(案)

清涼飲料水評価書

クロロ酢酸

2012年1月 食品安全委員会 化学物質·汚染物質専門調査会

次 目 頁 <審議の経緯>......2 く食品安全委員会委員名簿>......2 く食品安全委員会化学物質・汚染物質専門調査会専門委員名簿>......3 約......4 要 5. 分子量......5 Ⅱ. 安全性に係る知見の概要......6 1. 毒性に関する科学的知見6 <参照>......28

1 <審議の経緯>

2003年7月1日 厚生労働大臣より清涼飲料水中のクロロ酢酸の規格基

準改正に係る食品健康影響評価について要請、関係書

類の接受

2003年7月18日 第3回食品安全委員会(要請事項説明)

2010 年 8 月 6 日 第 7 回化学物質·汚染物質専門調査会清涼飲料水部会

2012年1月27日 第7回化学物質・汚染物質専門調査会幹事会

2

3 〈食品安全委員会委員名簿〉

(2006年6月30日まで) (2006年12月20日まで) (2009年6月30日まで)

寺田雅昭(委員長) 寺田雅昭(委員長) 見上 彪(委員長)

寺尾允男(委員長代理) 見上 彪(委員長代理) 小泉直子(委員長代理*)

 小泉直子
 長尾 拓

 坂本元子
 長尾 拓
 野村一正

 中村靖彦
 野村一正
 畑江敬子

 本間清一
 本間清一
 本間清一

(2009年7月1日から) (2011年1月7日から)

小泉直子(委員長) 小泉直子(委員長)

見上 彪(委員長代理***) 熊谷 進(委員長代理****)

 長尾
 拓

 野村一正
 野村一正

 畑江敬子
 畑江敬子

 廣瀬雅雄
 廣瀬雅雄

 村田容常
 村田容常

*: 2007年2月1日から

**: 2007年4月1日から

***: 2009年7月9日から

****: 2011 年 1 月 13 日から

1 食品安全委員会化学物質·污染物質専門調査会専門委員名簿>

2

(2009年10月1日から)

佐藤 洋(座長)

立松正衞 (座長代理)

3

青木康展*	白井智之	村田勝敬
安藤正典*	津金昌一郎	安井明美
圓藤吟史※	寺本敬子	山内博
圓藤陽子*	遠山千春	山中健三
太田敏博***	中室克彦*	吉永 淳
川村 孝	長谷川隆一**	鰐渕英機
张小丰!*	# 177	

4

(2011年10月1日から)

佐藤 洋 (座長)

長谷川隆一*(座長代理)

5

青木康展**	白井智之	広瀬明彦*
圓藤吟史*	祖父江友孝	増村健一*
圓藤陽子*	田中亮太*	村田勝敬
香山不二雄	寺本敬子	安井明美
熊谷嘉人*	遠山千春	吉永 淳
渋谷 淳**	中室克彦*	鰐渕英機*

※:幹事会

*:清涼飲料水部会

6

7 8

9

10

11

12

要 約

清涼飲料水の規格基準改正に係る化学物質として、クロロ酢酸 (MCA) の食品健康影響評価を行った。

評価に用いた試験成績は、急性毒性試験(マウス、ラット、モルモット)、 亜急性毒性試験(マウス、ラット)、慢性毒性試験及び発がん性試験(マウ ス、ラット)、生殖・発生毒性試験(マウス、ラット)、遺伝毒性試験等の成 績である。

発がん性に関しては、ラット及びマウスを用いた 2 年間経口投与による発がん性試験、ラットを用いた 104 週間飲水投与による発がん性試験が行われているが、いずれの試験においても、発がん性を示す所見は認められなかった。国際がん研究機関(IARC)は MCA について発がん性の分類を行っていない。MCA はほとんどの $in\ vitro$ 及び $in\ vivo$ 遺伝毒性試験で陰性である。現時点で得られている結果からは、MCA には遺伝毒性はないものと判断される。

以上のことから、MCA については耐容一日摂取量(TDI)を算出することが適切であると判断した。

MCA の非発がん毒性に関する TDI については、ラットの 104 週間飲水投与試験における体重増加率の減少、肝臓の絶対及び相対重量の減少、腎臓の絶対重量減少及び精巣の相対重量減少がみられた試験データから、無毒性量(NOAEL)は 3.5 mg/kg 体重/日となり、不確実係数 1,000(種差 10、個体差 10、生殖・発生毒性が懸念されるが、データ不足とすることを考慮した 10)を適用して、3.5 µg/kg 体重/日となった。

以上、MCAのTDIを3.5 µg/kg 体重/日と設定した。

2	1. 用途
3	除草剤、チューインガム可塑剤、塩化ビニル可塑剤、医薬品、アミノ酸
4	等合成、カルボキシメチルセルロース合成、香料、キレート剤、界面活性
5	剤として使用される。水道においては、MCA などのハロゲン化酢酸類は、
6	水道原水中の有機物質や臭素及び消毒剤(塩素)とが反応し生成される消
7	毒副生成物質の一つである(参照 1)。
8	
9	2. 一般名
10	クロロ酢酸、モノクロロ酢酸
11	
12	3. 化学名
13	IUPAC
14	和名:クロロ酢酸、モノクロロ酢酸
15	英名:Chloroacetic acid、Monochloroacetic acid
16	CAS No.: 79-11-8
17	
18	4. 分子式 GM GIGGON
19	$\mathrm{CH_{2}ClCOOH}$
20	
21	5. 分子量
22	94.5
23	6.構造式
$\frac{24}{25}$	Cl—CH ₂ —CO ₂ H
26 26	C1 C112 CO211
27	7. 物理化学的性状
28	物理的性状:刺激臭のある無色の結晶
29	沸点(℃): 189℃
30	融点 (°C): α型=63、β型=56.2、γ型=52.5
31	密度(g/cm³): 1.58
32	水溶解度:非常によく溶ける。
33	蒸気圧(Pa (25℃)): 8.68
34	
35	8. 現行規制等
36	(1) 法令の規制値等
37	水質基準値(mg/L): 0.02
38	

I. 評価対象物質の概要

1

39

40

(2) 諸外国等の水質基準値又はガイドライン値

WHO (mg/L): 0.02 (第4版)(参照2)

Ⅱ. 安全性に係る知見の概要

WHO飲料水水質ガイドライン、化学物質の初期リスク評価書、EPA/統合リスク情報システム(IRIS)のリスト、米国産業衛生専門家会議(ACGIH)や米国国家毒性プログラム(NTP)の文書等を基に、毒性に関する主な科学的知見を整理した(参照4~9)。

1. 毒性に関する科学的知見

(1) 体内動態

① 吸収

MCAの急性皮膚曝露によるヒトの全身中毒例と死亡例が報告されている。これらの例の多くは高濃度のMCA(\geq 80%)の飛散によるもので、皮膚表面が直接曝露されると、皮膚から速やかに吸収され、全身各組織へ分布する(参照10、11、12)。

雄のSprague-Dawley(SD)ラットに[U-14C]標識したMCA 10、225 mg/kg体重(LD $_{20}$)を単回飲水投与した試験で、10 mg/kg体重投与では速やかに胃から吸収、あるいは小腸に移動し、投与15分後には投与量の82%、2時間後にはほぼ全量が胃から消失した。225 mg/kg体重投与では、投与15分後には投与量の約37%が胃から消失し、4時間後、8時間後には8%、26%が吸収あるいは小腸に移動し、32時間後には胃からほとんど消失した。10 mg/kg体重投与では投与45分後、投与量の45%が小腸から検出されたが、225 mg/kg体重投与では、投与4時間後、小腸から投与量の $3\sim5\%$ しか検出されなかった。著者らは高濃度のMCAが幽門部に刺激を与え、胃の内容物の小腸への移動を妨げていると述べている。血漿中のMCAの量は、10 mg/kg体重投与では投与2時間後にピークに達し、16時間後にほぼ消失した。225 mg/kg体重投与では投与15分後にピークに達し、32時間後にほぼ消失した(参照13)。

雄のSDラットに $[U^{-14}C]$ 標識したMCA 125 mg/kg体重を単回経皮投与した試験で、MCAは速やかに皮膚を透過し、投与部位の表皮には投与15分後に投与量の1.8%しか残留していなかったが、真皮には投与45分後と4時間後にそれぞれ投与量の50%と20%が残留していた(参照13)。

ヒトの皮膚における MCA の皮膚透過率を調べた試験で、透過係数は約 1.1×10^{-3} cm/時間で、遅延時間(lag time: 化学物質が皮膚に接してから定常状態に達するまでの所要時間)は約3.67 時間であった(参照14)。

EPA は、試験方法の違い及び異なる種(げっ歯類とヒト)の皮膚が使用

されていることから、参照 13 と参照 14 の比較は難しいと述べている(参 照 6)。

② 分布

MCA を皮下投与したラットでは、腎臓と肝臓中の量がほぼ同等であり、血漿、脳及び心臓における値の $4\sim5$ 倍以上であった (参照 15)。

雄の SD ラットに $[U^{-14}C]$ 標識した MCA 10、75 mg/kg 体重を静脈内投与した実験で、投与 5 分後の血漿中 MCA 量はそれぞれ投与量の 0.6%及び 1%であった。肝臓、心臓、肺中の MCA 量は血漿中と同等であった。ピークは 10 mg/kg 体重投与では投与 5 分後、75 mg/kg 体重投与ではもっと遅い 15 分後に現れた(参照 16)。

雄のSDラットに[U-14C]標識したMCA 10 mg/kg体重、225 mg/kg体重 (LD₂₀) の単回経口投与試験が行なわれた。10 mg/kg体重投与では、血漿と腎臓中のMCA量は投与2時間後にそれぞれ投与量の0.11%と1.93%に相当するピークに達し、肝臓中では投与15分後に投与量の1.91%に相当するピークを示した。225 mg/kg体重投与では、血漿中MCA量は投与15分後に投与量の0.11%に相当するピークに達し、肝臓と腎臓中ではそれぞれ投与16時間後、4時間後に投与量の0.2%と0.45%に相当するピークを示した。著者らは、225 mg/kg体重投与において組織中MCA量が10 mg/kg体重投与より低いのは、投与後8時間の間、高濃度のMCAが幽門部に刺激を与え、胃の内容物が小腸へ移動するのを妨げたためであると述べている(参照13)。

雄の SD ラットに[U-14C]標識した MCA 125 mg/kg 体重を単回経皮投与した試験で、MCA 量は、血漿中においては投与 45 分後、心臓、肺、筋肉、皮膚中においては投与 2 時間後、その他のほとんどの組織においては投与 4 時間後にピークに達した(参照 13)。

③ 代謝

MCAは、脱ハロゲン反応を経て、シュウ酸及びグリシンに代謝される。 又は脱ハロゲン化により、グルタチオンと抱合し、チオ二酢酸に代謝される(参照 17)。MCAが脂質と反応するとの報告もある(参照 18、19)。 MCAの代謝経路を図に示す。

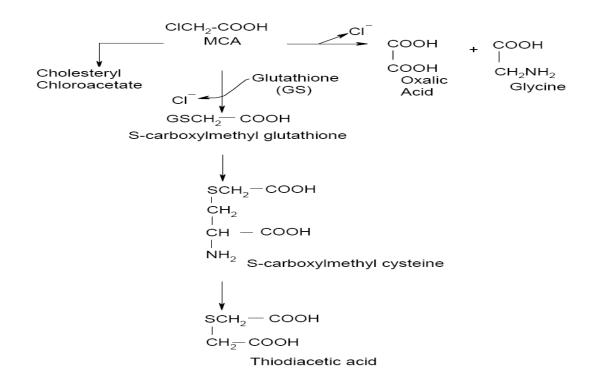


図 MCAの代謝経路(参照17)

4 排泄

雄の SD ラットに 10 mg/kg 体重の MCA を単回経口投与した試験で、投与量の約 90%は 24 時間以内に尿から排泄された(参照 19)。

雄の SD ラットに[U-14C]標識した MCA 10、225 mg/kg 体重(LD₂₀)を単回経口投与した試験で、投与 32 時間後までの尿及び糞中への排泄は、それぞれ投与量の $66.1\sim72.25\%$ 及び $0.81\sim0.85\%$ であった(参照 13)。

雄の SD ラットに $[U^{-14}C]$ 標識した MCA 125 mg/kg 体重を単回経皮投与した試験では、投与 32 時間後までに投与量の 63.8% が尿中へ、0.9% が糞中へ排泄された(参照 13)。

(2) 実験動物等への影響

① 急性毒性試験

経口投与による急性毒性試験での半数致死量(LD_{50})は、ラットでは55 $\sim 580~mg/kg$ 体重、マウスでは $165\sim 260~mg/kg$ 体重、モルモットでは80~mg/kg体重であった(参照5)。MCAは経皮曝露で高い毒性を示し、ラットを用いた経皮投与による LD_{50} は145~mg/kg体重であった(参照13)。

0.5 mLの MCA 水溶液 (40%濃度) を雄の SD ラットの腹部に塗布した経皮毒性試験が行われた (MCA として 34.1mg/cm²)。投与 10 分後の光学顕微鏡による皮膚の病理組織学検査では III 度の熱傷が認められ、これはMCA の高い皮膚透過性によるものと考えられた。投与 4 時間後の血液検

査では、MCA 投与群に二酸化炭素分圧 (pCO_2) 、重炭酸イオン (HCO_3) 、総二酸化炭素 (tCO_2) 、塩基過剰(base excess, BE)及びグルコースレベルの減少が認められた。また、アスパラギン酸アミノトランスフェラーゼ (AST)、ミトコンドリアアミノトランスフェラーゼ (mAST)、アラニンアミノトランスフェラーゼ (ALT)、血中尿素窒素 (BUN)、クレアチニン (Cr)、アンモニア、乳酸、ピルビン酸、赤血球、ヘモグロビン (Hb)、ヘマトクリット (Ht)、総タンパク質及びアルブミンの上昇がみられた。これらは肝細胞の損傷、腎機能障害、糖新生障害とアンモニア代謝障害の結果と考えられた(参照 20)。

MCA の急性毒性のメカニズムを解明するため、MCA の生理食塩水溶液(対照群には生理食塩水)を雄ラットに絶食下で皮下投与(162 mg/ kg 体重)する試験が行われた。投与 2 時間後の血液検査の結果、投与群では AST、ALT、mAST、BUN、Cr、乳酸塩及びピルビン酸塩の有意な上昇、グルコースの有意な低下が認められた。血中酵素の中でも mAST の上昇が大きいことから、MCA は肝細胞ミトコンドリアを選択的に標的とすることが示唆された。それにより糖新生が減少して低血糖や血中乳酸及びピルビン酸濃度の有意な上昇を引き起こし、この低血糖と乳酸アシドーシスの組み合わせが心臓や脳等の臓器に作用して死に至ると考えられたと報告されている(参照 21)。

MCA 曝露に対するグルコースの解毒効果を調べるため、雄の SD ラット (21 匹/群) に MCA 80 mg/kg 体重(単回致死量)を皮下投与した後、生理食塩水(対照群)、5%、10%のグルコース溶液を 2 mL/時で 10 時間静脈内投与した。14 日間の観察期間後の生存率は、対照群では 0%(全数死亡)、5%グルコース溶液投与群で 14%、10%グルコース溶液投与群で 79%であった(参照 22)。

雄の SD ラット(11~14 匹/群)に MCA を皮下投与(108、135、163 mg/kg 体重)し、急性毒性に対する肺障害の関与を調べた。投与 2 時間後の気管支肺胞洗浄液(BALF)中の乳酸脱水素酵素(LDH)及び総細胞数には用量依存的な増加がみられ、投与 4 時間後には有意な血糖低下がみられた。163 mg/kg 体重投与群では、血液ガス分析において有意な肺胞のガス交換障害が確認された。低血糖及び肺障害が MCA 曝露による死亡の原因と思われると報告されている(参照 23)。

② 亜急性毒性試験

a. 16 日間亜急性毒性試験(マウス)

B6C3F₁マウス (雌雄、各投与群5匹) におけるMCA (雄0、15、30、60、120、240 mg/kg体重/日、雌0、30、60、120、240、480 mg/kg体重/日) の16日間強制経口投与試験が行われた。MCAは純水に溶かして16日の試験期間中12日間投与した。各投与群で認められた毒性所見を表1に示す。

120 mg/kg体重/日投与群の雌で流涙がみられ、240 mg/kg体重/日以上の

投与群では雌雄の全例が投与開始2日後までに流涙、運動失調、自発運動 の低下などの症状を示して死亡した。

EPAは自発運動の低下、運動失調、流涙、死亡などに基づいて、最小毒性量(LOAEL)を240 mg/kg体重/日、NOAELを120 mg/kg体重/日とし、16日の試験期間のうち12日間投与したことを考慮して、各180 mg/kg体重/日、90 mg/kg体重/日と算出している(参照6、8)。

表 1 マウス 16 日間亜急性毒性試験

投与群	雄	此隹
240 mg/kg 体重/日以上	投与開始 2 日後までに流	涙、運動失調、自発運動の低下、緩
	徐呼吸、徐脈、低体温、	衰弱、起毛、四肢緊張低下及び握り
	反射障害を示して全例死	亡
120 mg/kg 体重/日	毒性所見なし	流淚

b. 16 日間亜急性毒性試験 (ラット)

F344 (Fischer344) /N 系ラット (雌雄、各投与群 5 匹) における MCA (0,7.5,15,30,60,120 mg/kg 体重/日) の 16 日間強制経口投与試験が行われた。MCA は純水に溶かして 16 日間の試験期間中 12 日間投与した。各投与群で認められた毒性所見を表 2 に示す。

15 mg/kg 体重/日以上投与群の雌及び 60 mg/kg 体重/日以上投与群の雄で流涙、すべての投与群の雌雄で鼻汁がみられ、120 mg/kg 体重/日投与群の雄1匹が投与4時間以内に流涙、衰弱、緩徐呼吸、運動失調などの症状を示して投与3日目に死亡した。120 mg/kg 体重/日投与群の雌雄各1匹の鼻周囲にポルフィリン症の紅斑を認めた。

EPA は鼻汁が認められたことに基づいて、LOAEL を 7.5 mg/kg 体重/日とし、16 日の試験期間のうち投与したのが 12 日間であることを考慮して、LOAEL を 5.6 mg/kg 体重/日と算出している(参照 6、8)。

表 2 ラット 16 日間亜急性毒性試験

投与群	雄	雌
120 mg/kg 体重/日	初回投与4時間以内に流涙、衰弱、緩徐呼吸、	ポルフィリン
	運動失調などの症状を示し、投与3日目に死亡	症の紅斑
	(1例)。ポルフィリン症の紅斑(1例)	(1例)
60 mg/kg 体重/日以上	流淚	_
15 mg/kg 体重/日以上	_	流涙
7.5 mg/kg 体重/日以上	鼻汁	鼻汁

c. 13 週間亜急性毒性試験 (マウス)

 $B6C3F_1$ マウス(雌雄、各投与群 20 匹)における MCA(0、25、50、100、150、200 mg/kg 体重/日)の 13 週間強制経口投与試験が行われた。 MCA は純水に溶かして週 5 日投与した。各投与群で認められた毒性所見を表 3 に示す。

200 mg/kg 体重/日投与群では、雌雄共に死亡率の増加が認められ、この群の雌では、体重の減少及び肝臓の絶対及び相対重量の有意な増加が認められた。雌では 150 mg/kg 体重/日以上投与群でコリンエステラーゼ値の有意な減少がみられた。200 mg/kg 体重/日投与群の雌 2 例と雄全例が死亡したが、これらの例では被験物質に起因する肝細胞質の空胞変性がみられた。

WHO はコリンエステラーゼ値の減少に基づいて、LOAEL を 150 mg/kg 体重/日、NOAEL を 100 mg/kg 体重/日としている(参照 8、9、24)。

表 3 マウス 13 週間亜急性毒性試験

投与群	雄	雌	
200 mg/kg 体重/日	死亡率の増加、肝	死亡率の増加、肝細胞質の空胞変性、体重	
	細胞質の空胞変性	の減少、肝臓の絶対及び相対重量の増加	
150 mg/kg 体重/日	毒性所見なし	コリンエステラーゼ値の減少	
以上			

d. 13週間亜急性毒性試験(ラット)

F344 ラット(雌雄、各投与群 20 匹)における MCA(0、30、60、90、120、150 mg/kg 体重/日)の <math>13 週間強制経口投与試験が行われた。MCA は純水に溶かして週 5 日投与した。各投与群で認められた毒性所見を表 4 に示す。

60 mg/kg 体重/日以上投与群では、雌雄共に死亡率が増加した。雄の 90 mg/kg 体重/日以上投与群及び雌の 60 mg/kg 体重/日以上投与群では、BUN の用量依存的上昇が認められた。雄の 30、60、90 mg/kg 体重/日の投与群と雌の全投与群で、血清コリンエステラーゼ活性の減少が認められた。また、雄の 90 mg/kg 体重/日以上の投与群で血清チロキシンレベルの有意な上昇が認められた。

雌雄共に 60 mg/kg 体重/日以上の投与群で心臓における単核炎症細胞(主にマクロファージ)の集積及び心臓の筋原線維の変性が認められた。60、120、150 mg/kg 体重/日の投与群では、雌雄で ALT 及び AST の有意な用量依存的上昇が認められた。

雌の30 mg/kg 体重/日以上の投与群及び雄の60 mg/kg 体重/日以上の投与群で心臓相対重量の有意な減少が認められた。雌雄の60 mg/kg 体重/日以上の投与群で、肝臓及び腎臓の相対重量の有意な増加が認められた。

EPA は雌の心臓の相対重量の減少に基づいて LOAEL を 30 mg/kg 体重 /日とし、投与頻度が 5日/週であることを考慮して、LOAEL を 21.4 mg/kg 体重/日と算出している。また、WHO は心臓の相対重量及びリンパ球数の 減少(④免疫毒性試験 a. 参照)に基づいて、LOAELを 30 mg/kg 体重/ 日としている (参照 6、8、9、24)。

表 4 ラット 13 週間 亜急性 毒性試験

な ・ ファー ・		
投与群	雄	雌
90 mg/kg 体重/日以上	BUN の用量依存的増加、血清チ	
	ロキシン値の上昇	
		_
60 mg/kg 体重/日以上	死亡率の増加、心臓の単核性炎症	死亡率増加、心臓の単核性
	細胞の集積及び心臓の筋原線維	炎症細胞の集積及び心臓
	の変性、ALT 及び AST の用量依	の筋原線維の変性、ALT
	存的上昇(90 mg/kg 体重/日は除	及び AST の用量依存的上
	く)、肝臓の相対重量の増加、腎	昇(90 mg/kg 体重/日は除
	臓の相対重量の増加、心相対重量	く)、肝臓の相対重量の増
	の減少	加、腎臓の相対重量の増
		加、BUN の用量依存的増
		加、
30 mg/kg 体重/日以上	血清コリンエステラーゼ活性の	心臓の相対重量の減少、血
	減少(30、60、90 mg/kg 体重/	清コリンエステラーゼ活
	日の投与群)	性の減少

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

90 日間亜急性毒性試験 (ラット)

SDラット(雌雄、各投与群10匹)におけるMCA(0、15、30、60、120 mg/kg体重/日)の90日間強制経口投与試験が行われた。各投与群で認めら れた毒性所見を表5に示す。

雄の15、30 mg/kg体重/日の投与群でBUN、血中カルシウム、ALTの上 昇を認め、雄の15 mg/kg体重/日以上投与群と雌の30、60 mg/kg体重/日の 投与群で血清中Crの上昇が認められた。また、雄の60 mg/kg体重/日投与 群で慢性腎症の用量依存的増加及び脾臓の色素沈着の増加が認められた。 雌の60、120 mg/kg体重/日投与群と雄の60 mg/kg体重/日投与群で肝臓及 び腎臓の相対重量の増加を認め、雌の120 mg/kg体重/日投与群でBUN上 昇、ALT及びASTの上昇がみられた。なお、120 mg/kg体重/日投与群の雄 4例、雌3例が投与開始3日後までに急性毒性症状を示して死亡しており、 さらに雄3例が投与開始14日後以降に死亡している。

毒性は雌より雄において強く出ており、著者らは雄の毒性症状に基づい

表5 ラット90日間亜急性毒性試験

投与群	雄	雌
120 mg/kg 体重/日	血清中 Cr 濃度上昇、4 例が投与	肝臓及び腎臓の相対重量増
	開始3日後までに死亡、3例が投	加、BUN 上昇、ALT 及び AST
	与開始 14 日後以降に死亡	上昇、3 例が投与開始 3 日後
		までに死亡
60 mg/kg 体重/日	血清中 Cr 増加、慢性腎症及び脾	血清中 Cr の上昇、肝臓及び
	臓の色素沈着の増加、肝臓及び腎	腎臓の相対重量の増加
	臓の相対重量の増加	
30 mg/kg 体重/日	死亡(1例)、BUN 上昇、血中カ	血清中 Cr 上昇
	ルシウム濃度上昇、ALT上昇、血	
	清中 Cr の増加	
15 mg/kg 体重/日	死亡(1例)、BUN 上昇、血中カ	
	ルシウム濃度上昇、ALT上昇、血	毒性所見なし
	清中 Cr 上昇	

4 5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

慢性毒性試験及び発がん性試験 (3)

2年間慢性毒性/発がん性併合試験(マウス)

B6C3F₁マウス(雌雄、各投与群 60 匹)における MCA(0、50、100 mg/kg 体重/日)の2年間強制経口投与試験が行われた。MCAは純水に溶かして 週5日投与した。各投与群で認められた毒性所見を表6に示す。

対照群と比べて、100 mg/kg 体重/日投与群でのみ、雄の生存率の有意な 低下、雌の平均体重の減少及び嗅上皮の化生、雌雄共に鼻粘膜の炎症と前 胃の扁平上皮過形成の発生頻度の有意な増加が認められた。

発がん性については、全投与群で発がん性を示す証拠は認められなかっ た。

EPA は雄の生存率の低下、雌の平均体重の減少及び嗅上皮の化生、雌雄 共の鼻粘膜の炎症と前胃の扁平上皮過形成に基づいて、NOAEL を 50 mg/kg 体重/日、LOAEL を 100 mg/kg 体重/日とし、投与頻度が 5 日/週で あることを考慮して、各 35.7 mg/kg 体重/日、71 mg/kg 体重/日と換算し ている。

WHO は本試験の NOAEL を 50 mg/kg 体重/日としている (参照 6、8、 9)。

表 6 マウス 2 年間慢性毒性/発がん性併合試験

投与群	雄	雌
100 mg/kg 体重/日	生存率の低下、鼻粘膜の炎	平均体重の減少、嗅上皮の化生、
	症、前胃の扁平上皮の過形成	鼻粘膜の炎症、前胃の扁平上皮の
		過形成
50 mg/kg 体重/日	毒性所見なし	毒性所見なし

b. 2年間慢性毒性/発がん性併合試験(ラット)

F344 ラット(雌雄、各投与群 70 匹)における MCA(0、15、30 mg/kg体重/日)の 2年間強制経口投与試験が行われた。MCA は純水に溶かして週 5日投与した。各投与群で認められた毒性所見を表 7に示す。

体重及び一般状態の変化は認められなかったが、雄の 30 mg/kg 体重/日投与群及び雌の全投与群で生存率の有意な低下が認められた。また、雌の全投与群で、子宮内膜の間質ポリープの発生頻度の有意な増加が認められたが、対照群の発生頻度が異常に低値を示していることから、NTP は投与群での発生頻度の増加を MCA による影響として認めることは難しいとしている。

発がん性については、肝臓を含め、発がん性を示す証拠は認められなかった。

EPA は生存率の低下に基づいて、LOAEL を 15 mg/kg 体重/日とし、投与頻度が 5日/週であることを考慮して、11 mg/kg 体重/日と換算している。 ACGIH、WHO は本試験の LOAEL を、生存率の低下に基づいて 15 mg/kg 体重/日とした(参照 5、6、8、9)。

表 7 ラット 2 年間慢性毒性/発がん性併合試験

投与群	雄	雌
30 mg/kg 体重/日	生存率低下	_
15 mg/kg 体重/日以上	毒性所見なし	生存率低下、子宮内膜の間質ポリープ発生頻
		度の増加

 $\frac{22}{23}$

c. 104週間慢性毒性/発がん性併合試験(ラット)

F344 ラット(雄、各投与群 50 匹)における MCA(0、0.05、0.5、2 g/L (時間加重平均として 1.1 g/L): 0、3.5、26.1、59.9 mg/kg 体重/日)の 104 週間飲水投与試験が行われた。各投与群で認められた毒性所見を表 8 に示す。

3.5 mg/kg 体重/日以上投与群では、対照群と比較して脾臓の絶対及び相対重量の変化が投与の影響として認められ、3.5 mg/kg 体重/日投与群では増加がみられた。26.1 mg/kg 体重/日以上投与群では、体重増加率の減少、

肝臓の絶対及び相対重量の減少、腎臓の絶対重量の減少、精巣の相対重量の増加、脾臓の絶対及び相対重量の減少が認められた。59.9 mg/kg 体重/日投与群では、心筋変性の増加、鼻腔の慢性活動性炎症の増加、肝臓の炎症の若干の増加が認められた。

発がん性については、全投与群で発がん性を示す証拠は認められなかった。

著者らは 26.1 mg/kg 体重/日で発がんがみられなかったことから、発がん性の無作用量 (NOEL) を 26.1 mg/kg 体重/日とした。

EPA は、3.5 mg/kg 体重/日でみられた脾臓の絶対及び相対重量の増加について、中、高用量投与群では逆に減少し、かつ、病理組織学的な変化もみられなかったことから、毒性影響ではないと判断し、NOAEL を 3.5 mg/kg 体重/日、LOAEL を 26.1 mg/kg 体重/日としている。

WHO は脾臓重量の増加に基づいて、LOAEL を 3.5 mg/kg 体重/日としている(参照 6、7、26)。

表 8 ラット 104 週間慢性毒性/発がん性併合試験

投与群	雄
1.1 g/L	心筋変性の増加、鼻腔の慢性活動性炎症の増加、肝
(59.9 mg/kg 体重/日)	臓の炎症の若干の増加
0.5 g/L 以上	体重増加率の減少、肝臓の絶対及び相対重量の減少、
(26.1 mg/kg 体重/日)	腎臓の絶対重量の減少、精巣の相対重量の増加、脾
	臓の絶対及び相対重量の減少
0.05 g/L 以上	脾臓の絶対及び相対重量の変化
(3.5 mg/kg 体重/日)	

④ 免疫毒性試験

a. 13週間亜急性毒性試験(ラット)(②d. 13週間亜急性毒性試験(ラット)と同一試験)

F344 ラット(雌雄、各投与群 20 匹)における MCA(0、30、60、90、<math>120、150 mg/kg 体重/日)の 13 週間飲水投与試験が行われた。各投与群で認められた毒性所見を表 9 に示す。

対照群と比べて、全投与群でリンパ球数の有意な減少が認められた(参 照 8、24)。

表 9 ラット 13 週間亜急性毒性試験

投与群	雄	雌
30 mg/kg 体重/日以上	リンパ球数の減少	_

⑤ 生殖·発生毒性試験

a. 発生毒性試験 (ラット)

妊娠 $1\sim22$ 日の SD ラット(雌雄)における MCA(0、1570 mg/L:0、193 mg/kg 体重/日)の飲水投与試験が行われた。各投与群で認められた毒性所見を表 10 に示す。

母動物で有意な体重増加抑制が認められたが、生殖・発生への有害影響は報告されていない。なお、本試験では骨格異常検査は行われていない。 EPA は母動物の体重増加抑制に基づいて LOAEL を 193 mg/kg 体重/日としている。WHO は、母動物の体重増加抑制に基づき母体毒性の LOAEL を 193 mg/kg 体重/日とし、発生毒性の NOAEL を 193 mg/kg 体重/日としている(参照 6、9、27)。

表 10 ラット発生毒性試験

投与群	母動物	児動物		
193 mg/kg 体重/日	体重増加抑制	影響なし		

[参考]

妊娠 6-15 日の Long-Evans ラットにおける MCA $(0, 17, 35, 70, 140 \, \text{mg/kg}$ 体重/日)の経口投与試験が行なわれた。最高用量の $140 \, \text{mg/kg}$ 体重/日投与群で心脈管系の形態異常が認められた。この試験では骨格異常は認められていないことを確認しており、発生毒性の NOAEL は $70 \, \text{mg/kg}$ 体重/日になると考えられるが、要旨だけの報告しかなく、詳細な実験結果は報告されていない(参照 28)。

in vitro 発生毒性試験

CD-1 マウスの $3\sim6$ 体節期の胚を、MCA を含む 11 種類のハロ酢酸に 24 時間曝露させた。MCA の試験濃度は 0、0.05、0.1、0.175、0.25、0.35、0.5 mM となっており、0.175 mM の濃度で神経管の異常が認められ、0.25 mM の濃度で胚死亡 (41%) が認められた。その他の統計学的に有意な形態異常として、0.25 mM の濃度で咽頭球異常、心異常が認められた。0.1 mM の濃度以下では有害影響は認められなかった。なお、この影響は pH の変化に起因するものではないことが確認された。MCA に対するベンチマーク濃度 $(BMC_5:$ 神経管欠損の 5% 増加を引き起こす濃度の低い方の 95%信頼限界値)は 0.100 mM であった。ハロ酢酸の毒性強度は MCA>トリクロロ酢酸(TCA)>ジクロロ酢酸(DCA)の順であった。著者はすべてのハロ酢酸は潜在的な発生毒性物質であると結論した(参照 29)。

⑦ 遺伝毒性試験

MCA の in vitro 及び in vivo の試験結果を表 11、12 に示す。

a. in vitro 試験

MCA の、サルモネラ菌($Salmonella\ typhimurium$)を用いた復帰突然変異試験では弱陽性の報告が一つあるが(参照 30)、他の多くの報告では陰性であり、再現性は確認されていない(参照 31、32、33、34)。

マウスリンフォーマ試験における陽性反応は細胞毒性が強くみられる 濃度でのものであった(参照35)。また、チャイニーズハムスター培養細胞を用いる姉妹染色分体交換 (Sister chromatid exchange, SCE) 試験では陽性と陰性の相反する結果が報告されている(参照36、37)。マウス及びラットの肝細胞及びヒトリンパ芽球細胞CCRF-CEMを用いたDNA損傷試験はいずれも陰性であった(参照38)。

表 11 MCAの in vitro遺伝毒性試験結果

3 N FFA 00 475 W7		試験	結果	
試験の種類	対象	代謝活性	代謝活性	文献
(名称)		有	無	
原核生物	I			l
復帰突然変異試験	S.typhimurium			McCann et al.
	TA98 、 TA100 、	_	_	1975
	TA1535、TA1537			(参照 33)
	S.typhimurium			Mortelmans et al.
	TA98 、 TA100 、	_	_	1986(参照 31)
	TA1535、TA1537			
	S.typhimurium			Giller et al.
	TA100	_	_	1997(参照 34)
	S.typhimurium			Huang et al. 1998
	TA98、TA100	_	_	(参照 32)
	S.typhimurium	±		Kargalioglu et al.
	TA100	土	±	2002(参照 30)
DNA 損傷試験	大腸菌			Giller et al.
(SOS 試験)	PQ37	_	_	1997(参照 34)
真核生物				
遺伝子突然変異試	マウスリンパ腫細胞	NI - 1 - 4	+ 1)	McGregor et al.
験	L5178Y (TK+/-)	No data	T *′	1987(参照 35)
DNA 損傷試験	チャイニース゛ハムスター卵巣由			Plewa et al. 2002
(コメットアッセ	来細胞株 (CHO)	No data	+	(参照 39)
イ)	(AS52) 細胞			

DNA 鎖切断試験	マウス肝細胞		_	Chang et al. 1992
	ラット肝細胞	No data	_	(参照 38)
	ヒトリンパ芽球細胞		_	
DNA 損傷試験	チャイニース゛ハムスター肺由来			Sawada et al.1987
(SCE 試験)	細胞株 (CHL) 細胞	_	_	(参照 37)
DNA 損傷試験	CHO 細胞		1	Galloway et al.
(SCE 試験)		_	+	1987 (参照 36)

+:陽性;-:陰性; ±:弱陽性 1) 細胞毒性がみられる濃度でのみ陽性

b. in vivo 試験

ショウジョウバエの成体に MCA を混餌投与した伴性劣性致死突然変異 (sex-linked recessive lethals: SLRL) 試験では突然変異の誘発はみられなかった (参照 8)。ラット肝臓及びマウス肝臓、脾臓、十二指腸、胃における DNA 鎖切断試験は陰性であった (参照 38)。雄のラットを用いた染色体異常試験で、骨髄細胞に染色体異常及び小核が時間及び用量依存的に誘発されたとの報告があるが (参照 40)、この実験に用いられたラットは捕獲されたものであり、適切な評価はできない。

表 12 MCA の in vivo 遺伝毒性試験結果

試験の種類	対象	試験結果	文献
(名称)			乂 附∖
伴性劣性致死	ショウジョウバエ		Foureman et al.1994 (参照 8)
突然変異試験		_	
DNA鎖切断試	マウス肝臓、脾臓、十二	_	Chang et al. 1992(参照 38)
験	指腸、胃	_	
	ラット肝臓	_	

+: 陽性; -: 陰性

(3)ヒトへの影響

MCA によるヒトの中毒例の多くは、皮膚に高濃度溶液が飛散したことによる偶発的な経皮曝露によるものである。Millischer ら(参照 12)が報告した 7 名と Kusch ら(参照 11)が報告した 1 名のうち、5 名は死亡し、2 名は昏睡状態となったが回復した。臨床症状は、皮膚の火傷、嘔吐、神経症状(痙攣など)、循環器系の不整(頻脈、低血圧、心電図異常など)及び意識喪失などである。生化学的変化としては、高血糖¹と低カリウム血症を伴う重篤なアシドーシス、尿量の減少、クレアチニンリン酸値の上昇が認められた。死亡は急性曝露の 4~18 時間後に生じ、検屍解剖では肝臓、脳、心臓

¹ WHO、EPA は高血糖を引き起こすとしているが、動物試験では低血糖を引き起こす例が 多い。ヒトで高血糖を引き起こすとする事例が 1 件しかないため、判断が難しい。

1 及び腎臓の損傷が認められた(参照 10、12)。また、静脈血液の置換、塩化 2 カリウムの静脈内投与、高用量のコルチコイド及び利尿剤投与により曝露 4 3 日後に回復した症例がある(参照 11)。高用量の急性経皮曝露では、MCA 4 は恐らくクレブス回路の阻害を介する全身性の代謝毒として作用するとさ 5 れている(参照 12)。

3 歳児が誤って MCA に曝露され、Ⅲ度の熱傷を負い、重篤な中毒症状となった症例が報告されている。曝露経路にかかわらず、MCA は速やかにかつ高率で吸収され、重篤な中毒症状を引き起こし、曝露面積が体表面積の5%を超える場合、中毒の重篤さと曝露された皮膚面積との直接的な関連を示した(参照41)。

MCA の経口曝露により、溶血性尿毒症症侯群を示した症例が報告されている。55歳の男性が自殺目的で 50~75 mLの MCA を摂取し、嘔吐、血便、乏尿性無尿症を示した。診察の結果、深刻な腎不全、代謝性アシドーシス、貧血、血管内溶血を伴う血小板減少が認められた。溶血性尿毒症症侯群の治療として血漿輸血が行われ、腎不全の症状から血液透析が行われた。治療期間中、患者は継続的に無尿、血小板減少症状を示し、MCA 曝露 5 日後に死亡した (参照 42)。

14歳の患者がイボの治療のため患部に MCA の結晶を塗布された。患部の腫張と痛みにより 24 時間後に再診察を受けた結果、患部の全層熱傷が認められた。体温が 39℃まで上がり、心拍増加などの全身症状も現れた。皮膚移植等の患部に対する処置を経て回復した (参照 43)。

10歳の患者の指関節を、イボ治療のため MCA (0.08%) を浸した綿で被覆した。15分後、患部周辺の皮膚に火傷のような痛みを感じ、皮膚の白変が認められた。大量の水で洗浄したが、二日後患部周辺は壊死し、治療後も指関節奇形の合併症が残された (参照 44)。

2.

2. 国際機関等の評価 (表 13)

(1) International Agency for Research on Cancer (IARC) IARC は MCA の発がん性分類を行っていない。

(2) Joint Expert Committee on Food Additives (JECFA) 評価書なし

(3) WHO 飲料水水質ガイドライン第3版 一次及び二次追補包括版 (参照45)、第4版(参照2)及び根拠文書(参照9)

ラット及びマウスの 2 年間飲水投与試験では、MCA に発がん性は認められなかった (参照 8)。MCA 塩は、いくつかの変異原性試験で陰性・陽性の混じった結果を示したが、染色体異常は示さなかった 4。

⁴ 最近、in vivo ラット小核、染色体異常試験で陽性であるとの報告もある (参照 39)。

発がん性が認められなかったことから、ラットの 104 週間飲水投与試験(参照 26)における脾臓の絶対及び相対重量増加に基づく LOAEL 3.5 mg/kg 体重/日に、不確実係数として 1,000 (種差 10、個体差 10、LOAEL からの外挿及び多世代生殖毒性試験データがないこと 10) を適用して、TDI は 3.5 μ g/kg 体重/日と算出された。

[参考]

TDIの飲料水の寄与率を 20% とし、体重 60 kg の成人の 1 日の飲水量を 2 L として、ガイドライン値は 20 µg/L (端数処理値) と設定された。

(4) 米国環境保護庁(EPA)

Integrated Risk Information System (IRIS)

EPA/IRISでは、化学物質の評価を、TDIに相当する経口参照用量(経口 RfD)として慢性非発がん性の情報を提供している。また、もう一方で、発がん影響について、発がん性分類についての情報を提供し、必要に応じて、経口曝露によるリスクについての情報を提供している。

EPA/IRIS には、MCA に関するデータがない。しかし、EPA (参照 6) の「Drinking Water Addendum to the Criteria Document」では、以下のように勧告されている。

経口 RfD (参照 6)

U 雅山NID (多	夕积 U/			
臨界影響	用量	不確実係数	修正係	参照用量
		(UF)	数(MF)	(RfD)
体重減少、肝臓の絶対	NOAEL: 3.5 mg/kg 体	300	1	0.01
及び相対重量の減少、	重/日	不確実係数		mg/kg体
腎重量の減少、精巣相	LOAEL: 26.1 mg/kg	(種差 10×個		重/日
対重量の増加、脾臓の	体重/日	体差 10×デー		(端数処
絶対及び相対重量の		タ不足 3 ²⁾		理値)
減少 (参照 26)				

 $\frac{22}{23}$

② 発がん性

EPA は 1999 年のガイドライン案 (参照 7) に基づき、MCA を「ヒトに対する発がん性の評価には不十分 (inadequate for an assessment of human carcinogenic potential)」に分類している。

飲料水中 MCA 基準に関する 2006 年の EPA の付録文書では、ヒトにおける MCA の発がん性を特定する報告がないこと;よく計画された試験(参照 8) で発がん性の証拠は見つからなかったが、投与経路が経口のみであ

²) データ不足:2種類の動物における適切な発生毒性研究と多世代生殖毒性研究の両方のデータが不足しているため、UFを3としている。

り、2 用量しか試験されてないこと; げっ歯類以外の種で試験されていないこと等から、上記の MCA の発がん性に関する分類は適切であるとしている。

(5) 厚生労働省

我が国における水質基準の見直しの際の評価の概要は以下のとおりである (参照 1)。

発がん性を示す証拠は認められないので、MCA の $TDI: 3.5~\mu g/kg$ 体重 /日は 104 週間のラットの飲水投与試験(DeAngelo、1997)で得られた絶対及び相対脾臓重量の増加を根拠に求められた LOAEL(3.5~m g/kg 体重/日)を基に計算された。種間及び個体差の UF: 100 と、NOAEL の代わりに LOAEL を用いたことの UF: 10 を含んだ総合 UF: 1000 が適用された。飲料水に対する TDI の寄与率として 20%を適用し、50~kg の体重のヒトが 1 日 2 L の飲料水を摂取すると仮定すると、MCA の評価値は 0.02~m g/L($= 17.5~\mu g/L$)と求められる。

	表 13 WHO 等に	よる MCA (カ TDI 法に	よるリスク評価	<u> </u>
	根拠	NOAEL	LOAEL	不確実係数	TDI
		(mg/kg /	生重/日)		(μg/kg 体重/日)
WHO/	ラットの 104 週間飲	_	3.5	1,000	3.5
DWGL	水投与試験(参照26)			10(種差)×10(個	
第 4 版	における脾臓の影響			体差)10(LOAEL	
(2011)	(絶対及び相対重量増			使用及び多世代	
	加)			生殖毒性試験デ	
				ータがないこと)	
EPA/	ラットの 104 週間飲	3.5	26.1	UF:300	10
IRIS	水投与試験(参照26)			10(種差)×10(個	
(2005)	における体重減少、肝			体差) × 3(デー	
	臓の絶対及び相対重			タ不足)	
	量減少、腎重量の減				
	少、精巣相対重量増				
	加、脾臓の絶対及び相				
	対重量増加				
水道水	ラットの 104 週間飲	_	3.5	1,000	3.5
(2003)	水投与試験(参照26)			10(種差)×10(個	
	における脾臓の影響			体差)10(LOAEL	
	(絶対及び相対重量増			使用)	
	加)				

3. 曝露状況

平成21年度の水道統計におけるMCAの水道水の検出状況(表14)から、各測定地点における最高値別でみると、原水においては、水道法水質基準値(0.02 mg/L)の10%超過20%以下の箇所が8箇所あったが、ほとんどが10%以下(284/292地点)であった。また、浄水においては、同様に60%超過70%以下の箇所が2箇所あったが、ほとんどが10%以下(5,724/5,804地点)であった。

表 14 水道水での検出状況 (参照 46)

				基準値に対する度数分布表									
浄水/ 原水の 別	水源種	測定地	10%以 下	10% 超 過 20% 以下	20% 超 過 30% 以下	30% 超 過 40% 以下	40% 超 過 50% 以下	50% 超 過 60% 以下	60% 超 過 70% 以下	70% 超 過 80% 以下		90% 超過 100%以 下	100%超 過
	別	点数	~0.002 (mg/L)	~0.004 (mg/L)	~0.006 (mg/L)	~0.008 (mg/L)	~0.010 (mg/L)	~0.012 (mg/L)	~0.014 (mg/L)	~0.016 (mg/L)	~0.018 (mg/L)	~0.020 (mg/L)	0.021 (mg/L) ~
	全体	292	284	8	0	0	0	0	0	0	0	0	0
	表流水	73	73	0	0	0	0	0	0	0	0	0	0
原水	ダム湖	16	16	0	0	0	0	0	0	0	0	0	0
	地下水	64	63	1	0	0	0	0	0	0	0	0	0
	その他	139	132	7	0	0	0	0	0	0	0	0	0
	全体	5,804	5,724	56	10	4	1	7	2	0	0	0	0
	表流水	1,051	1,031	15		1	0	0	1	0	0	0	0
浄水	ダム湖	281	263	18	0	0	0	0	0	0	0	0	0
	地下水	3,101	3,073	11	6	2	1	7	1	0	0	0	0
	その他	1,361	1,347	12	1	1	0	0	0	0	0	0	0

(平成21年度調査結果)

Ⅲ. 食品健康影響評価

MCA については、ヒトへの影響において、飲料水を通じた MCA 単独の慢性曝露による毒性及び発がん性に関する報告はないが、経皮曝露により熱傷等の症状が生じた報告や、自殺目的の経口曝露により溶血性尿毒症症候群を生じた報告がある。

動物実験による影響においては、非発がん影響として、心臓、肝臓、腎臓、 脾臓等の相対重量の変化等が認められている。発がん性については、ラット 及びマウスを用いた 2 年間経口投与による発がん性試験、ラットを用いた 104 週間飲水投与による発がん性試験が行われているが、いずれの試験にお いても、発がん性を示す所見は認められていない。また、IARC は MCA に ついて発がん性の分類を行っていない。

遺伝毒性については、ほとんどの in vitro 及び in vivo の遺伝毒性試験で陰性であり、現時点で得られている知見からは、MCA には遺伝毒性はないものと判断される。

以上のことから、MCAのリスク評価においては、TDIを設定することが 適当であると判断し、各種の実験動物による経口投与試験の中から感受性の 高い影響に着目した。

各種の反復投与毒性試験において、最も低い用量で有害影響が認められた 試験は、ラットの 104 週間飲水投与試験であり、26.1mg/kg 体重/日で体重 増加率の減少、肝臓の絶対及び相対重量の減少、腎臓の絶対重量減少、精巣 1 の相対重量増加が、3.5 mg/kg 体重/日以上で脾臓の絶対及び相対重量の変化 2 が認められた。このうち脾臓の絶対及び相対重量の変化については、3.5 3 mg/kg 体重/日投与群で増加がみられているが、脾臓の絶対重量は高用量で 4 は逆に減少しており、この影響を有害影響と判断することはできないと考え 5 られた。その結果、LOAEL は 26.1 mg/kg 体重/日、NOAEL は 3.5 mg/kg 6 体重/日と考えられた。

一方、標準的な生殖・発生毒性試験に関する報告はないが、二つの試験において生殖・発生への影響が報告されている。妊娠 1-22 日に 193 mg/kg 体重/日の MCA を飲水投与した実験では、母動物の体重増加抑制は認められたものの発生学的影響は認められておらず、更に、この試験は一用量の試験であり、骨格異常検査は行われていない。また、妊娠 6-15 日に MCA を経口投与した実験では、最高用量の 140 mg/kg 体重/日投与群で心脈管系の形態異常が認められている。この試験では骨格異常は認められていないことを確認しており、発生毒性の NOAEL は 70 mg/kg 体重/日になると考えられるが、要旨だけの報告しかなく、詳細な実験結果は報告されていない。(なお、in vitro 研究では、胚死亡が認められる付近の濃度での発生異常の可能性を示唆している。)

171819

20

21

22

23

24

25

7

8

9

10

11 12

1314

15

16

以上の論点をふまえると、ラットの 104 週間飲水投与試験で観察された体重増加率の減少、肝臓の絶対及び相対重量の減少、腎臓の絶対重量減少、精巣の相対重量増加に基づいた NOAEL の 3.5 mg/kg 体重/日に基づいて、TDI を設定することが妥当であると判断された。また、この NOAEL から TDI を求める際の不確実係数としては、種差 10 及び個体差 10 の他に、生殖・発生毒性が懸念されるが、データ不足とすることを考慮した 10 を追加した。したがって、NOAEL 3.5 mg/kg 体重/日に、不確実係数 1,000 を適用して、MCA の TDI を 3.5 μ g/kg 体重/日と設定した。

2627

TDI 3.5 μg/kg 体重/日 $\frac{28}{29}$ (TDI 設定根拠) 104 週間飲水投与試験 30 (動物種) ラット 31 32 (期間) 104 週間 (投与方法) 飲水投与 33 (NOAEL 設定根拠所見) 体重増加率の減少、肝臓の絶対及び相 34 対重量の減少、腎臓の絶対重量減少、 35 精巣の相対重量増加 36 (NOAEL) 3.5 mg/kg 体重/日 37 1,000 (種差 10、個体差 10、生殖・発 (不確実係数) 38 生毒性に関するデータ不足 10) 39

〔参考〕

 水質基準値の上限である濃度 0.012~mg/L の水を体重 50~kg の人が 1 日当たり 2~L 摂水した場合、1 日当たり体重 1~kg の摂取量は、 $0.48~\mu g/kg$ 体重/日と考えられる。この値は、 $TDI~3.5~\mu g/kg$ 体重/日の約 7 分の 1 である。

表 15 各試験における NOAEL 等

			衣 10 谷試験にあり	7 W HONEL	য	
番	動物種・			NOAEL	LOAEL	
号	系統•	試験種	エンドポイント	(mg/kg	(mg/kg	備考
	性・動物		(mg/kg 体重/日)	体重/日)	体重/日)	
	数/群					
亜 a	マウス B6C3F ₁ 雌雄 5/群	16日間 5日/週 飲水投 与	流涙(雌のみ 120) 流涙、運動失調、自発運動 の低下、緩徐呼吸、徐脈、 低体温、衰弱、起毛、四肢 緊張低下及び握り反射障 害(240)	120[E] 〔週 7 日 換算 90〕	240[E] 〔週 7 日 換算 180〕	
亜 b	F344 雌雄 5/群	16日間 5日/週 飲水投 与	鼻汁 (7.5)		7.5[E] 〔週 7 日 換算 5.6〕	
亜 c	マウス B6C3F ₁ 雌雄 20/群	13週間 5 日/週 飲水投 与	コリンエステラーゼ値の 減少(雌 150)	100[W]	150[W]	
亜 d	ラット F344 雌雄 20/群	13週間 5 日/週 飲水投 与	相対心臓重量減少、血清コリンエステラーゼ活性の 上昇(雌 30)		30[E] 〔週7日 換算 21.4][E] 30[W]	
亜 e	ラット SD	90日間飲水投	BUN 上昇、血中カルシウ ム濃度上昇、ALT 上昇、		15 [MCA	
	雌雄 10/群	与	血清中 Cr 上昇 (雄 15)		12 mg/kg 体重/日 相当〕	
慢	マウス	2 年間 5 日/週	生存率の低下(雄 100)	50[E]	100[E]	
a	B6C3F ₁ 雌雄 60/群	飲水投	平均体重の減少及び嗅上 皮の化生(雌 100) 鼻粘膜の炎症及び前胃の 扁平上皮の過形成(100)	「週 7 日 換 第 35.7〕 50[W]	〔週7日換算71〕	
慢 b	ラット F344 系 雌雄 70/群	2 年間 5 日/週 飲水投 与	子宮内膜の間質ポリープ 発生頻度増加、生存率低下 (雌 15)	-	15[E] 〔週7日 換算11〕 15[W]	
慢 c	ラット F344 雄 50/群	104 週間水投	脾臓の絶対及び相対重量の増加(3.5)体重増加率の減少、肝臓の絶対及び相対重量の減少、腎臓の重量の減少、精巣の相対重量の増加、脾臓の絶対及び相対重量の増加、脾臓の絶対及び相対重量の増加、水水の(26.1-)	3.5[E] 26.1[A]	26.1[E] 3.5[W]	WHO と EPA の 拠文献 WHO と EPA の 拠文献 WHO は P が は P が に M が を P が に M が に M が に M が に M が が が が が が が が

番	動物種・			NOAEL	LOAEL	
号	系統•	試験種	エンドポイント	(mg/kg	(mg/kg	備考
	性・動物		(mg/kg 体重/日)	体重/日)	体重/日)	
	数/群					
生	ラット	妊娠 1	母動物:体重增加抑制	発生:	193[E]	
a	SD	-22 目	(193)	193[W]		
	雌		児動物:影響なし			
	10 匹(対	飲水投				
	照 群 55	与				
	匹)					

2 [A]: 著者、[W]: WHO、[E]: EPA、無印: 食品安全委員会

本評価書中で使用した略号については次にならった

ACGIH 米国産業衛生専門家会議

ALT アラニンアミノトランスフェラーゼ

AST アスパラギン酸アミノトランスフェラーゼ

BUN 血中尿素窒素

CHO チャイニーズハムスター卵巣由来細胞株

Cr クレアチニン

EPA 米国環境保護庁

F344 ラット Fischer344 ラット

IARC 国際がん研究機関

IRIS 統合リスク情報システム

LD50半数致死量LOAEL最小毒性量

mAST ミトコンドリアアミノトランスフェラーゼ

MCA クロロ酢酸 NOAEL 無毒性量

NTP 米国国家毒性プログラム

RfD 参照用量

SCE 姉妹染色分体交換

SD ラット Sprague-Dawley ラット

TDI 耐容一日摂取量

く参照>

- 1 2
- 1 厚生労働省. 水質基準の見直しにおける検討概要 平成 15 年 4 月、厚生科学審議会、生活環境水道部会、水質管理専門委員会 2003
- 2 WHO. Guidelines for Drinking Water Quality, Fourth Edition. 2011
- 3 WHO. Air Quality Guidelines for Europe, Second edition. 2000
- 4 化学物質の初期リスク評価書: Ver. 1.0 No.102 モノクロロ酢酸 Chloroacetic acid 化学物質排出把握管理促進法政令号番号: 1-80 CAS 登録番号: 79-11-8 2008 年 2 月
- 5 ACGIH (米国産業衛生専門官会議): monochloroacetic acid, 2006
- 6 US EPA. (Environmental Protection Agency): Drinking Water Addendum to the Criteria Document For Monochloroacetic Acid U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 www.epa.gov/safewater/ EPA Document Number: 822-R-05-008 Date: November, 2005
- 7 US EPA. (Environmental Protection Agency): Guidelines for carcinogen risk assessment. (SAB Review Draft). Risk Assessment Forum, Washington, DC, NCEA-F-0644.1999
- 8 NTP (National Toxicology Program): NTP technical report on the tocicology and carcinogenesis studies of monochloroacetic acid (CAS No. 79-11-8) in F344/N rats and B6C3F1 mice (gavage studies). 1992; (NTP TR 396. NTIS Publication No. PB92-189372)
- 9 WHO(World Health Organization): Monochloroacetic Acid in Drinking water Background document for development of WHO Guidelines for Drinking-water Quality. 2004
- 10 Kulling P, Andersson H, Boström K, Johansson L A, Lindström B, Nyström B: Fatal systemic poisoning after skin exposure to monochloroacetic acid. J Toxicol Clin Toxicol 1992; 30: 643-52
- 11 Kusch G D, McCarty L P, Lanham J M: Monochloroacetic acid exposure: a case report. Pol J Occup Med 1990; 3: 409-14
- 12 Millischer RJ, Jouglard J, Vincenti M Ruty J, Contassot JC: 1988. Monochloroacetic acid seven worldwide cases of systemic poisoning resulting from accidental skin contact. World Health Organization, Copenhagen, Denmark, illustrated paper, from Occupational Health in the Chemical Industry XXII ICOH Congress, Sydney, New South Wales, Australia, September 27-October 2, 1987, pp.138-144
- 13 Saghir SA, Rozman KK: Kinetics of Monochloroacetic Acid at Subtoxic and Toxic Doses in Rats after Single Oral and Dermal Administrations. Toxicol Sci 2003; 76: 51-64
- 14 Xu X, Mariano TM, Laskin JD, Weisel CP: Percutaneous absorption of trihalomethanes, haloacetic acids and haloketones. Toxicol Appl Pharmacol 2002; 184: 19-26

- 15 Hayes FD, Short RD, Gibson JE: Differential toxicity of monochloroacetate, monofluoroacetate and moniodoacetate in rats. Toxicol Appl Pharmacol 1973; 26: 93-102
- 16 Saghir SA, Fried K, Rozman KK: Kinetics of monochloroacetic acid in adult male rats after intravenous injection of a subtoxic and a toxic dose. J Pharmacol Exp Ther 2001; 296: 612-22
- 17 Bhat HK, Ahmed AE, Ansari GA: Toxicokinetics of monochloracetic acid: A whole-body autoradiography study. Toxicology 1990; 63: 35-43
- 18 Bhat HK, Ansari GA: Covalent interaction of chloroacetic and acetic acids with cholesterol. J Biochem Toxicol 1989; 4: 189-93
- 19 Kaphalia BS, Bhat HK, Khan MF, Ansari GA: Tissue distribution of monochloroacetic acid and its binding to albumin in rats. Toxicol Ind Health 1992; 8: 53-61
- 20 Dote T, Kono K, Usuda K, Shimizu H, Tanimoto Y, Dote E, Hayashi S: Systemic effects and skin injury after experimental dermal exposure to monochloroacetic acid. Toxicol Ind Health 2003; 19: 165-9
- 21 Toshina Y, Dote T, Usuda K, Shimizu H, Tominaga M, K. Kono K: Hepatic injury and gluconeogenesis after subcutaneous injection of monochloroacetic acid in rats. Environ Health Prev Med 2004; 9: 58-62
- 22 Shimizu H, Dote T, Usuda K, Toshina Y, Kato J, Sakai A, Furuya E, Kono K: Therapeutic effects of glucose infusion on monochloroacetic acid exposure in rats. Toxicol Ind Health 2002; 18: 389-95
- 23 Kato J, Dote T, Shimizu H, Shimbo Y, Fujihara M, Kono K: Lethal acute lung injury and hypoglycemia after subcutaneous administration of monochloroacetic acid. Toxicol Ind Health 2006; 22: 203-9
- 24 Bryant BJ, Jokinen MP, Eustis SL, Thompson MB, Abdo KM: Toxicity of monochloroacetic acid administered by gavage to F344 rats and B6C3F1 mice for up to 13 weeks. Toxicology 1992; 72: 77-87
- Daniel FB, Robinson M, Stober JA, Page NP, Olson GR: Ninety-day toxicity study of sodium monochloroacetate in Sprague-Dawley rats. Toxicology 1991; 67: 171-85
- DeAngelo AB, Daniel FB, Most BM, Olson GR: Failure of monochloroacetic acid and trichloroacetic acid administered in the drinking water to produce liver cancer in male F344/N rats. J Toxicol Environ Health 1997; 52: 425-45
- 27 Johnson PD, Dawson BV, Goldberg SJ: Cardiac teratogenicity of trichloroethylene metabolites. J Am Coll Cardiol 1998; 32: 540-5
- Smith KM, Randall JL, Read EJ, Stober JA. Developmental effects of chloroacetic acid in the Long-Evans rat. Teratology, 1990; 41(5): 593 (Abstract P164).

- 29 Hunter ES 3rd, Rogers EH, Schmid JE, Richard A: Comparative effects of haloacetic acids in whole embryo culture. Teratology 1996; 54: 57-64
- 30 Kargalioglu Y, McMillan BJ, Minear RA, Plewa MJ: Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium. Teratog Carcinog Mutagen 2002; 22: 113-28
- 31 Mortelmans K, Haworth S, Lawlor T, Speck W, Tainer B, Zeiger E: Salmonella Mutagenicity Tests. 2. Results from the testing of 270 Chemicals. Environ Mutagen 1986; 8: 1-119
- 32 Huang, J., Li, H. and Gan-Huifan, W.-K. (1998) Mutagenicity of typical organo-halogenated compounds from drinking water. Environ. Sci. (環境科学), 19, 54-57. (in Chinese)
- 33 McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA, 72, 5135-5139.
- 34 Giller S, Le Curieux F, Erb F, Marzin D: Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis 1997; 12: 321-8
- 35 McGregor DB, Brown A, Cattanach P, Edwards I, McBride D, Riach C et al.: Responses of the LS178Y tk+/tkmouse lymphoma cell forward mutation assay: III. 72 Coded chemicals. Environ Mol Mutagen 1987; 12: 85-154
- 36 Galloway SM, Armstrong MJ, Reuben C, Colman S, Brown B, Cannon C et al.: Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. Environ Mol Mutagen 1987; 10: 1-175
- 37 Sawada M, Sofuni T, Ishidate M Jr: Cytogenetic studies on 1,1-dichloroethylene and its two isomers in mammalian cells in vitro and in vivo. Mutat Res 1987; 187: 157-63
- 38 Chang LW, Daniel FB, DeAngelo AB: Analysis of DNA strand breaks induced in rodent liver in vivo, hepatocytes in primary culture, and a human cell line by chloroacetic acids and chloroacetaldehydes. Environ Mol Mutagen 1992; 20: 277-88
- 39 Plewa MJ, Kargalioglu Y, Vankerk D, Minear RA, Wagner ED: Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environ Mol Mutagen 2002; 40: 134-42
- 40 Faisal Siddiqui M, Ahmad R, Ahmad W, Hasnain AU: Micronuclei induction and chromosomal aberrations in Rattus norvegicus by chloroacetic acid and chlorobenzene. Ecotoxicol Environ Saf 2006; 65: 159-64
- 41 Pirson J, Toussaint P, Segers N: An Unusual Cause of Burn Injury: Skin Exposure to Monochloroacetic Acid. J Burn Care Rehabil 2003; 24: 407-9

- 42 Nayak SG, Satish R, Gokulnath: AN UNUSUAL TOXIC CAUSE OF HEMOLYTIC-UREMIC SYNDROME. J Toxicol Sci 2007; 32: 197-9
- 43 Chapman T, Mahadevan D, Mahajan A, Perez-Temprano A, McDiarmid J: Iatrogenic Full-Thickness Chemical Burns from Monochloracetic Acid. J Burn Care Res 2006; 27: 545-7
- 44 Baser NT, Yalaz B, Yilmaz AC, Tuncali D, Aslan G: An unusual and serious complication of topical wart treatment with monochloroacetic acid. Int J Dermatol 2008; 47: 1295-7
- WHO. Guidelines for Drinking Water Quality, third edition, incorporating first and second addenda. 2008
- 46 日本水道協会. 水道統計 平成 21 年度版. 2009