman & Chase (1944) (28, 52, 62)
	7,990	1 日間	Munch (1972) (28, 52)
イヌ	4,830	3 日間	Lehman & Chase (1944) (28, 52, 62)

表 1 イソプロパノールについての急性経口投与毒性試験成績

(3) 短期反復投与毒性

① Lehman & Chase (1944) **のラット** 27 週間試験 EHC103 及び SIDS97 においても引用されている Lehman & Chase (1944) の報告によれば、ラット (各群雌雄各 5 匹) にイソプロパノール (雄 0、0.5、2.5、10.0%、雌 0、1.0、5.0%; 雄 0、600、2,300、9,200、

⁴ Lehman & Chase(1944)及び Smyth & Carpenter(1948)を除き、全て EHC103 及び SIDS97 における引用による。

雌 0、1,000、3,900 mg/kg 体重/日相当)を 27 週間飲水投与する試験が実 施されている。その結果、10.0%投与群(雄)で全動物が飲水忌避により 投与7~28日に死亡したほか、0.5%投与群(雄)で2/5匹、2.5%投与群(雄) で 3/5 匹が死亡したが、0.5%及び 2.5%投与群での死因を確認することは できなかったとされている。体重については、雌の 1.0%以上の投与群で試 験期間全般にわたり増加抑制が見られ、その投与終了時体重は対照群に比 べて 1.0%投与群で 12%、5.0%投与群で 10%低かったとされている。一方、 雄の 0.5%以上の投与群で投与開始後 13 週間わずかな増加抑制が見られた が、その後投与終了時までには回復が見られたとされている。摂水量につ いては、用量相関性の減少が見られたが、これについて Lehman & Chase は、忌避又は被験物質による抑制作用によるものであるとしている。その ほか、一般状態、摂餌量並びに剖検及び病理組織学的検査(脳、下垂体、 肺、心臓、脾臓、腎臓及び副腎についてのみ実施されている。)において被 験物質の投与に関連した有害影響は認められなかったとされている(参照 28、52、62)。SIDS97では本試験における NOEL が雄で 600 mg/kg 体重/日、雌で 1,000 mg/kg 体重/日であるとされている(参照 5 2)。本専 門調査会としては、本試験における供試動物数が少ないこと等から、本試 験における NOAEL の評価を行わなかった。

② Pilegaard & Ladefoged(1993)のラット 12 週間試験

FAS42、EFSA05 及び SIDS97 においても引用されている Pilegaard & Ladefoged (1993) の報告によれば、3 か月齢の Wistar ラット (各群雄 22 匹) にイソプロパノール $(0, 1, 2, 3, 5\% (w/v)^{(5)}; 0, 870, 1,280,$ 1,680、2,520 mg/kg 体重/日)を 12 週間飲水投与し、投与 90 日にと殺す る試験が実施されている。その結果、5%投与群の1匹が投与開始後1週間 以内に脱水のために死亡したとされている。一般状態については、5%投与 群の動物が取扱いの際に過敏反応を示したほか異常は認められなかったと されている。体重については、3%以上の投与群で低値が、1%投与群では 高値が認められたとされている。摂水量については、2%投与群で投与初期 に、3%以上の投与群で試験期間全般にわたり低値が認められたとされてい る。器官重量については、投与群で肝臓、精巣、腎臓及び副腎の相対重量 が用量依存的に増加し、そのうち肝臓及び腎臓については 2%以上の投与 群で、副腎については3%以上の投与群で統計学的に有意な増加が認めら れたとされている。病理組織学的検査(肝臓、心臓、脾臓、精巣、腎臓及 び副腎についてのみ実施されている。) においては、腎近位尿細管における 硝子円柱形成及び硝子滴の用量相関性の増加及び増強が認められたほか、 異常は認められなかったとされている。Pilegaard & Ladefoged は、肝臓 及び腎臓の相対重量の増加は被験物質又はその代謝物アセトンの酵素誘導 によるものであり、腎近位尿細管における硝子円柱形成及び硝子滴の増加 及び増強は雄ラットに特有の α2ω-グロブリン腎症によるものであると推定 している。Pilegaard & Ladefoged は、腎臓の相対重量増加に係る用量反 応関係を外挿して NOEL を求めた場合、それはおよそ 1%以下になると結

-

⁵ 5%投与群では、投与第 1 週に摂水量が減少したため投与第 2 週に 4%飲水投与に減らし、投与第 3 週以降に再び 5%飲水投与に戻したとされている。

論している(参照 1.8、3.8、5.2、6.4)。SIDS97では、本試験における NOEL は 1% (870 mg/kg 体重/日)であるとされている(参照 5.2)。本専門調査会としては、本試験が単性で行われていること、絶対重量が示されていないこと、病理組織学的検査が限定的であること等から、本試験における NOAEL の評価を行わなかった。

(4)長期反復投与毒性

① Burleigh-Flayer ら(1997)のラット 104 週間吸入毒性試験(参考) 経口投与による試験ではないので参考データであるが、Burleigh-Flayer ら(1997)の報告によれば、約7週齢のF344 ラット(各群雌雄各75匹) にイソプロパノール (純度 99.9%) (0,500,2,500,5,000ppm⁽⁶⁾) を 1 日 6 時間、週 5 日吸入暴露させ、各群雌雄各 10 匹(中間と殺群) につい ては72週間吸入暴露後にと殺し、残り各群雌雄各65匹(最終と殺群)に ついては104週間以上吸入暴露後にと殺する試験が実施されている。その 結果、5,000ppm 暴露群の雄で暴露 100 週までに全動物が死亡し、生存期 間の減少が認められたとされている。一般状態については、2,500ppm 暴 露群の雌で尿着染、5,000ppm 暴露群の雄で衰弱、脱水及び尿着染、雌で 眼の周囲の腫脹が認められたとされている。体重については、2,500ppm 以上の暴露群で増加が見られたとされている。これについて Burleigh-Flayer らは原因不明であるとしている。尿検査においては、 5,000ppm 暴露群の雌で尿量及び総たん白の高値並びに糖及び浸透圧の低 値が認められたとされている。器官重量については、2,500ppm 暴露群の 雄及び 5,000ppm 暴露群の雌で肝臓の絶対又は相対重量の増加が認められ たとされている。剖検においては、2,500ppm 暴露群の雄で表面粗造を伴 う腎臓の発生率の高値が認められたとされている。病理組織学的検査にお いては、2,500ppm以上の暴露群の雄で腎病変(⁷⁾の程度の増強が認められ、 2,500ppm 以上の暴露群の雌でも同様に腎病変®の程度の増強が認められ たとされている。以上より Burleigh-Flaver らは、本試験における NOEL を 500ppm としている。(参照 6 5)

② Burleigh-Flayer ら (1997) のマウス 78 週間吸入毒性試験(参考) 経口投与による試験ではないので参考データであるが、上述の Burleigh-Flayer ら (1997) の報告によれば、約 7 週齢の CD-1 マウス (各群雌雄各 75 匹) にイソプロパノール (純度 99.9%) (0、500、2,500、5,000ppm) を 1 日 6 時間、週 5 日吸入暴露させ、各群雌雄各 10 匹 (中間と殺群) については 54 週間吸入暴露後にと殺し、別の各群雌雄各 10 匹 (中間と殺回復群) については 54 週間吸入暴露後に回復期間を経て 78 週にと殺し、残り各群雌雄各 55 匹 (最終と殺群) については 78 週間以上吸入暴露後にと殺する試験が実施されている。その結果、一般状態については、5,000ppm 暴露群で運動失調が翌朝まで認められたとされている。体重に

⁶ Burleigh-Flayer は、9 日間吸入投与した予備試験において 10,000ppm で死亡動物が認められ、亜急性吸入毒性試験において 5,000ppm で毒性が認められたことから本試験における名目上の最高用量を 5,000ppm としたと説明している。なお実際の投与量は 0、504、2,509、5,037ppm であったとされている。

⁷ 鉱質沈着、尿細管拡張、糸球体硬化症、間質性腎症、間細胞線維化、水腎症及び移行上皮過形成であったとされている。

⁸ 腎尿細管たん白症、糸球体硬化症、間質性腎症及び間細胞線維化であったとされている。

ついては、暴露群で用量相関性の高値及び増加亢進が見られたとされている。これについて Burleigh-Flayer らは原因不明であるとしている。器官重量については、5,000ppm 暴露群の雌で肝臓の絶対・相対重量の用量相関性の増加及び脳の絶対・相対重量の低下が認められたとされている。剖検においては、5,000ppm 暴露群の雄で精嚢肥大の発生率の高値が認められたとされている。病理組織学的検査においては、5,000ppm 暴露群の雄で精嚢の拡張が認められたとされている。Burleigh-Flayer らは、本試験における NOEL を 500ppm としている。(参照 6 5)

(5) 発がん性

経口投与による試験ではないので参考データであるが、上述のBurleigh-Flayerら(1997)の報告における吸入毒性試験成績において、マウスについては被験物質の暴露に関連した腫瘍の発生率の増加は認められていない。一方、ラットについては雄で被験物質の暴露に関連したライディヒ細胞腺腫の発生率の増加が見られたとされているが、対照群での発生頻度の異常低値によるものではないかと考察されている。(参照65)

IARC モノグラフ (1999) では、Burleigh-Flayer ら (1997) のラット 104 週間吸入毒性試験で見られたライディヒ細胞腺腫の発生率の用量相関性の増加も勘案された上で、イソプロパノールは「Isopropanol is *not classifiable as to its carcinogenicity to humans (Group 3)*.: ヒトに対する発がん性について分類できない(グループ 3)。」とされている。(参照 6 6)

(6) 生殖発生毒性

Lehman ら (1945) のラット二世代試験

FAS42 及び EHC103 においても引用されている上述の Lehman ら (1945) の報告によれば、38~40 日齢のラット(雄3匹、雌6匹)にイ ソプロパノール $(2.5\%^{(9)}; 1,870 \text{ mL} (1,470 \text{ mg}) / \text{kg 体重/日相当}) を飲$ 水投与し、120 日齢で交配し、4 腹から得られた児動物 (F_1) 44 匹に同様 の投与(2.5%; 1,760 mL (1,380 mg)/kg体重/日相当)及び交配を行い、 11 腹から得られた児動物 (F₂) 66 匹を 2 群 (各群雌雄各 10 匹) に選抜・ 調整し、各群雌雄各 5 匹に同様の投与(2.5%; 1,640 mL(1,290 mg)/kg 体重/日相当)を行い、残る各群雌雄各5匹にイソプロパノールを水に替え て与える試験が実施されている。その結果、体重については、F₁で投与初 期に増加抑制が見られたが、投与 13 週までにほぼ回復したことが認めら れたとされている。F2のうちイソプロパノールを引き続き投与した群と水 を与えた群との間で有意な差は認められなかったとされている。離乳前 (20 日齢) の F_1 5 匹の肝臓、胃及び脳からイソプロパノールが検出され たことから、Lehman らは児動物が哺育期間中に乳汁を介してイソプロパ ノールに暴露されたことは明らかであるとし、本試験条件下で被験物質の 投与による生殖発生への有害影響は認められなかったと推定している。(参 照28、38、39)

_

⁹ Lehman らは、2.5%超の用量で予備試験を実施したところ脱水症状を起こし死亡する動物が散見されたとしている。

② Antonova & Salmina(1978)のラット生殖発生毒性試験

FAS42 及び EHC103 においても引用されている Antonova & Salmina (1978) の報告によれば、ラット (対照群雄 28 匹、雌 29 匹、各投与群雄 $10\sim14$ 匹、雌 $10\sim12$ 匹)に、イソプロパノール(0、0.018、0.18、1.8、 18.0 mg/kg 体重/日) を 6 か月間飲水投与した後、対照群雌雄同士、対照 群雄と各投与群雌、対照群雌と各投与群雄及び各投与群雌雄同士を交配し、 得られた児動物の観察を行う試験が実施されている。その結果、0.18 mg/kg 体重/日以上の投与群の雌で個々の動物の発情周期にわずかなシフ トが見られたが、シフトの方向は一定しておらず、各群での平均に有意差 は認められなかったとされている。また、投与群の雄で精子運動が活発な 時間の減少傾向が見られたが有意差は認められなかったとされている。投 与群の雌で妊娠率の低値傾向が見られたが有意差は認められていない。 18.0 mg/kg 体重/日投与群雌雄同士の交配において、一腹当たり出生児動 物数の増加及び出生児動物平均体重の低下が認められたとされている。出 生時児動物死亡率については、対照群雄と各投与群雌の交配において 0.18 及び 1.8 mg/kg 体重/日投与群で、対照群雌と各投与群雄の交配において 18.0 mg/kg 体重/日投与群で、各投与群雌雄同士の交配において 1.8 mg/kg 体重/日以上の投与群で有意な増加が認められたとされている。 児動物の体 重増加については、18.0 mg/kg 体重/日投与群で一時的な抑制が認められ たとされている。児動物の耳介開展、切歯萌出、毛生及び開眼の時期につ いては、対照群と投与群との間で差がなかったとされている。児動物の無 条件防御反応(電流刺激に対する反応時間)については、各投与群雌雄同 士の交配産児の 0.18 mg/kg 体重/日以上の投与群の雄及び 1.8 mg/kg 体重/ 日以上の投与群の雌で用量相関性のある遅延が認められたとされている。

一方、別途妊娠ラット(対照群雌 6 匹、投与群雌 5 匹)にイソプロパノール(0、1,800 mg/kg 体重/日)を妊娠前の 3 か月間飲水投与し、妊娠 21 日に帝王切開する試験が実施されている。その結果、胎児死亡率のわずかな高値が投与群で認められたとされている。これについて Antonova & Salmina は、イソプロパノールの一般毒性による雌動物の脆弱化に起因するものであると推定している。そのほか、妊娠率、一腹当たり胎児数、黄体数、着床前胚死亡率及び着床後胎児死亡率並びに胎児体重に変化は認められなかったとされている。

また、別途妊娠ラット(各群雌 $10\sim13$ 匹)にイソプロパノール(0、252、1,008 mg/kg 体重/日)を妊娠 $1\sim20$ 日にかけて飲水投与し、妊娠 21 日に帝王切開する試験が実施されている。なお、母動物への影響に係るデータは報告されていない。その結果、生存胎児数の低値が 252 mg/kg 体重/日以上の投与群で、着床前胚死亡率及び胎児死亡率の高値が 1,008 mg/kg 体重/日投与群で認められたとされている。対照群の胎児 90 匹及び 1,008 mg/kg 体重/日投与群の胎児 70 匹について剖検を行ったところ、1,008 mg/kg/体重/日投与群で脳、腎臓及び消化管に異常が散見されたが、対照群では異常は認められなかったとされている。(参照 28、38、67)

本専門調査会としては、本試験成績の報告については記載不十分である

ことから、本試験における NOAEL の評価を行わなかった。

③ BIBRA (1987) のラット発生毒性試験

SIDS97 及び Faber ら (2008) のレビューにおける引用によれば、BIBRA (1987) の報告 (No.570/2/86) (未公表) において、妊娠 Wistar ラット (各群雌 20 匹) にイソプロパノール (純度 99.89%) (0、0.5、1.25、2.5%; 0、596、1,242、1,605 mg/kg 体重/日) を妊娠 $6\sim16$ 日にかけて飲水投与する発生毒性試験が実施されている。

その結果、母動物への影響としては、死亡、流産及び早産は認められなかったとされている。体重については、2.5%投与群で投与期間中に増加抑制が認められたが、投与が終了した妊娠 17~20 日には増加亢進が認められたとされている。1.25%以上の投与群で摂餌量及び摂水量の低値が認められたとされている。剖検において異常は認められなかったとされている。

発生への影響としては、着床後胚/胎児死亡率、平均着床数及び生存胎児数に被験物質の投与に関連した影響は認められなかったとされている。平均一腹重量の用量相関性のある減少及び平均胎児体重の減少が 1.25%以上の投与群で認められたとされている。胎児の外表及び内臓検査において異常は認められなかったとされている。骨格検査においては、1.25%以上の投与群で骨化遅延が認められたとされている(参照 5 2 、6 8)。

SIDS97では、本試験における母体毒性及び発生毒性に係る NOEL はいずれも 0.5%であるとされている(参照 5.2)。

④ BIBRA (1988) のラットー世代生殖発生毒性試験

SIDS97 及び Faber ら (2008) のレビューにおける引用によれば、BIBRA (1988) の報告 (No.570/3/86) (未公表) において、Wistar ラット (各群雄 10 匹、雌 30 匹) に、イソプロパノール (純度 99.89%) (0、0.5、1.0、2.0%; 雄 0、347、625、1,030 mg/kg 体重/日、雌 0、456、835、1,206 mg/kg 体重/日(10)) を、雄で 70 日間、雌で 21 日間飲水投与した後、各群雌雄 3:1の交配を最長 15 日間行い、雄については交配期間中及びその後も投与を継続して投与 126 日にと殺し、雌については交配及び妊娠期間中投与を継続して妊娠 19 日に各群 10 匹を帝王切開し、残りの各群 20 匹については自然分娩させ哺育期間中も投与を継続する一世代生殖発生毒性試験が実施されている。

その結果、親動物への影響としては、死亡、流産及び早産は認められなかったとされている。体重については、2.0%投与群の雄で試験期間を通じ、0.5%以上の投与群の雌で交配前、2.0%投与群の雌で試験期間を通じ低値が認められたとされている。摂水量については、1.0%以上の投与群の雄及び2.0%投与群の雌で低値が認められたとされている。摂餌量については、0.5%以上の投与群の雄及び2.0%投与群の雌で低値が認められたとされている。血液学的検査においては、赤血球数が1.0%以上の投与群の雌及び2.0%投与群の雄で用量相関性をもってわずかに減少したが、MCVは1.0%以上の投与群の雄で増加し、血色素及びヘマトクリットに被験物質の投与

_

 $^{^{10}}$ 雄は交配前で 0 、 383 、 686 、 1 , 107 mg/kg 体重/日、交配 3 日前から投与 126 日までで 0 、 347 、 625 、 1 , 030 mg/kg 体重/日、雌は交配前で 0 、 456 、 835 、 1 , 206 mg/kg 体重/日、妊娠期間中で 0 、 668 、 1 , 330 、 1 , 902 mg/kg 体重/日、出産後で 0 、 1 , 053 、 1 , 948 、 2 , 768 mg/kg 体重/日投与されたとされており、これらのうち最も低い用量を記載した。

に関連した影響は認められなかったとされている。器官重量については、2.0%投与群の雄で腎臓の絶対・相対重量、肝臓の相対重量及び脾臓の相対重量の増加、2.0%投与群の雌で肝臓の絶対・相対重量、腎臓の絶対重量及び性腺の相対重量の増加が認められたとされている。剖検においては、雌で異常は認められず、生殖器官の病理組織学的検査においては、雌雄ともに被験物質の投与に関連した変化は認められなかったとされている。

生殖への影響としては、雄の生殖能並びに雌の妊娠率及び妊娠期間に被験物質の投与に関連した影響は認められなかったとされている。生後1日生存児動物数が2.0%投与群で低値傾向であったとされている。着床前胚死亡率の増加並びに母体当たりの総胎児重量及び胎児体重の減少傾向が2.0%投与群で認められたとされている。

発生への影響としては、胎児の剖検において、全身浮腫が 2.0%投与群の 3/8 腹の胎児の 40%に認められたとされている。生後 1 日生存率並びに生後 7 及び 21 日児動物体重の減少が 2.0%投与群で認められたとされている。児動物の器官重量については、0.5%以上の投与群の雌雄で肝臓の相対重量、2.0%投与群の雄で性腺の相対重量の増加が認められ、2.0%投与群の雌雄で脳の絶対重量の減少が認められたとされている。児動物の剖検において、被験物質の投与に関連した異常は認められなかったとされている(参照 5 2、68)。

SIDS97では、本試験における親動物への毒性及び生殖発生毒性に係る NOELはいずれも1%であるとされている(参照52)。

⑤ Tyl ら(1994)のラット発生毒性試験

FAS42、EFSA05 及び SIDS97 においても引用されている Tyl ら (1994) の報告によれば、10 週齢(妊娠 0 日時点)の妊娠 SD ラット(各群雌 25 匹)にイソプロパノール(純度 99.95%)(0、400、800、1,200 mg/kg 体重/日)を妊娠 $6\sim15$ 日にかけて強制経口投与(胃内挿管)し、妊娠 20 日に帝王切開する発生毒性試験が実施されている。

その結果、母動物への影響としては、800 mg/kg 体重/日投与群で 1/25 匹 (妊娠 16 日)、1,200 mg/kg 体重/日投与群で 2/25 匹 (妊娠 16 及び 18 日)が死亡したとされている。これらについて Tyl らは、いずれも投与終了後に認められたことから被験物質の投与に関連したものであると考察している。妊娠率は各群で 92.0~100.0%とほぼ同様に高く、流産及び早産は認められなかったとされている。体重については、1,200 mg/kg 体重/日投与群で妊娠期間中 (妊娠 0~20 日)に増加抑制が認められたが、妊娠子宮重量を差し引いた補正後体重の増加に統計学的有意差は認められず、当該投与群の平均妊娠子宮重量が有意に減少していたことから、Tyl らは当該投与群の胎児体重の増加抑制がその一因であると推定している。そのほか、母動物の一般状態、摂餌量、器官重量 (肝臓のみ)及び剖検において被験物質の投与に関連した変化は認められなかったとされている。

発生への影響としては、全母体のそれぞれに1匹以上の生存胎児が見られ、母動物当たり黄体数、吸収・死亡胎児数、生存胎児数、着床前胚死亡率及び着床後胎児死亡率に各群間で変化は認められなかったとされている。800 mg/kg 体重/日投与群で雄胎児数比の増加が見られたが、用量相関性はなく、生物学的変動によるものと推定されている。800 mg/kg 体重/日以上

の投与群で平均胎児体重の有意な低値が認められ、対照群と比較して 800 mg/kg 体重/日投与群の雄で 94.7%及び雌で 94.3% (p<0.05)、1,200 mg/kg 体重/日投与群の雄で 91.9%及び雌で 92.0% (p<0.01) であったとされている。胎児の外表、内臓及び骨格の異常及び変異の発生率に被験物質の投与に関連した変化は認められなかったとされている。

以上より Tyl らは、本試験条件下においてイソプロパノールに催奇形性は認められず、本試験における母体毒性及び発生毒性に係る NOAEL はともに 400 mg/kg 体重/日であると結論している(参照 18、38、52、69)。 SIDS97 では、本試験における母体毒性及び発生毒性に係る NOEL はいずれも 400 mg/kg 体重/日であるとされている(参照 52)。

本専門調査会としては、Tyl らの結論を妥当と判断し、本試験における 母体毒性及び発生毒性に係る NOAEL を 400 mg/kg 体重/日と評価した。

⑥ Tyl ら(1994)のウサギ発生毒性試験

FAS42、EFSA05 及び SIDS97 においても引用されている Tyl ら (1994) の報告によれば、約5.5 か月齢(妊娠0 日時点)の妊娠ニュージーランドホワイトウサギ(各群雌15 匹)にイソプロパノール(純度99.95%)(0、 $120、240、480 mg/kg 体重/日)を妊娠<math>6\sim18$ 日にかけて強制経口投与(胃内挿管)し、妊娠30 日に帝王切開する発生毒性試験が実施されている。

その結果、母動物への影響としては、480 mg/kg 体重/日投与群で 4/15 匹が死亡し、又は切迫殺されている(11)。これについて Tyl らは、いずれも 投与期間中又は投与終了後に認められたことから被験物質の投与に関連し たものであると考察している。妊娠率は各群で 86.7~100.0%とほぼ同様 に高く、流産及び早産は認められなかったとされている。一般状態につい ては、480 mg/kg 体重/日投与群で被験物質の投与に関連した変化(耳介の 紅潮又は温熱(末梢血管拡張によるものであり、ほ乳類成獣に見られるア ルコール中毒症状を示唆するものであったとされている。)、チアノーゼ、 昏睡、呼吸困難及び下痢)が認められたとされている。また、120及び480 mg/kg 体重/日投与群で各 2/15 匹に鼻の周囲の濡れ、240 mg/kg 体重/日投 与群で 1/15 匹(妊娠 13 及び 14 日)に耳介の末梢毛細血管の破裂、480 mg/kg 体重/日投与群で 1/15 匹に口の周りの濡れが観察されている。これ らのうち 240 mg/kg 体重/日以下の投与群で見られた症状について Tyl ら は、一過性で比較的軽微なものであり、非特異的なストレス関連指標に係 るものであることから、被験物質の投与との関連性は不明であるとしてい る。体重については、480 mg/kg 体重/日投与群で被験物質の投与開始から と殺に至るまで低値傾向が見られ、特に投与期間(妊娠6~18日)中には 摂餌量の減少を伴う有意な増加抑制 (対照群の 45.4%) (p<0.05) が認め られたとされている。妊娠子宮重量を差し引いた補正後体重の増加につい ても 480 mg/kg 体重/日投与群で抑制傾向が見られたが、個体ごとのバラ ツキが大きく統計学的有意差は認められなかったとされている。そのほか、 母動物の肝臓及び子宮重量並びに剖検において被験物質の投与に関連した 変化は認められなかったとされている。

発生への影響としては、全母体のそれぞれに1匹以上の生存胎児が見ら

-

¹¹ 妊娠 11 日に 1 匹死亡、12 日に 1 匹切迫殺及び 19 日に 2 匹死亡とされている。

れ、母動物当たり黄体数、吸収・死亡胎児数、生存胎児数、着床前胚死亡率、着床後胎児死亡率、児数及び性比に各群間で変化は認められなかったとされている。480 mg/kg 体重/日投与群で胎児体重のわずかな低値傾向が見られたが、有意差は認められなかったとされている。胎児の外表、内臓及び骨格の異常及び変異の発生率に被験物質の投与に関連した変化は認められなかったとされている。

以上より Tyl らは、本試験条件下においてイソプロパノールに催奇形性は認められず、本試験における母体毒性に係る NOAEL は 240 mg/kg 体重/日、発生毒性に係る NOAEL は 480 mg/kg 体重/日であると結論している(参照 1.8、3.8、5.2、5.20。

SIDS97 では、本試験における母体毒性に係る NOEL は 240 mg/kg 体 重/日、発生毒性に係る NOEL は 480 mg/kg 体重/日であるとされている(参 照 5 2)。

本専門調査会としては、Tyl らの結論を妥当と判断し、本試験における 母体毒性に係る NOAEL を 240 mg/kg 体重/日、発生毒性に係る NOAEL を本試験における最高用量である 480 mg/kg 体重/日と評価した。

⑦ Bates ら(1994)のラット神経発生毒性試験

EFSA05 及び SIDS97 においても引用されている Bates ら (1994) の報告によれば、約9週齢(妊娠0日時点)の妊娠SD ラット(各群雌31~35匹)にイソプロパノール(純度99.95%)(0、200、700、1,200 mg/kg体重/日)を妊娠6日から分娩後21日まで強制経口投与(胃内挿管)し、母動物については分娩後22日にと殺し、得られた児動物については生後4日に母体当たり雌雄各4匹に調整し、(i)自発運動検査、(ii)音響驚愕反応検査、(iii)能動的回避試験(学習記憶検査)又は(iv)脳重量測定・神経病理組織学的検査(生後22日)を行う試験が実施されている。

その結果、母動物への影響としては、1,200 mg/kg 体重/日投与群で1匹が分娩後 15 日に死亡したとされている。一般状態、体重、摂餌量及び器官(肝臓及び腎臓)重量に被験物質の投与に関連した変化は認められなかったとされている。

発生への影響としては、全母動物から生存児動物が得られ、児の性比に 異常はなかったとされている。妊娠期間、着床数並びに児動物の出生率、 4日生存率、4~21日死亡率、一般状態、体重、膣開口日及び精巣下降日 に被験物質の投与に関連した変化は認められなかったとされている。また、 児動物の脳の重量並びに生後22及び68日における病理組織学的検査にお いて被験物質の投与に関連した所見は認められなかったとされている。

神経発生への影響としては、自発運動検査において、自発運動量が投与期間中の生後13~21日よりも生後47日に上回って観察期間中最大となったが、生後58日には通常見られるレベルまで低下したことから、Batesらは、被験物質の投与に関連した影響ではなかったとしている。音響驚愕反応検査(最大振幅及び潜時)及び能動的回避試験(回避率、移動適応期間、トライアル間移動、逃避及び回避・逃避時間)においても被験物質の投与に関連した変化は認められなかったとされている。

以上より Bates らは、1,200 mg/kg 体重/日投与群での死亡を踏まえ、本 試験における母体毒性に係る NOEL は 700 mg/kg 体重/日、神経発生毒性 に係る NOEL は 1,200 mg/kg 体重/日超であるとしている(参照 1.8、 5.2、 7.0)。

SIDS97 では、本試験における母体毒性に係る NOEL は 700 mg/kg 体 重/日、神経発生毒性に係る NOEL は 1,200 mg/kg 体重/日であるとされている(参照 5 2)。

本専門調査会としては、本試験における母体毒性に係る NOAEL を 700 mg/kg 体重/日、神経発生毒性に係る NOAEL を本試験における最高用量である 1,200 mg/kg 体重/日と評価した。

8 Bevan ら (1995) のラット二世代生殖発生毒性試験

EFSA05 及び SIDS97 においても引用されている Bevan ら(1995)の報告によれば、SD ラット (P_1 : 各群雌雄各 30 匹)にイソプロパノール (純度 99.9%)(0、100、500、1,000 mg/kg 体重/日)を 10 週間以上強制経口投与(胃内挿管)した後、雌雄 1:1 の交配(7 日間)を行い、 P_1 雌については交配(妊娠するまで最大 3 回繰り返し)、妊娠及び哺育期間を通して児動物 (F_1) の離乳まで、 P_1 雄についてはその最後の児動物の出生まで投与を継続し、 F_1 のうち生後 21 日(離乳時)に母動物当たり雌雄各 2 匹を無作為に選抜し、 P_2 (各群雌雄各 30 匹(1,000 mg/kg 体重/日投与群については離乳初期の死亡により 26 匹に減少したとされている。))として P_1 と同様の投与及び交配を行い、得られた児動物(F_2)については生後 4 日に母動物当たり雌雄各 4 匹を残す試験が実施されている。

その結果、親動物への影響としては、100 mg/kg 体重/日投与群の P2 雄 2/30 匹、500 mg/kg 体重/日投与群の P2 雌 1/30 匹並びに 1,000 mg/kg 体 重/日投与群の P_1 雌 2/30 匹及び P_2 雌 2/26 匹の死亡が認められたとされて いる。体重については、500 mg/kg 体重/日以上の投与群の P2 雌、1,000 mg/kg 体重/日投与群の P1 雌で増加が認められたとされている。この体重 増加について Bevan らは、イソプロパノールの代謝物アセトンによる脂肪 酸及びトリグリセリドの貯蔵促進等によるものであって、被験物質の毒性 によるものではないとしている。器官重量については、500 mg/kg 体重/ 日投与群の P_2 雄及び $P_1 \cdot P_2$ 雌で肝臓の相対重量、1,000 mg/kg 体重/日投 与群の P₁ 雄で肝臓の絶対・相対重量、P₂ 雌で肝臓の絶対重量の増加が認 められたとされている。また、1,000 mg/kg 体重/日投与群の P_2 雄及び P_1 ・ P₂雌で腎臓の相対重量の増加が見られたとされている。病理組織学的検査 においては、1,000 mg/kg 体重/日投与群の P_2 雄で小葉中心性の肝細胞肥 大が認められたとされている。また、100 mg/kg 体重/日以上の投与群の P2 雄及び 500 mg/kg 体重/日以上の投与群の P1 雄で腎近位尿細管曲部上皮 細胞の硝子滴の増加、腎尿細管上皮の変性及び過形成の発生率及び程度の 増加及び増強、腎尿細管におけるたん白円柱の発生率の増加並びに間質限 局性の単核細胞浸潤の発生率の増加が認められたとされている。肝重量の 増加について Bevan らは、雌では肝臓の病理組織学的変化が認められない こと、及び雄では小葉中心性の肝細胞肥大が見られたものの 1,000 mg/kg 体重/日投与群の 6/26 匹のみで見られた変化であることから、代謝負荷の 増大に対する正常かつ一過性の生理学的変化によるものと推定している。 また Bevan らは、 $P_1 \cdot P_2$ 雄で見られた腎尿細管上皮細胞の硝子滴の増加 について、雄ラットに特有の α2,, グロブリン過剰蓄積による変化であると

している。そのほか、一般状態及び剖検において被験物質の投与に関連した影響は認められなかったとされている。

生殖への影響としては、1,000 mg/kg 体重/日投与群の P_2 雄で対照群及 びその背景データの範囲を下回る交尾率の低下が見られたとされている。 これについて Bevan らは、 (i) P_1 雄及び P_2 雌で影響が見られていないこと、(ii) P_2 雄の児動物数に影響が見られていないこと、及び(iii) 病理組織学的検査において精巣で特段の変化が認められていないことから、被験物質の投与による変化ではあるが、生物学的に意義のあるものではないとしている。

発生への影響としては、 F_1 の生後 4 日生存率並びに F_2 の生後 1 及び 7 日生存率が 500 mg/kg 体重/日以上の投与群で、F₁の出生率及び生後 1 日 生存率並びに F₂の生後 4 日生存率が 1,000 mg/kg 体重/日投与群で有意に 低下したとされている。Bevan らは、1,000 mg/kg 体重/日投与群の F_1 の 出生直後の死亡等の増加について、同様に母体当たりの児数が増加した 500 mg/kg 体重/日投与群の F₁では出生直後の生存に影響が見られなかっ たことから、児数の増加に伴う授乳競合が原因であるとは考えにくいと考 察している。また、離乳後(生後 $21\sim41$ 日)の F_1 については、100 及び 500 mg/kg 体重/日投与群でそれぞれ1匹が死亡し、1,000 mg/kg 体重/日 投与群で18/70匹が死亡又は切迫殺されたが、これらの死亡動物の剖検に おいて特段の変化は認められなかったとされている。これについて Bevan らは、遅く出生した F₁ が生育して P₁ として選抜されるまでの間、早く出 生した F_1 が離乳直後の直接投与をより長期間受けることが原因であり、被 験物質の投与に関連したものであると考察している。 さらに 1,000 mg/kg 体重/日投与群の F_1 の雄及び F_2 の雌雄で生後 $0\sim4$ 日にかけて体重の低値 が認められたことについて、Bevan らは、高値が認められている動物もあ ることから偶発的なものであり、被験物質の投与に関連したものではない としている。以上より Bevan らは、生殖発生毒性に係る NOEL は 500 mg/kg 体重/日であるとしている(参照18、52、71)。

SIDS97では、本試験における NOEL は、出生後生存率の低下を被験物質の投与に関連した変化ととる安全側見地に立てば 100 mg/kg 体重/日、当該低下を生物学的に意義がないものとみなす場合には 500 mg/kg 体重/日であるとされている(参照 5 2)。

本専門調査会としては、500 mg/kg 体重/日以上の投与群の F_1 及び F_2 で認められた離乳前の生存率低下を踏まえ、本試験における NOAEL を 100 mg/kg 体重/日と評価した。

(7) その他

経口投与による試験ではない参考データも含むものであるが、Gentry ら (2002)の報告によれば、Burleigh-Flayer ら (1997)の吸入毒性試験、Nelson ら (1988) の吸入発生毒性試験、Tyl ら (1994) の経口発生毒性試験、Bevan ら (1995) の経口生殖発生毒性試験及び Burleigh-Flayer ら (1994) の神経発生毒性試験のデータについて、PBPK モデルを用いて解析が行われている。その結果、Tyl ら (1994) の経口発生毒性試験における胎児体重に係る影響をエンドポイントとして、RfD は 11 mg/kg 体重/日であるとされている。 (参照 7 2)

3. ヒトにおける知見

(1)疫学研究

FAS42 においても引用されている Wills ら (1969) の報告によれば、1966 年、米国ニューヨーク州において、 $24\sim57$ 歳(平均 36歳)の成人男性(各群 8例)について、プラセボ摂取群又はイソプロパノール(2.6 若しくは 6.4 mg/kg 体重/日(12))摂取群へ二重盲検法により無作為に割り付け、1 日 1 回朝食時に着香シロップ水として 6 週間反復経口摂取させる無作為割付臨床試験が実施されている。その結果、一般状態、血液学的検査、血液生化学的検査、尿検査、血中スルホブロモフタレイン排出能検査及び視力検査において被験物質の投与に関連した有意な変化は認められなかったとされている。(参照 3 8 、7 3)

(2) その他

経口摂取による知見ではないので参考データであるが、太田ら(1992)の報告によれば、我が国の製鉄工場において、防錆塗料(イソプロパノールが溶剤として汎用される。)を鉄板に塗装等する作業に常時従事する 11 例(常時取扱い群)、交代して当該作業に従事する 11 例(交代取扱い群)及び溶剤を取り扱わない 10 例(対照群)の 3 群について、定期検診時に得られた血清試料を用いて AST、ALT、 γ -GTP 及び OCT の測定が実施されている。その結果、対照群と常時取扱い群又は交代取扱い群との間で測定値に有意差は認められなかったとされている。(参照 7 4)

経口摂取による知見ではないので参考データであるが、IARC モノグラフ (1999) における引用によれば、Siemiatycki (1991) の報告において、作業環境における 293 物質への暴露と発がんとの関係についての症例対照研究が実施されている。その結果、調査対象とした症例の約 4%がイソプロパノールに暴露された者 (消防士、機械工、電気工等) であり、当該暴露群の肺癌発生率(13)に係るオッズ比は 1.4 (90%CI=0.8~2.7) であったとされている。そのほか調査対象とした癌(食道癌、胃癌、結腸癌、直腸癌、膵臓癌、前立腺癌、膀胱癌、腎臓癌、皮膚メラノーマ及びリンパ腫) 発生率に係るオッズ比についても有意なものはなかったとされている。(参照 6 6)

Jammalamadaka & Raissi のレビュー(2010)によれば、イソプロパノールによる急性中毒は、メタノールやエチレングリコールとは異なり、代謝物(アセトン)よりもイソプロパノールそのものの作用によるものと考えられている。(参照 7 5)

Ⅲ. 一日摂取量の推計等

1. 米国における摂取量

_

 $^{^{12}}$ 米国における総魚たん白濃縮物(推定摂取量約 45 g/人/日)に残存するイソプロパノールの推定摂取量最大値 $0.001\sim0.003$ mL/kg 体重/日を踏まえて設定したとされている。

¹³ 本症例対照研究における症例のうち、イソプロパノールに実質的に暴露した肺癌発症例は 16 例のみであったとされている。

1989 年の米国におけるイソプロパノールの一日摂取量は、報告率を 60%として、JECFA の PCTT 法により 9,900 μ g/人/日と推定されている。算出根拠とされた 1989年のイソプロパノールの年間使用量は 52,000 kg であったが、1982年は 72,000 kg、1987年は 52,000 kg(香料として 12,000 kg、抽出溶媒等として 40,000 kg)であったとされており(参照 7 6)、上記推定値は抽出溶媒としての使用分も含むものと考えられる。また、1995年の一日摂取量は 10,968 μ g/人/日と推定されている。なお、米国では食品中にもともと存在する成分としてのイソプロパノールの摂取量は、意図的に添加された本物質の 0.7 倍程度との報告もある(参照 7 7)。

2. 欧州における摂取量

EU では、イソプロパノールについて、香料として使用することが認められているほか、食品中の残存を 10~mg/kg 以下とする使用基準の下で抽出溶媒として使用することが認められている(参照 1、1 6)。EU 域内の数か国 $^{(14)}$ において「必要量(quantum~satis)」を担体溶剤として使用することが認められており、スペイン、スウェーデン及び英国においては、それぞれ清涼飲料中500ppm、1,000ppm 及び600ppm(スカッシュ(果汁に砂糖を加え水で割った飲料)については200ppm)以下とする使用基準又は指導の下で使用することが認められているとされているが、イタリア及びドイツにおいては使用が認められていないとされている(参照 1、1 7)。

香料のほか抽出溶媒及び担体溶剤並びに社会的理由によるエタノール代替品としての使用に係る、1995年の欧州におけるイソプロパノールの一日摂取量は、報告率を 60%として、JECFA の PCTT 法により $85,510~\mu g/$ 人/日と推定されている。

英国農林水産食料省(1993)による英国における生産量ベースでの添加物摂取量(1984~1986年)調査報告によれば、添加物「イソプロパノール」の推定一日摂取量は、抽出溶媒及び担体溶剤として44.5 mg/人/日とされている。(参照78)

EFSA05 においては、イソプロパノールを香料の担体溶剤として清涼飲料に 600 mg/L 使用した場合、(i) 英国成人の推定一日摂取量は平均で 76 mg/人/日、 97.5 パーセンタイル値で 324 mg/人/日、(ii) EU 域内 5 都市(ダブリン、ゲント、ヘルシンキ、ポツダム及びローマ)の 10 代の若年者 948 例(各都市での平均年齢 $13\sim16$ 歳、平均体重 $53\sim64$ kg)の炭酸飲料摂取(15)を通じた推定一日摂取量(16)は平均で 82 mg/人/日、97.5 パーセンタイル値の最大値で 597 mg/人/日であるとされている。(参照 18)

3. 我が国における摂取量

(1)添加物(香料)としての使用に係る摂取量

2004年の添加物「イソプロパノール」の香料としての評価においては、報

-

¹⁴ オーストリア、ベルギー、フランス及びオランダであるとされている。

¹⁵ スカッシュによる摂取は含まれていない。

^{16 14} 日間個人摂取記録に基づき推定されている。

告率を 60%として、PCTT 法により算出された 1995 年の米国における推定 一日摂取量 10,968 $\mu g/$ 人/日と我が国での推定摂取量は同程度であるとされている。

その後 2009 年 4 月、厚生労働省は、2008 年 1 月 1 日から 12 月 31 日までの 1 年間の使用量を調査し、使用量が 1,254.27 kg であったことから、報告率を 60%として、PCTT 法により添加物(香料)「イソプロパノール」の一日摂取量を 455 μ g/人/日と推定している(参照 7 9)。一方 PCTT 法にはよらずに我が国の総人口及び 365 日/年で除し、報告率を 60%、廃棄率を 20%と仮定すると、添加物(香料)「イソプロパノール」の推定一日摂取量は 36 μ g/人/日と算出される。

(2)添加物以外としての使用に係る摂取量

我が国におけるイソプロパノールの摂取量の推定においては、上記のほか、(i) ウコン色素等の添加物の製造基準においてイソプロパノールの残存限度が設定されていること、及び(ii) 加工ユーケマ藻類等の添加物の個別成分規格(純度試験) においてイソプロパノールの上限値が設定されていることについても考慮する必要があると考えられる。

厚生労働科学研究報告(2008)によれば、製造基準においてイソプロパノールの残存限度が設定されている添加物(天然香料を除く。)の 1999、2002 及び 2005 年度の生産量は**表 2** のとおりであり、調査年度によって大きく変動することがある生産量統計の特性を踏まえ、過小推計とならないことを旨として過去 3 回調査での最大値の和を求めると約 4,400 トンと算出される(参照 1、8 0、8 1)。当該報告で対象とされていない天然香料については、別の報告で国内生産量+輸入量-輸出量が 1999 年に 13,599 トン、2002 年に 15,059 トンとされていること、及び天然香料の製造方法が用いる抽出溶媒の種類も含めて多岐にわたることを勘案し、評価要請者は、生産量を 20,000 トンと多めに見積り、その 1 割の 2,000 トンがイソプロパノールの使用に係る量であると推定している(参照 1、8 2)。これらの全てが残存限度上限値(50 μ g/g)のイソプロパノールを含有し、最終食品に移行して摂取された場合を想定すると、我が国の総人口及び 365 日/年で除し、廃棄率を 20% と仮定して、イソプロパノールの推定一日摂取量は 5.6 μ g/人/日と算出される。

表 2 製造基準においてイソプロパノールの残存限度が設定されている添加 物の生産量 (トン)

添加物	1999	2002	2005	最大値
ウコン色素	38. 5	307. 7	266. 3	307. 7
オレガノ抽出物	0	0	0	0
オレンジ色素	0. 1	0. 1	0	0. 1
カラシ抽出物	21. 6	25. 0	44. 6	44. 6
カンゾウ抽出物	165. 7	137. 9	73. 7	165. 7
カンゾウ油性抽出物	0. 8	0. 5	0. 3	0.8
クチナシ黄色素	1,638. 6	1,533. 4	1,432. 4	1,638. 6
クローブ抽出物	0. 0	0. 4	0. 4	0. 4
香辛料抽出物	71. 4	71. 2	187. 3	187. 3
ゴマ油不けん化物	0. 0	0	0	0.0
シソ抽出物	0. 0	2. 5	3. 3	3. 3
ショウガ抽出物	0	0. 3	0	0. 3
精油除去ウイキョウ抽出物	0	0	0	0
セイヨウワサビ抽出物	0. 3	1. 2	0. 9	1. 2
セージ抽出物	0	0. 5	0	0. 5
タマネギ色素	16. 0	3. 7	2. 4	16. 0
タマリンド色素	51. 0	24. 7	131. 6	131. 6
タンニン(抽出物)	0. 3	0	0	0. 3
トウガラシ色素	638. 1	785. 4	1,831. 4	1,831. 4
トウガラシ水性抽出物	2. 1	23. 2	20. 0	23. 2
ニガヨモギ抽出物	0. 0	0	0	0. 0
ニンジンカロテン	1. 5	5. 3	4. 1	5. 3
ニンニク抽出物	0	9. 0	0	9. 0
ペパー抽出物	6. 8	23. 2	22. 0	23. 2
ローズマリー抽出物	4. 1	3. 6	20. 4	20. 4
ワサビ抽出物	0	0.0	0.0	0. 0
合計	·	· · · · · · · · · · · · · · · · · · ·		4,410. 9

個別成分規格(純度試験)においてイソプロパノール(2-プロパノール)の上限値が設定されている添加物(加工ユーケマ藻類、カロブビーンガム、キサンタンガム、グァーガム、ジェランガム、ショ糖脂肪酸エステル、精製カラギナン、ペクチン、マクロホモプシスガム及びラムザンガム)の各上限値、1999、2002 及び 2005 年度の生産量並びに過去 3 回調査での最大値は表3のとおりである(参照 1、8 1、8 3、8 4)。これらの全てが上限値のイソプロパノールを含有(含有量は表3のとおり)し、最終食品に移行して摂取された場合を想定すると、我が国の総人口及び 365 日/年で除し、廃棄率を 20%と仮定して、イソプロパノールの推定一日摂取量は $1,560.0~\mu g/$ 人/日と算出される。

表3 個別成分規格においてイソプロパノールの上限値が設定されている添加物の生産量 (トン)等

添加物	上限値	1999	2002	2005	最大値	含有量
	(%)					(kg)
加工ユーケマ藻類	0.10*	98.0	5.8	10.0	98.0	98.0
カロブビーンガム	1.0	1,087.8	1,406.1	2,033.8	2,033.8	20,338.3
キサンタンガム	0.05	1,077.5	1,947.4	2,655.3	2,655.3	1,328.0
グァーガム	1.0	2,147.1	3,538.3	2,912.4	3,538.3	35,383.0
ジェランガム	0.075	90.0	221.0	248.0	248.0	186.0
ショ糖	0.035**	4,200.0	4,000.0	3,500.0	4,200.0	1,470.0
脂肪酸エステル						
精製カラギナン	0. 10*	1,267.5	1,405.7	1,437.0	1,437.0	1,437.0
ペクチン	1.0*	1,499.4	2,221.0	2,943.8	2,943.8	29,438.0
マクロ	0.50	0.0	0.0	0.0	0.0	0.0
ホモプシスガム						
ラムザンガム	0. 10	0.0	0.0	0.0	0.0	0.0
合計		.				89,678.3

注:*についてはメタノールとの合計として、**については酢酸エチル及びプロピレングリコールとの合計として規定されているが、過小推計とならないことを旨としていずれもイソプロパノールのみが上限値で残存するものと仮定した。

以上より、添加物以外としての使用に係るイソプロパノールの一日摂取量は $1,565.6 \mu g/\Lambda/$ 日と推定される。

したがって、我が国における現行の使用基準の下でのイソプロパノール(食品中にもともと存在するものを除く。)の一日摂取量は、添加物以外としての使用に係るもの(1,565.6 μ g/人/日)と PCTT 法により算出した添加物(香料)としての使用に係るもの(455 μ g/人/日)を合算した場合には 2,021 μ g/人/日と推定される。

(3)添加物(抽出溶媒)としての使用に係る摂取量

厚生労働省は、本品目の使用基準を「イソプロパノールは、着香の目的及び食品成分を抽出する目的以外に使用してはならない。食品成分の抽出にあっては 10 mg/kg (抽出物)を超えて残存しないように使用しなければならない。」に改正するとしている。新たに追加される抽出溶媒としての使用については、対象食品の全容が必ずしも明らかにされていないが、評価要請者は $100,000 \text{ トン}^{(17)}$ の食品に使用したイソプロパノールが 10 mg/kg 残存した場合を想定し、我が国の総人口及び 365 Fl/F で除し、廃棄率を 0% と仮定して、添加物(抽出溶媒)「イソプロパノール」の一日摂取量を 21 µg/人/日と推定している(参照 1)。ただし、これについては正確には規格基準改正後の追跡調査による確認が必要と考えられる。

以上より本専門調査会としては、今般の規格基準改正後のイソプロパノール(食品中にもともと存在するものを除く。)の一日摂取量を $1.6\sim2.0~mg/$ 人/日程度と推定した。

17 評価要請者は、抽出溶媒イソプロパノールの主な用途としてはたん白質素材、魚介エキス調味料、ホップ等香味素材(酒類及び清涼飲料用)、健康食品素材といったものの抽出が考えられ、たん白質素材の市場規模は大豆たん白で約 4.5 万トン/年、小麦グルテンで約 2.2 万トン/年、卵たん白で約 8 千トン/年、カゼインで約 6 千トン/年等、調味料の市場規模はかつおエキスで約 1.5 千トン/年等と報告されていることから、抽出溶媒イソプロパノールを使用する食品を 100,000 トンと想定したとしている。

IV. 国際機関等における評価

1. JECFA における評価

(1) 香料として

1998年6月の第51回会合において、JECFAは、添加物(香料)「イソプロパノール」を、飽和脂肪族非環式二級アルコール類、ケトン類並びに関連の飽和及び不飽和エステル類のグループとして評価している。JECFAは、添加物(香料)「イソプロパノール」について、構造クラスIに分類され、1995年の欧州における推定摂取量99,000 μ g/人/日(18)が構造クラスIの摂取許容量1,800 μ g/人/日を上回るものの、その主成分は生体内において脂肪酸及び炭水化物の代謝物として生成されるものであること、及び血中から検出されているものであることから、体内でイソプロパノールに代謝される香料の摂取を勘案しても、生体内レベルは生理学的範囲を逸脱するような程度にまで上昇することはないとしている。JECFAは、添加物(香料)「イソプロパノール」については、現状の摂取レベルにおいて安全性に懸念をもたらすものではないと結論している。(参照38、85)

(2)抽出溶媒として

1970年の第 14 回会合において、JECFA は、食品産業において使用される抽出溶媒類 (extraction solvents) について評価を行っている。その中で、イソプロパノールについては、Wills ら(1969)の無作為割付臨床試験で成人が約 350 mg/人/日の 6 週間反復経口摂取に耐えたとの試験成績が得られているが、英国において実施中のラットを用いた長期動物試験の結果をまってADI 設定について検討すべきであるとされた。JECFA は、イソプロパノールについては当面毒性学的に意義のない残存量にとどまるような GMP の下での使用に限定されるべきであるとしている。(参照 8 6 、8 7)

1981年の第25回会合において、JECFAは、イソプロパノールについて、 毒性試験が実施されていることからその結果を提供するよう要請するととも に、既存の成分規格について改訂を行い、暫定扱いとした。(参照88)

2. 欧州における評価

(1) 香料として

2000年7月に公布された欧州委員会規則 No.1565/2000では、JECFAの第51回会合等で評価され「現状の摂取レベルにおいて安全性に懸念をもたらすものではない。」とされた香料については、その評価結果に変更を及ぼすような新たな知見が得られた等の特段の問題がない限り、EUとして再評価を行わないこととされている。したがって、JECFA第51回会合においての添加物(香料)「イソプロパノール」の評価結果は、EUにおいてそのまま受け入れられているものと考えられる。(参照89)

(2) 抽出溶媒及び担体溶剤として

1981 年 1 月、SCF は、抽出溶媒類 (extraction solvents) についての意

35

¹⁸ JECFA における評価に用いられた推定摂取量。

見を取りまとめている。その中で、イソプロパノールについては、ラットを用いた代謝試験、急性毒性試験、亜急性毒性試験、生殖毒性試験及び長期毒性試験に係る情報を入手し、暫定 ADI 1.5 mg/kg 体重/日を設定している。なお、低用量で毒性が見られたとする生殖毒性試験の成績が報告されているが、被験物質の規格が明らかにされておらず、その結果の解釈は困難であるとして、1983 年までに適切な一世代生殖毒性試験成績の提供を希望するとしている。(参照 9 0)

1991年6月、SCFは、抽出溶媒類についての2回目の意見を取りまとめ、その中でイソプロパノールについて、ラットを用いた一世代生殖発生毒性予備試験、一世代生殖発生毒性試験及び発生毒性試験の成績を新たに入手したが、既存の長期毒性試験成績では発がん性について十分な評価を行うことができず、遺伝毒性を評価できるようなデータがないことから、「full ADI」を設定することはできないと結論している。しかしながら SCF は、抽出溶媒に限定した使用においては食品中の残存量は低いことから「full ADI」を設定することなく受け入れられるとの考え方に同意するとしている。一方でSCFは、食品中に多く残存してしまうようなその他の使用、例えば担体溶剤としての使用を認めるに当たっては、あらかじめ「full ADI」を設定することが必要であるとしている。(参照91)

1991年12月、食品・食品成分製造用抽出溶媒類に関する欧州理事会指令88/344/EEC(参照92)の一部を改正する欧州理事会指令92/115/EEC(参照93)が公布され、食品(対象食品は特に限定されていない。)中の残存基準を10 mg/kgとした上で、イソプロパノールを抽出溶媒として使用することが認められている。この残存基準値は、技術的対応可能性の観点からのみの検討に基づいて設定されたものであるとされている(参照18)。なお、2009年4月、上述の欧州理事会指令は、欧州議会・欧州理事会指令2009/32/ECに整理されている(参照16)。

2005 年 2 月、EFSA 科学パネルは、イソプロパノールを香料の担体溶剤 として清涼飲料に 600 mg/L のレベルで添加することついて意見を取りまと めている。EFSA 科学パネルは、過去に SCF が暫定 ADI を定めた際に参照 した試験成績に加え、ラットを用いた短期反復投与毒性試験(NOAEL=870 mg/kg 体重/日)、ラット及びマウスを用いた長期吸入毒性試験並びにラット 及びウサギを用いた発生毒性試験(ラット母体毒性・発生毒性 NOAEL=400 mg/kg 体重/日、ウサギ母体毒性 NOAEL=240 mg/kg 体重/日、ウサギ発生毒 性 NOAEL=480 mg/kg 体重/日)の結果を新たに参照している。EFSA 科学 パネルは、ウサギのイソプロパノールへの感受性の高さに留意したが、種差 に係るメカニスティックな情報はないことから、ウサギ母体毒性に係る NOAEL 240 mg/kg 体重/日を根拠として ADI を 2.4 mg/kg 体重/日と特定し ている。なお、イソプロパノールを香料の担体溶剤として清涼飲料に 600 mg/L 使用した場合、(i) 英国成人の推定一日摂取量 97.5 パーセンタイル値 324 mg/人/日は当該 ADI を超過すること、(ii) EU 域内 5 都市の 10 代の若年 者の炭酸飲料摂取を通じた推定一日摂取量 97.5 パーセンタイル値の最大値 597 mg/人/日も ADI を超過することが指摘されている。(参照18)

3. 我が国における評価

2004 年 12 月、食品安全委員会は、「国際的に汎用されている香料の安全性評価の方法について」に基づき整理された評価資料を基に、イソプロパノールは構造クラス I に分類される(別紙 3)とし、添加物(香料)「イソプロパノール」について(i) 生体内において特段問題となる遺伝毒性はないと考えられること、(ii) 推定摂取量(10,968 μ g/人/日)はクラス I の摂取許容値(1,800 μ g/人/日)を超えているが、適切な安全マージン 100 を上回っていること、(iii) イソプロパノール及びその代謝物は生体成分に代謝され、そのレベルは生理的範囲を著しく超えることはないと予測されることから、「食品の着香の目的で使用する場合、安全性に懸念はないと考えられる。」と食品健康影響評価を取りまとめている。(参照 2 3 、 2 4 、 2 5)

V. 食品健康影響評価

イソプロパノールはヒトの血中、尿中、唾液中及び呼気中において検出される、いわゆる生体内物質の一つである。経口摂取されたイソプロパノールのほとんどは消化管で比較的速やかに吸収され、様々な組織・器官に分布する。吸収されたイソプロパノールのほとんどは生体内で ADH によって酸化され、ヒトでの半減期は比較的短時間であるが、代謝物として生成するアセトンはイソプロパノールと比較して長く生体内に留まることが示されている。一方、イソプロパノールを基質としたときの ADH 活性の種差については、動物を用いた毒性試験成績の解釈に特段の影響を及ぼすような知見は得られていない。したがって、本専門調査会としては、代謝物アセトンによる影響について、イソプロパノールに係る毒性試験成績及びヒトにおける知見をもって包括的に評価を行うことは可能であると判断した。

本専門調査会としては、入手した遺伝毒性試験成績から、添加物「イソプロパノール」には生体にとって特段問題となるような遺伝毒性はないと評価した。

入手した長期反復投与毒性試験成績は経口投与による試験ではないので参考データであるが、本試験成績において雄ラットで見られたとされるライディヒ細胞腺腫の発生率の増加について、本専門調査会としては、対照群での発生頻度の異常低値によるものであり、本品目の添加物としての使用において安全性に懸念をもたらすものではないと判断した。

本専門調査会としては、入手した生殖発生毒性試験成績から、本品目に催奇形性はないと評価した。

本専門調査会としては、入手したヒトにおける知見から、本品目の安全性に懸念をもたらすような証拠は得られていないと判断した。

本専門調査会として、各試験成績における NOAEL のうち最小値であったラット二世代生殖発生毒性試験成績における NOAEL 100 mg/kg 体重/日と、今般の規格基準改正後の本品目の推定一日摂取量 1.6~2.0 mg/人/日とを比較して得ら

れる安全マージン $(2,500 \sim 3,100)$ が適切な安全マージン 100 を上回ることを確認した。

以上より本専門調査会としては、添加物「イソプロパノール」について、添加物として適切に使用される場合、安全性に懸念がないと考えられ、ADIを特定する必要はないと評価した。

<別紙1:略称>

略称	名称等
ADH	Alcohol Dehydrogenase:アルコール脱水素酵素
21 CFR	Code of Federal Regulations, Title 21:米国連邦規則集
	第 21 巻
CHL/IU	チャイニーズ・ハムスター肺由来培養細胞株
СНО	チャイニーズ・ハムスター卵巣由来培養細胞株
CHO-K1-BH ₄	チャイニーズ・ハムスター卵巣由来培養細胞株
ECB	European Chemicals Bureau
EFSA	European Food Safety Authority: 欧州食品安全機関
EFSA05	EFSA 科学パネル意見書(2005)(参照 1 8)
EHC103	IPCS 環境保健クライテリア第 103 巻 (1990) (参照 2 8)
EPA	Environmental Protection Agency
EU	European Union: 欧州連合
FAS42	JECFA モノグラフ Food Additives Series 第 42 巻(1999) (参照 3 8)
GMP	good manufacturing practice : (食品製造加工における添加物の) 適正使用規範
HGPRT	ヒポキサンチングアニンホスホリボシルトランスフェラーゼ
IARC	International Agency for Research on Cancer : 国際癌研究機関
IPCS	International Programme on Chemical Safety: 国際化学物質安全性計画
JECFA	Joint FAO/WHO Expert Committee on Food Additives: FAO/WHO 合同食品添加物専門家会議
MNPCE	小核多染性赤血球
NRC	National Research Council:米国研究評議会
NTP	National Toxicology Program
OCT	オルニチンカルバミルトランスフェラーゼ
OECD	Organisation for Economic Co-operation and Development:経済協力開発機構
PCTT	Per Capita intake Times Ten
SCE	姉妹染色分体交換
SCF	Scientific Committee for Food:欧州食品科学委員会
SIDS	Screening Information Data Set:スクリーニング用情報 データセット
SIDS97	2-プロパノールについての SIDS 初期評価報告書(1997) (参照52)
6-TG	6-チオグアニン
V79	チャイニーズ・ハムスター肺線維芽細胞由来培養細胞株
L	

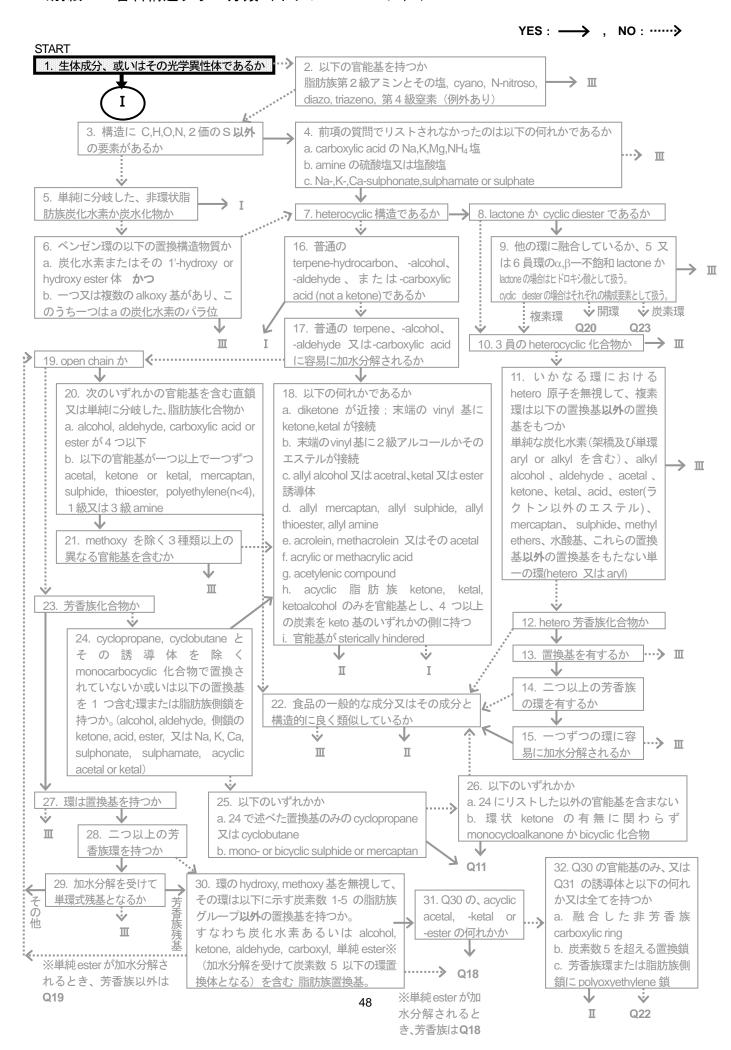
<別紙2:各種毒性試験成績>

試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
遺伝毒性	In vitro SCE 試験	V79		In vitro		イソプロパ ノール(純 度 99.7%)	最高濃度 100.0 mM	代謝活性化系の有無にかかわらず陰性であったとされている。	EFSA05及びSIDS97に おいても引用 (参照 1 8、5 2) von der Hude ら (1987)
遺伝毒性	SOS クロモ試 験	E. coli PQ37		In vitro		イソプロパ ノール	用量不詳	代謝活性化系の有無にかかわらず陰性であったとされている。	(参照53) EFSA05 においても引用(参照18) von der Hudeら(1988) (参照54)
遺伝毒性	微生物を用いる 復帰突然変異試 験	S. typhimurium TA98、 TA100、TA1535 及び TA1537		In vitro		イソプロパ ノール	3 μmol/plate ; 0.18 mg/plate	代謝活性化系の有無にかかわらず陰性であったとされている。	FAS42、EFSA05 及び SIDS97 においても引用 (参照18、38、52) Florin ら (1980) (参照 55)
遺伝毒性	微生物を用いる 復帰突然変異試 験	S. typhimurium TA98、 TA100、TA1535、 TA1537 及び TA1538 並びに E. coli WP2uvrA		In vitro		イソプロパ ノール	最高用量 5 mg/plate	代謝活性化系の有無にかかわらず陰性であったとされている。	FAS42、EFSA05 及び SIDS97 においても引用 (参照18、38、52) Shimizu ら (1985) (参 照56)
遺伝毒性	微生物を用いる 復帰突然変異試 験	S. typhimurium TA97、 TA98、TA100、TA1535 及び TA1537		In vitro		イソプロパ ノール	最高用量 10 mg/plate	代謝活性化系 (ラット及びハムスター肝臓 由来) の有無にかかわらず陰性であったと されている。	FAS42 及び SIDS97 に おいても引用(参照 3 8、5 2) Zeiger ら(1992)(参照 5 7)
遺伝毒性	微生物を用いる 復帰突然変異試 験	S. typhimurium TA98、 TA100、TA1535 及び TA1537 並びに E. coli WP2uvrA		In vitro		イソプロパ ノール(純 度 99.5%)	最高用量 5 mg/plate	代謝活性化系の有無にかかわらず陰性であったとされている。	JETOC (1997) (参照 5 8)
遺伝毒性	ほ乳類培養細胞 を用いる前進突 然変異試験	CHO-K1-BH4		In vitro		イソプロパ ノール	最高濃度 5.0 mg/mL	代謝活性化系の有無にかかわらず陰性であったとされている。	FAS42、EFSA05 及び SIDS97 においても引用 (参照18、38、52) Kapp ら (1993) (参照 59)

試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
遺伝毒性	ショウジョウバ エを用いる遺伝 子突然変異試験	ショウジョウバエ		吸入暴露		イソプロパ ノール	0、50、75%	100 個眼当たりスポット数の対照群に対する増加に用量相関性は認められなかったとされている。	Palermo & Mudry (2011) (参照 6 0)
		7 日齢未交配ショウジョ ウバエ雄(24 時間ごとに 4~6 日齢の未交配雌 (<i>Basc</i>) 5 匹との交配を 5 回連続で繰り返し、ブ ルード A~E を得る。)					0、75%	いずれのブルードにおいても対照群に比べて伴性劣性致死率の有意な増加は認められなかったとされている。	
遺伝毒性	In vivo 染色体 異常試験	雄ラット		単回強制 経口門內挿 管)		イソプロパ ノール	0、LD ₅₀ の 1/5 相 当用量 (2,260~ 12,800 mg/kg 体 重の範囲内であ ったとされてい る。)	たのに対し投与群で $1.2\pm0.5\%$ 、数的異常の出現頻度は対照群で $0.5\pm0.3\%$ であったのに対し投与群で $1.0\pm0.4\%$ であったとさ	Barilyak & Kozachuk (1988)(参照 6 1)
遺伝毒性	げっ歯類を用い る <i>In vivo</i> 小核 試験	8~11 週齢のICR マウス		単回腹腔 内投与	各 群 雌 雄各 15 匹	イソプロパ ノール	最高用量 2,500 mg/kg 体重	最高用量である 2500 mg/kg 体重投与群で、 投与後 72 時間以内に 6 匹が死亡し、生存し た動物には体重減少が認められたが、いず れの投与群でも MNPCE の出現頻度に有意 な増加は認められず、陰性であったとされ ている。	EFSA05及びSIDS97に おいても引用(参照 1 8、5 2) Kapp ら (1993)(参照 5 9)
遺伝毒性	染色体異常を指標とするその他の試験	Neurospora crassa		In vitro		イソプロパ ノール		代謝活性化系非存在下で陰性であったとさ れている。	EFSA05 及び SIDS97 に おける引用 (Griffiths ら (1980)) (参照 1 8、5 2)

試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
遺伝毒性	染色体異常を指標とするその他の試験	0~2 時間齢、24~29 時間齢又は4日齢の未交配ショウジョウバエ雌(24時間ごとに7日齢の雄と雌雄=10:15 での交配を5 回連続で繰り返し、ブルードI~Vを得る。)		吸入暴露		イソプロパ ノール	0、75%	初回の交配で得られたブルードIのみにおいて、24~29 時間齢暴露群で対照群の約50倍、4日齢暴露群で対照群の約6倍の性染色体不分離の増加(p<0.00001) が認められたとされている。	Palermo & Mudry (2011) (参照 6 0)
		ブルード I の雌について、(i) ふ化 24 時間後に吸入暴露させ交配(吸入交配群) 又は(ii)ふ化 0~2 時間後に吸入暴露させて22 時間後に交配(回復後交配群) を行い、それぞれの児を観察。						児の染色体不分離率は、対照群で 0.036%であったのに対し、吸入交配群で 1.683%と有意に増加した (p<0.00001) が、回復後交配群では 0%であったとされている。	
急性毒性	急性経口投与毒 性試験	ラット	観察期間3日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 5,280 mg/kg 体重。	Lehman & Chase (1944) (28, 52, 62)
急性毒性	急性経口投与毒 性試験	ラット	観察期間 14 日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 5,840 mg/kg 体重。	Smyth & Carpenter (1948) (28, 52, 63)
急性毒性	急性経口投与毒 性試験	ラット	観察期間 7日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 4,710 mg/kg 体重。	Kimura 5 (1971) (2 8, 52)
急性毒性	急性経口投与毒 性試験	ラット	観察期間 14 日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 5,500 mg/kg 体重。	Guseinov 5 (1985) (2 8 、 5 2)
急性毒性	急性経口投与毒 性試験	マウス	観察期間 14 日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 4,475 mg/kg 体重。	Guseinov 5 (1985) (2 8 、 5 2)
急性毒性	急性経口投与毒 性試験	ウサギ	観察期間3日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 5,030 mg/kg 体重。	Lehman & Chase (1944) (28, 52, 62)
急性毒性	急性経口投与毒 性試験	ウサギ	観察期間 1日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 7,990 mg/kg 体重。	Munch (1972) (28, 52)
急性毒性	急性経口投与毒 性試験	イヌ	観察期間 3日間	単回経口 投与		イソプロパ ノール		LD ₅₀ = 4,830 mg/kg 体重。	Lehman & Chase (1944) (28, 52, 62)

試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
短期反復 投与毒性	ラット 27 週間 試験	ラット	27 週間	飲水投与	各 群 雌 雄	イソプロパ ノール	雄 0、0.5、2.5、10.0%、雌 0、1.0、5.0%;雄 0、600、2,300、9,200、雌 0、1,000、3,900 mg/kg 体重/日相 当	SIDS97では本試験における NOEL が雄で 600 mg/kg 体重/日、雌で 1,000 mg/kg 体重/日であるとされている。本専門調査会としては、本試験における供試動物数が少ないこと等から、本試験における NOAEL の評価を行わなかった。	EHC103及びSIDS97に おいても引用(参照 2 8、5 2) Lehman & Chase (1944)(参照 6 2)
短期反復投与毒性	試験	3 か月齢の Wistar ラット	12 週間	飲水投与	各群雄 22匹	イソプロパ ノール	0、1、2、3、5% (w/v); 0、870、 1,280、 1,680、 2,520 mg/kg 体重 /日	Pilegaard & Ladefoged は、腎臓の相対 重量増加に係る用量反応関係を外挿して NOEL を求めた場合、それはおよそ 1%以 下になると結論している。 SIDS97では、本試験における NOEL は 1% (870 mg/kg 体重/日) であるとされてい る。 本専門調査会としては、本試験が単性で 行われていること、絶対重量が示されてい ないこと、病理組織学的検査が限定的であ ること等から、本試験における NOAEL の 評価を行わなかった。	FAS42、EFSA05 及び SIDS97 においても引用 (参照18、38、52) Pilegaard & Ladefoged (1993) (参照64)
長期反復 投与毒性 ・発がん 性	ラット104週間 吸入毒性試験	約7週齢のF344 ラット	104 週間以上	吸入暴露	各群雌 雄各 75 匹	イソプロパ ノール(純 度 99.9%)	0、500、2,500、 5,000ppm を 1 日 6 時間、週 5 日	経口投与による試験ではないので参考データである。 Burleigh-Flayer らは、本試験における NOELを500ppmとしている。 雄で被験物質の暴露に関連したライディ ヒ細胞腺腫の発生率の増加が見られたとされているが、対照群での発生頻度の異常低値によるものではないかと考察されている。	Burleigh-Flayer ら (1997)(参照 6 5)
長期反復 投与毒性 ・発がん 性	マウス 78 週間 吸入毒性試験	約 7 週齢の CD-1 マウス	78 週間以上	吸入暴露	各 群 雌 雄各 75 匹	イソプロパ ノール(純 度 99.9%)	0、500、2,500、 5,000ppm を 1 日 6 時間、週 5 日吸 入暴露	経口投与による試験ではないので参考データである。 Burleigh-Flayer らは、本試験における NOELを 500ppm としている。 被験物質の暴露に関連した腫瘍の発生率 の増加は認められていない。	Burleigh-Flayer ら (1997)(参照 6 5)


試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
生殖発生 毒性	ラット二世代試験	38~40 日齢のラット		飲水投与	親 3 匹 雌 6 匹 F ₁ 44 各 峰 2 雄 近 近 0 匹	イソプロパ ノール	親動物 2.5%; 1,870 mL(1,470 mg)/kg 体重/日 F1 2.5%; 1,760 mL(1,380 mg)/kg 体重/日相当 F2 2.5%; 1,640 mL(1,290 mg)/kg 体重/日相当	Lehman らは児動物が哺育期間中に乳汁を介してイソプロパノールに暴露されたことは明らかであるとし、本試験条件下で被験物質の投与による生殖発生への有害影響は認められなかったと推定している。	FAS42 及び EHC103 に おいても引用(参照 2 8、3 8) Lehman ら(1945)(参 照 3 9)
生殖発生 毒性	ラット生殖発生 毒性試験	ラット	親動物に6か月間	飲水投与	対照 雄 28 匹 29 正 29 五 29 五 29 五 4 五 4 五 4 五 4 五 4 五 4 五 4 五 4	イソプロパ ノール	0、0.018、0.18、 1.8、18.0 mg/kg 体重/日	本専門調査会としては、本試験成績の報告については記載不十分であることから、 本試験における NOAEL の評価を行わなかった。	FAS42 及び EHC103 においても引用(参照 28、38) Antonova & Salmina(1978)(参照 67)
		ラット	妊娠前 3 か月間	飲水投与	対照群 雌6匹、 投与群 雌5匹	イソプロパ ノール	0、1,800 mg/kg 体重/日		
		妊娠ラット	妊娠 1 日 から 20 日にかけ て	飲水投与	各 群 雌 10~13 匹		0、252、1,008 mg/kg 体重/日		
生殖発生 毒性	ラット発生毒性試験	妊娠 Wistar ラット	妊娠 6~ 16 日	飲水投与	各群雌20匹	イソプロパ ノール(純 度 99.89%)	0、0.5、1.25、 2.5%; 0、596、1,242、 1,605 mg/kg 体重	SIDS97 では、本試験における母体毒性 及び発生毒性に係る NOEL はいずれも 0.5%であるとされている。	SIDS97 及び Faber ら (2008) のレビューにお ける引用(参照52、6 8)

試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
生殖発生	ラット一世代生	Wistar ラット	雄 70 日	飲水投与	各群雄	イソプロパ	0 、 0.5 、 1.0 、	SIDS97 では、本試験における親動物へ	SIDS97 及び Faber ら
毒性	殖発生毒性試験		間投与後		10 匹、	ノール(純	2.0%;	の毒性及び生殖発生毒性に係る NOEL は	(2008) のレビューにお
			交配、交		雌 30 匹	度 99.89%)	雄 0、347、625、	いずれも 1%であるとされている。	ける引用(参照52、6
			配期間中				1,030 mg/kg 体重		8)
			及びその				/日、		
			後も投与				雌 0、456、835、		
			を継続し				1,206 mg/kg 体重		
			て投与				/日		
			126 日に						
			と殺。						
			雌 21 日						
			間投与後						
			交配、交						
			配及び妊						
			娠期間中						
			投与を継						
			続。						
生殖発生	ラット発生毒性	10 週齡(妊娠 0 日時点)	妊娠 6 日	強制経口	各群雌	イソプロパ	0,400,800,1,200	Tyl らは、本試験条件下においてイソプ	FAS42、EFSA05 及び
毒性	試験	の妊娠 SD ラット	から 15	投与(胃	25 匹	ノール(純	mg/kg 体重/日	ロパノールに催奇形性は認められず、本試	SIDS97 においても引用
713		7 3 7 1	日まで	内挿管)		度 99.95%)		験における母体毒性及び発生毒性に係る	(参照18、38、52)
				. 431 117		50 0010011,		NOAELはともに 400 mg/kg 体重/日である	Tyl ら(1994)(参照 6
								と結論している。	9)
								SIDS97 では、本試験における母体毒性	·
								及び発生毒性に係る NOEL はいずれも 400	
								mg/kg 体重/目であるとされている。	
								本専門調査会としては、Tvl らの結論を	
								妥当と判断し、本試験における母体毒性及	
								び発生毒性に係る NOAEL を 400 mg/kg 体	
								重/日と評価した。	

試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
生殖発生	ウサギ発生毒性	約5.5か月齢(妊娠0日	妊娠 6 日	強制経口	各群雌	イソプロパ	0, 120, 240, 480	Tyl らは、本試験条件下においてイソプ	FAS42、EFSA05 及び
毒性	試験	時点) の妊娠ニュージー	から 18	投与(胃	15 匹	ノール(純	mg/kg 体重/日	ロパノールに催奇形性は認められず、本試	SIDS97 においても引用
		ランドホワイトウサギ	日まで	内挿管)		度 99.95%)		験における母体毒性に係る NOAEL は 240	(参照18、38、52)
								mg/kg 体重/日、発生毒性に係る NOAEL は	Tyl ら(1994)(参照 6
								480 mg/kg 体重/日であると結論している	9)
								SIDS97 では、本試験における母体毒性	
								に係る NOEL は 240 mg/kg 体重/日、発生	
								毒性に係る NOEL は 480 mg/kg 体重/日で	
								あるとされている。	
								本専門調査会としては、Tyl らの結論を	
								妥当と判断し、本試験における母体毒性に	
								係る NOAEL を 240 mg/kg 体重/日、発生	
								毒性に係る NOAEL を本試験における最高	
								用量である 480 mg/kg 体重/日と評価した。	
et mada me et	and a little of the state of	// - \m th //-/	12.12	76 44 69	6 av 111				
生殖発生	ラット神経発生	約9週齡(妊娠0日時点)	妊娠6日	強制経口	各群雌		0,200,700,1,200	Bates らは、1,200 mg/kg 体重/日投与群	EFSA05及びSIDS97に
毒性	毒性試験	の妊娠 SD ラット	から分娩	投与(胃	$31 \sim 35$	ノール(純	mg/kg 体重/日	での死亡を踏まえ、本試験における母体毒	おいても引用(参照1
			後 21 日	内挿管)	匹	度 99.95%)		性に係る NOEL は 700 mg/kg 体重/日、神	8 (52)
			まで					経発生毒性に係る NOEL は 1,200 mg/kg 体	Bates ら (1994) (参照
								重/日超であるとしている。	70)
								SIDS97では、本試験における母体毒性	
								に係る NOEL は 700 mg/kg 体重/日、神経	
								発生毒性に係る NOEL は 1,200 mg/kg 体重	
								/日であるとされている。	
								本専門調査会としては、本試験における	
								母体毒性に係る NOAEL を 700 mg/kg 体重	
								/日、神経発生毒性に係る NOAEL を本試験	
								における最高用量である 1,200 mg/kg 体重/	
								日と評価した。	

試験項目	試験種類	動物種等	試験期間	投与方法	群設定	被験物質	投与量	試験結果概要	参照
生殖発生	ラット二世代生	SD ラット	P ₁ 雄 10	強制経口	各群雌	イソプロパ	0,100,500,1,000	Bevan らは、生殖発生毒性に係る NOEL	EFSA05及びSIDS97に
毒性	殖発生毒性試験		週間以上	投与(胃	雄各 30	ノール(純	mg/kg 体重/日	は 500 mg/kg 体重/日であるとしている。	おいても引用(参照1
			投与後交	内挿管)	匹	度 99.9%)		SIDS97 では、本試験における NOEL は、	8,52)
			配、最後					出生後生存率の低下を被験物質の投与に関	Bevan ら(1995)(参照
			の児動物					連した変化ととる安全側見地に立てば 100	7 1)
			の出生ま					mg/kg 体重/日、当該低下を生物学的に意義	
			で。					がないものとみなす場合には 500 mg/kg 体	
			P1 雌 交					重/日であるとされている。	
			配、妊娠					本専門調査会としては、500 mg/kg 体重/	
			及び哺育					日以上の投与群の F_1 及び F_2 で認められた	
			期間を通					離乳前の生存率低下を踏まえ、本試験にお	
			して F_1 の					ける NOAEL を 100 mg/kg 体重/日と評価	
			離乳ま					した。	
			で。						

<別紙3:香料構造クラス分類(イソプロパノール)>

<参照>

¹ 厚生労働省,イソプロパノール 規格基準改正のための検討報告書,2011年 11月

- ² 厚生労働省、「イソプロパノール」の規格基準の改正に関する食品健康影響評価 について、第 380 回食品安全委員会(2011 年 4 月 28 日). 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20110428sfc
- Propan-2-ol, prepared at the 51st JECFA (1998). In FAO (ed.), Food and Nutrition Paper 52 addendum 6, superseding earlier specifications prepared by the 28th JECFA (1984) published in Food and Nutrition Paper 31/2, 1984 and republished in Food and Nutrition Paper 52, 1992, 1998. 参考: http://www.fao.org/ag/agn/jecfa-additives/specs/Monograph1/Additive-355.pdf
- 4 食品、添加物等の規格基準の一部を改正する件(平成 17 年厚生労働省告示第 233 号), 官報 (号外第 95 号), 平成 17 年 4 月 28 日; 61.
- 5 イソプロパノール. 厚生労働省編, 第8版食品添加物公定書, 2007; 242-3
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-07 edition), Chapter 1, Part 172, Subpart F, §172.515 Synthetic flavoring substances and adjuvants; pp.57 and 61.
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-07 edition), Chapter 1, Part 173, Subpart C, §173.240 Isopropyl alcohol; p.136.
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-07 edition), Chapter 1, Part 73, Subpart A, §73.30 Annatto extract; p.341.
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-07 edition), Chapter 1, Part 73, Subpart A, §73.345 Paprika oleoresin; pp.353-4.
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-10 edition), Chapter 1, Part 73, Subpart A, §73.615 Turmeric oleoresin; p.362.
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-10 edition), Chapter 1, Part 73, Subpart A, §73.315 Corn endosperm oil; pp.356-7.
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-09 edition), Chapter 1, Part 172, Subpart D, §172.385 Whole fish protein concentrate; pp.54-5.
- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-09 edition), Chapter 1, Part 172, Subpart F, §172.560 Modified hop extract; pp.66-7.
- ¹⁴ The Code of Federal Regulations, Title 21 (food and drugs) (4-1-07 edition),

Chapter 1, Part 172, Subpart G, §172.665 Gellan gum; p.70.

- The Code of Federal Regulations, Title 21 (food and drugs) (4-1-09 edition), Chapter 1, Part 172, Subpart G, §172.695 Xanthan gum; pp.72-3.
- European Parliament and Council of the European Union: Directive 2009/32/EC of the European Parliament and of the Council of 23 April 2009 on the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients (recast). In Office for Official Publications of the European Communities (ed.), Official Journal of the European Union, 6.6.2009, L141/3-11
- European Flavour and Fragrance Association (EFFA), Dossier on propan-2-ol (isopropyl alcohol; IPA), Version 5, October 2002. (未公表)
- European Food Safety Authority (EFSA): Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in contact with Food on a request from the Commission related to propan-2-ol as a carrier solvent for flavourings, Question no EFSA-Q-2003-136 adopted on 23 February 2005. The EFSA Journal 2005; 202: 1-10
- 19 食品安全委員会, 第 24 回会合議事録(平成 15 年 12 月 18 日), 2003; 2-4 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20031218sfc
- 20 食品安全委員会添加物専門調査会, 第 6 回会合議事録(平成 16 年 3 月 24 日), 2004; 17-24 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20040324te1
- 21 食品安全委員会添加物専門調査会, 第7回会合議事録(平成16年4月9日), 2004;23·31 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20040409te1
- 2 2 食品安全委員会添加物専門調査会, 第 12 回会合議事録(平成 16 年 9 月 8 日), 2004; 22-30 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20040908te1
- 23 食品安全委員会添加物専門調査会,第13回会合議事録(平成16年10月5日), 2004;2-10 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20041005te1
- 24 食品安全委員会, 第 73 回会合議事録 (平成 16 年 12 月 9 日), 2004; 16-8 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20041209sfc
- ²⁵ 食品安全委員会,イソプロパノールを添加物として定めることに係る食品健康 影響評価に関する審議結果(平成 16 年 12 月 9 日府食第 1235 号食品安全委員

会委員長通知「食品健康影響評価の結果の通知について」) 参考: http://www.fsc.go.jp/hyouka/hy/hyouka-161209-isopropanol.pdf

- 26 厚生労働省医薬食品局食品安全部長,食品衛生法施行規則の一部を改正する省 令及び食品、添加物等の規格基準の一部を改正する件について,食安発第 0428001号,平成17年4月28日
- ^{2 7} Ernstgård L, Sjögren B, Warholm M and Johanson G: Sex differences in the toxicokinetics of inhaled solvent vapors in humans, 2. 2-Propanol. Toxicol Appl Pharmacol 2003; 193(2): 158-67
- ²⁸ International Programme on Chemical Safety (IPCS) (ed.), Environmental Health Criteria 103, 2-Propanol, WHO, Geneva, 1990.
- Monaghan MS, Olsen KM, Ackerman BH, Fuller GL, Porter WH and Pappas AA: Measurement of serum isopropanol and the acetone metabolite by proton nuclear magnetic resonance: application to pharmacokinetic evaluation in a simulated overdose model. J Toxicol Clin Toxicol 1995; 33(2): 141-9
- Blanchet B, Charachon A, Lukat S, Huet E, Hulin A and Astier A: A case of mixed intoxication with isopropyl alcohol and propanol-1 after ingestion of a topical antiseptic solution. Clin Toxicol 2007; 45(6): 701-4
- Lehman AJ, Schwerma H and Rickards E: Isopropyl alcohol: rate of disappearance from the blood stream of dogs after intravenous and oral administration. J Pharmacol Exp Ther 1944; 82: 196-201
- Nordmann R, Ribiere C, Rouach H, Beauge F, Giudicelli Y and Nordmann J: Metabolic pathways involved in the oxidation of isopropanol into acetone by the intact rat. Life Sci 1973; 13(7): 919-32
- 33 井戸田佐智子:イソプロパノール中毒に関する研究. 日大医学雑誌 1985; 44(1):39-47
- Natowicz M, Donahue J, Gorman L, Kane M, McKissick J and Shaw L: Pharmacokinetic analysis of a case of isopropanol intoxication. Clin Chem 1985; 31(2): 326-8
- Gaulier JM, Lamballais F, Yazdani F and Lachâtre G: Isopropyl alcohol concentrations in postmortem tissues to document fatal intoxication. J Anal Toxicol 2011; 35(4): 254-5
- Wax J, Ellis FW and Lehman AJ: Absorption and distribution of isopropyl alcohol. J Pharmacol Exp Ther 1949; 97(2): 229-37

- ^{3 7} Raichle ME, Eichling JO, Straatmann MG, Welch MJ, Larson KB and Ter-Pogossian MM: Blood-brain barrier permeability of ¹¹C-labeled alcohols and ¹⁵O-labeled water. Am J Physiol 1976; 230(2): 543-52
- Saturated aliphatic acyclic secondary alcohols, ketones, and related saturated and unsaturated esters. In WHO (ed.), Food Additives Series 42, Safety evaluation of certain food additives, prepared by the fifty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Geneva, 9-18 June 1998, WHO, Geneva, 1999; pp.235-65.
- Lehman AJ, Schwerma H and Rickards E: Isopropyl alcohol; Acquired tolerance in dogs, rate of disappearance from the blood stream in various species, and effects on successive generation of rats. J Pharmacol Exp Ther 1945; 85: 61-9
- Wood JN, Carney J, Szczepanski K, Calello DP and Hurt H: Transplacental isopropanol exposure: case report and review of metabolic principles. J Perinatol 2007; 27(3): 183-5
- Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E and Lieber CS: High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med 1990; 322(2): 95-9
- ^{4 2} Agarwal DP and Goedde HW: Pharmacogenetics of alcohol dehydrogenase (ADH). Pharmacol Ther 1990; 45(1): 69-83
- 43 木村充,宮川朋大,宗未来,松下幸生,樋口進:ADH,ALDH遺伝子多型と 性差.日本アルコール薬物医学会雑誌 2009;44(6):686-9
- ^{4 4} Dohmen K, Baraona E, Ishibashi H, Pozzato G, Moretti M, Matsunaga C et al.: Ethnic differences in gastric σ-alcohol dehydrogenase activity and ethanol first-pass metabolism. Alcohol Clin Exp Res 1996; 20(9): 1569-76
- Lee S, Shih H, Chi Y, Li Y and Yin S: Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole. Chem Biol Interact 2011; 191(1-3): 26-31
- ^{4 6} Kamil IA, Smith JN and Williams RT: Studies in detoxication, 46. The metabolism of aliphatic alcohols, The glucuronic acid conjugation of acyclic aliphatic alcohols. Biochem J 1953; 53(1): 129-36
- ^{4 7} Chen W and Plapp BV: Kinetics and control of alcohol oxidation in rats. Adv Exp Med Biol 1980; 132: 543-9
- ⁴⁸ Daniel DR, McAnalley BH and Garriott JC: Isopropyl alcohol metabolism after acute intoxication in humans. J Anal Toxicol 1981; 5(3): 110-2

- ^{4 9} Pappas AA, Ackerman BH, Olsen KM and Taylor EH: Isopropanol ingestion: a report of six episodes with isopropanol and acetone serum concentration time data. J Toxicol Clin Toxicol 1991; 29(1): 11-21
- ^{5 0} Zuba D, Piekoszewski W, Pach J, Winnik L and Parczewski A: Concentration of ethanol and other volatile compounds in the blood of acutely poisoned alcoholics. Alcohol 2002; 26(1): 17-22
- Slauter RW, Coleman DP, Gaudette NF, McKee RH, Masten LW, Gardiner TH et al.: Disposition and pharmacokinetics of isopropanol in F-344 rats and B6C3F1 mice. Fundam Appl Toxicol 1994; 23(3): 407-20
- ^{5 2} OECD and UNEP Chemicals (ed.), 2-Propanol, CAS No: 67-63-0 (SIDS initial assessment report for SIAM 6, Paris, France, 9-11 June 1997), UNEP Publications.
- von der Hude W, Scheutwinkel M, Gramlich U, Fißler B and Basler A: Genotoxicity of three-carbon compounds evaluated in the SCE test in vitro. Environ Mutagen 1987; 9(4): 401-10
- von der Hude W, Behm C, Gürtler R and Basler A: Evaluation of the SOS chromotest. Mutat Res 1988; 203(2): 81-94
- ^{5 5} Florin I, Rutberg L, Curvall M and Enzell CR: Screening of tobacco smoke constituents for mutagenicity using the Ames' test. Toxicology 1980; 15(3): 219-32
- Shimizu H, Suzuki Y, Takemura N, Goto S and Matsushita H: The results of microbial mutation test for forty-three industrial chemicals. Sangyo Igaku 1985; 27(6): 400-19
- ^{5 7} Zeiger E, Anderson B, Haworth S, Lawlor T and Mortelmans K: Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. Environ Mol Mutagen 1992; 19 Suppl 21: 2-22 and 89
- 58 **JETOC** ((社)日本化学物質安全・情報センター)編(労働省労働基準局安全衛生部化学物質調査課監修),労働安全衛生法有害性調査制度に基づく既存化学物質変異原性試験データ集補遺版,**JETOC**,東京,1997;84,176.
- ^{5 9} Kapp RW Jr, Marino DJ, Gardiner TH, Masten LW, McKee RH, Tyler TR et al.: In vitro and in vivo assays of isopropanol for mutagenicity. Environ Mol Mutagen 1993; 22(2): 93-100
- ^{6 0} Palermo AM and Mudry MD: Genotoxic damage induced by isopropanol in germinal and somatic cells of *Drosophila melanogaster*. Mutat Res 2011; 726: 215-21

- Barilyak IR and Kozachuk SY: Investigation of the cytogenetic effect of a number of monohydric alcohols on rat bone marrow cells. Tsitol Genet 1988; 22(2): 49-52
- 6 2 Lehman AJ and Chase HF: The acute and chronic toxicity of isopropyl alcohol. J Lab Clin Med 1944; 29: 561-7
- 6 3 Smyth HF Jr and Carpenter CP: Further experience with the range finding test in the industrial toxicology laboratory. J Ind Hyg Toxicol 1948; 30(1): 63-8
- Pilegaard K and Ladefoged O: Toxic effects in rats of twelve weeks' dosing of 2-propanol, and neurotoxicity measured by densitometric measurements of glial fibrillary acidic protein in the dorsal hippocampus. In Vivo 1993; 7(4): 325-30
- ^{6 5} Burleigh-Flayer H, Garman R, Neptun D, Bevan C, Gardiner T, Kapp R et al.: Isopropanol vapor inhalation oncogenicity study in Fischer 344 rats and CD-1 mice. Fundam Appl Toxicol 1997; 36(2): 95-111
- Isopropanol. In IARC (ed.), IARC monographs on the evaluation of carcinogenic risks to humans, Volume 71, Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide, IARC, Lyon, 1999; pp.1027-36.
- ^{6 7} Antonova VI and Salmina ZA: [MAC of isopropyl alcohol for the water of reservoirs taking into account its action on the gonads and progeny (*in Russian*)]. Gig Sanit 1978; 1: 8-11
- ^{6 8} Faber WD, Pavkov KL and Gingell R: Review of reproductive and developmental toxicity studies with isopropanol. Birth Defects Res B Dev Reprod Toxicol 2008; 83(5): 459-76
- ^{6 9} Tyl RW, Masten LW, Marr MC, Myers CB, Slauter RW, Gardiner TH et al.: Developmental toxicity evaluation of isopropanol by gavage in rats and rabbits. Fundam Appl Toxicol 1994; 22(1): 139-51
- O Bates HK, McKee RH, Bieler GS, Gardiner TH, Gill MW, Strother DE et al.: Developmental neurotoxicity evaluation of orally administered isopropanol in rats. Fundam Appl Toxicol 1994; 22(1): 152-8
- ⁷ Bevan C, Tyler TR, Gardiner TH, Kapp RW Jr, Andrews L and Beyer BK: Two-generation reproduction toxicity study with isopropanol in rats. J Appl Toxicol 1995; 15(2): 117-23
- ^{7 2} Gentry PR, Covington TR, Andersen ME and Clewell HJ 3rd: Application of a physiologically based pharmacokinetic model for isopropanol in the

- derivation of a reference dose and reference concentration. Regul Toxicol Pharmacol 2002; 36(1): 51-68
- Wills JH, Jameson EM and Coulston F: Effects on man of daily ingestion of small doses of isopropyl alcohol. Toxicol Appl Pharmacol 1969; 15: 560-5
- 74 太田武夫,遠藤浩,森秀治,甲田茂樹,尾瀬裕:エタノール及びイソプロパノール溶剤使用者の肝機能検査成績. 岡大医短紀要 1992;3:93-7
- Jammalamadaka D and Raissi S: Ethylene glycol, methanol and isopropyl alcohol intoxication. Am J Med Sci 2010; 339(3): 276-81
- National Research Council (ed.), 1987 Poundage and technical effects update of substances added to food, prepared for Food and Drug Administration (PB91-127266), Washington DC, December 1989; pp.308, 659 and 663.
- Stofberg J and Grundschober F: Consumption ratio and food predominance of flavoring materials. Perfumer & Flavorist 1987; 12(4): 27-56
- Ministry of Agriculture, Fisheries and Food (ed.), Dietary intake of food additives in the UK: Initial surveillance, Food Surveillance Paper No.35, HMSO, London, 1993; pp.40-7.
- 79 厚生労働省医薬食品局食品安全部基準審査課,新たに指定された国際汎用香料の推定摂取量について,食品安全委員会添加物専門調査会第70回会合(平成21年4月20日)参考資料6,2009.
 - 参考: http://www.fsc.go.jp/fsciis/meetingMaterial/show/kai20090420te1
- 80 E 製造基準. 厚生労働省編, 第8版食品添加物公定書, 2007;675-6.
- 81 日本食品添加物協会「生産量統計を基にした食品添加物の摂取量の推定」研究 グループ(グループリーダー 藤井正美(前神戸学院大学薬学部)):生産量統計 を基にした食品添加物の摂取量の推定,その2 既存添加物品目の生産量統計: 最終報告.佐藤恭子(分担研究者),厚生労働科学研究費補助金(食品の安心・ 安全確保推進研究事業「国際的動向を踏まえた食品添加物の規格、基準の向上 に関する調査研究(主任研究者 佐藤恭子)」)平成19年度分担研究報告書「食 品添加物の規格基準の向上と摂取量に関する調査研究」,2008年3月
- 82 (株)食品化学新聞社編,食品添加物総覧(2004年版),東京,2004;100.
- 83 加工ユーケマ藻類. 厚生労働省編, 第8版食品添加物公定書, 2007; 272-4.
- 84 カロブビーンガム、キサンタンガム、グァーガム、ジェランガム、ショ糖脂肪酸エステル、精製カラギナン、ペクチン、マクロホモプシスガム、ラムザンガム、厚生労働省編,第8版食品添加物公定書,2007;292-3,300-1,307-8,

380-1, 434-7, 453-4, 585-8, 607-8, 634-5.

- Saturated aliphatic acyclic secondary alcohols, ketones and related saturated and unsaturated esters. In WHO (ed.), Technical Report Series 891, Evaluation of certain food additives, Fifty-first report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, 9 18 June 1998, WHO, Geneva, 2000; pp.59-68.
- FAO and WHO (ed.), Technical Report Series 462, FAO Nutrition Meetings Report Series 48, Evaluation of food additives, specifications for the identity and purity of food additives and their toxicological evaluation: some extraction solvents and certain other substances; and a review of the technological efficacy of some antimicrobial agents, Fourteenth report of the Joint FAO/WHO Expert Committee of Food Additives, Geneva, 24 June 2 July 1970, WHO, Geneva, 1971; pp.9-11, 21 and 36.
- FAO (ed.), FAO Nutrition Meetings Report Series No.48A,WHO/Food ADD/70.39, Toxicological evaluation of some extraction solvents and certain other substances, The result of the deliberations of the Joint FAO/WHO Expert Committee on Food Additives which met in Geneva, 24 June 2 July 1970, FAO and WHO.
- WHO (ed.), Technical Report Series 669, Evaluation of certain food additives, Twenty-fifth report of the Joint FAO/WHO Expert Committee of Food Additives, Geneva, 23 March – 1 April 1981, WHO, Geneva, 1981; p.30.
- No 1565/2000 of 18 July 2000 laying down the measures necessary for the adoption of an evaluation programme in application of Regulation (EC) No 2232/96 of the European Parliament and of the Council. Official Journal of the European Communities, 19.7.2000, L180/8-16
- Report of the Scientific Committee for Food on extraction solvents (opinion expressed on 15 January 1981). In Commission of the European Communities (ed.), Food Science and Techniques, Reports of the Scientific Committee for Food (eleventh series), Office for Official Publications of the European Communities, Luxembourg, 1981; pp.3-5 and 7.
- Second report on extraction solvents (opinion expressed on 21 June 1991). In European Commission (ed.), Food Science and Techniques, Reports of the Scientific Committee for Food (twenty-ninth series), Office for Official Publications of the European Communities, Luxembourg, 1992; pp.1-4, 6 and 11-4.
- Ouncil of the European Communities: Council Directive 88/344/EEC of 13 June 1988 on the approximation of the laws of the Member States on

extraction solvents used in the production of foodstuffs and food ingredients. Official Journal of the European Communities, 24.6.88, L157/28

Council of the European Communities: Council Directive 92/115/EEC of 17 December 1992 amending the first time Directive 88/344/EEC on the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients. Official Journal of the European Communities, 31.12.1992, L409/31