動物用医薬品専門調査会における審議結果について

1. 審議結果

農林水産大臣及び厚生労働大臣から食品安全委員会に意見を求められたフルベンダゾール(平成21年3月24日付 厚生労働省発食安0324009号)については、平成21年7月29日に開催された第13回動物用医薬品専門調査会確認評価部会及び平成21年9月29日に開催された第115回動物用医薬品専門調査会(座長:三森国敏)において審議結果(案)がとりまとめられた。

また、審議結果(案)については、幅広く国民に意見・情報を募った後に、食品安全委員会に報告することとなった。

2. フルベンダゾールに係る食品健康影響評価についての意見・情報の募集について

上記品目に関する「審議結果(案)」を食品安全委員会ホームページ等に公開し、 意見・情報を募集する。

1)募集期間

平成 21 年 11 月 26 日 (木) 開催の食品安全委員会 (第 311 回会合) 終了後、 平成 21 年 12 月 25 日 (金) まで。

2) 受付体制

電子メール (ホームページ上)、ファックス及び郵送

3) 意見・情報提供等への対応

いただいた意見・情報等をとりまとめ、動物用医薬品専門調査会の座長の指示のもと、必要に応じて専門調査会を開催し、審議結果をとりまとめ、食品安全委員会に報告する。

(案)

動物用医薬品評価書

フルベンダゾール

2009年11月

食品安全委員会動物用医薬品専門調査会

目次

	頁
○審議の経緯	3
○ a 版 3 程	3
〇食品安全委員会動物用医薬品専門調査会専門委員名簿 ····································	3
〇食品安全委員会動物用医薬品専門調査会確認評価部会委員名簿	3
O要約 ····································	4
I. 評価対象動物用医薬品の概要	5
1. 用途	5
2. 有効成分の一般名 ····································	
3. 化学名 ···································	5
4. 分子式	5
5. 分子量	5
6. 構造式 ···································	5
7. 使用目的及び使用状況 ····································	5
	J
Ⅱ. 安全性に係る知見の概要	6
1. 薬物動態 (吸収・分布・代謝・排泄) 及び残留試験	_
(1)薬物動態試験 (ラット、イヌ、家禽及び豚)	
(2)薬物動態試験(ラット)	6
(3)薬物動態試験(イヌ)	7
(4)薬物動態試験(豚)	8
(5)代謝試験(ラット及びイヌ) ····································	
(6)代謝試験(鶏、七面鳥及び豚)	9
(7)残留試験(鶏) ····································	9
(8)残留試験(七面鳥)	10
(9)残留試験(キジ)	11
(10)残留試験(豚)	11
(11)残留試験(牛)	
(12)残留試験(馬)	
(13)残留マーカーについて	
2. 急性毒性試験	12
3. 亜急性毒性試験 ····································	1/
(1)3ヶ月間亜急性毒性試験(ラット)	
(2)3ヶ月間亜急性毒性試験(イヌ)	14
(3)7日間亜急性毒性試験(鶏)(参考試験)	
(4)20 口閂而刍州書州討除(阪)(务老討除)	14
(4)30 日間亜急性毒性試験(豚)(参考試験) ····································	15
(1)発がん性試験(マウス及びラット) ····································	15
(1)元別(U)工政政(マラクスのファド) ************************************	1₽ 1₽
(2)発がん性試験(マウス)	10
(3) 完かん住試験 (フット)	10
3.	
\ / ストス//V 日ビロ以前で \ N / / / / / /	1 (1)

(2)交配前及び妊娠期投与試験(ラット)	16
(3)周産期及び授乳期投与試験(ラット)	
(4)催奇形性試験(ラット)	17
	18
(6)催奇形性試験(豚)	19
6. 遺伝毒性試験	20
	20
(1)眼粘膜刺激性試験(ウサギ)	20
	20
(3)ヒトに関する知見	20
(4)微生物学的知見	21
Ⅲ. 食品健康影響評価	22
1. 各評価書の評価について	22
	22
(2)我が国における評価	22
	22
3. 食品健康影響評価について	23
·表 5 ··································	
•別紙 1 ···································	
·参照 ···································	

〈審議の経緯〉

2005年 11月 29日 暫定基準告示 (参照 1)

2009年 3月24日 厚生労働大臣より残留基準設定に係る食品健康影響評価について

要請(厚生労働省発食安第 0324009 号)

2009年 3月 26日 第279回食品安全委員会(要請事項説明)

2009 年 7月 29 日 第 13 回動物用医薬品専門調査会確認評価部会

2009年 9月 29日 第115回動物用医薬品専門調査会

2009年11月26日 第311回食品安全委員会(報告)

〈食品安全委員会委員名簿〉

(2009年6月30日まで) (2009年7月1日から)

(委員長) 見上 彪 小泉 直子 (委員長)

小泉 直子 (委員長代理) 見上彪 (委員長代理*)

長尾 拓 長尾 拓 野村 一正 野村 一正 畑江 敬子 畑江 敬子 廣瀬 雅雄 廣瀬 雅雄

本間 清一 村田 容常

*:2009年7月9日から

〈食品安全委員会動物用医薬品専門調査会専門委員名簿〉

(2008年4月1日から) (2009年10月1日から)

三森 国敏 三森 国敏 (座長) (座長)

井上 松久 石川 さと子 (座長代理) 能美 健彦 寺本 昭二 青木 宙 石川 整 舞田 正志 今井 俊夫 頭金 正博 小川 久美子 松尾 三郎

今田 由美子 戸塚 恭一 寺岡 宏樹 三森 国敏

江馬 眞 中村 政幸 寺本 昭二 山口 成夫 小川 久美子 能美 健彦 天間 恭介 山崎 浩史

下位 香代子 山崎 浩史 頭金 正博 山手 丈至

津田 修治 吉田 緑 中村 政幸 渡邊 敏明

寺岡 宏樹

〈食品安全委員会動物用医薬品専門調査会確認評価部会専門委員名簿〉

(2009年9月30日まで)

三森 国敏 (座長)

井上 松久 (座長代理) 寺本 昭二 今井 俊夫 頭金 正博 津田 修治 能美 健彦

要約

ベンズイミダゾール系の寄生虫駆除剤フルベンダゾール(CAS No. 31430-15-6)について、EMEA、JECFAレポート等をもとに食品健康影響評価を実施した。評価に供した試験成績は、薬物動態(ラット、イヌ、家禽、豚、鶏及び七面鳥)、残留(鶏、七面鳥、キジ、豚、牛及び馬)、急性毒性(マウス、ラット、モルモット、産卵鶏及びホロホロチョウ)、亜急性毒性(ラット及びイヌ)、発がん性(マウス及びラット)、生殖発生毒性(マウス、ラット、ウサギ及び豚)、遺伝毒性試験等である。

フルベンダゾールは、遺伝毒性試験において陰性の結果であり、各種発がん性試験でも発がん性は認められなかったことから、遺伝毒性発がん物質ではないと考えられるため、ADIの設定は可能であると判断された。

毒性試験において、最も用量の低いところで投与の影響が認められたと考えられる指標は、イヌの3ヶ月間亜急性毒性試験における前立腺の小型化及び精巣上体尾部のうっ血であり、NOAELは 2.5~mg/kg体重/日であった。

ADIの設定に当たっては、安全係数として、種差 10、個体差 10 に、発がん性試験は行われているが、それらの試験は慢性毒性試験としては不十分であること及び NOAEL が設定されたイヌの 3 ヶ月間亜急性毒性試験における投与が週 7 日ではなく 6 日であることを考慮して追加の係数 2 を適用し、200 とすることが適当と考えられた。

フルベンダゾールのADIとしては、NOAEL 2.5 mg/kg体重/日に安全係数200を適用し、0.012 mg/kg体重/日と設定することが適当であり、JECFAの評価と同様の考え方に基づく我が国における過去の評価結果を変更する必要はないと考えられた。

以上より、フルベンダゾールの食品健康影響評価については、ADI として、0.012 mg/kg 体重/日を設定した。

なお、残留マーカーについては、豚及び家禽の残留試験において、未変化体だけでなく代謝物も検出されており、これらを考慮する必要があると考えられる。

また、牛及び馬の残留試験においては、未変化体のみを検査対象とした試験 結果が得られているが、代謝物の残留性についても考慮する必要があると考え られる。

I. 評価対象動物用医薬品の概要

1. 用途

寄生虫駆除剤

2. 有効成分の一般名

和名:フルベンダゾール

英名:Flubendazole

3. 化学名

IUPAC

英名: methyl N-[5-(4-fluorobenzoyl)-3H-benzimidazole-2-yl]

carbamate

CAS (No. 31430-15-6)

英名:[5-(4-Fluorobenzoyl)-1H-benzimidazole-2-yl]carbamic acid

methyl ester

4. 分子式

 $C_{16}H_{12}FN_3O_3$

5. 分子量

313.288

6. 構造式

7. 使用目的及び使用状況

フルベンダゾールは、ベンズイミダゾール系に属し、豚と家禽の消化管寄生虫に対し活性を有する駆虫薬である。メベンダゾールのフルオロ類縁体であり、よく似た特性を有する。

日本では、イヌ、豚、馬及び牛の回虫等の駆除を目的に動物用医薬品として 承認されている。(表 1) ヒト用医薬品としての承認はない。

国外では、豚、鶏、七面鳥及び狩猟鳥にペースト剤、錠剤、粒剤又は飼料に 混入するプレミックス品の形態で投与される。また、海外では、ヒト用の駆虫 薬としても使用されており、常用量は、100 mg を 1 日に 1 回あるいは 2 回で、連続 3 日間服用する。(参照 2、3)

なお、ポジティブリスト制度導入に伴う残留基準値1が設定されている。

表1 国内で承認されているフルベンダゾールを用いた動物用医薬品(食用動物)

動物種	効能・効果	用法・用量	使用禁止期間
		通常1日1回体重1kg当たり	
馬	大円虫、小円虫、馬	10 mg	食用に供するために
	回虫の駆除	2~3日間連日(経口投与)	と殺する前3日間
牛	オステルターグ胃虫	10~20 mg	食用に供するために
	等の駆除	5日間連日 (経口投与)	と殺する前 10 日間
	牛肺虫等の駆除	20 mg (経口投与)	
豚	豚回虫、豚鞭虫、豚	5~10 mg	食用に供するために
	腸結節虫、ランソン	(経口投与)	と殺する前 14 日間
	糞線虫、豚肺虫等の	通常飼料1t当たり、フルベンダ	
	駆除	ゾールとして 25~30 g を均一	
		に混じて3~5日間経口投与	

Ⅱ. 安全性に係る知見の概要

本評価書は、JECFAレポート、EMEAレポート等をもとに、毒性に関する主な知見を整理したものである。 (参照 $2\sim9$)

1. 薬物動態(吸収・分布・代謝・排泄)及び残留試験

(1)薬物動態試験(ラット、イヌ、家禽及び豚)

フルベンダゾールのラット、イヌ、家禽及び豚における生物学的利用率は低かった。ラットでは、 $T_{1/2}$ は約 6 時間であった。全ての動物種で、投与量の 50 %を超える量が未変化体として糞中に排泄された。吸収されたフルベンダゾールは迅速に代謝されるため、血中及び尿中の未変化体濃度は非常に低かった。尿中には代謝物が検出された。主要な代謝経路はケトン基の還元及びカルバミン酸部分の加水分解であり、調べられた全ての動物種では同様であった。(参照 4、5)

(2)薬物動態試験(ラット)

ラット (Wistar 系) 及びマストミス ($Mastomys\ natalensis$) を用いたフルベンダゾールの経口投与及び皮下投与 ($40\ mg/kg$ 体重、マイクロ懸濁液) による薬物動態試験が実施された。投与 4、8、24 及び 48 時間後にと殺された。

経口投与後のフルベンダゾールの血漿中濃度は、投与 4 時間後で、ラット

¹ 平成 17 年厚生労働省告示第 499 号によって新たに定められた残留基準値

で 81 ng/mL、マストミスで 17 ng/mL であった。計算上の $T_{1/2}$ は $6\sim7$ 時間 であった。投与 24 時間後におけるラットのフルベンダゾールの血漿中濃度は、 5.6 ng/mL であった。

皮下投与後の血漿中濃度は非常に低かった。両動物種の C_{max} は $7\sim9$ ng/mL、 T_{max} は $4\sim8$ 時間であった。投与48 時間後の血漿中濃度は、 C_{max} の32%であり、注射部位からの吸収は非常に遅いと考えられた。(参照 2)

ラット (Wistar 系、雄) を用いた 14 C 標識フルベンダゾールの経口投与 (10 mg/kg 体重、微結晶懸濁液) による薬物動態試験が実施された。投与 0.5、 1、 2、 4、 6、 16 及び 24 時間後にと殺された。

フルベンダゾールの血漿 T_{max} は 0.5 時間で、 $T_{1/2}$ は 6 時間であった。全体的に、全血及び血漿中のフルベンダゾール濃度は非常に低く、投与 0.5 時間後($0.27~\mu g/mL$)と 24 時間後($0.18~\mu g/mL$)で大きな差は認められなかった。投与後 24 時間以内に、投与量の 50~%近くが糞中に排泄され、尿中には代謝物として 4~%が排泄された。肝臓、肺、腎臓、筋肉及び脂肪中の総放射活性は非常に低く、 $3.1~\mu g/g$ を上回らなかった。(参照 2)

ラット(Wistar 系、雄、5 匹/群)を用いた 14 C 標識フルベンダゾールの経口投与(10 mg/kg 体重)による薬物動態試験が実施された。

投与後4日以内に、投与量の7%が尿中に、89%が糞中に排泄された。投与後48時間以内には、投与量の91%が排泄された。糞中の放射活性はほとんどが未変化体であったのに対して、尿中の放射活性はほとんどが代謝物であった。尿中で同定された主要な代謝物は、主にカルバミン酸加水分解物及びケトン還元物のグルクロン酸抱合体であった。(参照2)

(3)薬物動態試験(イヌ)

イヌ(ビーグル種、雌 3 匹)を用いた 14 C 標識フルベンダゾールの経口投与(10 mg/kg 体重)による薬物動態試験が実施された。

投与後 4 日以内に、放射活性の 88 %が排泄された。放射活性の大部分 (81.5%) は糞中で、尿中はわずかに 6.3%であった。尿中の放射活性は代謝 物によるものであった。48 時間以内に採取された糞中の放射活性は、ほとんどが未変化体であった。また、フルベンダゾールは腸肝循環を受けていることが示唆された。(参照 2、3)

イヌ(ビーグル種、雄 2 匹、雌 4 匹)を用いたフルベンダゾールの経口投与(22 mg/kg 体重)による薬物動態試験が実施された。

血漿 C_{max} は $4\sim5$ ng/mL、血漿 T_{max} は $2\sim8$ 時間であった。(参照 2)

イヌ (ビーグル種、雄 2 匹/群) を用いたフルベンダゾールの筋肉内注射による単回投与(2.5,25 mg/kg体重、マイクロ懸濁液)及び5日間連続投与(2.5,

25 mg/kg 体重/日、マイクロ懸濁液)による薬物動態試験が実施された。投与後42日間の血液について検査が実施された。

いずれの投与量においても、3 相性の血漿中濃度-時間曲線が認められた。 第 1 相は、生体からの排泄より注射部位からの迅速な放出の方が上回った。 第 2 相は、注射部位からの放出より排泄の方が速やかであり、第 3 相では非 常に緩慢な終末の再吸収を示した。

2.5 mg/kg 体重の単回投与では、 C_{max} は投与 $3\sim5$ 日後に 0.6 ng/mL、25 mg/kg 体重の単回投与では、 C_{max} は投与 $5\sim7$ 日後に 2.1 ng/mL であった。5 日間連続投与では、 C_{max} は最終投与 $3\sim4$ 日後に、低用量で 2.4 ng/mL、高用量で 13.2 ng/mL であった。

いずれの投与量及び投与方法においても T_{1/2} は 24 時間と考えられた。

(参照 2)

(4)薬物動態試験(豚)

豚を用いた[14 C-2-benzimidazole環]標識フルベンダゾールの 5 日間連続投与($^{1.5}$ mg/kg 体重/日)による薬物動態試験が実施された。

投与量の総計 79 %が、最終投与後 30 日以内に排泄された(尿中 23 %及び 糞中 56 %)。主要な代謝経路はカルバミン酸加水分解及びケトン還元であっ た。(参照 2)

子豚(ランドレース種、体重 $18.2\sim26.4$ kg、雌 1 頭、去勢雄 4 頭)を用いたフルベンダゾールの 5 日間連続経口投与(20 mg/kg 体重、水性懸濁液)による薬物動態試験が実施された。

フルベンダゾールの血中濃度は、第 1 回投与 $6\sim8$ 時間後に、低濃度ではあるが C_{max} ($0.03\sim0.05~\mu g/mL$) に達し、24 時間後には検出限界 ($0.01~\mu g/mL$) 以下となった。第 5 回投与 $4\sim6$ 時間後に、 C_{max} ($0.04\sim0.14~\mu g/mL$) に達し、以降徐々に減少した。最終投与 2 日後以降は、全試料が検出限界以下であった。(参照 7)

(5)代謝試験(ラット及びイヌ)

ケトン基の還元及びカルバミン酸部分の加水分解がフルベンダゾールの主要な生体内変換経路であった。比較的マイナーであるが、代謝の過程でメチル化もみられた。ラット及びイヌにおける尿中代謝物は、ケトン還元、カルバミン酸加水分解及びグルクロン酸/硫酸抱合によって形成されていた。

各種動物におけるフルベンダゾールの代謝経路を図1に示した。(参照2)

図1 フルベンダゾールの代謝経路

(6)代謝試験(鶏、七面鳥及び豚)

フルベンダゾールの生体内変換は広範囲にわたり、鶏、七面鳥及び豚においては同様の代謝経路であった。

鶏及び七面鳥における主要代謝経路は、methyl[5-[(fluorophenyl)hydroxyl-methyl]-1 H-benzimidazole-2-yl]carbamate (以下:R38758)へのケトン還元であった。豚における主要代謝経路は、(2-amino-1 H-benzimidazole-5-yl) (4-fluoro-phenyl)methanone (以下:R35475)へのカルバミン酸の加水分解であった。両代謝物とも、後に 2-amino- α -(4-fluorophenyl)-1 H-benzimidazole-5-methanol (以下:R45198)へ変換された。R38758 及び R45198 の抱合も起こっていた。ベンズイミダゾール構造を保持している代謝物は、フルベンダゾールと同様の毒性学的特性を持つと考えられた。

鶏及び七面鳥の肝細胞を用いた $in\ vitro$ 代謝試験により R38758へのケトン 還元が両種で主要な代謝経路であることが確認された。(参照 4、5、6)

(7)残留試験(鶏)

産卵鶏を用いた ¹⁴C 標識フルベンダゾールの 7 日間連続混餌投与(60 ppm)による薬物動態及び代謝試験が実施された。

フルベンダゾールの吸収は迅速であった。初回投与 4 時間後に、 $0.24~\mu g/mL$ の C_{max} が得られた。最終投与約 5 時間後に、わずかに高い C_{max} 0.28 $\mu g/mL$ が得られた。投与量の約 90 %が毎日排泄され、生体内蓄積はみられなかった。 投与 24 時間後、筋肉、皮膚及び脂肪中残留物の $79{\sim}86$ %が抽出された。同時点で、腎臓中残留物の 49 %及び肝臓中残留物の 61 %のみが抽出された。以降では、肝臓及び腎臓中残留物の約 30 %のみが抽出可能であった。最終投与 24 時間後、大網脂肪中残留物の約 60 %及び皮膚/脂肪中残留物の約 35 %は未変化体であった。しかしながら、フルベンダゾールは肝臓及び腎臓中総残留

物の 3%未満であり、これらの残留物中には代謝物が含まれていた。代謝物としては、R35475(肝臓及び腎臓中残留物の 7.9 及び 5.8%)及び R38758(肝臓及び腎臓中残留物の 5.3 及び 1.4%)であった。最終投与 24 時間後における肝臓、腎臓、筋肉及び皮膚/脂肪中の平均総残留濃度は、1,500、610、30 及び 68 μ g/kg で、投与 10 日後にはそれぞれ 241、29、3 及び 12 μ g/kg に減少した。本試験の結果は、別途実施した 14 C 標識フルベンダゾールの混餌投与 (30 ppm)試験において、肝臓中に最も残留したという試験結果と一致した。

最終投与 1 日後、卵中のフルベンダゾール残留物の 80% を超える量が抽出可能であった。フルベンダゾールが卵中の主要残留成分であり、総残留の 40% を占めた。投与 1 日後、代謝物 R35475 及び R38758 も卵中で検出された。最終投与 9 日後までに得られた卵についての分析から、残留物におけるフルベンダゾールの割合は一定であることが確認された。 (参照 4、5、6)

産卵鶏を用いたフルベンダゾールの 7 日間混餌投与 (60 ppm) による残留 試験が実施された。最終投与 0、7 及び 28 日後に 6 羽がと殺され、組織中のフルベンダゾールの残留について HPLC を用いて測定された。全ての組織について定量限界は $10~\mu g/kg$ であった。

最終投与直後の肝臓、腎臓及び筋肉中の平均残留濃度は、それぞれ 198、173 及び 79 μ g/kg であった。それ以降の時点では定量限界未満であった。卵中のフルベンダゾールの平均残留濃度は、最終投与 7 日後の 230~118 μ g/kg から、投与 11 日後には 13 μ g/kg に低下した。本試験では代謝物について測定されなかった。(参照 4、5、6)

(8)残留試験(七面鳥)

七面鳥を用いたフルベンダゾールの 7 日間混餌投与(30 ppm)による残留試験が実施された。最終投与 6 時間、1、3、5、7 及び 9 日後に雌雄名 3 羽がと殺された。組織中のフルベンダゾール及び代謝物の残留について HPLC を用いて測定した。定量限界は、フルベンダゾールは全組織で $10~\mu g/kg$ 、R35475 及び R38758 は肝臓で $25~\mu g/kg$ 、他の組織は $10~\mu g/kg$ 、R45198 は皮膚/脂肪で $50~\mu g/kg$ 、他の組織は $10~\mu g/kg$ であった。

最終投与 6 時間後、肝臓、腎臓、筋肉及び皮膚/脂肪中のフルベンダゾールの平均残留濃度は、それぞれ 64、67、18 及び 60 μ g/kg であった。同時点のR38758 の各組織における平均残留濃度はそれぞれ 200、80、42 及び 32 μ g/kg であった。同時点で、R35475 は、肝臓及び腎臓でわずかに 29 及び 11 μ g/kg が検出された。R45198 は、腎臓で 10 μ g/kg 検出され、肝臓でも検出されたが、妨害ピークにより定量はできなかった。筋肉及び皮膚/脂肪中では、検出されなかった。最終投与 1 日後、フルベンダゾールは 1 例の皮膚/脂肪中(11 μ g/kg)にのみ、R38758 は 1 例の腎臓(18 μ g/kg)にのみ残留していた。他の組織及びその後の時点における残留は定量限界未満であった。

(参照 4、5、6)

(9)残留試験(キジ)

キジを用いたフルベンダゾールの 7日間混餌投与(60 ppm)による残留試験が実施された。各時点で、雌雄各 5 羽がと殺され、フルベンダゾールの残留が HPLC を用いて測定された。定量限界は $10 \mu g/kg$ であった。

最終投与 6 時間後、肝臓、腎臓及び筋肉中の平均残留濃度は、それぞれ 35、57.5 及び $18.5~\mu g/kg$ であった。最終投与 1 日後では、各 1 サンプルの肝臓 (60 $\mu g/kg$)、腎臓 ($114~\mu g/kg$) 及び筋肉のみに見られ、他の組織は定量限界未満であった。皮膚/脂肪中の平均残留濃度は、最終投与 6 時間後の $76~\mu g/kg$ から、最終投与 1 日後に $29~\mu g/kg$ 、7 日後には $12~\mu g/kg$ と減少した。代謝物の残留濃度に関する情報は得られなかった。フルベンダゾールは全ての組織で速やかに消失したが、そのうち皮膚/脂肪では最も長期に残留した。(参照 4、6)

(10)残留試験(豚)

豚を用いた 14 C 標識フルベンダゾールの 5 日間混餌投与(30 ppm)による残留試験が実施された。

最終投与6時間後、結合型残留物は、肝臓29%、腎臓20%、筋肉10%及び脂肪11%であった。最終投与5日後には肝臓中の結合分画は52%に増加した。投与後5~30日の間、肝臓中残留物の約50%は結合型であった。同様の増加が腎臓中の結合型残留物の割合にも観察された。

フルベンダゾールは、肝臓中の総 14 C 標識残留物の約 1 %、腎臓中残留物の $1.7 \sim 2.6$ %であった。最終投与 6 時間後、筋肉及び脂肪中のフルベンダゾール残留物は、それぞれ 11.5 及び 29 %に相当した。

代謝物 R35475 は、最終投与 6 時間後、肝臓、腎臓、筋肉及び脂肪中総残留物の 47、93.5、94 及び 31 %を占める主要成分であった。最終投与 10 日後には、R35475 の割合は肝臓及び腎臓で、それぞれの総残留物の 18 及び 23 %に低下した。

代謝物 R45198 は、最終投与 6 時間後、肝臓、腎臓、筋肉及び脂肪中総残留物のそれぞれ 12、8、8 及び 5 %を占めた。R38758 の残留は少なかった。

本試験で、組織中総残留量は肝臓及び腎臓で、最終投与 6 時間後の 3,865 及び 2,678 μ g/kg から、10 日後には 529 及び 78 μ g/kg に減少した。筋肉及び脂肪中の平均総残留量は、最終投与 6 時間後にそれぞれ 262 及び 212 μ g/kg であった。(参照 4)

子豚(5 頭)を用いたフルベンダゾールの単回経口投与(5 mg/kg 体重)による残留試験が実施された。残留は放射免疫分析で調べられた。定量限界は5 μg/kg であった。

肝臓、腎臓、筋肉及び脂肪中の平均残留濃度は、投与 24 時間後でそれぞれ 120、120、70 及び 96 μg/kg から投与 72 時間後には、28、24、22 及び 69 μg/kg にまで減少した。(参照 4)

子豚(LWD種、雌、12頭)を用いたフルベンダゾールの5日間強制経口投与(20 mg/kg 体重/日、水性懸濁液)による残留試験が実施された。肝臓、腎臓、心臓、小腸及び胆汁は最終投与1日後のみ、筋肉は最終投与後3日までフルベンダゾールが検出されたが、それ以降は検出限界(0.02 mg/kg 体重)未満となった。(参照7)

(11) 残留試験(牛)

泌乳牛(5頭)を用いたフルベンダゾールの経口投与(50 mg/kg 体重)による残留試験が実施された。投与7日後の朝までの乳汁を分房毎に採取した。

全ての試料で、フルベンダゾールは検出 (検出限界: $25 \mu g/L$) されず、乳汁中には移行しないものと考えられた。(参照 7)

泌乳牛(5 頭、肝蛭感染)を用いたフルベンダゾールの 5 日間混餌投与(100 ppm)による残留試験が実施された。血中及び乳汁中濃度を測定した。検出限界は $10~\mu g/L$ であった。

血中のフルベンダゾール濃度は、第3回投与2時間後の3例に $10\sim30 \mu g/L$ が検出された以外検出限界未満であった。乳汁中には検出されなかった。

(参照7)

子牛(ホルスタイン種、12 頭)を用いたフルベンダゾールの5 日間強制経口投与(100 mg/kg/H、水性懸濁液)による残留試験が実施された。検出限界は20 µg/Lであった。

フルベンダゾールは、肝臓、腎臓、心臓及び筋肉で投与終了 3 日後以降、小腸は最終投与5日後以降及び胆汁では最終投与10日後に検出限界未満となった。(参照7)

(12) 残留試験(馬)

馬(サラブレット種、5頭)を用いたフルベンダゾールの5日間強制経口投与(25g/頭/日、水性懸濁液)による残留試験が実施された。

フルベンダゾールは、最終投与 1 日後では肝臓においてのみ検出 $(30 \mu g/kg)$ されたが、最終投与 3 日後以降では検出限界 $(20 \mu g/kg)$ 未満であった。

(参照7)

(13)残留マーカーについて

JECFAでは、豚及び鶏についてフルベンダゾールを残留マーカーとしているが、EMEAでは、対象動物の代謝及び残留に関する知見から、組織中の残留物におけるフルベンダゾールの割合は比較的低いため、豚及び家禽における残留マーカーとして適当でないとされている。

EMEA は、豚の組織中における残留物は代謝物が主であったことから、豚における残留マーカーをフルベンダゾール及び代謝物 R35475 の合計とし、

家禽においては R35475 は主要な残留物ではなかったが、鶏及び豚の組織で同じ残留マーカーとすることが望ましいとした。

一方、EMEAでは、鶏卵については、フルベンダゾールの最終投与後9日における残留物の約40%が未変化体であることから、フルベンダゾールが鶏卵における残留マーカーとされた。(参照6)

本調査会としては、豚及び家禽の残留試験において、未変化体だけでなく 代謝物も検出されており、これらを考慮する必要があると考える。

また、牛及び馬の残留試験においては、未変化体のみを検査対象とした試験結果が得られているが、代謝物の残留性についても考慮する必要があると考える。

2. 急性毒性試験

フルベンダゾールの急性毒性試験を表 2 にまとめた。眼球突出、筋弛緩、軽度の鎮静、全般的抑うつ、運動失調、痙攣及び立毛などの症状が認められた。 死亡は被験物質の腹腔内投与 24 時間以内に記録された。(参照 2、4、6、7)

表 2 フルベンダゾールの急性毒性

動物	性	投与経路	LD ₅₀ (mg/kg bw)
マウス	雌雄	経口*	>5,000
	雌雄	経口**	>10,000
	雌雄	皮下*	>5,000
	雌雄	皮下**	>10,000
	雄	腹腔**	528
	雌	腹腔**	434
ラット	雌雄	経口*	>5,000
	雌雄	経口**	>10,000
	雄	腹腔**	435
	雌	腹腔**	252
	雌雄	皮下**	>5,000
	雌雄	皮下*	>10,000
モルモット	雌雄	経口*	>5,000
	雄	皮下*	4,679
	雌	皮下*	4,834
産卵鶏	雌	経口	>640
ホロホロチョウ	_	経口	>1,200
幼若ラット	雄		>2,560***
	雌		>2,560***
成熟ラット	雄	経口	>2,560***
成熟マウス	雄		>2,560***
成熟モルモット	雄		>2,560***

*溶媒:1%ポリソルベート80の水性懸濁液

**溶媒:0.5%メチルセルロース溶液

***この投与量で死亡なし。

3. 亜急性毒性試験

(1)3ヶ月間亜急性毒性試験(ラット)

ラット(Wistar 系、雌雄各 10 匹/群)を用いたフルベンダゾールの 3 ヶ月間混餌投与(0、100、400、1,600 ppm、雄で 0、8、30、130 mg/kg 体重/日相当、雌で 0、9、40、150 mg/kg 体重/日相当)による亜急性毒性試験が実施された。

死亡率、行動、外観、摂餌量、体重、血液学的検査、血清分析、尿検査、 剖検、臓器重量及び病理組織学的検査に投与に起因する影響は認められなか った。

本試験における NOAEL は、本試験の最高用量である雄で 130 mg/kg 体重/日、雌で 150 mg/kg 体重/日と考えられた。(参照 2、4、6、7)

(2)3ヶ月間亜急性毒性試験(イヌ)

イヌ(ビーグル種、約7ヶ月齢、雌雄各3匹/群)を用いたフルベンダゾールの強制経口投与(0、2.5、10、40 mg/kg 体重/日、6日/週、ゼラチンカプセル投与)による3ヶ月間亜急性毒性試験が実施された。対照群には250 mgのラクトースのみが与えられた。

行動変化、摂餌量、体重、心電図(ECG)、血圧、血液学的検査、血清分析、 尿検査、剖検、臓器重量及び病理組織学的検査について検討された。

10 mg/kg 体重/日以上投与群の全ての雄で前立腺の小型化及び精巣上体尾部にうっ血が認められた。

病理組織学的には、10 mg/kg 体重/日以上投与群で前立腺の萎縮性変化が認められたが、用量依存性はなかった。2.5 mg/kg 体重/日投与群の雌 2 例、10 mg/kg 体重/日の1例及び 40 mg/kg 体重/日の3例に卵巣の閉鎖性変化(atresic changes) が認められた。投与群の数例の雌に子宮壁及び膣に萎縮性変化が観察された。背景データによると、雌生殖器にみられた変化は、そのイヌの年齢では正常範囲内であった。

上記の報告に引き続き、病理組織学スライドが 2 人の病理学者により個別に調べられた。二人の専門家は萎縮性変化(前立腺の線維化)が投与に起因する毒性影響を示すものではなく、性的に未成熟なイヌの発育不良と考えられるという見解で一致した。これらの変化の因果関係についての確実(結論的)な証拠がないため、本試験の NOAEL は 2.5 mg/kg 体重/日であると考えられた。(参照 2、3、4、6)

(3)7日間亜急性毒性試験(鶏)(参考試験)

鶏(肉用系若鶏、(雌 50 羽+雄 5 羽)/群)を用いたフルベンダゾールの7日間混餌投与(0、60、120、180 ppm)による亜急性毒性試験が実施された。最終投与4日後に、雌10羽及び雄1羽を血液採取及び剖検のため各群から除いた。

血液学的パラメータでは、180 ppm 投与群での Ht 及び RBC にのみ有意な

低下が認められた。血液生化学的検査では、120 ppm 投与群における中性脂 肪及びリン脂質の有意な増加、180 ppm 投与群で AST の低下、120 ppm 以上 投与群でコリンエステラーゼ(ChE)の低下が示された。病理組織学的検査 で、180 ppm 投与群の脾臓に白脾髄領域の減少及び赤脾髄の RBC の減少が観 察された。(参照2)

(4)30日間亜急性毒性試験(豚)(参考試験)

豚(大ヨークシャー種、体重 $21\sim24$ kg、6 頭)を用いて、フルベンダゾー ルの混餌投与(250 ppm)による30日間亜急性毒性試験が実施された。

試験期間中、いずれの豚にも特に異常は認められなかったが、1頭のみ投与 開始 6~12 日後にかけて一時的な下痢がみられた。しかしこの下痢は投与に 起因するものではないと判断された。また、いずれの豚も正常な体重増加を 示した。(参照7)

4. 発がん性試験

(1)発がん性試験(マウス及びラット)

ラット及びマウスを用いたフルベンダゾールの混餌投与(最高用量 40 mg/kg 体重/日) による発がん性試験が実施された。

腫瘍発生率の増加はなく、他の投与に起因した影響も認められなかった。 発がん性は認められなかった。(参照3)

(2)発がん性試験(マウス)

マウス(Swiss 系アルビノ、雌雄各50匹/群)を用いたフルベンダゾールの 混餌投与(0、50、100、200 ppm、0、7.5、15、30 mg/kg 体重/日相当)に よる 18 ヶ月間発がん性試験が実施された(摂餌量と体重についてのデータは 提供されなかった)。死亡率、臨床観察及び皮下腫瘤の有無について毎日記録 された。試験終了時に剖検及び病理組織学的検査が実施された。

臨床所見及び生存率に投与による影響はなかった。表 3 のように投与群の 生存率は対照群と同程度であった。

-	表3 マワスタ	発がん性試験に:	おける 18 ヶ月間	生仔半	(%)
	雌雄		投与量(mg/	kg 体重/日)	
		0		1 5	200

雌雄	投与量(mg/kg 体重/日)			
	0	7.5	15	30
雄	54	44	38	38
雌	40	34	40	32

良性及び悪性腫瘍の総数は、投与群及び対照群で同様であった。最も共通 してみられた腫瘍は、肝細胞腫瘍及び肺胞がん (alveologenic lung carcinoma)であった。病理組織学的検査では、投与に起因する影響はみられ なかった。

(3)発がん性試験(ラット)

ラット(Wistar 系、雌雄各 50 匹/群)を用いたフルベンダゾールの混餌投与(0、100、200、400 ppm、0、5、10、20 mg/kg 体重/日相当)による 24 τ 月間発がん性試験が実施された。

異常行動の徴候及び臨床的な影響について 1 日 1 回観察された。試験終了時、全例について剖検し、臓器について病理組織学的検査を実施した。

試験終了時の死亡率は、対照群を含めて全投与群で非常に高かった。群間の死亡率には、試験の全期間を通じて統計学的有意差は見られなかった。投与群と対照群の間に投与に起因する影響は認められなかった。

試験期間中、対照群の約20%及び高用量投与群の40%の雌に皮下腫瘤が観察された。剖検時、5及び20 mg/kg 体重/日投与群の雌に腎の淡色化が有意に増加したが、病理組織学的に用量依存性のある変化はなかった。400 ppm までの濃度でフルベンダゾールが2年間給餌されたが、新生物の発生率において、生物学的又は統計学的な影響はみられなかった。

発がん性は認められなかった。(参照2)

5. 生殖発生毒性試験

(1) 妊娠能試験(マウス)

マウス (Swiss 系アルビノ、雌 30 匹/群) を用いたフルベンダゾール (マイクロ懸濁液) の単回強制経口投与 (0, 20, 80, 320 mg/kg 体重) による妊娠能試験が実施された。全ての雌は無処置の雄と交配し、360 日間毎日観察された。

雌の死亡率、投与から初回分娩までの平均日数、平均産児数あるいは平均 出産回数に関して対照群と投与群に差は認められなかった。320 mg/kg 体重 投与群では、平均総出産児数の減少が観察された。

本試験の NOAEL は、80 mg/kg 体重と考えられた。(参照 2、7)

(2) 交配前及び妊娠期投与試験(ラット)

ラット(Wistar 系、雌雄各 20 匹/群)を用いたフルベンダゾールの混餌投与 (0, 25, 100, 400 ppm, 0, 2.5, 10, 40 mg/kg 体重/日相当)による交配前及び妊娠期投与試験が実施された。雌は、交配前 14 日間及び妊娠期間を通してフルベンダゾールを投与され、雄は交配前 60 日間フルベンダゾールを投与された。これらの雌雄動物をそれぞれ無処置の動物と交配した。

雌の摂餌量及び平均体重増加量に投与による影響は観察されなかった。雌は全て交尾 22 日後にと殺された。妊娠率に投与による影響はなく、ほとんど全ての群で妊娠率は 100 %であった。全ての雌について、平均着床数、胎児の生存率、死亡及び吸収率は同等であり、投与による影響はなかった。

投与に起因する胎児の骨格異常は観察されなかった。

本試験における NOAEL は、本試験の最高用量である 40 mg/kg 体重/日と考えられた。(参照 2、4、6、7)

(3) 周産期及び授乳期投与試験(ラット)

ラット (Wistar 系、雌 20 匹/群) を用いたフルベンダゾールの混餌投与 (0、25、100、400 ppm、それぞれ 0、2.5、10、40 mg/kg 体重/日相当) による周産期及び授乳期投与試験が実施された。被験物質の投与は妊娠 16 日から 3 週間の哺育期間を通して行われた。

40 mg/kg 体重群で母動物 1 例が死亡し、母動物の体重増加量が有意に減少した。40 mg/kg 体重で死産児数が増加した。児の出生時体重、哺育中の体重増加量又は生存率に影響はなかった。肉眼的な奇形は見られなかった。

本試験における NOAEL は 10 mg/kg 体重/日と考えられた。(参照 4、6、7)

(4)催奇形性試験(ラット)

ラット(Wistar 系、雌 20 匹/群)を用いたフルベンダゾールの混餌投与(0、25、100、400 ppm、0、2.5、10、40 mg/kg 体重/日相当)による催奇形性試験が実施された。被験物質の投与は妊娠 6~15 日に行い、体重、摂餌量、死亡率及び妊娠に関するパラメータが記録された。妊娠 22 日にと殺し、胎児の生死及び吸収数、児の平均体重並びに異常の有無を検査した。

試験期間中、死亡例はなく、摂餌量及び平均体重は群間で同程度であった。 全投与群の妊娠率は 95 %、対照群は 90 %であった。胎児の全てのパラメータ は投与群と対照群で同程度であった。40 mg/kg 体重/日投与群の胎児に中手骨 と中足骨の欠損が認められたが、1 例だけであった。

本試験における NOAEL は、本試験の最高用量である 40 mg/kg 体重/日と考えられた。(参照 2、7)

前述の試験と同一の試験計画による別の試験が実施され、調査したいずれのパラメータにも変化はなかった。

本試験における NOAEL は、本試験の最高用量である 40 mg/kg 体重/日と考えられた。

前述の試験結果を確かめるために同一の試験計画で強制経口投与による 3 回目の試験が実施された。

母動物及び胎児の全てのパラメータは、投与群と対照群で同様であった。 本試験における NOAEL は、本試験の最高用量である 40 mg/kg 体重/日と 考えられた。(参照 2)

ラット (Wistar 系、雌 20 匹/群) を用いたフルベンダゾールの混餌投与 (0、 100、 400、 1,600 ppm、 0、 10、 40、 160 mg/kg 体重/日相当) による催奇形性試験が実施された。被験物質の投与は妊娠 $6\sim15$ 日に行い、前述の試験と

同じパラメータについて調査した。

試験期間中死亡例はなかった。摂餌量及び平均体重は全群で同様であった。 妊娠率はいずれの群においても高く、群間で差は認められなかった。胎児毒性又は催奇形性は見られなかった。

本試験における NOAEL は、本試験の最高用量である 160 mg/kg 体重/日と考えられた。 (参照 2)

ラット (SD 系、雌 20 匹/群)を用いたフルベンダゾール (市販製剤から抽出した水性懸濁液)の強制経口投与 (0、2.5、10、40、160 mg/kg 体重/日)による催奇形性試験が実施された。被験物質の投与は妊娠 8~15 日に行い、妊娠 21 日にと殺し、着床数、生存胎児数及び胎児の奇形について検査した。試験期間中、母体毒性は観察されなかった。160 mg/kg 体重/日投与群では胚子致死作用が認められ、胚・胎児吸収率が有意に増加した。胎児重量に用量依存的な減少がみられ、40 mg/kg 体重/日以上投与群で有意であった。40 mg/kg 体重/日以上投与群で外部奇形、骨格奇形及び内部奇形が有意に増加した。160 mg/kg 体重/日投与群では、16.8 %の胎児に外部奇形として、脳瘤、頭蓋髄膜瘤、臍帯ヘルニア、欠指症、内反足、鎖肛、潜在性二分脊椎及び尾の異常が認められた。骨格奇形は主に椎骨及び肋骨に認められ、40 及び 160 mg/kg 体重/日投与群の胎児のそれぞれ 24.6 及び 32.6 %に奇形がみられた。内部奇形は、40 及び 160 mg/kg 体重/日投与群の胎児に、それぞれ 19.8 及び 47.7 %観察された。

NOAEL は 10 mg/kg 体重/日と考えられた。(参照 2、4、6)

ラット (SD 系、雌) を用いたフルベンダゾールの経口投与 (0、20、40、60 mg/kg 体重/日) による催奇形性試験が実施された。被験物質の投与は妊娠 $6\sim14$ 日に行った。

この試験の報告は不十分ではあるが、40 mg/kg 体重/日以上投与群で流産が増加し、60 mg/kg 体重/日投与群で443 例中23 例の胎児に奇形が認められた。

NOAEL は 20 mg/kg 体重/日と考えられた。 (参照 4、6)

(5)催奇形性試験(ウサギ)

ウサギ(New Zealand white 種、雌 20 匹/群)を用いたフルベンダゾールの経口投与(0、10、40 mg/kg 体重/日)による催奇形性試験が実施された。被験物質の投与は妊娠 $6\sim18$ 日に行い、妊娠 28 日にと殺して剖検した。胎児体重及び外部異常を検査した後、保育器に入れて生存率を算出した。全ての胎児について X 線撮影検査を実施した。1/3 の胎児について内臓異常を調べ、残りは保存して追加分析に使用した。

試験期間中、40 mg/kg 体重/日投与群の非妊娠雌 1 例が感染症により死亡した。全ての群について平均体重増加量は同程度であった。妊娠率に群間の差はなく、催奇形性は見られなかった。生存、死亡及び吸収胎児の割合及び保

育後の児の生存率に群間で有意差はなかった。

本試験における NOAEL は、本試験の最高用量である 40 mg/kg 体重/日と考えられた。(参照 2、4、6、7)

ウサギ (Bourgogne 種、雌) を用いたフルベンダゾールの経口投与 (20、40、60 mg/kg 体重/日)による催奇形性試験では、催奇形性は見られなかった。 (参照 4、6)

(6)催奇形性試験(豚)

豚(雌 16 頭、雄 1 頭/養豚場、5 ヶ所の養豚場)を用いたフルベンダゾールの混餌投与(3 mg/kg 体重/日)による交配前及び妊娠期投与試験が実施された。各雄豚は 8 頭の投与雌及び 8 頭の対照雌と交配させた。投与群の雌は発情期から分娩までフルベンダゾールを投与され、雄は交配前 2 ヶ月間及び全ての雌が妊娠するまで投与された。同数の無処置動物が対照群として用いられた。

試験期間中、雄の授胎率、発情行動又は妊娠期間に差は見られなかった。 難産であった雌 7 例を除き、分娩後の状態は正常であった。生存及び死亡児 数に群間で統計学的な差はなかった。胎児ミイラ変性がわずかに増加した以 外、いずれの群の児における異常にも統計学的に有意な差は観察されなかっ た。胎児ミイラ変性は、試験が実施された地方にみられるオーエスキー病及 びパルボウイルス感染症に関連した変化と考えられた。離乳から次の発情期 までの日数は群間で同様であった。(参照 2)

豚(雌 20 頭)を用いたフルベンダゾールの混餌投与(200 ppm、8 mg/kg 体重/日相当)による催奇形性試験が実施された。被験物質の投与は、交配初 日から分娩まで行った。3 週間後に3 頭が試験から除外された。

妊娠した 17 頭の雌豚から 154 頭が生まれ、8 頭が死産であった。1 腹の児 2 例に軽度の四肢異常が観察された以外、外部異常は検出されなかった。死産 児には異常は見られなかった。(参照 2)

豚(雌 8 頭/群)を用いたフルベンダゾールの混餌投与(50 mg/kg 体重/日)による催奇形性試験が実施された。被験物質の投与は、交配初日から妊娠70日まで行った。正常体重の63 頭の児が生まれ、3 頭が死産であった。外部異常は観察されなかった。(参照2)

豚(Landrace-Pietrain 交雑経産母豚、2 歳齢、6 頭)を用いたフルベンダゾールの混餌投与(30 ppm)による催奇形性試験が実施された。被験物質の投与は、妊娠 8 日から 50 日まで行った。

全部で62頭の児が生まれたが、死産はなく異常も観察されなかった。

(参照 2、7)

6. 遺伝毒性試験

フルベンダゾールの遺伝毒性試験を表 4 にまとめた。(参照 2、4、6、7)

表 4 フルベンダゾールの遺伝毒性試験

試験		試験対象	用量	結果
	DNA 修復試験 (Rec-assay)	Bacillus subtilis	1~5,000 μg/ディスク	陰性
in vitro	復帰突然変異試験	Salmonella typhimurium TA1535, TA1537, TA1538, TA100, TA98 Escherichia coli N/r WP2 trp hcr	10~5,000 μg/plate ±S9	陰性
		S. typhimurium TA1535、TA1537、TA1538、 TA100、TA98 Saccharomyces cerevisiae D4	0.5~1,000 μg/ plate ±S9	陰性
	伴性劣性致死試 験	Drosophila melanogaster (キイロショウジョウバエ)	500、2,000 ppm 飼料/3 日	陰性
in vivo	小核試験	マウス(Swiss 系 アルビノ 雄)	2 回経口 用量: 40、80、160、1,280 mg/kg 体重	陰性
		ラット (Wistar 系アルビノ 雌)	2 回経口 用量: 80、160、640 mg/kg 体重	陰性
	優性致死試験	マウス (Swiss 系 アルビノ 雄)	単回経口 用量: 10、40、160 mg/kg 体重	陰性

以上の試験結果から、フルベンダゾールは生体にとって問題となる遺伝毒性 を示さないと考えられる。

7. その他

(1) 眼粘膜刺激性試験(ウサギ)

ウサギ(New Zealand white 種、成獣、6 匹/群)にフルベンダゾール(5 % プレミックス製剤の 50 %w/w 懸濁液)を 0.1 mL 左眼結膜嚢に注入した。投与後 21 日間の観察期間中、眼刺激の徴候はなかった。(参照 2)

(2)皮膚刺激性試験(ウサギ)

ウサギ(New Zealand white 種)の正常皮膚に、フルベンダゾール製剤を塗布した。試験部位は 24 時間密封された。包帯を剥がして試験部位の紅斑及び浮腫についてスコア化された。Draize irritation index に準じると、最初の5 日間に辛うじて識別できる程度の刺激(index 0.63)が記録された。投与 5 日後には十分に回復していた。(参照 2)

(3)ヒトに関する知見

海外では、フルベンダゾールはヒト用の駆虫薬として使用されている。常

用量は、100 mgを1日に1回又は2回で、連続3日間服用する。

3人の男性ボランティアにフルベンダゾールの 100 mg 錠剤が単回経口投与された。フルベンダゾールは、服用後 3 日以内に主に糞中に排泄された(投与量の 77.3%)。投与量の 0.1%未満が尿中に未変化体として排泄された。

3 人の男性ボランティアにフルベンダゾールが経口投与された。食事の 2 時間前に 100 mg、大量の食事直後に 2,000 mg 及び食事前に 2,000 mg 投与した。血清中のフルベンダゾール濃度が測定された。血漿濃度は非常に低く、食事前に 100 及び 2,000 mg を服用した時の最大血漿濃度は、それぞれ 0.35 及び 0.74 ng/mL であった。大量の食事後に服用した場合は、最大血漿濃度は著しく高く (4.06 ng/mL)、食物があると消化管からの吸収が増進されることを示している。AUC 値の計算から吸収が用量依存的でないことが判明した。投与量が 20 倍でも AUC 値は 1.4 倍しか上昇していない。

これらの試験では、フルベンダゾールの有害作用は報告されなかった。

(参照 2、4)

(4) 微生物学的知見

フルベンダゾールは抗菌活性を持たない。(参照3、4)

皿. 食品健康影響評価

1. 各評価書の評価について

(1) JECFA 及び EMEA の評価

JECFA ではイヌを用いた 3 ヶ月間亜急性毒性試験における NOAEL 2.5 mg/kg 体重/日に安全係数 200 を適用し、フルベンダゾールの ADI として、 $12 \mu g/kg$ 体重/日が設定された。この安全係数は、本試験の投与が週 6 日であったことから適切な評価ができないことを考慮して用いられた。

また、この ADI はラットの催奇形性試験における NOAEL 10 mg/kg 体重/日に対し約 1,000 倍に相当する安全域がある。さらに、陰性結果を示した発がん性試験で用いられた最高用量は、ADI の約 2,000 倍であることから、更なる発がん性試験は必要がないと判断された。(参照 2)

EMEA においても、この JECFA の評価と同様な考え方にもとづき、ADI を $12 \mu g/kg$ 体重/日と設定した。(参照 3、4、6)

(2) 我が国における評価

我が国における過去の評価においても、JECFA と同様にイヌを用いた 3 ヶ月間亜急性毒性試験における NOAEL 2.5 mg/kg 体重/日をもとに、被験物質の投与が週 7 日投与のところ週 6 日の投与しかなされていないことから、通常用いられる動物種間及びヒト個体間の感受性の差を考慮した 100 の安全係数ではなく、さらに安全性を見込んだ 200 の安全係数を適用して、ADI を 12 μ g/kg 体重/日と設定している。(参照 8)

2. ADIの設定について

フルベンダゾールは、遺伝毒性試験において陰性の結果であり、各種発がん性試験でも発がん性は認められなかったことから、遺伝毒性発がん物質ではないと考えられることから、ADIの設定は可能であると判断された。

毒性試験において、最も用量の低いところで投与の影響が認められたと考えられる指標は、イヌの 1 週間 6 日投与による 3 ヶ月間亜急性毒性試験における前立腺の小型化及び精巣上体尾部のうっ血で、NOAEL は 2.5 mg/kg 体重/日であった。

ADI の設定に当たっては、安全係数として、種差 10、個体差 10 に、発がん性試験は行われているが、それらの試験は慢性毒性試験としては不十分であること及び NOAEL が設定されたイヌの 3 ヶ月間亜急性毒性試験における投与が週 7 日ではなく 6 日であることを考慮して追加の係数 2 を適用し、200 とすることが適当と考えられた。

フルベンダゾールの ADI としては、NOAEL 2.5 mg/kg 体重/日に安全係数 200 を適用し、 0.012 mg/kg 体重/日と設定することが適当であり、JECFA の評価と同様の考え方に基づく我が国における過去の評価結果を変更する必要 はないと考えられた。

3. 食品健康影響評価について

以上より、フルベンダゾールの食品健康影響評価については、ADI として次の値を採用することが適当と考えられる。

フルベンダゾール 0.012 mg/kg 体重/日

暴露量については、当該評価結果を踏まえ暫定基準値の見直しを行う際に確認することとする。

なお、残留マーカーについては、豚及び家禽の残留試験において、未変化体だけでなく代謝物も検出されており、これらを考慮する必要があると考えられる。

また、牛及び馬の残留試験においては、未変化体のみを検査対象とした試験 結果が得られているが、代謝物の残留性についても考慮する必要があると考え られる。

表 5 各評価書におけるフルベンダゾールの無毒性量等の比較

衣 0	試験	投与量 (mg/kg 体重/日)	無毒性量(mg/kg 体重/日)		
動物種			EMEA	JECFA	
	発がん性試験	0, 7.5, 15, 30	_	30	
マウス	妊娠能試験	0, 20, 80, 320		80 平均総出産児数の 減少	
	3 ヶ月間亜急 性毒性試験	雄:0、8、30、130 雌:0、9、40、150	130	130	
	発がん性試験	0, 5, 10, 20		20	
	交配前及び妊 娠期投与試験	0, 2.5, 10, 40	-	40	
ラット	周産期及び授 乳期投与試験	0、2.5、10、40	10 母動物の体重減少	40	
	催奇形性試験	0、2.5、10、40		40	
	催奇形性試験	0、10、40、160		160	
	催奇形性試験	0、2.5、10、40、 160	10 胎児重量の減少	10 胎児重量の減少	
	催奇形性試験	0, 20, 40, 60	20 流産の増加		
ウサギ	催奇形性試験	0、10、40	_	40	
イヌ	3 ヶ月間亜急 性毒性試験	0、2.5、10、40	2.5 雄の生殖器への影 響	2.5 雄の生殖器への影 響	
ADI			ADI: 0.012 mg/kg 体重/日 SF: 200	ADI: 0.012 mg/kg 体重/日 SF: 200	
ADI 設定根拠資料			イヌ 3 ヶ月間亜急 性毒性試験 NOAEL: 2.5	イヌ 3 ヶ月間亜急 性毒性試験 NOAEL: 2.5	

<別紙1 検査値等略称>

略称/正式名	日本語名称
ADI	一日摂取許容量
AST	アスパラギン酸アミノトランスフェラーゼ
AUC	血漿薬物濃度曲線下面積
ChE	コリンエステラーゼ
C_{max}	最高濃度
EMEA	欧州医薬品審査庁
HPLC	高速液体クロマトグラフィー
Ht	ヘマトクリット値
JECFA	FAO/WHO 合同食品添加物専門家会議
LD_{50}	半数致死量
NOAEL	無毒性量
RBC	赤血球数
$T_{1/2}$	消失半減期
Tmax	最高濃度到達時間

く参照>

- 1 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(平成17年11月29日付、平成17年厚生労働省告示第499号)
- 2 Joint FAO/WHO Expert Committee on Food Additives (JECFA) FLUBENDAZOLE (WHO Food Additives Series 31)
- 3 EMEA:COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS, FLUBENDAZOLE SUMMARY REPORT(1)
- 4 EMEA:COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS, FLUBENDAZOLE SUMMARY REPORT (2)1997
- 5 EMEA:COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS, FLUBENDAZOLE(extension to turkeys) SUMMARY REPORT (3) 1999
- 6 EMEA:COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS, FLUBENDAZOLE(extrapolation to poultry) SUMMARY REPORT (4) 2006
- 7 株式会社インターベット 平成 20 年度残留基準見直しに関する資料 成分名:フルベンダゾール
- 8 厚生省(当時) 畜水産食品中に残留する動物用医薬品の基準設定に関する 分科会報告(平成7年11月22日食調第50号)