(案)

農薬評価書

テブコナゾール (第2版)

> 2011年9月 食品安全委員会

目 次

		貝
0	審議の経緯	4
0	食品安全委員会委員名簿	5
0	食品安全委員会農薬専門調査会専門委員名簿	5
0	要約	7
Ι.	評価対象農薬の概要	
	1. 用途	
	2. 有効成分の一般名	
	3. 化学名	
	4. 分子式	
	5. 分子量	
	6. 構造式	
	7. 開発の経緯	8
П	安全性に係る試験の概要	10
_	1. 動物体内運命試験	
	(1) ラット	
	(2) ヤギ	
	(3) ニワトリ	
	2.植物体内運命試験	
	(1) 小麦①	
	(2) 小麦②	
	(3) ぶどう	
	(4) らっかせい①	
	(5) らっかせい②	14
	3 . 土壤中運命試験	15
	(1) 好気的及び嫌気的土壌中運命試験	15
	(2) 好気的土壌中運命試験及び土壌表面における光分解	
	(3) 土壌表面における光分解	
	(4)土壤吸着試験	17
	4. 水中運命試験	
	(1)加水分解試験(滅菌緩衝液)	17
	(2) 水中光分解試験(滅菌緩衝液)	
	(3)水中光分解試験(滅菌及び非滅菌自然水)	
	5.土壌残留試験	
	6.作物等残留試験....................................	

7	. 一般薬理試験	. 19
8	. 急性毒性試験	. 21
	(1)急性毒性試験	. 21
	(2) 急性神経毒性試験	. 22
9	. 眼・皮膚に対する刺激性及び皮膚感作性試験	. 22
1	O. 亜急性毒性試験	. 23
	(1) 28 日間亜急性毒性試験(ラット)	. 23
	(2) 90 日間亜急性毒性試験(マウス)	. 23
	(3)90日間亜急性毒性試験(イヌ)	. 23
	(4)90日間亜急性神経毒性試験(ラット)	. 24
	(5) 21 日間亜急性吸入毒性試験(ラット)	. 24
	(6) 21 日間亜急性経皮毒性試験 (ウサギ)	. 24
1	1. 慢性毒性試験及び発がん性試験	. 24
	(1)1年間慢性毒性試験(イヌ)①	
	(2)1年間慢性毒性試験(イヌ)②	. 25
	(3)2年間慢性毒性/発がん性併合試験(ラット)	
	(4)21 か月間発がん性試験(マウス)①	
	(5) 21 か月間発がん性試験(マウス)②	
1	2. 生殖発生毒性試験	
	(1)2世代繁殖試験(ラット)	
	(2) 発生毒性試験(ラット)①	
	(3)発生毒性試験(ラット)②	
	(4) 発生毒性試験(ラット)③	
	(5) 発生毒性試験(ラット)④	
	(6)発生毒性試験(ラット)⑤	
	(7)発生毒性試験(マウス)①	
	(8) 発生毒性試験(ラット)②	
	(9) 発生毒性試験(ラット)③	
	(10)発生毒性試験(ウサギ)①	
	(11)発生毒性試験(ウサギ)②	
	(12)発生毒性試験(ウサギ)③	
	(13)発生毒性試験(ウサギ)④	
	(14) 発達神経毒性試験 (ラット)	
	3. 遺伝毒性試験	
1	4. 白内障に関する試験(参考)	
	(1)6週間反復吸入毒性及び白内障に関する試験(イヌ)	
	(2)4週間反復吸入毒性及び白内障に関する試験(ネコ)	. 31

Ш	. 食	品份	建康影	響評	F 価						 ٠.	 	 	 	 	 	 		 	٠.		 32
	別紙	; 1 :	代謝	物/约	分解:	物略	系称	٠			 	 	 	 	 	 	 		 			 38
			検査																			
•	別紙	; 3 :	作物	残留	試駁	 成	績	(国	内)	 	 	 	 	 	 	 		 			 40
•	別紙	4 :	作物	残留	試駁	 成	績	(海	外)	 	 	 	 	 	 	 		 			 44
•	別紙	5 :	推定	摂取	量.						 	 	 	 	 	 	 		 			 49
- :	参照										 	 	 	 	 	 	 		 			 50

<審議の経緯>

一第1版関係一

- 1995年 11月 28日 初回農薬登録(小麦)
- 2005年 11月 29日 残留農薬基準告示 (参照 1)
- 2006年 8月 21日 農林水産省から厚生労働省へ適用拡大申請に係る連絡及 び基準設定依頼(適用拡大:大麦、日本なし、おうとう等)
- 2006年 9月 4日 厚生労働大臣から残留基準(暫定基準)設定に係る食品健康影響評価について要請(厚生労働省発食安第 0904008 号)、関係書類の接受(参照 2~7)
- 2006年 9月 7日 食品安全委員会第158回会合(要請事項説明)
- 2007年 2月 23日 厚生労働大臣より残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安第 0223006 号)
- 2007年 2月 27日 関係書類の接受(参照 8)
- 2007年 3月 2日 農薬専門調査会確認評価第二部会第3回会合
- 2007年 3月 8日 食品安全委員会第181回会合(要請事項説明)
- 2007年 3月 23日 追加資料受理 (参照 9)
- 2007年 4月 27日 農薬専門調査会幹事会第 16 回会合
- 2007年 5月 24日 食品安全委員会第 191 回会合
- 2007年 5月 24日 から6月22日 国民からの御意見・情報の募集
- 2007年 7月 3日 農薬専門調査会座長から食品安全委員会委員長へ報告
- 2007 年7月5日 食品安全委員会第 197 回会合 (報告)(同日付け厚生労働大臣へ通知) (参照 10)
- 2008年 6月 30日 残留農薬基準告示 (参照 11)

一第2版関係一

- 2011年 1月 12日 農林水産省から厚生労働省へ適用拡大申請に係る連絡及 び基準値設定依頼(適用拡大:うめ、かき及び茶等)
- 2011年 2月 8日 厚生労働大臣から残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安 0208 第 3 号)、関係書 類の接受(参照 12~14)
- 2011年 2月17日第367回食品安全委員会(要請事項説明)
- 2011年 5月 27日 インポートトレランスの設定要請(ばれいしょ等)
- 2011 年 5月 31 日 追加資料受理(参照 15)
- 2011 年 9 月 8 日 第 398 回食品安全委員会(審議)

<食品安全委員会委員名簿>

(2009年6月30日まで)(2011年1月7日から)見上 彪(委員長)小泉直子(委員長)

小泉直子(委員長代理*) 熊谷 進(委員長代理*)

長尾拓長尾拓野村一正野村一正畑江敬子畑江敬子廣瀬雅雄**廣瀬雅雄本間清一村田容常

*:2007年2月1日から *:2011年1月13日から

**:2007年4月1日から

<食品安全委員会農薬専門調査会専門委員名簿>

(2007年3月31日まで)

鈴木勝士 (座長) 三枝順三 根岸友惠 廣瀬雅雄 (座長代理) 佐々木有 林 真 赤池昭紀 高木篤也 平塚 明 玉井郁巳 石井康雄 藤本成明 泉 啓介 田村廣人 細川正清 上路雅子 津田修治 松本清司 臼井健二 津田洋幸 柳井徳磨 江馬 眞 出川雅邦 山崎浩史 大澤貫寿 長尾哲二 山手丈至 太田敏博 中澤憲一 與語靖洋 大谷 浩 吉田 緑 納屋聖人 成瀬一郎 小澤正吾 若栗 忍

小林裕子 布柴達男

(2007年4月1日から7月5日まで)

鈴木勝士 (座長) 三枝順三 西川秋佳** 林 真(座長代理*) 佐々木有 布柴達男 赤池昭紀 代田眞理子**** 根岸友惠 石井康雄 高木篤也 平塚 明 泉 啓介 玉井郁巳 藤本成明 上路雅子 田村廣人 細川正清 津田修治 臼井健二 松本清司 江馬 眞 津田洋幸 柳井徳磨

大澤貫寿出川雅邦太田敏博長尾哲二大谷 浩中澤憲一小澤正吾納屋聖人小林裕子成瀬一郎***

若栗 忍
*:2007年4月11日から
**:2007年4月25日から
***:2007年6月30日まで
****:2007年7月1日から

山崎浩史

山手丈至

與語靖洋

吉田 緑

要約

トリアゾール系殺菌剤である「テブコナゾール」(IUPAC: (RS)-1-p-クロロフェニル-4,4-ジメチル-3-(1H-1,2,4-トリアゾール-1-イルメチル)ペンタン-3-オール)について、各種評価書等(農薬抄録、JMPR、米国及び豪州)を用いて食品健康影響評価を実施した。また、今回うめ、かき、茶等の作物残留試験が新たに提出された。

評価書に用いた試験成績は、動物体内運命(ラット、ニワトリ及びヤギ)、植物体内運命(小麦、ぶどう及びらっかせい)、作物残留、急性毒性(ラット、マウス及びウサギ)、亜急性毒性(ラット、ウサギ及びイヌ)、慢性毒性(ラット、マウス及びイヌ)、発がん性(ラット及びマウス)、2世代繁殖(ラット)、発生毒性(ラット、マウス及びウサギ)、遺伝毒性試験等の試験成績である。

各種毒性試験結果から、テブコナゾール投与による影響は主に体重(増加抑制)、 肝臓(脂肪変性等)に認められた。遺伝毒性は認められなかった。発がん性試験 において、ラットで甲状腺 C 細胞の増殖性病変(過形成及び腫瘍)が、マウスで 肝細胞腫瘍が認められたが、遺伝毒性は認められないことから発生機序は遺伝毒 性メカニズムとは考え難く、評価にあたり閾値を設定することは可能であると考 えられた。

各試験の無毒性量のうち最小値は、イヌを用いた 1 年間慢性毒性試験の 1.5 mg/kg 体重/日であったが、この試験では最小毒性量以下の用量を低く設定しすぎていること、追加試験で得られた無毒性量が 2.94 mg/kg 体重/日であることから、イヌを用いた 1 年間慢性毒性試験の無毒性量は 2.94 mg/kg 体重/日であると判断し、これを根拠として安全係数 100 で除した 0.029 mg/kg 体重/日を一日摂取許容量 (ADI) とした。

I. 評価対象農薬の概要

1. 用途

殺菌剤

2. 有効成分の一般名

和名: テブコナゾール

英名: Tebuconazole (ISO 名)

3. 化学名

IUPAC

和名: (RS)-1-p-クロロフェニル-4,4-ジメチル-3-(1H-1,2,4-トリアゾール-1-イルメチル) ペンタン-3-オール

英名:(RS)-1-p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazole-1-ylmethyl) pentan-3-ol

CAS (No. 107534-96-3)

和名:(±)- α -[2-(4-クロロフェニル)エチル]- α -(1,1-ジメチルエチル)-1*H*-1.2.4-トリアゾール-1-エタノール

英名:(±)- α -[2-(4-chlorophenyl)ethyl]- α -(1,1-dimethyl=ethyl)-1H-2-(1,1-dimethylethyl)hydrazide

4. 分子式

 $C_{16}H_{22}ClN_3O$

5. 分子量

307.82

6. 構造式

$$CI \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C(CH_3)_3$$

$$CH_2 \longrightarrow CH_2$$

$$N \longrightarrow N$$

7. 開発の経緯

テブコナゾールは、1978 年にドイツ・バイエル社によって開発されたトリアゾール系殺菌剤である。種々の糸状菌においてステロールの生合成を阻害し

て、菌糸の発育を阻害する。米国、オーストラリア、ニュージーランド等で登録されており、日本では 1995 年に初めて小麦に農薬登録された。

今回、農薬取締法に基づく農薬登録申請(適用拡大:うめ、かき、茶)及びインポートトレランス申請(ばれいしょ等)がなされている。

Ⅱ. 安全性に係る試験の概要

農薬抄録(2006 年)、JMPR 資料(1994 年)、米国資料(2005 年)及び 豪州資料(2004 年)を基に、毒性に関する主な科学的知見を整理した(参照 2 \sim 6、12、13、15)。

各種運命試験[$II.1\sim4$]は、テブコナゾールのフェニル環部分の炭素を ^{14}C で標識したもの(以下「 $[phe^{-14}C]$ テブコナゾール」という。)及びトリアゾールの 3 及び 5 位の炭素を ^{14}C で標識したもの(以下「 $[tri^{-14}C]$ テブコナゾール」という。)を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合テブコナゾールに換算した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

- (1) ラット
- ① 吸収

a. 血中濃度推移

Wistar ラット (一群雌雄各 5 匹) に[phe- 14 C] テブコナゾールを 2 mg/kg 体重 (以下 [1.(1)] において「低用量」という。) 若しくは 20 mg/kg 体重 (以下 [1.(1)] において「高用量」という。) で単回経口投与又は反復経口投与(非標識体を 14 日間投与後、 14 C] テブコナゾールを単回投与)し、血中濃度推移について検討された。

血漿における T_{max} は $0.33\sim1.70$ 時間であり、いずれの投与においても速やかに最高濃度に達した。 C_{max} は、低用量投与群で $0.26\sim0.4~\mu g/g$ 、高用量投与群で $2.2\sim3.6\mu g/g$ 、 $T_{1/2}$ は $31.9\sim52.5$ 時間であった。(参照 2、3、6)

b. 吸収率

胆汁中排泄試験[1.(1)④b]で得られた投与後 48 時間後の尿、胆汁及び組織中における残留放射能の合計から、テブコナゾールの吸収率は 98.3%と算出された (参照 2、3、6)

② 分布

Wistar ラット(一群雌雄各 5 匹)に[phe-14C] テブコナゾールを低用量若しくは高用量で単回経口投与又は反復経口投与(非標識体を 14 日間投与後、[phe-14C] テブコナゾールを単回投与)し、と殺時(72 時間後)の動物体内における放射能残留量を測定して体内分布が検討された。

胃腸管を除く動物体内における平均放射能濃度は $0.00694\sim0.144~\mu g/g$ であった。肝臓における放射能濃度は、低用量投与群で $0.0660\sim0.0796~\mu g/g$ 、高用量投与群で $0.568\sim0.610\mu g/g$ であり、他の組織及び臓器と比較して高

い数値が認められた。

Wistar ラット(雄 7 匹)に[phe-14C] テブコナゾールを高用量で単回経口投与し、全身オートラジオグラフィーにより動物体内における放射能の分布が検討された。投与放射能は組織及び臓器に急速に分布し、投与1時間後ではほとんどすべての組織及び臓器に放射能が認められた。肝臓及び副腎皮質では他の組織及び臓器と比較して高濃度の分布がみられた。(参照 2、3)

③ 代謝

Wistar ラット (一群雌雄各 5 匹) に[phe-14C]テブコナゾールを低用量若しくは高用量で単回経口投与又は反復経口投与(非標識体を 14 日間投与後、[phe-14C] テブコナゾールを単回投与) し、[tri-14C]テブコナゾールを高用量で単回経口投与し、尿及び糞中の代謝物の同定及び定量試験が行われた。

[phe-¹⁴C]テブコナゾール投与群では、親化合物は糞中に $0.5\sim2.4\%$ TRR 検出され、尿中には認められなかった。主要代謝物は、M1 及び M8 であり、いずれも主に糞中に検出された。糞中と尿中の合計として M1 は $17.0\sim30.2\%$ TRR、M8 は $15.1\sim38.2\%$ TRR 検出された。尿中には M16(M1 の硫酸抱合体)が $0.1\sim2.7\%$ TRR、M17(M1 のグルクロン酸抱合体)が $0.2\sim5.1\%$ TRR 検出された。また、糞中に M2 が $0.4\sim6.0\%$ TRR、糞及び尿中に M9 が $0.8\sim3.7\%$ TRR 検出された。そのほかには M19(M2 のグルクロン酸抱合体)が雄の尿中に、M5 及び M13 が糞中に認められた。

 $[tri^{-14}C]$ テブコナゾール投与群の糞抽出物のHPLCクロマトグラムにおける代謝物プロフィールは $[phe^{-14}C]$ テブコナゾール投与群と同様であり、 $[tri^{-14}C]$ テブコナゾールに特有のピークは認められなかった。尿の代謝物プロフィールについて両標識体投与群を比較すると、M23 が $[tri^{-14}C]$ テブコナゾール投与群でのみ、雄で 5.4% TRR、雌で 1.5% TRR 認められた。

ラットにおいて、テブコナゾールは主として tブチル基の水酸化によって M1 に代謝され、さらに M8 へと酸化された。また、ベンジル位炭素の水酸 化による M2 の生成、及び酸化による M9 の生成も認められた。M1 及び M2 の t ブチル基の水酸基は、抱合化されて M16、M17 及び M19 へと代謝された。そのほかには、フェニル環の水酸化による M5 の生成、M8 の脱炭酸による M13 の生成及び M23 の生成も認められた。(参照 2、3)

4 排泄

a. 尿及び糞中排泄

Wistar ラット(一群雌雄各 5 匹)に $[phe^{-14}C]$ テブコナゾールを低用量若しくは高用量で単回経口投与又は反復経口投与(非標識体を 14 日間投与後、 $[phe^{-14}C]$ テブコナゾールを単回投与)し、尿及び糞中排泄試験が実施された。

投与後 72 時間までの回収率は $92.1\sim99.8\%$ TAR の範囲にあり、いずれの 投与群においても投与放射能は 48 時間以内にほぼ排泄された。呼気への排泄は僅か(0.03% TAR)であった。糞中への排泄は雄で $75.8\sim82.1\%$ TAR、雌で $61.5\sim62.7\%$ TAR、尿中への排泄は雄で $15.0\sim17.0\%$ TAR、雌で $28.8\sim32.9\%$ TAR であり、主要排泄経路は糞中であった。投与 72 時間後の体内における残留量は $0.24\sim0.67\%$ TAR であった。(参照 2、3、6)

b. 胆汁中排泄

胆管にカニューレを挿入した Wistar ラット(雄 5 匹)に、 $[phe^{-14}C]$ テブコナゾールを低用量で単回経口投与し、胆汁中排泄試験が実施された。

投与後 48 時間に、90.7%TAR が胆汁中へ、7.40%TAR が尿中へ排泄され、 胃腸管を除く動物体内における残留量は 0.21%TAR であった。(参照 2、3、6)

(2) ヤギ

泌乳期ヤギ(品種及び匹数不明)に[phe-14C]テブコナゾールを 15 mg/kg 体重/日の用量で 3 日間連続投与し、最終投与 2 時間後に臓器及び乳汁を採取して、体内運命試験が実施された。

放射能濃度は腎($4 \mu g/g$)及び肝($5 \mu g/g$)において高い値を示し、脂肪、筋及び乳汁では $0.1 \mu g/g$ 未満であった。

泌乳期ヤギにおけるテブコナゾールの代謝経路は、ラットと同様であった。 主要代謝物はtブチルアルコール誘導体とその抱合体であり、親化合物も認められた。 (参照 3)

(3) ニワトリ

産卵ニワトリ(品種及び匹数不明)に、テブコナゾールを 10 mg/kg 体重/ 日の用量で 3 日間連続経口投与して、体内運命試験が実施された。

投与後 3.5 時間以内に 80%が排泄された。最終投与 30 分後における残留 濃度は、肝臓で $8\,\mu\text{g/g}$ 、腎臓で $6\,\mu\text{g/g}$ 、卵で $0.15\,\mu\text{g/g}$ であった。

産卵ニワトリにおける主要代謝経路は、tブチル基の水酸化及びそれに続く硫酸抱合であった。(参照 3)

2. 植物体内運命試験

(1) 小麦①

小麦 (品種: Proday) の穂ばらみ期に $[tri^{-14}C]$ テブコナゾールを 500g ai/ha の用量で 1 回茎葉散布し、処理 0、7、14、21 及び 28 日後に茎葉、50 日後(収穫期)にわら、もみ殻及び玄麦が採取され、小麦における植物体内運命試験が実施された。

各試料の総残留放射能は、青刈り茎葉 $(0\sim28$ 日後) で $9.8\sim28.0$ mg/kg、収穫期 (50 日後) のわらで 37.0 mg/kg、もみ殻で 3.8 mg/kg、玄麦で 0.5 mg/kg であった。

青刈り茎葉、わら及びもみ殻における主要残留成分は親化合物であり、それぞれ $91.2\sim98.3\%$ TRR $(9.1\sim27.5~mg/kg)$ 、90.0% TRR (33.3~mg/kg)及び 56.0% TRR (2.1~mg/kg)検出された。玄麦では、親化合物は 6% TRR (0.03~mg/kg)と少なく、M24が 80% TRR (0.40~mg/kg)、M26が 13% TRR (0.07~mg/kg)検出された。

テブコナゾールは玄麦において、中間代謝物のM23 を経由してM24 及びM26 へと代謝されると推定された。 (参照2)

(2) 小麦②

小麦種子(品種: Proday)に $[tri^{-14}C]$ テブコナゾールを 5 g ai/100 ポンド(約 11 g ai/100 kg 種子重量)の用量で処理し、播種 38 日後(穂ばらみ期)に茎葉、播種 66 日後(収穫期)にわら、もみ殻、玄麦、根及び土壌が採取され、植物体内運命試験が実施された。

各試料の総残留放射能は、播種 38 日後の青刈り茎葉で 0.03~mg/kg、播種 66~ 日後のわらで 0.10~mg/kg、もみ殻で 0.04~mg/kg、玄麦で 0.02~mg/kg、根で 0.16~mg/kg、土壌で 0.006~mg/kg であった。

わらにおいて、親化合物が 25.0%TRR(0.025 mg/kg)と最も多く検出され、M1 が 14.5%TRR(0.015 mg/kg)、M18 が 14.5%TRR(0.015 mg/kg)検出された。根の主な残留成分は親化合物で、有機溶媒可溶画分中の放射能の 76.0%に相当した。

テブコナゾールはわらにおいて、tブチル基の水酸化により M1 へと代謝され、さらにグルコース抱合化されて M18 へと代謝されると推定された。 (参照 2)

(3) ぶどう

ぶどう (品種: Niagara White) に [phe-14C] テブコナゾールを 4 オンス ai/エーカー (約 280 g ai/ha) の用量で 1 回茎葉散布し、処理 0、3、7、14、21 及び 28 日後に果実が採取され、植物体内運命試験が実施された。

果実における総残留放射能は、処理直後で 6.9 mg/kg、28 日後で 2.3 mg/kg であり、時間の経過に伴って低下した。果実では $84.5 \sim 99.1 \text{%}$ TRR ($2.01 \sim 7.70 \text{ mg/kg}$) が表面洗浄液中に回収され、親化合物のみが検出された。果実抽出液からは $0.8 \sim 10.6 \text{%}$ TRR が抽出され、このうち $2.0 \sim 7.3 \text{%}$ TRR ($0.10 \sim 0.42 \text{ mg/kg}$) が親化合物であった。試験期間にわたり回収放射能の 91.8 % 以上が親化合物であった。 (参照 2)

(4) らっかせい①

らっかせい (品種不明) に $[tri^{-14}C]$ テブコナゾールを 250 g ai/ha の用量で定植 6、8 及び 10 週後に合計 3 回茎葉散布し、最終処理 7 週後に植物全体が採取され植物体内運命試験が実施された。

子実の残留放射能の 90.8%は水溶性代謝物で、M23、M24 及び M25 が、それぞれ 9.0%TRR(0.11 mg/kg)、46.4%TRR(0.55 mg/kg)及び 8.5%TRR(0.10 mg/kg)検出された。子実に親化合物は検出されなかった。

殻及び茎葉における主要残留成分は親化合物で、殻では 15.6% TRR(0.02 mg/kg)、茎葉では 58.4% TRR(17.1 mg/kg)検出された。このほかに殻では M1 の遊離体が 3.4% TRR(0.01 mg/kg)、茎葉では M1 の抱合体が 15.1% TRR(4.41 mg/kg)検出された。さらに、殻では M24 が 2.6% TRR(0.01 mg/kg)検出されたが、殻の残留放射能の 19.9%は 6 N 塩酸を用いた還流後でも抽出されなかった。

らっかせいにおけるテブコナゾールの主要代謝経路は、茎葉では、tブチル基の水酸化による M1 の生成及びそれに続く M1 の抱合化であった。殼及び子実では M23 の生成、M23 へのアラニンの付加による M24 の生成及び M24 の M25 への代謝であった。(参照 2)

(5) らっかせい②

らっかせい(品種不明)に $[phe^{-14}C]$ テブコナゾールを約500 g ai/ha の用量で播種6、9、11、13、15、17 及び19 週後に合計7 回茎葉散布し、最終処理14 日後(播種147 日後)に茎葉及び鞘が採取され植物体内運命試験が実施された。

最終処理 14 日後(収穫期)の各試料における総残留放射能は、茎葉で 110 mg/kg、殻で 17.7 mg/kg、子実で 0.545 mg/kg であった。

子実では親化合物が 19%TRR 認められ、34%TRR は脂肪酸等の天然植物構成成分や未抽出残渣に取り込まれた放射能であり、その他の部分は有機溶媒で抽出されない成分であった。ヘキサンによって抽出した子実中の油脂には $43\sim48\%$ TRR が検出された。このうち、親化合物は $13\sim18\%$ TRR を占め、そのほかは油脂成分と推定された。ヘキサン抽出残査の酸加水分解により親化合物、M1 及び M6 が合計 $4\sim8\%$ TRR 検出された。

殻及び茎葉における主要残留成分は親化合物で、殻で 58%TRR(10.2 mg/kg)、茎葉で 69%TRR(77.2 mg/kg)を占めた。そのほかには M1 及びその抱合体が殻で 4%TRR(0.78 mg/kg)、茎葉で 7%TRR(8.18 mg/kg)、M6 が殻で 1%TRR(0.20 mg/kg)、茎葉で 1%TRR(1.33 mg/kg)検出された。殻の残留放射能の 22%は 6N 塩酸を用いた還流後でも抽出されなかった。

テブコナゾールはらっかせいにおいて、tブチル基の水酸化により代謝物 M1 に代謝され、さらに抱合化されて M18 へと代謝された。また、フェニル環の水酸化による M6 及び M7 への代謝も認められた。このほかに、結合残留及び脂肪酸等の天然植物構成成分の画分にも放射能が認められた。(参照 2)

3. 土壌中運命試験

(1) 好気的及び嫌気的土壌中運命試験

砂壌土(米国)に $[phe^{-14}C]$ テブコナゾール及び $[tri^{-14}C]$ テブコナゾールを 10 mg/kg 土壌の用量で混和処理し、 $23\pm2^{\circ}C$ の暗所で最長 12 か月間インキュベートして、好気的土壌中運命試験が実施された。嫌気的試験では $[tri^{-14}C]$ テブコナゾールを用い、好気的条件下で 30 日間経過後湛水して密栓し、さらに最長 60 日間インキュベートした。

好気的条件下では、二酸化炭素の生成量は少なく、累積発生量は回収放射能の 1%未満であった。いずれの標識体処理区においても、土壌抽出物中に回収放射能の大部分の放射能が検出され、[phe-14C]テブコナゾール処理区で70.6%TRR(12 か月後)、[tri-14C]テブコナゾール処理区で85.5%TRR(58日後)であった。試験終了時において親化合物は[phe-14C]テブコナゾール処理区で67.4%TRR(12 か月後)、[tri-14C]テブコナゾール処理区で85.0%TRR(58日後)残存した。その他の残留放射能のほとんどが土壌有機物中に取り込まれた。親化合物の半減期は1年以上と推定された。

嫌気的条件下では、二酸化炭素の生成は認められなかった。水層中に 4.1 ~7.5%TRR、土壌抽出物中には 72.2~74.7%TRR の放射能が検出された。水層に認められた放射能は親化合物と同定された。土壌抽出物中の放射能の多くは親化合物で、分解物は 2.7%TRR 以下であった。水層と土壌抽出物を合わせると、親化合物は湛水 60 日後において 77.8%TRR 残存した。 (参照 2)

(2) 好気的土壌中運命試験及び土壌表面における光分解

テブコナゾールの土壌中運命に対する肥料、処理量、処理方法、植生及び 光等の影響を検討するために、好気的条件下で次の4種類の試験が実施され た。

① 標準条件下における分解性

シルト質壌土(オランダ)には堆肥(少量の敷きワラを含む牛の糞尿混合物)を約 80 mL/kg 土壌で施肥し、シルト質土壌(ドイツ)には非標識テブコナゾールを 10 mg/kg 土壌で 4 週間ごとに 3 回処理した (3 回目の処理は試験開始 10 日前に行った)。これらの土壌に、1 mg ai/kg 土壌の $[phe^{-14}C]$ テ

ブコナゾール又は[tri-14C]テブコナゾールを混和処理した。

シルト質壌土では、二酸化炭素の生成量は $[phe^{-14}C]$ テブコナゾール処理区では最大で 32.3%TAR であったが、 $[tri^{-14}C]$ テブコナゾール処理区では 1.3%TAR 以下であった。433 日後の土壌抽出物中には $[phe^{-14}C]$ テブコナゾール処理区及び $[tri^{-14}C]$ テブコナゾール処理区でそれぞれ 34.2%TAR 以上及び 52.7%TAR 以上の放射能が検出され、そのうち 80%以上が親化合物であった。いずれの標識体処理区においても、分解物として M3、M10 及びその互変異性体の M11 が合量で $1.2\sim2.1\%$ TAR 検出された。 $[tri^{-14}C]$ テブコナゾール処理区では M23 が $2.8\sim5.9\%$ TAR 検出された。

シルト質土壌では、いずれの標識体処理区においても、二酸化炭素の生成は少なかった(2.1%TAR以下)。433日後の土壌抽出物中に70%TAR以上の放射能が検出され、そのうち60%以上が親化合物で、分解物としてM3、M10及びM11が $2.6\sim4.8\%$ TAR検出された。M23の生成量は0.1%TAR以下であった。(参照 2)

② 植生下及び非植生下における分解性

試験前に堆肥を約80 mL/kg 土壌で施肥したシルト質壌土(オランダ)に、 [phe- 14 C]テブコナゾール又は[tri- 14 C]テブコナゾールを、0.2 mg ai/kg 土壌、2 mg ai/kg 土壌及び $6\sim6.5$ mg ai/kg 土壌で混和処理又は表層処理し、処理直後にイネ科植物を植えた土壌と植生のない土壌における親化合物の分解性が比較された。

親化合物の残留性は、処理量が少なく、土壌混和処理及び植物栽培をした方が低かった。土壌抽出物中には、いずれの標識体処理においても分解物M10 又は M11 が最大 7.5% TAR 検出された。 $[tri^{-14}C]$ テブコナゾール処理では M23 が最大 9.0% TAR、M20 及び M22 が 1% TAR 未満検出された。植物体からは $[phe^{-14}C]$ テブコナゾール処理区で $4\sim20\%$ TAR、 $[tri^{-14}C]$ テブコナゾール処理区で $32\sim36\%$ TAR の放射能が検出され、親化合物は最大 5.1% TAR 検出された。 (参照 2)

③ 土壌表面における人工光による分解性

試験前に堆肥を約 80 mL/kg 土壌で施肥したシルト質壌土 (オランダ) に、 [phe- 14 C]テブコナゾール又は [tri- 14 C]テブコナゾールをそれぞれ 0.65 mg ai/kg 土壌及び 0.8 mg ai/kg 土壌で混和処理し、 $17\sim18$ $^{\circ}$ C でキセノンランプを最長 89 日間照射した。

[phe-¹⁴C]テブコナゾール処理区では二酸化炭素が最大 17%TAR、他の揮発性物質が最大 0.3%TAR 検出された。土壌抽出物には 23.5%TAR (89 日後) 以上、未抽出残留物に 64.9%TAR (89 日後) 以下の放射能が検出された。

[tri-14C]テブコナゾール処理区では二酸化炭素が最大 4.0%TAR 生成し、

土壌抽出物に 54.1%TAR (89 日後)以上、未抽出残留物に 25.6%TAR (89 日後)以下の放射能が検出された。親化合物は速やかに分解し、[phe-14C] テブコナゾール及び[tri-14C] テブコナゾール処理で、それぞれ 26 日後には 40.0%TAR 及び 35.0%TAR、89 日後には 3.8%TAR 及び 5.9%TAR 残存した。 (参照 2)

④ 土壌表面における自然光による分解性

 $[\text{tri-}^{14}\text{C}]$ テブコナゾールを、砂壌土(ドイツ)に 5.5~mg ai/kg 土壌、シルト質土壌(ドイツ)に 3~mg ai/kg 土壌で処理し、 20 ± 2 ℃で自然太陽光をそれぞれ 70~日間及び 86 日間照射した。

砂壌土では、土壌抽出物に 67.8%TAR、未抽出残留物に 14.1%TAR の放射能が検出された。土壌抽出物中には親化合物が 53.0%TAR、分解物 M15 が 3.3%TAR、M23 が 1.0%TAR 検出されたほか、M14、M20 及び M22 が 1%TAR 未満で検出された。また、M3 及び M10 は合量で 1.8%TAR 検出された。

シルト質土壌では、土壌抽出物に 77.7%TAR、未抽出残留物に 12.5%TAR の放射能が検出された。土壌抽出物中には親化合物が 51.7%TAR、分解物 M20 が 1.8%TAR、M14 が 1.1%TAR、M22 が 1.0%TAR 検出された。 (参照 2)

(3)土壌表面における光分解

41 mg/kg 土壌の $[phe^{-14}C]$ テブコナゾールを砂壌土(米国)表面に均一に処理し、平均温度 $18\sim19$ ℃で自然太陽光を最長 34 日間照射して光分解試験が行われた。

光照射試料では、土壌抽出物に 89%TAR 以上の放射能が検出され、その 多くは親化合物で、34 日後で 86%TAR 以上残存していた。親化合物の推定 半減期は 191 日と算出された。 (参照 2)

(4)土壤吸着試験

4 種類の国内土壌(埴壌土:福島、シルト質壌土:茨城、砂質埴壌土:愛知、軽埴土:和歌山)を用いて、土壌吸着試験が実施された。

Freundlich の土壌吸着係数 K^{ads} は $3.89\sim19.0$ 、有機炭素含有率により補正した吸着係数 Koc は $351\sim1,180$ であり、土壌中における移動性は比較的低いと考えられた。(参照 2)

4. 水中運命試験

(1)加水分解試験(滅菌緩衝液)

[phe-14C]テブコナゾールを、pH5、pH7 及び pH9 の滅菌緩衝液(リン酸

緩衝液)に約 18 mg/L となるように加え、 25 ± 1 ^{\circ}の暗所で最長 28 日間インキュベートし、加水分解試験が実施された。

試験期間中、いずれの pH においても、試験液中に親化合物が 99%TAR 以上で検出された。試験液中に分解物は検出されず、親化合物は安定であった。 (参照 2)

(2) 水中光分解試験 (滅菌緩衝液)

[phe-14C]テブコナゾールを、pH7.0 の滅菌緩衝液(リン酸緩衝液)に 22.2 mg/L となるように加え、平均温度 24 $^{\circ}$ で自然太陽光を最長 30 日間照射し、水中光分解試験が実施された。

光照射試料の試験液中には、親化合物が 94%TAR 以上検出され、親化合物は安定であった。推定半減期は 590 日と算出された。 (参照 2)

(3) 水中光分解試験 (滅菌及び非滅菌自然水)

[phe-14C]テブコナゾール及び[tri-14C]テブコナゾールを、滅菌自然水及び 非滅菌自然水に約 0.375 mg/L となるように加え、25°Cでキセノンランプを $18\sim53$ 日間にわたって照射し、水中光分解試験が実施された。

滅菌自然水における 18 日後の親化合物の残留量は、51.6%TAR([phe-14C] テブコナゾール処理区)及び 63.7%TAR([tri-14C] テブコナゾール処理区)であった。非滅菌自然水における同時期(19 日後)の親化合物の残留量は、33.0%TAR([phe-14C] テブコナゾール処理区)及び 22.8%TAR([tri-14C] テブコナゾール処理区)で、親化合物の分解速度は滅菌水中の方が遅く、親化合物の分解には非生物的分解のほかに微生物も関与することが示唆された。

二酸化炭素の生成量は、ヘッドスペース及び試験液中の溶存量を併せると、滅菌自然水で 18 日後に 4.4%TAR([phe- 14 C]テブコナゾール処理区)及び 0.4%TAR([tri- 14 C]テブコナゾール処理区)、非滅菌自然水で 26 日後に 18.0%TAR([phe- 14 C]テブコナゾール処理区)及び 1.0%TAR([tri- 14 C]テブコナゾール処理区)のフェールの理区)であった。

親化合物の推定半減期は、滅菌自然水で 20~30 日、非滅菌自然水で 9~15日と算出された。

非滅菌自然水中での主な分解物として、 $[tri^{-14}C]$ テブコナゾール処理区では、M20(最大 21.0%TAR)、M21(最大 14.3%TAR)、M23(最大 14.0%TAR)及び二酸化炭素(最大 53.6%TAR)が検出され、M20及び M21は $[phe^{-14}C]$ テブコナゾール処理区にも認められた。その他に M1、M4、M12及び M14が少量(2%TAR以下)認められた。(参照 2)

5. 土壌残留試験

火山灰壌土(長野)及び沖積壌土(奈良)を用いて、土壌残留試験(容器内及び圃場)が実施された。推定半減期は表1に示されている。(参照2)

試験	濃度 1)	土壌	推定半減期(日)
容器内試験	0.0	火山灰壌土	11
谷岙門武峽	0.6 mg/kg	沖積壌土	11
雷坦 沙 縣	F 00 :/1	火山灰壌土	13
圃場試験	588 g ai/ha	沖積壌土	25

表 1 土壌残留試験成績

6. 作物等残留試験

国内において、小麦、大麦、野菜及び果物等を用いて、テブコナゾールを分析対象化合物とした作物残留試験が実施された。参考として、小麦の一部において代謝物 M24 及び M26 の分析も行われた。

結果は別紙 3 に示されている。テブコナゾールの最大残留値は最終散布 7 日後に収穫した茶(荒茶)で認められた 38.9 mg/kg であった。(参照 2)

海外において、野菜、果物等を用いた作物残留試験が実施された。結果は別紙 4 に示されている。海外の試験におけるテブコナゾールの最大残留値は、最終散布 3 日後に収穫したとうがらし(葉)の 8.95 mg/kg であった。(参照 9、13)

作物残留試験成績に基づき、テブコナゾールを暴露評価対象物質として国内で栽培される農産物から摂取される推定摂取量が表2に示されている(別紙5参照)。なお、本推定摂取量の算定は、登録されている又は申請された使用方法からテブコナゾールが最大の残留量を示す使用条件で、すべての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定の下に行った。

表 2 食品中より摂取されるテブコナゾールの推定摂取量

	国民平均	小児(1~6歳)	妊婦	高齢者(65歳以上)
	(体重:53.3kg)	(体重:15.8kg)	(体重:55.6kg)	(体重:54.2kg)
摂取量 (μg/人/日)	101	60	80	88

7. 一般薬理試験

マウス、ラット、ウサギを用いた一般薬理試験が実施された。結果は表3に示されている。(参照2)

¹⁾容器内試験では原体、圃場試験では23.5%乳剤を使用。

表 3 一般薬理試験概要

			1	IB / B	H 1	H .	
試	験の種類	動物種	動物数 /群	投与量 (mg/kg 体重) (投与経路)	最大 無作用量 (mg/kg 体重)	最小 作用量 (mg/kg 体重)	結果の概要
	一般状態 (Irwin 法)	ICR マウス	雄 3 雌 3	0、150、500、 1,500、5,000 (経口)	500	1,500	運動性の低 下、 5,000mg/kg 体重で雌 1 例死亡
中枢神経	一般状態 (Irwin 法)	日本 白色種 ウサギ	雄 3	0、150、500、 1,500 (経口)	150	500	行動抑制、 1,500 mg/kg 体重 で 1 例死亡
経系	自発運動 (回転カゴ 法)	ICR マウス	雄 5	0、150、500、 1,500、5,000 (経口)	500	1,500	運動量の 低下
	体温	日本 白色種 ウサギ	雄 3	0、150、500、 1,500 (経口)	500	1,500	一過性の低 下
	呼吸数	日本 白色種 ウサギ	雄 3	0, 150, 500,	150	500	一過性の下 降後上昇
呼吸	心拍数	日本 白色種 ウサギ	雄 3~4	1,500 (経口)	500	1,500	心拍数の増 加
循環系	呼吸· 血圧· 心拍	日本 白色種 ウサギ	雄 3~4	0、150、500、 1,500	500	1,500	呼吸は亢進 後抑制、血 圧、心拍減 少
	心電図	日本 白色種 ウサギ	雄 3~4	(静注) (麻酔)	1,500	-	特異的変化なし
自律神経系	瞳孔	日本 白色種 ウサギ	雄 3	0、150、500、 1,500 (経口)	1,500	-	影響なし
体性	腓腹筋 収縮	SD ラット	雄 3~4	0、1,500、 5,000 (経口) (麻酔)	5,000	-	影響なし
体性神経系	筋弛緩 (傾斜 板法)	SD ラット	雄 5	0、150、500、 1,500、5,000 (経口)	1,500	5,000	落下限界角 度の減少傾 向
消化管	生体位腸 管	日本 白色種 ウサギ	雄 3~4	0、150、500、 1,500 (経口) (麻酔)	1,500	-	影響なし

試	験の種類	動物種	動物数 /群	投与量 (mg/kg 体重) (投与経路)	最大 無作用量 (mg/kg 体重)	最小 作用量 (mg/kg 体重)	結果の概要
	炭末輸送 能	SD ラット	雄 5	0、150、500、 1,500、5,000 (経口)	500	1,500	炭末移動の 増加
	胆汁排泄	SD ラット	雄 3	0、150、500、 1,500、5,000 (経口) (麻酔)	500	1,500	胆汁排泄量の増加
腎機能	尿排泄	SD ラット	雄 5	0、150、500、 1,500、5,000 (経口)	150	500	pH の低下、 尿量の減少 1,500mg/kg 体重で1例、 5,000mg/kg 体重で全例 死亡
<u>́</u> ш.	溶血	SD ラット	雄 5	0、150、500、 1,500、5,000 (経口)	5,000	-	影響なし
液	血液凝固時間	SD ラット	雄 5	0、150、500、 1,500、5,000 (経口)	1,500	5,000	PTT の延長

^{-:}最小作用量は設定できなかった。

8. 急性毒性試験

(1)急性毒性試験

テブコナゾールのラット、マウス、ウサギ、イヌ及びヒツジを用いた経口 投与による急性毒性試験及びラットを用いた腹腔内、経皮、吸入投与による 急性毒性試験が実施された。結果は表 4 に示されている。(参照 2~4、6)

表 4 急性毒性試験結果概要

投与	動物種	$\mathrm{LD}_{50}(\mathrm{mg}$	/kg 体重)	観察された症状
経路	到777年	雄	雌	既奈己4072症状
	SD ラット 雌雄各 5 匹	4,000	1,700	鎮静、削痩、歩行異常等
∀ ▼ □	Wistar ラット (絶食) 雌雄各 5 匹	>5,000	3,930	活動性低下、呼吸困難、
経口	Wistar ラット (非絶食) 雌雄 5 又は 10 匹	4,260	3,350	運動能不全、歩行 異常等
	ICR マウス 雌雄各 5 匹	2,800	>5,000	鎮静、歩行異常

	NMRI マウス (絶食) 雌雄各 5 匹	1,620	3,020	活動性低下、呼吸困難等		
	NZW ウサギ (絶食) 雌雄各 5 匹	>1,000	>1,000	摂餌量低下		
	ビーグル犬 ¹⁾	$625\sim$	1,250	ND		
	ヒツジ ¹⁾	$625\sim$	1,250	ND		
腹腔内	Wistar ラット 雌雄 5 又は 10 匹	751	395	活動性低下、呼吸困難、 運動能不全、歩行異常等		
経皮	SD ラット 雌雄各 5 匹	>2,000	>2,000	中毒症状はみられない		
	Wistar ラット 雌雄各 5 匹	>5,000	>5,000	中毒症状はみられない		
		LC_{50} (mg/L)			
	Wistar ラット 雌雄各 5 匹			中毒症状はみられない		
	(エーロゾル)	>0.37	>0.37	一番無例であり、うれいなく		
吸入	(粉体)	>5.09	>5.09			
	Wistar ラット (雌雄、匹数不明)					
	(4hr×1 回)	>0.82	>0.82	活動性低下		
	$(6\mathrm{hr}{ imes}5$ 回)	>0.24	>0.24			

(2) 急性神経毒性試験

Fischer ラット(一群雌雄 12 匹)を用いた単回経口投与(雄:0、20、50、100、500 及び 1,000 mg/kg 体重、雌:0、20、50、100、250 及び 500 mg/kg 体重)による急性神経毒性試験が実施された。

1,000 mg/kg 体重投与群で雄 6 例及び 500 mg/kg 体重投与群で雄 1 例に死亡が認められた。

機能観察検査 (FOB) では、500 mg/kg 体重以上の投与群の雄及び 100 mg/kg 体重以上の投与群の雌に、オープンフィールドでの活動性増加、ケージ内での立ち上がり回数の増加等がみられ、運動能・移動運動能検査では、100 mg/kg 体重投与群の雌雄に活動性の増加がみられた。

本試験において、100 mg/kg 体重投与群の雌雄に活動性の増加が認められたので、無毒性量は雌雄とも50 mg/kg 体重であると考えられた。本試験では検体投与による神経行動学的影響は認められたが、回復性があり、神経組織に対する異常所見は認められなかった。(参照2)

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼一次刺激性試験及び皮膚一次刺激性試験が実施され

た。眼に対する刺激性は軽度で、皮膚刺激性は認められなかった。

Hsd Poc:DH、PIRBRIGHT WHITE W 58、DHPW 及び Hartley モルモットを用いた皮膚感作性試験が実施された。皮膚感作性は認められなかった。(参照 2~4、6)

10. 亜急性毒性試験

(1) 28 日間亜急性毒性試験 (ラット)

Wistar ラット (一群雌雄各 20 匹) を用いた強制経口 (原体:0、30、100 及び 300 mg/kg 体重/日) 投与による 28 日間亜急性毒性試験が実施された。本試験において、100 mg/kg 体重/日以上の投与群の雌雄で肝臓及び脾臓の重量増加、肝臓の N-DEM、O-DEM 活性及び P-450 量の増加 (可逆的) 等が認められたので、無毒性量は雌雄とも 30 mg/kg 体重/日であると考えられた。 (参照 3、6)

(2)90日間亜急性毒性試験(マウス)

Wistar ラット(一群雌雄各 10 匹)を用いた混餌(原体:0、100、400 及び 1,600 ppm) 投与による 90 日間亜急性毒性試験が実施された。

本試験において、1,600 ppm 投与群の雌雄各 1 例に死亡、雄に体重増加抑制及び肝薬物代謝酵素(P-450, N-DEM)の誘導、400 ppm 以上投与群の雌に体重増加抑制及び副腎束状帯の細胞質内空胞化が認められたので、無毒性量は雄で 400 ppm(34.8 mg/kg 体重/日)、雌で 100 ppm(10.8 mg/kg 体重/日)であると考えられた。(参照 $2\sim4$ 、6)

(3)90日間亜急性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、200、1,000 及び5,000 ppm) 投与による 90 日間亜急性毒性試験が実施された。

5,000 ppm 投与群で、雌雄に削痩傾向、体重増加抑制、水晶体混濁、ALP 活性の上昇、N-DEM 活性及び P-450 量の増加、脾絶対及び比重量¹増加、雄に脾のヘモジデリン沈着増加、雌に肝のヘモジデリン沈着増加、副腎の東状帯細胞の空胞化等がみられ、1,000 ppm 投与群の雌雄においても削痩傾向及び体重増加抑制がみられた。

本試験において、1,000 ppm 投与群の雌雄に体重増加抑制等が認められたので、無毒性量は雌雄とも 200 ppm (雄:8.3 mg/kg 体重/日、雌:8.8 mg/kg 体重/日)であると考えられた。 (参照 $2\sim4$ 、6)

_

¹ 体重比重量を比重量という(以下同じ)

(4)90日間亜急性神経毒性試験(ラット)

Fischer ラット (一群雌雄各 10 匹) を用いた混餌 (原体: 0、100、400 及び1,600 ppm) 投与による 90 日間亜急性神経毒性試験が実施された。

本試験において、1,600 ppm 投与群の雌雄に体重増加抑制及び摂餌量の減少が認められたので、無毒性量は雌雄とも 400 ppm (雄: 29.2 mg/kg 体重/日、雌: 34.0 mg/kg 体重/日)であると考えられた。神経毒性は認められなかった。 (参照 2)

(5) 21 日間亜急性吸入毒性試験 (ラット)

Wistar ラット (一群雌雄各 10 匹) を用いた吸入 (原体: 1.2、10.6 及び 156 mg/m³、6 時間/日、5 日/週) による 21 日間亜急性吸入毒性試験が実施された。

本試験において、 156 mg/m^3 投与群の雌雄に粗毛及び肝臓の N-DEM 活性の上昇が認められたので、無毒性量は雌雄とも 10.6 mg/m^3 であると考えられた。(参照 $2\sim4$ 、6)

(6) 21 日間亜急性経皮毒性試験 (ウサギ)

NZW ウサギ (一群雌雄各 $5\sim6$ 匹) を用いた経皮 (原体:0、50、250 及び 1,000 mg/kg 体重/日、6 時間/日、5 日/週) 投与による 21 日間亜急性経皮毒性試験が実施された。

本試験において、いずれの投与群にも検体に起因すると考えられる変化は認められなかったので、無毒性量は雌雄とも本試験の最高用量である 1,000 mg/kg 体重/日であると考えられた。 (参照 $2\sim4$ 、6)

11. 慢性毒性試験及び発がん性試験

(1)1年間慢性毒性試験(イヌ)①

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、40、200 及び1,000(1-39 週)/2,000(40-52 週) ppm)投与による 1 年間慢性毒性試験が実施された。

1,000/2,000 ppm 投与群で、雌雄に ALP 活性、N-DEM 活性及びトリグリセリド濃度の上昇が、雌に水晶体の変化(混濁または又は星芒)及び副腎束状帯細胞の空胞化の増加がみられ、200 ppm 投与群の雌においても水晶体と副腎の変化が認められた。

本試験において、1,000/2,000 ppm 投与群の雄で ALP 活性の上昇等が、200 ppm 以上投与群の雌で水晶体混濁等が認められたので、無毒性量は雄で200 ppm(7.2 mg/kg/日)、雌で 40 ppm(1.5 mg/kg 体重/日)であると考えられた。(参照 $2\sim4$ 、6)

(2)1年間慢性毒性試験(イヌ)②

前述 (11.(1)) の試験における無毒性量の 40 ppm より高い無毒性量を確認するために、投与量として 0、100 及び 150 ppm を設定して、ビーグル犬 (一群雌雄各 4 匹) を用いた混餌投与による 1 年間慢性毒性試験が実施された。

本試験において、150 ppm 投与群の雌雄に副腎束状帯細胞の軽微な肥大が認められたので、無毒性量は雌雄とも 100 ppm (雄: 2.96 mg/kg 体重/日、雌: 2.94 mg/kg 体重/日) であると考えられた。 (参照 $2\sim4$ 、6)

(3)2年間慢性毒性/発がん性併合試験(ラット)

Wistar ラット (一群雌雄各 50 匹) を用いた混餌 (原体:0、100、300 及び 1,000 ppm) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。 1,000 ppm 投与群の雌雄に体重増加抑制、雌に脾のヘモジデリン沈着及び肝のクッパー細胞の色素沈着の発生頻度の増加、300 ppm 以上投与群の雄で甲状腺 C 細胞の増殖性病変 (過形成と腫瘍の合計) の発生頻度の増加、300 ppm 群の雌で 21 週から軽度ながら有意な体重増加抑制がみられた。

本試験において、300 ppm 以上投与群の雄で甲状腺 C 細胞の増殖性病変が、雌で体重増加抑制が認められたので、無毒性量は雌雄とも 100 ppm (雄: 5.3 mg/kg 体重/日、雌: 7.4 mg/kg 体重/日)であると考えられた。(参照 2 ~ 4)

(4) 21 か月間発がん性試験(マウス)①

NMRIマウス (一群雌雄各 50 匹; 中間検査用 10 匹) を用いた混餌 (原体: 0、20、60 及び 180 ppm) 投与による 21 か月間発がん性試験が実施された。

本試験において、180 ppm 投与群の雄で肝比重量の増加、180 ppm 投与群の雌雄で肝臓に空胞化(脂肪蓄積)の有意な増加が認められたので、無毒性量は雌雄とも60 ppm(雄:18.2 mg/kg 体重/日、雌:26.1 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照2)

(5) 21 か月間発がん性試験(マウス)②

NMRIマウス (一群雌雄各 50 匹; 中間検査用 10 匹) を用いた混餌 (原体: 0、500 及び 1,500 ppm) 投与による 21 か月間発がん性試験が実施され、毒性作用量での発がん性が検討された。

1,500 ppm 投与群の雄に肝細胞腺腫及び肝癌、雌に肝癌の発現頻度の増加が認められた。500 ppm 以上投与群の雌雄で血液生化学的検査の肝障害関連項目の変化、肝臓に単細胞壊死及び空胞化(脂肪化)が認められ、1,500 ppm 投与群でより強い肝への障害が観察された。(参照 2~4)

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

Wistar ラット(一群雌雄各 25 匹)を用いた混餌(原体:0、100、300 及び 1,000 ppm) 投与による 2 世代繁殖試験が実施された。

1,000 ppm 投与群で、親動物の雌雄に体重増加抑制及び摂餌量の減少が、 児動物に出生時体重の低下及び哺育期間中の体重増加抑制がみられた。繁殖 能に関しては、同群で出生時同腹児数の減少及び哺育率の低下が認められた。

本試験において、1,000 ppm 投与群で親動物及び児動物に体重増加抑制等がみられ、出生時同腹児数の減少等が認められたので、無毒性量は親動物、児動物及び繁殖能とも 300 ppm (P 雄: 21.6 mg/kg 体重/日、P 雌: 27.8 mg/kg 体重/日、 F_1 雄: 27.1 mg/kg 体重/日、 F_1 雄: 33.9 mg/kg 体重/日)であると考えられた。(参照 $2\sim4$ 、6)

(2)発生毒性試験(ラット)①

Wistar ラット (一群雌 25 匹) の妊娠 $6\sim15$ 日に強制経口 (原体:0、30、60 及び 120 mg/kg 体重/日) 投与し、発生毒性試験が実施された。

60 mg/kg 体重/日以上投与群で、母動物に体重増加抑制、摂餌量の減少、 肝絶対及び比重量の増加並びに子宮内黒褐色液貯留が、胎児に椎骨の骨化遅延が認められ、120 mg/kg 体重/日投与群では、着床後死胚数の増加、生存胎 児数の減少及び胎児体重の低下がみられた。

本試験において、60 mg/kg 体重/日以上投与群の母動物に体重増加抑制等、胎児に椎骨の骨化遅延が認められたので、無毒性量は母動物及び胎児とも 30 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 $2 \sim 4$)

(3)発生毒性試験(ラット)②

Wistar ラット (一群雌 25 匹) の妊娠 $6\sim15$ 日に強制経口 (原体:0及び 100 mg/kg 体重/日) 投与し、発生毒性試験が実施された。

100 mg/kg 体重/日投与群で、母動物に顕著な体重増加抑制が認められ、胎児には生存胎児数の減少、矮小児数の増加、内臓・外表奇形胎児数の増加等が認められた。胎児にみられた悪影響は、検体の母動物に対する毒性によるものと考えられた。(参照 2、3、6)

(4)発生毒性試験(ラット)③

Wistar ラット (一群雌 25 匹) の妊娠 $6\sim15$ 日に強制経口 (原体:0、10、30 及び 100 mg/kg 体重/日) 投与し、発生毒性試験が実施された。

本試験において、30 mg/kg 体重/日以上投与群の母動物に体重増加抑制が認められ、100 mg/kg 体重/日投与群で母体毒性によると考えられる胎児体重

の低下、矮小児及び奇形胎児数の増加が認められたので、無毒性量は母動物で 10 mg/kg 体重/日、胎児で 30 mg/kg 体重/日であると考えられた。(参照 2、3、6)

(5)発生毒性試験 (ラット) ④

Wistar ラット (一群雌 25 匹) の妊娠 $6\sim15$ 日に経皮 (原体:0、100、300 及び 1,000 mg/kg 体重/日、6 時間/日)投与し、発生毒性試験が実施された。

本試験において、いずれの投与群にも検体に起因すると考えられる影響は認められなかったので、無毒性量は母動物及び胎児とも 1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。 (参照 2、3)

(6)発生毒性試験(ラット)⑤

Wistar ラット (一群雌 25 匹) の妊娠 $6\sim15$ 日に経皮 (原体: 0 及び 1,000 mg/kg 体重/日、6 時間/日) 投与し、発生毒性試験が実施された。

本試験において、1,000 mg/kg 体重/日投与群の母動物に皮膚反応(紅斑、痂皮形成)が認められ、胎児には影響が認められなかったので、無毒性量は母動物では設定できず、胎児で1,000 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照2)

(7)発生毒性試験(マウス)①

NMRIマウス(一群雌 25 匹)の妊娠 6~15 日に強制経口(原体:0、10、30 及び 100 mg/kg 体重/日)投与し、発生毒性試験が実施された。さらに、母体毒性を確認するための追加試験(一群雌 10 匹)として、0、10、20、30 及び 100 mg/kg 体重/日の用量を設定し、本試験と同様の投与が行われた。本試験において、30 mg/kg 体重/日以上投与群で母体毒性(肝細胞の脂肪化)及び胎児毒性(矮小児数の増加)が認められ、100 mg/kg 体重/日投与群で奇形胎児数が増加したので、無毒性量は母動物及び胎児とも 10 mg/kg 体重/日であると考えられた。(参照 2~4)

(8)発生毒性試験(ラット)②

NMRI マウス(第1試験:一群雌35匹、第2試験:一群雌30匹)の妊娠 $6\sim15$ 日に強制経口(第1試験;原体:0、10、30及び100 mg/kg体重/日、第2試験;原体:<math>0、1及び3 mg/kg体重/日)投与し、発生毒性及び母動物毒性試験が実施された。

母体毒性量の 100 mg/kg 体重/日では、異常所見を有する胎児数が有意に増加した。30 mg/kg 体重/日以上投与群で、母動物に肝比重量の増加、肝細胞の脂肪蓄積と空胞化、ALP 活性、N-DEM 活性及び P-450 量の増加が、胎

児に軽度の骨化遅延が認められ、10 mg/kg 体重/日投与群では母動物の肝細胞空胞化に程度の増強がみられた。

本試験において、10 mg/kg 体重/日以上投与群で母動物に肝細胞空胞化が、30 mg/kg 体重/日投与群で胎児に骨化遅延が認められたので、無毒性量は母動物で 3 mg/kg 体重/日、胎児で 10 mg/kg 体重/日であると考えられた。(参照 2)

(9)発生毒性試験 (ラット) ③

NMRIマウス (一群雌 25 匹)の妊娠 6~15 日に経皮 (原体:0、100、300 及び 1,000 mg/kg 体重/日)投与し、発生毒性試験が実施された。さらに、母体毒性を確認するための追加試験として、同用量を投与し、病理組織学的検査 (一群雌 10 匹)及び臨床生化学的検査 (一群雌 5 匹)が行われた。

300 mg/kg 体重/日以上投与群で、母動物に肝の脂肪変性、N-DEM、O-DEM 活性及び P-450 量の増加が、1,000 mg/kg 体重/日投与群で、胎児に口蓋裂及び過剰肋骨の発生頻度の増加が認められた。

本試験において、300 mg/kg 体重/日以上投与群で母動物に肝の脂肪変性等が、1,000 mg/kg 体重/日投与群で胎児に口蓋裂増加等が認められたので、無毒性量は母動物で 100 mg/kg 体重/日、胎児で 300 mg/kg 体重/日であると考えられた。

1,000 mg/kg/体重/日群でみられた口蓋裂は母体毒性に関連したもので、検体に特異的な催奇形作用を示すものではないと考えられた。(参照 2、3)

(10)発生毒性試験(ウサギ)①

ヒマラヤウサギ (一群雌 16 匹) の妊娠 $6\sim18$ 日に強制経口 (原体:0、10、30 及び 100 mg/kg 体重/日) 投与し、発生毒性試験が実施された。

本試験において、100 mg/kg 体重/日投与群で母動物に体重増加抑制、摂餌量の減少、着床後死亡胚の増加がみられ、母体毒性によると考えられる奇形(四肢の奇形)胎児数の増加が認められたので、無毒性量は母動物及び胎児とも 30 mg/kg 体重/日であると考えられた。(参照 2~4、6)

(11)発生毒性試験(ウサギ)②

ヒマラヤウサギ (一群雌 15 匹) の妊娠 $6\sim18$ 日に強制経口 (原体:0、3、10 及び 30 mg/kg 体重/日) 投与し、発生毒性試験が実施された。

本試験において、いずれの投与群にも母動物及び胎児に影響は認められなかったので、無毒性量は母動物及び胎児とも 30 mg/kg 体重/日であると考えられた。 (参照 2)

(12)発生毒性試験(ウサギ)③

チンチラウサギ (第 1 試験:一群雌 16 匹、第 2 試験:一群 5 匹)の妊娠 6~18 日に強制経口(原体:0、10、30 及び 100 mg/kg 体重/日)投与し、発生毒性試験(第 1 試験)及び母動物毒性試験(第 2 試験)が実施された。本試験において、100 mg/kg 体重/日投与群で母動物に摂餌量及び体重の一時的な減少がみられ、胎児に体重低下及びこれに伴う骨化遅延の増加、投与によると考えられる奇形(3 例)が認められたので、無毒性量は母動物及び胎児とも 30 mg/kg 体重/日であると考えられた。(参照 2)

(13)発生毒性試験(ウサギ)④

チンチラウサギ (一群雌 14~15 匹)の妊娠 6~19 日に強制経口 (原体: 0 及び 100 mg/kg 体重/日) 投与し、発生毒性のメカニズム試験が実施された。 100 mg/kg 体重/日投与群で、母動物に体重及び摂餌量の減少、肝の薬物代謝酵素 (ECOD, EROD, ALD, EH, GLU-T) 活性の上昇 (10~55%)、副腎組織中のステロイド (11・デオキシコルチコステロン及びコルチコステロン) 濃度の軽度な上昇 (20 及び 22%)及び副腎皮質束状帯の細胞肥大が認められた。グルココルチコイドの増加は奇形を誘発する可能性があり、特にウサギは感受性が高いことが知られている。検体投与により、母動物への明らかな毒性に加え、副腎の細胞肥大とグルココルチコイドの産生及び血流への放出過剰が奇形発現に関与している可能性があるものと考えられた。母動物の血漿及び胎児組織中の検体濃度に差はみられず、胎児への検体の蓄積はないものと考えられた。本試験では胎児体重の低下は認められたが、外表奇形はみられず、100 mg/kg 体重/日は催奇形性の閾値と考えられた。 (参照 2)

(14)発達神経毒性試験(ラット)

SD ラット (一群雌 25 匹) の妊娠 0日~哺育 11 日に混餌 (原体: 0、100、300 及び 1,000 ppm) 投与し、発達神経毒性試験が実施された。

本試験において、1,000 ppm 投与群で母動物に死亡、体重増加抑制、摂餌量減少、妊娠期間の延長等の毒性影響がみられ、児動物に死産児の増加、生存率低下、体重増加抑制、発育遅延を示唆すると思われる所見(膣開口日の僅かな遅延、脳絶対重量の減少、小脳高の低値)が認められたので、無毒性量は母動物及び児動物とも 300 ppm (妊娠期間: 22.0 mg/kg 体重/日、哺育期間: 41.3 mg/kg 体重/日) であると考えられた。

児動物の体重及び脳絶対重量については、100 及び 300 ppm 投与群においても統計学的に有意な低値が一部に認められたが、用量相関性はなく、雌雄で同様の傾向がみられないことから、検体の影響ではないと考えられた。児動物に特異的な神経行動学的影響は認められなかった。(参照 2)

13. 遺伝毒性試験

テブコナゾールの各種遺伝毒性試験が実施されており、試験結果はすべて陰性であった。 (表 5)

テブコナゾールに遺伝毒性はないものと考えられた。 (参照 $2\sim4$ 、6)

表 5 遺伝毒性試験概要

	試験	対象	処理濃度・投与量	結果
	DNA修復試験	Bacillus subtilis (H17、M45 株)	0.313~20 μg/ディスク (+/-S9)	陰性
	DNA修復試験	Escherichia coli (W3110、K12 p3478 株)	625~10,000 μg/7° ν-} (+/-S9)	陰性
		Salmonella typhimurium (TA98、TA100、TA1535、 TA1537 株)	0.5~100 μg/mL(+/-S9)	
	復帰突然変異試験	E. coli (WP2 uvrA 株)	31.2~1,000 μg/7° ν-\ (-S9) 156~5,000 μg/7° ν-\ (+S9)	陰性
in vitro	復帰突然変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537 株)	20~12,500 μg/7° ν-ト 75~1,200 μg/7° ν-ト (+/- S9)	陰性
	復帰突然変異試験	S. typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株)	37.5~2,400 μg/7° ν-\ 39.5~450 μg/7° ν-\ (+/- S9)	陰性
	遺伝子突然変異試 験(Hprt遺伝子)	チャイニーズハムスター 卵巣由来培養細胞 (CHO)	80~100 μg/mL (-S9) 12.5~200 μg/mL (+S9)	陰性
	不定期 DNA 合成 試験	ラット初代培養肝細胞	0.5~25.2 μg/mL	陰性
	染色体異常試験	ヒトリンパ球	3~30 μg/mL (-S9) 30~300 μg/mL (+S9)	陰性
	姉妹染色分体交換 試験	チャイニーズハムスター 卵巣由来培養細胞(CHO)	4~30 μg/mL (-S9) 15~120 μg/mL (+S9)	陰性
:	小核試験	NMRI マウス(骨髄細胞) (一群雌雄各 5 匹)	200~2,000 mg/kg (単回強制経口投与)	陰性
in vivo	優性致死試験	NMRI マウス (一群雄 50 匹、雌 600 匹)	2,000 mg/kg (単回強制経口投与)	陰性

注) +/-S9: 代謝活性化系存在下及び非存在下

14. 白内障に関する試験(参考)

(1)6週間反復吸入毒性及び白内障に関する試験(イヌ)

ビーグル犬 (一群雌 4 匹) を用いた吸入 (原体: 150 及び 800 mg/m³、4 時間/日、5 日/週) による 6 週間反復吸入毒性及び白内障に関する試験が実施された。

本試験において、技術的に可能な最大濃度である 800 mg/m^3 (実測濃度: 914 mg/m^3)群で、投与期間中に一時的な流涎、咳嗽音及び摂餌量の減少が認められたが、眼科的検査及びレンズの病理組織学的検査では白内障は認められなかったので、無毒性量は白内障については 914 mg/m^3 、一般症状については 163 mg/m^3 であると考えられた。 (参照 2、3)

(2)4週間反復吸入毒性及び白内障に関する試験(ネコ)

ネコ (一群雌雄各 4 匹) を用いた吸入 (原体: 50 及び 350 mg/m³、6 時間 /日、5 日/週) による 4 週間反復吸入毒性及び白内障に関する試験が実施された。

本試験において、 350 mg/m^3 (実測濃度: 309 mg/m^3)を吸入投与しても白内障の誘発は認められなかったので、白内障に関する無毒性量は 309 mg/m^3 であると考えられた。(参照 2)

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて、農薬「テブコナゾール」の食品健康影響評価を 実施した。また、今回うめ、かき、茶等の作物残留試験が新たに提出された。

ラットを用いた動物体内運命試験において、テブコナゾールは動物体内に速やかに吸収され、 $0.33\sim1.70$ 時間後に C_{max} に達した。投与後 1 時間でほぼ全組織及び臓器に分布し、肝臓及び副腎皮質には他の組織及び臓器に比して高い濃度の分布がみられた。主な排泄経路は胆汁を介した糞中であり、尿中へも排泄されるが、呼気への排泄は僅かであった。主要代謝経路は、tブチル基の水酸化及び酸化であり、主要代謝物は M1 及び M8 で、主に糞中で検出された。

 14 C で標識したテブコナゾールを用いた植物体内運命試験の結果、主要成分は親化合物であり、10%TRR を超える代謝物として M1、M18 及び M24 が認められた。

テブコナゾールを分析対象化合物とした作物残留試験が実施された。最大残留値は最終散布7日後に収穫した茶(荒茶)の38.9 mg/kgであった。

各種毒性試験結果から、テブコナゾール投与による影響は主に体重(増加抑制)、肝臓(脂肪変性等)に認められた。遺伝毒性は認められなかった。

発がん性試験において、ラットで甲状腺 C 細胞の増殖性病変(過形成及び腫瘍)が、マウスで肝細胞腫瘍が認められたが、遺伝毒性は認められないことから発生機序は遺伝毒性メカニズムとは考え難く、本剤の評価にあたり閾値を設定することは可能であると考えられた。

各種試験結果から、農産物中の暴露評価対象物質をテブコナゾール(親化合物のみ)と設定した。

各試験の無毒性量等は表 6 に示されている。

米国 EPA では、ラットを用いた発達神経毒性試験において、低用量(100 ppm)投与群の児動物にみられた脳絶対重量の減少を毒性影響と考え、この試験における最小毒性量 100 ppm(8.8 mg/kg 体重/日)を根拠とし、不確実係数 1,000 を用いて慢性参照用量(cRfD)を設定している。しかし、脳比重量は減少していないこと、300 ppm 投与群では雄に脳重量の減少がみられないこと、100 ppm 投与群で脳重量減少に関連すると思われる毒性所見がみられないこと、より投与期間の長い 2 世代繁殖試験の次世代動物に毒性所見がみられないことから、この脳絶対重量減少は、生体にとって問題となるものとは考えられなかった。

各試験の無毒性量の最小値は、イヌを用いた1年間慢性毒性試験の 1.5 mg/kg 体重/日であったが、この試験では最小毒性量以下の用量を低く設定しすぎていること、追加試験で得られた無毒性量が 2.94 mg/kg 体重/日であることから、イヌを用いた1年間慢性毒性試験の無毒性量は 2.94 mg/kg 体重/日であると判断した。

食品安全委員会は、イヌを用いた1年間慢性毒性試験の無毒性量2.94 mg/kg

体重/日を根拠として、安全係数 100 で除した 0.029 mg/kg 体重/日を ADI と設定した。

ADI 0.029 mg/kg 体重/日

(ADI 設定根拠資料) 慢性毒性試験

(動物種)イヌ(期間)1年間(投与方法)混餌

(無毒性量) 2.94 mg/kg 体重/日

(安全係数) 100

表 6 各評価機関の評価結果及び各試験における無毒性量等

無毒性量(mg/kg 体重/日) ¹⁾								
動物種	試験	投与量		1	 T	T		
234 174 17	h. 400/C	(mg/kg 体重/日)	JMPR	米国	豪州	食品安全委員会	農薬抄録	
ラット	28 日間	0, 30, 100, 300	30		30	30		
	亜急性 毒性試験		肝、脾重量増加等		肝機能障害等	肝、脾重量増加等		
	90 日間	0、100、400、1,600 ppm	9	雄:34.8 雌:10.8	10	雄:34.8 雌:10.8	雄:34.8 雌:10.8	
	亜急性 毒性試験	雄:0、8.6、34.8、171.7 雌:0、10.8、46.5、235.2	体重増加抑制、副腎細 胞空胞化	雄:体重増加抑制等 雌:副腎細胞空胞化	体重増加抑制、副腎細 胞空胞化		雄:体重増加抑制等 雌:副腎束状帯細胞質 内空胞化等	
	90 日間 亜急性	0、100、400、1,600 Ppm				雄: 29.2 雌: 34.0	雄: 29.2 雌: 34.0	
	神経毒性試験	雄:0、7.57、29.2、107 雌:0、8.81、34.0、122					雌雄:体重増加抑制等 (神経毒性は認めら れない)	
		0、100、300、1,000 ppm	5	雄:5.3 雌:7.4	15(300ppm)	雄:5.3 雌:7.4	雄:5.3 雌:7.4	
	2年間 慢性毒性/ 発がん性 併合試験	雄: 0、5.3、15.9、55.0 雌: 0、7.4、22.8、86.3	体重増加抑制 (発がん性は認められない)	雄:甲状腺C細胞過形成 雌:体重増加抑制等 (発がん性は認められない)	体重増加抑制等 (発がん性は認められない)	性病変	雄:甲状腺 C 細胞増殖性病変雌:体重増加抑制等	
	2世代繁殖試験	0、100、300、1,000 ppm P雄: 0、7.12、21.6、 72.3 P雌: 0、9.07、27.8、 94.8 F1雄: 0、9.24、27.1、 97.2	親動物、児動物及び 繁殖能:22	親動物及び繁殖能:15	繁殖能:25	F1 雄: 27.1	親動物、児動物及び 繁殖能: P雄: 21.6 P雌: 27.8 F1雄: 27.1 F1雌: 33.9	
		F1 雌: 0、11.1、33.9、	親動物及び児動物:	親動物: 体重増加抑制	親動物及び児動物:	親動物及び児動物:	親動物及び児動物:	

動物種	試験	投与量		無毒	性量(mg/kg 体重/日) 1)	
到7071里	叶间火	(mg/kg 体重/日)	JMPR	米国	豪州	食品安全委員会	農薬抄録
		111.4	体重増加抑制 繁殖能:出生時同腹児 数減少	繁殖能:哺育児体重増加抑制	体重増加抑制 繁殖能:同腹児数減少	体重増加抑制等 繁殖能:出生時同腹児 数減少等	体重増加抑制等 繁殖能:出生時同腹児 数減少等
		0, 30, 60, 120	母動物:30 胎児:60	母動物:30 胎児:30		母動物:30 胎児:30	母動物:30 胎児:30
	発生毒性 試験①		母動物: 体重増加抑制等 胎児: 生存胎児数減 少等 (催奇形性は認めら れない)	胎児:骨化遅延等		等 胎児:椎骨骨化遅延 (催奇形性は認めら れない)	れない)
	発生毒性 試験②	0, 100	母動物:一 胎児:一 母動物:体重増加抑制 胎児:矮小児、奇形児 増加等				母動物:一 胎児:一 母動物:体重増加抑制 胎児:矮小児、奇形児 増加等
	発生毒性 試験③	0, 10, 30, 100	母動物:10 胎児:30 母動物:体重増加抑制 胎児:矮小児、奇形児 増加等		母動物:10 胎児:30 母動物:体重増加抑制	母動物:10 胎児:30 母動物:体重増加抑制	母動物:10 胎児:30 母動物:体重増加抑制 胎児:矮小児、奇形児 増加等
	発達神経 毒性試験	0、100、300、1,000 妊娠期:0、8.8、22.0、 65.0 哺育期:0、16.3、41.3、 125.4		母動物: 22.0 胎児: 一 母動物: 体重増加抑制等 児動物: 100 ppm(8.8 mg/kg 体重/日) で脳 絶対重量減少等	TH/H T	母動物: 22.0 胎児: 22.0 母動物: 体重増加抑制等 児動物: 生存率低下等	母動物: 22.0 胎児: 22.0 母動物: 体重増加抑制 等 児動物: 生存率低下等 (神経毒性は認められ ない)
マウス	21 か月間	0、20、60、180 ppm	6		6	雄:18.2	雄: 18.2

動物種	試験	投与量		無毒	性量(mg/kg 体重/日) 1)	
到707里	配為火	(mg/kg 体重/日)	JMPR	米国	豪州	食品安全委員会	農薬抄録
	発がん性 試験①	雄:0、5.9、18.2、53.1 雌:0、9.0、26.1、80.5				雌: 26.1	雌:26.1
			肝の病理組織学的変 化		肝の脂肪変性	雌雄:肝空胞化等	雌雄:肝空胞化等
			(発がん性は認めら れない)		(発がん性は認めら れない)	(発がん性は認めら れない)	(発がん性は認めら れない)
	21 か月間	0、500、1,500 ppm					
	発がん性 試験①	雄:0、84.9、279.0 雌:0、103.1、356.5	500 ppm で肝障害、 1,500 ppm で肝腫瘍 増加	500 ppm で肝障害、 1,500 ppm で肝腫瘍増 加		MTD を超える用量で 肝腫瘍増加	MTD を超える用量で 肝腫瘍増加
		0, 10, 30, 100 0, 10, 20, 30, 100	母動物:- 胎児:10	母動物:10 胎児:10		母動物:10 胎児:10	母動物:10 胎児:10
	発生毒性 試験①		母動物:肝毒性 胎児:矮小児の増加	母動物:肝細胞の空胞 化等 胎児:矮小児の増加		母動物:肝細胞の脂肪 化 胎児:矮小児の増加 (100 mg/kg 体重/日 で奇形胎児増加)	母動物:肝細胞の脂肪 化 胎児:矮小児の増加 (100 mg/kg 体重/日 で奇形胎児増加)
	発生毒性	0, 1, 3, 10, 30, 100				母動物: 3 胎児: 10	母動物:3 胎児:10 母動物:肝細胞空胞化
	試験②					声動物: 肝細胞空胞化 胎児: 骨化遅延	時期物: 肝細胞至胞化 胎児: 骨化遅延 (催奇形性は認められ ない)
ウサギ		0, 10, 30, 100	母動物:30 胎児:30	母動物:30 胎児:30	母動物:30 胎児:30	母動物:30 胎児:30	母動物:30 胎児:30
	発生毒性 試験①		等 胎児:着床後死亡胚増	母動物:体重増加抑制等 胎児:着床後死亡胚増加、四肢奇形児増加等	等 胎児:体重低下、四肢	等 胎児:着床後死亡胚増	等
	発生毒性 試験②	0, 3, 10, 30	母動物:10 胎児:30	ARY DIAKRIMOLITANIA	7///LEWH	母動物:30 胎児:30	日本

動物種	試験	投与量		無毒	性量(mg/kg 体重/日) 1)	
到707里	叶间火	(mg/kg 体重/日)	JMPR	米国	豪州	食品安全委員会	農薬抄録
			母動物:体重増加抑制 (催奇形性は認められない)			母動物及び胎児:影響なし (催奇形性は認めら れない)	(催奇形性は認められない)
	発生毒性 試験③	0, 10, 30, 100					母動物:30 胎児:30 母動物:体重減少等 胎児:骨化遅延等
イヌ	90 日間 亜急性 毒性試験	0、200、1,000、5,000 ppm 雄: 0、8.3、41.5、205.1 雌: 0、8.8、41.3、220.5	体重増加抑制等	雄: 7.3 雄: 体重増加抑制等	7.5 体重増加抑制等		雄: 8.3 雌: 8.8 雌雄: 体重増加抑制等
	1 年間 慢性毒性 試験①	0、40、200、 1,000/2,000 ppm	2 白内障、副腎の病理組	1 水晶体混濁、肝毒性等	1.5 副腎束状帯の細胞質 内空胞化	雄:ALP 活性上昇等	雄: 7.2 雌: 1.5 雄: ALP 活性上昇等 雌: 水晶体混濁等
	1 年間 慢性毒性 試験②	0、100、150 ppm 雄: 0、2.96、4.39 雌: 0、2.94、4.45	3 雌雄:副腎束状帯細胞 肥大	3 雌雄:副腎束状帯細胞 肥大	雄: 2.9 雌: 3.0 雌雄: 副腎束状帯細胞 肥大	雄:2.96 雌:2.94	雄: 2.96 雌: 2.94
	ADI(cRfD)		NOAEL : 3 SF : 100 ADI : 0.03	LOAEL: 8.8 UF: 1,000 cRfD: 0.009	NOAEL : 1.5 SF : 100 ADI : 0.01	NOAEL : 2.94 SF : 100 ADI : 0.029	NOAEL : 2.94 SF : 100 ADI : 0.029
AI		设定根拠資料	イヌ1年間慢性毒性 試験	ラット発達神経毒性 試験	イヌ1年間慢性毒性 試験	イヌ1年間慢性毒性 試験	イヌ1年間慢性毒性 試験

/:試験記載なし。

NOAEL: 無毒性量 LOAEL: 最小毒性量 SF: 安全係数 UF: 不確実係 ADI: 一日摂取許容量 cRfD: 慢性参照用量 1) 無毒性量欄には、最小毒性量で認められた主な毒性所見等を記した。

<別紙1:代謝物/分解物略称>

記号	化学名
M1	(RS)-5- $(4$ -クロロフェニル $)$ - 2 , 2 -ジメチル-3- $(1H$ - 1 , 2 , 4 -トリアソ゛ール- 1 -イルメチル $)$ ペンタン- 1 , 3 -
	シ゛オール
M2	(RS,RS)-1-(4-クロロフェニル)-4,4-ジメチル-3-(1H-1,2,4-トリアゾール-1-イルメチル)ペンタン
	-1,3,5-トリオール
М3	(RS,RS)-1-(4-クロロフェニル)-4,4-ジメチル-3-(1H-1,2,4-トリアゾール-1-イルメチル)ペンタン
	-2,3-ジオール
M4	(RS,RS)-1-(4-クロロフェニル)-4,4-ジメチル-3-(1H-1,2,4-トリアゾール-1-イルメチル)ペンタン
	-1,3-ジオ¬ル
	(RS)-1-(4-クロロ-2-ヒト゛ロキシフェニル)-4,4-シ゛メチル-3-(1H-1,2,4-トリアソ゛ール-1-イルメチル)
	ヘ゜ンタン-3-オール
	(RS)-1-(4-クロロ-3-ヒト゛ロキシフェニル)-4,4-シ゛メチル-3-(1H-1,2,4-トリアソ゛ール-1-イルメチル)
	へ。 ンタン-3-オール
	(RS)-5-(4-クロロ-3-ヒト゛ロキシフェニル)-2,2-シ゛メチル-3-(1H-1,2,4-トリアソ゛ール-1-イルメチル)
	へ。ンタン-1,3-シ゛オール (RS)-5-(4-クロロフェニル)-3-ヒドロキシ-2,2-ジメチル-3-(1H-1,2,4-トリアゾール-1-イルメチル)
M9	へ。ンタン酸 (RS)-5-(4-クロロフェニル)-3-ヒドロキシ-2,2-ジメチル-5-オキソ-3-(1H-1,2,4-トリアゾール-1-イ
M9	(RS)-3-(4-7)ロフェニル)-3-Cド ロイジ-2,2-ジ メナル-3-4イノ-3-(IH-1,2,4-ドリナナ ール-1-4 ルメチル)へ ンタン酸
M10	(RS)-4'-クロロ-3-ヒト゛ロキシ-4,4-シ゛メチル-3- $(1H-1,2,4$ -トリアソ゛ール- 1 -イルメチル)へ゜ンタノフェン
M11	(EZ,RS) -1- $(4$ - β - μ - μ - χ
141 1 1	(EZ,Its) 1 (4) ロール 4,4 V
M12	(RS) -6- $[2$ - $(4$ - β pp β z= λ)z= λ]-6- ξ p+ ξ -7,7- ξ λ = λ -5,6,7,8- ξ p $[1,2,4]$
	リアソ゛ロ[1,5-a]t゜リシ゛ン
M13	(RS)-1- $(4$ -クロロフェニル)- 4 -メチル- 3 - $(1H$ - 1 , 2 , 4 -トリアソ゛ール- 1 -イルメチル)へ゜ンタン- 3 -オール
M14	(RS)-4-(4-クロロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オール
M15	4-(4-クロロフェニル)-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オン
M16	(M1の硫酸抱合体)
M17	(M1 のグルクロン酸抱合体)
M18	(M1 のグルコース抱合体)
M19	(M2 のグルクロン酸抱合体)
M20	(RS)-5,5-ジメチル-4-(1H-1,2, 4-トリアゾール-1-イルメチル)-4-ヘキサノリド
M21	(RS)-4-ヒドロキシ-5,5-ジメチル-4-(1H-1,2,4-トリアゾール-1-イルメチル)ヘキサン酸
M22	3,3-ジメチル-1-(1H-1,2,4-トリアゾール-1-イル)ブタン-2-オン
M23	1,2,4-トリアゾール
M24	(DL)-3-(1H-1,2,4-トリアゾール-1-イル)アラニン
M25	(DL)-3-(1H-1,2,4-トリアゾール-1-イル)乳酸
M26	(1H-1,2,4-トリアソ゛ール-1-イル)酢酸
M27	p-クロロ安息香酸

<別紙2:検査値等略称>

略称	名称
ai	有効成分量
ALD	アルドリンエポキシダーゼ
ALP	アルカリフォスファターゼ
C_{max}	最高濃度
ECOD	7-エトキシクマリンデエチラーゼ
EH	エポキシドヒドロラーゼ
EROD	7-エトキシレゾルフィンデエチラーゼ
GLU-T	UDP-グルクロニルトランスフェラーゼ
LC_{50}	半数致死濃度
LD_{50}	半数致死量
MTD	最大耐量
N-DEM	N·デメチラーゼ
O-DEM	<i>O</i> デメチラーゼ
P-450	チトクローム P-450
PHI	最終使用から収穫までの日数
PTT	部分トロンボプラスチン時間
$T_{1/2}$	半減期
TAR	総処理(投与)放射能
T_{max}	最高濃度到達時間
TRR	総残留放射能

<別紙3:作物残留試験成績(国内)>

	試		田門以及	707	,,,,		残	留値(mg	g/kg)		
作物名	験	- 			DIII	_ ,		_	ゾール	トリア	ゾール
(栽培形態)	圃	剤型	使用量	回数	PHI	テブコナ	トゾール	アラ	ニン	酢	酸
(分析部位) 実施年度	場	坙	(g ai/ha)	(回)	(目)	最高値	平均値	最高	平均	最高	平均
	数					双间匝	一个问证	値	値	値	値
小麦					14	0.16	0.10	0.56	0.40	0.21	0.16
(露地)(種子)	2	EC	352	2	21	0.14	0.08	0.67	0.47	0.23	0.18
1991 年度					28	0.06	0.02*	0.93	0.68	0.20	0.20
小麦					13	0.01	0.01	/		/	
(露地)(玄麦)	2	sc	300	2	14	0.07	0.06				
1998 年度	4	SC	300	2	20	0.01	0.01				
					21	0.05	0.04				
小麦					7	0.68	0.38	/			
(露地)(玄麦)	9	g C	400×1	9	14	0.24	0.24				/
2002 年度	2	SC	200×2	3	15	< 0.05	< 0.05				
					21	0.15	0.10*				
小麦			400.7/1		14	0.05	0.05*	/			
(露地)(玄麦)	2	SC	400×1	3	21	0.06	0.06*				
2004 年			200×2		18	< 0.05	< 0.05				
小麦			200.7/1		7	0.53	0.36				
(露地)(玄麦)	2	SC	600×1	3	14	0.07	0.06*				
2003 年度			300×2		21	0.06	0.05*				
大麦					14	1.47	1.20		/		
(露地)(種子)	0	aa	200		21	0.91	0.71				
2003年度	2	SC	200	2	28	0.24	0.24				
					29	0.11	0.10				/
てんさい					14	0.16	0.08				
(根部)	2	SC	267	4	21	0.11	0.06*				
1999 年度					28	0.07	0.04				
てんさい					14	0.02	0.01*				
(根部)	2	SC	300	2	21	0.02	0.01*				
2000 年度					28	0.03	0.01*				
にんにく					7	< 0.01	< 0.01				
(露地)(鱗茎)	2	SC	600	3	14	< 0.01	< 0.01				
2007年					21	< 0.01	< 0.01				
キャベツ					1	1.50	1.45	/	/	/	
(露地)(茎葉)		~ -	400∼	_	3	0.81	0.78				/
2008年	2	SC	600	3	7	0.19	0.18				\mid / \mid
					14	0.12	0.12				
たまねぎ						0.02	0.01*				
(露地)(鱗茎)	2	SC	400	3	1 3	0.02	0.01**				
2000 年度					Э	0.04	0.02"	/	/	/	

lh the H	試							留値(mg	g/kg)		
作物名 (栽培形態)	験 圃	剤	使用量	回数	PHI	テブコナ	ーゾール		ゾール ニン		ゾール 酸
(分析部位) 実施年度	場 数	型	(g ai/ha)	(回)	(目)	最高値	平均值	最高 値	平均 値	最高 値	平均 値
					7	0.01	0.01*				
ねぎ			000		14	0.16	0.10				
(露地)(茎葉)	4	SC	300~	3	21	0.11	0.04				
2001 年度			400		28	0.03	0.01*				
わけぎ			FFC -		3	2.43	1.28				
(露地)(茎葉)	2	SC	$556\sim$ 600	3	7	1.02	0.53				
2003 年度			600		14	0.67	0.36*				
あさつき					3	5.56	3.32				
(露地)(茎葉)	2	SC	600	3	7	1.84	1.04				
2003 年度					14	1.01	0.70				
りんご					1	0.43	0.23				1 /
(露地・無袋)	0	aa	~ 00	0	7	0.22	0.14				
(果実)	2	SC	500	3	14	0.04	0.03*				
2004 年度					21	0.02	0.02*				
なし					1	1.53	1.04				1 /
(露地・無袋)	0	aa	400∼	0	7	1.06	0.73				
(果実)	2	SC	500	3	14	1.69	0.80				
2004 年度					21	0.72	0.46				
5 6					1	0.11	0.10				
(露地・無袋)	2	sc	300∼	9	3	0.10	0.08				
(果肉)	4	SC	400	3	5	0.06	0.05				
2001 年度					7	0.11	0.08				
5 5					1	6.13	4.64				
(露地・無袋)	2	SC	300∼	3	3	4.96	3.62				
(果皮)	4	SC	400	Э	5	3.62	2.70				/
2001 年度					7	4.17	3.75				
					1	0.63	0.63				
	1	SC	1.5 g ai/樹	3	3	0.58	0.56				
ネクタリン					7	0.47	0.46				
(露地・無袋) (果実)					1	1.57	1.53				
2003 年度	1	SC	500	9	3	0.76	0.74				
	1	SC	500	3	7	0.87	0.84				
					14	0.31	0.30				
あんず					1	0.77	0.72	/	/		
(露地・無袋)	2	sc	400	3	3	0.68	0.65				/
(果実) 2005 年度					7	0.67	0.52				
すもも	2	SC	500	3	1	0.39	0.35				

W. W. C.	試							留値(mg	g/kg)		
作物名 (栽培形態)	験圃	剤	使用量	回数	PHI	テブコナ		トリア	ゾール ニン		ゾール 酸
(分析部位) 実施年度	場 数	型	(g ai/ha)	(回)	(日)	最高値	平均值	最高 値	平均 値	最高 値	平均 値
(露地・無袋)					3	0.29	0.22				
(果実)					7	0.79	0.44				
2003 年度					14	0.42	0.24				
おうとう					7	0.85	0.62				
(施設・無袋)	2	sc	400∼	3	14	0.76	0.42				/
(果実) 2001 年度			500		21	0.14	0.09				
2001 平反					1	2.15	1.59		/	/	
おうとう				2	3	1.76	1.34				
(施設・無袋)			200~		7	0.90	0.65				
(果実)	2	SC	500		1	2.01	1.50				
2004 年度				3	3	1.46	1.15				
					7	1.08	0.91				
おうとう					1	3.25	2.76		/		
(施設・無袋)	2	SC	400~	3	3	2.16	1.92				/
(果実)		20	500		7	1.87	1.24				
2005 年度 ぶどう					_			/	/	/	
「大粒種」					1	0.69	0.43				/
(施設・無袋)	1	SC	200	3	7	0.78	0.77				/
(果実)					14	0.51	0.44				/
2004 年度					21	0.36	0.30	/	/	/	
ぶどう 「小粒種」					1	3.18	3.10				
(施設・無袋)	1	SC	500	3	7	3.95	3.31				/
(果実)					14	3.75	3.38				/
2004 年度					21	3.63	3.25		/	/	
かき			000		14	0.29	0.19	/	/	/	
(露地・無袋) (果実)	2	SC	300~	3	21	0.20	0.16				/
2001 年度			500		28	0.12	0.09				
かき					1	0.50	0.48		/	/	
(露地・無袋)	0	aa	300~		3	0.45	0.44				/
(果実)	2	SC	500	3	7	0.34	0.33				/
2007 年度					14	0.35	0.34				
うめ					1	1.13	1.12	<u> </u>			
(露地・無袋)	9	g C	400	3	3	1.30	1.30				/
(果実)	2	SC	400	0	7	0.58	0.58				$ \ /\ $
2008 年度					14	0.19	0.18	<u>/</u>	<u>/</u>	<u>/</u>	
茶 (電地) (芸女)	2	sc	200	1	7	16.5	10.2				
(露地)(荒茶)								/	<u> </u>	/	

11.11.6	試							留値(mg	g/kg)		
作物名 (栽培形態)	験圃	剤	使用量	回数	PHI	テブコナ	テブコナゾール		ゾール ニン	トリア 酢	ゾール 酸
(分析部位) 実施年度	場 数	型	(g ai/ha)	(回)	(目)	最高値	平均值	最高 値	平均 値	最高 値	平均 値
2000 年度					14	14.2	9.48				
					21	1.84	1.10				
茶 (露地)					7	6.80	4.44				
(浸出液)	2	SC	200	1	14	5.77	4.00				
2000 年度					21	0.46	0.31				
茶					3	95.9	95.4				
(露地)(荒茶)	2	SC	400	2	7	38.9	38.7				
2008 年度					14	16.3	16.0				
茶					3	23.2	22.6				
(露地) (浸出液)	2	SC	400	2	7	8.2	8.0				
2008 年度					14	3.6	3.5				

<別紙4:作物残留試験成績(海外)>

	試					残留值	(mg/kg)
作物名	験						ナゾール
(分析部位)	圃	剤型	使用量	回数	PHI		
実施年	場	/11 11	(g ai/ha)	(回)	1111	最高値	平均値
大旭午						取同但	平均恒
1	数						
トウモロコシ	0	EC	200 400		1 =	0.00	0.00
(穀粒)	2	EC	$200 \sim 400$	3	15	0.03	0.02
2004 年 トウモロコシ							
(穀粒)	1	EC	200 - 400		1 =	-0.1	-0.1
1995 年	1	EC	$200 \sim 400$	3	15	<0.1	<0.1
トウモロコシ							
(穀粒)	1	WP	250	3	3~21	< 0.1	< 0.1
1994 年	1	VV I	250	3	5.021	<0.1	<0.1
トウモロコシ							
(穂軸)	1	WP	250	3	15	<0.1	<0.1
1994 年	1	VVI	250	3	10	<0.1	<0.1
トウモロコシ				+			
(穀粒)	1	WP	500	3	15	< 0.1	<0.1
1994 年	1	***1	000		10	٧٥.1	٧٥.1
トウモロコシ				1			
(穂軸)	3	sc	$200\sim400$	4	15	< 0.1	< 0.1
2003~2004年		20	_00 100		10		
オート麦					22	0.00	0.04
(穀粒)	1	EW.	195~.975	1	22	0.62	0.34
1992 年	1	$\mathbf{E}\mathbf{W}$	$125 \sim 375$	1	36 50	$0.32 \\ 0.33$	0.19 0.17
オート麦	_		100 101		28	< 0.05	< 0.05
(穀粒)	1	EW	$129 \sim 194$	1	35	0.1	0.08*
1995 年					42	< 0.05	<0.05
オート麦 (穀粒)	0	sc	$129 \sim 194$	1	28	0.11	0.07*
1995 年	2	SC	129~194	1	$\begin{array}{c} 35 \\ 42 \end{array}$	$\begin{array}{c} 0.07 \\ 0.05 \end{array}$	0.06* 0.04*
ばれいしょ				1	42	0.00	0.04
(塊茎)	1	\mathbf{EC}	250	4	0		0.1
1989 年	1	EC	250	4	5		< 0.1
ばれいしょ				+			
(塊茎)	1	EC	200	6	30		<0.1
1995 年	1	10	200		30		-0.1
ばれいしょ				1			
(塊茎)	2	EC	200	6	30		0.02
2002年							-
ばれいしょ							
(塊茎)	1	sc	300	4	31		< 0.02
2002 年							
ばれいしょ							
(塊茎)	1	SC	150	4	30		< 0.02
2002年				<u></u>			
キャベツ					7	0.63	0.62
(葉球)	2	$\mathbf{E}\mathbf{W}$	188	3	14	0.48	0.44
1993 年					21	0.32	0.32
キャベツ					21	< 0.05	< 0.05
(葉球)	1	$\mathbf{E}\mathbf{W}$	$125 \sim 250$	3	35	< 0.05	<0.05
1996年					55	-0.00	

	試					残留值	(mg/kg)
作物名	験						ナゾール
(分析部位)	圃	剤型	使用量	回数	PHI	, ,	
		別至	(g ai/ha)	(回)	гпі		
実施年	場		.0			最高値	平均值
	数						
1- 0.00					7	0.56	0.56
キャベツ					14	0.33	0.33
(葉球)	1	EW	$125 \sim 250$	3	$\frac{11}{21}$	0.37	0.37
1996 年					$\frac{21}{28}$	0.19	0.19
1. 200					40	0.19	0.19
キャベツ							
(葉球)	1	WG	200	3	21	< 0.05	< 0.05
2002 年							
					3	0.08	0.08
キャベツ					7	< 0.05	< 0.05
(葉球)	1	WG	200	3	14	< 0.05	< 0.05
2002年		11 0	200		$\frac{11}{21}$	< 0.05	< 0.05
2002 +					$\frac{21}{28}$	< 0.05	< 0.05
• • • • • • • • • • • • • • • • • • • •				1			
キャベツ					14	< 0.05	< 0.05
(葉球)	1	EC	375	3	21	< 0.05	< 0.05
1989 年					28	< 0.05	< 0.05
キャベツ							
(葉球)	1	EC	$375 \sim 750$	3	21	0.47	0.36
1989 年		-	- /		·		
サボイ							
キャベツ							
	1	EW	$125 \sim 250$	3	21	0.56	0.56
(葉球)							
1996 年							
サボイ					7	0.21	0.21
キャベツ	1	EW	$125\sim\!250$	3	14	0.05	$0.21 \\ 0.05$
(葉球)	1	E W	125 250	3	21	< 0.05	
1996 年					28	< 0.05	< 0.05
赤キャベツ							
(葉球)	1	WG	200	3	21	< 0.05	< 0.05
2002年	_	,, ,,	_00			0.00	0.00
					3	0.09	0.09
赤キャベツ					7	< 0.05	< 0.05
(葉球)	1	WG	200	3	14	< 0.05	< 0.05
2002年	1	11 0	200		21	< 0.05	< 0.05
2002 —					28	< 0.05	< 0.05
レタス				1	10	-0.00	٠٠.٠٠
(茎葉)	1	WP	200	2	7	0.18	0.18
1998 年	1	AAT	200		'	0.10	0.10
				+		2	^ ==
レタス		****	~ ~ ~		3	0.55	0.55
(茎葉)	1	WP	200	2	7	0.23	0.23
1998 年					10	0.13	0.13
レタス					3	4.3	3.4
(茎葉)	3	WP	$233 \sim 250$	2	7	2.3	1.7
1999 年					10	2.3	1.2
レタス							
(茎葉)	2	WP	250	2	7	0.65	0.54
1999 年			_00		•	2.00	2.01
レタス				+			
(茎葉)	1	WP	250	2	6	3.2	3.2
1999 年	1	WI	∠ 90		О	0.4	5.4
· ·				+			
にんじん			000				
(根部)	2	EC	$200 \sim 400$	4	14	0.27	0.22
2004 年						1	

	試					残留値	(mg/kg)
作物名	験						ナゾール
(分析部位)	圃	剤型	使用量	回数	PHI		, , , , .
実施年	場	/11	(g ai/ha)	(回)	1 111	最高値	平均値
天 旭十	数					取同胆	十均旭
にんじん	釵						
(根部)	1	EC	$200\sim\!400$	8	14	0.1	0.1*
1995 年	1	EC	200 400	0	14	0.1	0.1
にんじん							
(根部)	1	SC	$150\sim 300$	5	14	< 0.1	< 0.1
2003年	_		100 000		- 1 1		
にんじん							
(根部)	2	SC	$150\sim 300$	5	14	< 0.1	< 0.1
2004年							
とうがらし					1	1.77	1.39
(果実)	1	WG	_	3	3	1.19	1.14
2005年					5 7	0.76	0.75
						0.54	0.51
とうがらし					1	15.7	13.8
(葉)	1	WG	_	3	3 5	$8.95 \\ 8.12$	$8.44 \\ 8.06$
2005年					7	4.42	4.29
スイカ							
(果肉)	3	WG	$62.5 \sim 125$	4	3 7	<0.02 <0.02	<0.02 <0.02
1991~1993 年	5	WG	02.5 125	4	10	<0.02	<0.02
スイカ				-	3	0.05	0.04
(果皮)	3	WG	$62.5 \sim 125$	4	7	0.05	0.04 0.04
1991~1993 年		,,,	02.0 120	1	10	0.02	0.02*
スイカ					3	0.03	0.03
(果実全体)	1	WG	125	4	7	0.03	0.03
1993 年					10	< 0.02	< 0.02
スイカ							
(果肉)	1	WG	125	4	7	< 0.02	< 0.02
1993 年							
スイカ							
(果皮)	1	WG	125	4	7	0.08	0.08
1993 年							
スイカ		WO	105		_	0.04	0.04
(果実全体) 1993 年	1	WG	125	4	7	0.04	0.04
メロン							
(果実)	4	WG	$100 \sim 150$	3	3	0.10	0.05
2005 年	-	,,,	100 190			0.10	0.00
メロン	t			1	1	0.06	0.05
(果実)	4	WG	$100 \sim 150$	3	3	0.08	0.04
2005年	L				7	0.05	0.04
メロン							
(果実)	4	WG	$100 \sim 200$	3	3	0.24	0.10*
2004年							
メロン			400 00-	_	1	0.11	0.07*
(果実)	4	WG	$100 \sim 200$	3	3	0.10	0.08*
2004年				-	7	0.09	0.06*
メロン					3	< 0.02	< 0.02
(果肉)	3	WG	$62.5 \sim 125$	5	7	< 0.02	< 0.02
1991~1993年	<u> </u>			<u>L</u> _	10	< 0.02	< 0.02
メロン	3	WG	$62.5 \sim 125$	5	3	0.27	0.20

	試					残留値	(mg/kg)
作物名	験						ナゾール
(分析部位)	圃	剤型	使用量	回数	PHI		
実施年	場	717	(g ai/ha)	(回)	1111	最高値	平均値
夫 爬午						取尚他	平均恒
(果皮)	数				7	0.34	0.17
1991~1993 年					10	$0.34 \\ 0.12$	0.17
メロン					3	0.13	0.13
(果実全体)	1	WG	125	5	3 7	$0.15 \\ 0.05$	0.15
1993 年	1	WG	120		10	0.06	0.06
メロン					10	0.00	0.00
(果肉)	1	WG	125	5	7	< 0.02	< 0.02
1993 年	_	,, ,	120		·	.0.02	.0.02
メロン							
(果皮)	1	WG	125	5	7	0.08	0.08
1993 年							
メロン							
(果実全体)	1	WG	125	5	7	0.03	0.03
1993 年							
. 1. 2					3	<0.1	<0.1
オレンジ		~~	222		7	<0.1	<0.1
(果実)	1	SC	200	5	14	< 0.1	<0.1
2004年					21	< 0.1	< 0.1
オレンジ							
(果実)	3	SC	$200 \sim 400$	5	14	0.2	1.2*
2004年		20	200 100		- 1	₹.	1.2
オレンジ							
(果実)	2	EC	$300 \sim 600$	3	20	2.22	1.75
2004 年						·	
					3	0.09	0.08
					6	0.12	0.08
マンゴー					9	0.08	0.06
(果実)		$\mathbf{E}\mathbf{W}$	_	5	12	0.06	0.06
2002 年					15	0.04	0.04
					18	0.02	0.02
					21	0.03	0.02
					3	0.40	0.22
ワックスアップル					6 9	$\begin{array}{c} 0.14 \\ 0.06 \end{array}$	$0.10 \\ 0.05$
(果実)		EW	_	4	$\frac{9}{12}$	0.04	0.03
2001年		· · · ·		"	15	0.04	0.02
					18	0.03	0.02
					21	0.03	0.03
ライチ							
(果実)	3	SC	$181 \sim 396$	7	0	0.98	0.84
1998 年							
コーヒ豆					5	< 0.1	<0.1
(乾燥豆)	1	EC	250	3	15	< 0.1	<0.1
1990 年					30	<0.1	<0.1
コーヒ豆					45	<0.1	<0.1
(乾燥豆)	1	EC	500	3	30	< 0.1	<0.1
1990 年	1	ъC	900	0	30	~ 0.1	\0.1
コーヒ豆							
(乾燥豆)	1	WP	$250\sim\!500$	3	30	< 0.1	<0.1
1993 年	1	44.7	200 000	'	50	~0.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
コーヒ豆	3	EC	200~400	3	30	0.05	0.06*
77	9	10	200 100		50	0.00	0.00

作物名	試験圃場数	剤型	使用量 (g ai/ha)	回数 (回)		残留値(mg/kg) テブコナゾール		
(分析部位) 実施年					PHI	最高値	平均値	
(乾燥豆) 1995、2004 年								
コーヒ豆 (乾燥豆) 1996~1997 年	2	SC	250	5	7 $14 \sim$ 15 $21 \sim$ 22 $28 \sim$ 30 45 60	0.02 0.02 0.05 0.03 0.02 0.03	0.02* 0.02 0.03* 0.02* 0.02* 0.02*	
コーヒ豆 (乾燥豆) 1996~1997 年	3	SC	250	5	30	0.06	0.03*	
コーヒ豆 (乾燥豆) 1996 年	3	SC	250	3	28	0.02	0.01*	
コーヒ豆 (乾燥豆) 1998 年	1	EC	200~400	5	30	<0.1	<0.1	

- 注)・EC:乳剤、SC:フロアブル製剤、EW:エマルション製剤、WG:顆粒水和剤、WP:水和剤
 - ・一部に検出限界未満を含むデータの平均を計算する場合は、検出限界値を検出したものとして計算し、*印を付した。
 - ・すべてのデータが定量限界未満の場合は定量限界の平均に<を付して記載した。
 - 一:使用量不明

<別紙5:推定摂取量>

		国民平均		小児(1~6歳)		妊婦		高齢者(65歳以上)	
作物名	残留値	(体重:53.3 kg)		(体重:15.8 kg)		(体重:55.6 kg)		(体重:54.2 kg)	
11 1/4 > [1	(mg/kg)	ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量
		(g/人/日)	(μg/人/日)	(g/人/日)	(µg/人/日)	(g/人/日)	(µg/人/日)	(g/人/日)	(μg/人/目)
小麦	0.38	116.8	44.38	82.3	31.27	123.4	46.89	83.4	31.69
大麦	1.2	5.9	7.08	0.1	0.12	0.3	0.36	3.6	4.32
てんさい	0.01	4.5	0.05	3.7	0.04	3.4	0.03	4	0.04
キャベツ (含芽キャベツ)	0.18	22.8	4.10	9.8	1.76	22.9	4.12	19.9	3.58
たまねぎ	0.02	30.3	0.61	18.5	0.37	33.1	0.66	22.6	0.45
ねぎ (含リー キ)	0.10	11.3	1.13	4.5	0.45	8.2	0.82	13.5	1.35
ワケギ	1.28	0.2	0.26	0.1	0.13	0.1	0.13	0.3	0.38
りんご	0.03	35.3	1.06	36.2	1.09	30	0.90	35.6	1.07
日本なし	1.04	5.1	5.30	4.4	4.58	5.3	5.51	5.1	5.30
西洋なし	1.04	0.1	0.10	0.1	0.10	0.1	0.10	0.1	0.10
t t	0.10	0.5	0.05	0.7	0.07	4	0.40	0.1	0.01
ネクタリン	1.53	0.1	0.15	0.1	0.15	0.1	0.15	0.1	0.15
アンズ (含アプ リコット)	1.53	0.1	0.15	0.1	0.15	0.1	0.15	0.1	0.15
スモモ (含プル ーン)	1.53	0.2	0.31	0.1	0.15	1.4	2.14	0.2	0.31
ウメ	1.12	1.1	1.23	0.3	0.34	1.4	1.57	1.6	1.79
おうとう (チェ リー)	2.76	0.1	0.28	0.1	0.28	0.1	0.28	0.1	0.28
ブドウ	3.38	5.8	19.60	4.4	14.87	1.6	5.41	3.8	12.84
かき	0.48	31.4	15.07	8	3.84	21.5	10.32	49.6	23.81
その他のハー ブ	0.70	0.1	0.07	0.1	0.07	0.1	0.07	0.1	0.07
合計			101		60		80		88

- 注)・残留値は、申請されている使用時期・回数による各試験区の平均残留値のうち最大値を用いた。(参照 別紙 3)
 - ・ff: 平成 10 年~12 年の国民栄養調査(参照 16~18)の結果に基づく農産物摂取量(g/人/日)
 - ・摂取量: 残留値及び農産物摂取量から求めたテブコナゾールの推定摂取量 (μ g/人/日)
 - ・小粒ぶどうと大粒ぶどうの摂取量はぶどうとしてまとめて算出されているため、残留値の高い小粒ぶどうの値を用いた。
 - ・その他のハーブの値にはあかつきの値を用いた。
 - ・ニンニクについては全データが定量限界未満であったため、摂取量の計算はしてい ない。
 - ・端末処理により合計は一致しない。

<参照>

- 1 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正 する件(平成 17 年 11 月 29 日付、平成 17 年厚生労働省告示第 499 号)
- 2 農薬抄録テブコナゾール(殺菌剤) (平成 18 年 5 月 31 日改訂):バイエル クロップサイエンス株式会社 一部公表
- 3 JMPR: 884_Tebuconazole (Pesticide residues in food 1994 evaluations Part II Toxicology) (1994)
- 4 US EPA: Federal Register/Vol.70, No.95, 28527-28534 (2005)
- 5 US EPA: Methoxyfenozide. Human Health Risk Assessment for Proposed Use on Soybeans. (2006)
- 6 Australia APVMA: Toxicology Evaluation of TEBUCONAZOLE (2004)
- 7 食品健康影響評価について(平成 18 年 9 月 4 日付け厚生労働省発食安第 0904008 号)
- 8 食品健康影響評価について(平成 19 年 2 月 23 日付け厚生労働省発食安第 0223006 号)
- 9 テブコナゾール作物残留試験成績:バイエルクロップサイエンス(株)、2007 年、未公表
- 10 食品健康影響評価の結果の通知について(平成19年7月5日付け府食第652号)
- 11 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 20 年 6 月 30 日付け平成 20 年厚生労働省告示第 351 号)
- 12 農薬抄録テブコナゾール (殺菌剤) (平成 22 年 1 月 29 日改訂): バイエル クロップサイエンス(株)、一部公表予定
- 13 テブコナゾール作物残留試験成績:バイエルクロップサイエンス(株)、2008 年、未公表
- 14 食品健康影響評価について(平成23年2月8日付け厚生労働省発食安0208第3号)
- 15 テブコナゾール海外作物残留試験成績:バイエルクロップサイエンス(株)、未 公表
- 16 国民栄養の現状 平成 10 年国民栄養調査結果 : 健康・栄養情報研究会編、 2000 年
- 17 国民栄養の現状 平成 11 年国民栄養調査結果 : 健康・栄養情報研究会編、 2001 年
- 18 国民栄養の現状 平成 12 年国民栄養調査結果 : 健康・栄養情報研究会編、 2002 年