(案)

農薬評価書

トリアゾホス

2010年3月26日 食品安全委員会農薬専門調査会

1	日 次	
2		頁
3	○ 審議の経緯	3
4	〇 食品安全委員会委員名簿	3
5	〇 食品安全委員会農薬専門調査会専門委員名簿	3
6	〇 要約	4
7		
8	I. 評価対象農薬の概要	5
9	1. 用途	5
10	2. 有効成分の一般名	5
11	3. 化学名	5
12	4. 分子式	5
13	5. 分子量	5
14	6. 構造式	5
15	7. 開発の経緯	5
16		
17	Ⅱ. 安全性に係る試験の概要	
18	1. 動物体内運命試験	
19	(1)ラット①	
20	(2) ラット②	
21	(3) イヌ	
22	2. 植物体内運命試験	
23	(1)わた(温室及び圃場)	
24	(2)わた(移行試験)	
25	(3)水稲(温室及び圃場)	
26	(4)水稲(移行試験)	
27	(5)ねぎ(移行試験)	
28	3. 土壌中運命試験	
29	4. 水中運命試験	
30	5. 土壌残留試験	
31	6. 作物残留試験	
32	7. 一般薬理試験	
33	(1) 急性毒性試験(原体)	
34	(2) 急性毒性試験(代謝物)	
35	(3) 急性遅発性神経毒性試験 (ニワトリ) ①	
36	(4) 急性遅発性神経毒性試験(ニワトリ)②	
37	(5) 急性遅発性神経毒性試験 (ニワトリ) ③	
38	(6) 急性遅発性神経毒性試験(ニワトリ)④	17

2010/3/26 第38回農薬専門調査会総合評価第一部会 トリアゾホス評価書(案)たたき台

1	9. 眼・皮膚に対する刺激性及び皮膚感作性試験18
2	1 0. 亜急性毒性試験18
3	(1)90 日間亜急性毒性試験(ラット)①18
4	(2)90 日間亜急性毒性試験(ラット)②19
5	(3)90日間亜急性毒性試験(マウス)19
6	(4)90 日間亜急性毒性試験(イヌ)20
7	(5)22 日間亜急性毒性試験(サル)21
8	(6)30 日間亜急性経皮毒性試験(ラット)21
9	(7)28 日間亜急性吸入毒性試験(ラット)22
10	(8) 90 日間亜急性遅発性神経毒性試験(ニワトリ)23
11	1 1. 慢性毒性試験及び発がん性試験24
12	(1)1 年間慢性毒性試験(イヌ)24
13	(2)2年間慢性毒性/発がん性併合試験(ラット)24
14	(3)2 年間発がん性試験(マウス)25
15	1 2. 生殖発生毒性試験
16	(1)2 世代繁殖試験(ラット)26
17	(2)発生毒性試験(ラット)
18	(3)発生毒性試験(ウサギ)27
19	13. 遺伝毒性試験27
20	1 4. その他の試験28
21	(1)1 年間慢性毒性試験(ChE 活性阻害試験:ラット)
22	(2)解毒試験(ラット)29
23	(3) ヒト志願者における反復投与試験①29
24	(4) ヒト志願者における反復投与試験②29
25	(5) ヒト志願者における反復投与試験③30
26	(6) ヒト志願者における反復投与試験④30
27	(7) ヒト志願者における反復投与試験⑤30
28	
29	Ⅲ. 食品健康影響評価32
30	
31	- 別紙 1:代謝物/分解物略称36
32	- 別紙 2:検査値等略称
33	- 参照
34	

1 <審議の経緯>

2005年 11月 29日 残留農薬基準告示 (参照1)

2009年 2月 9日 厚生労働大臣より残留基準設定に係る食品健康影響評価につ

いて要請(厚生労働省発食安第0209006号)、関係書類の接

受 (参照 2~4)

2009 年 2 月 12 日 第 273 回食品安全委員会(要請事項説明) (参照 5)

2010年 2月 22日 第37回農薬専門調査会総合評価第一部会(参照6)

2

3 〈食品安全委員会委員名簿〉

(2009年6月30日まで) (2009年7月1日から)

見上 彪(委員長) 小泉直子(委員長)

小泉直子(委員長代理) 見上 彪(委員長代理*)

 長尾
 拓

 野村一正
 野村一正

 畑江敬子
 畑江敬子

 廣瀬雅雄
 廣瀬雅雄

 本間清一
 村田容常

*:2009年7月9日から

4

5 〈食品安全委員会農薬専門調査会専門委員名簿〉

鈴木勝士 (座長) 佐々木有 藤本成明 林 真(座長代理) 代田眞理子 細川正清 相磯成敏 高木篤也 堀本政夫 赤池昭紀 玉井郁巳 松本清司 石井康雄 田村廣人 本間正充 泉 啓介 津田修治 柳井徳磨 今井田克己 津田洋幸 山崎浩史 上路雅子 長尾哲二 山手丈至 臼井健二 永田 清 與語靖洋 義澤克彦* 太田敏博 納屋聖人 吉田 緑 大谷 浩 西川秋佳 小澤正吾 布柴達男 若栗 忍

川合是彰 根岸友惠

小林裕子 根本信雄 *:2009年4月10日から 三枝順三** 平塚 明 **:2009年4月28日から 1 要約

- 3 有機リン系殺虫剤であるトリアゾホス (CAS No.024017-47-8) は、ポジティブリス
- 4 ト制度導入に伴う暫定基準が設定されており、JMPR が行った評価を基に食品健康影響
- 5 評価を実施した。食品安全委員農薬専門調査会では、参照した資料には、評価に必要な
- 6 試験が記載されており、本剤の評価は可能であると判断した。
- 7 評価に供した試験成績は、動物体内運命(ラット及びイヌ)、植物体内運命(わた、
- 8 水稲及びねぎ)、亜急性毒性(ラット、マウス及びイヌ)、慢性毒性(イヌ)、慢性毒
- 9 性/発がん性併合(ラット)、発がん性(マウス)、2世代繁殖(ラット)、発生毒性(ラ
- 10 ット及びウサギ)、遺伝毒性試験等である。
- 11 試験結果から、トリアゾホス投与による影響は、主に ChE 活性阻害であった。発が
- 12 ん性、繁殖能に対する影響、催奇形性及び生体にとって問題となる遺伝毒性は認められ
- 13 なかった。
- 14 ヒト志願者における 3 週間反復投与試験で得られた無毒性量が 0.0125 mg/kg 体重/日
- 15 であったので、これを根拠として、安全係数 10 で除した 0.0012 mg/kg 体重/日を一日
- 16 摂取許容量 (ADI) と設定した。

I. 評価対象農薬の概要 1 21. 用途 3 殺虫剤 4 2. 有効成分の一般名 5 和名:トリアゾホス 6 7 英名: triazophos (ISO名) 8 3. 化学名 9 **TUPAC** 10 和名:O,Oジエチル O1-フェニル-1H1,2,4-トリアゾール ホスホロチオエート 11 12 英名: O,O diethyl O1-phenyl-1H-1,2,4-triazole-3-yl phosphorothioate 13 CAS (No. 24017-47-8) 14 和名:O,Oジエチル O(1-フェニル-1H-1,2,4-トリアゾール-3-イル)15 ホスホロチオエート 16 英名: O,O diethyl O(1-phenyl-1H-1,2,4-triazol-3-yl) 17 phosphorothioate 18 19 20 4. 分子式 21 $C_{12}H_{16}N_3O_3PS$ 22235. 分子量 24313.3 256. 構造式 2627 28 29 30 7. 開発の経緯 31 トリアゾホスは、有機リン系殺虫剤であり、昆虫の神経系の AChE 活性を阻害するこ 32 とで殺虫作用を示す。 33

国内での登録はなく、ポジティブリスト制度導入に伴う暫定基準値が設定されてい

3435

る。

Ⅱ.安全性に係る試験の概要

JMPR が行った評価を基に、毒性に関する主な科学的知見を整理した。 (参照 2、
 3 3)

各種運命試験[II.1~4]は、トリアゾホスのトリアゾール環の 3 位及び 5 位の炭素 どちらか一方又は両方を 14C で標識したもの(以下、「 $[tri^{-14}C]$ トリアゾホス」という。)を用いて実施された。また、標識位置が不明の場合は、14C-トリアゾホスと表記した。放射能濃度及び代謝物濃度は特に断りがない場合はトリアゾホスに換算した。代謝物/分解物略称及び検査値等略称は別紙 1 及び 2 に示されている。

1. 動物体内運命試験

(1) ラット①

Wistar ラット(雌 23 匹)に、 $[tri^{-14}C]$ トリアゾホス(トリアゾール環の 3 位の 炭素を標識)を 5 mg/kg 体重で単回経口投与する動物体内運命試験が実施された。 投与 4 時間後に血中放射能濃度は C_{max} に達し、 $T_{1/2}$ は 3.8 時間であった。尿中排 泄率より、吸収率は 90%以上であると考えられた。

主要排泄経路は尿中であった。投与後48時間で90%TAR以上が尿中に排泄され、 糞中排泄は4.5%TARであった。

組織(肝臓、腎臓、肺、心臓、脳、脊髄、腎周囲脂肪及び皮下脂肪)の残留濃度は、肝臓及び腎臓で比較的高かったが、いずれも 0.004 μg/g 未満であった。

尿中には 3 種類の代謝物が存在し、代謝物 B (43%TAR)、B のグルクロン酸抱合体(36%TAR)及び B の硫酸抱合体(13%TAR)であった。親化合物は尿中には存在しなかった。 糞中の代謝物は分析されなかった。 (参照 3)

[参照 3(JMPR): 2~3、35 頁]

(2) ラット②

Wistar ラット(一群雌雄各 5 匹)に、 $[tri^{-14}C]$ トリアゾホス(トリアゾール環の 3 位の炭素を標識)を $15\sim21$ mg/kg 体重(2.8 mg/個体)で単回経口投与又は別の 群(雌雄、匹数不明)に $3.1\sim4.3$ mg/kg 体重/日(0.56 mg/個体)で連続 12 日間反復投与する、動物体内運命試験が実施された。

単回投与群では、投与後 48 時間に尿中に 76%TAR、糞中に 21%TAR 排泄された。排泄経路に性差は認められなかった。投与 4 日後の組織では、消化管に 0.31%TAR、肝臓に 0.089%TAR の放射能残留が認められ、腎臓、性腺、脳、筋肉及び皮膚における放射能は 0.04%TAR 未満であった。

反復投与群では、投与期間中、70~83%TAR が尿中に、18~31%TAR が糞中に 排泄された。最終投与4日後に、消化管では0.5%TAR の放射能が存在したが、組 織(皮下脂肪、腎臓、性腺、肝臓、脳、筋肉及び皮膚)における放射能は0.0008%TAR 未満であり、蓄積性はないと考えられた。 尿及び糞中 1 の代謝物が分析され、尿中では、尿中放射能の85%が尿素であった。 その他尿中には代謝物B、D 及びE(すべてグルクロン酸抱合体)が、それぞれ尿 中放射能の $3\sim5\%$ 存在した。糞中に、未変化の親化合物(糞中放射能の40%)及 びB(糞中放射能の60%)が存在した。(参照3)[参照3(JMPR): 2、35 頁]

456

7

8

9

10

11 12

1314

15

1617

18

19

1

2

3

(3) イヌ

ビーグル犬(雌 2 匹)に、 14 C-トリアゾホスを 4.4~4.8 mg/kg 体重/日で単回経口投与する体内運命試験が実施された。

血中濃度は、投与 2 時間後に C_{max} に達し、 $T_{1/2}$ は 3.6 時間であった。投与 48 時間後には、血中には放射能は検出されなかった。組織残留放射能は分析されなかった。

主要排泄経路は尿中であり、投与後 24 時間で 85%TAR、48 時間で 92%TAR 排泄された。 糞中排泄は、投与後 24 時間で 0.3%TAR、48 時間で 7.2%TAR であった。

尿中には、代謝物 B (18%TAR) 、B のグルクロン酸抱合体(60%TAR)及び硫酸抱合体(5%TAR)が存在した。ラットの尿中に認められない代謝物(11%TAR)が存在したが、B の硫酸抱合体の一つであると考えられた。尿中に親化合物は存在しなかった。糞中には、親化合物(0.7%TAR)、遊離型の代謝物 B (0.3%TAR)及び 5 種類の未同定代謝物(合計で 7.3%TAR)が存在した。

(参照 3) [参照 3 (JMPR) : 3、35 頁]

202122

23

24

25

26

2728

29

30

31

32 33

34

35

36

2. 植物体内運命試験

(1)わた(温室及び圃場)

乳剤に調製された[tri-14C]トリアゾホス(トリアゾール環の3位及び5位の炭素を標識)を、温室栽培又は圃場栽培のわた(品種不明)に処理する植物体内運命試験が実施された。

温室栽培区では、開花約5週前(50 cm 高)のわたの茎葉に、 $[tri^{-14}C]$ トリアゾホスが単回処理(処理量不明)され、処理0、1、2、3、4及び15 週後に試料として植物体が採取された。

圃場栽培区では、植物体全体に、[tri-14C]トリアゾホスが 14 及び 20 日間隔で 3 回散布(処理量不明) され、最終散布 23 日後に試料として植物体が採取された。

植物体はいずれも、葉(処理葉及び未処理葉)、茎、根、綿花、綿糸及び綿実に 分けて分析された。

わた試料中放射能分布は表1に示されている。

温室栽培区では、処理 4 週後(28 日後)に葉内部に 27%TAR の放射能が存在した。トリアゾホスは、処理後速やかに処理葉内部に浸透したが、他の部位又は根へ

-

¹尿及び糞試料は、単回投与群及び反復投与群それぞれ分けて分析されたか、明らかではない。

7

の移行は少量であった。投与 15 週後(105 日後)の綿糸には 0.025%TAR の放射 能が存在した。綿糸及び綿実には親化合物及び代謝物 B が存在した。

圃場栽培区では、最終処理時が開花前であった綿花での放射能残留は、ごく少量であった。綿花及び綿糸には親化合物及び代謝物 B が存在した。 (参照 2)

[参照 2(JMPR): 1351~1353 頁]

表 1 わた試料中放射能分布 (mg/kg)

	試料	- h.	tot ->	トリアゾ	代謝物	代謝物	未同定
	採取日1)	試料 ²⁾		ホス	В	C	代謝物
温室栽培	0 目	洗浄液		193	0.5	_	_
		葉		33	0.1	_	_
		植物体		_	_	_	_
		根		_	_	_	_
	7 日	洗浄液		23	0.1	_	_
	(1週)	葉		46	2.9	_	_
		植物体		0.03	0.01		0.01
		根		1.5	_		
	28 日	洗浄液		4	0.01	0.04	_
	(4 週)	葉		25	3	0.02	_
		植物体		0.003	_	_	_
		根		0.03	0.01	_	_
	105 日	綿花	綿糸	0.02	<u>0.01</u> —		0.01
	(15 週)	7市1七	綿実	0.3	<u>0.1</u> —		0.003
圃場栽培	23 日	洗浄液		0.7	0.03	0.03	
		葉		3.6	0.4	0.2	
		植物体		1.1	0.2	0.1	0.01
		根		0.1	0.01		
		綿花①3)	綿糸	2.2	0.1	_	
		州16 (1)	綿実	1.0	0.1	_	1.3
		綿花②3)	綿糸	0.06	_		_
		лчТ1 L Ш	綿実	0.14	0.06	_	0.1
		綿花③3)	綿糸	0.02	0.01	_	_
<i>></i> →-\	10 11 5 h 4		綿実	0.03	0.15	_	0.4

注) -:検出されず

1)試料採取日:処理後(圃場試験では最終処理後)日数

2)洗浄液:葉表面洗浄液、葉:処理葉抽出物

3)綿花①:トリアゾホス処理時に既に開花、試料採取時は開花綿花②:トリアゾホス処理時は開花前、試料採取時は開花綿花③:トリアゾホス処理時は開花前、試料採取時は開花前

1314

15

16

17

18 19

89

10

11

12

(2)わた(移行試験)

わた(品種、生育時期不明)を、 $[tri^{-14}C]$ トリアゾホス(トリアゾール環の3及び5位の炭素を標識)を表面散布した土壌(トリアゾホスを2.5 mg/L の用量で添加した水を散布)で栽培し、又は1.67 mg/L 添加した水耕液で水耕栽培して、移行試験が実施された。それぞれ7日間栽培した後に植物体及び土壌又は水耕液を採取

1 し試料とした。<u>試験期間中、水耕栽培区の水耕液は毎日交換し、土壌栽培区は土壌</u> 2 表面に毎日散水した。【田村専門委員修文】

わた植物体及び土壌又は水耕液の放射能分布は表2に示されている。

土壌栽培、水耕栽培のいずれも植物全体に比べ根に放射能が多く存在した。試験終了時の土壌及び水耕液に存在した放射能は、大部分が親化合物であった。土壌及び水耕液と同様に、根及び植物体にも代謝物 B が存在したが、親化合物に比べ少量であった。(参照 2)

[参照 2(JMPR): 1351~1353 頁]

8 9 10

3

4

56

7

表 2 わた植物体及び土壌又は水耕液中放射能分布 (mg/kg)

	試料	トリアゾ	代謝物	代謝物	未同定
		ホス	В	С	代謝物
土壌栽培	根	0.9	0.02	0.04	
	植物体	0.04	0.01	_	0.1
	土壌(0~10 cm 深)	0.05	0.001	0.001	
	土壌 (10~20 cm 深)	0.05	0.002	0.001	
	土壌 (20~30 cm 深)	0.02	0.002	_	
水耕栽培	根	10	0.005	_	
	植物体	4	0.05	_	_
	水耕液	1.3	0.2	_	0.4

注) -:検出されず又はデータなし

11 12

13

14

1516

17

18

19

20

21

22

23

24

2526

2728

29

(3)水稲 (温室及び圃場)

乳剤に調製された[tri-14C]トリアゾホス(トリアゾール環の3位及び5位の炭素を標識)を、温室栽培又は圃場栽培の水稲(品種不明)に処理する植物体内運命試験が実施された。

温室栽培区では、茎伸長期又は出穂期の茎葉に単回処理され、処理 1~9 週後に試料として植物体が採取された。

圃場栽培区では、4回散布され(散布時の水稲生育時期不明)、最終散布4、10、及び13週後に試料として植物体が採取された。

植物体はいずれも穂(穀粒、もみ殻)及びそれ以外の部位(植物体)に分けられた。

水稲試料中放射能分布は表3に示されている。

温室栽培区(茎伸長期処理)では、処理 0 日後に表面洗浄液中の放射能は 76%TAR であったが、処理 9 週後には 1.5%TAR に減少した。温室栽培区(出穂期処理)でも、表面洗浄液中の放射能は処理 0 日後の 63%TAR から処理 8 週後の 4.2%TAR に減少した。温室栽培区では、各試料中の主要成分は親化合物であった。

圃場栽培区では、穀粒に存在した放射能はごく少量(不検出又は 0.05%TAR)であった。各試料中の主要成分は親化合物及び代謝物 B であった。(参照 2)

30 [参照 2(JMPR): 1353~1356 頁]

表 3 水稲試料中放射能分布(%TAR)

	試料	⇒ N.Int. →	トリアゾ	代謝物	代謝物	未同定
	採取日1)	試料 2)	ホス	В	C	代謝物
温室栽培	9週	洗浄液	1.5	_	_	_
(茎伸長期		穀粒	_	_	_	0.6
処理)		もみ殻	0.08	0.02	_	_
		植物体	30	5.4	_	_
温室栽培	0週	洗浄液	63	_	_	_
(出穂期処理)		穂	3.7	_	_	_
		植物体	19	_	_	_
	1 週	洗浄液	23	0.2	_	_
		穂	16	0.16	_	_
		植物体	11	1.7	_	_
	8週	洗浄液	4.2	0.07	0.06	_
		穀粒	0.03	0.02	_	0.65
		もみ殻	3.2	0.09	0.001	0.02
		植物体	18	5.8	0.39	_
圃場栽培	4週	洗浄液	0.05	0.005	0.003	_
		穀粒	_	0.02	_	0.62
		もみ殻	5.29	0.22	0.07	0.09
		植物体	0.54	1.04	_	0.42
		根	0.06	0.06	_	_
	10 週	洗浄液	0.02	0.01	_	_
		穀粒	_	_	_	0.02
		もみ殻	0.1	0.02	_	_
		植物体	0.09	0.29	_	0.07
		根	0.14	0.18	_	_
	13 週	洗浄液	0.01	0.02	_	_
		穀粒	0.005	0.005	_	0.03
		もみ殻	0.21	0.03	_	_
		植物体	0.03	0.08	_	_
20.0	IAHLA NEDA	根	0.36	0.55	_	_

注) -:検出されず又はデータなし

1)試料採取日:処理後(圃場試験では最終処理後)日数(週)

2)洗浄液:植物体表面洗浄液、植物体:穂(穀粒、もみ殻)、根以外の部位

(4) 水稲(移行試験)

水稲(品種、生育時期不明)を、 $[tri^{-14}C]$ トリアゾホス(トリアゾール環の 3 及び 5 位の炭素を標識)を水層に 0.5 mg 添加した湛水土壌(湛水深 10 cm、1 日に 2 cm ずつ入れ替え)で栽培し、又は 1.67 mg/L 添加した水耕液で水耕栽培して、移行試験が実施された。それぞれ 7 日間栽培した後に植物体及び土壌又は水耕液を採取し、試料とした。

水稲植物体及び土壌又は水耕液の放射能分布は表 4 に示されている。

湛水土壌栽培、水耕栽培いずれも土壌、水層又は水耕液に放射能が多く(80%TAR)

以上)存在した。穂に存在した放射能は、いずれの栽培区も 0.5%TAR 未満であった。湛水土壌における水層及び水耕液中の主要成分は、親化合物及び代謝物 B であった。(参照 2)[参照 2(JMPR): $1353\sim1356$ 頁]

表 4 水稲植物体及び土壌又は水耕液中放射能分布 (%TAR)

	試料	総残留 放射能	トリアゾ ホス	代謝物 B	代謝物 C	未同定 代謝物
湛水土壌	根	0.06	0.04	0.02	0.005	
栽培	植物体	0.15	0.12	0.03	_	0.007
	穂	0.06	0.05	0.02		_
	水層	82	9.9	72		_
	水層+土壌	17.4	8	_	1.8	3.4
水耕栽培	根	7.7	6.95	0.41	0.09	0.22
	植物体	2.2	1.97	0.17	0.01	0.04
	穂	0.4	0.37	0.01	0.001	0.06
	水耕液	83	39	36.6	1.2	6.2

注)-:検出されず又はデータなし

(5) ねぎ(移行試験)

乳剤に調製した $[tri^{-14}C]$ トリアゾホス(トリアゾール環の 5 位の炭素を標識)を 480 又は 960 g ai/ha の用量で散布した壌土又は砂土にねぎを植え付けて、散布 90 日後に採取したねぎ植物体及び土壌を試料として、移行試験が実施された。

ねぎ及び土壌試料中放射能分布は、表 5 に示されている。ねぎ植物体中には、放射能は検出されなかった。土壌中には、親化合物、代謝物 B、C 及び尿素と考えられる物質が検出された。(参照 2)[参照 2(JMPR): $1356\sim1357$ 頁]

【田村専門委員修文案】

 植物体内におけるトリアゾホスの推定代謝経路は、親化合物あるいはその酸化によるオキソ体 (P=O) の生成及び代謝物 C の P-O 結合の加水分解による代謝物 B の生成であると考えられた。

【上路専門委員修文案】

 <u>わた、水稲、ねぎにおけるトリアゾホスの推定代謝経路は、酸化によるオキソ体</u> (代謝物 C) の生成、親化合物及び代謝物 C の C を を るの加水分解による代謝物 C の生成と考えられた。

表 5 ねぎ及び土壌試料中放射能分布(%TAR)

土壌	処理量	19/45	トリアゾ	代謝物	代謝物	日本
上坡	(g ai/ha)	試料	ホス	В	C	尿素
壌土	480	ねぎ		_		_
		土壌 0~10 cm	0.92	0.42	0.50	_
		$10\sim20~\mathrm{cm}$				
		$20\sim30~\mathrm{cm}$	0.14	0.05	0.10	_
	960	ねぎ	_	_	_	_
		土壌 0~10 cm	2.2	1.0	0.8	_
		$10\sim20~\mathrm{cm}$	0.09	0.05	0.08	0.04
		$20{\sim}30\mathrm{cm}$	0.02	0.02	0.02	_
砂土	480	ねぎ		_	_	_
		土壌 0~10 cm	0.10	0.02	0.01	_
		10∼20 cm				
		$20{\sim}30\mathrm{cm}$				
	960	ねぎ		_	_	_
		土壌 0~10 cm	1.80	0.2	0.4	_
		10∼20 cm	0.22	0.04	0.06	_
		20∼30 cm	0.01	0.01	0.01	0.01

2 3

注) -:検出されず 斜線:分析不能

【事務局より】

本試験は、JMPR②の資料の、『Environmental fate in soil and water-sediment systems』という項目に記載されているのですが、ねぎを用いており、土壌から植物体への移行試験に近いと考え、この評価書では植物体内運命試験に記載しました。 【上路専門委員、田村専門委員より】了解しました。

4

56

7

3. 土壌中運命試験

好気的土壌(圃場)からの消失半減期は6~12日、<u>水/底質系港水土壌</u>からの消失半減期は、水相からの消失が3日未満、系全体からの消失が11日未満であった。<u>【上</u>路専門委員修文】(参照7)

8 9 10

11

12

13

4. 水中運命試験

(1)加水分解試験

加水分解試験では、20°Cの pH 5、7及び 9 における推定半減期は、それぞれ 296、55 及び 35 日と算出された。25°Cの pH 5、7及び 9 における推定半減期は、それぞれ 134、30 及び 19 日と算出された。 <u>(参照 2) [参照 2</u> (JMPR) : 1350 頁]

141516

17

18

(2) 水中光分解試験

滅菌酢酸緩衝液中で、25℃でキセノン光を 166 時間照射した光分解試験では、推定 半減期は 392 日と算出された。 (参照 2) [参照 2 (JMPR) : 1350 頁]

【田村専門委員より】(1)(2)分けました。

5. 土壌残留試験

土壌残留試験については、参照した資料に記載がなかった。

6. 作物等残留試験

(1)作物残留試験

国内において作物残留試験は実施されていない。

(2) 乳汁移行試験

泌乳期ホルスタイン種ウシ(一群一頭)に、トリアゾホスを混餌投与する乳汁移 行試験が実施された。

3頭のホルスタインに 100 mg/頭/日で 2日間トリアゾホスを混餌投与し、7日後 から1頭ずつそれぞれ0、50及び100 mg/頭/日(それぞれ0、2.38及び4.76 ppm 混餌相当量)で7日間混餌投与した。

いずれの個体も、投与期間中搾乳された乳汁及び最終投与 24 時間後の組織にお いて、トリアゾホスの残留量は定量限界未満(乳汁中:0.05 mg/kg 未満、組織中: 0.01 mg/kg 未満) であった。 (参照 2) [参照 2 (JMPR) : 1365~1366 頁]

【田村専門委員より】

参照 2(JMPR): 1365-66 頁の Lactating Cow Feeding Study は、乳汁移行試験に 該当すると思います。記載して頂けないでしょうか。

【事務局より】

記載しました。ご確認下さい。

7. 一般薬理試験

一般薬理試験については、参照した資料に記載がなかった。

8. 急性毒性試験

(1) 急性毒性試験(原体)

トリアゾホスの急性毒性試験が実施された。各試験の結果は表6に示されている。 感受性に性差は認められなかった。ラット、マウス及びモルモットで認められた症 状は、振戦、腹臥位、筋振戦、強直性痙攣、呼吸促迫、努力性呼吸、流涙、流涎、 跳躍攣縮、平衡消失、後肢麻痺等、イヌで認められた症状は、拒食、嘔吐、吐き気、 下痢、流涎、振戦、異常歩行、努力性呼吸、縮瞳及び平衡消失が認められた。(参 照 3) [参照 3 (JMPR) : 3~5 頁]

30 31

29

表 6 急性毒性試験結果概要 (原体)

投与	五1 N 7五	LD ₅₀ (mg/	kg 体重)
経路	動物種	雄	雌
	Wistar ラット [1967 年]		82
	Wistar ラット [1977 年]	68	64
	Wistar ラット [1977 年]		48
	Wistar ラット [1969 年]		66
	Wistar ラット [1976 年]		57
経口	Wistar ラット [1977 年]	59	
	NMRI マウス [1977 年]	31	29
	NMRI マウス [1978 年]	76	41
	Pirbright White モルモット [1973 年]	26	35
	ビーグル犬 [1969 年]	>800	\sim 500
%⊼ tt→	Wistar ラット [1986 年]	>2,000	1,000
経皮	Wistar ラット [1972 年]		1,100
	Wistar ラット [1977 年]	57	61
腹腔内	Wistar ラット [1968 年]		107
	NMRI マウス [1972 年]	46	37
	Wistar ラット [1977 年]	280	
皮下	Wistar ラット [1977 年]		150
	NMRI マウス [1977]	90	68
		LC ₅₀ (1	mg/L)
吸入	Wistar ラット [1977 年]		0.56
	Wistar ラット [1987 年]	0.61	0.45
45 IA (44)	・データな! 試験動/	U	

注) 斜線: データなし 試験動物の匹数不明

(2)急性毒性試験(代謝物)

トリアゾホスの代謝物 B の急性経口毒性試験が実施された。結果は表 7 に示されている。 (参照 3) [参照 3 (JMPR) : 32 頁]

表 7 急性毒性試験結果概要 (原体)

	動物種	LD ₅₀ (mg/	/kg 体重)	観察された症状
1央14	到1777里	雄	雌	既宗で40/こ近仏
代謝物 B	Wistar ラット [1986 年]	>5,000	>5,000	自発運動低下、異常 歩行、側臥位、うず くまり姿勢 死亡例なし

注) 試験動物の匹数不明

(3) 急性遅発性神経毒性試験 (ニワトリ) ①[1974年、非 GLP]

白色レグホン種ニワトリ(一群雌 6 羽)を用いた強制経口(原体: 0 及び 25 mg/kg 体重)投与による急性遅発性神経毒性試験が実施された。

トリアゾホス投与群は 2 群設け、両群とも 21 日間隔で 2 回、トリアゾホスを投与したが、一方の群には、解毒剤としてアトロピン($10\,\mathrm{mg/kg}$ 体重)及び塩酸オビドキシム($4\,\mathrm{mg/kg}$ 体重)が、トリアゾホス投与前に $1\,\mathrm{回及び投与後}$ に $4\sim5\,\mathrm{回}$ 、腹腔内投与された。また、陽性対照群(雌 $6\,\mathrm{羽}$)として、 TOCP ($500\,\mathrm{mg/kg}$ 体重)が単回投与された。

トリアゾホス初回投与後 21 日間に、解毒剤投与群及びトリアゾホス単独投与群で1例ずつ、トリアゾホス2回目投与後には、解毒剤投与群で2例、トリアゾホス単独投与群で3例に死亡が認められた。TOCP 投与群では、3例が死亡又は状態が悪化したために切迫と殺された。

解毒剤投与群及びトリアゾホス単独投与群いずれも、流涎、呼吸促迫、平衡消失、伸筋攣縮、側臥位及び円背位並びに体重減少が認められたが、解毒剤投与群では症状が緩和された。TOCP 投与群では、平衡消失、麻痺、摂餌量減少及びしゃがみ込みを含む遅発性神経毒性を示す症状が認められた。

【義澤専門委員より】

上記の波下線部、「平衡消失、伸筋攣縮」は神経症状ではないのでしょうか?

【事務局より】

「平衡消失」などはTOCP 投与群でも認められています。組織所見がなかったために、トリアゾホスには遅発性神経毒性はなかった、という結論になっているのでしょうか。

組織学的検査において、トリアゾホス投与群(2 群)では、検体投与に関連する変化は認められなかった。TOCP 投与群では、脊髄で軸索腫大、限局性グリア細胞増殖、脱髄等の遅発性神経毒性を示す所見が認められた。

本試験条件下で、トリアゾホスには遅発性神経毒性はないものと考えられた。(参照3) [参照3 (JMPR) : 23~24 頁]

(4) 急性遅発性神経毒性試験 (ニワトリ) ②[1988 年、GLP]

白色レグホン種ニワトリ(投与群:雌20羽、対照群:雌6羽)を用いた、強制経口(原体:0及び50 mg/kg体重、溶媒:ゴマ油)投与による急性遅発性神経毒性試験が実施された。

検体及び溶媒は、21 日間隔で 2 回投与された。トリアゾホス投与群には、解毒剤として硫酸アトロピン(10 mg/kg 体重)及び PAM(75 mg/kg 体重)がトリアゾホス投与前後に腹腔内投与された。また、陽性対照群(雌 6 羽)として、TOCP(500 mg/kg 体重)を単回強制経口投与する群が設けられた。ChE 及び NTE 活性は測定されなかった。

トリアゾホス投与群では、初回投与後に9例、2回目投与後に6例が死亡し、1例が体重減少のため切迫と殺された。同群では体重及び摂餌量減少が認められた。神経組織の肉眼的病理検査での毒性所見及び運動障害は認められなかったが、組織学的検査では、2回目投与後の死亡例7例(切迫と殺1例を含む)中1例で斑状分解産物(plaque-shaped decomposition products)を伴うミエリン鞘の膨化(ballooning)が腰髄に認められ、別の1例では限局性グリア細胞増生グリア細胞結節が認められた。試験終了時まで生存した個体では、1例で運動失調及び胸髄のミエリン鞘の斑状分解産物が、対の1例で運動失調及び腰髄のミエリン鞘の斑状分解産物が、さらに別の1例で運動障害はないものの、大脳皮質限局性グリア細胞増生グリア細胞増生グリア細胞増生がよりで変動でであると考えられた。

TOCP 投与群では、運動失調及び麻痺が認められ、神経病理組織学的検査ではミエリン鞘の斑状変性産物、大脳皮質限局性グリア細胞増生グリア細胞結節等、典型的な遅発性神経症状が認められた。(参照 3)[参照 3(JMPR): 25 頁]

【相磯専門委員より】

この試験ではトリアゾホス投与群 20 例中 16 例(初回投与後 9 例、2 回目投与後 7 例)が死亡しており、生存は 4 例となります。トリアゾホス投与後に多くの動物が死亡したのは解毒剤の用量が低かったのではないかと考えています。ガイドライン (OECD 418、Delayed Neurotoxicity of Organophosphorus substances Following Acute Exposure)では、少なくとも 6 例が試験期間中に生存しなければならないと規定されているので、生存 4 例となった本試験は遅発性神経毒性の評価をできないと考えます。生存動物にみられた病理組織学的変化も急性毒性で発現した変化を観察して

いる可能性がある考えます。→ 参考データ扱いとしては?

なお、病理所見用語ですが、「グリア細胞結節」 \rightarrow 「限局性グリア細胞増生」 としては? 参照 3 (JMPR) : 25 頁の原文では glial-cell nodules of minimal severity となっているので直訳すると事務局案のようになりますが、なんとなく違和感があります。

(5) 急性遅発性神経毒性試験 (ニワトリ) ③[1989 年、GLP]

白色レグホン種ニワトリ(投与群:雌15羽、対照群:雌6羽)を用いた、強制経口(原体:0及び12 mg/kg体重、溶媒:ゴマ油)投与による急性遅発性神経毒性試験が実施された。

検体及び溶媒は、21 日間隔で 2 回投与された。トリアゾホス投与群には、解毒剤として硫酸アトロピン(10 mg/kg 体重)及び PAM(投与量不明)がトリアゾホス投与前後に腹腔内投与された。また、陽性対照群(雌 6 羽)として、TOCP(500 mg/kg体重)を単回強制経口投与する群を設けた。ChE 及び NTE 活性は測定されなかった。

トリアゾホス投与群では、死亡例は認められなかった。同群では摂餌量減少、うずくまり姿勢、自発運動低下、歩行失調が認められた。神経組織病理学的検査では、大脳半球の血管周囲細胞浸潤が認められ、発生頻度はTOCP 投与群より高かったが、毒性学的意義は明らかではなかった。

【義澤専門委員より】

<u>上記の波下線部、「うずくまり姿勢、自発運動低下、歩行失調」は神経症状では</u>ないのでしょうか?

 TOCP 投与群では、死亡例は認められず、運動失調、麻痺、軸索腫大、神経線維への色素沈着等が認められた。

 本試験条件下では、トリアゾホスが遅発性神経毒性を有するか、明らかにされなかった。 (参照3) [参照3 (JMPR) : $26\sim27$ 頁]

(6) 急性遅発性神経毒性試験 (ニワトリ) ④[1992 年、GLP]

白色レグホン種ニワトリ (一群雌 15 羽) を用いた、強制経口 (原体:0、2.5、5 及び 10 mg/kg 体重、溶媒: コーン油) 投与による急性遅発性神経毒性試験が実施された。別の一群 (15 羽) には、陽性対照群として、TOCP が強制経口 (750 mg/kg 体重) 投与された。解毒剤は投与されなかった。

対照群の1例が、死亡し(原因不明)、TOCP 投与群の2例で、重度の麻痺が認められたために切迫と殺された。トリアゾホス10 mg/kg 体重投与群の2例が死亡したが、コリン作動性の作用が原因と考えられた。

トリアゾホス 10 mg/kg 体重投与群で体重増加抑制、呼吸困難、異常姿勢、下痢

及び不穏が、5 mg/kg 体重以上投与群で運動失調、鎮静及び恐怖行動が認められた。

【事務局より】

上記の波下線部、「運動失調、鎮静及び恐怖行動」は神経症状ではないのでしょうか?

トリアゾホス投与群では脳 ChE 及び脳及び脊髄 NTE 活性阻害は認められなかった。神経病理組織学的検査で、検体投与の影響は認められなかった。

TOCP 投与群では、体重増加抑制、恐怖行動、不穏、興奮行動、下痢、運動失調、 脳及び脊髄 NTE 活性阻害が認められ、神経病理組織学的検査では軸索変性、ミエ リン鞘破壊等の変化が認められた。脳 ChE 活性阻害は認められなかった。

本試験条件下で、トリアゾホスが急性遅発性神経毒性を示す証拠は得られなかった。 (参照 3) [参照 3 (JMPR) : 30~31 頁]

9. 眼・皮膚に対する刺激性及び皮膚感作性試験

ヒマラヤウサギを用いた眼及び皮膚刺激性試験が実施された。皮膚刺激性試験では、原体を希釈せずに投与した群の大部分が死亡したため、刺激性が正確に評価されなかった。1及び10%希釈投与群では、ごく軽微な皮膚刺激性が認められた。眼刺激性試験では、軽微な刺激性が認められたが、原体を希釈せずに投与した群で、1例が死亡した。 [1977年、非GLP]

Pirbright モルモットを用いた皮膚刺激性試験(Buehler 法及び Maximization 法)が実施された。その結果、皮膚感作性は認められなかった。 [Buehler 法: 1976 年、非 GLP、Maximization 法: 1989 年、GLP]

NZW ウサギを用いて、代謝物 B の眼刺激性試験が実施された。代謝物 B は、軽微な眼刺激性が認められた。(参照 3) [参照 3(JMPR): 6、32 頁]

10. 亜急性毒性試験

(1) 90 日間亜急性毒性試験 (ラット) ①[1987 年、GLP]

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、1、20 及び 400 ppm) 投与による 90 日間亜急性毒性試験が実施された。また、0、20 及び 400 ppm 投与群は、別に1 群が設けられ、90 日間投与後、4 週間基礎飼料が給餌され、回復群とされた。

死亡例はなかった。400 ppm 投与群の雌雄で Hb、MCHC、Ure 及び Glu 減少並びにリン、カリウム及び TP 増加が、雄で PLT 増加が、雌で RBC、MCV 及び MCH減少、PT 短縮並びに T.Chol 及び HDLP 増加が認められたが、Wistar ラットで認められる変動範囲内であり、関連する病理所見は認めらなかった。れず、変動幅はWistar ラットで認められる範囲内であった。【相磯専門委員修文】

赤血球 ChE 活性が、20 及び 400 ppm 投与群の雌でそれぞれ 41 及び 45%阻害された。雄ではいずれの投与群でも統計学的に有意な阻害は認められなかった。

脳 ChE 活性が、400 ppm 投与群の雌で35%阻害され、同群の雄では12%阻害さ

3 4

5 6

7

8

9

10

11

12

13

14 15

16

17

18 19

20 21

22

23 24

25

26

れた。【西川専門委員より:統計学的に有意との記載あり】

回復群では、回復期間終了時に検体投与による変化は認められなかった。

本試験において、400 ppm 投与群の雄で Hb 減少等が、20 ppm 以上投与群の雌 で赤血球 ChE 活性阻害 (20%以上) が認められたので、無毒性量は雄で 20 ppm (1.5 mg/kg 体重/日)、雌で 1 ppm(0.08 mg/kg 体重/日)であると考えられた。

(参照 3) [参照 3 (JMPR) : 8~9 頁]

【事務局より】

JMPR の資料では、無毒性量を雌雄分けて示してありません。また、JMPR の記 述では、400 ppm 投与群の雌雄で認められた血液学的及び生化学的検査の結果を、 毒性所見と判断しているのかどうか、明確ではありません。ここでは、400 ppm 投 与群の雄で認められた血液学的変化等を毒性所見と考え、雄の無毒性量を 20 ppm と しましたが、ご検討下さい。

【義澤専門委員より】

明確には記載されていませんが、統計学的に有意な変化の可能性が高いと思いま す。了解です。

(2) 90 日間亜急性毒性試験 (ラット) ②[1971 年、非 GLP]

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、1、3、10 及び 200/400 2ppm) 投与による 90 日間亜急性毒性試験が実施された。

死亡例はなかった。200/400 ppm 投与群の雌で軽度の体重増加及び摂餌量増加が、 同群の雄で食餌効率が減少した。

200/400 ppm 投与群では、赤血球 ChE 活性が雌雄とも 69%阻害され、脳 ChE 活性は雄で44%、雌で87%阻害された。

本試験において、200/400 ppm 投与群の雌雄で赤血球及び脳 ChE 活性阻害 (20% 以上) が認められたので、無毒性量は雌雄とも 10 ppm (0.5 mg/kg 体重/日) であ ると考えられた。(参照3)[参照3(JMPR):7~8頁]

(3) 90 日間亜急性毒性試験(マウス)[1987年、GLP]

MNRKf マウス (一群雌雄各 10 匹) を用いた混餌 (原体:0、20、80、160 及び 320 ppm) 投与による 90 日間亜急性毒性試験が実施された。

死亡例はなかった。320 ppm 投与群の雌雄で肝絶対及び比重量3増加(雄の絶対 重量増加は有意差なし)が認められた。

赤血球 ChE 活性が、320 ppm 投与群の雄及び雌でそれぞれ 45 及び 50%、160 ppm 投与群の雄及び雌でそれぞれ 41 及び 44%、80 ppm 投与群の雌で 44%阻害された。

² 200 ppm 投与群は、投与開始 6 週以降、投与量を 400 ppm に変更した。

³ 体重比重量を比重量という(以下同じ)

1脳 ChE 活性2本試験にお3ChE 活性阻害4体重/日)、雌5

脳 ChE 活性が、320 ppm 投与群の雄及び雌でそれぞれ 39 及び 44%阻害された。 本試験において、160 ppm 以上投与群の雄及び 80 ppm 以上投与群の雌で赤血球 ChE 活性阻害 (20%以上) が認められたので、無毒性量は、雄で 80 ppm (12 mg/kg 体重/日)、雌で 20 ppm (3.3 mg/kg 体重/日) であると考えられた。 (参照 3)

[参照 3(JMPR): 7 頁]

【事務局より】

JMPR の資料 (参照 3) では、『雌雄とも赤血球 ChE 活性阻害が認められたので、無毒性量は 20~ppm』と結論づけていますが、80~ppm 投与群の雄では赤血球 ChE 活性阻害が認められていませんので、上記のように記載しました。

7 8

6

(4) 90 日間亜急性毒性試験(イヌ)[1988年、GLP]

9 10 ビーグル犬 (一群雌雄各 4~6 匹) を用いた混餌 (原体:0、0.3、9 及び 270/180 4ppm) 投与による 90 日間亜急性毒性試験が実施された。投与終了後、0 及び 9 ppm 投与群の雌雄 2 匹ずつに 4 週間基礎飼料が給餌され、回復群とされた。

1112

各投与群で認められた毒性所見は、表8に示されている。

13 14 脳 ChE 活性が、270/180 ppm 投与群の雄で 10% (統計学的に有意)、雌で 9% (統計学的に有意でない) 阻害された。【西川専門委員より:参考までに】

15 16 回復期間終了時に、回復群で認められた変化は、赤血球 ChE 活性阻害であり、9 ppm 投与群の雄で 25%、雌で 52%阻害された。 【西川専門委員より:9 ppm 投与群雌雄各 2 匹のみの検査との記載あり】

17 18

19

本試験において、9 ppm 投与群の雌雄で赤血球 ChE 活性阻害(20%以上)が認められたので、無毒性量は雌雄とも 0.3 ppm (雄:0.01 mg/kg 体重/日、雌:0.01 mg/kg 体重/日)であると考えられた。(参照 3) [参照 3(JMPR): $9\sim11$ 頁]

^{4 270} ppm 投与群は、投与開始 33 日後に投与量を 180 ppm に変更した。

表8 90日間亜急性毒性試験(イヌ)で認められた毒性所見

投与群	雄	雌
270/180 ppm	・切迫と殺(2例)	・切迫と殺(1例)
	・下痢、嘔吐、流涎、活動低下、	・下痢、嘔吐、流涎、活動低下
	振戦	・体重及び摂餌量減少
	・体重及び摂餌量減少	・Hb 減少
	・Hb 減少	・ALT、ALP、GGT、OCT 増加、
	・ALT、ALP、GGT、OCT 増加、	A/G 比変化、TP、Glu、HDLC、
	A/G 比変化、TP、Glu、HDLC、	PL、カルシウム、ナトリウム、
	PL、カルシウム、ナトリウム、	カリウム減少
	カリウム減少	• 十二指腸壁肥厚
	• 十二指腸壁肥厚	・十二指腸壁 <u>肥大<mark>過形成</mark></u>
	• 空腸壁肥厚	
	・十二指腸壁 <u>肥大過形成</u>	
	・ <u>頬骨腺性腺</u> の炎症性変化又は変	
	性	
	· 左心室乳頭筋鉱質沈着	
9 ppm 以上	・赤血球 ChE 活性阻害	・赤血球 ChE 活性阻害
	(20%以上)	(20%以上)
0.3 ppm	毒性所見なし	毒性所見なし

2

1

【義澤専門委員より】

表中修正しました。

十二指腸壁過形成→「Hypertrophy」なので「肥大」です。肉眼所見と組織所見を合わせて記載すれば、この記載は不要です。

性腺→頬骨腺です。

3 4

5

6 7

8

9

10

11

12

13

(5) 22 日間亜急性毒性試験 (サル) [1971 年、非 GLP]

アカゲザル(一群雌雄各 1 匹)を用いた強制経口(原体: 0.025 及び 0.05 mg/kg 体重/日、溶媒: 2%デンプン懸濁液)投与による 22 日間亜急性毒性試験が実施され た。

0.05 mg/kg 体重/日投与群の雄では、摂餌量が減少した。同群の雄では体重に変化は認められず、同群の雌ではわずかに(4%)増加した。0.025 mg/kg 体重/日投与群の雌雄では、試験開始時に比べ、体重が減少(雄で2.6%、雌で15%)した。

赤血球 ChE 活性阻害は認められなかった。脳 ChE 活性は測定されなかった。

本試験における無毒性量は、雌雄とも本試験の最高用量 0.05~mg/kg 体重/日であると考えられた。(参照 3)[参照 3(JMPR): $11\sim12~\text{頁}$]

1415

1617

18

(6) 30 日間亜急性経皮毒性試験 (ラット) [1988 年、GLP]

Wistar ラット (一群雌雄各 15 匹) を用いた経皮 (原体:0、0.5、5 及び 50 mg/kg 体重/日、6 時間/日、5 日/週)投与による $30\sim31$ 日間亜急性経皮毒性試験が実施された。各群の雌雄各 5 匹は、投与終了後 $28\sim29$ 日無処理で飼育され、回復群とさ

1 れた。

2

3

4 5

6 7

8

9 10

1112

13

14

15

16

1718

1920

21

2223

24

25

26

27

2829

30

31

32

投与群に死亡例はなく、対照群の雄1例が死亡した。

50 mg/kg 体重/日投与群の雄で ALT 増加及び TG 減少が、同群の雌及び 5 mg/kg 体重/日以上投与群の雄で Glu 及び Ure 増加が認められた。5 mg/kg 体重/日以上投与群の雌で副腎絶対及び比重量増加が認められた。

肉眼的検査において、皮膚刺激性を示す棘細胞症、過角化症等の変化が認められたが、これらは投与<u>処置による時の</u>機械的な刺激によるものと考えられた。<u>【義澤</u>専門委員修文】

【相磯専門委員より】

上記「肉眼的検査において・・・刺激によるものと考えられた。」は参照 3 (JMPR、13 頁、1-3 行) によると、対照群を含む全群で数匹の動物にみられた変化なので、削除してはどうでしょうか?

【西川専門委員より】

「棘細胞症」は「表皮肥厚」または「棘細胞増生」

赤血球 ChE 活性は、5 mg/kg 体重/日以上投与群の雌雄で阻害され、50 mg/kg 体重/日投与群の雄及び雌でそれぞれ 84 及び 91%、5 mg/kg 体重/日投与群の雄及び雌で 20 及び 50%阻害された。

脳 ChE 活性は、50 mg/kg 体重/日投与群の雄及び雌でそれぞれ 26 及び 46%阻害された。

回復群では、回復期間終了時に副腎重量の変化及び経皮刺激が認められた。

本試験において、5 mg/kg 体重/日以上投与群の雌雄で赤血球 ChE 活性阻害 (>20%) が認められたので、無毒性量は雌雄とも 0.5 mg/kg 体重/日であると考えられた。 (参照 3) [参照 3 (JMPR) : $12\sim13$ 頁]

(7) 28 日間亜急性吸入毒性試験 (ラット) [1988 年、GLP]

Wistar ラット (一群雌雄各 15 匹) を用いた吸入 (原体: 0、0.001、0.0049 及び 0.027 mg/L、鼻部、6 時間/日、5 日/週)暴露による 28 日間亜急性吸入毒性試験が 実施された。各群雌雄各 5 匹は、暴露期間終了後も 4 週間無処理で飼育し、回復群 とした。

0.027 mg/L 暴露群の雌 1 例が死亡したが、原因不明の呼吸器出血によるものであり、検体投与が原因ではないと考えられた。

赤血球 ChE 活性が、0.027~mg/L 暴露群の雄及び雌でそれぞれ 73~及び 82%阻害され、0.0049~mg/L 暴露群の雌で 28%阻害された。

脳 ChE 活性が、0.027 mg/L 暴露群の雄で 22%阻害されたが、雌では脳 ChE 活性阻害は認められなかった。

本試験において、0.0027~mg/L 暴露群の雄及び 0.0049~mg/L 以上暴露群の雌で赤血球 ChE 活性阻害(20%以上)が認められたので、無毒性量は雄で 0.0049~mg/L、雌で 0.001~mg/L であると考えられた。(参照 3)[参照 3(JMPR): 13 頁]

8

9 10

11

12

13

14

15

16 17

18 19

20 21

22

23

24

25

26

(8)90日間亜急性遅発性神経毒性試験(ニワトリ)[1991年、GLP]

3 4 5 6 7

白色レグホン種ニワトリ(一群雌10羽)を用いた混餌(原体:0、50、110及び 250 ppm) 投与による 90 日間亜急性遅発性神経毒性試験が実施された。また、比 較のため、ニワトリ(一群雌 10 羽)に TOCP を 90 日間強制経口(原体:0、10、 20 及び 50 mg/kg 体重/日) 投与する試験も実施された。50 mg/kg 体重/日投与群の み、運動失調を伴う顕著な神経症状が認められたため、28日間で投与が中断された。 対照群の1例が体重減少を示して死亡した。250 ppm 投与群の1例が体重減少及 び遅発性神経毒性症状(自発運動低下、起立不能等)を示して死亡した。

250 ppm 投与群で摂餌量減少及び体重増加抑制が認められた。同群で認められた 死亡個体では、頚髄、胸髄、腰髄及び脛骨神経で軸索の損傷並びにミエリン鞘の変 化が認められた。また、同群の別の1例では、試験期間中協調運動障害、よろめき 等の運動障害が認められ、神経病理組織学的検査で、頚髄、胸髄及び腰髄に軸索及 びミエリン鞘の損傷【西川専門委員より:軽度の変化】が認められた。

TOCP 投与群では、20 mg/kg 体重/日投与群の脊髄及び抹消神経でのみ、TOCP 投与時に認められる典型的な神経所見が認められた。運動失調は認められなかった が、NTE 活性は脳で 77%、脊髄で 70%阻害された。10 mg/kg 体重/日投与群では、 病理組織学的所見は認められなかったが、NTE 活性は脳で 63%、脊髄で 50%阻害 され、統計学的に有意であった。なお、50 mg/kg 体重/日投与群では比較できる対 照群がなかったものの、NTE 活性は脳及び脊髄の阻害率はそれぞれ 93 及び 87%と 推定された。

本試験において、250 ppm 投与群で遅発性運動機能障害等が認められたので、無 毒性量は 110 ppm (9.6 mg/kg 体重/日) であると考えられた。トリアゾホスが遅発 性神経毒性を有する可能性は否定できなかった。

トリアゾホス投与群及び TOCP50 mg/kg 体重/日投与群について、病理組織学的 所見が再評価された。その結果からも、トリアゾホスで認められた所見は遅発性神 経毒性を示す病変ではないと結論づけられた。(参照3)

[参照 3(JMPR): 27~29、<u>31</u>頁]

27 28

【義澤専門委員より】

同時期に行った TOCP 群の記載は必要ないでしょうか。

参照3の31頁に病理標本の再評価が行われています。この結果をこの次に記載し ておく必要はないでしょうか。「Triazophos 群に見られた変化は、delayed neuropathy の特徴ではない。」との見解は評価書の29頁にも記載されていますが。

【事務局より】

同時期に実施された TOCP 投与試験は、投与経路が異なり、強制経口投与(0、10 及び20 mg/kg 体重/日)なのですが、追記しました。また、31 頁の再評価の結果につ いても記載しました。ご検討下さい。

11. 慢性毒性試験及び発がん性試験

1 2

3

4

5

6

7

8

9 10

1112

13

14

15

1617

18 19

20

2122

23

24

2526

27

28

2930

31 32

33

34

35

(1) 1年間慢性毒性試験(イヌ)[1989年、GLP]

ビーグル犬 (一群雌雄各 $4\sim6$ 匹) を用いた混餌 (原体:0、0.2、0.4、4 及び 80 ppm) 投与による 1 年間慢性毒性試験が実施された。

- 80 ppm 投与群の雌 1 例が切迫と殺され、別の雌 1 例は試験開始 106 日で投与を中止した。これらの個体では、下痢が持続し、重篤な血漿及び赤血球 ChE 活性阻害が認められ、検体投与の影響と考えられた。
- 80 ppm 投与群の雌及び 4 ppm 以上投与群の雄で下痢及び嘔吐が認められた。80 ppm 投与群の雌雄で体重増加抑制、同群の雄及び 4 ppm 以上投与群の雌で摂餌量減少が認められた。
- 赤血球 ChE 活性が、80 ppm 投与群の雌雄で $87\sim92\%$ 、4 ppm 投与群の雄で $24\sim32\%$ 阻害された。
- 脳 ChE 活性阻害は認められなかった。

本試験において、4 ppm 以上投与群の雄で赤血球 ChE 活性阻害 (20%以上) が、雌で摂餌量減少が認められたので、無毒性量は雌雄とも 0.4 ppm (雌雄:0.012 mg/kg 体重/日) であると考えられた。 (参照3) [参照3 (JMPR):11 頁]

(2)2年間慢性毒性/発がん性併合試験(ラット)[1990年、GLP]

Wistar ラット(一群雌雄各 80 匹)を用いた混餌(原体: 0、3、27 及び 240 ppm) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

死亡率に検体投与の影響は認められなかった。

240 ppm 投与群の雌若しくは雄又は雌雄両方に、RBC、Ht 及び Hb 減少並びに PLT 増加が認められた。

赤血球 ChE 活性は、27 ppm 以上投与群の雌雄で 20%以上阻害された。阻害率は、240 ppm 投与群の雌雄で $73\sim90\%$ 、27 ppm 投与群の雌雄で $48\sim73\%$ であった。

脳 ChE 活性は 240 ppm 投与群の雌でのみ阻害が認められ、21~28%阻害された。 240 ppm 投与群の雄で膵臓結節性変化が、27 ppm 以上投与群の雄で膵臓の限局 性又は多巣性腺房細胞過形成が認められた。

【波下線部義澤専門委員修文案】

240 ppm 投与群の雄で膵臓結節性変化が、27 ppm 以上投与群の雄で膵臓の限局性又は多巣性の腺房細胞過形成が認められた。の発生が増加し、用量相関性が認められた。これらの変化は 240 ppm 投与群の雄では肉眼的な結節性変化として確認された。

【義澤専門委員より】

この書き方では腫瘍と勘違いしますので、表現を変えました。

【波下線部相磯専門委員修文案】

240 ppm 投与群の雄で膵臓結節性変化が、27 ppm 以上投与群の雄で膵臓の<u>巣状</u> 巣状限局性又は多巣性腺房細胞過形成が認められた。

3 4 5

1

2

【波下線部西川専門委員修文案】

<u>肉眼的に</u> 240 ppm 投与群の雄で膵臓<u>の</u>結節性<u>病変変化</u>が、<u>病理組織学的に</u> 27 ppm 以上投与群の雄で膵臓の限局性又は多巣性<u>の</u>腺房細胞過形成が認められた。

6 7

【相磯専門委員より】

240 ppm 投与群の雄で膵臓結節性変化は剖検所見であり、病理組織学的検査結果に 記述されている「27 ppm 以上投与群の雄で膵臓の限局性又は多巣性腺房細胞過形成 が認められた」の中に含まれるものと考え、本文から削除しました。

この膵臓の変化は 240 ppm 投与群で肉眼で結節性病変と認識できる大きさになっていることから、膵臓外分泌腺の良性腫瘍(腺腫)である可能性があり、発癌性について検討しておいた方が良いと思います。

この膵臓結節性変化は参照 3 (JMPR) : $15\sim18$ 頁によると雄だけにみられ、発癌性試験での発生数は0 ppm 群 0/48 匹、3 ppm 群 1/49 匹、27 ppm 群 3/48 匹、240 ppm 群 6/50 匹 で、統計学的に Fisher 検定で 27 ppm 群と 240 ppm 群で有意な増加 (p=0.029、p=0.0017)、傾向検定(Cochran-armitage)で有意な増加傾向(p=0.0088)となっています。背景発生率(1982 年~2000 年、検索動物数 2,439 匹)は Total 発生率 10%、平均発生率 9.8%、範囲 $0\sim31\%$)となっています。

8 9

検体投与の影響で発生が増加した腫瘍性病変はなかった。

10 11 本試験において、27 ppm 以上投与群の雌雄で赤血球 ChE 活性阻害(20%以上)等が認められたので、無毒性量は雌雄とも 3 ppm(雄:0.15 mg/kg 体重/日、雌:

0.18 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。

12 13

(参照 3) [参照 3 (JMPR) : 15~18 頁]

14

1516

17

18

19

20

2122

25

(3)2年間発がん性試験(マウス)[1989年、GLP]

NMRI マウス (一群雌雄各 60 匹) を用いた混餌 (原体: 0、6、30 及び 150 ppm) 投与による 2 年間発がん性試験が実施された。

150 ppm 投与群の雌雄で軽度に死亡率が増加した(統計学的有意差なし)。試験期間後半の1年間に死亡した雌は、ほとんどが悪性リンパ腫によるものであったが、150 ppm 投与群の雌雄とも悪性リンパ腫の発生頻度に統計学的有意差は認められず、悪性リンパ腫の発生と検体投与と関連はないと考えられた。また、その他に検体投与の影響で発生が増加した腫瘍性病変はなかった。

23赤血球 ChE 活性は、150 ppm 投与群の雌雄で 41~54%、30 ppm 投与群の雌で2433~34%阻害された。脳 ChE 活性は、150 ppm 投与群の雌で 43%阻害された。

本試験において、150 ppm 投与群の雄及び 30 ppm 以上投与群の雌で赤血球 ChE

活性阻害 (20%以上) が認められたので、無毒性量は雄で 30 ppm (4.2 mg/kg 体重 /日)、雌で 6 ppm (0.95 mg/kg 体重/日) であると考えられた。発がん性は認められなかった。 (参照 3) [参照 3 (JMPR) : $14\sim15$ 頁]

【事務局より】

JMPR の資料 (参照 3) では、無毒性量を雌雄分けて示していないのですが、雄では 30 ppm 投与群で毒性所見が認められなかったので、雄の無毒性量を 30 ppm としました。

【義澤専門委員より】

了解しました。

4 5

6

7

8

9

10

11

1213

14

1516

17

18

1 2

3

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)[1989年、GLP]

Wistar ラット (一群雌雄各 25 匹) を用いた混餌 (原体: 0、3、27 及び 240 ppm) 投与による 2 世代繁殖試験が実施された。

親動物では、240 ppm 投与群の雌 3 例(F_1)で、検体投与に関連した死亡が認められた。240 ppm 投与群の P 世代雌雄で攻撃行動が、 F_1 世代雌雄及び P 世代雌で体重増加抑制及び摂餌量減少が、P 世代の雌で眼球突出、運動失調、振戦及び呼吸困難が認められた。

児動物では、240 ppm 投与群の F_1 及び F_2 世代で低体重が、 F_1 世代で<u>着床数</u> 着床 痕減少及び着床後胚損失の増加が、 F_2 世代で死産数増加、生後 4 日生存率低下及び生後 21 日生存率減少が認められた。

本試験において、親動物では 240 ppm 投与群の雌雄で体重増加抑制等が、児動物では 240 ppm 投与群で低体重等が認められたので、無毒性量は親動物及び児動物で雌雄とも 27 ppm(P 世代: $1\sim3$ mg/kg 体重/日、 F_1 世代: $1\sim4$ mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。

1920

(参照 3) [参照 3 (JMPR) : 20~21 頁]

【長尾専門委員より】

修文しました。

着床数減少および着床後胚損失が 250 ppm 群で観察されており、これら指標は児動物への影響としている。繁殖能に対する影響としてもよいが、これまでこれら指標は児動物への影響としてきた。

2122

23

24

25

26

27

(2) 発生毒性試験 (ラット) [1976 年、非 GLP]

Wistar ラット (一群雌 20 匹) の妊娠 $7\sim16$ 日に混餌 (原体:0、10、50 及び 250 ppm) 投与して発生毒性試験が実施された。

母動物及び胎児で検体投与の影響は認められなかった。

本試験における無毒性量は、母動物及び胎児で本試験の最高用量 250 ppm (22 mg/kg 体重/日) であると考えられた。催奇形性は認められなかった。 (参照 3)

28 [参照 3 (JMPR) : 20~21 頁]

(3) 発生毒性試験 (ウサギ) [1985 年、非 GLP]

NZW ウサギ (一群雌 18 匹) の妊娠 $6\sim19$ 日に強制経口 (原体:0、2、4 及び 8 mg/kg 体重/日、溶媒:ゴマ油) 投与して発生毒性試験が実施された。

8 mg/kg 体重/日投与群の 2 例及び 4 mg/kg 体重/日投与群の 1 例が呼吸器及び消化器の異常で死亡した。2 mg/kg 体重/日投与群の 1 例が投与時の気管損傷により死亡した。

8 mg/kg 体重/日投与群で体重増加抑制及び摂餌量減少が認められ、1 例で流産が、 また、別の1 例で全胚の早期吸収が認められた。

胎児には、検体投与の影響は認められなかった。

本試験における無毒性量は、母動物で 4 mg/kg 体重/日、胎児で本試験の最高用量 8 mg/kg 体重/日であると考えられた。催奇形性は認められなかった。

(参照 3) [参照 3 (JMPR) : 21~22 頁]

13. 遺伝毒性試験

トリアゾホスの細菌を用いた復帰突然変異試験、酵母菌を用いた前進突然変異試験、ヒトリンパ球を用いた染色体異常試験、酵母菌を用いた遺伝子転換試験、マウスを用いた小核試験、ショウジョウバエを用いた伴性劣性致死試験、性染色体不分離試験及び性染色体消失試験が実施された。

結果は表9に示されている。伴性劣性致死試験で陽性、性染色体不分離試験で弱陽性の結果が得られた。

陽性の結果が得られたのはいずれもショウジョウバエを用いた試験であり、in vitro の試験及び哺乳動物を用いた in vivo の試験(小核試験)ではいずれも陰性であったので、トリアゾホスに、生体にとって問題となる遺伝毒性はないものと考えられた。(参照 3)[参照 3(JMPR): $18\sim19$ 頁]

表 9 遺伝毒性試験結果概要(原体)

=	試験	対象	処理濃度・投与量	結果
in vitro	復帰突然変 異試験 [1977年]	Salmonella typhimurium (TA98、TA100、 TA1535、TA1537 株)	0.2~5,000 fg/プレート (+/-S9)	陰性
	前進突然 変異試験 [1980 年]	Schizosaccharomyces pombe	1,000~4,000 fl/L (+/-S9)	陰性
	遺伝子転換 試験 [1980年]	Saccharomyces cerevisiae	1,000~4,000 fl/L (+/-S9)	陰性
	染色体異常 試験 [1981 年]	ヒトリンパ球	0.92~920 fl/L(+S9) 0.8~800 fl/L (-S9)	陰性
in vivo	小核試験 [1980 年]	マウス(骨髄細胞) (性別、系統及び匹数不明)	0.2~20 mg/kg 体重 (2 回経口投与)	陰性
	伴性劣性 致死試験 [1990 年]	ショウジョウバエ (匹数不明)	0~30 ppm (経口又は注射による投与)	陽性 1)
	性染色体 不分離試験 [1990 年]	ショウジョウバエ (匹数不明)	0~1 ppm	弱陽性
	性染色体 消失試験	ショウジョウバエ (匹数不明)	投与量不明 (経口又は注射による投与)	陰性

注)+/-S9:代謝活性化系存在下及び非存在下 1)経口投与時に陽性

4 1)経口: 5

代謝物 B を用いた遺伝毒性試験では、細菌(S. typhimurium)を用いた復帰突然変異試験において TA98 株(+S9)で陽性の結果が得られた。チャイニーズハムスターV79 細胞を用いた遺伝子突然変異試験(Hprt 遺伝子座)及び染色体異常試験の結果は、いずれも陰性であった。(試験詳細不明)(参照 3)

[参照 3(JMPR): 32 頁]

101112

13

14

15

1617

18

19

3

6 7

8

9

14. その他の試験

(1)1年間慢性毒性試験(ChE 活性阻害試験:ラット)[1974年、非 GLP]

血液及び脳 ChE 活性阻害と回復性について検討するために、Wistar ラット(一群雌雄各 10 匹)を用いた混餌(原体:0、3、10 及び 200 ppm)投与による 1 年間慢性毒性試験(ChE 活性阻害試験)が実施された。投与終了後、各群とも 7 週間基礎飼料を給餌した(回復期間)。

200 ppm 投与群の雄 1 例が死亡した。原因は明らかにされていないが、この用量群では ChE 活性阻害が認められているので、検体投与に関連した死亡であると考

1 えられた。10 ppm 以上投与群の雌雄で体重増加が認められた。

赤血球 ChE 活性は、200~ppm 投与群の雌雄とも 73%、10~ppm 投与群の雄及び雌でそれぞれ 15~及び 20%阻害された。回復期間終了時には、各群とも赤血球 ChE活性は回復した。

脳 ChE 活性は、回復期間終了時にのみ測定され、検体投与の影響は認められなかった。 (参照3) [参照3 (JMPR):9頁]

【事務局より】

本試験は、JMPR の資料では短期毒性試験として記載されているのですが、ChE 活性阻害を検討する試験であり、また、無毒性量の判断が、農薬専門調査会での判断 と異なりますので(20%未満の阻害を毒性をとっている)、『その他の試験』として記載し、無毒性量を記載しませんでした。

【義澤専門委員より】

了解しました。

7 8

9

10

1112

1314

2

3

4

56

(2) 解毒試験 (ラット) [1971、1993年、非GLP]

Wistar ラット又は Glaxo ラットにトリアゾホスを単回経口投与 (原体: 87 mg/kg 体重、溶媒: らっかせい油又は 10 mg/kg 体重、溶媒: 2%デンプン懸濁液)投与し、投与 $1.5\sim10$ 分後に種々の解毒剤を単独又は組み合わせて腹腔内投与して、トリアゾホスの解毒試験が実施された。

解毒剤非投与群、硫酸アトロピン単独投与群及びメチル硝酸アトロピン単独投与群に比べ、硫酸アトロピン及び PAM 投与群並びに硫酸アトロピン及び塩化オビドキシム投与群で、死亡率の低下が認められた。(参照 3)

[参照 3(JMPR): 31~32 頁]

1617

18

19

20

2122

23

24

25

15

(3) ヒト志願者における反復投与試験①[1971 年、非 GLP]

ヒト志願者 (男性 1 名、41 歳) へのトリアゾホス経口投与による 4 日間反復投与試験が実施された。投与量は、1 日目は 0.012 mg/kg 体重/日、 $2\sim4$ 日目は 0.062 mg/kg 体重/日とした。4 日間投与後、7 日間の回復期間を置いた。

血漿 ChE 活性は、試験 3~4 日目に 20~34%阻害され、回復期間中も 14~21% 阻害された。

赤血球 ChE 活性阻害は認められなかった。

投与期間中から、被験者が頭痛を訴え、検体投与の影響と考えられた。 (参照 3) [参照 3 (JMPR) : 32~33 頁]

262728

29

30

31

(4) ヒト志願者における反復投与試験②[1972年、非GLP]

ヒト志願者(男性 2 名、女性 2 名、 $40\sim50$ 歳) へのトリアゾホス経口投与による反復投与試験が実施された。投与量は、0.012、0.03 及び 0.05 mg/kg 体重/日で 5 日間とした。男性には、投与終了後 2 日間の非投与期間を置いた後、0.03 mg/kg 体

1 重/日で5日間投与した。さらに2日間非投与期間を置いた後、0.05 mg/kg 体重/日 2 で5日間投与し、2日間非投与期間を置いた。

血漿 ChE 活性は、投与前に比べ、0.05 mg/kg 体重/日投与群の男性で 40%、0.03 mg/kg 体重/日投与群の男性で $11\sim17\%$ 阻害された。

赤血球 ChE 活性阻害は認められなかった。

本試験において、<u>血漿 ChE 活性に対する無毒性量は 0.012 mg/kg 体重/目【西川</u> <u>専門委員より:削除では?</u>】、赤血球 ChE 活性阻害に対する無毒性量は、本試験 の最高用量 0.05 mg/kg 体重/日であると考えられた。(参照 3)[参照 3(JMPR): 33 頁]

9 10 11

12

13

14

3

4 5

6

7

8

(5) ヒト志願者における反復投与試験③[1973年、非GLP]

ヒト志願者(男性 2 名、女性 3 名、 $18\sim23$ 歳)へのトリアゾホス経口(原体: 0.012~mg/kg 体重/日、5~日間/週)投与による 3~週間反復投与試験が実施された。

本試験条件下で、検体投与の影響は認められなかった。 (参照3)

[参照 3(JMPR): 33 頁]

151617

18

1920

2122

23

24

25

26

(6) ヒト志願者における反復投与試験(4)[1973年、非GLP]

ヒト志願者(男性 3 名、女性 2 名、 $21\sim25$ 歳) へのトリアゾホス経口(原体: 0.025 mg/kg 体重/日、5 日間/週) 投与による 3 週間反復投与試験が実施された。投与終了後、3 週間の回復期間を置いた。

血漿 ChE 活性は、試験開始前に比べ男性女性とも 13~28%阻害された。

赤血球 ChE 活性は、女性で軽度 (9%) な阻害が認められたが、統計学的有意差 は認められなかった。

本試験において、血漿 ChE 活性に対する無毒性量は 0.025 mg/kg 体重/目未満【西川専門委員より:削除では?】、赤血球 ChE 活性阻害に対する無毒性量は本試験で用いられた用量 0.025 mg/kg 体重/目であると考えられた。 (参照 3) [参照 3 (JMPR): 33~34 頁]

272829

30

31 32

33

34

35

36

37 38

(7) ヒト志願者における反復投与試験⑤[1973年、非GLP]

ヒト志願者[男性 13 名: $17\sim59$ 歳(平均 26 歳)、女性 12 名: $16\sim51$ 歳(平均 28 歳)] へのトリアゾホス経口(原体:0.0125 mg/kg 体重/日、5 日間/週)投与による 3 週間反復投与試験が実施された。投与終了後、4 週間の回復期間を置いた。

頭痛、喉及び鼻の痛み、疲労感、下痢、嘔吐等の症状が訴えられたが、投与によるものではなく、精神的な要因によるものと考えられた。

男性 2 名及び女性 1 名で、試験 1 週目に血漿 ChE 活性阻害が認められ、試験 6 日目に検体投与を中断した。試験 3 週目には ChE 活性が回復したため、再び検体が投与された。

血漿 ChE 活性は、一部の被験者で 20%程度阻害されたが、別の被験者ではわず

2010/3/26 第38回農薬専門調査会総合評価第一部会 トリアゾホス評価書(案)たたき台

1	かな変化しか観察されなかった。一部の被験者では、回復期間終了時にも ChE 活
2	性が投与開始前のレベルに回復しなかった。
3	赤血球 ChE 活性阻害は認められなかった。
4	本試験における無毒性量は、本試験で用いられた用量 0.0125 mg/kg 体重/日であ
5	ると考えられた。 (参照 3) [参照 3 (JMPR) : 34~35 頁]
6	

皿. 食品健康影響評価

トリアゾホス (CAS No.024017-47-8) はポジティブリスト制度導入に伴う暫定基準が設定されており、JMPR が行った評価を基に食品健康影響評価を実施した。食品安全委員会農薬専門調査会では、参照した資料には、評価に必要な試験が記載されており、本剤の評価は可能であると判断した。

参照に挙げた資料を用いて農薬「トリアゾホス」の食品健康影響評価を実施した。 トリアゾホスのラット及びイヌを用いた動物体内運命試験の結果、経口投与された トリアゾホスは、ラットではほぼ 100%吸収されると考えられた。ラット及びイヌで は、主要排泄経路は尿中であり、主要代謝物は B であった。組織蓄積性は認められな かった。

各種毒性試験結果から、トリアゾホス投与による影響は、主に ChE 活性阻害であると考えられた。発がん性、繁殖能に対する影響、催奇形性及び生体にとって問題となる遺伝毒性は認められなかった。

各種試験結果から、食品中の暴露評価対象物質をトリアゾホス(親化合物のみ)と 設定した。

JMPR の評価結果及び各試験における無毒性量等は表 10 に示されている。

遅発性神経毒性試験において、運動失調等の所見が認められた。しかし、組織病理組織学的所見は有機リン剤によって誘発される遅発性神経毒性にみられる典型的な所見と異なり、臨床症状は ChE 活性阻害によるものと確認できなかった。NTE に関しても明確な阻害作用は認められなかった。以上より JMPR は、食品に残留する量ではトリアゾホスによって誘発された遅発性神経毒性様の症状が、ヒトにおいて引き起こされることはないと判断している。

食品安全委員会農薬専門調査会は、ヒト志願者における反復投与試験⑤で得られた無毒性量 0.0125 mg/kg 体重/日を根拠として、安全係数 10 (ヒトの試験であるため種差 1、個体差 10) で除した 0.0012 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

ADI 0.0012 mg/kg 体重/日

(ADI 設定根拠資料) 反復投与試験

(動物種)ヒト(期間)3週間(投与方法)経口

(無毒性量) 0.0125 mg/kg 体重/日

(安全係数) 10

2

【事務局より】ヒトの試験を ADI 根拠とすることの妥当性をご検討下さい。

【義澤専門委員より】

イヌの90日間あるいは1年間の試験のNOAEL0,01あるいは0,.012mg/kgを用いない理由は何でしょうか? これらの試験では赤血球 ChEの20%以上の減少もその上の投与量で見られています。 ヒトのデータは非常に有用ですが、投与期間が3週間に過ぎません。

<u>暴露期間を加味して考え、安全係数 100 で、より厳しい評価をすべきと思いました。</u> ここは他の先生方にご教授を頂きたいと思います。

3 4

5

6

<JMPR>

動物を用いた実験で認められた所見は、ChE 活性阻害によるものであったため、JMPR では、ヒト志願者による試験において ChE 活性に影響の認められない無毒性量を根拠として、ADI を設定した。

7 8

ADI 0.001 mg/kg 体重/日

(ADI 設定根拠資料) 反復投与試験

(動物種)ヒト(期間)3週間(投与方法)経口

(無毒性量) 0.0125 mg/kg 体重/日

(不確実係数) 10

9 [参照 3(JMPR): 37 頁]

表 10 JMPR における評価結果及び各試験における無毒性量の比較

表 10 JMFK における計画和未及び合試験における無毎任重の比較 無毒性量(mg/kg 体重/日) ¹⁾				
動物種	試験	投与量 (mg/kg 体重/日)	食品安全委員会	
	H-ANDX		JMPR	農薬専門調査会
ラット		0,1,20,400	雄:1.5	雄:1.5
	90 日間	ppm	雌: 0.08	雌: 0.08
	亜急性	雄:0、0.07、1.5、		
	毒性試験	31	雄: Hb 減少等	雄: Hb 減少等
	(I)	雌:0、0.08、1.6、	雌:赤血球 ChE 活性阻害	雌:赤血球 ChE 活性阻害
		36	(20%以上)	(20%以上)
	90 日間	0,1,3,10,	雌雄: 0.5	雌雄: 0.5
	亜急性	200/400 ppm	"" L T T T T T T T T T T T T T T T T T T	#####
	毒性試験	0,0.05,0.15,	雌雄:赤血球及び脳 ChE	雌雄:赤血球及び脳 ChE
	2	0.5, 10/20	活性阻害(20%以上)	活性阻害(20%以上)
		0,3,27,240	雄: 0.15	雄: 0.15
	0 年間	ppm	雌: 0.18	雌: 0.18
	2 年間 慢性毒性/	雄: 0.15、1.3、12 雌: 0.18、1.6、15	雌雄:赤血球 ChE 活性阻	 雌雄 : 赤血球 ChE 活性阻
	発がん性	四世 : 0.18、1.6、19	连续: 亦皿塚 Unit 活性阻害(20%以上)等	雌雄:赤血球 CnE 宿住阻 害(20%以上)等
	併合試験		日(4070外工)守	口(40/0外工)等
	DID BY		(発がん性は認められ	 (発がん性は認められ
			ない)	ない)
		0,3,27,240	親動物及び児動物	親動物及び児動物
		ppm	P世代:1~3	P 世代: 1~3
		P 世代:	F ₁ 世代:1~4	F ₁ 世代:1~4
	2 世代	0,0.2~0.3,		
	繁殖試験	1~3,12~25	親動物	親動物
	カベノE IF VIJズ	F1 世代:	雌雄:体重増加抑制等	雌雄:体重増加抑制等
		0,0.1~0.4,	100 at 10	In a late of the second
		$1\sim4,12\sim35$	児動物:低体重等	児動物:低体重等
			(繁殖能に対する影響は	
		0.40 ==	認められない)	認められない)
		0,10,50,250	母動物及び胎児:22	母動物及び胎児:22
		ppm	D.新版 なったは 日 .	
	発生毒性	0,0.87,4.2,22	母動物及び胎児: 毒性所見なし	母動物及び胎児 : 毒性所見なし
	試験			毋[土[7] 元/4 し
			(催奇形性は認められ	(催奇形性は認められ
			ない)	ない)
マウス		0,20,80,160,	雄:12	雄:12
		320 ppm	雌:3.3	雌:3.3
	90 日間	雄:0、3.1、12、		
	亜急性	25,51	雌雄:赤血球 ChE 活性阻	雌雄:赤血球 ChE 活性阻
	毒性試験	雌:0、3.3、13、	害(20%以上)	害(20%以上)
	177 H. AMY	28,57		

+n. +- □.		無毒性量(mg/kg 体重/日) ¹⁾		
動物種	試験	投与量	IMDD	食品安全委員会
		(mg/kg 体重/日)	JMPR	農薬専門調査会
		0,6,30,150	雄:4.2	雄:4.2
		ppm	雌:0.95	雌:0.95
	2年間	雄:0、0.83、4.2、		
	発がん性	20	雌雄:赤血球 ChE 活性阻	雌雄:赤血球 ChE 活性阻
	試験	雌:0、0.95、4.9、	害(20%以上)	害(20%以上)
	H 430	24	(/
			(発がん性は認められな	(発がん性は認められな
7 22 23			(V)	(1)
ウサギ		0,2,4,8	母動物:4	母動物:4
			胎児:8	胎児:8
	発生毒性		母動物:体重増加抑制等	 母動物:体重増加抑制等
	光生母性		時期の・体重増加抑制等 胎児:毒性所見なし	
	D-VOJA			
			(催奇形性は認められな	 (催奇形性は認められな
			(\mu_13\mu_1\mu_1\mu_1\mu_1\mu_1\mu_1\mu_1\mu_1	(\mu_13\mu_1\mu_1\mu_1\mu_1\mu_1\mu_1\mu_1\mu_1
イヌ	00 11 88	0,9,270/180	雄: 0.01	雄: 0.01
		ppm	雌: 0.01	雌: 0.01
	90 日間 亜急性	雄:0、0.01、		
	毒性試験	0.28,6	雌雄:赤血球 ChE 活性阻	雌雄:赤血球 ChE 活性阻
	世上下	雌:0、0.01、	害(20%以上)	害(20%以上)
		0.3, 6.5		
		0,0.2,0.4,4,80	雄: 0.012	雄: 0.012
	1 年間	ppm	雌: 0.012	雌: 0.012
	慢性毒性	雄:0、0.007、		# + _ + _ + _ = _ = _ = _ = _ = _ = _ = _
	試験	0.012, 0.13, 2.4	雄:赤血球 ChE 活性阻害	雄:赤血球 ChE 活性阻害
		雌:0、0.006、	(20%以上) 妣 . 垣餌長減小	(20%以上) (20%以上)
ויי		0.012, 0.14, 2.7	雌:摂餌量減少	雌:摂餌量減少
ヒト	3 週間	0.0125	男性及び女性: 0.0125	男性及び女性: 0.0125
	反復投与		 男性及び女性:毒性所見	 男性及び女性:毒性所見な
	試験		力に及び女性・毎年が先	加工灰U 外压·毋压/// 无/。]
			NOAEL: 0.0125	NOAEL: 0.0125
ADI			SF: 10	SF: 10
			ADI : 0.001	ADI : 0.001
ADI 設定根拠資料			ヒト3週間反復投与試験	ヒト3週間反復投与試験
10.1			数 ADI:一日摂取許容景	_:

注)NOAEL:無毒性量 SF:安全係数 ADI:一日摂取許容量

1

<別紙1:代謝物/分解物略称>

1/2 4/15	(2) 2015 T. 1 (10) 100 (2) 21 10 (10) 10				
記号	略号	化学名			
В		1-phenyl-3-hydroxy-1,2,4-triazole			
\mathbf{C}	P=O analogue	O,O diethyl-O1-phenyl-1H-1,2,4-triazole-3-yl phosphate			
D		1-phenylsemicarbazide			
E		semicarbazide			

2

1 <別紙2:検査値等略称>

略称	名称		
AChE	アセチルコリンエステラーゼ		
A/G 比	アルブミン/グロブリン比		
ai	有効成分量(active ingredient)		
ALP	アルカリホスファターゼ		
A T 7D	アラニンアミノトランスフェラーゼ		
ALT	[=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)]		
CCT	γ-グルタミルトランスフェラーゼ		
GGT	[=γ-グルタミルトランスペプチダーゼ(γ-GTP)]		
ChE	ChE コリンエステラーゼ		
C_{max}	最高濃度		
Glu	グルコース(血糖)		
Hb	ヘモグロビン(血色素量)		
HDLP	高密度リポタンパク質コレステロール		
Ht	ヘマトクリット値		
LC_{50}	半数致死濃度		
LD_{50}	半数致死量		
MCH	平均赤血球血色素量		
MCHC	平均赤血球血色素濃度		
MCV	平均赤血球容積		
NTE	神経障害標的エステラーゼ		
OCT	オルニチンカルバミルトランスフェラーゼ		
PAM	プラリドキシム		
PLT	血小板数		
PT	プロトロンビン時間		
RBC	赤血球数		
$T_{1/2}$	消失半減期		
TAR	総投与(処理)放射能		
T.Chol	総コレステロール		
TG	トリグリセリド		
TOCP	リン酸トリーのクレジル		
Ure	尿素		

1	<参	照>
2	1	食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する
3		件(平成 17 年 11 月 29 日付、厚生労働省告示第 499 号)
4	2	JMPR: TRIAZOPHOS (143) —residue evaluation in JMPR report (2007)
5	3	JMPR: TRIAZOPHOS (Pesticide residues in food:2002 evaluations Part II
6		Toxicological)(2002)
7	4	食品健康影響評価について
8		(URL: http://www.fsc.go.jp/hyouka/hy/hy-uke-triazophos-210209.pdf)
9	5	第 273 回食品安全委員会
10		(URL: http://www.fsc.go.jp/iinkai/i-dai273/index.html)
11	6	第38回食品安全委員会農薬専門調査会総合評価第一部会
12		(URL: http://www.fsc.go.jp/senmon/nouyaku/sougou1_dai38/index.html)
13	7	The e-Pesticide Manual (14 edition) ver.4.0 (British Crop Protection
14		Council): 842 Triazophos
15		