
Schweizerische Eidgenossens Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

> Confederazione Svizzera Confederaziun svizra

Swiss Confederation

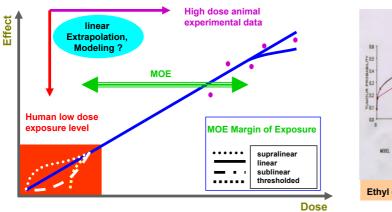
Federal Department of Home Attairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 1

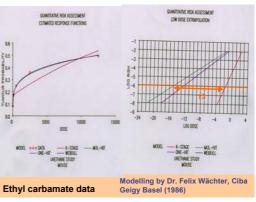
The four steps in the risk assessment paradigm

Risk characterisation options used by EFSA

- Relating exposure to health based guidance value (e.g. tolerable daily intake, tolerable weekly intake, acute reference dose)
- Margin of Exposure (MOE): Reference point of on the dose-response curve*

(usually based on animal experiments in the absence of human data) divided by the estimated human intake (exposure scenarios e.g mean intake, high intake...)


*) e.g. benchmark dose lower confidence limit, LOAEL, NOAEL



Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 3

The most difficult issue in food safety is to advise on potential risks to human health for unavoidable compounds found in food, which are both genotoxic and carcinogenic

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Issues with genotoxic and carcinogenic compounds

- Absence of a threshold in their mechanism of action is assumed, i.e. there is no dose without a potential effect.
- The EFSA's Scientific Committee is of the opinion that there is a 'practical' threshold for genotoxic compounds; however levels below which cancer incidence is not increased cannot be identified on scientific grounds (EFSA, 2005).
- The MOE approach was considered appropriate for genotoxic carcinogens as it takes into account
 - ➢Potency of compound;
 - >Extent of human exposure;
 - > Gives additional scientific advice to risk managers.
 - (EFSA, 2005, WHO, 2005, Barlow et al. 2006).

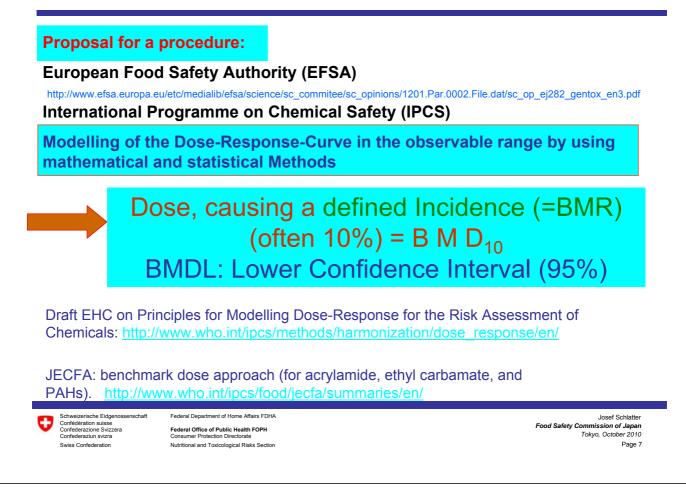
Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 5

MOE: Comparison of Reference Points

Margin of Exposure (MOE):

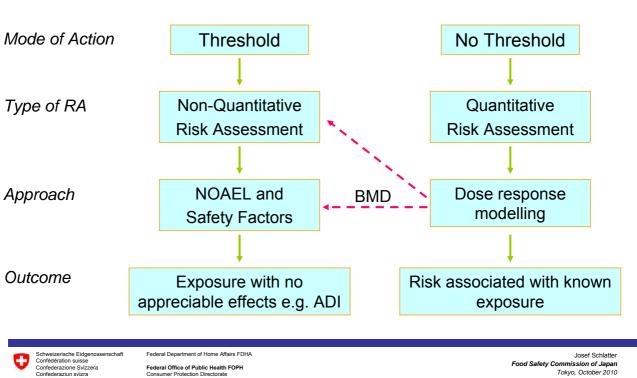
MOE = dose producing tumors in animals human exposure dose


Difference between Human Exposure-dose

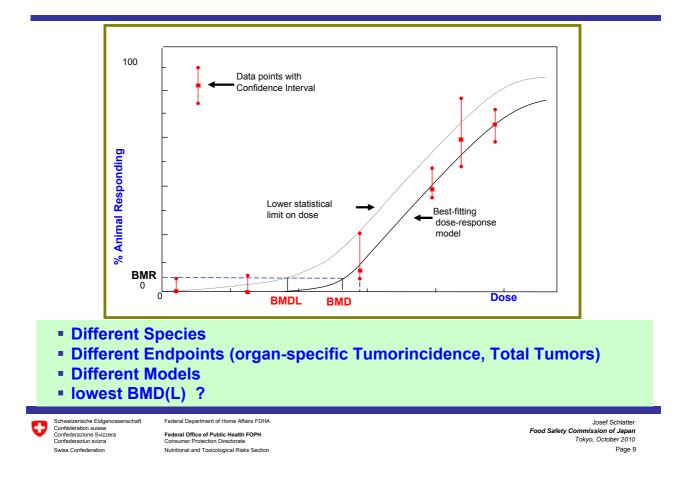
and

Dose of Comparison from Animal Experiments

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizra Swiss Confederation


Reference Dose from Animal Experiments

Improved Risk Assessment


Nutritional and Toxicological Risks Section

Swiss Confederation

Tokyo, October 2010 Page 8

The Benchmark Dose (BMD)

Overall consideration of MOE

- Magnitude of a MOE can be used for priority setting: a small MOE represents a higher risk than a larger MOE.
- Magnitude of MOE which is acceptable is a societal judgement and is the responsibility of risk managers.
- MOE makes no implicit assumptions on a "safe" intake.
- For genotoxic and carcinogenic compounds, the EFSA's Scientific Committee considered a MOE > 10,000 (based on a BMDL₁₀ from animal data) of low concern from a public health point of view.
- Large MOE should not preclude application of risk management measures to reduce human exposure.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Application of MOE by CONTAM Panel

	Genotoxic and carcinogenic	Other effects
Compounds	Acrylamide	Arsenic
	Aflatoxins	Lead
NOTOTA	Polycyclic aromatic hydrocarbons (PAH), e.g. benzo[a]pyrene Ethyl carbamate	Cadmium

Schweizerische Eidgenossenso Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

ent of Home Affairs FDHA

Food Safety Commission of Japan Tokyo, October 2010 Page 11

Ochratoxin A - EU Evaluations

 Statement on recent scientific information on the toxicity of Ochratoxin A

Published: 4 June 2010 Adopted: 19 May 2010 http://www.efsa.europa.eu/en/scdocs/doc/1626.pdf

- Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food → TWI: 120ng/kg bw. Published: 9 June 2006 Adopted: 4 April 2006 <u>http://www.efsa.europa.eu/en/scdocs/doc/365.pdf</u>
- Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A (OTA) as undesirable substance in animal feed.
 Published: 14 October 2004 Adopted: 22 September 2004 http://www.efsa.europa.eu/en/scdocs/doc/101.pdf
- EU Scientific Committee on Food: Opinion on OTA 1994 and 1998
- EU funded Research on mechanisms of OTA induced carcinogenicity

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizra Swiss Confederation

JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITIVES (JECFA):

68. Meeting (2007): The previous PTWI of 100 ng/kg bw was retained. The new data, including data on mode of action of OTA in the kidney, do not indicate any reason to modify the previous risk assessment approach taken by JECFA.

Food Additives Series 59, 2008

- **56.** Meeting (2001) new data raised further questions about the mechanisms by which ochratoxin A causes nephrotoxicity and renal carcinogenicity. PTWI of 100 ng/kg bw was retained Food Additives Series 47, 2001
- **44. Meeting (1994):** reconfirmed the PTWI, rounding it to 100 ng/kg bw Technical Report Series, No. 859, 1995.

37. Meeting (1990): PTWI of 112 ng/kg bw. Basis: deterioration of renal function in pigs, LOEL 0.008 mg/kg bw per day, safety factor of 500. Food Additives Series 28, 1991

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 13

OTA overview - Toxicity

- OTA is a potent nephrotoxic and nephrocarcinogenic mycotoxin.
- OTA was postulated to be involved in balcan endemic nephropathy.
- OTA is produced by Aspergillus and Penicillium strains.
- Humans are widely exposed to OTA via food contamination.

Mode Of Action

- A genotoxic mode of action has been postulated (see below).
- DNA-adducts of OTA or its metabolites as measured by ³²P-postlabelling are reported, but have not been identified.
- OTA has been described to induce oxidative cell damage in different systems.
- There is evidence for induction of apoptosis in vivo and in vitro.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

OTA overview - Occurrence

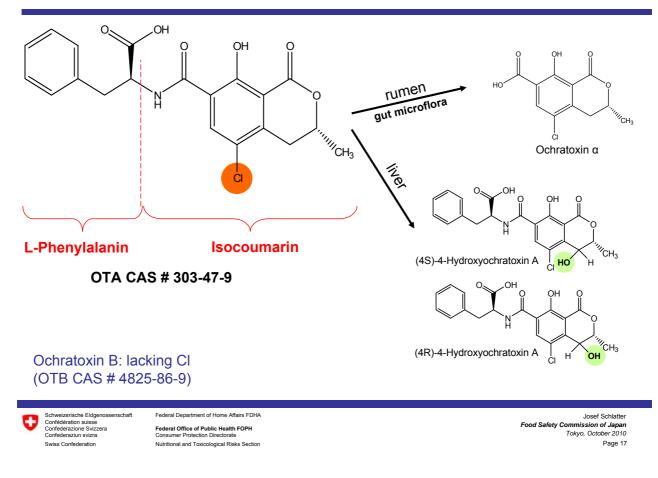
- OTA is produced by several fungal species in the *Penicillium* and *Aspergillus* genera, primarily by *P. verrucosum*, *Aspergillus ochraceus* and several related *Aspergillus* species.
- These three groups of species differ in
 - their ecological niches
 - the commodities affected
 - the frequency of their occurrence in different geographical regions.
- Post-harvest formation is the most important source of contamination.
- P. verrucosum grows only at temperatures below 30 °C
 - \rightarrow is found only in cool temperate regions;
 - \rightarrow source of OTA in cereals/cereal products in Canada and Europe.
- A. carbonarius (and A. ochraceus) grows at high temperatures

 associated with maturing fruits, especially grapes and coffee;
 source of OTA in grape juice, wine, coffee
 - ightarrow source of OTA in grape juice, wine, coffee.

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 15

OTA human plasma levels

- OTA is stable in vivo;
 → is also found in some animal products, i.e. pig kidney and liver.
- OTA is not destroyed by common food preparation procedures, temperatures above 250°C are required for several minutes to reduce the toxin concentration.
- Important contributors to human exposure (EU): cerelas, wine, beer, pork


→ Widespread human exposure to OTA: occurrence of OTA in blood samples of healthy humans

Country	Collecting	Number of	Detection	Mean plasma	Reference
	period	positive	limit	concentration	
		samples (%)	(ng/mL)	(ng/mL)	
Italy	1995 - 1996	134/138 (97)	0.1	0.56	Palli et al., 1999
Croatia	1997	148/249 (59)	0.2	0.39	Peraica et al., 1999
Croatia	1997-1998	468/983 (48)	0.2	0.30	Peraica et al., 2001
Norway,	1997 - 1998	393/393 (100)	0.01	0.18 - 0.21	Thuvander et al.,
Sweden					2001b
Morocco	2000	185/309 (60)	0.1	0.29	Filali et al., 2002
Lebanon	2001-2002	82/250 (33)	0.1	0.17	Assaf et al., 2004

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

Chemical structure of ochratoxin A

OTA - ADME

- OTA is rapidly absorbed from the gastrointestinal tract.
- Extent of absorption varies between 40% (chickens) and 66% (pigs).
- Extensively bound to plasma proteins (serum albumin, other macromolecules): 99.9%
- Is distributed in a number of species via the blood, mainly to the kidneys.
- Accumulates in kidneys, OTA is a substrate for organic anion transporter proteins.
- Major route of excretion is renal elimination in many species (including monkeys and humans).
- Biliary excretion and entero-hepatic re-circulation of OTA-glucuronides
- Transfer to milk in rats, rabbits, and humans (1.2-6.6 ng/ml)
- OTA crosses the placenta.
- major metabolite in all species is ochratoxin alpha
- is excreted in urine and faeces, relationship influenced by the extent of the enterohepatic recirculation and its binding to serum macromolecules.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

OTA - Species differences

Half-life of OTA in the serum after oral a	dministration:
One human volunteer (395ng ³ H-OTA)	35 days
One monkey (Macaca mulata)	21 days
Pigs	6 days
rats	5 days
pre-ruminant calves	3 days
Mice	24–39 h
quail	6.7 h
chickens	4.1 h

Intra-individual fluctuation of plasma levels of OTA (8 volunteers, 2 months)

- major analyte in blood serum is parent OTA.
- Concentrations ranged between 0.2 and 0.9 ng OTA/mL plasma.
- The plasma levels in some individuals remained nearly constant over time, while others varied considerably.
- non-regular exposure (consumption of contaminated foods once a week or once a month) can result in persistent blood levels.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra O Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 19

OTA - Species differences

These species differences seem to be attributable largely to differences in the degree of

- serum protein binding and its effect on renal clearance
- > the rate of conjugation / extent of entero-hepatic re-circulation

Ruminants generally less sensitive than monogastric species

OTA - Toxicity

- Oral LD₅₀ in pigs: 1 mg/kg bw
- Oral LD₅₀ in chicken: 3.3 mg/kg bw
- Main target of OTA is the renal proximal tubule of the kidney, where it exerts cytotoxic and carcinogenic effects.
- Renal lesions histologically characterised by:
 - karyomegaly (large kidney epithelial cells with giant polyploid nuclei).
 - necrosis of tubular cells.
 - thickening of tubular basement membranes.
- Significant sex and species differences in sensitivity to nephrotoxicity, pig > rat > mouse. Male rat > female rat.
 LOAEL in pigs for nephrotoxicity 8 µg/kg b.w.
- OTA is neurotoxic (rabbits, rats: 50-70 µg/kg b.w.)
- OTA is immunosuppressive (rats, pigs: 50-100 µg/kg b.w.)
- OTA is embryotoxic / teratogenic (rabbits, rats, mice: 100-1000 µg/kg b.w.)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizzara Swiss Confederation

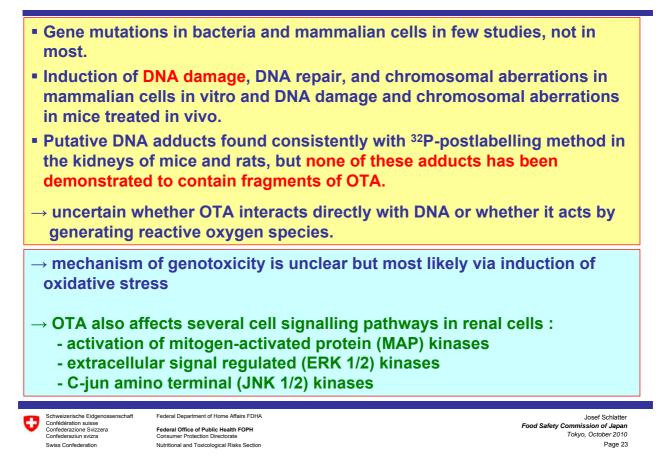
Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 21

OTA - Toxicity

The doses at which carcinogenicity was observed in rodents were higher than those that caused nephrotoxicity (US-NTP, 1989):

Species	Effect	Study duration	LOEL	NOEL
			(µg/kg b.w. per day)	(µg/kg b.w. per day)
Mouse (male)	Kidney tumours	2 years	4,400	130
Rat (male)	Karyomegaly of proximal tubule cells	90 days	15	Not established
	Kidney tumours	2 years	(70 ^(a)	21 ^(a)


a) Administered by diet in mouse and by gavage in rat on 5 days per week for 2 years

OTA Dose (µg/kg b.w. per day) ^(a)	Adenomas	Carcinomas	Adenomas and carcinomas	Karyomegaly
0	1/50	0/50	1/50	0/50
21	1/50	0/50	1/50	1/50
70	6/51	16/50	20/51	51/51
210	10/50	30/50	36/50	50/50

a) Administered by gavage on 5 days per week for 2 years

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

OTA – Genotoxicity and Mode of Action

OTA – Human Data

- No cases of acute intoxication in humans reported
- Postulated link to Balkan Endemic Nephropathy (BEN), which is associated with an increased incidence of tumours of the upper urinary tract.
- Etiology of BEN unclear and may involve other nephrotoxic agents.
- Overall epidemiological data on BEN and associated urinary tract tumours are inconclusive.

Micronuclei induced in human lymphocytes:

concentrations required are almost a factor of 1000 higher than the levels measurable *in vivo* in human blood samples

OTA Hazard Characterization (1)

Species, strain	Duration	LOAEL [µg/kg b.w. per day]	NOAEL [µg/kg b.w. per day]
Rat, F344/N	2-year gavage	50 (70 μg/kg 5x/week) (nephropathy)	15 (21 µg/kg 5x/wk)
Rat, Wistar	90-day	15 (Reversible renal changes)	nd
Pig, female	2 year, diet	40 (Progressive nephropathy)	nd
Pig, female	90-day	8 (Effects on renal enzymes and renal function)	nd

> 8 µg OTA/kg b.w. per day is a LOAEL that represents an early marker of renal toxicity in female pigs

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra C Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 25

OTA Hazard Characterization (2)

- Amount of OTA accumulated in kidney depend on total body burden at steady state.
- The body burden at steady state is a function of daily OTA intake, OTA bioavailability (absorption), and its biological half-life.
- >Assumed that oral bioavailability of OTA similar in humans and pigs.
- >daily dose in humans that is 6 times lower than that in pigs will lead to similar body burdens at steady state

→ <u>Uncertainty factors</u>:

- 2.5 toxicodynamic interspecies differences pig \rightarrow human
 - 6 kinetic differences (half-life)
- 10 intraspecies differences (human).
- 3 use of a LOAEL instead of a NOAEL

2.5 x 6 x 10 x 3 = 450

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

OTA Hazard Characterization (3)

- Composite uncertainty factor: 450
- > LOAEL: 8,000 ng OTA/kg b.w. per day
- > Tolerable Daily Intake: 18 ng OTA/kg b.w. per day
- Given the long half-life of OTA in humans →Tolerable Weekly Intake more appropriate

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra O Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 27

OTA - Dietary exposure

	Number	Concentration	Averag	e dietary	exposure
	of	(b)	France	Italy	Sweden
	samples	OTA µg/kg	(ng/k	g b.w. pe	er day)
Cereals and cereal products	5180	0.29	1.05	1.31	1.41
Sugar and confectioneries (c)	547	0.24	0.15	0.08	0.11
Hot beverages (c, d)	1184	0.72 (a)	0.18	0.08	0.39
Beer	496	0.028	0.01	0.02	0.07
Wine	1470	0.36	0.64	0.55	0.23
Edible offal	1860	0.2	0.01	0.01	0.02
Fruit juices (c)	146	0.55	0.42	0.16	0.80
TOTAL			2.5	2.2	3.0

Based on >15'000 analytical results

O Swiss Confederation

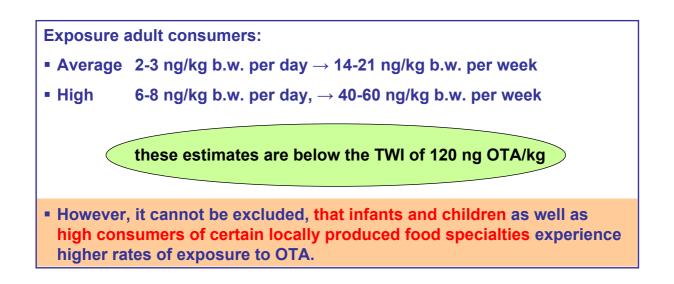
 Schweizerische Eidgenossenschaft Confideration suisse
 Federal Department of Home Affairs FDHA

 Confederazione Svizzera
 Federal Office of Public Health FOPH Consumer Protection Directorate
 Nutritional and Toxicological Risks Section

OTA - Dietary exposure

"high consumer"

- Model diets using exposure data at the 97.5th percentile for consumers-only of the two main contributing food categories Italy: cereals and wine
 France: wine and fruit juice
 Sweden: cereals and fruit juice
- Assuming at the same time a mean dietary exposure from the other food categories.


 \rightarrow dietary exposure for high consumers ranges from 6 to 8 ng/kg

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 29

OTA Risk characterisation

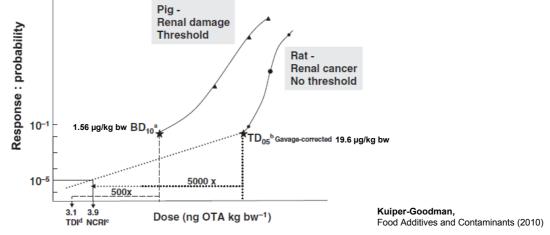
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

C

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Questions posed by FSC - 1

- Experiments in rodents (mice and rats) with 2-year oral OTA administration resulted in kidney tumors (NTP, 2-year OTA gavage study, 1989), but studies in other species did not show the same type of tumor development by OTA.
 Site concordance can not be assumed
- Past assessment reports by IARC, JECFA, and EU all acknowledged that OTA's genotoxic mechanisms were not clear.
 Weight of evidence points toward a MOA of OTA-genotoxicity via oxidative stress and influence on cel-cell communication where a threshold is assumed
- Underlying principles of EFSA's disicion-making or decision tree on carcinogenicity.
 EFSA does not use a decision tree but weight of evidence
 MOA thersholded → NOAEL (BMDL) / UF approach is used
 MOA non-thresholded → MOE approach is used


Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 31

Questions posed by FSC - 2

Kuiper-Goodman et al. in 2010 proposed to consider non-threshold model for OTA carcinogenic assessment.

Linear extrapolation not accepted by EFSA When using BD: different views on how large an overall UF should be No details given about the modeling to derive BD

^aBenchmark dose (BD₁₀) is the10% increase in response over background (Crump and Van Landingham1996) derived from data in Krogh et al. (1974). ^bTumor dose (TD₀₅) is the 5% increase in risk (incidence) over background, extrapolated from dose-response curve in the observable range (Howe 1995), using data from NTP (1989). ^c Tolerable Daily Intake (ng OTA kg bw⁻¹) based on a 500x uncertainty factor applied to the BD₁₀.

¹Negligible Cancer Risk Intake (ng OTA kg bw⁻¹) based on a risk of 1:100,000, after linear extrapolation from TD₀₅ to zero exposure, equivalent to 5000x uncertainty factor.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Schweizerische Eidgenos Confédération svisse Confederazione Svizzera Confederazion svizra Swiss Confederation

Questions posed by FSC - 3

 In addition, Domijan et al described the effects of the oral administration of low dose OTA (5ng/kg b.w.) on kidney in rat. We would appreciate it if you would refer to this issue.

Supports oxidative stress as MOA even at low doses Dose-response not very clear Biomarker not clinical endpoint

 Table 2. Concentrations of MDA, PCs, and activity of catalase and SOD in the kidney of rats treated with OTA (15 days) and FB1 (5 days) alone and in combination
 Domigan, Mol. Nutr. Food Res. 2007

Treatment	MDA (nmol/mg proteins)	PC (nmol/mg proteins)	Catalase (mM/mg proteins)	SOD (mM/mg proteins)
Controls, rewater	1.07 ± 0.08	1.04 ± 0.10	0.95 ± 0.08	54.17 ± 4.17
Controls, NaHCO ₃	1.12 ± 0.12	1.08 ± 0.06	0.92 ± 0.07	54.23 ± 4.30
Controls, Fe-NTA	2.00 ± 0.15^{a}	1.70 ± 0.14^{a}	0.65 ± 0.09^{a}	43.51 ± 5.00 ^{a)}
5 ng OTA/kg b.w.	1.26 ± 0.07^{a}	1.39 ± 0.21^{a}	0.92 ± 0.08	56.38 ± 5.28
50 mg OTA/kg b.w. µg !	$1.62 \pm 0.05^{a, b}$	$1.37 \pm 0.09^{a)}$	0.94 ± 0.07	52.38 ± 2.80
200 ng FB ₁ /kg b.w.	1.61 ±0.11 ^{a)}	$1.26 \pm 0.05^{a)}$	0.92 ± 0.08	56.31 ± 3.90
50 mg FB ₁ /kgb.w. µg!	1.53 ± 0.10 ^{a)}	1.57 ± 0.16 ^{a, b)}	0.95 ± 0.06	53.69 ± 4.70
5 ng OTA/kg b.w. + 200 ng FB1/kg b.w.	1.25 ± 0.05^{a}	$1.62 \pm 0.08^{a,e,f)}$	0.85 ± 0.06^{a}	52.99 ± 5.00
5 ng ÕTA/kg b.w. + 50 μg FB₁/kg b.w.	$1.81 \pm 0.05^{a, c, e, f)}$	$1.59 \pm 0.07^{a)}$	$0.75 \pm 0.08^{a, c, d, e)}$	51.53 ± 5.23
50 mg OTA/kg b.w. + 50 μg μg ! FB ₁ /kg b.w.	$1.72 \pm 0.12^{a, c, f)}$	$2.17 \pm 0.24^{a,c,d,e,f)}$	$0.82 \pm 0.11^{a, d)}$	50.28 ± 3.67

Schweizerische Eidgenossenso Confederation suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Josef Schlatter Food Safety Commission of Japan Tokyo, October 2010 Page 33

OTA: complex network of epigenetic mechanisms in carc.

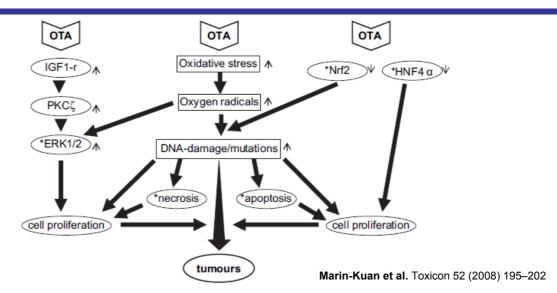


Fig. 1. Proposed model for OTA carcinogenicity involving a complex network of interacting epigenetic mechanisms. OTA triggers the production of oxidative stress leading to DNA damage and mutations. Increased production of oxygen radicals is likely to originate from reactions directly involving OTA and as an indirect consequence of the inhibition of Nrf2-regulated antioxidant gene expression. In addition, OTA induces a set of complex biological effects known to be associated with cell proliferation and tumour development in renal tissue. They involve the inhibition of the transcription factor HNF4α-activity and the activation of the IGF-1–MEK–ERK cell signalling cascade. These effects can be triggered directly by OTA or indirectly, through the OTA-mediated increased oxidative stress and/or protein synthesis inhibition. According to the intracellular OTA concentration and individual cell specific susceptibility, toxicity, apoptosis and/or tumour development may occur. OTA effects are shown as follows: decrease ↓; increase ↑. The parameters where a plausible direct impact of protein synthesis inhibition is anticipated are represented by *.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section

Schweizerische Eidgenossenschaft Confédération suisse Conféderazione Svizzera Confederazione svizra Swiss Confederazion

Federal Department of Home Affairs FDHA Federal Office of Public Health FOPH Consumer Protection Directorate Nutritional and Toxicological Risks Section