(案)

農薬評価書

メタアルデヒド

(第3版)

2011年5月13日 食品安全委員会農薬専門調査会

T		
2	目 次	
3		頁
4	○審議の経緯	. 3
5	〇食品安全委員会委員名簿	. 4
6	〇食品安全委員会農薬専門調査会専門委員名簿	. 4
7	〇要約	. 8
8		
9	I. 評価対象農薬の概要	. 9
10	1. 用途	. 9
11	2. 有効成分の一般名	. 9
12	3. 化学名	. 9
13	4. 分子式	. 9
14	5. 分子量	. 9
15	6.構造式	. 9
16	7. 開発の経緯	. 9
17		
18	Ⅱ. 安全性に係る試験の概要	10
19	1. 動物体内運命試験	10
20	(1)吸収	10
21	(2)分布	10
22	(3)代謝	11
23	(4)排泄	11
24	2.植物体内運命試験	12
25	(1)いちご	12
26	(2) てんさい	12
27	(3)水稲	12
28	(4) みかん	13
29	(5)レタス	14
30	3. 土壌中運命試験	14
31	(1)好気的土壌中運命試験①	14
32	(2)好気的土壌中運命試験②	15
33	(3)土壌中運命試験(好気的及び嫌気的土壌)	15
34	(4)土壌吸着試験	15
35	4. 水中運命試験	16
36	(1)加水分解試験①	16
37	(2)加水分解試験②	16
38	(3)水中光分解試験	16

1	5. 土壌残留試験	16
2	6.作物等残留試験	17
3	(1)作物残留試験	17
4	(2)魚介類における最大推定残留値	17
5	7. 一般薬理試験	18
6	8. 急性毒性試験	19
7	9. 眼・皮膚に対する刺激性及び皮膚感作性試験	20
8	1 0. 亜急性毒性試験	21
9	(1)90 日間亜急性毒性試験(ラット)	21
10	(2) 90 日間亜急性毒性試験(マウス)	21
11	(3)6 か月間亜急性毒性試験(イヌ)	22
12	(4)90 日間亜急性神経毒性試験(ラット)	23
13	1 1. 慢性毒性試験及び発がん性試験	23
14	(1)1年間慢性毒性試験(イヌ)	23
15	(2)2 年間慢性毒性/発がん性併合試験(ラット)	24
16	(3)18 か月間発がん性試験(マウス)	26
17	1 2. 生殖発生毒性試験	27
18	(1)2世代繁殖試験(ラット)	27
19	(2)発生毒性試験(ラット)	28
20	(3)発生毒性試験(ウサギ)	28
21	1 3.遺伝毒性試験	28
22	1 4. その他の試験	29
23	(1)ラットを用いた <i>in vivo</i> 中期肝発がん性試験	29
24	(2)文献における各種試験	30
25	(3)各試験における神経毒性症状	31
26		
27	Ⅲ. 食品健康影響評価	33
28	別紙1:検査値等略称	36
29	•参照	38
30		

1 〈審議の経緯〉

2 一第1版関係一

1959年 6月 8日 初回農薬登録(非食用作物)

2003年 12月 19日 農林水産省から厚生労働省へ登録申請(新規:稲)に係る連絡及び基準設定依頼

2003年 12月 25日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第1225009号) (参照1~50)

2003年 12月 26日 関係書類の接受

2004年 1月 8日 第26回食品安全委員会(要請事項説明)

2004年 2月 25日 第7回農薬専門調査会

2005年 4月 12日 追加資料受理 (参照 51)

2005年 8月 31日 第35回農薬専門調査会

2005年 11月 29日 残留農薬基準告示(参照 52)

2006年 7月 18日 厚生労働大臣から残留基準設定(暫定基準)に係る食品健康 影響評価について追加要請(厚生労働省発食安第 0718001 号) (参照 53)

2006年 7月 20日 第153回食品安全委員会(要請事項説明)

2006年 9月 29日 追加資料受理(参照 54)

2007年 2月 19日 第8回農薬専門調査会総合評価第二部会

2007年 3月 28日 第14回農薬専門調査会幹事会)

2007年 5月 24日 第191回食品安全委員会(報告)

2007年 5月 24日 から6月22日まで 国民からの御意見・情報の募集

2007年 7月 13日 農薬専門調査会座長から食品安全委員会委員長へ報告

2007年 7月 19日 第199回食品安全委員会(報告) (同日付け厚生労働大臣へ通知)

2008年 4月 30日 残留農薬基準告示 (参照 55)

4 一第2版関係一

3

2008年 7月 15日 農林水産省から厚生労働省へ適用拡大申請に係る連絡及び 基準設定依頼(適用拡大:みかん、レタス)、魚介類に係る 基準設定依頼

2008年 12月 9日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第 1209004 号)、

関係書類の接受 (参照 56~58)

2008年 12月 20日 第266回食品安全委員会(要請事項説明

2009年 1月 21日 第47回農薬専門調査会幹事会

2009年 2月 3日 農薬専門調査会座長から食品安全委員会委員長へ報告

2009年 2月 5日 第272回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知)

2010年 8月 10日 残留基準告示 (参照 59)

1

2 一第3版関係一

2010年 8月 4日 農林水産省から厚生労働省へ適用拡大申請に係る連絡及び

基準設定依頼 (適用拡大:キャベツ)

9月 9日 厚生労働大臣から残留基準設定に係る食品健康影響評価に 2010年

ついて要請(厚生労働省発食安0909第10号)、

関係書類の接受(参照 60~65)

2010年 9月 16日 第348回食品安全委員会(要請事項説明)

2011年 5月13日第72回農薬専門調査会幹事会

3

く食品安全委員会委員名簿> 4

(2006年6月30日まで) (2006年12月20日まで) (2009年6月30日まで)

寺田雅昭 (委員長) 寺田雅昭(委員長) 見上 彪(委員長)

寺尾允男 (委員長代理) 見上 彪(委員長代理) 小泉直子(委員長代理*)

小泉直子 小泉直子 長尾 拓 坂本元子 長尾 拓 野村一正 中村靖彦 野村一正 畑江敬子 畑江敬子 本間清一 廣瀬雅雄** 見上 彪 本間清一 本間清一

> *:2007年2月1日から **: 2007年4月1日から

5

(2011年1月6日まで) (2011年1月7日から)

小泉直子 (委員長) 小泉直子(委員長)

見上 彪(委員長代理*) 熊谷 進(委員長代理*)

長尾 拓 長尾 拓 野村一正 野村一正 畑江敬子 畑江敬子 廣瀬雅雄 廣瀬雅雄 村田容常 村田容常

*:2011年1月13日から *:2009年7月9日から

6

7 く食品安全委員会農薬専門調査会専門委員名簿>

(2006年3月31日まで)

鈴木勝士 (座長)

小澤正吾

出川雅邦

1

2

廣瀬雅雄 石井康雄 江馬 眞 太田敏博	(座長代理)	高木篤也 武田明治 津田修治* 津田洋幸	長尾哲二 林 真 平塚 明 吉田 緑 *:2005年10月1日から
(2007年3	月 31 日まで)		
鈴木勝士	(座長)	三枝順三	根岸友惠
廣瀬雅雄	(座長代理)	佐々木有	林 真
赤池昭紀		高木篤也	平塚明
石井康雄		玉井郁巳	藤本成明
泉啓介		田村廣人	細川正清
上路雅子		津田修治	松本清司
臼井健二		津田洋幸	柳井徳磨
江馬 眞		出川雅邦	山崎浩史
大澤貫寿		長尾哲二	山手丈至
太田敏博		中澤憲一	與語靖洋
大谷 浩		納屋聖人	吉田 緑
小澤正吾		成瀬一郎	若栗 忍
小林裕子		布柴達男	
(0000 Æ 0	月 31 日まで)		
鈴木勝士	,	三枝順三	西川秋佳**
	(座長代理*)	佐々木有	布柴達男
赤池昭紀	()	代田眞理子****	根岸友惠
石井康雄		高木篤也	平塚明
泉啓介		玉井郁巳	藤本成明
上路雅子		田村廣人	細川正清
臼井健二		津田修治	松本清司
江馬 眞		津田洋幸	柳井徳磨
大澤貫寿		出川雅邦	山崎浩史
太田敏博		長尾哲二	山手丈至
大谷 浩		中澤憲一	與語靖洋
小澤正吾		納屋聖人	吉田 緑
小林裕子		成瀬一郎***	若栗 忍
			*:2007年4月11日から
			**: 2007年4月25日から
			***: 2007年6月30日まで

****: 2007年7月1日から

(2008年4月1日まで)

鈴木勝士 (座長) 佐々木有 平塚 明 林 真(座長代理) 代田眞理子 藤本成明 高木篤也 相磯成敏 細川正清 赤池昭紀 玉井郁巳 堀本政夫 石井康雄 田村廣人 松本清司 泉 啓介 津田修治 本間正充 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 臼井健二 中澤憲一* 山手丈至 太田敏博 永田 清 與語靖洋 大谷 浩 納屋聖人 義澤克彦** 吉田 緑 小澤正吾 西川秋佳 川合是彰 布柴達男 若栗 忍 小林裕子 根岸友惠 三枝順三*** 根本信雄

> *: 2009年1月19日まで **: 2009年4月10日から ***: 2009年4月28日から

2

(2010年4月1日から)

納屋聖人 (座長) 佐々木有 平塚 明 林 真(座長代理) 代田眞理子 福井義浩 相磯成敏 藤本成明 高木篤也 玉井郁巳 赤池昭紀 細川正清 浅野 哲** 田村廣人 堀本政夫 石井康雄 津田修治 本間正充 泉 啓介 津田洋幸 増村健一** 上路雅子 長尾哲二 松本清司 臼井健二 永田 清 柳井徳磨 太田敏博 長野嘉介* 山崎浩史 小澤正吾 西川秋佳 山手丈至 川合是彰 布柴達男 與語靖洋 川口博明 根岸友惠 義澤克彦 小林裕子 根本信雄 吉田緑 三枝順三 八田稔久 若栗 忍

*:2011年3月1日まで
**:2011年3月1日から

1	要。約
2	
3	エタナール重合体の殺虫剤である「メタアルデヒド」(CAS No.108-62-3)につい
4	て、各種試験成績等を用いて食品健康影響評価を実施した。
5	評価に用いた試験成績は、動物体内運命(ラット)、植物体内運命(いちご、てん
6	さい、水稲、みかん及びレタス)、作物残留、急性毒性(ラット及びマウス)、亜急
7	性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラッ
8	ト)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラット及びウサギ)、
9	遺伝毒性等の試験成績である。
10	試験結果から、メタアルデヒド投与による影響は主にラット、マウス及びイヌで肝
11	臓(肝細胞肥大等)に、ラット及びイヌでは神経症状として認められた。繁殖能に対
12	する影響、催奇形性及び遺伝毒性は認められなかった。発がん性試験において、ラッ
13	トに肝細胞腺腫が認められたが、発生機序は遺伝毒性によるものとは考え難く、本剤
14	の評価にあたり閾値を設定することは可能であると考えられた。
15	各試験で得られた無毒性量のうち最小値は、ラットを用いた 2 年間慢性毒性/発が
16	ん性併合試験の 2.2 mg/kg 体重/日であったので、これを根拠として、安全係数 100
17	で除した 0.022 mg/kg 体重/日を一日摂取許容量(ADI)と設定した。
18	
19	

I. 評価対象農薬の概要 1 21. 用途 3 殺虫剤 4 2. 有効成分の一般名 5 和名:メタアルデヒド 6 7 英名: metaldehyde (ISO名) 8 3. 化学名 9 10 **IUPAC** 和名:2,4,6,8-テトラメチル-1,3,5,7-テトラオキサシクロオクタン 11 英名: 2,4,6,8-tetramethyl-1,3,5,7-tetraoxacyclooctane 12 13 CAS (No.108-62-3) 14 和名:2,4,6,8-テトラメチル-1,3,5,7-テトラオキサシクロオクタン 15 16 英名: 2,4,6,8-tetramethyl-1,3,5,7-tetraoxacyclooctane 17 4. 分子式 18 19 $C_8H_{16}O_4$ 20 5. 分子量 2122176.2 236. 構造式 242526 27 28 29 30 7. 開発の経緯 メタアルデヒドはナメクジ、カタツムリ類への殺虫効果を持つエタナール重合体 31 32 33

の農薬であり、我が国ではこれまで非食用作物への登録がなされている。外国にお いてはドイツ、スイス、オーストリア及びイギリス等で登録されている。

メタアルデヒドは1969年に非食用作物に、2008年に水稲に登録されている。

今回、農薬取締法に基づく適用拡大申請(キャベツ)に基づく残留基準値設定が 要請されている。

37 38

34

35

Ⅱ. 安全性に係る試験の概要

各種運命試験 [I. 1~4] は、メタアルデヒドの全炭素を 14 C で均一に標識したもの(以下「 14 C-メタアルデヒド」という。)を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合はメタアルデヒドに換算した。

検査値等略称は別紙1に示した。

6 7

8

9 10

1

2

3

4

5

1. 動物体内運命試験

SD ラット (一群雌雄各 5 匹) に 14 C-メタアルデヒドを 10 mg/kg 体重 (以下[1.] において「低用量」という。) 又は 100 mg/kg 体重 (以下[1.]において「高用量」という。) で単回経口投与又は低用量<u>で</u>の反復投与(低用量で 14 日間非標識体を投与後、15 日目に標識体を投与)し、動物体内運命試験が実施された。(参照 2、53、54)

1314

15

16

1112

(1) 吸収

① 血中濃度推移

低用量単回投与群における C_{max} は、投与 $1\sim4$ 時間後で $5.8\sim6.4$ $\mu g/mL$ であった。 $T_{1/2}$ は、雄で 3.4 時間、雌で 8.8 時間であった。

171819

② 吸収率

尿及び呼気中排泄率並びに組織及びカーカスの残留率から、吸収率はいずれの 投与群においても雄で $97.4 \sim 97.7\%$ 、雌で $91.5 \sim 97.6\%$ と算出された。

2122

23

20

(2)分布

24

各投与群の主要組織における残留放射能濃度は表1に示されている。

2526

表 1 主要組織における残留放射能濃度 (μg/g)

投与条件			T _{max} 時 [※]	投与 168 時間後			
単回い	10 mg/kg	雄	胃(24.5)、脾臟(9.32)、前立腺(8.36)、肝臟(7.59)、腎臟(7.13)、肺(6.86)、小腸(6.79)、精囊(6.34)、脳(5.63)、心臟(5.33)、精巣(5.06)、盲腸(4.67)、脊髄(4.64)、血液(4.46)	脊髄(2.04)、肝臓(1.69)、脂肪(1.69)、 坐骨神経(1.18)、脳(0.95)、肺(0.89)、 精囊(0.88)、腎臓(0.83)、脾臓(0.82)、 骨(0.76)、胃(0.75)、精巣(0.67)、前立 腺(0.66)、心臓(0.55)、筋肉(0.54)、大 腸(0.50)、血液(0.46)			
投与	体重	雌	胃(31.0)、肝臓(8.29)、子宮(7.93)、 脾臓(7.83)、卵巣(7.75)、肺(7.60)、 腎臓(7.07)、小腸(6.72)、脳(6.17)、 血液(6.09)				

			坐骨神経(38.9)、脂肪(28.9)、肝臓
			(22.3)、脊髄(21.5)、精嚢(12.2)、前立
		+-//-	腺(11.3)、肺(11.3)、腎臓(11.0)、脾臓
		雄	(10.9)、脳(8.96)、胃(7.97)、骨(7.93)、
	100		大腸(6.96)、精巣(6.95)、心臓(6.00)、
	mg/kg		筋肉(5.88)、血液(5.25)
	体重		卵巣(24.9)、脂肪(24.1)、子宮(15.7)、
	产里		肺(14.5)、肝臟(12.5)、坐骨神経(12.5)、
		雌	脾臓(10.9)、腎臓(10.9)、脊髄(10.7)、
		P-UE.	胃(7.23)、小腸(6.76)、脳(6.39)、盲腸
			(6.28)、大腸(6.20)、心臟(5.81)、骨
			(5.64)、筋肉(5.09)
			坐骨神経(2.07)、肝臟(1.89)、脂肪
			(1.76)、脊髄(1.48)、精嚢(1.47)、胃
		雄	(1.34)、腎臓(1.23)、脾臓(1.18)、肺
		-,	(1.18)、骨(1.01)、前立腺(0.89)、脳
反	10		(0.72)、心臓(0.71)、精巣(0.65)、小腸
復	mg/kg		(0.63)、血液(0.58)
投	体重		坐骨神経(2.42)、脂肪(1.83)、肝臓
与	11		(1.76)、卵巣(1.52)、胃(1.23)、肺(1.19)、
		雌	腎臓(1.02)、子宮(1.01)、脊髄(0.96)、
		. да	脾臟(0.94)、骨(0.75)、小腸(0.66)、盲
			腸(0.63)、脳(0.56)、心臓(0.52)、大腸
			(0.50)、筋肉(0.45)、血液(0.39)

※: 低用量の雄で投与2時間後、雌で3時間後、高用量投与群及び反復投与群では試料を採取せず。

(3)代謝

尿中代謝物についてはいずれの投与群でもいくつかの極性代謝物が検出されたが、親化合物は検出されなかった。糞中代謝物については試料中に存在する放射能が低かったため、分析は行われなかった。

血漿中代謝物としては親化合物及びアセトアルデヒドのみが検出された。その 濃度は T_{max} 時に親化合物が $4.90\sim7.37~\mu g/mL$ 、アセトアルデヒドが $0.62\sim1.14~\mu g/mL$ であった。また $T_{1/2}$ 時では、親化合物が $1.42\sim2.42~\mu g/mL$ 、アセトアルデヒドが $0.80\sim1.37~\mu g/mL$ であった。

メタアルデヒドは体内に吸収された後、アセトアルデヒドに分解され、最終的に、 CO_2 として排泄されるものと考えられた。

(4) 排泄

投与後 48 時間以内に、投与方法及び投与量にかかわらず、 $71.7\sim92.9\%$ TAR が呼気中に排泄された。投与後 168 時間での尿中排泄率は $2.6\sim5.1\%$ TAR、糞中排泄率は $2.5\sim2.8\%$ TAR であった。また、呼気中への排泄は $78\sim98\%$ TAR を占め、これらの揮発性成分の大部分($94\sim95\%$)は 14 CO $_{2}$ であった。組織及びカー

カス¹からは 7.3~10.7%TAR が検出された。

2. 植物体内運命試験

(1) いちご

液剤に調製した 14 C-メタアルデヒドを約 1.5 kg ai/ha で、いちご 2 (品種不明) の茎葉から 9 インチ (約 22.9 cm) 離し、定植列に平行かつ点状に土壌散布後、1、7、14、28、42、56、70、84 及び 98 日後に葉、果実及び土壌を試料として採取し、植物体内運命試験が実施された。

植物体から検出された放射能は、メタアルデヒドが土壌で分解されてできた $^{14}CO_2$ が空気を介して移行したものであり、メタアルデヒドは土壌中では、散布 部位から垂直又は水平方向にほとんど浸透しないと考えられた。(参照 3、51)

(2) てんさい

液剤に調製した 14 C-メタアルデヒドを約 15 kg ai/ha で、てんさい(品種: remolacha)の定植列から約 9 インチ(約 22.9 cm)離し、平行かつ線状に土壌散布後、48 日後に葉部と根部を試料として採取し、植物体内運命試験が実施された。

根部、葉部、土壌及びメタアルデヒド散布ライン上の土壌における平均残留放射能濃度は、それぞれ 0.61、2.9、2.1 及び 1,100 mg/kg であった。抽出性残留放射能は、植物体内、土壌中及び散布ライン上土壌のそれぞれ $40\sim48$ 、64 及び 99% TRR であり、全てがメタアルデヒドであった。総回収率は 13% TAR であった。

メタアルデヒドは過剰(実用最高処理濃度の 10 倍)に土壌散布されることにより、てんさいに未変化体が若干量移行する可能性があるものの、その大部分が $^{14}CO_2$ として気化するものと考えられた。(参照 4、51)

(3)水稲

¹⁴C-メタアルデヒドの 1,000 mg/kg 試験溶液を約 5 kg ai/ha で、水稲(品種:

-

¹組織・臓器を取り除いた残渣のことをカーカスという。

² 土壌処理したメタアルデヒドの作物への移行を観察するために草丈の低いいちごを選択した

1 コシヒカリ)の移植1週間後の田面水中に添加し、114日後の登熟期に根部、稲 2 わら、玄米及びもみ殻を試料として採取し、植物体内運命試験が実施された。

玄米、もみ殻、稲わら及び根部における残留放射能濃度は 0.59、0.55、0.65 及び 0.88 mg/kg であった。また、対照区の植物体でも $0.096\sim0.17$ mg/kg 程度 認められたため、メタアルデヒドが土壌中で分解され $^{14}CO_2$ となり、それが植物体に取り込まれることが考えられた。玄米中の残留放射能のほとんど (92%TRR)が抽出残渣に存在し、 α -アミラーゼ処理で 43%TRR、プロテアーゼ処理で 26%TRR が可溶化したことから、 ^{14}C -メタアルデヒドがデンプン、蛋白質等の構成元素として玄米中に取り込まれたと考えられた。また、稲わら中においても残留放射能のほとんど (83%TRR) が抽出残渣に存在し、リグニン及びセルロース 画分から合計 19%TRR が回収されたことから、放射能は稲わらの構成成分に取り込まれたと考えられた。

稲わら抽出液中の放射能成分(17%TRR)には、メタアルデヒドは検出されなかった。脂溶性から水溶性にわたる多様な放射能成分が認められたことからメタアルデヒドは様々な極性の可溶性成分に代謝されていることが示されたが、10%TRRを超える代謝物は存在していなかった。

メタアルデヒドは水田土壌中で $^{14}CO_2$ に分解され炭酸同化作用で水稲体内に吸収されること及び水田土壌中での分解又は水稲体内で吸収後、アセトアルデヒドや酢酸に代謝されたものがトリカルボン酸回路に取り込まれることにより、植物体構成成分となると考えられた。(参照 5)

(4) みかん

 14 C-メタアルデヒドを 15 kg ai/ha でみかん(品種:青島)全体に散布し、散布直後、1 及び 2 か月後に試料として果実及び葉を採取し、植物体内運命試験が実施された。

散布直後、0.46%TAR が植物体から検出され、そのほとんどが果実と葉の 80% メタノール洗浄液からメタアルデヒドとして検出された。その他は土壌に落下したものと考えられた。果実と葉の洗浄液からそれぞれ $6.61\,\mathrm{mg/kg}$ (25.4%TRR) 及び $133\,\mathrm{mg/kg}$ (67.8%TRR) の放射能が検出された。

散布 1 か月後に植物中放射能は 0.06%TAR 検出された。植物中の放射能分布は、果肉に 1.48 mg/kg(61.4%TRR)、果皮に 1.0 mg/kg(14.0%TRR)、葉に 4.92 mg/kg(21.9%TRR)であった。果実の洗浄液中には放射能は検出されなかった。葉の洗浄液から 0.622 mg/kg(2.8%TRR)が検出された。メタアルデヒドは果肉で 0.040 mg/kg(1.7%TRR)、果皮で 0.194 mg/kg(2.6%TRR)が検出された。

散布 2 か月後の植物中放射能に対する割合は、果肉、果皮及び葉でそれぞれ 71.2、15.8及び12.0%TRRであり、果肉中では抽出残渣に最も多くの放射能 0.764 mg/kg (41.8%TRR) が分布し、メタアルデヒドは検出されず、代謝物として未

同定代謝物及びその他が、それぞれ 0.008 及び 0.048 mg/kg 検出された。果肉の水溶性画分からは 14 C-グルコースが 8.3%TRR 検出された。果皮からは 0.038 mg/kg のメタアルデヒドが検出された。

メタアルデヒドをみかんに散布することにより大部分が土壌に落下し、植物に残留する量は少量であった。残留した放射能の多くは散布後1か月で消失し、一部は植物に吸収され、 $14CO_2$ や他の低分子代謝物を経てさまざまな植物体構成成分となると考えられた。(参照6)

(5) レタス

液剤に調製した 14 C-メタアルデヒドを約 15 kg ai/ha でレタス (品種: lechuga) の定植列から約 9 インチ (約 22.9 cm) 離し、平行かつ線状に土壌散布後、28 日後に試料として内葉及び外葉を採取し、植物体内運命試験が実施された。

内葉、外葉、土壌及びメタアルデヒド散布ライン上の土壌における平均残留放射能濃度はそれぞれ 2.4、2.4、3.9 及び 1,530 mg/kg であった。各々の放射能の 90%TRR 以上が抽出性であり、全てがメタアルデヒドであった。総回収率は 22%TAR であった。

メタアルデヒドは過剰に土壌散布をすることにより、レタスにメタアルデヒドが若干量移行する可能性があるものの、その大部分が $^{14}CO_2$ として気化するものと考えられる。

放射能量測定結果が過大(262、167%TAR等)であったこと、また、作物からの回収率が低値($20\sim80\%TAR$)であり、試験手法になんらかの問題があると考えられたが、吸収移行性の傾向を知る上では本試験も参考にすることとした。(参照 7)

3. 土壌中運命試験

(1) 好気的土壌中運命試験①

 14 C-メタアルデヒドを微砂質壌土(米国、カリフォルニア州)に 10.5~mg/kg となるように添加し、25C、暗所で 365~日間インキュベートする好気的土壌中運 命試験が実施された。

365日後では74%TARが水酸化カリウム水溶液中に捕集され、そのうちの87%が炭酸バリウムとして沈殿したことから、メタアルデヒドの主要分解物は14 CO_2 (64%TAR) であった。また、水酸化カリウム水溶液中に5.3%TARが残ったことから、14 CO_2 以外の揮発性分解物も存在すると考えられた。エチレングリコール捕集液からは365日後で11.0%TARが検出された。捕集液からメタアルデヒド及びメタアルデヒドとアセトアルデヒドの縮合体と推定される未知分解物が検出されたが、濃縮の過程で55.4~71.9%TARが消失した。土壌中からの抽出物(365日後で4.0%TAR)からはメタアルデヒド、アセトアルデヒド及び若干のパラアルデヒド(59日後のみ)が検出された。非抽出放射能は経時的に増加

し、6 か月以降は 16~18%TAR の範囲で一定となった。メタアルデヒドの土壌
 中推定半減期は 67.2 日であった。

メタアルデヒドは好気的条件下の土壌中で直接又はパラアルデヒド、アセトアルデヒドを経由して $^{14}CO_2$ に分解されるものと考えられた。(参照 8)

(2) 好気的土壌中運命試験②

 14 C-メタアルデヒドを微砂質壌土及び埴壌土(ドイツ、フランクフルト近郊)ならびに砂壌土(ドイツ、ホッフハイム)に 4.8 mg/kg となるように添加後、 20 ° に 暗所で 200 ° 目間インキュベートする好気的土壌中運命試験が実施された。

いずれの土壌でも抽出放射能は急速に減少し、200 日後で $1.3\sim1.6\%$ TAR が検出され、大部分がメタアルデヒドであった。抽出性のメタアルデヒドの推定半減期は微砂質壌土で 5.33 日、埴壌土で 43.1 日、砂壌土で 9.89 日であった。埴壌土の 50 及び 70 日目のデータは特異的に高いため、これらを除いて計算した推定半減期は 9.62 日であった。(参照 9)

(3) 土壌中運命試験(好気的及び嫌気的土壌)

 14 C-メタアルデヒドを微砂質壌土(米国、カリフォルニア州)に 10.2~mg/kg となるように添加し、 $25~^{\circ}$ C、暗所で $30~^{\circ}$ 日後までは好気的条件で、その後 $90~^{\circ}$ 日後までは湛水状態で窒素気流下の嫌気的条件でインキュベートする土壌中運命試験が実施された。

好気的状態の 30 日間にメタノール抽出放射能は 87.8% TAR に減少し、水酸化カリウム水溶液に 8.3% TAR、エチレングリコール捕集液に 2.1% TAR、非抽出画分に 10.4% TAR が分布した。

湛水化により放射能の大半は水相に移行し、 $66\sim73\%$ TAR の範囲で変動した。水酸化カリウム水溶液に捕集される放射能はほとんど増加せず、90 日後で9.5%TAR であった。また、メタアルデヒド及びアセトアルデヒドが 68 及び7.0%TAR、45 日後にパラアルデヒドが 0.87%TAR 検出された。メタアルデヒドの推定半減期は好気的条件下で 166 日、嫌気的条件下で 222 日であった。

メタアルデヒドは、嫌気的条件下の土壌中でパラアルデヒド及びアセトアルデヒドに分解されるものと考えられた。 (参照 10)

(4)土壤吸着試験

4 種類の国内土壌 [洪積・埴壌土(茨城)、沖積鉱質土(高知)、細粒グライ 土(石川)、洪積・埴壌土(和歌山)] を用いた土壌吸着試験が実施された。

細粒グライ土の有機炭素含有率により補正した吸着係数 Koc は 31.2 であった。 他の土壌においては水相での残存率が 90%以上であり、土壌相への吸着性が弱く、 高次試験の実施は不可能であった。 (参照 11)

4. 水中運命試験

(1)加水分解試験①

pH4(クエン酸緩衝液)、pH7(リン酸緩衝液)及びpH9(ホウ酸緩衝液)の各緩衝液に、メタアルデヒドを $5 \mu g/mL$ となるように加え、 $25 \mu g/mL$ 形で 60 日間インキュベートして、加水分解試験が実施された。

メタアルデヒドは、pH 4 の 25 及び 40^{\circ}Cで分解が認められ、推定半減期はそれぞれ 15 日及び 37 時間であった。pH 7 及び 9 では分解率が小さく、推定半減期を求めることができなかった。(参照 12)

(2)加水分解試験②

pH 5 (酢酸緩衝液)、pH 7 (Tris 緩衝液)、pH 7 (HEPES 緩衝液)及び pH 9 (ホウ酸緩衝液)の各緩衝液に、 14 C-メタアルデヒドをそれぞれ 23 、 25 、 23 .1 及び $^{25.5}$ $_{\mu g/mL}$ となるように加えた後、 25 Cで 32 日間インキュベートして、加水分解試験が実施された。

メタアルデヒドは各緩衝液中で安定であり、30 日間の試験期間中に顕著な分解が認められなかったため、正確な推定半減期を算出することができなかった。 (参照 13)

(3) 水中光分解試験

pH 7.0 の HEPES 緩衝液に 14 C-メタアルデヒドを 32 μg/mL(非光増感試験) 又は μg/mL(光増感試験)になるように加えた後、25℃で 626 時間キセノン 光(光強度: W/m²、測定波長: $300\sim750$ nm)を照射して水中光分解試験 が実施された。

いずれの条件下でも分解は認められず、メタアルデヒドの推定半減期は光照射 区で526日(増感区)及び1,110日(非増感区)、暗所対照区で2,220日(増感 区)及び1,380日(非増感区)であった。(参照14)

5. 土壌残留試験

火山灰・壌土(長野、鹿児島及び熊本)、洪積・壌土(愛知及び鹿児島)、火山灰・砂壌土(鹿児島)、沖積・埴壌土(宮崎)及び細粒灰色低地土・埴土(佐賀)を用いて、メタアルデヒドを分析対象化合物とした土壌残留試験(容器内及び圃場)が実施された。推定半減期は表2に示されている。(参照15、16)

表 2 土壌残留試験成績(推定半減期)

試馴	試験		土壌	推定半減期(日)
		25 mg /kg	火山灰・壌土(長野)	125
	畑地条件	(純品)	洪積・壌土 (愛知)	105
容器内試験	州地木叶	1.0 mg ai/kg	火山灰・壌土(鹿児島)	6
在4000000000000000000000000000000000000		(D)	洪積・埴土 (鹿児島)	8
	湛水条件	6.0 mg/kg	細粒灰色低地土・埴土	140
		(純品)	火山灰・埴土 (熊本)	200
	畑地土壌	2.1 kg ai/ha	火山灰・壌土(長野)	4
		(WP)	洪積・壌土(愛知)	3
圃場試験		2.7 kg ai/ha	火山灰・砂壌土	≦1
四勿於例外		(G)	沖積・埴壌土	8
	水田土壌	6 kg ai/ha	細粒灰色低地土・埴土	≦1
	小口上壊	(G)	火山灰・埴土(熊本)	≦1
<u>※</u> D:粉剤、	WP: 水和剤	刊、G: 粒剤		

6. 作物等残留試験

(1)作物残留試験

水稲、レタス、キャベツ及びみかんを用いて、メタアルデヒドを分析対象化合物とした作物残留試験が実施された。結果は別紙 2 に示されており、最高値は最終散布 14 日後に収穫したキャベツの 1.50 mg/kg であった。(参照 17~19、57、 61)

(2) 魚介類における最大推定残留値

メタアルデヒドの公共用水域における予測濃度である水産動植物被害予測濃度(水産 PEC)及び生物濃縮係数 (BCF)を基に、魚介類の最大推定残留値が算出された。

メタアルデヒドの水産 PEC は $5.9~\mu g/L$ 、BCF は 1(計算値)、魚介類における最大推定残留値は 0.030~m g/k g であった。(参照 58)

上記の作物残留試験の分析値及び魚介類における最大推定残留値を用いて、メタアルデヒドを暴露評価対象化合物とした際に食品中から摂取される推定摂取量が表3に示されている。なお、本推定摂取量の算定は、申請された使用方法からメタアルデヒドが最大の残留を示す使用条件で、全ての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定の下に行った。

 $\frac{23}{24}$

表 3 食品中から摂取されるメタアルデヒドの推定摂取量

			=						
作物名	残留値	国民平均 残留值 (平均体重:53.3 kg)		小児(1~6 歳) (平均体重:15.8kg)		妊婦 (平均体重:55.6kg)		高齢者(65 歳以上) (平均体重:54.2kg)	
11年初2日	(mg/kg)	ff (g人/日)	摂取量 (μg/人日)	ff (g人/日)	摂取量 (µg/人日)	ff (g人/日)	摂取量 (µg/人日)	ff (g人/日)	摂取量 (μg/人/日)
レタス	0.86	6.1	5.3	2.5	2.2	6.4	5.5	4.2	3.6
キャベツ	1.50	22.8	34.2	9.8	14.7	22.9	34.4	19.9	29.9
みかんの皮	0.11	0.1	0.011	0.1	0.011	0.1	0.011	0.1	0.011
魚介類	0.03	94.1	2.8	42.8	1.3	94.1	2.8	94.1	2.8
合計	†		42.3		18.2		42.7		36.3

- 注)・残留値は、予想される使用時期・使用回数のうち、メタアルデヒドが最大の残留を示す各試 験区の平均残留値を用いた(参照表3)。
 - ・「ff」: 平成 $10\sim12$ 年の国民栄養調査(参照 $66\sim68$)の結果に基づく農産物摂取量(g/人/日)
 - ・「摂取量」:残留値及び農産物摂取量から求めたメタアルデヒドの推定摂取量(µg/人/日)
 - ・水稲、温州みかん(果肉)については、申請された使用方法全データが定量限界未満(<0.005 mg/kg)であったため、推定摂取量の計算はしていない。

8

10

11

12

 $\begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}$

 $\frac{6}{7}$

7. 一般薬理試験

マウス及びラットを用いた一般薬理試験が実施された。結果は表4に示されている。(参照20)

表 4 一般薬理試験概要

	Z · AXX · TRAXIII X							
話	、験の種類	動物種	動物数 匹/群	投与量 (mg/kg 体重)	最大 無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	概要	
中	一般状態	ICR マウス	雄 3	0、10、 30、100	10	30	30 mg/kg 体重投与群で自 発運動の軽度亢進、100 mg/kg 体重投与群で発 声、触反応の亢進、自発運 動及び探索行動の低下、体 姿勢の異常。	
- 枢神経系	ヘキソバル ビタール 睡眠	ICR マウス	雄 8	0、10、 30、100	100	_	影響なし。	
一 十 1	痙攣誘発 作用	ICR マウス	雄 10	0、3、10、 30、100	3	10	10 mg/kg 体重投与群で痙 攣誘発傾向、30 mg/kg 体 重以上投与群で強直性屈 曲及び伸展痙攣を誘発。	
	体温	SD ラット	雄 6	0、30、 100、300	100	300	投与 1~2 時間後に体温低 下がみられた。	
循 系 器	血圧、 心拍数	SD ラット	雄 6	0、10、30、 100、300	10	30	30 mg/kg 体重以上投与群 で収縮期血圧上昇、300 mg/kg 体重投与群で徐脈。	
自律神経系	瞳孔径	SD ラット	雄 6	0、30、 100、300	100	300	投与 4、6 時間後に縮瞳が みられた。	
消化器	腸管 輸送能	ICR マウス	雄 8	0、10、 30、100	30	100	有意に亢進。	
骨格筋	懸垂動作	ICR マウス	雄 8	0、10、 30、100	100	_	影響なし。	
血液	血液凝固、 PT、APTT	SD ラット	雄 6	0、30、 100、300	300	_	影響なし。	

2 ・全て強制経口投与した。

3 -: 最小作用量は設定できなかった。

4 5

6 7

8. 急性毒性試験

メタアルデヒド (原体) を用いた急性毒性試験が実施された。結果は表5に示されている。 (参照 $21\sim27$)

表 5 急性毒性試験結果概要

投与	投与 LD ₅₀ (mg/k		kg 体重)	知索された庁仆	
経路	動物種	雄	雌	観察された症状	
	SD ラット	283	283	体重増加抑制及び体重減少、曲背位、嗜眠、立毛、呼吸速度の減少、運動失調、眼瞼下垂、四肢の蒼白、全身の振戦、強直性痙攣、肺の赤色変化、肝の暗色化又は斑紋上の蒼白、脾の蒼白、腎の暗色変化、腺胃上皮及び大腸の出血 雌雄:200 mg/kg 体重/日以上で死亡例	
経口	SD ラット	750	383	自発運動及び興奮の増大、振戦、間代性及び強直性痙攣、跳躍性痙攣、跳躍性痙攣、跳躍性歩行、曲背位、運動失調、腹影位、側臥位、被毛の逆立てや乱れ、流涎、多尿、赤色の軟便、眼及び鼻孔からの出血、発汗、呼吸数の増加、後肢の引きずり、体重増加、肺の鬱血、浮腫、胃粘膜・腸粘膜の赤色斑、腸内の出血雄:316 mg/kg 体重/日以上で死亡例	
	BKW マウス	411	443	曲背位、嗜眠、立毛、呼吸速度の減少、運動失調、 眼瞼下垂、四肢の蒼白、全身の振戦、強直性痙攣、 体重増加抑制、体重減少、肺の赤色変化、肝の暗 色化又は斑紋状の蒼白、脾の蒼白、腎の暗色変化、 腺胃上皮及び大腸の出血 雌雄:400 mg/kg 体重/日以上で死亡例	
腹腔内	SD ラット	422		自発重加及び興奮の増大、振戦、間代性・強直性 痙攣、跳躍性痙攣、ストラウプ現象、跳躍性歩行、 曲背位、運動失調、腹砂位、側砂位、被毛の逆立 てや乱れ、流延、多尿、軟便、眼及び鼻からの出 血、呼吸数の増加、後肢の引きずり、体重の増加、 肺の鬱血、胃及び小腸粘膜の発赤、腸間膜血管の 拡張 雌雄:316 mg/kg 体重/日以上で死亡例	
経皮	SD ラット	>5,000	>5,000	軽度の増民、立毛、肝及び脾の暗色化、腎の蒼白 又は斑紋が成 死亡例なし	
経皮	SD ラット	>2,000	>2,000	死亡例で肺中に血液、皮下の血管新生(処理部位) 雌:2,000 mg/kg 体重/日で1例死亡例	
		LC ₅₀ (1	mg/L)	軽度の呼吸困難及びくしゃみ、体重減少、頻繁な	
吸入	SD ラット	>15	>15	まばたき、無色の鼻汁分泌、無気力状態、眼周囲 赤茶色分泌物、鼻及び口周囲無色排出物、肺の充 血及び胸腔内胸膜破貯留 雌:1 mg/kg 体重/日で死亡例	

2

3

4

5

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。眼に対する軽微な刺激性が認められたが、皮膚に対する刺激性は認められなかった。(参照

1 $28\sim30$)

Hartley モルモットを用いた Buehler 法による皮膚感作性試験及び CBA/Ca 系マウスを用いた局所リンパ節増殖法 (LLNA 法) による皮膚感作性試験 が実施され、皮膚感作性は認められなかった。 (参照 31)

【事務局より】今回、2008 年 GLP による皮膚刺激性試験が追加提出されましたが、既存の結果と同じであったことから、特段追加する内容がなく、修正は行っておりません。

5 6

7

8

9

2 3

4

10. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、250、750 及び 2,500 ppm: 平均検体摂取量は表 6 参照) 投与による 90 日間亜急性毒性試験が実施された。

101112

表 6 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

投与群		250 ppm	750 ppm	2,500 ppm
平均検体摂取量	雄	18.9	59.8	198
(mg/kg 体重/日)	雌	22.5	68.9	231

13 14

各投与群で認められた毒性所見は表7に示されている。

15 16

れたので、無毒性量は雌雄とも 250 ppm (雄: 18.9 mg/kg 体重/日、雌: 22.5 mg/kg 体重/日、雌: 22.5 mg/kg

本試験において 750 ppm 以上投与群の雌雄で小葉中心性肝細胞肥大が認めら

17

体重/日) であると考えられた。 (参照 32)

18 19

表 7 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
2,500 ppm	・個体別肝比重量3減少 ・肝腫大	・死亡(1例) ・体重増加抑制 ・摂餌効率低下 ・個体別肝比重量減少 ・心、脾絶対重量減少
750 ppm 以上	· 小葉中心性肝細胞肥大	・小葉中心性肝細胞肥大
250 ppm	毒性所見なし	毒性所見なし

2021

(2)90日間亜急性毒性試験(マウス)

2223

ICR マウス (一群雌雄各 15 匹) を用いた混餌 (原体:0、100、300、1,000、3,000 及び 10,000 ppm: 平均検体摂取量は表 8 参照) 投与による 90 日間亜急性

³ 体重比重量のことを比重量という(以下同じ)。

1 毒性試験が実施された。

2 3

表 8 90 日間亜急性毒性試験(マウス)の平均検体摂取量

投与群		100 ppm	300 ppm	1,000 ppm	3,000 ppm	10,000 ppm
平均検体摂取量	雄	19.0	53.7	178	560	1,920
(mg/kg 体重/日)	雌	23.7	69.5	235	742	2,300

4 5

各投与群で認められた主な所見は表9に示されている。

6 7 本試験において、300 ppm 以上投与群の雌雄で肝比重量の増加等が認められたので、無毒性量は雌雄とも 100 ppm(雄:19.0 mg/kg 体重/日、雌:23.7 mg/kg 体重/日)であると考えられた。(参照 33、51)

8 9 10

表 9 90 日間亜急性毒性試験(マウス)で認められた毒性所見

投与群	雄	雌
10,000 ppm	・死亡(5例)・体重増加抑制・腎比重量減少・肝腫大/肥大・肝細胞質空胞化	• 肝慢性炎症、肝細胞質空胞化、 肝細胞壊死
3,000 ppm 以上	・肝腫大	・死亡(3,000 ppm 投与群 2 例、 10,000 ppm 投与群 1 例) ・体重増加
1,000 ppm 以上	• 肝急性炎症、肝細胞壊死、肝細 胞肥大	・肝細胞肥大
300 ppm 以上 100 ppm	・肝比重量増加 ・肝細胞核大小不同 毒性所見なし	・肝比重量増加 ・肝細胞核大小不同 毒性所見なし

11 12

(3)6か月間亜急性毒性試験(イヌ)

1314

体重/日:平均検体摂取量は表 10 参照) 投与による 6 か月間亜急性毒性試験が実施された。

ビーグル犬 (一群雌雄各 6 匹) を用いた混餌 (原体: 0、20、60 及び 90 mg/kg

1516

17

表 10 6 か月間亜急性毒性試験(イヌ)の平均検体摂取量

投与群		20 mg/kg 体重/日	60 mg/kg 体重/日	90 mg/kg 体重/日
平均検体摂取量	雄	20.2	61.5	91.8
(mg/kg 体重/日)	雌	19.7	62.2	86.7

18 19

2021

60 mg/kg 体重/日以上投与群の雄において前立腺及び精巣のび漫性萎縮が認められた。雌においては検体投与の影響は認められなかった。

本試験において、60 mg/kg 体重/日以上投与群の雄において前立腺及び精巣の

び漫性萎縮が認められ、雌では毒性所見が認められなかったので、無毒性量は雄で 20.2~mg/kg 体重/日、雌で本試験の最高用量 86.7~mg/kg 体重/日であると考えられた。(参照 34、51)

(4) 90 日間亜急性神経毒性試験 (ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、100、500 及び 2,500 ppm: 平均検体摂取量は表 11 参照) 投与による 90 日間亜急性神経毒性試験が実施された。

表 11 90 日間亜急性神経毒性試験(ラット)の平均検体摂取量

投与群		100 ppm	500 ppm	2,500 ppm
平均検体摂取量	雄	7	36	178
(mg/kg 体重/日)	雌	8	41	192

各投与群で認められた毒性所見は表 12 に示されている。

2,500 ppm 投与群の雌の1例(投与68日にて切迫と殺)で後肢機能の低下、呼吸促迫、湿った皮毛、肛門/性器周辺の赤褐色着色が見られたが、この症状は投与初期の大量摂取による毒性に起因する脊髄の損傷が原因と考えられた。

 本試験において、500 ppm 投与群の雌雄で自発運動量の増加等が認められたので、無毒性量は雌雄とも 100 ppm(雄:7 mg/kg 体重/日、雌:8 mg/kg 体重/日)と考えられた。(参照 35)

表 12 90 日間亜急性神経毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
2,500 ppm	• 後肢握力増加	・切迫と殺(1例)
500 ppm 以上	• 自発運動量増加	・驚愕反応増加* ・自発運動量増加
100 ppm	毒性所見なし	毒性所見なし

11. 慢性毒性試験及び発がん性試験

(1) 1年間慢性毒性試験(イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌(原体:0、10、30 及び 90 mg/kg体重/日) 投与による 1 年間慢性毒性試験が実施された。

各投与群で認められた毒性所見は表13に示されている。

本試験において、30 mg/kg 体重/日投与群の雌雄で死亡が認められたので、無毒性量は雌雄とも 10 mg/kg 体重/日であると考えられた。(参照 $36 \cdot 51$)

^{*:} 驚愕反応増加は 2,500 ppm 投与群においては有意差なし。

表 13 1年間慢性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌							
90 mg/kg 体重/日	・運動失調、運動性低下、嘔吐、振 戦、痙攣及び流涎 ・Hb、MCV及びMCH増加、APTT 延長 ・ALP及びGGT増加 ・肝比重量増加 ・精巣巨細胞を伴う精巣上皮の限局 性萎縮又は変性、前立腺の萎縮	・運動失調、運動性低下、嘔吐、振戦、痙攣及び流涎 ・Hb、Ht 及び MCH 増加 ・ALP 及び GGT 増加 ・肝比重量増加 ・死亡(死因:化膿性気管支肺炎)							
30 mg/kg 体重/日	・死亡 (死因:不明)	・死亡(死因:間質性肺炎)							
10 mg/kg 体重/日	毒性所見なし	毒性所見なし							

(2)2年間慢性毒性/発がん性併合試験(ラット)

SD ラット(一群雌雄各 60 匹、対照群 2 群;各群雌雄各 60 匹)を用いた混餌(原体:0、50、1,000 及び 5,000 ppm: 平均検体摂取量は表 14 参照)投与による 2 年間慢性毒性/発がん性併合試験が実施された。

表 14 2年間慢性毒性/発がん性併合試験(ラット)の平均検体摂取量

投与群		50 ppm	1,000 ppm	5,000 ppm
平均検体摂取量	雄	2.2	44.0	224
(mg/kg 体重/日)	雌	3.0	60.4	314

各投与群で認められた毒性所見は表 15、歩行異常に関する症状及び発現時期 は表 16、肝細胞腺腫及び癌の発生数は表 17、肝細胞肥大の発生数は表 18 に示されている。

腫瘍性病変において、5,000 ppm 投与群の雌において、肝細胞腺腫、肝細胞腺腫及び肝細胞癌の合計数が増加した。

50 ppm 投与群の雄において、肝細胞肥大は対照群 1 と比較して発現頻度が有意に増加したが、対照群 2 と比較した場合には有意差がないこと及び肝臓の比重量の増加が伴わないことから、検体投与の影響とは考えられなかった。

本試験において、1,000 ppm 以上投与群の雄で肝細胞肥大等、雌で T.Chol 増加等が認められたので、無毒性量は雌雄とも 50 ppm(雄:2.2 mg/kg 体重/日、

雌: 3.0 mg/kg 体重/日) であると考えられた。 (参照 37、51)

(発がんメカニズムの検討に関しては[14.(1)]を参照)

1 表 15 2 年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見

- '		
投与群	雄	雌
5,000 ppm	・甲状腺傍ろ胞細胞過形成、腎尿 細管拡張	 ・MCV、MCH 減少 ・TP、Glob 増加、A/G 比減少 ・肝比重量増加 ・肝細胞肥大、脾ヘモジデリン沈着、肺水腫 ・肝細胞腺腫
1,000 ppm 以上	・体重増加抑制 ・肝細胞肥大	・体重増加抑制 ・T.Chol 増加 ・肺充血
50 ppm	毒性所見なし	毒性所見なし

2 3

表 16 歩行異常に関する症状と発現時期

性別		雄						雌		
投与量 (ppm)	0 対照 1	50	1,000	5,000	0 対照 2	0 対照 1	50	1,000	5,000	0 対照 2
低調な運動量	16 [295- 728]	8 [393- 710]	13 [557- 713]	11 [283-7 18]	4 [477- 722]	7 [456- 729]	11 [421- 704]	11 [323- 729]	9 [421- 728]	13 [462- 729]
脚の不全麻痺	6 [666- 728]	3 [575- 728]	4 [609- 722]	3 [565-7 28]	2 [407- 722]	0	0	1 [428- 429]	4 [274- 686]	0
脚の全麻痺	0	1 [708- 722]	0	0	1 [708]	0	0	0	1 [484- 485]	0
運動失調	4 [516- 591]	3 [554- 702]	2 [568- 660]	8 [489-7 15]	4 [407- 722]	6 [464- 666]	9 [422- 729]	8 [344- 725]	11 [435- 728]	5 [530- 729]
振戦	3 [646- 691]	1 [714]	2 [635- 646]	4 [564-6 63]	1 [587]	2 [358- 582]	3 [574- 680]	1 [565]	3 [609- 678]	0
間代性痙攣	0	0	0	1 [630]	0	0	1 [715- 728]	0	0	0
ヘリコプタ リング						0	1 [652- 708]	0	1 [603- 666]	2 [463- 576]
回転						2 [421- 593]	5 [446- 652]	3 [477- 666]	2 [435- 624]	1 [468]
平伏						3 [481- 582]	11 [547- 725]	8 [349- 715]	3 [548- 609]	5 [468- 723]
頭部の傾斜						6 [400- 729]	11 [441- 729]	10 [505- 729]	4 [421- 708]	8 [435- 729]

4 注)[]内は観察された最初の日-最後の日。

性別	雄							雌		
投与量(ppm)	0 対照 1	50	1,000	5,000	0 対照 2	0 対照 1	50	1,000	5,000	0 対照 2
検査動物数	60	60	60	60	60	60	60	60	60	60
肝細胞腺腫	1	0	0	0	0	1	1	0	6*	0
肝細胞癌	2	4	4	2	0	1	1	0	1	0
肝細胞腺腫 +肝細胞癌	3	4	4	2	0	2	2	0	7*	0

Fisher の直接確率法 *:対照群 2 と比較して p<0.05

23 4

表 18 肝細胞肥大の発生数

性別	雄						雌			
投与量	0	F O	1 000	F 000	0	0	F 0	1 000	F 000	0
(ppm)	対照 1	50	1,000	5,000	対照 2	対照 1	50	1,000	5,000	対照 2
検査動物数	60	60	60	60	60	60	60	60	60	58
肝細胞肥大	0	6ª	20^{bd}	$38^{\rm bd}$	2	5	Oc	11	36^{bd}	5

Fisher の直接確率法 a: 対照群 1 と比較して p<0.05、b: 対照群 1 と比較して p<0.01、

c:対照群2と比較してp<0.05、d:対照群2と比較してp<0.01

6 7

8

9

5

(3) 18 か月間発がん性試験(マウス)

10

ICR マウス (一群雌雄各 60 匹、対照群 2 群;各群雌雄各 60 匹) を用いた混 餌(原体:0、25、100及び300 ppm: 平均検体摂取量は表19参照)投与によ る18か月間発がん性試験が実施された。

11 12

13

表 19 18 か月間発がん性試験(マウス)の平均検体摂取量

投与群		25 ppm	100 ppm	300 ppm
平均検体摂取量	雄	4	16	49
(mg/kg 体重/日)	雌	5	20	60

14 15

300 ppm 投与群の雌雄で肝細胞肥大が認められた。300 ppm 投与群の雄の肺 腺癌に有意差が認められたが、その発生率は 10%で、背景データの範囲内4にあ ることから、投与に起因するとは考えられなかった(表20参照)。

18

16

^{4 :} 当該試験機関はすでに閉鎖され、データ入手が不可能であったため、動物供給会社から入手した データによると、ICR (CD-1) マウス (雄) の肺腺癌の背景データ 26 施設 (一群雄 47~60 匹、 総試験動物数 1,102 匹) では、肺腺癌の総発生数 81 例(1~16 例/試験)、平均発生率 7.2%(1.7 $\sim 26.0\%$ /試験) であった。

表 20 肺腺癌の発生数

性別			雄		
投与量	0	0.5	100	200	0
(ppm)	対照 1	25	100	300	対照 2
検体数	60	60	60	60	60
肺腺癌	0	2	1	6*	3
発生率(%)	0.0	3.0	1.6	10.0	5.0

2 3

Fisher の直接確率法 (*: 対照群 1 と比較して p<0.05)

4 5 本試験において、300 ppm 投与群の雌雄で肝細胞肥大が認められたので、無毒性量は雌雄とも 100 ppm(雄:16 mg/kg 体重/日、雌:20 mg/kg 体重/日)であると考えられた。発がん性は認められなかった。(参照 38、51)

6 7 8

9

10

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット(一群雌雄各 28 匹)を用いた混餌(原体:0、50、1,000 及び 2,000 ppm: 平均検体摂取量は表 21 参照) 投与による 2 世代繁殖試験が実施された。

111213

表 21 2世代繁殖試験 (ラット) の平均検体摂取量

投	与群		50 ppm	1,000 ppm	2,000 ppm
	P世代	雄	3.4	69	138
平均検体摂取量	P世代	雌	4.2	81	160
(mg/kg 体重/日)	F1 世代	雄	3.2	65	134
	F 1 世1人	雌	4.0	81	164

1415

各投与群で認められた毒性所見は表 22 に示されている。

1617

18

19

メタアルデヒド投与とは無関係と考えられる死亡が 2,000 ppm 投与群の F_1 雌 3 例 [死因: 敗血性塞栓 (1 例) 、不明 (2 例)] 、1,000 ppm 投与群の F_1 雄 1 例 (死因: リンパ肉腫) 、50 ppm 投与群の P 雄 1 例 (死因: 給餌器障害による 頭部感染症及び肩部破症が発生したためと殺)、P 雌 2 例 [死因: 事故 (1 例)、

20 不明(1

不明(1例)]、F₁雌2例[死因:敗血性塞栓(1例)、リンパ肉腫が発生した

21

ためと殺(1例)]が認められた。

2223

本試験において、親動物では 2,000 ppm 投与群の雌雄(F_1)で肝比重量増加及び雌(P) で後肢麻痺等が認められ、児動物では 2,000 ppm 投与群の雌で体重増加抑制が認められたので、無毒性量は、親動物の雌雄とも 1,000 ppm (P雄:

24

69 mg/kg 体重/日、P 雌:81 mg/kg 体重/日、F₁ 雄:65 mg/kg 体重/日、F₁雌:

2526

81 mg/kg 体重/日)、児動物の雄で本試験の最高用量 2,000 ppm、雌で 1,000 ppm

27

(F₁ 雄: 138 mg/kg 体重/日、F₁ 雄: 81 mg/kg 体重/日、F₂ 雄: 134 mg/kg 体重/

日、 F_2 雌: 81 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 39、51、54)

表 22 2 世代繁殖試験 (ラット) で認められた毒性所見

	投与群	親:]	P、児:F ₁	親:F ₁ 、	児:F ₂
	汉 子杆	雄	雌	雄	雌
親動	2,000 ppm	毒性所見なし	・後肢麻痺 ・脊椎骨折/脱臼 ・脊髄出血/壊死 ・膀胱拡張膨満/出血	• 肝比重量増加	・肝比重量増加
物	1,000 ppm 以下		毒性所見なし	毒性所見なし	毒性所見なし
児	2,000 ppm	毒性所見なし	• 体重增加制	毒性所見なし	• 体重增加抑制
動物	1,000 ppm 以下		毒性所見なし		毒性所見なし

(2)発生毒性試験(ラット)

SD ラット(一群雌 25 匹)の妊娠 $6\sim15$ 日に強制経口(原体:0、25、50、75 及び 150 mg/kg 体重/日、溶媒: コーン油)投与する発生毒性試験が実施された。

母動物の150 mg/kg 体重/日投与群で死亡(6例)、体重増加抑制、摂餌量の減少、腎盂拡張、水腎症及び脊椎傍出血が認められた。

胎児において投与に起因すると考えられる所見は認められなかった。

本試験において、母動物の 150 mg/kg 体重/日投与群で体重増加抑制等が認められ、胎児では毒性所見が認められなかったことから、無毒性量は母動物で 75 mg/kg 体重/日、胎児で本試験の最高用量 150 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。(参照 40、51)

(3)発生毒性試験(ウサギ)

NZW ウサギ (一群雌 16 匹) の妊娠 6~18 日に強制経口 (原体:0、10、40 及び 80 mg/kg 体重/日、溶媒:コーン油) 投与する発生毒性試験が実施された。本試験において、母動物及び胎児に検体投与の影響は認められなかったことから、無毒性量は母動物及び胎児とも本試験の最高用量 80 mg/kg 体重/日であると考えられた。なお、予備試験において、100 mg/kg 体重/日以上の投与群において、検体投与によると考えられる母動物の死亡例が認められており、80 mg/kg 体重/日は最大耐量であると考えられた。催奇形性は認められなかった。(参照41)

13. 遺伝毒性試験

細菌を用いた DNA 修復試験及び復帰突然変異試験、マウスリンパ腫細胞を用い

1 た遺伝子突然変異試験、チャイニーズハムスター卵巣由来細胞(CHO)を用いた 2 染色体異常試験、マウスを用いた小核試験が実施された。

試験結果は表 23 に示されており、全て陰性であったことから、メタアルデヒドに遺伝毒性はないと考えられた。(参照 $42\sim47$)

表 23 遺伝毒性試験結果概要 (原体)

<u>-</u> .				
	試験	対象	処理濃度・投与量	結果
in vitro	DNA 修復試 験	Escherichia coli [WP2、WP67 (uvrA、polA)、CM871 (uvrA、recA、lexA) 株]	100~10,000 μg/ディスク (+/-S9)	陰性
	復帰突然変 異試験①	Salmonella typhimurium (TA98、TA100、TA1535、 TA1537、TA1538 株)	①0.26~160 μg/7° ν-\ (+/-S9) ②4~32 μg/7° ν-\ (+/-S9)	陰性
	復帰突然変 異試験②	S. typhimurium (TA98、TA100、TA1535、 TA1537 株) E.coli (WP2uvrA ⁻ 株)	①50~5,000 μg/7° ν-\ (+/-S9)	陰性
	遺伝子突然 変異試験	マウスリンパ腫細胞 (L5178Y)	20~200 μg/mL (-S9) 20~167 μg/mL (+S9)	陰性
	染色体異常 試験	チャイニーズハムスター卵巣由 来細胞(CHO)	20~200 μg/mL (-S9) 20~167 μg/mL (+S9)	陰性
in vivo	小核試験	BKW マウス(骨髄細胞) (一群雌雄各 5 匹)	25、50、100 mg/kg 体重 (単回経口投与)	陰性

注) +/·S9: 代謝活性化系存在下及び非存在下

14. その他の試験

(1) ラットを用いた in vivo中期肝発がん性試験

Fischer ラット(一群雄各 15 匹:イニシエーション処置群、各 9 匹:非イニシエーション処置群)を用い、中期肝発がん性試験が実施された。イニシエーターとして Nートロソジエチルアミン(DEN)を単回腹腔内投与(200 mg/kg 体重)した 2 週間後にメタアルデヒドを混餌(原体:0、200、1,000 及び 5,000 ppm:平均検体摂取量は表 24 参照)投与した。陽性対照としてフェノバルビタール(PB)を 5,000 ppm で混餌投与した。 DEN を処置しなかった群(非イニシエーション処置群)にはメタアルデヒドを混餌(原体:0 又は 5,000 ppm)投与した。 いずれも混餌投与期間は 6 週間とした。

表 24 ラットを用いた in vivo 中期肝発がん性試験の検体摂取量

投与群	200 ppm	1,000 ppm	5,000 ppm
平均検体摂取量	15	79	255
(mg/kg 体重/日)	15	73	355

1 試験期間中に1例の死亡がみられたが、肝部分切除に起因する衰弱であり、検 2 体投与に関連した死亡例はなかった。

1,000 ppm 投与群に体重増加がみられた。

DEN によるイニシエーション処理をしたメタアルデヒドの全ての投与群及び PB 投与群、非イニシエーション処理のメタアルデヒドの 5,000 ppm 投与群において、肝比重量の増加がみられた。

混餌投与開始から 3 週間後に全ての生存動物について、3 つの肝葉から採取した $4\sim5$ mm の厚さの切片を採取し、胎盤型グルタチオン-S・トランスフェラーゼ (GST-P) 陽性細胞巣の定量的解析が行われた。GST-P 陽性細胞巣は、DEN 処置の動物には発現したが、DEN 非処置動物にはみられなかった。DEN 処置をしたメタアルデヒド 5,000 ppm 投与動物の肝の単位面積あたりの GST-P 陽性細胞巣の個数及び面積は対照群に比べ有意に増加したが、1,000 ppm 以下の群では影響が認められなかった。DEN 処置後 PB 投与群の数及び面積は対照群に比べ有意に増加した。

メタアルデヒドは 5,000 ppm(355 mg/kg 体重/日)の高用量ではラットに対して肝腫瘍のプロモーション作用を有していると考えられた。本試験のプロモーション作用についての無毒性量は、1,000 ppm(73 mg/kg 体重/日)であると考えられた。(参照 48、51)

(2) 文献における各種試験

ラットを用いたメタアルデヒドの混餌 (0, 200, 1,000 及び 5,000 ppm) 投与による慢性毒性及び繁殖試験 (非 GLP) に関する文献が採録されている。

年間慢性毒性/発がん性試験において、5,000 ppm 投与群の雌で後肢麻痺、脊髄を横断する病変が、1,000 及び 200 ppm 投与群の雌雄で後肢麻痺、脊椎前彎症が認められた(表 25 参照)。発がん性は認められなかった。無毒性量は 200 ppm 未満であった。

表 25 慢性毒性/発がん性試験 (ラット) でみられた後肢麻痺症状の 初発日/瀕死状態日

投与量(ppm)	雄	雌
		19/28
		641/641
5,000		625/676
		659/665
		559/629
1,000	657/665	652/713
200	569/574	

育率の低下が、1,000 ppm 投与群の F1 及び F2 の雌で死亡(各 1 及び 3/20 例)、後肢麻痺が認められた。無毒性量は親動物で 200 pm、児動物で 1,000 ppm であった。 (参照 49)

(3) 各試験における神経毒性症状

メタアルデヒドの神経毒性(原体の GLP 対応試験のみ)を総括し、表 26 及び 27 に示した。ラット、マウス又はイヌの一連の毒性試験では、メタアルデヒド 投与による神経症状は急性期では主に曲背位、嗜眠、振戦、強直性痙攣、運動失調及び昏睡が見られ、亜急性期から慢性期では自発運動量の増加、驚愕反応の増加、後肢麻痺、運動失調、振戦及び間代性痙攣/痙攣等が認められた。(参照 54)

3世代繁殖試験において、5,000 ppm 投与群の P、F1、及び F2 の雌で死亡(各

13、15 及び 10/20 例)、後肢麻痺、脊髄の外傷性変化、児動物の生存率及び哺

表 26 各試験における無毒性量、神経症状にかかわる最小毒性量及び毒性所見

毒性試験			無毒性量	神経毒性に係る 最小毒性量	最小毒性量で見られた 主な所見	
			(mg/kg 体重/日)	(mg/kg 体重/日)	(神経症状)	
急性毒性試 (経口・ラ	~ .	雄 100		200	曲背位、立毛、嗜眠、流涎、眼瞼下垂、振戦、排尿、下	
		雌	100	200	痢、強直性痙攣、運動失調、 昏睡	
急性毒性試	~ .	雄	400	526	曲背位、嗜眠、立毛、運動失調、眼瞼下垂、振戦、強	
\ \	,	雌	304	400	直性痙攣	
	急性毒性試験	雄	18.9	_	神経毒性に関連する所見な	
(混餌・ラ	昆餌・ラット)		22.5	_		
	急性毒性試験	雄	19.0	_	神経毒性に関連する所見な	
(=) 1	(混餌・マウス)		23.7	_	L	
	急性毒性試	雄	20.2	_	神経毒性に関連する所見な	
験 (混餌・イ	ヌ)	雌	86.7	_	L	
	急性神経毒性	雄	7	36	自発運動量増加	
試験 (混餌・ラ	ット)	雌	8	41	自発運動量増加、驚愕反応 増加	
1年間慢性 (混餌・イ		雄	10	90	運動失調、間代性痙攣/痙 攣、運動性低下、流涎	
		雌	10	90	運動失調、振戦、間代性痙 攣/痙攣	
2年間慢性性 性併合試験	毒性/発がん	雄	2.2	224	運動失調	
(混餌・ラ		雌	3.0	314	運動失調、不全麻痺	

-:神経毒性に係る最小毒性量は設定できなかった

表 27 一般薬理試験にみられた神経症状及び作用量

試験の種類	供試動物		最大無作用量 (mg/kg 体重)	最小作用量 (mg/kg 体重)	概要
一般状態	マウス	雄	10	30	投与 2 時間後に軽度な 自発運動の亢進
ヘキソバルビ タール睡眠	マウス	雄	100	_	影響なし
痙攣誘発作用	マウス	雄	3	10	痙攣誘発
体温	ラット	雄	100	300	体温低下
血圧、 心拍数	ラット	雄	10	30	収縮期血圧上昇
瞳孔径	ラット	雄	100	300	瞳孔径縮小
腸管輸送能	マウス	雄	30	100	腸管輸送能亢進
懸垂動作	マウス	雄	100	_	影響なし
血液凝固、 PT、APTT	ラット	雄	300	_	影響なし

-:最小毒性量は設定できなかった

1

Ⅲ. 食品健康影響評価

今回追加されたマウスを用いた皮膚感作性試験等を含む 参照に挙げた資料を用いて農薬「メタアルデヒド」の食品健康影響評価を施した。<u>今回マウスを用いた皮</u>膚感作性試験等が追加された 吉田専門委員修正。

ラットを用いた動物体内運命試験において、経口投与されたメタアルデヒドの吸収及び排泄は速やかであり、投与後 48 時間で大部分の放射能が主に呼気中を介して排泄された。体内では脊髄、坐骨神経、脂肪、肝臓等に分布する傾向が認められた。体内に吸収されたメタアルデヒドはアセトアルデヒドに代謝された後、最終的に CO₂ として排泄されると考えられた。

いちご、てんさい、水稲、みかん及びレタスを用いた植物体内運命試験を実施したところ、親化合物が若干量植物体に移行する可能性があるものの、大部分が土壌中で CO_2 に分解された後、植物体に吸収され、植物構成成分に取り込まれるものと考えられた。

水稲、レタス、キャベツ及びみかんを用いて、メタアルデヒドを分析対象化合物とした作物残留試験が実施されており、メタアルデヒドの最高値は最終散布 14 日後に収穫したキャベツの 1.50 mg/kg であった。また、魚介類におけるメタアルデヒドの最大推定残留値は 0.030 mg/kg であった。

各種毒性試験結果から、メタアルデヒドによる影響は主にマウス、ラット及びイヌで肝臓 (肝細胞肥大等) に、ラット及びイヌでは神経症状として認められた。繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

ラットを用いた 2 年間慢性毒性/発がん性併合試験において、最高投与群の雌で 肝細胞腺腫が増加し、雄ラットを用いた中期肝発がん性試験において、最高用量群 (355 mg/kg 体重/日) でのみ肝腫瘍のプロモーション作用を有したが、発生機序 は遺伝毒性メカニズムとは考え難く、本剤の評価にあたり閾値を設定することは可 能であると考えられた。

ラットを用いた繁殖試験では最高用量群(2,000 ppm)において後肢麻痺、脊椎骨折、脊椎脱臼、脊髄での出血及び壊死が、マウスを用いた痙攣誘発作用試験(3,10,30 及び 100 mg/kg 体重/日)では 10 mg/kg 体重/日以上の投与群で強直性屈曲及び強直性伸展痙攣がそれぞれ認められたほか、ラットを用いた 3 世代繁殖試験(参照 49 の文献)では 5,000 ppm の投与群で後肢麻痺、脊髄の外傷性変化が報告されたことから、メタアルデヒドは神経系へ影響を及ぼすと考えられた。これらの影響は、メタアルデヒドの中枢神経系全般に対する作用と考えられ、主に脊髄に対してシナプス後抑制機構を抑制して、反射性興奮を高め、骨格筋に強直性痙攣を連続的に発生させることで脊椎の変形又は外傷を引き起こしたと考えられる。さらに加えて、この変形脊椎が脊髄損傷などの二次的病変を誘発したものと考えられた。メタアルデヒドの神経毒性発現機序については以下のように考察した。メタアル

デヒドの投与により、その神経系の MAO の上昇を惹起し、脳内の抑制性神経伝達物質である GABA の濃度低下を引き起こす。また、NA、5HT についてもメタアル

の体内からの消失とともに正常に回復すると考えられる。

デヒド投与とアセトアルデヒドへの代謝に関連して減少し、GABAの濃度低下が同時並行的に起こることにより、結果的に痙攣誘発の閾値を低下させている考えられる。また、本剤の安全性については、メタアルデビトは急速にアセトアルデヒドに代謝されること、神経毒性は高用量を投与して血漿中濃度が一定以上に増加するような状況下で発現すること、また神経系の器質的変化を伴っていないことから本剤

各種試験結果から、<u>農産物及び魚介類における食品中の</u>暴露評価対象物質をメタアルデヒド(親化合物のみ)と設定した上路専門委員修正。

各試験における無毒性量及び最小毒性量は表 28 に示されている。

10 11

6

7

8

9

表 28 各試験における無毒性量及び最小毒性量

動物種	試験	無毒性量	最小毒性量	備考5
		(mg/kg 体重/日)	(mg/kg 体重/日)	
ラット	90 日間亜急性 毒性試験	雄:18.9 雌:22.5	雄:59.8 雌:68.9	雌雄:小葉中心性肝細胞肥大
	90 日間亜急性神経毒性試験	雄:7 雌:8	雄:36 雌:41	雌雄:自発運動量増加等
	2年間慢性毒性 /発がん性併合 試験	雄:2.2 雌:3.0	雄:44.0 雌:60.4	雄:肝細胞肥大等 雌:T.Chol 増加等
	2 世代繁殖試験	親動物 P雄:69 P雌:81 F1雄:65 F1雌:81	親動物 P雄:138 P雌:160 F1雄:134 F1雌:164	親動物 雌雄:肝比重量増加等 児動物 雌雄:体重増加抑制
		児動物 F ₁ 雄:138 F ₁ 雌:81 F ₂ 雄:134 F ₂ 雌:81	児動物 F ₁ 雄:— F ₁ 雌:160 F ₂ 雄:— F ₂ 雌:164	(繁殖能に対する影響は認め られない)
	発生毒性試験	母動物:75 胎児:150	母動物:150 胎児:一	母動物:体重増加抑制等 児動物:毒性所見なし (催奇形性は認められない)
マウス	90 日間亜急性 毒性試験	雄:19.0 雌:23.7	雄:53.7 雌:69.5	雌雄:肝比重量増加等
	18 か月間発が ん性試験	雄:16 雌:20	雄:49 雌:60	雌雄:肝細胞肥大 (発がん性は認められない)
ウサギ	発生毒性試験	母動物:80 胎児:80	母動物:- 胎児:-	母動物及び胎児:毒性所見なし (催奇形性は認められない)
イヌ	6か月間亜急性 毒性試験	雄:20.2 雌:86.7	雄:61.5 雌:-	雄:前立腺及び精巣のび漫性萎 縮
	1年間慢性毒性 試験	雄:10 雌:10	雄:30 雌:30	雌雄:死亡

⁵ 備考に最小毒性量で認められた所見の概要を示す。

1 -:最小毒性量が設定できなかった。 2 3 食品安全委員会農薬専門調査会は、各試験で得られた無毒性量のうち最小値が ラットを用いた2年間慢性毒性/発がん性併合試験の2.2 mg/kg 体重/日であったの 4 で、これを根拠として、安全係数 100 で除した 0.022 mg/kg 体重/日を一日摂取許 5 容量(ADI)と設定した。 6 7 ADI 0.022 mg/kg 体重/日 (ADI 設定根拠資料) 慢性毒性/発がん性併合試験 (動物種) ラット (期間) 2 年間 混餌投与 (投与方法) 2.2 mg/kg 体重/日 (無毒性量) (安全係数) 100 8 9 10

1 <別紙1:検査値等略称>

略称	名称
ai	有効成分量
A/G 比	アルブミン/グロブリン比
ALP	アルカリホスファターゼ
APTT	活性化部分トロンボプラスチン時間
BCF	生物濃縮係数
C_{max}	最高濃度
DEN	<i>N</i> -ジエチルニトロソアミン (ジエチルニトロソアミン)
GABA	γ-アミノ酪酸
GGT	γ-グルタミルトランスフェラーゼ
GG1	(=γ −グルタミルトランスペプチダーゼ(γ-GTP))
Glob	グロブリン
GST-P	胎盤型グルタチオン- S トランスフェラーゼ
Hb	ヘモグロビン(血色素量)
Ht	ヘマトクリット値
5-HT	セロトニン
LC_{50}	半数致死濃度
LD_{50}	半数致死量
MCH	平均赤血球へモグロビン量
MCHC	平均赤血球色素濃度
MCV	平均赤血球容積
MAO	モノアミンオキシダーゼ
NA	ノルアドレナリン
PB	フェノバルビタール (ナトリウム)
PEC	環境中予測濃度
PHI	最終使用から収穫までの日数
PT	プロトロンビン時間
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
T.Chol	総コレステロール
T_{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能

1 <別紙2:作物残留試験成績>

				DIII	残留值(mg/kg)			
作物名 (分析部位)	使用量 (kg	試験 圃場	回数 (回)	PHI (目)	公的分析機関		 社内分析機関	
実施年	ai/ha)	数	(Ш/		最高値	平均値	最高値	平均値
水稲 (玄米)	$6.0^{ m G}$	1	2	80	< 0.05	< 0.05	< 0.05	< 0.05
1997年	6.0 ^d	1	2	76	< 0.05	< 0.05	< 0.05	< 0.05
水稲 (稲わら)	0.00	1	2	80	< 0.05	< 0.05	< 0.05	< 0.05
1997年	6.0^{G}	1	2	76	< 0.05	< 0.05	< 0.05	< 0.05
レタス (茎葉)	2.25^{WP}	1	3	14	0.71	0.68	0.31	0.28
1998年		1	3	14	1.06	1.02	1.47	1.46
キャベツ (葉球)	5.25^{WP}	1	3	14	0.67	0.65	0.53	0.48
2000年		1	3	14	1.50	1.50	1.14	1.11
温州みかん	$15^{ m WP}$	1	3	30 60	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
(果肉) 1997 年	14.7	1	3	30	< 0.05	< 0.05	< 0.05	< 0.05
1001	10.8	1	3	60	< 0.05	< 0.05	< 0.05	< 0.05
》 3日 J.J. フ, ふ、)	$15^{ m WP}$	1	3	30	< 0.05	< 0.05	< 0.05	< 0.05
温州みかん (果皮)				60	0.06	0.06	0.12	0.11
1997 年	14.7	1	3	30	0.12	0.11	0.24	0.22
(注) C · 粒刘	10.8	1	3	60	< 0.05	< 0.05	< 0.05	< 0.05

注)G:粒剤、WP:水和剤

2 3

4 5 一部に定量限界未満(<0.05)を含むデータの平均値を計算する場合は定量限界値(0.05)を検出したものとして計算し、*を付した。

- 1 <参照>
- 2 1 農薬抄録メタアルデヒド(ナメクジ駆除剤): ロンザジャパン株式会社、2003
- 3 年、一部公表
- 4 2 ラット体内における代謝試験(GLP対応): Biological Test Center (米)、1992
- 5 年、未公表
- 6 3 いちごにおける代謝試験(GLP対応): Biological Test Center(米)、1991年、
- 7 未公表
- 8 4 てんさいにおける代謝試験(GLP対応): PTRL East, Inc. (米)、1996年、未
- 9 公表
- 10 5 水稲における代謝試験(GLP 対応): 残留農薬研究所、1999 年、未公表
- 11 6 みかんにおける代謝試験 (GLP 対応): 第一化学薬品 (株) 薬物動態研究所、1999
- 12 年、未公表
- 13 7 レタスにおける代謝試験(GLP 対応): PTRL East, Inc. (米)、1996 年、未公
- 14 表
- 15 8 好気的土壌における代謝試験 1 (GLP 対応): Analytical Biochemistry
- 16 Laboratories (米)、1990年、未公表
- 17 9 好気的土壌における代謝試験 2 (GLP 対応): Battelle Europe (独)、1991年、
- 18 未公表
- 19 10 嫌気的土壌における代謝試験(GLP対応): Analytical Biochemistry Laboratories
- 20 (米)、1990年、未公表
- 21 11 土壌吸着係数: 化学分析コンサルタント、1998年、未公表
- 22 12 加水分解性(GLP対応): 化学分析コンサルタント、2001年、未公表
- 23 13 新ガイドラインによる加水分解性試験: Analytical Bio-chemistry Laboratories
- 24 Inc. (米) 、1989 年、未公表
- 25 14 水中光分解性試験(GLP 対応): Analytical Bio-chemistry Laboratories Inc.(米)、
- 26 1989年、未公表
- 27 15 土壌残留試験: サンケイ化学(株)、1972~1998年、未公表
- 28 16 土壌残留試験: (株) 化学分析コンサルタント、1998年、未公表
- 29 17 作物残留試験: (財) 日本食品分析センター、1998~199年、未公表
- 30 18 作物残留試験: (株) 化学分析コンサルタント、1998年、未公表
- 31 19 作物残留試験:サンケイ化学(株)、1999年、未公表
- 32 20 メタアルデヒドの薬理試験:三菱化学安全科学研究所、1999年、未公表
- 33 21 ラットを用いた急性経口毒性試験 (GLP 対応): SafePharm Laboratories (英)、
- 34 1987年、未公表
- 35 22 ラットを用いた急性経口毒性試験 1: Institut fur Biologishe Forschung (独)、1973
- 36 年、未公表
- 37 23 ラットを用いた急性経口毒性試験 2: Institut fur Biologishe Forschung (独)、1973
- 38 年、未公表

- 1 24 マウスを用いた急性経口毒性試験 (GLP 対応): SafePharm Laboratories (英)、
- 2 1990年、未公表
- 3 25 ラットを用いた急性腹腔内毒性試験: Institut fur Biologishe Forschung (独)、
- 4 1973年、未公表
- 5 26 ラットを用いた急性経皮毒性試験: Huntingdon Research Centre (英)、1974
- 6 年、未公表
- 7 27 ラットを用いた急性吸入毒性試験: Huntingdon Research Centre (英)、1973
- 8 年、未公表
- 9 28 ウサギを用いた眼一次刺激性試験 (GLP 対応): SafePharm Laboratories (英)、
- 10 1990年、未公表
- 11 29 ウサギを用いた眼一次刺激性試験: Institut fur Biologishe Forshung (独)、1974
- 12 年、未公表
- 13 30 ウサギを用いた皮膚一次刺激性試験: Hazleton Laboratories (英)、1983年、
- 14 未公表
- 15 31 モルモットを用いた皮膚感作性試験 (GLP 対応): Consumer Product Testing
- 16 (米)、1984年、未公表
- 17 32 ラットを用いた 90 日間反復投与毒性試験 (GLP 対応): SafePharm Laboratories
- 18 (英)、1998年、未公表
- 19 33 マウスを用いた亜急性毒性試験(GLP 対応): Bushy Run Research Center(米)、
- 20 1990年、未公表
- 21 34 イヌを用いた 26 週間反復経口投与毒性試験: Laboratorium fur Pharmakologi
- 22 und Toxikologie (独) 、1980、1991 年、未公表
- 23 35 ラットを用いた飼料混入投与による 90 日間反復経口投与神経毒性試験 (GLP 対
- 24 応): SafePharm Laboratories (英)、2003 年、未公表
- 25 36 イヌを用いた飼料混入投与による 1 年間反復経口投与毒性試験(GLP 対応):
- 26 Laboratory of Pharmacology and Toxicology (独) 、2003 年、未公表
- 27 37 ラットを用いた飼料混入投与による 2 年間反復経口投与毒性/発がん性併合試験
- 28 (GLP 対応): Bushy Run Research Center (米)、1992 年、未公表
- 29 38 マウスを用いた発がん性試験 (GLP 対応): Bushy Run Research Center (米)、
- 30 1993年、未公表
- 31 39 ラットを用いた繁殖試験(GLP 対応): Bushy Run Research Center (米)、1993
- 32 年、未公表
- 33 40 ラットを用いた催奇形性試験 (GLP 対応): Bushy Run Research Center (米)、
- 34 1990年、未公表
- 35 41 ウサギを用いた催奇形性試験(GLP対応): Bushy Run Research Center (米)、
- 36 1990年、未公表
- 37 42 細菌を用いた DNA 損傷試験(GLP 対応): Life Science Research(英)、1992
- 38 年、未公表

- 1 43 細菌を用いた復帰突然変異原性試験:チューリッヒ大学及びスイス連邦技術高等
- 2 学校付属毒性研究所 (スイス) 、1981 年、未公表
- 3 44 細菌を用いた復帰突然変異原性試験(GLP 対応):SafePharm Laboratories(英)、
- 4 1998年、未公表
- 5 45 マウスリンホーマを用いた前進突然変異原性試験(GLP 対応): NOTOX C.V.
- 6 (蘭)、1986年、未公表
- 7 46 チャイニーズハムスターの卵巣由来細胞(CHO)を用いた in vitro 細胞遺伝学的
- 8 試験(GLP対応): NOTOX C.V. (蘭)、1986年、未公表
- 9 47 マウスを用いた小核試験 (GLP 対応) : SafePharm Laboratories (英) 、1990
- 10 年、未公表
- 11 48 ラットを用いた *in vivo* 中期肝発がん性試験 (GLP 対応): 大雄会医科学研究所、
- 12 2004年、未公表
- 13 49 H.G. Verschuuren et al., LONG-TERM TOXICICITY AND REPRODUCTION
- 14 STUDIES WITH METALDEHYDE IN RATS. Toxicology, 4(1975) 97-115
- 15 50 食品健康影響評価について(平成 15 年 12 月 25 日付け厚生労働省発食安第
- 16 1225009 号)
- 17 51 メタアルデヒドの安全性評価資料の追加提出について:ロンザジャパン株式会社、
- 18 2005年、未公表
- 19 52 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する
- 20 件 (平成 17 年 11 月 29 日付け平成 17 年厚生労働省告示第 499 号)
- 21 53 食品健康影響評価について (平成 18 年 7 月 18 日付け厚生労働省発食安第
- 22 0718001 号)
- 23 54 メタアルデヒドの安全性評価資料の追加提出について:ロンザジャパン株式会社、
- 24 2006年、未公表
- 25 55 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する
- 26 件 (平成 20 年 4 月 30 日付け平成 20 年厚生労働省告示第 296 号)
- 27 56 食品健康影響評価について (平成 20 年 12 月 9 日付け厚生労働省発食安第
- 28 1209004 号)
- 29 57 メタアルデヒドのレタス・みかん作物残留性試験成績:サンケイ化学株式会社、
- 30 2008年、未公表
- 31 58 メタアルデヒドの魚介類における最大推定残留値に係る資料
- 32 59 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する
- 33 件 (平成 22 年 8 月 10 日付け平成 22 年厚生労働省告示第 326 号)
- 34 60 農薬抄録、メタアルデヒド(ナメクジ駆除剤): ロンザ・ジャパン株式会社、平
- 35 成22年7月1日改訂、一部公表予定
- 36 61 メタアルデヒドのキャベツ作物残留性試験成績:サンケイ化学株式会社、2009
- 37 年、未公表
- 38 62 メタアルデヒドのラットを用いた急性経皮毒性試験(GLP対応): Phycher Bio

1		Development(仏)、2008 年、未公表
2	63	メタアルデヒドのウサギを用いた皮膚刺激性試験(GLP 対応): Phycher Bio
3		Development(仏)、2008 年、未公表
4	64	メタアルデヒドの皮膚感作性試験 (GLP 対応): Huntingdon Life Sciences (英)、
5		2007年、未公表
6	65	食品健康影響評価について(平成 22 年 9 月 9 日付け厚生労働省発食安 0909 第
7		10号)
8	66	国民栄養の現状-平成 10 年国民栄養調査結果-:健康・栄養情報研究会編、2000
9		年
10	67	国民栄養の現状-平成 11 年国民栄養調査結果-:健康・栄養情報研究会編、2001
11		年
12	68	国民栄養の現状-平成 12 年国民栄養調査結果-:健康・栄養情報研究会編、2002
13		年
14		